WO2024009812A1 - Hot-rolled steel sheet - Google Patents

Hot-rolled steel sheet Download PDF

Info

Publication number
WO2024009812A1
WO2024009812A1 PCT/JP2023/023384 JP2023023384W WO2024009812A1 WO 2024009812 A1 WO2024009812 A1 WO 2024009812A1 JP 2023023384 W JP2023023384 W JP 2023023384W WO 2024009812 A1 WO2024009812 A1 WO 2024009812A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rolled steel
steel sheet
content
hot rolled
Prior art date
Application number
PCT/JP2023/023384
Other languages
French (fr)
Japanese (ja)
Inventor
隆 安富
栄作 桜田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024009812A1 publication Critical patent/WO2024009812A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a hot rolled steel plate.
  • This application claims priority based on Japanese Patent Application No. 2022-109509 filed in Japan on July 7, 2022, the contents of which are incorporated herein.
  • Patent Document 1 states that C/(Mo+Ti), which is the ratio of the amount of C in atomic % to the total amount of Mo and Ti, is 0.5 to 3.0, and the metal structure is two phases of ferrite and bainite.
  • a high-strength steel sheet having a strength of 700 MPa or more is disclosed, which has a structure in which carbides containing Ti and Mo are dispersed and precipitated in a ferrite phase.
  • Patent Document 2 discloses a high-strength hot-rolled steel sheet with small anisotropy in stretch flangeability, characterized in that 88% or more of the steel structure consists of a bainite structure.
  • hot-rolled steel sheets with a high C content and containing retained austenite may be used.
  • hydrogen embrittlement cracking is likely to occur at the cut end face, which may deteriorate the hydrogen embrittlement resistance.
  • Patent Documents 1 and 2 it is necessary to further increase the strength, and hydrogen embrittlement resistance at the cut end surface is not considered.
  • the present invention was made in view of the above circumstances, and an object of the present invention is to provide a hot rolled steel sheet having high strength, excellent ductility, hole expandability, and hydrogen embrittlement resistance.
  • the present inventors have conducted extensive studies on a method for improving the hydrogen embrittlement resistance of the cut end surface of a hot rolled steel sheet. As a result, it was found that by reducing the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 ⁇ m or more, the hydrogen embrittlement resistance of the cut end surface of a hot rolled steel sheet could be improved.
  • the present inventors have discovered that in order to manufacture the above-mentioned hot rolled steel sheet, it is necessary to control the grain size and shape of prior austenite grains in the rough rolling process and finish rolling process, and to strictly control the temperature history after the coiling process. We have found that controlling is effective.
  • the hot rolled steel sheet according to one aspect of the present invention has a chemical composition in mass %, C: 0.13-0.23%, Si: 0.70-1.79%, Mn: 1.79-3.00%, P: 0.060% or less, S: 0.005% or less, N: 0.0070% or less, O: 0.010% or less, Al: 0.010-0.430%, Ti: 0.006 to 0.055%, Nb: 0.005-0.040%, B: 0.0001 to 0.0030%, Cr: 0-0.660%, Mo: 0 to 0.300%, Cu: 0 to 1.000%, Ni: 0-1.000%, Sn: 0-0.100%, Ca: 0-0.0200%, As: 0 to 0.100%, Bi: 0 to 0.020%, Mg: 0 to 0.0200%, Zr: 0 to 0.400%, V: 0 to 0.200%, REM: 0-0.1000%, Co: 0 to 0.2000
  • the pearlite may be less than 3% in the metal structure.
  • the hot-rolled steel sheet according to (1) or (2) above is a region of the bainite in which the average value of nanoindentation hardness at a load of 5000 ⁇ N and a loading rate of 500 ⁇ N/s is 4.7 GPa or less. may be 30% or less.
  • FIG. 3 is a diagram for explaining a method of approximating a crystal grain with an ellipsoid.
  • the hot-rolled steel sheet according to this embodiment has a chemical composition in mass %: C: 0.13 to 0.23%, Si: 0.70 to 1.79%, Mn: 1.79 to 3.00%. , P: 0.060% or less, S: 0.005% or less, N: 0.0070% or less, O: 0.010% or less, Al: 0.010 to 0.430%, Ti: 0.006 to 0.055%, Nb: 0.005 to 0.040%, B: 0.0001 to 0.0030%, and the remainder: Fe and impurities.
  • C 0.13 to 0.23%
  • Si 0.70 to 1.79%
  • Mn 1.79 to 3.00%.
  • P 0.060% or less
  • N: 0.0070% or less O: 0.010% or less
  • Nb 0.005 to 0.040%
  • B 0.0001 to 0.0030%
  • the remainder Fe and impurities.
  • C 0.13-0.23%
  • C is an element that improves the tensile strength of hot rolled steel sheets. If the C content is less than 0.13%, the area ratio of ferrite becomes too high, making it impossible to obtain the desired tensile strength in the hot rolled steel sheet. Therefore, the C content is set to 0.13% or more.
  • the C content is preferably 0.14% or more, more preferably 0.16% or more.
  • the C content is set to 0.23% or less.
  • the C content is preferably 0.21% or less, more preferably 0.20% or less.
  • Si 0.70-1.79% Si is an element that stabilizes retained austenite. If the Si content is less than 0.70%, a desired amount of retained austenite cannot be obtained, and the ductility of the hot rolled steel sheet deteriorates. Therefore, the Si content is set to 0.70% or more.
  • the Si content is preferably 0.90% or more, more preferably 1.00% or more.
  • the Si content is set to 1.79% or less.
  • the Si content is preferably 1.60% or less, more preferably 1.40% or less, even more preferably 1.30% or less.
  • Mn 1.79-3.00%
  • Mn is an element necessary to improve the strength of hot rolled steel sheets. If the Mn content is less than 1.79%, the area ratio of ferrite becomes too high, making it impossible to obtain the desired tensile strength. Therefore, the Mn content is set to 1.79% or more.
  • the Mn content is preferably 2.00% or more, more preferably 2.20% or more.
  • the Mn content exceeds 3.00%, the ductility of the hot rolled steel sheet deteriorates. Therefore, the Mn content is set to 3.00% or less.
  • the Mn content is preferably 2.60% or less, more preferably 2.40% or less.
  • P 0.060% or less
  • P is an element that segregates in the center of the thickness of the hot rolled steel sheet. Moreover, P is also an element that makes the weld part brittle. If the P content exceeds 0.060%, slab cracking is likely to occur, making it difficult to perform casting. Therefore, the P content is set to 0.060% or less.
  • the P content is preferably 0.020% or less, more preferably 0.015% or less. The lower the P content, the better, and preferably 0%. However, if the P content is reduced excessively, the cost for removing P will increase significantly, so the P content may be set to 0.001% or more.
  • S 0.005% or less
  • S is an element that embrittles slabs when it exists as a sulfide in steel.
  • S is also an element that deteriorates the formability of hot rolled steel sheets. If the S content exceeds 0.005%, the hole expandability of the hot rolled steel sheet deteriorates. Therefore, the S content is set to 0.005% or less.
  • the S content is preferably 0.004% or less, more preferably 0.003% or less. The lower the S content, the better, and preferably 0%. However, if the S content is reduced excessively, the cost for removing S will increase significantly, so the S content may be set to 0.001% or more.
  • N 0.0070% or less
  • N is an element that forms coarse nitrides in steel and embrittles the slab. If the N content exceeds 0.0070%, the risk of slab cracking increases significantly. Therefore, the N content is set to 0.0070% or less.
  • the N content is preferably 0.0050% or less, more preferably 0.0035% or less. The lower the N content, the better, and preferably 0%. However, if the N content is reduced excessively, the cost for removing N will increase significantly, so the N content may be set to 0.0005% or more.
  • O 0.010% or less
  • O content is set to 0.010% or less.
  • the O content is preferably 0.008% or less, more preferably 0.006% or less.
  • the O content may be set to 0.001% or more.
  • Al 0.010-0.430%
  • Al is an element that acts as a deoxidizer and improves the cleanliness of steel. If the Al content is less than 0.010%, a sufficient deoxidizing effect cannot be obtained and a large amount of inclusions (oxides) are formed in the steel sheet. Such inclusions deteriorate the hole expandability of the hot rolled steel sheet. Therefore, the Al content is set to 0.010% or more.
  • the Al content is preferably 0.040% or more, more preferably 0.100% or more.
  • the Al content exceeds 0.430%, slab cracking tends to occur, making casting difficult. Therefore, the Al content is set to 0.430% or less.
  • the Al content is preferably 0.400% or less, 0.350% or less, and more preferably 0.200% or less.
  • Ti 0.006-0.055%
  • Ti is an element that increases the strength of hot rolled steel sheets by forming fine nitrides in steel. If the Ti content is less than 0.006%, the desired tensile strength cannot be obtained in the hot rolled steel sheet. Therefore, the Ti content is set to 0.006% or more.
  • the Ti content is preferably 0.010% or more, more preferably 0.020% or more. On the other hand, if the Ti content exceeds 0.055%, the risk of slab cracking increases significantly. Therefore, the Ti content is set to 0.055% or less.
  • the Ti content is preferably 0.040% or less, more preferably 0.030% or less.
  • Nb 0.005-0.040%
  • Nb is an element that suppresses abnormal grain growth of austenite grains during hot rolling.
  • Nb is also an element that increases the strength of hot rolled steel sheets by forming fine carbides. If the Nb content is less than 0.005%, prior austenite grains cannot be refined, and the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 ⁇ m or more increases, resulting in hot rolling. The hole expandability and hydrogen embrittlement resistance of the steel sheet deteriorate. Therefore, the Nb content is set to 0.005% or more.
  • the Nb content is preferably 0.010% or more, more preferably 0.020% or more.
  • the Nb content exceeds 0.040%, the aspect ratio of prior austenite grains becomes high, and the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 ⁇ m or more becomes high, and hot rolling The hole expandability and hydrogen embrittlement resistance of the steel sheet deteriorate. Therefore, the Nb content is set to 0.040% or less.
  • the Nb content is preferably 0.030% or less.
  • B 0.0001-0.0030%
  • B is an element that increases the strength of the hot rolled steel sheet by suppressing the formation of ferrite during the cooling process. If the B content is less than 0.0001%, the desired tensile strength cannot be obtained in the hot rolled steel sheet. Therefore, the B content is set to 0.0001% or more.
  • the B content is preferably 0.0005% or more, more preferably 0.0010% or more.
  • the B content is set to 0.0030% or less.
  • the B content is preferably 0.0025% or less.
  • the remainder of the chemical composition of the hot rolled steel sheet according to this embodiment may be Fe and impurities.
  • impurities are those mixed in from ore as a raw material, scrap, manufacturing environment, etc., or those that are allowed within a range that does not adversely affect the properties of the hot rolled steel sheet according to this embodiment.
  • the hot rolled steel sheet according to this embodiment may contain the following arbitrary elements in place of a part of Fe. The lower limit of the content when no arbitrary element is contained is 0%. Each arbitrary element will be explained below.
  • Cr 0.020 ⁇ 0.660% Cr is an element that reduces the amount of ferrite and increases the strength of the hot rolled steel sheet.
  • the Cr content is preferably 0.020% or more.
  • the Cr content is more preferably 0.050% or more, 0.100% or more, even more preferably 0.200% or more.
  • the Cr content is set to 0.660% or less.
  • the Cr content is preferably 0.500% or less, more preferably 0.400% or less.
  • Mo 0.001-0.300%
  • Mo is an element that increases the strength of hot rolled steel sheets by forming fine carbides in steel.
  • the Mo content is preferably 0.001% or more.
  • the Mo content is set to 0.300% or less.
  • Cu 0.001-1.000%
  • Cu has the effect of increasing the hardenability of steel and the effect of precipitating as carbides in steel at low temperatures to increase the strength of hot rolled steel sheets.
  • the Cu content is preferably 0.001% or more.
  • the Cu content is set to 1.000% or less.
  • Ni 0.001-1.000%
  • Ni has the effect of increasing the hardenability of the steel sheet and increasing the strength of the hot rolled steel sheet. Further, when containing Cu, Ni has the effect of effectively suppressing intergranular cracking of the slab caused by Cu. In order to more reliably obtain the effects of the above action, the Ni content is preferably 0.001% or more. Since Ni is an expensive element, it is economically undesirable to contain a large amount of Ni. Therefore, the Ni content is set to 1.000% or less.
  • Sn 0.001-0.100% Sn increases the strength of the hot-rolled steel sheet by forming a solid solution in the steel, and also increases the ductility and hole expandability. In order to reliably exhibit this effect, the Sn content may be set to 0.001% or more. On the other hand, if the Sn content exceeds 0.100%, grain boundary embrittlement cracking occurs in hot conditions. Therefore, the Sn content is set to 0.100% or less.
  • Ca 0.0005-0.0200%
  • Ca has the effect of improving the formability of the hot rolled steel sheet by controlling the shape of inclusions into a preferable shape.
  • the Ca content is preferably 0.0005% or more.
  • the Ca content is set to 0.0200% or less.
  • the As content be 0.001% or more.
  • the As content is set to 0.100% or less.
  • Bi 0.001 ⁇ 0.020%
  • Bi has the effect of improving the formability of the hot rolled steel sheet by making the solidification structure finer.
  • the Bi content is 0.001% or more.
  • the Bi content is set to 0.020% or less.
  • Mg 0.0005-0.0200%
  • Mg has the effect of improving the formability of the hot rolled steel sheet by controlling the shape of inclusions into a preferable shape.
  • the Mg content is preferably 0.0005% or more.
  • the Mg content is set to 0.0200% or less.
  • Zr 0.001-0.400%
  • Zr is an element that contributes to inclusion control, particularly to fine dispersion of inclusions, and increases the strength of the hot rolled steel sheet.
  • the Zr content is preferably 0.001% or more.
  • the Zr content is set to 0.400% or less.
  • V is an element that increases the strength of hot rolled steel sheets by forming fine carbides in the steel.
  • the V content is preferably 0.001% or more.
  • the V content is set to 0.200% or less.
  • REM 0.0005-0.1000% REM has the effect of improving the formability of a hot rolled steel sheet by controlling the shape of inclusions into a preferable shape.
  • the REM content is preferably 0.0005% or more.
  • the REM content is set to 0.1000% or less.
  • REM refers to a total of 17 types of rare earth elements including Sc, Y, and lanthanoids
  • the content of REM refers to the total content of these elements. In the case of lanthanoids, they are added industrially in the form of mischmetal.
  • Co is an element that contributes to inclusion control, particularly to fine dispersion of inclusions, and increases the strength of the hot rolled steel sheet.
  • the Co content is preferably 0.0005% or more.
  • the Co content is set to 0.2000% or less.
  • W 0.0005-0.2000% W is an element that contributes to inclusion control, particularly to fine dispersion of inclusions, and increases the strength of the hot rolled steel sheet.
  • the W content is preferably 0.0005% or more.
  • the W content is set to 0.2000% or less.
  • Zn 0.0005-0.2000%
  • Zn is an element that contributes to inclusion control, particularly to fine dispersion of inclusions, and increases the strength of hot rolled steel sheets.
  • the Zn content is preferably 0.0005% or more.
  • the W content is set to 0.2000% or less.
  • the chemical composition of the hot-rolled steel sheet described above may be analyzed using a spark discharge emission spectrometer or the like. Note that C and S are determined by burning in an oxygen stream using a gas component analyzer or the like, and then measuring by an infrared absorption method. Further, for N, a value identified by melting a test piece taken from a hot-rolled steel plate in a helium stream and measuring it by a thermal conductivity method is used.
  • the hot rolled steel sheet according to the present embodiment has a metal structure in which, in terms of area %, bainite: 10% or more, tempered martensite: 10% or more, total of bainite and tempered martensite: 70 to 96%, fresh martensite : 20% or less, retained austenite: 4 to 12%, ferrite: 5% or less, pearlite: 5% or less, average grain size of prior austenite grains: 20.0 ⁇ m or less, average aspect ratio of prior austenite grains: 3.00 or less
  • the area ratio of aggregates of fresh martensite and retained austenite having a major axis of 30 ⁇ m or more is 5% or less.
  • the metallographic structure at a position of 1/4 of the thickness of a hot rolled steel plate (an area from 1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface) is defined.
  • the reason is that the metal structure at this position shows a typical metal structure of a hot rolled steel sheet.
  • Bainite 10% or more Bainite is a structure that increases the ductility of hot rolled steel sheets. If the area ratio of bainite is less than 10%, desired ductility cannot be obtained in the hot rolled steel sheet. Therefore, the area ratio of bainite is set to 10% or more.
  • the area ratio of bainite is preferably 20% or more or 30% or more, more preferably 40% or more.
  • the upper limit of the area ratio of bainite is not particularly limited, it may be set to 96% or less in view of the relationship with the area ratio of retained austenite.
  • the area ratio of bainite may be 80% or less or 75% or less.
  • Tempered martensite 10% or more Tempered martensite is an effective structure for obtaining desired ductility, hole expandability, and hydrogen embrittlement resistance in a hot rolled steel sheet. If the area ratio of tempered martensite is less than 10%, desired ductility, hole expandability, and hydrogen embrittlement resistance cannot be obtained in the hot rolled steel sheet. Therefore, the area ratio of tempered martensite is set to 10% or more. The area ratio of tempered martensite is preferably 15% or more or 20% or more, more preferably 30% or more. Although the upper limit of the area ratio of tempered martensite is not particularly limited, it may be 96% or less in view of the relationship with the area ratio of retained austenite. The area ratio of tempered martensite may be 80% or less, 60% or less, or 50% or less.
  • Total of bainite and tempered martensite 70-96% If the total area ratio of bainite and tempered martensite is less than 70%, desired ductility, hole expandability and/or hydrogen embrittlement resistance cannot be obtained in the hot rolled steel sheet. Therefore, the total area ratio of bainite and tempered martensite is 70% or more.
  • the area ratio of bainite and tempered martensite is preferably 75% or more, more preferably 80% or more.
  • the upper limit of the total area ratio of bainite and tempered martensite is not particularly limited, it is set to 96% or less in relation to the area ratio of retained austenite.
  • the total area ratio of bainite and tempered martensite may be 90% or less.
  • Fresh martensite 20% or less
  • Fresh martensite is a structure that increases the strength of hot rolled steel sheets, but it is also a structure that deteriorates hole expandability and hydrogen embrittlement resistance. If the area ratio of fresh martensite exceeds 20%, the hole expandability and hydrogen embrittlement resistance of the hot rolled steel sheet deteriorate. Therefore, the area ratio of fresh martensite is set to 20% or less.
  • the area ratio of fresh martensite is preferably 15% or less, more preferably 10% or less, even more preferably 7% or less.
  • the lower limit of the area ratio of fresh martensite is not particularly limited, but may be set to 0%.
  • Retained austenite 4-12% Retained austenite is a structure that increases the ductility of hot rolled steel sheets. If the area ratio of retained austenite is less than 4%, desired ductility cannot be obtained in the hot rolled steel sheet. Therefore, the area ratio of retained austenite is set to 4% or more. The area ratio of retained austenite is preferably 6% or more, more preferably 7% or more. On the other hand, if the area ratio of retained austenite exceeds 12%, the hole expandability of the hot rolled steel sheet deteriorates. Therefore, the area ratio of retained austenite is set to 12% or less. The area ratio of retained austenite is preferably 10% or less.
  • the area ratio of ferrite is set to 5% or less.
  • the area ratio of ferrite is preferably 3% or less, more preferably 2% or less.
  • the area ratio of ferrite may be 0%.
  • the area ratio of pearlite is set to 5% or less.
  • the area ratio of pearlite is preferably 3% or less.
  • the TS-El balance in the hot rolled steel sheet can be further improved. That is, high strength and excellent ductility can be achieved at a higher level. Since it is preferable that the area ratio of pearlite be small, the area ratio of pearlite may be set to 0%.
  • a test piece is taken so that the metal structure at the central position can be observed.
  • the strain introduced into the surface layer of the sample is removed by polishing at room temperature using colloidal silica that does not contain an alkaline solution.
  • the EBSD observation field At any position in the longitudinal direction of the sample cross section, observe an area with a length of 100 ⁇ m and a depth of 1/8 of the plate thickness from the surface to a depth of 3/8 of the plate thickness from the surface (hereinafter referred to as the EBSD observation field).
  • the crystal orientation information is obtained by measuring with an electron backscatter diffraction method at a measurement interval of 0.1 ⁇ m.
  • an EBSD device consisting of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used.
  • the degree of vacuum in the EBSD device is 9.6 ⁇ 10 ⁇ 5 Pa or less
  • the acceleration voltage is 15 kV
  • the irradiation current level is 13
  • the electron beam irradiation level is 62.
  • From the obtained crystal orientation information use the "Phase Map" function installed in the software "OIM Analysis (registered trademark)” included with the EBSD analyzer to identify a region with an fcc crystal structure, and Calculate the area ratio. Thereby, the area ratio of retained austenite is obtained.
  • the maximum value of "Grain Average IQ" of the ferrite region is determined as I ⁇
  • the region where the value exceeds I ⁇ /2 is extracted as bainite
  • the region where the value is less than I ⁇ /2 is extracted as “pearlite, fresh martensite, and tempered martensite.”
  • the area ratio of bainite is obtained by calculating the area ratio of the extracted bainite.
  • pearlite, fresh martensite, and tempered martensite are distinguished by the following method.
  • the IQ may change depending on the condition of the surface of the observed sample and the accuracy at the time of measurement.
  • a material having a CI (Confidence Index) value representing reliability of crystal orientation information of 0.8 or more may be used. If the CI value is 0.8 or less, perform electrolytic polishing using the above method again, adjust the working distance between the sample and the EBSD pattern detector, or adjust the accelerating voltage and irradiation current level. , adjust the gain or exposure of the detector and acquire data so that the CI value is 0.8 or more.
  • the area where cementite is precipitated in a lamellar shape is determined to be pearlite.
  • a region where the brightness is high and the underlying structure is not exposed by etching is determined to be fresh martensite.
  • a method such as buffing using alumina particles with a particle size of 0.1 ⁇ m or less or Ar ion sputtering may be used.
  • the rolling direction of a hot rolled steel sheet can be determined by the following method. First, a test piece is taken so that the cross section of the hot rolled steel sheet can be observed. After finishing the thickness section of the collected test piece with mirror polishing, it is observed using an optical microscope. The observation range is the entire thickness of the plate, and areas with low brightness are determined to be inclusions. Among inclusions, the length of the major axis is 5 ⁇ m or more, and a direction parallel to the direction in which the inclusion extends is determined as the rolling direction.
  • Average grain size of prior austenite grains 20.0 ⁇ m or less
  • the average particle size of the prior austenite grains is preferably 15.0 ⁇ m or less, more preferably 13.0 ⁇ m or less.
  • the average grain size of the prior austenite grains may be 7.0 ⁇ m or more.
  • the average aspect ratio of prior austenite grains is set to 3.00 or less.
  • the average aspect ratio of the prior austenite grains is preferably 2.50 or less, more preferably 2.00 or less, and even more preferably 1.50 or less.
  • the aspect ratio of the prior austenite grains is a value obtained by dividing the long axis of the prior austenite grains by the short axis, and takes a value of 1.00 or more. The smaller the aspect ratio, the more equiaxed the crystal grain, and the larger the aspect ratio, the flatter the crystal grain.
  • the grain size of prior austenite grains is measured from a metallographic photograph taken in the observation field.
  • the equivalent circle diameter is calculated for one of the prior austenite grains included in each observation field. Excluding old austenite grains where the entire former austenite grain is not included in the photographing field of view, such as the edge of the photographing field of view, perform the above operation for all the former austenite grains included in each observation field, and remove all the old austenite grains in each photographing field of view Find the equivalent circle diameter of the austenite grains.
  • the average grain size of the prior austenite grains is obtained by calculating the average value of the equivalent circle diameters of the prior austenite grains obtained in each photographic field of view. In addition, when prior austenite grains having a circular equivalent diameter of less than 2.0 ⁇ m are included, the above-mentioned measurement is performed excluding these grains.
  • the long axis and short axis of at least 20 prior austenite grains with an equivalent circle diameter of 2.0 ⁇ m or more included in each of the above-mentioned photographic fields are measured.
  • the average long axis and average short axis of the prior austenite grains are obtained by calculating the average value of the long axis and short axis obtained by measuring each prior austenite grain. By calculating these ratios (average major axis/average minor axis), the average aspect ratio of prior austenite grains is obtained.
  • Area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 ⁇ m or more 5% or less If the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 ⁇ m or more exceeds 5%, hot rolling In the steel plate, the hydrogen embrittlement resistance characteristics deteriorate, especially at the cut end surface. Therefore, the area ratio of fresh martensite and retained austenite aggregates having a major axis of 30 ⁇ m or more is 5% or less. In order to further improve hydrogen embrittlement resistance, the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 ⁇ m or more is preferably 2% or less.
  • the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 ⁇ m or more is preferably as low as possible, the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 ⁇ m or more may be 0%.
  • the major axis of the ellipsoid 1 is a
  • the distance l between the ellipsoid 1 and the ellipsoid 2 is smaller than 1.5 ⁇ a
  • the ellipsoid 1 and the ellipsoid 2 adjacent to the ellipsoid 1 is considered to be one aggregate.
  • Fresh martensite and retained austenite in the metallographic structure are approximated as ellipsoids, the major axis a of the ellipsoids and the distance l between adjacent ellipsoids are determined, and the aggregate of fresh martensite and retained austenite is calculated based on the above criteria. Identify.
  • the aggregate of fresh martensite and retained austenite with a major axis of 30 ⁇ m or more can be obtained. Obtain the area ratio. Note that fresh martensite and retained austenite are determined by the same method as the method for measuring the area ratio of the structure described above.
  • the area where the average value of nanoindentation hardness at a load of 5000 ⁇ N and a loading rate of 500 ⁇ N/s is 4.7 GPa or less: 30% or less
  • a method for measuring the ratio (percentage) of a region in bainite where the average value of nanoindentation hardness at a load of 5000 ⁇ N and a loading rate of 500 ⁇ N/s is 4.7 GPa or less will be described.
  • Bainite is identified by the same method as in the method for measuring the area ratio of the structure described above.
  • Nanoindentation hardness is measured at a load of 5000 ⁇ N and a loading rate of 500 ⁇ N/s for all regions identified as bainite.
  • the nanoindentation hardness of at least 10 points of one region identified as bainite is measured, and the average value of the nanoindentation hardness of that region is calculated.
  • the area ratio of the region where the average value of nanoindentation hardness is 4.7 GPa or less is calculated.
  • the nano The ratio (percentage) of the area where the average value of indentation hardness is 4.7 GPa or less is obtained. Note that TriboScope/TriboIndenter manufactured by Hysitron is used for the measurement.
  • Tensile strength 1100 MPa or more
  • the hot rolled steel sheet according to this embodiment may have a tensile strength of 1100 MPa or more. By setting the tensile strength to 1100 MPa or more, it can be suitably applied to various automobile suspension parts.
  • the tensile strength may be 1150 MPa or more, 1200 MPa or more, or 1300 MPa or more.
  • the tensile strength is preferably as high as possible, but it may be 1450 MPa or less.
  • Uniform elongation 5.5% or more
  • the hot rolled steel sheet according to this embodiment may have a uniform elongation of 5.5% or more. By setting the uniform elongation to 5.5% or more, it can be suitably applied to automobile suspension parts. Uniform elongation is preferably 6.0% or more or 7.0% or more. The upper limit is not particularly limited, but may be 20.0% or less.
  • the tensile strength and uniform elongation are measured by performing a tensile test in accordance with JIS Z 2241:2011 using a No. 5 test piece of JIS Z 2241:2011.
  • the tensile test piece is taken at the center in the width direction of the plate, and the longitudinal direction is perpendicular to the rolling direction.
  • uniform elongation refers to "full elongation at maximum test force" as defined in JIS Z 2241:2011.
  • the hot rolled steel sheet according to this embodiment may have a hole expansion ratio of 30% or more.
  • the hole expansion rate is preferably 35% or more, 40% or more, or 45% or more.
  • the upper limit is not particularly specified, it may be 70% or less.
  • the hole expansion rate is measured by performing a hole expansion test in accordance with JIS Z 2256:2020.
  • Hydrogen embrittlement resistance evaluation The hydrogen embrittlement resistance of hot rolled steel sheets is evaluated by the following method. A 50 mm x 50 mm test piece is taken from a hot rolled steel plate. A punch hole is formed in the center of the test piece using a ⁇ 10 mm punch and a die of ⁇ 10 mm + 0.2 ⁇ plate thickness. Next, the test piece is immersed in hydrochloric acid at pH 2, and the hydrogen embrittlement resistance is evaluated based on the presence or absence of cracks on the cut end surface. A test piece can be determined to have excellent hydrogen embrittlement resistance when no cracks occur on the cut end surface even after immersing the test piece in hydrochloric acid for 72 hours or more.
  • test piece is immersed in hydrochloric acid under the same conditions, the hydrochloric acid is replaced with new one after 36 hours, and no cracks occur on the cut section even after 36 hours of immersion (total 72 hours of immersion), the test piece is hydrogen resistant. It can be determined that the embrittlement properties are superior. Note that when the cut end surface is observed with an optical microscope and a crack with a length exceeding 100 ⁇ m is observed, it is determined that a crack has occurred.
  • the hot-rolled steel sheet according to this embodiment may be provided with a plating layer on the surface for the purpose of improving corrosion resistance, etc., and may be used as a surface-treated steel sheet.
  • the plating layer may be an electroplating layer or a hot-dip plating layer.
  • the electroplating layer include electrogalvanizing, electrolytic Zn--Ni alloy plating, and the like.
  • Examples of the hot-dip plating layer include hot-dip galvanizing, alloyed hot-dip galvanizing, hot-dip aluminum plating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, and hot-dip Zn-Al-Mg-Si alloy plating. Ru.
  • the amount of plating deposited is not particularly limited, and may be the same as the conventional one. Further, it is also possible to further improve the corrosion resistance by performing an appropriate chemical conversion treatment (for example, applying and drying a silicate-based chromium-free chemical conversion treatment liquid) after plating.
  • an appropriate chemical conversion treatment for example, applying and drying a silicate-based chromium-free chemical conversion treatment liquid
  • temperatures described below refer to the surface temperatures of slabs or steel plates unless otherwise specified.
  • a preferred method for manufacturing the hot rolled steel sheet according to this embodiment is as follows: a heating step of holding the slab having the above chemical composition in a temperature range of 1220 to 1300°C for 40 minutes or more; A rough rolling step in which rough rolling is performed so that each rolling reduction ratio in the first to third passes is 10 to 30%, and each rolling reduction ratio in the fourth pass and thereafter is 15 to 50%; A finish rolling step in which the final pass is rolled in a temperature range of 940 to 1020°C and a reduction rate of 25% or more; A cooling step of starting cooling within 2.0 seconds after completion of finish rolling and cooling to a temperature range of 300 ° C to (Ms-10) ° C within 16.0 seconds; After the cooling, winding is started in the temperature range of 300°C to (Ms-10)°C, and the winding is performed so that the residence time in the temperature range of 300 to 450°C after the start of winding is 100 seconds or more.
  • a winding step of taking the material is sequentially performed.
  • the finish rolling process it is more preferable to perform the finish rolling so that the finish rolling start temperature is in the temperature range of 1060 to 1080°C.
  • the winding step it is more preferable to perform the winding so that the maximum temperature after the start of the winding is less than 500°C.
  • the cooling step and the winding step it is more preferable that the cooling and winding are performed such that the total residence time in the temperature range of 450 to 500° C. is less than 2000 seconds.
  • the heating temperature is preferably 1220°C or higher.
  • the heating temperature is more preferably 1240°C or higher.
  • the heating temperature is preferably 1300°C or less. From the viewpoint of energy cost reduction, the heating temperature is preferably 1280° C. or lower.
  • the holding time in the temperature range of 1220 to 1300° C. is less than 40 minutes, solution treatment will not proceed, the amount of ferrite will increase, and the strength of the hot rolled steel sheet will deteriorate. Therefore, the holding time in the above temperature range is preferably 40 minutes or more.
  • the holding time is more preferably 60 minutes or more, even more preferably 80 minutes or more.
  • the upper limit of the holding time is not particularly limited, but may be 200 minutes or less.
  • the slab to be heated is not particularly limited except that it has the above-mentioned chemical composition.
  • a continuous casting method an ingot method, a thin slab casting method, etc. may be adopted.
  • each rolling reduction ratio in the first to third passes is 10% or more, and each rolling reduction ratio in the fourth and subsequent passes is 15% or more. More preferably, each rolling reduction in the first to third passes is 15% or more or 20% or more, and each rolling reduction in the fourth or subsequent passes is 20% or more or 25% or more.
  • each rolling reduction ratio in the first to third passes is 30% or less, and each rolling reduction ratio in the fourth and subsequent passes is 50% or less. More preferably, each rolling reduction in the first to third passes is 25% or less, and each rolling reduction in the fourth and subsequent passes is 40% or less.
  • the rolling reduction rate of each pass can be expressed as ⁇ 1-(t1/t0) ⁇ 100(%), where the inlet plate thickness of each pass is t0 and the outlet plate thickness of each pass is t1.
  • the rough rolling completion temperature (the exit temperature of the final pass of rough rolling) is not particularly limited, but is preferably 1070° C. or higher from the viewpoint of hot deformation resistance. Further, from the viewpoint of reducing flaws due to scale encroachment, the temperature is preferably 1200°C or lower.
  • Finish rolling process In the finish rolling process, if the rolling temperature or reduction rate in the final pass is too low, recrystallization will not proceed sufficiently, and the average grain size of the prior austenite grains, the average aspect ratio and/or major axis of the prior austenite grains will be 30 ⁇ m.
  • the area ratio of aggregates of fresh martensite and retained austenite cannot be preferably controlled. Therefore, in the finish rolling process, it is preferable that the final pass of rolling be performed in a temperature range of 940° C. or higher and at a rolling reduction rate of 25% or higher.
  • the final pass rolling is more preferably performed at a temperature of 960°C or higher, more preferably 1010°C or lower, and more preferably at a rolling reduction of 30% or higher.
  • the rolling reduction ratio in the final pass may be 50% or less.
  • Cooling Step If the time from the completion of finish rolling to the start of cooling is more than 2.0 seconds, the grain growth of austenite recrystallized grains progresses, and as a result, the old austenite grains become coarse. Therefore, it is preferable to start cooling within 2.0 seconds after finish rolling is completed. Cooling here does not include air cooling, and the time until the start of cooling refers to the time after rolling in the final pass of finish rolling until water cooling starts.
  • cooling may be started immediately after completion of finish rolling, it is necessary to inject cooling water directly below the finish rolling mill, and the rolls are cooled excessively, making it difficult to control the final rolling temperature. Therefore, it is more preferable that the time until the start of cooling is 1.0 seconds or more.
  • the cooling time from the completion of finish rolling to the temperature range of 300°C to (Ms-10)°C is longer than 16.0 seconds, excessive ferrite will be produced. Therefore, after the start of cooling, it is preferable to cool to a temperature range of 300° C. to (Ms-10)° C. within 16.0 seconds after finish rolling is completed. Although it is preferable that the cooling time be short, in order to cool to a desired temperature range in a short time, it is necessary to increase the volume density, which increases the load on the cooling nozzle, which impairs economic efficiency. Therefore, the cooling time to the temperature range of 300° C. to (Ms-10)° C. is more preferably 5.0 seconds or more or 7.0 seconds or more from the completion of finish rolling.
  • the cooling stop temperature is set to 300°C or higher.
  • the cooling stop temperature is preferably 320°C or higher.
  • the cooling stop temperature is more preferably 400°C or lower.
  • the residence time in the temperature range of 300 to 450° C. after the start of winding is preferably 100 seconds or more.
  • the temperature here refers to the surface temperature of the center portion of the outermost circumferential surface of the coil in the width direction of the coil.
  • the residence time in the temperature range of 300 to 450 °C is from the time when the winding is started after cooling to the temperature range of 300 °C to (Ms-10) °C until the time when the temperature decreases and reaches 300 °C. Alternatively, it refers to the time until the temperature rises due to heat generation due to transformation and reaches 450°C. After the start of winding, even if the temperature rises to over 450°C due to heat generation due to transformation and then decreases to a temperature range of 300 to 450°C, once the temperature rises to over 450°C, the residence time is not added.
  • the winding step it is more preferable to wind the film so that the maximum temperature after the start of winding is less than 500°C.
  • the amount of pearlite can be further reduced by controlling the temperature rise due to recuperation so that the surface temperature at the center in the width direction of the outermost circumferential surface of the coil is less than 500°C.
  • the TS-El balance in the hot rolled steel sheet can be further improved. That is, high strength and excellent ductility can be achieved at a higher level.
  • the cooling step and the winding step it is more preferable to carry out the cooling and winding so that the total residence time in the temperature range of 450 to 500° C. is less than 2000 seconds.
  • the total residence time in the temperature range of 450 to 500° C. is less than 2000 seconds, it is possible to reduce the area ratio of the region of low hardness in bainite.
  • the TS-El balance in the hot rolled steel sheet can be further improved. That is, high strength and excellent ductility can be achieved at a higher level.
  • the total residence time here refers to the residence time in the temperature range of 450 to 500°C during cooling, as well as the residence time in the temperature range of 450 to 500°C when the temperature rises due to heat generation due to transformation after the start of winding. It is the total amount of time.
  • the hot rolled steel sheet according to the present embodiment can be stably manufactured.
  • Test pieces for metal structure observation, tensile test, hole expansion test, and hydrogen embrittlement resistance evaluation were cut from the outermost part of the obtained coil. Each test method was the same as the method described above. Further, the metallographic structure of the obtained test piece was observed by the method described above. The results obtained are shown in Tables 5A to 5D.
  • FM and ⁇ r aggregate area ratio in the table indicates that the area ratio of fresh martensite and retained austenite aggregates with a major axis of 30 ⁇ m or more is more than 2% and 5% or less.
  • B when it was 2% or less, it was written as "A”
  • C when it was more than 5%, it was written as "C”.
  • a and B were determined to be passed, and "C” was determined to be failed.
  • the tensile strength was 1100 MPa or more, it was determined that the hot rolled steel sheet had high strength and passed. On the other hand, when the tensile strength was less than 1100 MPa, it was determined that the hot rolled steel sheet did not have high strength and was rejected.
  • the hole expansion rate was 30% or more, it was determined that the hot rolled steel sheet had excellent hole expansion properties and was passed. On the other hand, when the hole expansion rate was less than 30%, it was determined that the hot rolled steel sheet did not have excellent hole expansion properties and was rejected.
  • test piece is immersed in hydrochloric acid under the same conditions, the hydrochloric acid is replaced with fresh one after 36 hours, and no cracks occur on the cut section even after immersion for a further 36 hours (72 hours of immersion in total), It was determined that the hot-rolled steel sheet had better hydrogen embrittlement resistance, and was marked as "A" in the table.
  • the hot rolled steel sheets according to the examples of the present invention have high strength, as well as excellent ductility, hole expandability, and hydrogen embrittlement resistance.
  • the hot rolled steel sheet according to the comparative example is inferior in any one or more of the above characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

This hot-rolled steel sheet has a desired chemical composition and has a metal structure which contains, in terms of area%, at least 10% of bainite, at least 10% of tempered martensite, a total of 70-96% of bainite and tempered martensite, at most 20% of fresh martensite, 4-12% of retained austenite, at most 5% of ferrite, and at most 5% of pearlite, and in which: the average grain diameter of prior austenite grains is at most 20.0 μm; the average aspect ratio of prior austenite grains is at most 3.00; and the area ratio of an aggregate of fresh martensite having a major diameter of at least 30 μm and retained austenite is at most 5%.

Description

熱延鋼板hot rolled steel plate
 本発明は、熱延鋼板に関する。
 本願は、2022年7月7日に、日本に出願された特願2022-109509号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a hot rolled steel plate.
This application claims priority based on Japanese Patent Application No. 2022-109509 filed in Japan on July 7, 2022, the contents of which are incorporated herein.
 近年、自動車および機械部品の軽量化が進められている。部品形状を最適な形状に設計することで剛性を確保することにより、自動車および機械部品の軽量化が可能である。さらに、プレス成形部品等のブランク成形部品では、部品材料の板厚を減少させることで軽量化が可能となる。 In recent years, the weight of automobiles and mechanical parts has been reduced. By ensuring rigidity by designing parts into optimal shapes, it is possible to reduce the weight of automobiles and mechanical parts. Furthermore, in blank molded parts such as press molded parts, weight reduction is possible by reducing the thickness of the part material.
 しかしながら、板厚を減少させながら静破壊強度および降伏強度などの部品の強度特性を確保しようとした場合、高強度材料を用いることが必要となる。特に、ロアアーム、トレールリンクおよびナックルなどの自動車足回り部品では、780MPa級超の鋼板の適用が検討され始めている。これらの自動車足回り部品は、鋼板にバーリング、伸びフランジおよび曲げ成形等を施すことで製造される。そのため、これらの自動車足回り部品に適用される鋼板は成形性、特に延性および穴広げ性に優れることが要求される。 However, in order to ensure the strength characteristics of parts such as static fracture strength and yield strength while reducing the plate thickness, it is necessary to use high-strength materials. In particular, consideration has begun to be given to the application of steel plates of over 780 MPa class to automobile suspension parts such as lower arms, trail links, and knuckles. These automobile suspension parts are manufactured by subjecting steel plates to burring, stretch flanging, bending, and the like. Therefore, the steel sheets used for these automobile suspension parts are required to have excellent formability, particularly ductility and hole expandability.
 例えば、特許文献1には、原子%でのC量とMo、Tiの合計量の比であるC/(Mo+Ti)が0.5~3.0であり、金属組織がフェライトとベイナイトの2相組織であり、フェライト相中にTiと、Moとを含む炭化物が分散析出していることを特徴とする、700MPa以上の強度を有する高強度鋼板が開示されている。 For example, Patent Document 1 states that C/(Mo+Ti), which is the ratio of the amount of C in atomic % to the total amount of Mo and Ti, is 0.5 to 3.0, and the metal structure is two phases of ferrite and bainite. A high-strength steel sheet having a strength of 700 MPa or more is disclosed, which has a structure in which carbides containing Ti and Mo are dispersed and precipitated in a ferrite phase.
 特許文献2には、鋼組織の88%以上がベイナイト組織からなることを特徴とする、伸びフランジ性の異方性が小さい高強度熱延鋼板が開示されている。 Patent Document 2 discloses a high-strength hot-rolled steel sheet with small anisotropy in stretch flangeability, characterized in that 88% or more of the steel structure consists of a bainite structure.
日本国特許第3891030号公報Japanese Patent No. 3891030 日本国特許第3197571号公報Japanese Patent No. 3197571
 部品の薄肉化を目的として更に強度を高めるために、C含有量が高く、且つ残留オーステナイトを含む熱延鋼板を採用する場合がある。このような熱延鋼板では、切断端面において水素脆化割れが発生し易くなることで、耐水素脆化特性が劣化する場合がある。 In order to further increase strength for the purpose of thinning parts, hot-rolled steel sheets with a high C content and containing retained austenite may be used. In such a hot-rolled steel sheet, hydrogen embrittlement cracking is likely to occur at the cut end face, which may deteriorate the hydrogen embrittlement resistance.
 上記特許文献1および2では、強度を更に高める必要があり、また切断端面における耐水素脆化特性について考慮されていない。 In Patent Documents 1 and 2, it is necessary to further increase the strength, and hydrogen embrittlement resistance at the cut end surface is not considered.
 本発明は上記実情に鑑みてなされたものであり、高い強度、並びに、優れた延性、穴広げ性および耐水素脆化特性を有する熱延鋼板を提供することを目的とする。 The present invention was made in view of the above circumstances, and an object of the present invention is to provide a hot rolled steel sheet having high strength, excellent ductility, hole expandability, and hydrogen embrittlement resistance.
 本発明者らは、熱延鋼板の切断端面における耐水素脆化特性を向上する方法について鋭意検討した。その結果、長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率を低減することで、熱延鋼板の切断端面における耐水素脆化特性を向上できることを知見した。 The present inventors have conducted extensive studies on a method for improving the hydrogen embrittlement resistance of the cut end surface of a hot rolled steel sheet. As a result, it was found that by reducing the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 μm or more, the hydrogen embrittlement resistance of the cut end surface of a hot rolled steel sheet could be improved.
 本発明者らは、上記熱延鋼板を製造するためには、粗圧延工程および仕上げ圧延工程において旧オーステナイト粒の粒径および形状を制御すること、並びに、巻取り工程後の温度履歴を厳格に制御することが効果的であることを知見した。 The present inventors have discovered that in order to manufacture the above-mentioned hot rolled steel sheet, it is necessary to control the grain size and shape of prior austenite grains in the rough rolling process and finish rolling process, and to strictly control the temperature history after the coiling process. We have found that controlling is effective.
 上記知見に基づいてなされた本発明の要旨は以下の通りである。
(1)本発明の一態様に係る熱延鋼板は、化学組成が、質量%で、
C :0.13~0.23%、
Si:0.70~1.79%、
Mn:1.79~3.00%、
P :0.060%以下、
S :0.005%以下、
N :0.0070%以下、
O :0.010%以下、
Al:0.010~0.430%、
Ti:0.006~0.055%、
Nb:0.005~0.040%、
B :0.0001~0.0030%、
Cr:0~0.660%、
Mo:0~0.300%、
Cu:0~1.000%、
Ni:0~1.000%、
Sn:0~0.100%、
Ca:0~0.0200%、
As:0~0.100%、
Bi:0~0.020%、
Mg:0~0.0200%、
Zr:0~0.400%、
V :0~0.200%、
REM:0~0.1000%、
Co:0~0.2000%、
W :0~0.2000%、および
Zn:0~0.2000%を含有し、
残部がFeおよび不純物からなり、
 金属組織において、
 面積%で、
  ベイナイト:10%以上、
  焼き戻しマルテンサイト:10%以上、
  ベイナイトおよび焼き戻しマルテンサイトの合計:70~96%、
  フレッシュマルテンサイト:20%以下、
  残留オーステナイト:4~12%、
  フェライト:5%以下、
  パーライト:5%以下、
 旧オーステナイト粒の平均粒径:20.0μm以下、
 旧オーステナイト粒の平均アスペクト比:3.00以下であり、
 長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率が5%以下である。
(2)上記(1)に記載の熱延鋼板は、前記金属組織において、前記パーライト:3%未満であってもよい。
(3)上記(1)または(2)に記載の熱延鋼板は、前記ベイナイトのうち、荷重5000μN、荷重速度500μN/sでのナノインデンテーション硬さの平均値が4.7GPa以下となる領域が30%以下であってもよい。
(4)上記(1)~(3)のいずれか1項に記載の熱延鋼板は、前記化学組成が、質量%で、
Cr:0.020~0.660%、
Mo:0.001~0.300%、
Cu:0.001~1.000%、
Ni:0.001~1.000%、
Sn:0.001~0.100%、
Ca:0.0005~0.0200%、
As:0.001~0.100%、
Bi:0.001~0.020%、
Mg:0.0005~0.0200%、
Zr:0.001~0.400%、
V :0.001~0.200%、
REM:0.0005~0.1000%、
Co:0.0005~0.2000%、
W :0.0005~0.2000%、および
Zn:0.0005~0.2000%
からなる群のうち1種または2種以上を含有してもよい。
The gist of the present invention based on the above findings is as follows.
(1) The hot rolled steel sheet according to one aspect of the present invention has a chemical composition in mass %,
C: 0.13-0.23%,
Si: 0.70-1.79%,
Mn: 1.79-3.00%,
P: 0.060% or less,
S: 0.005% or less,
N: 0.0070% or less,
O: 0.010% or less,
Al: 0.010-0.430%,
Ti: 0.006 to 0.055%,
Nb: 0.005-0.040%,
B: 0.0001 to 0.0030%,
Cr: 0-0.660%,
Mo: 0 to 0.300%,
Cu: 0 to 1.000%,
Ni: 0-1.000%,
Sn: 0-0.100%,
Ca: 0-0.0200%,
As: 0 to 0.100%,
Bi: 0 to 0.020%,
Mg: 0 to 0.0200%,
Zr: 0 to 0.400%,
V: 0 to 0.200%,
REM: 0-0.1000%,
Co: 0 to 0.2000%,
Contains W: 0 to 0.2000% and Zn: 0 to 0.2000%,
The remainder consists of Fe and impurities,
In metallographic structure,
In area%,
Bainite: 10% or more,
Tempered martensite: 10% or more,
Total of bainite and tempered martensite: 70-96%,
Fresh martensite: 20% or less,
Retained austenite: 4-12%,
Ferrite: 5% or less,
Perlite: 5% or less,
Average grain size of prior austenite grains: 20.0 μm or less,
Average aspect ratio of prior austenite grains: 3.00 or less,
The area ratio of aggregates of fresh martensite and retained austenite having a major axis of 30 μm or more is 5% or less.
(2) In the hot rolled steel sheet according to (1) above, the pearlite may be less than 3% in the metal structure.
(3) The hot-rolled steel sheet according to (1) or (2) above is a region of the bainite in which the average value of nanoindentation hardness at a load of 5000 μN and a loading rate of 500 μN/s is 4.7 GPa or less. may be 30% or less.
(4) The hot rolled steel sheet according to any one of (1) to (3) above, wherein the chemical composition is expressed in mass%,
Cr: 0.020-0.660%,
Mo: 0.001-0.300%,
Cu: 0.001 to 1.000%,
Ni: 0.001 to 1.000%,
Sn: 0.001 to 0.100%,
Ca: 0.0005-0.0200%,
As: 0.001 to 0.100%,
Bi: 0.001 to 0.020%,
Mg: 0.0005-0.0200%,
Zr: 0.001-0.400%,
V: 0.001-0.200%,
REM: 0.0005-0.1000%,
Co: 0.0005-0.2000%,
W: 0.0005 to 0.2000%, and Zn: 0.0005 to 0.2000%
It may contain one or more types from the group consisting of.
 本発明に係る上記態様によれば、高い強度、並びに、優れた延性、穴広げ性および耐水素脆化特性を有する熱延鋼板を提供することができる。 According to the above aspect of the present invention, it is possible to provide a hot rolled steel sheet having high strength, as well as excellent ductility, hole expandability, and hydrogen embrittlement resistance.
結晶粒を楕円体で近似する方法を説明するための図である。FIG. 3 is a diagram for explaining a method of approximating a crystal grain with an ellipsoid.
 以下、本実施形態に係る熱延鋼板について、詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。 Hereinafter, the hot rolled steel sheet according to this embodiment will be described in detail. However, the present invention is not limited to only the configuration disclosed in this embodiment, and various changes can be made without departing from the spirit of the present invention.
 以下に記載する「~」を挟んで記載される数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」、「超」と示す数値には、その値が数値範囲に含まれない。化学組成についての「%」は全て「質量%」のことを指す。 The numerically limited ranges described below with "~" in between include the lower limit and the upper limit. Numerical values indicated as "less than" or "greater than" do not include the value within the numerical range. All "%" regarding chemical composition refers to "mass %".
 本実施形態に係る熱延鋼板は、化学組成が、質量%で、C:0.13~0.23%、Si:0.70~1.79%、Mn:1.79~3.00%、P:0.060%以下、S:0.005%以下、N:0.0070%以下、O:0.010%以下、Al:0.010~0.430%、Ti:0.006~0.055%、Nb:0.005~0.040%、B:0.0001~0.0030%、並びに、残部:Feおよび不純物含む。
 以下、各元素について詳細に説明する。
The hot-rolled steel sheet according to this embodiment has a chemical composition in mass %: C: 0.13 to 0.23%, Si: 0.70 to 1.79%, Mn: 1.79 to 3.00%. , P: 0.060% or less, S: 0.005% or less, N: 0.0070% or less, O: 0.010% or less, Al: 0.010 to 0.430%, Ti: 0.006 to 0.055%, Nb: 0.005 to 0.040%, B: 0.0001 to 0.0030%, and the remainder: Fe and impurities.
Each element will be explained in detail below.
 C:0.13~0.23%
 Cは、熱延鋼板の引張強さを向上させる元素である。C含有量が0.13%未満であると、フェライトの面積率が高くなりすぎ、熱延鋼板において所望の引張強さを得ることができない。そのため、C含有量は0.13%以上とする。C含有量は、好ましくは0.14%以上であり、より好ましくは0.16%以上である。
 一方、C含有量が0.23%超では、フレッシュマルテンサイトの面積率が高くなりすぎ、熱延鋼板の穴広げ性および耐水素脆化特性が劣化する。そのため、C含有量は0.23%以下とする。C含有量は、好ましくは0.21%以下であり、より好ましくは0.20%以下である。
C: 0.13-0.23%
C is an element that improves the tensile strength of hot rolled steel sheets. If the C content is less than 0.13%, the area ratio of ferrite becomes too high, making it impossible to obtain the desired tensile strength in the hot rolled steel sheet. Therefore, the C content is set to 0.13% or more. The C content is preferably 0.14% or more, more preferably 0.16% or more.
On the other hand, if the C content exceeds 0.23%, the area ratio of fresh martensite becomes too high, and the hole expandability and hydrogen embrittlement resistance of the hot rolled steel sheet deteriorate. Therefore, the C content is set to 0.23% or less. The C content is preferably 0.21% or less, more preferably 0.20% or less.
 Si:0.70~1.79%
 Siは、残留オーステナイトを安定化させる元素である。Si含有量が0.70%未満では、所望量の残留オーステナイトを得ることができず、熱延鋼板の延性が劣化する。そのため、Si含有量は0.70%以上とする。Si含有量は、好ましくは0.90%以上であり、より好ましくは1.00%以上である。
 一方、Si含有量が1.79%超であると、残留オーステナイトの面積率が高くなりすぎ、熱延鋼板の穴広げ性が劣化する。そのため、Si含有量は1.79%以下とする。Si含有量は、好ましくは1.60%以下であり、より好ましくは1.40%以下であり、より一層好ましくは1.30%以下である。
Si: 0.70-1.79%
Si is an element that stabilizes retained austenite. If the Si content is less than 0.70%, a desired amount of retained austenite cannot be obtained, and the ductility of the hot rolled steel sheet deteriorates. Therefore, the Si content is set to 0.70% or more. The Si content is preferably 0.90% or more, more preferably 1.00% or more.
On the other hand, if the Si content exceeds 1.79%, the area ratio of retained austenite becomes too high, and the hole expandability of the hot rolled steel sheet deteriorates. Therefore, the Si content is set to 1.79% or less. The Si content is preferably 1.60% or less, more preferably 1.40% or less, even more preferably 1.30% or less.
 Mn:1.79~3.00%
 Mnは、熱延鋼板の強度を向上させるために必要な元素である。Mn含有量が1.79%未満であると、フェライトの面積率が高くなりすぎ、所望の引張強さを得ることができない。そのため、Mn含有量は1.79%以上とする。Mn含有量は、好ましくは2.00%以上であり、より好ましくは2.20%以上である。
 一方、Mn含有量が3.00%超であると、熱延鋼板の延性が劣化する。そのため、Mn含有量は3.00%以下とする。Mn含有量は、好ましくは2.60%以下であり、より好ましくは2.40%以下である。
Mn: 1.79-3.00%
Mn is an element necessary to improve the strength of hot rolled steel sheets. If the Mn content is less than 1.79%, the area ratio of ferrite becomes too high, making it impossible to obtain the desired tensile strength. Therefore, the Mn content is set to 1.79% or more. The Mn content is preferably 2.00% or more, more preferably 2.20% or more.
On the other hand, if the Mn content exceeds 3.00%, the ductility of the hot rolled steel sheet deteriorates. Therefore, the Mn content is set to 3.00% or less. The Mn content is preferably 2.60% or less, more preferably 2.40% or less.
 P:0.060%以下
 Pは、熱延鋼板の板厚中央部に偏析する元素である。またPは、溶接部を脆化させる元素でもある。P含有量が0.060%超であると、スラブ割れが生じやすくなり、鋳造を行うことが困難となる。そのため、P含有量は0.060%以下とする。P含有量は、好ましくは0.020%以下であり、より好ましくは0.015%以下である。
 P含有量は低い程好ましく、0%であることが好ましい。しかし、P含有量を過剰に低減すると脱Pコストが著しく増加するため、P含有量は0.001%以上としてもよい。
P: 0.060% or less P is an element that segregates in the center of the thickness of the hot rolled steel sheet. Moreover, P is also an element that makes the weld part brittle. If the P content exceeds 0.060%, slab cracking is likely to occur, making it difficult to perform casting. Therefore, the P content is set to 0.060% or less. The P content is preferably 0.020% or less, more preferably 0.015% or less.
The lower the P content, the better, and preferably 0%. However, if the P content is reduced excessively, the cost for removing P will increase significantly, so the P content may be set to 0.001% or more.
 S:0.005%以下
 Sは、鋼中に硫化物として存在することで、スラブを脆化させる元素である。またSは、熱延鋼板の成形性を劣化させる元素でもある。S含有量が0.005%超であると、熱延鋼板の穴広げ性が劣化する。そのため、S含有量は0.005%以下とする。S含有量は、好ましくは0.004%以下であり、より好ましくは0.003%以下である。
 S含有量は低い程好ましく、0%であることが好ましい。しかし、S含有量を過剰に低減すると脱Sコストが著しく増加するため、S含有量は0.001%以上としてもよい。
S: 0.005% or less S is an element that embrittles slabs when it exists as a sulfide in steel. S is also an element that deteriorates the formability of hot rolled steel sheets. If the S content exceeds 0.005%, the hole expandability of the hot rolled steel sheet deteriorates. Therefore, the S content is set to 0.005% or less. The S content is preferably 0.004% or less, more preferably 0.003% or less.
The lower the S content, the better, and preferably 0%. However, if the S content is reduced excessively, the cost for removing S will increase significantly, so the S content may be set to 0.001% or more.
 N:0.0070%以下
 Nは、鋼中に粗大な窒化物を形成し、スラブを脆化させる元素である。N含有量が0.0070%超であると、スラブ割れのリスクが顕著に高まる。そのため、N含有量は0.0070%以下とする。N含有量は、好ましくは0.0050%以下であり、より好ましくは0.0035%以下である。
 N含有量は低い程好ましく、0%であることが好ましい。しかし、N含有量を過剰に低減すると脱Nコストが著しく増加するため、N含有量は0.0005%以上としてもよい。
N: 0.0070% or less N is an element that forms coarse nitrides in steel and embrittles the slab. If the N content exceeds 0.0070%, the risk of slab cracking increases significantly. Therefore, the N content is set to 0.0070% or less. The N content is preferably 0.0050% or less, more preferably 0.0035% or less.
The lower the N content, the better, and preferably 0%. However, if the N content is reduced excessively, the cost for removing N will increase significantly, so the N content may be set to 0.0005% or more.
 O:0.010%以下
 Oは、鋼中に多く含まれると破壊の起点となる粗大な酸化物を形成し、熱延鋼板の耐水素脆化特性を劣化させる。そのため、O含有量は0.010%以下とする。O含有量は、好ましくは0.008%以下、より好ましくは0.006%以下である。
 溶鋼の脱酸時に微細な酸化物を多数分散させるために、O含有量は0.001%以上としてもよい。
O: 0.010% or less When O is contained in a large amount in steel, it forms coarse oxides that serve as starting points for fracture, and deteriorates the hydrogen embrittlement resistance of hot rolled steel sheets. Therefore, the O content is set to 0.010% or less. The O content is preferably 0.008% or less, more preferably 0.006% or less.
In order to disperse a large number of fine oxides during deoxidation of molten steel, the O content may be set to 0.001% or more.
 Al:0.010~0.430%
 Alは、脱酸剤として作用し、鋼の清浄度を向上させる元素である。Al含有量が0.010%未満であると、十分な脱酸効果が得られず、鋼板中に多量の介在物(酸化物)が形成される。このような介在物は、熱延鋼板の穴広げ性を劣化させる。そのため、Al含有量は0.010%以上とする。Al含有量は、好ましくは0.040%以上であり、より好ましくは0.100%以上である。
 一方、Al含有量が0.430%超では、スラブ割れが生じやすくなり、鋳造が困難となる。そのため、Al含有量は、0.430%以下とする。Al含有量は、好ましくは0.400%以下、0.350%以下であり、より好ましくは0.200%以下である。
Al: 0.010-0.430%
Al is an element that acts as a deoxidizer and improves the cleanliness of steel. If the Al content is less than 0.010%, a sufficient deoxidizing effect cannot be obtained and a large amount of inclusions (oxides) are formed in the steel sheet. Such inclusions deteriorate the hole expandability of the hot rolled steel sheet. Therefore, the Al content is set to 0.010% or more. The Al content is preferably 0.040% or more, more preferably 0.100% or more.
On the other hand, if the Al content exceeds 0.430%, slab cracking tends to occur, making casting difficult. Therefore, the Al content is set to 0.430% or less. The Al content is preferably 0.400% or less, 0.350% or less, and more preferably 0.200% or less.
 Ti:0.006~0.055%
 Tiは、鋼中に微細な窒化物を形成することで、熱延鋼板の強度を高める元素である。Ti含有量が0.006%未満であると、熱延鋼板において所望の引張強さを得ることができない。そのため、Ti含有量は0.006%以上とする。Ti含有量は、好ましくは0.010%以上であり、より好ましくは0.020%以上である。
 一方、Ti含有量が0.055%超であると、スラブ割れのリスクが顕著に高まる。そのため、Ti含有量は、0.055%以下とする。Ti含有量は、好ましくは0.040%以下であり、より好ましくは0.030%以下である。
Ti: 0.006-0.055%
Ti is an element that increases the strength of hot rolled steel sheets by forming fine nitrides in steel. If the Ti content is less than 0.006%, the desired tensile strength cannot be obtained in the hot rolled steel sheet. Therefore, the Ti content is set to 0.006% or more. The Ti content is preferably 0.010% or more, more preferably 0.020% or more.
On the other hand, if the Ti content exceeds 0.055%, the risk of slab cracking increases significantly. Therefore, the Ti content is set to 0.055% or less. The Ti content is preferably 0.040% or less, more preferably 0.030% or less.
 Nb:0.005~0.040%
 Nbは、熱間圧延でのオーステナイト粒の異常な粒成長を抑制する元素である。またNbは、微細な炭化物を形成することで熱延鋼板の強度を高める元素でもある。Nb含有量が0.005%未満であると、旧オーステナイト粒を微細化することができず、また長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率が高くなり、熱延鋼板の穴広げ性および耐水素脆化特性が劣化する。そのため、Nb含有量は0.005%以上とする。Nb含有量は、好ましくは0.010%以上であり、より好ましくは0.020%以上である。
 一方、Nb含有量が0.040%超であると、旧オーステナイト粒のアスペクト比が高くなり、また長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率が高くなり、熱延鋼板の穴広げ性および耐水素脆化特性が劣化する。そのため、Nb含有量は0.040%以下とする。Nb含有量は、好ましくは0.030%以下である。
Nb: 0.005-0.040%
Nb is an element that suppresses abnormal grain growth of austenite grains during hot rolling. Nb is also an element that increases the strength of hot rolled steel sheets by forming fine carbides. If the Nb content is less than 0.005%, prior austenite grains cannot be refined, and the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 μm or more increases, resulting in hot rolling. The hole expandability and hydrogen embrittlement resistance of the steel sheet deteriorate. Therefore, the Nb content is set to 0.005% or more. The Nb content is preferably 0.010% or more, more preferably 0.020% or more.
On the other hand, when the Nb content exceeds 0.040%, the aspect ratio of prior austenite grains becomes high, and the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 μm or more becomes high, and hot rolling The hole expandability and hydrogen embrittlement resistance of the steel sheet deteriorate. Therefore, the Nb content is set to 0.040% or less. The Nb content is preferably 0.030% or less.
 B:0.0001~0.0030%
 Bは、冷却工程でのフェライトの生成を抑制することで、熱延鋼板の強度を高める元素である。B含有量が0.0001%未満であると、熱延鋼板において所望の引張強さを得ることができない。そのため、B含有量は0.0001%以上とする。B含有量は、好ましくは、0.0005%以上であり、より好ましくは0.0010%以上である。
 一方、B含有量が0.0030%超であると、熱間変形抵抗が上昇し、熱間圧延を行うことが困難となる。そのため、B含有量は0.0030%以下とする。B含有量は、好ましくは0.0025%以下である。
B: 0.0001-0.0030%
B is an element that increases the strength of the hot rolled steel sheet by suppressing the formation of ferrite during the cooling process. If the B content is less than 0.0001%, the desired tensile strength cannot be obtained in the hot rolled steel sheet. Therefore, the B content is set to 0.0001% or more. The B content is preferably 0.0005% or more, more preferably 0.0010% or more.
On the other hand, if the B content exceeds 0.0030%, hot deformation resistance increases and hot rolling becomes difficult. Therefore, the B content is set to 0.0030% or less. The B content is preferably 0.0025% or less.
 本実施形態に係る熱延鋼板の化学組成の残部は、Feおよび不純物であってもよい。本実施形態において、不純物とは、原料としての鉱石、スクラップ、または製造環境等から混入されるもの、あるいは、本実施形態に係る熱延鋼板の特性に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態に係る熱延鋼板は、Feの一部に代えて、以下の任意元素を含んでもよい。任意元素を含有させない場合の含有量の下限は0%である。以下、各任意元素について説明する。
The remainder of the chemical composition of the hot rolled steel sheet according to this embodiment may be Fe and impurities. In this embodiment, impurities are those mixed in from ore as a raw material, scrap, manufacturing environment, etc., or those that are allowed within a range that does not adversely affect the properties of the hot rolled steel sheet according to this embodiment. means.
The hot rolled steel sheet according to this embodiment may contain the following arbitrary elements in place of a part of Fe. The lower limit of the content when no arbitrary element is contained is 0%. Each arbitrary element will be explained below.
 Cr:0.020~0.660%
 Crは、フェライト量を低減し、熱延鋼板の強度を高める元素である。この効果を確実に得るためには、Cr含有量は0.020%以上とすることが好ましい。Cr含有量は、より好ましくは0.050%以上、0.100%以上であり、より一層好ましくは0.200%以上である。
 一方、Cr含有量が0.660%超であると、熱延鋼板の延性が劣化する。そのため、Cr含有量は0.660%以下とする。Cr含有量は、好ましくは0.500%以下であり、より好ましくは0.400%以下である。
Cr:0.020~0.660%
Cr is an element that reduces the amount of ferrite and increases the strength of the hot rolled steel sheet. In order to reliably obtain this effect, the Cr content is preferably 0.020% or more. The Cr content is more preferably 0.050% or more, 0.100% or more, even more preferably 0.200% or more.
On the other hand, when the Cr content is more than 0.660%, the ductility of the hot rolled steel sheet deteriorates. Therefore, the Cr content is set to 0.660% or less. The Cr content is preferably 0.500% or less, more preferably 0.400% or less.
 Mo:0.001~0.300%
 Moは、鋼中に微細な炭化物を形成することで熱延鋼板の強度を高める元素である。この効果を確実に得るためには、Mo含有量は0.001%以上とすることが好ましい。
 一方、Mo含有量が0.300%超であると、熱延鋼板の延性が劣化する。そのため、Mo含有量は0.300%以下とする。
Mo: 0.001-0.300%
Mo is an element that increases the strength of hot rolled steel sheets by forming fine carbides in steel. In order to reliably obtain this effect, the Mo content is preferably 0.001% or more.
On the other hand, when the Mo content exceeds 0.300%, the ductility of the hot rolled steel sheet deteriorates. Therefore, the Mo content is set to 0.300% or less.
 Cu:0.001~1.000%
 Cuは、鋼の焼入れ性を高める作用および低温で鋼中に炭化物として析出して熱延鋼板の強度を高める作用を有する。上記作用による効果をより確実に得るためには、Cu含有量は0.001%以上とすることが好ましい。
 しかし、Cu含有量が1.000%超では、スラブの粒界割れが生じる場合がある。したがって、Cu含有量は1.000%以下とする。
Cu: 0.001-1.000%
Cu has the effect of increasing the hardenability of steel and the effect of precipitating as carbides in steel at low temperatures to increase the strength of hot rolled steel sheets. In order to more reliably obtain the effects of the above action, the Cu content is preferably 0.001% or more.
However, if the Cu content exceeds 1.000%, intergranular cracking may occur in the slab. Therefore, the Cu content is set to 1.000% or less.
 Ni:0.001~1.000%
 Niは、鋼板の焼入性を高めて熱延鋼板の強度を高める作用を有する。またNiは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。上記作用による効果をより確実に得るためには、Ni含有量を0.001%以上とすることが好ましい。
 Niは、高価な元素であるため、多量に含有させることは経済的に好ましくない。したがって、Ni含有量は1.000%以下とする。
Ni: 0.001-1.000%
Ni has the effect of increasing the hardenability of the steel sheet and increasing the strength of the hot rolled steel sheet. Further, when containing Cu, Ni has the effect of effectively suppressing intergranular cracking of the slab caused by Cu. In order to more reliably obtain the effects of the above action, the Ni content is preferably 0.001% or more.
Since Ni is an expensive element, it is economically undesirable to contain a large amount of Ni. Therefore, the Ni content is set to 1.000% or less.
 Sn:0.001~0.100%
 Snは、鋼中に固溶することで熱延鋼板の強度を高めると共に、延性および穴広げ性を高める。この効果を確実に発揮させるために、Sn含有量は0.001%以上としてもよい。
 一方、Sn含有量が0.100%超であると、熱間での粒界脆化割れが発生する。そのため、Sn含有量は0.100%以下とする。
Sn: 0.001-0.100%
Sn increases the strength of the hot-rolled steel sheet by forming a solid solution in the steel, and also increases the ductility and hole expandability. In order to reliably exhibit this effect, the Sn content may be set to 0.001% or more.
On the other hand, if the Sn content exceeds 0.100%, grain boundary embrittlement cracking occurs in hot conditions. Therefore, the Sn content is set to 0.100% or less.
 Ca:0.0005~0.0200%
 Caは、介在物の形状を好ましい形状に制御することにより、熱延鋼板の成形性を高める作用を有する。上記作用による効果をより確実に得るためには、Ca含有量は0.0005%以上とすることが好ましい。
 一方、Ca含有量が0.0200%超であると、鋼中に介在物が過剰に生成され、熱延鋼板の延性を劣化させる。したがって、Ca含有量は0.0200%以下とする。
Ca: 0.0005-0.0200%
Ca has the effect of improving the formability of the hot rolled steel sheet by controlling the shape of inclusions into a preferable shape. In order to more reliably obtain the effects of the above action, the Ca content is preferably 0.0005% or more.
On the other hand, when the Ca content exceeds 0.0200%, inclusions are excessively generated in the steel, which deteriorates the ductility of the hot rolled steel sheet. Therefore, the Ca content is set to 0.0200% or less.
 As:0.001~0.100%
 Asは、オーステナイト単相化温度を低下させることにより、旧オーステナイト粒を細粒化させて、熱延鋼板の耐水素脆化特性の向上に寄与する。この効果を確実に得るためには、As含有量を0.001%以上とすることが好ましい。
 一方、Asを多量に含有させても上記効果は飽和するため、As含有量は0.100%以下とする。
As: 0.001-0.100%
By lowering the austenite single-phase temperature, As makes prior austenite grains finer and contributes to improving the hydrogen embrittlement resistance of the hot rolled steel sheet. In order to reliably obtain this effect, it is preferable that the As content be 0.001% or more.
On the other hand, since the above effect is saturated even if a large amount of As is contained, the As content is set to 0.100% or less.
 Bi:0.001~0.020%
 Biは、凝固組織を微細化することにより、熱延鋼板の成形性を高める作用を有する。この作用による効果をより確実に得るためには、Bi含有量を0.001%以上とすることが好ましい。
 一方、Bi含有量が0.020%超としても、上記作用による効果は飽和してしまい、経済的に好ましくない。したがって、Bi含有量は0.020%以下とする。
Bi:0.001~0.020%
Bi has the effect of improving the formability of the hot rolled steel sheet by making the solidification structure finer. In order to more reliably obtain the effect of this action, it is preferable that the Bi content is 0.001% or more.
On the other hand, even if the Bi content exceeds 0.020%, the effects of the above action will be saturated, which is economically unfavorable. Therefore, the Bi content is set to 0.020% or less.
 Mg:0.0005~0.0200%
 Mgは、介在物の形状を好ましい形状に制御することにより、熱延鋼板の成形性を高める作用を有する。上記作用による効果をより確実に得るためには、Mg含有量は0.0005%以上とすることが好ましい。
 一方、Mg含有量が0.0200%超であると、鋼中に介在物が過剰に生成され、熱延鋼板の延性を劣化させる。したがって、Mg含有量は0.0200%以下とする。
Mg: 0.0005-0.0200%
Mg has the effect of improving the formability of the hot rolled steel sheet by controlling the shape of inclusions into a preferable shape. In order to more reliably obtain the effects of the above action, the Mg content is preferably 0.0005% or more.
On the other hand, when the Mg content exceeds 0.0200%, inclusions are excessively generated in the steel, which deteriorates the ductility of the hot rolled steel sheet. Therefore, the Mg content is set to 0.0200% or less.
 Zr:0.001~0.400%
 Zrは、介在物制御、特に介在物の微細分散化に寄与し、熱延鋼板の強度を高める元素である。この効果を確実に得るためには、Zr含有量は0.001%以上とすることが好ましい。
 一方、Zrを多量に含有すると、熱延鋼板の表面性状が顕著に劣化する場合がある。そのため、Zr含有量は0.400%以下とする。
Zr: 0.001-0.400%
Zr is an element that contributes to inclusion control, particularly to fine dispersion of inclusions, and increases the strength of the hot rolled steel sheet. In order to reliably obtain this effect, the Zr content is preferably 0.001% or more.
On the other hand, if a large amount of Zr is contained, the surface quality of the hot rolled steel sheet may be significantly deteriorated. Therefore, the Zr content is set to 0.400% or less.
 V:0.001~0.200%
 Vは、鋼中に微細な炭化物を形成することで熱延鋼板の強度を高める元素である。この効果を確実に得るためには、V含有量は0.001%以上とすることが好ましい。
 一方、V含有量が0.200%超であると、熱延鋼板の穴広げ性が劣化する。そのため、V含有量は0.200%以下とする。
V:0.001~0.200%
V is an element that increases the strength of hot rolled steel sheets by forming fine carbides in the steel. In order to reliably obtain this effect, the V content is preferably 0.001% or more.
On the other hand, if the V content exceeds 0.200%, the hole expandability of the hot rolled steel sheet deteriorates. Therefore, the V content is set to 0.200% or less.
 REM:0.0005~0.1000%
 REMは、介在物の形状を好ましい形状に制御することにより、熱延鋼板の成形性を高める作用を有する。上記作用による効果をより確実に得るためには、REM含有量は0.0005%以上とすることが好ましい。
 一方、REM含有量が0.1000%超であると、鋼中に介在物が過剰に生成され、熱延鋼板の延性を劣化させる。したがって、REM含有量は0.1000%以下とする。
 ここで、REMとは、Sc、Yおよびランタノイドを含む合計17種の希土類元素を指し、上記REMの含有量は、これらの元素の合計含有量を指す。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
REM: 0.0005-0.1000%
REM has the effect of improving the formability of a hot rolled steel sheet by controlling the shape of inclusions into a preferable shape. In order to more reliably obtain the effects of the above action, the REM content is preferably 0.0005% or more.
On the other hand, when the REM content exceeds 0.1000%, inclusions are excessively generated in the steel, which deteriorates the ductility of the hot rolled steel sheet. Therefore, the REM content is set to 0.1000% or less.
Here, REM refers to a total of 17 types of rare earth elements including Sc, Y, and lanthanoids, and the content of REM refers to the total content of these elements. In the case of lanthanoids, they are added industrially in the form of mischmetal.
 Co:0.0005~0.2000%
 Coは、介在物制御、特に介在物の微細分散化に寄与し、熱延鋼板の強度を高める元素である。この効果を確実に得るためには、Co含有量は0.0005%以上とすることが好ましい。
 一方、Coを多量に含有すると、熱延鋼板の表面性状が顕著に劣化する場合がある。そのため、Co含有量は0.2000%以下とする。
Co:0.0005~0.2000%
Co is an element that contributes to inclusion control, particularly to fine dispersion of inclusions, and increases the strength of the hot rolled steel sheet. In order to reliably obtain this effect, the Co content is preferably 0.0005% or more.
On the other hand, if a large amount of Co is contained, the surface quality of the hot rolled steel sheet may be significantly deteriorated. Therefore, the Co content is set to 0.2000% or less.
 W:0.0005~0.2000%
 Wは、介在物制御、特に介在物の微細分散化に寄与し、熱延鋼板の強度を高める元素である。この効果を確実に得るためには、W含有量は0.0005%以上とすることが好ましい。
 一方、Wを多量に含有すると、熱延鋼板の表面性状が顕著に劣化する場合がある。そのため、W含有量は0.2000%以下とする。
W: 0.0005-0.2000%
W is an element that contributes to inclusion control, particularly to fine dispersion of inclusions, and increases the strength of the hot rolled steel sheet. In order to reliably obtain this effect, the W content is preferably 0.0005% or more.
On the other hand, if a large amount of W is contained, the surface quality of the hot rolled steel sheet may be significantly deteriorated. Therefore, the W content is set to 0.2000% or less.
 Zn:0.0005~0.2000%
 Znは、介在物制御、特に介在物の微細分散化に寄与し、熱延鋼板の強度を高める元素である。この効果を確実に得るためには、Zn含有量は0.0005%以上とすることが好ましい。
 一方、Znを多量に含有すると、熱延鋼板の表面性状が顕著に劣化する場合がある。そのため、W含有量は0.2000%以下とする。
Zn: 0.0005-0.2000%
Zn is an element that contributes to inclusion control, particularly to fine dispersion of inclusions, and increases the strength of hot rolled steel sheets. In order to reliably obtain this effect, the Zn content is preferably 0.0005% or more.
On the other hand, if a large amount of Zn is contained, the surface quality of the hot rolled steel sheet may be significantly deteriorated. Therefore, the W content is set to 0.2000% or less.
 上述した熱延鋼板の化学組成は、スパーク放電発光分光分析装置などを用いて、分析すればよい。なお、CおよびSはガス成分分析装置などを用いて、酸素気流中で燃焼させ、赤外線吸収法によって測定することで同定された値を採用する。また、Nは、熱延鋼板から採取した試験片をヘリウム気流中で融解させ、熱伝導度法によって測定することで同定された値を採用する。 The chemical composition of the hot-rolled steel sheet described above may be analyzed using a spark discharge emission spectrometer or the like. Note that C and S are determined by burning in an oxygen stream using a gas component analyzer or the like, and then measuring by an infrared absorption method. Further, for N, a value identified by melting a test piece taken from a hot-rolled steel plate in a helium stream and measuring it by a thermal conductivity method is used.
 次に、本実施形態に係る熱延鋼板の金属組織について説明する。
 本実施形態に係る熱延鋼板は、金属組織において、面積%で、ベイナイト:10%以上、焼き戻しマルテンサイト:10%以上、ベイナイトおよび焼き戻しマルテンサイトの合計:70~96%、フレッシュマルテンサイト:20%以下、残留オーステナイト:4~12%、フェライト:5%以下、パーライト:5%以下、旧オーステナイト粒の平均粒径:20.0μm以下、旧オーステナイト粒の平均アスペクト比:3.00以下であり、長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率が5%以下である。
Next, the metal structure of the hot rolled steel sheet according to this embodiment will be explained.
The hot rolled steel sheet according to the present embodiment has a metal structure in which, in terms of area %, bainite: 10% or more, tempered martensite: 10% or more, total of bainite and tempered martensite: 70 to 96%, fresh martensite : 20% or less, retained austenite: 4 to 12%, ferrite: 5% or less, pearlite: 5% or less, average grain size of prior austenite grains: 20.0 μm or less, average aspect ratio of prior austenite grains: 3.00 or less The area ratio of aggregates of fresh martensite and retained austenite having a major axis of 30 μm or more is 5% or less.
 本実施形態では、熱延鋼板の板厚1/4位置(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)における金属組織を規定する。その理由は、この位置における金属組織が熱延鋼板の代表的な金属組織を示すためである。
 以下、各規定について説明する。
In this embodiment, the metallographic structure at a position of 1/4 of the thickness of a hot rolled steel plate (an area from 1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface) is defined. The reason is that the metal structure at this position shows a typical metal structure of a hot rolled steel sheet.
Each regulation will be explained below.
 ベイナイト:10%以上
 ベイナイトは熱延鋼板の延性を高める組織である。ベイナイトの面積率が10%未満であると、熱延鋼板において所望の延性を得ることができない。そのため、ベイナイトの面積率は10%以上とする。ベイナイトの面積率は、好ましくは20%以上または30%以上であり、より好ましくは40%以上である。
 ベイナイトの面積率の上限は特に限定しないが、残留オーステナイトの面積率との関係から、96%以下としてもよい。ベイナイトの面積率は、80%以下または75%以下としてもよい。
Bainite: 10% or more Bainite is a structure that increases the ductility of hot rolled steel sheets. If the area ratio of bainite is less than 10%, desired ductility cannot be obtained in the hot rolled steel sheet. Therefore, the area ratio of bainite is set to 10% or more. The area ratio of bainite is preferably 20% or more or 30% or more, more preferably 40% or more.
Although the upper limit of the area ratio of bainite is not particularly limited, it may be set to 96% or less in view of the relationship with the area ratio of retained austenite. The area ratio of bainite may be 80% or less or 75% or less.
 焼き戻しマルテンサイト:10%以上
 焼き戻しマルテンサイトは、熱延鋼板において所望の延性、穴広げ性および耐水素脆化特性を得るために有効な組織である。焼き戻しマルテンサイトの面積率が10%未満であると、熱延鋼板において所望の延性、穴広げ性および耐水素脆化特性を得ることができない。そのため、焼き戻しマルテンサイトの面積率は10%以上とする。焼き戻しマルテンサイトの面積率は、好ましくは15%以上または20%以上であり、より好ましくは30%以上である。
 焼き戻しマルテンサイトの面積率の上限は特に限定しないが、残留オーステナイトの面積率との関係から、96%以下としてもよい。焼き戻しマルテンサイトの面積率は、80%以下または60%以下としてもよく、50%以下としてもよい。
Tempered martensite: 10% or more Tempered martensite is an effective structure for obtaining desired ductility, hole expandability, and hydrogen embrittlement resistance in a hot rolled steel sheet. If the area ratio of tempered martensite is less than 10%, desired ductility, hole expandability, and hydrogen embrittlement resistance cannot be obtained in the hot rolled steel sheet. Therefore, the area ratio of tempered martensite is set to 10% or more. The area ratio of tempered martensite is preferably 15% or more or 20% or more, more preferably 30% or more.
Although the upper limit of the area ratio of tempered martensite is not particularly limited, it may be 96% or less in view of the relationship with the area ratio of retained austenite. The area ratio of tempered martensite may be 80% or less, 60% or less, or 50% or less.
 ベイナイトおよび焼き戻しマルテンサイトの合計:70~96%
 ベイナイトおよび焼き戻しマルテンサイトの面積率が合計で70%未満であると、熱延鋼板において所望の延性、穴広げ性および/または耐水素脆化特性を得ることができない。そのため、ベイナイトおよび焼き戻しマルテンサイトの面積率は合計で70%以上とする。ベイナイトおよび焼き戻しマルテンサイトの面積率は、好ましくは75%以上であり、より好ましくは80%以上である。
 ベイナイトおよび焼き戻しマルテンサイトの面積率の合計の上限は特に限定しないが、残留オーステナイトの面積率との関係から、96%以下とする。ベイナイトおよび焼き戻しマルテンサイトの面積率の合計は、90%以下としてもよい。
Total of bainite and tempered martensite: 70-96%
If the total area ratio of bainite and tempered martensite is less than 70%, desired ductility, hole expandability and/or hydrogen embrittlement resistance cannot be obtained in the hot rolled steel sheet. Therefore, the total area ratio of bainite and tempered martensite is 70% or more. The area ratio of bainite and tempered martensite is preferably 75% or more, more preferably 80% or more.
Although the upper limit of the total area ratio of bainite and tempered martensite is not particularly limited, it is set to 96% or less in relation to the area ratio of retained austenite. The total area ratio of bainite and tempered martensite may be 90% or less.
 フレッシュマルテンサイト:20%以下
 フレッシュマルテンサイトは熱延鋼板の強度を高める組織であるが、穴広げ性および耐水素脆化特性を劣化させる組織でもある。フレッシュマルテンサイトの面積率が20%超であると、熱延鋼板の穴広げ性および耐水素脆化特性が劣化する。そのため、フレッシュマルテンサイトの面積率は20%以下とする。フレッシュマルテンサイトの面積率は、好ましくは15%以下であり、より好ましくは10%以下であり、より一層好ましくは7%以下である。
 フレッシュマルテンサイトの面積率の下限は特に限定しないが、0%としてもよい。
Fresh martensite: 20% or less Fresh martensite is a structure that increases the strength of hot rolled steel sheets, but it is also a structure that deteriorates hole expandability and hydrogen embrittlement resistance. If the area ratio of fresh martensite exceeds 20%, the hole expandability and hydrogen embrittlement resistance of the hot rolled steel sheet deteriorate. Therefore, the area ratio of fresh martensite is set to 20% or less. The area ratio of fresh martensite is preferably 15% or less, more preferably 10% or less, even more preferably 7% or less.
The lower limit of the area ratio of fresh martensite is not particularly limited, but may be set to 0%.
 残留オーステナイト:4~12%
 残留オーステナイトは熱延鋼板の延性を高める組織である。残留オーステナイトの面積率が4%未満であると、熱延鋼板において所望の延性を得ることができない。そのため、残留オーステナイトの面積率は4%以上とする。残留オーステナイトの面積率は、好ましくは6%以上であり、より好ましくは7%以上である。
 一方、残留オーステナイトの面積率が12%超であると、熱延鋼板の穴広げ性が劣化する。そのため、残留オーステナイトの面積率は12%以下とする。残留オーステナイトの面積率は、好ましくは10%以下である。
Retained austenite: 4-12%
Retained austenite is a structure that increases the ductility of hot rolled steel sheets. If the area ratio of retained austenite is less than 4%, desired ductility cannot be obtained in the hot rolled steel sheet. Therefore, the area ratio of retained austenite is set to 4% or more. The area ratio of retained austenite is preferably 6% or more, more preferably 7% or more.
On the other hand, if the area ratio of retained austenite exceeds 12%, the hole expandability of the hot rolled steel sheet deteriorates. Therefore, the area ratio of retained austenite is set to 12% or less. The area ratio of retained austenite is preferably 10% or less.
 フェライト:5%以下
 フェライトの面積率が5%超であると、熱延鋼板の強度が劣化する。そのため、フェライトの面積率は5%以下とする。フェライトの面積率は、好ましくは3%以下であり、より好ましくは2%以下である。フェライトの面積率は0%であってもよい。
Ferrite: 5% or less If the area ratio of ferrite exceeds 5%, the strength of the hot rolled steel sheet deteriorates. Therefore, the area ratio of ferrite is set to 5% or less. The area ratio of ferrite is preferably 3% or less, more preferably 2% or less. The area ratio of ferrite may be 0%.
 パーライト:5%以下
 パーライトの面積率が5%超であると、熱延鋼板の強度が劣化する。そのため、パーライトの面積率は5%以下とする。
 パーライトの面積率は、好ましくは3%以下である。パーライトの面積率を3%以下とすることで、熱延鋼板におけるTS-Elバランスをより高めることができる。すなわち、高い強度と優れた延性とをより高いレベルで実現することができる。パーライトの面積率は少ない方が好ましいため、パーライトの面積率は0%としてもよい。
Pearlite: 5% or less When the area ratio of pearlite exceeds 5%, the strength of the hot rolled steel sheet deteriorates. Therefore, the area ratio of pearlite is set to 5% or less.
The area ratio of pearlite is preferably 3% or less. By setting the area ratio of pearlite to 3% or less, the TS-El balance in the hot rolled steel sheet can be further improved. That is, high strength and excellent ductility can be achieved at a higher level. Since it is preferable that the area ratio of pearlite be small, the area ratio of pearlite may be set to 0%.
 以下に、各組織の面積率の測定方法を説明する。
 熱延鋼板から、圧延方向に平行な断面で、表面から板厚の1/4位置(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)且つ板幅方向中央位置における金属組織が観察できるように試験片を採取する。
 上記試験片の断面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げる。次に、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて研磨し、サンプルの表層に導入されたひずみを除去する。サンプル断面の長手方向の任意の位置において、長さ100μm、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域を観察視野(以下、EBSD観察視野と称す)とし、0.1μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。
The method for measuring the area ratio of each tissue will be explained below.
A cross section parallel to the rolling direction of a hot-rolled steel plate, at a position of 1/4 of the plate thickness from the surface (an area from 1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface) and plate width. A test piece is taken so that the metal structure at the central position can be observed.
After polishing the cross section of the above test piece using #600 to #1500 silicon carbide paper, polish it to a mirror surface using a dilute solution such as alcohol or a liquid in which diamond powder with a particle size of 1 to 6 μm is dispersed in pure water. Finish. Next, the strain introduced into the surface layer of the sample is removed by polishing at room temperature using colloidal silica that does not contain an alkaline solution. At any position in the longitudinal direction of the sample cross section, observe an area with a length of 100 μm and a depth of 1/8 of the plate thickness from the surface to a depth of 3/8 of the plate thickness from the surface (hereinafter referred to as the EBSD observation field). The crystal orientation information is obtained by measuring with an electron backscatter diffraction method at a measurement interval of 0.1 μm.
 測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製DVC5型検出器)とで構成されたEBSD装置を用いる。この際、EBSD装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射レベルは62とする。得られた結晶方位情報から、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Phase Map」機能を用いて、結晶構造がfccである領域を特定し、この領域の面積率を算出する。これにより、残留オーステナイトの面積率を得る。 For the measurement, an EBSD device consisting of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used. At this time, the degree of vacuum in the EBSD device is 9.6×10 −5 Pa or less, the acceleration voltage is 15 kV, the irradiation current level is 13, and the electron beam irradiation level is 62. From the obtained crystal orientation information, use the "Phase Map" function installed in the software "OIM Analysis (registered trademark)" included with the EBSD analyzer to identify a region with an fcc crystal structure, and Calculate the area ratio. Thereby, the area ratio of retained austenite is obtained.
 次に、結晶構造がbccであるものをベイナイト、フェライト、パーライト、フレッシュマルテンサイトおよび焼き戻しマルテンサイトと判断する。これらの領域について、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Grain Orientation Spread」機能を用いて、15°粒界を結晶粒界とみなす条件下で、「Grain Orientation Spread」が1°以下の領域をフェライトとして抽出する。抽出したフェライトの面積率を算出することで、フェライトの面積率を得る。 Next, those whose crystal structure is BCC are determined to be bainite, ferrite, pearlite, fresh martensite, and tempered martensite. Regarding these regions, using the "Grain Orientation Spread" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer, "Grain A region where the "Orientation Spread" is 1° or less is extracted as ferrite. The area ratio of ferrite is obtained by calculating the area ratio of the extracted ferrite.
 続いて、残部領域(「Grain Orientation Spread」が1°超の領域)の内、15°粒界を結晶粒界の定義とした条件下で、フェライト領域の「Grain Average IQ」の最大値をIαとしたとき、Iα/2超となる領域をベイナイト、Iα/2以下となる領域を「パーライト、フレッシュマルテンサイトおよび焼き戻しマルテンサイト」として抽出する。抽出したベイナイトの面積率を算出することで、ベイナイトの面積率を得る。 Next, in the remaining region (region where "Grain Orientation Spread" exceeds 1°), under the condition that the 15° grain boundary is defined as the grain boundary, the maximum value of "Grain Average IQ" of the ferrite region is determined as Iα Then, the region where the value exceeds Iα/2 is extracted as bainite, and the region where the value is less than Iα/2 is extracted as “pearlite, fresh martensite, and tempered martensite.” The area ratio of bainite is obtained by calculating the area ratio of the extracted bainite.
 抽出した「パーライト、フレッシュマルテンサイトおよび焼き戻しマルテンサイト」について、下記方法によってパーライト、フレッシュマルテンサイトおよび焼き戻しマルテンサイトを区別する。
 なお、IQは観察試料表面の状態、測定時の精度によって変化することがある。これらの影響を排除するために、結晶方位情報の信頼性を現すCI(Cоnfidence Index)値が0.8以上のものを用いればよい。CI値が0.8以下となる場合は、前記方法での電解研磨を再度実施し、試料とEBSDパターンの検出機の作動距離を調整することや、加速電圧、照射電流レベルの調整を行うか、検出器のゲインあるいは露出を調整し、CI値が0.8以上となるようにデータを取得する。
Regarding the extracted "pearlite, fresh martensite, and tempered martensite", pearlite, fresh martensite, and tempered martensite are distinguished by the following method.
Note that the IQ may change depending on the condition of the surface of the observed sample and the accuracy at the time of measurement. In order to eliminate these influences, a material having a CI (Confidence Index) value representing reliability of crystal orientation information of 0.8 or more may be used. If the CI value is 0.8 or less, perform electrolytic polishing using the above method again, adjust the working distance between the sample and the EBSD pattern detector, or adjust the accelerating voltage and irradiation current level. , adjust the gain or exposure of the detector and acquire data so that the CI value is 0.8 or more.
 EBSD測定領域と同領域をSEMで観察するために、観察位置近傍にビッカース圧痕を打刻する。その後、観察面の組織を残して、表層のコンタミを研磨除去し、ナイタールエッチングする。次に、EBSD観察面と同一視野(EBSD観察視野)をSEMにより倍率3000倍で観察する。EBSD測定において、「パーライト、フレッシュマルテンサイトおよび焼き戻しマルテンサイト」と判別された領域の内、粒内に下部組織を有し、かつ、セメンタイトが複数のバリアントを持って析出している領域を焼き戻しマルテンサイトと判断する。セメンタイトがラメラ状に析出している領域をパーライトと判断する。輝度が大きく、かつ下部組織がエッチングにより現出されていない領域をフレッシュマルテンサイトと判断する。それぞれの面積率を算出することで、焼き戻しマルテンサイト、パーライト、およびフレッシュマルテンサイトの面積率を得る。 In order to observe the same area as the EBSD measurement area with SEM, a Vickers indentation is made near the observation position. Thereafter, contamination on the surface layer is polished off, leaving the structure on the observation surface, and nital etching is performed. Next, the same field of view as the EBSD observation surface (EBSD observation field) is observed using a SEM at a magnification of 3000 times. Among the regions identified as "pearlite, fresh martensite, and tempered martensite" in the EBSD measurement, the regions that have a substructure within the grains and where cementite is precipitated in multiple variants are tempered. It is determined to be rehydrated martensite. The area where cementite is precipitated in a lamellar shape is determined to be pearlite. A region where the brightness is high and the underlying structure is not exposed by etching is determined to be fresh martensite. By calculating the respective area ratios, the area ratios of tempered martensite, pearlite, and fresh martensite are obtained.
 観察面表層のコンタミ除去については、粒子径0.1μm以下のアルミナ粒子を用いたバフ研磨、あるいはArイオンスパッタリング等の手法を用いればよい。 To remove contamination from the surface layer of the observation surface, a method such as buffing using alumina particles with a particle size of 0.1 μm or less or Ar ion sputtering may be used.
 なお、熱延鋼板の圧延方向は以下の方法で判別することができる。
 まず、熱延鋼板の板厚断面が観察できるように試験片を採取する。採取した試験片の板厚断面を鏡面研磨で仕上げた後、光学顕微鏡を用いて観察する。観察範囲は板厚の全厚とし、輝度が暗い領域を介在物と判定する。介在物のうち長軸の長さが5μm以上である介在物において、介在物が伸展している方向と平行な方向を圧延方向と判別する。
Note that the rolling direction of a hot rolled steel sheet can be determined by the following method.
First, a test piece is taken so that the cross section of the hot rolled steel sheet can be observed. After finishing the thickness section of the collected test piece with mirror polishing, it is observed using an optical microscope. The observation range is the entire thickness of the plate, and areas with low brightness are determined to be inclusions. Among inclusions, the length of the major axis is 5 μm or more, and a direction parallel to the direction in which the inclusion extends is determined as the rolling direction.
 旧オーステナイト粒の平均粒径:20.0μm以下
 旧オーステナイト粒の粒径が大きいと、局部伸びが劣化する結果、熱延鋼板の穴広げ性が劣化する。旧オーステナイト粒の平均粒径が20.0μm超であると、熱延鋼板の穴広げ性の劣化が顕著となる。そのため、旧オーステナイト粒の平均粒径は20.0μm以下とする。旧オーステナイト粒の平均粒径は、好ましくは15.0μm以下であり、より好ましくは13.0μm以下である。
 旧オーステナイト粒の平均粒径が小さければ小さい程熱延鋼板の穴広げ性は向上するが、7.0μm未満としてもその効果は飽和する。そのため、旧オーステナイト粒の平均粒径は7.0μm以上としてもよい。
Average grain size of prior austenite grains: 20.0 μm or less When the grain size of prior austenite grains is large, local elongation deteriorates, resulting in deterioration of the hole expandability of the hot rolled steel sheet. When the average grain size of the prior austenite grains exceeds 20.0 μm, the hole expandability of the hot rolled steel sheet deteriorates significantly. Therefore, the average grain size of the prior austenite grains is set to 20.0 μm or less. The average particle size of the prior austenite grains is preferably 15.0 μm or less, more preferably 13.0 μm or less.
The smaller the average grain size of the prior austenite grains, the better the hole expandability of the hot rolled steel sheet, but the effect is saturated even when the average grain size is less than 7.0 μm. Therefore, the average grain size of the prior austenite grains may be 7.0 μm or more.
 旧オーステナイト粒の平均アスペクト比:3.00以下
 旧オーステナイト粒の平均アスペクト比が3.00超であると、熱延鋼板の穴広げ性が劣化する。そのため、旧オーステナイト粒の平均アスペクト比は3.00以下とする。旧オーステナイト粒の平均アスペクト比は、好ましくは2.50以下であり、より好ましくは2.00以下であり、より一層好ましくは1.50以下である。
 なお、旧オーステナイト粒のアスペクト比とは、旧オーステナイト粒の長軸を短軸で除した値であり、1.00以上の値をとる。アスペクト比が小さいほど、結晶粒は等軸状であり、大きいほど結晶粒は扁平となる。
Average aspect ratio of prior austenite grains: 3.00 or less When the average aspect ratio of prior austenite grains exceeds 3.00, the hole expandability of the hot rolled steel sheet deteriorates. Therefore, the average aspect ratio of prior austenite grains is set to 3.00 or less. The average aspect ratio of the prior austenite grains is preferably 2.50 or less, more preferably 2.00 or less, and even more preferably 1.50 or less.
Note that the aspect ratio of the prior austenite grains is a value obtained by dividing the long axis of the prior austenite grains by the short axis, and takes a value of 1.00 or more. The smaller the aspect ratio, the more equiaxed the crystal grain, and the larger the aspect ratio, the flatter the crystal grain.
 旧オーステナイト粒の平均粒径および平均アスペクト比の測定方法
 熱延鋼板の圧延方向に平行な断面で、表面から板厚の1/4位置(表面から板厚の1/8深さ~板厚の3/8深さの領域)が観察できるようにサンプルを採取する。ピクリン酸飽和水溶液およびドデシルベンゼンスルホン酸ナトリウム腐食液によって板厚断面の組織を現出させる。このサンプルの表面から板厚の1/4深さ位置(表面から板厚の1/8深さ~板厚の3/8深さの領域)について、500倍の倍率で少なくとも3か所のEBSD観察視野について撮影した金属組織写真から、旧オーステナイト粒の粒径を測定する。各観察視野に含まれる旧オーステナイト粒の1つについて、円相当直径を算出する。撮影視野の端部等、旧オーステナイト粒の全体が撮影視野に含まれていない旧オーステナイト粒を除き、各観察視野に含まれる全ての旧オーステナイト粒について上記操作を行い、各撮影視野における全ての旧オーステナイト粒の円相当直径を求める。各撮影視野において得られた旧オーステナイト粒の円相当直径の平均値を算出することで、旧オーステナイト粒の平均粒径を得る。
 なお、円相当直径が2.0μm未満の旧オーステナイト粒が含まれる場合、これを除外して上述の測定を実施する。
Method for measuring the average grain size and average aspect ratio of prior austenite grains In a cross section parallel to the rolling direction of a hot-rolled steel plate, from the surface to the 1/4th of the sheet thickness (1/8th of the sheet thickness from the surface to the sheet thickness) A sample is taken so that a 3/8 depth area) can be observed. The structure of the cross section of the plate is revealed using a saturated aqueous solution of picric acid and a sodium dodecylbenzenesulfonate etchant. EBSD at least three locations at a depth of 1/4 of the plate thickness from the surface of this sample (region from 1/8 depth of the plate thickness to 3/8 depth of the plate thickness from the surface) at a magnification of 500x. The grain size of prior austenite grains is measured from a metallographic photograph taken in the observation field. The equivalent circle diameter is calculated for one of the prior austenite grains included in each observation field. Excluding old austenite grains where the entire former austenite grain is not included in the photographing field of view, such as the edge of the photographing field of view, perform the above operation for all the former austenite grains included in each observation field, and remove all the old austenite grains in each photographing field of view Find the equivalent circle diameter of the austenite grains. The average grain size of the prior austenite grains is obtained by calculating the average value of the equivalent circle diameters of the prior austenite grains obtained in each photographic field of view.
In addition, when prior austenite grains having a circular equivalent diameter of less than 2.0 μm are included, the above-mentioned measurement is performed excluding these grains.
 また、上述の各撮影視野に含まれる、少なくとも20個の、円相当直径が2.0μm以上の旧オーステナイト粒の長軸および短軸を測定する。各旧オーステナイト粒について測定して得られた長軸と短軸との平均値を算出することで、旧オーステナイト粒の平均長軸と平均短軸とを得る。これらの比(平均長軸/平均短軸)を算出することで、旧オーステナイト粒の平均アスペクト比を得る。 In addition, the long axis and short axis of at least 20 prior austenite grains with an equivalent circle diameter of 2.0 μm or more included in each of the above-mentioned photographic fields are measured. The average long axis and average short axis of the prior austenite grains are obtained by calculating the average value of the long axis and short axis obtained by measuring each prior austenite grain. By calculating these ratios (average major axis/average minor axis), the average aspect ratio of prior austenite grains is obtained.
 長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率:5%以下
 長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率が5%超であると、熱延鋼板において、特に切断端面における耐水素脆化特性が劣化する。そのため、長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率は5%以下とする。耐水素脆化特性をより高めるためには、長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率は2%以下とすることが好ましい。
 長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率は低い程好ましいため、長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率は0%としてもよい。
Area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 μm or more: 5% or less If the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 μm or more exceeds 5%, hot rolling In the steel plate, the hydrogen embrittlement resistance characteristics deteriorate, especially at the cut end surface. Therefore, the area ratio of fresh martensite and retained austenite aggregates having a major axis of 30 μm or more is 5% or less. In order to further improve hydrogen embrittlement resistance, the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 μm or more is preferably 2% or less.
Since the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 μm or more is preferably as low as possible, the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 μm or more may be 0%.
 フレッシュマルテンサイトおよび残留オーステナイトの集合体について説明する。
 あるフレッシュマルテンサイトまたは残留オーステナイトを楕円体(楕円体1)として近似し、その楕円体1と近接するフレッシュマルテンサイトまたは残留オーステナイトについても楕円体(楕円体2)として近似する。次に、楕円体1と楕円体2との距離lを求める。楕円体1の長径をaとした場合に、楕円体1と楕円体2との距離lが1.5×aよりも小さい場合に、その楕円体1と、楕円体1と近接する楕円体2とは1つの集合体であるとみなす。金属組織におけるフレッシュマルテンサイトおよび残留オーステナイトについて楕円体として近似し、楕円体の長径a、近接する楕円体同士の距離lを求め、上述の基準に基づいて、フレッシュマルテンサイトおよび残留オーステナイトの集合体を特定する。特定されたフレッシュマルテンサイトおよび残留オーステナイトの集合体について長径を求め、その長径が30μm以上である集合体の面積率を算出することで、長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率を得る。
 なお、フレッシュマルテンサイトおよび残留オーステナイトの特定は、上述の組織の面積率の測定方法のときと同様の方法により行う。
The aggregate of fresh martensite and retained austenite will be explained.
A certain fresh martensite or retained austenite is approximated as an ellipsoid (ellipsoid 1), and fresh martensite or retained austenite adjacent to the ellipsoid 1 is also approximated as an ellipsoid (ellipsoid 2). Next, the distance l between ellipsoid 1 and ellipsoid 2 is determined. When the major axis of the ellipsoid 1 is a, if the distance l between the ellipsoid 1 and the ellipsoid 2 is smaller than 1.5×a, then the ellipsoid 1 and the ellipsoid 2 adjacent to the ellipsoid 1 is considered to be one aggregate. Fresh martensite and retained austenite in the metallographic structure are approximated as ellipsoids, the major axis a of the ellipsoids and the distance l between adjacent ellipsoids are determined, and the aggregate of fresh martensite and retained austenite is calculated based on the above criteria. Identify. By determining the major axis of the identified aggregate of fresh martensite and retained austenite and calculating the area ratio of the aggregate with a major axis of 30 μm or more, the aggregate of fresh martensite and retained austenite with a major axis of 30 μm or more can be obtained. Obtain the area ratio.
Note that fresh martensite and retained austenite are determined by the same method as the method for measuring the area ratio of the structure described above.
 フレッシュマルテンサイトおよび残留オーステナイトの楕円体として近似する方法について説明する。
 図1に示すように、楕円体に含まれない結晶粒の領域の面積Soutと、楕円体内の結晶粒でない領域の面積Sinとの総和が最小となるように楕円体として近似する。このように楕円体として近似ですることで、x0、y0、a、bを求める。
A method of approximating fresh martensite and retained austenite as ellipsoids will be explained.
As shown in FIG. 1, the ellipsoid is approximated so that the sum of the area S out of a region of crystal grains not included in the ellipsoid and the area S in of a region not included in the ellipsoid is minimized. By approximating as an ellipsoid in this way, x0, y0, a, and b are obtained.
 ベイナイトのうち、荷重5000μN、荷重速度500μN/sでのナノインデンテーション硬さの平均値が4.7GPa以下となる領域:30%以下
 ベイナイトのうち、硬度が低い領域の面積率を低減することにより、熱延鋼板におけるTS-Elバランスをより高めることができる。すなわち、高い強度と優れた延性とをより高いレベルで実現することができる。そのため、ベイナイトのうち、荷重5000μN、荷重速度500μN/sでのナノインデンテーション硬さの平均値が4.7GPa以下となる領域を30%以下としてもよい。
In bainite, the area where the average value of nanoindentation hardness at a load of 5000 μN and a loading rate of 500 μN/s is 4.7 GPa or less: 30% or less By reducing the area ratio of the low hardness region of bainite , the TS-El balance in the hot rolled steel sheet can be further improved. That is, high strength and excellent ductility can be achieved at a higher level. Therefore, the area in which the average value of nanoindentation hardness at a load of 5000 μN and a loading rate of 500 μN/s is 4.7 GPa or less may be set to 30% or less of bainite.
 ベイナイトのうち、荷重5000μN、荷重速度500μN/sでのナノインデンテーション硬さの平均値が4.7GPa以下となる領域の割合(百分率)の測定方法について説明する。
 上述の組織の面積率の測定方法のときと同様の方法によりベイナイトを特定する。ベイナイトと特定された全ての領域について、荷重5000μN、荷重速度500μN/sでのナノインデンテーション硬さを測定する。ベイナイトと特定された1つの領域について少なくとも10点のナノインデンテーション硬さを測定し、その領域のナノインデンテーション硬さの平均値を算出する。次に、ナノインデンテーション硬さの平均値が4.7GPa以下である領域の面積率を算出する。ナノインデンテーション硬さの平均値が4.7GPa以下である領域の面積率を、ベイナイトの面積率で除して100をかけることで、ベイナイトのうち、荷重5000μN、荷重速度500μN/sでのナノインデンテーション硬さの平均値が4.7GPa以下となる領域の割合(百分率)を得る。
 なお、測定には、Hysitron社製TriboScope/TriboIndenterを用いる。
A method for measuring the ratio (percentage) of a region in bainite where the average value of nanoindentation hardness at a load of 5000 μN and a loading rate of 500 μN/s is 4.7 GPa or less will be described.
Bainite is identified by the same method as in the method for measuring the area ratio of the structure described above. Nanoindentation hardness is measured at a load of 5000 μN and a loading rate of 500 μN/s for all regions identified as bainite. The nanoindentation hardness of at least 10 points of one region identified as bainite is measured, and the average value of the nanoindentation hardness of that region is calculated. Next, the area ratio of the region where the average value of nanoindentation hardness is 4.7 GPa or less is calculated. By dividing the area ratio of the area where the average value of nanoindentation hardness is 4.7 GPa or less by the area ratio of bainite and multiplying by 100, the nano The ratio (percentage) of the area where the average value of indentation hardness is 4.7 GPa or less is obtained.
Note that TriboScope/TriboIndenter manufactured by Hysitron is used for the measurement.
 引張強さ:1100MPa以上
 本実施形態に係る熱延鋼板は、引張強さが1100MPa以上であってもよい。引張強さを1100MPa以上とすることで、様々な自動車足回り部品に好適に適用することができる。引張強さは、1150MPa以上、1200MPa以上、または1300MPa以上としてもよい。
 引張強さは高い程好ましいが、1450MPa以下としてもよい。
Tensile strength: 1100 MPa or more The hot rolled steel sheet according to this embodiment may have a tensile strength of 1100 MPa or more. By setting the tensile strength to 1100 MPa or more, it can be suitably applied to various automobile suspension parts. The tensile strength may be 1150 MPa or more, 1200 MPa or more, or 1300 MPa or more.
The tensile strength is preferably as high as possible, but it may be 1450 MPa or less.
 一様伸び:5.5%以上
 本実施形態に係る熱延鋼板は、一様伸びが5.5%以上であってもよい。一様伸びを5.5%以上とすることで、自動車足回り部品に好適に適用することができる。一様伸びは、好ましくは、6.0%以上または7.0%以上である。
 上限は特に限定しないが、20.0%以下としてもよい。
Uniform elongation: 5.5% or more The hot rolled steel sheet according to this embodiment may have a uniform elongation of 5.5% or more. By setting the uniform elongation to 5.5% or more, it can be suitably applied to automobile suspension parts. Uniform elongation is preferably 6.0% or more or 7.0% or more.
The upper limit is not particularly limited, but may be 20.0% or less.
 引張強さおよび一様伸びは、JIS Z 2241:2011の5号試験片を用いて、JIS Z 2241:2011に準拠して引張試験を行うことで、測定する。引張試験片の採取位置は、板幅方向中央位置とし、圧延方向に垂直な方向を長手方向とする。
 なお、一様伸びは、JIS Z 2241:2011でいう「最大試験力時全伸び」のことである。
The tensile strength and uniform elongation are measured by performing a tensile test in accordance with JIS Z 2241:2011 using a No. 5 test piece of JIS Z 2241:2011. The tensile test piece is taken at the center in the width direction of the plate, and the longitudinal direction is perpendicular to the rolling direction.
Note that uniform elongation refers to "full elongation at maximum test force" as defined in JIS Z 2241:2011.
 穴広げ率:30%以上
 本実施形態に係る熱延鋼板は、穴広げ率が30%以上であってもよい。穴広げ率を30%以上とすることで、自動車足回り部品に好適に適用することができる。穴広げ率は、好ましくは、35%以上、40%以上または45%以上である。上限は特に規定しないが、70%以下としてもよい。
 穴広げ率は、JIS Z 2256:2020に準拠して穴広げ試験を行うことで測定する。
Hole expansion ratio: 30% or more The hot rolled steel sheet according to this embodiment may have a hole expansion ratio of 30% or more. By setting the hole expansion rate to 30% or more, it can be suitably applied to automobile suspension parts. The hole expansion rate is preferably 35% or more, 40% or more, or 45% or more. Although the upper limit is not particularly specified, it may be 70% or less.
The hole expansion rate is measured by performing a hole expansion test in accordance with JIS Z 2256:2020.
 耐水素脆化特性評価
 熱延鋼板の耐水素脆化特性は、以下の方法により評価する。
 熱延鋼板から、50mm×50mmの試験片を採取する。φ10のmmパンチと、φ10mm+0.2×板厚のダイスとを用いて、試験片中央部に打ち抜き穴を形成する。次いで、pH2の塩酸に試験片を浸漬し、切断端面の割れの発生の有無により、耐水素脆化特性を評価する。塩酸に試験片を72時間以上浸漬しても切断端面に割れが発生しない場合を、耐水素脆化特性に優れると判定することができる。更に、同様の条件で塩酸に試験片を浸漬し、36時間経過時に塩酸を新しいものに入れ替え、更に36時間浸漬(合計で72時間浸漬)しても切断断面に割れが発生しない場合、耐水素脆化特性により優れると判定することができる。
 なお、切断端面を光学顕微鏡で観察し、長さが100μmを超える亀裂が観察される場合に、割れが発生したと判断する。
Hydrogen embrittlement resistance evaluation The hydrogen embrittlement resistance of hot rolled steel sheets is evaluated by the following method.
A 50 mm x 50 mm test piece is taken from a hot rolled steel plate. A punch hole is formed in the center of the test piece using a φ10 mm punch and a die of φ10 mm + 0.2× plate thickness. Next, the test piece is immersed in hydrochloric acid at pH 2, and the hydrogen embrittlement resistance is evaluated based on the presence or absence of cracks on the cut end surface. A test piece can be determined to have excellent hydrogen embrittlement resistance when no cracks occur on the cut end surface even after immersing the test piece in hydrochloric acid for 72 hours or more. Furthermore, if the test piece is immersed in hydrochloric acid under the same conditions, the hydrochloric acid is replaced with new one after 36 hours, and no cracks occur on the cut section even after 36 hours of immersion (total 72 hours of immersion), the test piece is hydrogen resistant. It can be determined that the embrittlement properties are superior.
Note that when the cut end surface is observed with an optical microscope and a crack with a length exceeding 100 μm is observed, it is determined that a crack has occurred.
 本実施形態に係る熱延鋼板は、表面に耐食性の向上等を目的としてめっき層を備えさせて表面処理鋼板としてもよい。めっき層は電気めっき層であってもよく溶融めっき層であってもよい。電気めっき層としては、電気亜鉛めっき、電気Zn-Ni合金めっき等が例示される。溶融めっき層としては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。めっき付着量は特に制限されず、従来と同様としてよい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施して、耐食性をさらに高めることも可能である。 The hot-rolled steel sheet according to this embodiment may be provided with a plating layer on the surface for the purpose of improving corrosion resistance, etc., and may be used as a surface-treated steel sheet. The plating layer may be an electroplating layer or a hot-dip plating layer. Examples of the electroplating layer include electrogalvanizing, electrolytic Zn--Ni alloy plating, and the like. Examples of the hot-dip plating layer include hot-dip galvanizing, alloyed hot-dip galvanizing, hot-dip aluminum plating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, and hot-dip Zn-Al-Mg-Si alloy plating. Ru. The amount of plating deposited is not particularly limited, and may be the same as the conventional one. Further, it is also possible to further improve the corrosion resistance by performing an appropriate chemical conversion treatment (for example, applying and drying a silicate-based chromium-free chemical conversion treatment liquid) after plating.
 次に、本実施形態に係る熱延鋼板の好ましい製造方法について説明する。
 なお、下記に説明する温度は特に指定のない限りスラブまたは鋼板の表面温度のことをいう。
Next, a preferred method for manufacturing the hot rolled steel sheet according to this embodiment will be described.
Note that the temperatures described below refer to the surface temperatures of slabs or steel plates unless otherwise specified.
 本実施形態に係る熱延鋼板の好ましい製造方法は、
 上述の化学組成を有するスラブを1220~1300℃の温度域で40分以上保持する加熱工程と、
 1~3パス目の各圧下率が10~30%、4パス目以降の各圧下率が15~50%となるように粗圧延を行う粗圧延工程と、
 最終パスの圧延を940~1020℃の温度域且つ25%以上の圧下率で行う仕上げ圧延工程と、
 仕上げ圧延完了後、2.0秒以内に冷却を開始し、且つ、16.0秒以内に300℃~(Ms-10)℃の温度域まで冷却する冷却工程と、
 前記冷却後、300℃~(Ms-10)℃の前記温度域で巻取りを開始し、且つ、巻取り開始後の300~450℃の温度域の滞在時間が100秒以上となるように巻取りを行う巻取り工程と、を順次行う。
 なお、前記仕上げ圧延工程では、仕上げ圧延開始温度が1060~1080℃の温度域となるように、前記仕上げ圧延を行うことがより好ましい。
 なお、前記巻取り工程では、前記巻取り開始後の最高温度が500℃未満となるように、前記巻取りを行うことがより好ましい。
 また、前記冷却工程および前記巻取り工程では、450~500℃の温度域における総滞在時間が2000秒未満となるように、前記冷却および前記巻取りを行うことがより好ましい。
 以下、各工程について説明する。
A preferred method for manufacturing the hot rolled steel sheet according to this embodiment is as follows:
a heating step of holding the slab having the above chemical composition in a temperature range of 1220 to 1300°C for 40 minutes or more;
A rough rolling step in which rough rolling is performed so that each rolling reduction ratio in the first to third passes is 10 to 30%, and each rolling reduction ratio in the fourth pass and thereafter is 15 to 50%;
A finish rolling step in which the final pass is rolled in a temperature range of 940 to 1020°C and a reduction rate of 25% or more;
A cooling step of starting cooling within 2.0 seconds after completion of finish rolling and cooling to a temperature range of 300 ° C to (Ms-10) ° C within 16.0 seconds;
After the cooling, winding is started in the temperature range of 300°C to (Ms-10)°C, and the winding is performed so that the residence time in the temperature range of 300 to 450°C after the start of winding is 100 seconds or more. A winding step of taking the material is sequentially performed.
In addition, in the finish rolling process, it is more preferable to perform the finish rolling so that the finish rolling start temperature is in the temperature range of 1060 to 1080°C.
In addition, in the winding step, it is more preferable to perform the winding so that the maximum temperature after the start of the winding is less than 500°C.
Further, in the cooling step and the winding step, it is more preferable that the cooling and winding are performed such that the total residence time in the temperature range of 450 to 500° C. is less than 2000 seconds.
Each step will be explained below.
 加熱工程
 加熱温度が1220℃未満であると、溶体化が進まず、フェライト量が多くなり、熱延鋼板の強度が劣化する。そのため、加熱温度は1220℃以上とすることが好ましい。加熱温度は、より好ましくは1240℃以上である。
 一方、加熱温度が1300℃超であると、加熱時にオーステナイト粒が粗大化し、結果として熱延鋼板の穴広げ性が劣化する。そのため、加熱温度は1300℃以下とすることが好ましい。エネルギーコスト削減の観点から、加熱温度は、1280℃以下とすることが好ましい。
Heating process If the heating temperature is less than 1220°C, solution treatment will not proceed, the amount of ferrite will increase, and the strength of the hot rolled steel sheet will deteriorate. Therefore, the heating temperature is preferably 1220°C or higher. The heating temperature is more preferably 1240°C or higher.
On the other hand, if the heating temperature exceeds 1300° C., the austenite grains become coarse during heating, and as a result, the hole expandability of the hot rolled steel sheet deteriorates. Therefore, the heating temperature is preferably 1300°C or less. From the viewpoint of energy cost reduction, the heating temperature is preferably 1280° C. or lower.
 1220~1300℃の温度域での保持時間が40分未満であると、溶体化が進まず、フェライト量が多くなり、熱延鋼板の強度が劣化する。そのため、上記温度域での保持時間は40分以上とすることが好ましい。保持時間は、より好ましくは60分以上であり、より一層好ましくは80分以上である。
 保持時間の上限は特に限定しないが、200分以下としてもよい。
If the holding time in the temperature range of 1220 to 1300° C. is less than 40 minutes, solution treatment will not proceed, the amount of ferrite will increase, and the strength of the hot rolled steel sheet will deteriorate. Therefore, the holding time in the above temperature range is preferably 40 minutes or more. The holding time is more preferably 60 minutes or more, even more preferably 80 minutes or more.
The upper limit of the holding time is not particularly limited, but may be 200 minutes or less.
 なお、加熱するスラブについては、上述した化学組成を有する点以外については特に限定されない。例えば、転炉又は電気炉等を用いて上記化学組成の溶鋼を溶製し、連続鋳造法により製造したスラブを用いることができる。連続鋳造法に代えて、造塊法、薄スラブ鋳造法等を採用してもよい。 Note that the slab to be heated is not particularly limited except that it has the above-mentioned chemical composition. For example, it is possible to use a slab produced by melting molten steel having the above chemical composition using a converter or an electric furnace, and by a continuous casting method. Instead of the continuous casting method, an ingot method, a thin slab casting method, etc. may be adopted.
 粗圧延工程
 1~3パス目において圧下率10%未満の圧延を行うと、または4パス目以降において圧下率が15%未満の圧延を行うと、旧オーステナイト粒が粗大化する。そのため、1~3パス目の各圧下率は10%以上とし、4パス目以降の各圧下率は15%以上とすることが好ましい。より好ましくは、1~3パス目の各圧下率は15%以上または20%以上であり、4パス目以降の各圧下率は20%以上または25%以上である。
Rough rolling process If rolling is performed with a reduction ratio of less than 10% in the first to third passes, or if rolling is performed with a reduction ratio of less than 15% in the fourth pass or later, the prior austenite grains will become coarse. Therefore, it is preferable that each rolling reduction ratio in the first to third passes is 10% or more, and each rolling reduction ratio in the fourth and subsequent passes is 15% or more. More preferably, each rolling reduction in the first to third passes is 15% or more or 20% or more, and each rolling reduction in the fourth or subsequent passes is 20% or more or 25% or more.
 また、1~3パス目において圧下率30%超の圧延を行うと、または4パス目以降において圧下率が50%超の圧延を行うと、旧オーステナイト粒が不均一な状態で仕上げ圧延が行われ、仕上げ圧延後に特定の方向に伸張した旧オーステナイト粒が形成されやすくなる。その結果、旧オーステナイト粒の平均アスペクト比が高くなり、また長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率が高くなる。そのため、1~3パス目の各圧下率は30%以下とし、4パス目以降の各圧下率は50%以下とすることが好ましい。より好ましくは、1~3パス目の各圧下率は25%以下であり、4パス目以降の各圧下率は40%以下である。 In addition, if rolling is performed with a reduction rate of more than 30% in the 1st to 3rd passes, or if rolling is performed with a reduction rate of more than 50% in the 4th pass or later, finish rolling will be performed with prior austenite grains being uneven. Therefore, prior austenite grains that are elongated in a specific direction are likely to be formed after finish rolling. As a result, the average aspect ratio of prior austenite grains becomes high, and the area ratio of fresh martensite and retained austenite aggregates having a major axis of 30 μm or more becomes high. Therefore, it is preferable that each rolling reduction ratio in the first to third passes is 30% or less, and each rolling reduction ratio in the fourth and subsequent passes is 50% or less. More preferably, each rolling reduction in the first to third passes is 25% or less, and each rolling reduction in the fourth and subsequent passes is 40% or less.
 なお、各パスの圧下率は、各パスの入口板厚t0とし、各パスの出口板厚t1としたとき、{1-(t1/t0)}×100(%)で表すことができる。 Note that the rolling reduction rate of each pass can be expressed as {1-(t1/t0)}×100(%), where the inlet plate thickness of each pass is t0 and the outlet plate thickness of each pass is t1.
 粗圧延完了温度(粗圧延の最終パスの出側温度)は特に限定しないが、熱間変形抵抗の観点から1070℃以上が好ましい。また、スケール噛み込みによる疵を減らす観点からは1200℃以下が好ましい。 The rough rolling completion temperature (the exit temperature of the final pass of rough rolling) is not particularly limited, but is preferably 1070° C. or higher from the viewpoint of hot deformation resistance. Further, from the viewpoint of reducing flaws due to scale encroachment, the temperature is preferably 1200°C or lower.
 仕上げ圧延工程
 仕上げ圧延工程において、最終パスにおける圧延温度または圧下率が低すぎる場合、再結晶が十分に進まず、旧オーステナイト粒の平均粒径、旧オーステナイト粒の平均アスペクト比および/または長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率を好ましく制御することができない。そのため、仕上げ圧延工程では、最終パスの圧延を940℃以上の温度域且つ25%以上の圧下率で行うことが好ましい。
Finish rolling process In the finish rolling process, if the rolling temperature or reduction rate in the final pass is too low, recrystallization will not proceed sufficiently, and the average grain size of the prior austenite grains, the average aspect ratio and/or major axis of the prior austenite grains will be 30 μm. The area ratio of aggregates of fresh martensite and retained austenite cannot be preferably controlled. Therefore, in the finish rolling process, it is preferable that the final pass of rolling be performed in a temperature range of 940° C. or higher and at a rolling reduction rate of 25% or higher.
 最終パスの圧延は、960℃以上で行うことがより好ましく、1010℃以下で行うことがより好ましく、30%以上の圧下率で行うことがより好ましい。最終パスの圧下率は50%以下としてもよい。
 また、仕上げ圧延工程では、仕上げ圧延開始温度(仕上げ圧延1段目の入側温度)が1060~1080℃の温度域となるように、仕上げ圧延を行うことがより好ましい。仕上げ圧延開始温度を1060~1080℃の温度域とすることで、長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率をより低減することができる。その結果、より優れた耐水素脆化特性を有する熱延鋼板を製造することができる。
The final pass rolling is more preferably performed at a temperature of 960°C or higher, more preferably 1010°C or lower, and more preferably at a rolling reduction of 30% or higher. The rolling reduction ratio in the final pass may be 50% or less.
Further, in the finish rolling process, it is more preferable to perform finish rolling such that the finish rolling start temperature (inlet temperature of the first stage of finish rolling) is in the temperature range of 1060 to 1080°C. By setting the finish rolling start temperature to a temperature range of 1060 to 1080°C, it is possible to further reduce the area ratio of aggregates of fresh martensite and retained austenite having a major axis of 30 μm or more. As a result, a hot-rolled steel sheet having better hydrogen embrittlement resistance can be manufactured.
 冷却工程
 仕上げ圧延の完了から冷却開始までの時間が2.0秒超であると、オーステナイト再結晶粒の粒成長が進み、結果として旧オーステナイト粒が粗大化する。そのため、仕上げ圧延完了後は、2.0秒以内に冷却を開始することが好ましい。
 ここでいう冷却に空冷は含まれず、冷却開始までの時間とは、仕上げ圧延の最終パスでの圧延後、水冷が開始されるまでの時間のことをいう。
Cooling Step If the time from the completion of finish rolling to the start of cooling is more than 2.0 seconds, the grain growth of austenite recrystallized grains progresses, and as a result, the old austenite grains become coarse. Therefore, it is preferable to start cooling within 2.0 seconds after finish rolling is completed.
Cooling here does not include air cooling, and the time until the start of cooling refers to the time after rolling in the final pass of finish rolling until water cooling starts.
 仕上げ圧延の完了直後に冷却を開始してもよいが、仕上げ圧延機直下への冷却水を噴射することが必要となり、ロールが過度に冷却されることで最終圧延温度の制御が困難となる。そのため、冷却開始までの時間は1.0秒以上とすることがより好ましい。 Although cooling may be started immediately after completion of finish rolling, it is necessary to inject cooling water directly below the finish rolling mill, and the rolls are cooled excessively, making it difficult to control the final rolling temperature. Therefore, it is more preferable that the time until the start of cooling is 1.0 seconds or more.
 仕上げ圧延の完了から300℃~(Ms-10)℃の温度域までの冷却時間が16.0秒超であると、フェライトが過剰に生成される。そのため、冷却開始後は、仕上げ圧延が完了してから16.0秒以内に、300℃~(Ms-10)℃の温度域まで冷却することが好ましい。冷却時間は短い程好ましいが、短時間で所望の温度域まで冷却するためには量密度を高める必要があり、冷却ノズルへの負荷が増大するため経済性を損ねる。そのため、300℃~(Ms-10)℃の温度域までの冷却時間は、仕上げ圧延の完了から5.0秒以上または7.0秒以上とすることがより好ましい。 If the cooling time from the completion of finish rolling to the temperature range of 300°C to (Ms-10)°C is longer than 16.0 seconds, excessive ferrite will be produced. Therefore, after the start of cooling, it is preferable to cool to a temperature range of 300° C. to (Ms-10)° C. within 16.0 seconds after finish rolling is completed. Although it is preferable that the cooling time be short, in order to cool to a desired temperature range in a short time, it is necessary to increase the volume density, which increases the load on the cooling nozzle, which impairs economic efficiency. Therefore, the cooling time to the temperature range of 300° C. to (Ms-10)° C. is more preferably 5.0 seconds or more or 7.0 seconds or more from the completion of finish rolling.
 300℃~(Ms-10)℃の温度域まで冷却した後、冷却を停止する。冷却停止温度が300℃未満であると、ベイナイトが過剰に生成される。そのため、冷却停止温度は300℃以上とする。冷却停止温度は、好ましくは320℃以上である。
 一方、冷却停止温度がMs-10℃超であると、ベイナイトおよび焼き戻しマルテンサイト量が少なくなる。そのため、冷却停止温度はMs-10℃以下とすることが好ましい。冷却停止温度は、より好ましくは400℃以下である。
 冷却停止後は直ちにコイル状に巻取る。つまり、巻取り温度と冷却停止温度とは同じ温度となる。
After cooling to a temperature range of 300°C to (Ms-10)°C, cooling is stopped. If the cooling stop temperature is less than 300°C, bainite is produced in excess. Therefore, the cooling stop temperature is set to 300°C or higher. The cooling stop temperature is preferably 320°C or higher.
On the other hand, when the cooling stop temperature exceeds Ms-10°C, the amount of bainite and tempered martensite decreases. Therefore, the cooling stop temperature is preferably set to Ms-10°C or lower. The cooling stop temperature is more preferably 400°C or lower.
Immediately after cooling is stopped, it is wound into a coil. In other words, the winding temperature and the cooling stop temperature are the same temperature.
 なお、Ms(℃)は下記式により求めることができる。
 Ms=496×(1-0.62×C)×(1-0.0092×Mn)×(1-0.033×Si)×(1-0.045×Ni)×(1-0.07×Cr)×(1-0.029×Mo)×(1-0.018×W)×(1+0.012×Co)
Note that Ms (°C) can be determined by the following formula.
Ms=496×(1-0.62×C)×(1-0.0092×Mn)×(1-0.033×Si)×(1-0.045×Ni)×(1-0.07 ×Cr)×(1-0.029×Mo)×(1-0.018×W)×(1+0.012×Co)
 巻取り工程
 巻取り開始後、熱延鋼板がコイル状に巻き取られていく際には、変態による発熱により鋼板温度が上昇する。特に、コイルの中心部やコイルの最外周面の板幅方向中央部において、温度が上昇しやすい。巻取りを開始してから、300~450℃の温度域の滞在時間を十分に確保することで、長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率を低減させることができる。巻取り開始後の300~450℃の温度域の滞在時間が100秒未満であると、長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率を低減することができない。そのため、巻取り開始後の300~450℃の温度域の滞在時間は100秒以上とすることが好ましい。
 なお、ここでいう温度は、コイルの最外周面の板幅方向中央部の表面温度のことである。
Winding Process After the start of winding, when the hot-rolled steel sheet is wound into a coil, the temperature of the steel sheet rises due to heat generation due to transformation. In particular, the temperature tends to rise at the center of the coil and at the center in the board width direction of the outermost circumferential surface of the coil. By ensuring sufficient residence time in the temperature range of 300 to 450°C after starting winding, it is possible to reduce the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 μm or more. . If the residence time in the temperature range of 300 to 450° C. after the start of winding is less than 100 seconds, the area ratio of aggregates of fresh martensite and retained austenite with a major axis of 30 μm or more cannot be reduced. Therefore, the residence time in the temperature range of 300 to 450° C. after the start of winding is preferably 100 seconds or more.
Note that the temperature here refers to the surface temperature of the center portion of the outermost circumferential surface of the coil in the width direction of the coil.
 300~450℃の温度域の滞在時間とは、300℃~(Ms-10)℃の温度域まで冷却されて巻取りが開始された時から、温度が低下して300℃に到達した時まで、あるいは、変態による発熱により温度が上昇して450℃に到達した時までの時間をいう。
 巻取り開始後、変態による発熱により450℃超まで温度上昇して、その後300~450℃の温度域まで温度低下した場合であっても、一旦450℃超まで温度上昇した時点で、滞在時間には加算されない。
The residence time in the temperature range of 300 to 450 °C is from the time when the winding is started after cooling to the temperature range of 300 °C to (Ms-10) °C until the time when the temperature decreases and reaches 300 °C. Alternatively, it refers to the time until the temperature rises due to heat generation due to transformation and reaches 450°C.
After the start of winding, even if the temperature rises to over 450℃ due to heat generation due to transformation and then decreases to a temperature range of 300 to 450℃, once the temperature rises to over 450℃, the residence time is not added.
 巻取り工程では、巻取り開始後の最高温度が500℃未満となるように、巻取りを行うことがより好ましい。巻取り開始後、復熱による温度上昇を、コイルの最外周面の板幅方向中央部の表面温度が500℃未満となるように制御することで、パーライト量をより一層低減することができる。その結果、熱延鋼板におけるTS-Elバランスをより高めることができる。すなわち、高い強度と優れた延性とをより高いレベルで実現することができる。 In the winding step, it is more preferable to wind the film so that the maximum temperature after the start of winding is less than 500°C. After the start of winding, the amount of pearlite can be further reduced by controlling the temperature rise due to recuperation so that the surface temperature at the center in the width direction of the outermost circumferential surface of the coil is less than 500°C. As a result, the TS-El balance in the hot rolled steel sheet can be further improved. That is, high strength and excellent ductility can be achieved at a higher level.
 冷却工程および巻取り工程では、450~500℃の温度域における総滞在時間が2000秒未満となるように、冷却および巻取りを行うことがより好ましい。450~500℃の温度域における総滞在時間が2000秒未満となるように冷却および巻取りを行うことで、ベイナイトのうち、硬度が低い領域の面積率を低減することができる。これにより、熱延鋼板におけるTS-Elバランスをより高めることができる。すなわち、高い強度と優れた延性とをより高いレベルで実現することができる。
 なお、ここでいう総滞在時間とは、冷却中の450~500℃の温度域における滞在時間、並びに、巻取り開始後、変態による発熱により温度上昇したときの450~500℃の温度域における滞在時間の総計である。
In the cooling step and the winding step, it is more preferable to carry out the cooling and winding so that the total residence time in the temperature range of 450 to 500° C. is less than 2000 seconds. By performing cooling and winding so that the total residence time in the temperature range of 450 to 500° C. is less than 2000 seconds, it is possible to reduce the area ratio of the region of low hardness in bainite. Thereby, the TS-El balance in the hot rolled steel sheet can be further improved. That is, high strength and excellent ductility can be achieved at a higher level.
Note that the total residence time here refers to the residence time in the temperature range of 450 to 500°C during cooling, as well as the residence time in the temperature range of 450 to 500°C when the temperature rises due to heat generation due to transformation after the start of winding. It is the total amount of time.
 以上説明した工程を備える製造方法によって、本実施形態に係る熱延鋼板を安定して製造することができる。 With the manufacturing method including the steps described above, the hot rolled steel sheet according to the present embodiment can be stably manufactured.
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用する一条件例である。本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。 Next, examples of the present invention will be described, and the conditions in the examples are examples of conditions adopted to confirm the feasibility and effects of the present invention. The present invention is not limited to this one example condition. The present invention may adopt various conditions as long as the objectives of the present invention are achieved without departing from the gist of the present invention.
 連続鋳造を実施することで、表1A~表2Bに示す化学組成を有するスラブを得た。鋼No.I、L、UおよびZは、鋳造時にスラブの割れが認められたため、その時点で製造を中止した。 By performing continuous casting, slabs having chemical compositions shown in Tables 1A to 2B were obtained. Steel No. Production of I, L, U, and Z was discontinued at that point because cracks were observed in the slabs during casting.
 次に、表3A~表4Cに示す条件により、熱延鋼板からなるコイルを製造した。
 なお、試験No.5は、熱間での変形抵抗が高かったため、仕上げ圧延以降の製造を中止した。
Next, coils made of hot rolled steel sheets were manufactured under the conditions shown in Tables 3A to 4C.
In addition, test No. As for No. 5, the production after finish rolling was discontinued because the deformation resistance in hot conditions was high.
 得られたコイルの最外周部から、金属組織観察、引張試験、穴広げ試験用および耐水素脆化特性評価用の試験片を切り出した。各試験方法は上述の方法と同様の方法とした。
 また、得られた試験片から、上述の方法により、金属組織観察を行った。得られた結果を表5A~表5Dに示す。
Test pieces for metal structure observation, tensile test, hole expansion test, and hydrogen embrittlement resistance evaluation were cut from the outermost part of the obtained coil. Each test method was the same as the method described above.
Further, the metallographic structure of the obtained test piece was observed by the method described above. The results obtained are shown in Tables 5A to 5D.
 なお、表5A~表5Dにおける各項目はそれぞれ以下を示す。
 B:ベイナイト
 TM:焼き戻しマルテンサイト
 FM:フレッシュマルテンサイト
 γr:残留オーステナイト
 α:フェライト
 P:パーライト
 旧γ粒の平均粒径:旧オーステナイト粒の平均粒径
 旧γ粒の平均アスペクト比:旧オーステナイト粒の平均アスペクト比
Note that each item in Tables 5A to 5D indicates the following.
B: Bainite TM: Tempered martensite FM: Fresh martensite γr: Retained austenite α: Ferrite P: Pearlite Average grain size of prior γ grains: Average grain size of prior austenite grains Average aspect ratio of prior γ grains: Prior austenite grains average aspect ratio of
 また、表中の「FMおよびγrの集合体面積率」には、長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率が、2%超、5%以下であった場合に、に「B」と記載し、2%以下であった場合に「A」と記載し、5%超であった場合に「C」と記載した。ここでは「A」、「B」を合格、「C」を不合格と判定した。
 また、ベイナイトのうち、荷重5000μN、荷重速度500μN/sでのナノインデンテーション硬さの平均値が4.7GPa以下となる領域が30%以下であった場合に、「4.7GPa以下となる領域が30%以下」に「OK」と記載し、この条件を満たさなかった場合に「NG」と記載した。
In addition, "FM and γr aggregate area ratio" in the table indicates that the area ratio of fresh martensite and retained austenite aggregates with a major axis of 30 μm or more is more than 2% and 5% or less. , was written as "B", when it was 2% or less, it was written as "A", and when it was more than 5%, it was written as "C". Here, "A" and "B" were determined to be passed, and "C" was determined to be failed.
In addition, if the area where the average value of nanoindentation hardness is 4.7 GPa or less at a load of 5000 μN and a loading rate of 500 μN/s is 30% or less of bainite, “area where the average value of nanoindentation hardness is 4.7 GPa or less” is 30% or less" was written as "OK", and when this condition was not met, it was written as "NG".
 引張強さが1100MPa以上であった場合、高い強度を有する熱延鋼板であるとして合格と判定した。一方、引張強さが1100MPa未満であった場合、高い強度を有さない熱延鋼板であるとして不合格と判定した。 If the tensile strength was 1100 MPa or more, it was determined that the hot rolled steel sheet had high strength and passed. On the other hand, when the tensile strength was less than 1100 MPa, it was determined that the hot rolled steel sheet did not have high strength and was rejected.
 一様伸びが5.5%以上であった場合、優れた延性を有する熱延鋼板であるとして合格と判定した。一方、一様伸びが5.5%未満であった場合、優れた延性を有さない熱延鋼板であるとして不合格と判定した。 When the uniform elongation was 5.5% or more, it was determined that the hot rolled steel sheet had excellent ductility and passed. On the other hand, when the uniform elongation was less than 5.5%, it was determined that the hot rolled steel sheet did not have excellent ductility and was rejected.
 穴広げ率が30%以上であった場合、優れた穴広げ性を有する熱延鋼板であるとして合格と判定した。一方、穴広げ率が30%未満であった場合、優れた穴広げ性を有さない熱延鋼板であるとして不合格と判定した。 If the hole expansion rate was 30% or more, it was determined that the hot rolled steel sheet had excellent hole expansion properties and was passed. On the other hand, when the hole expansion rate was less than 30%, it was determined that the hot rolled steel sheet did not have excellent hole expansion properties and was rejected.
 耐水素脆化特性評価において、塩酸に試験片を72時間以上浸漬しても切断端面に割れが発生しなかった場合、優れた耐水素脆化特性を有する熱延鋼板であるとして合格と判定し、表中に「B」と記載した。一方、塩酸に試験片を72時間以上浸漬して切断端面に割れが発生した場合、優れた耐水素脆化特性を有さない熱延鋼板であるとして不合格と判定し、表中に「C」と記載した。
 更に、同様の条件で塩酸に試験片を浸漬し、36時間経過時に塩酸を新しいものに入れ替え、更に36時間浸漬(合計で72時間浸漬)しても切断断面に割れが発生しなかった場合、より優れた耐水素脆化特性を有する熱延鋼板であると判定し、表中に「A」と記載した。
In the hydrogen embrittlement resistance evaluation, if no cracks occur on the cut end surface even after immersing the test piece in hydrochloric acid for 72 hours or more, the hot rolled steel sheet is judged to have excellent hydrogen embrittlement resistance and is passed. , is indicated as "B" in the table. On the other hand, if the test piece is immersed in hydrochloric acid for more than 72 hours and cracks occur on the cut end surface, the hot-rolled steel sheet does not have excellent hydrogen embrittlement resistance and is judged to be rejected. ” was written.
Furthermore, if the test piece is immersed in hydrochloric acid under the same conditions, the hydrochloric acid is replaced with fresh one after 36 hours, and no cracks occur on the cut section even after immersion for a further 36 hours (72 hours of immersion in total), It was determined that the hot-rolled steel sheet had better hydrogen embrittlement resistance, and was marked as "A" in the table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表5A~表5Dに示す通り、本発明例に係る熱延鋼板は、高い強度、並びに、優れた延性、穴広げ性および耐水素脆化特性を有することが分かる。
 一方、比較例に係る熱延鋼板は、上記特性のいずれか一つ以上が劣ることが分かる。
As shown in Tables 5A to 5D, it can be seen that the hot rolled steel sheets according to the examples of the present invention have high strength, as well as excellent ductility, hole expandability, and hydrogen embrittlement resistance.
On the other hand, it can be seen that the hot rolled steel sheet according to the comparative example is inferior in any one or more of the above characteristics.
 本発明に係る上記態様によれば、高い強度、並びに、優れた延性、穴広げ性および耐水素脆化特性を有する熱延鋼板を提供することができる。 According to the above aspect of the present invention, it is possible to provide a hot rolled steel sheet having high strength, as well as excellent ductility, hole expandability, and hydrogen embrittlement resistance.

Claims (5)

  1.  化学組成が、質量%で、
    C :0.13~0.23%、
    Si:0.70~1.79%、
    Mn:1.79~3.00%、
    P :0.060%以下、
    S :0.005%以下、
    N :0.0070%以下、
    O :0.010%以下、
    Al:0.010~0.430%、
    Ti:0.006~0.055%、
    Nb:0.005~0.040%、
    B :0.0001~0.0030%、
    Cr:0~0.660%、
    Mo:0~0.300%、
    Cu:0~1.000%、
    Ni:0~1.000%、
    Sn:0~0.100%、
    Ca:0~0.0200%、
    As:0~0.100%、
    Bi:0~0.020%、
    Mg:0~0.0200%、
    Zr:0~0.400%、
    V :0~0.200%、
    REM:0~0.1000%、
    Co:0~0.2000%、
    W :0~0.2000%、および
    Zn:0~0.2000%を含有し、
    残部がFeおよび不純物からなり、
     金属組織において、
     面積%で、
      ベイナイト:10%以上、
      焼き戻しマルテンサイト:10%以上、
      ベイナイトおよび焼き戻しマルテンサイトの合計:70~96%、
      フレッシュマルテンサイト:20%以下、
      残留オーステナイト:4~12%、
      フェライト:5%以下、
      パーライト:5%以下、
     旧オーステナイト粒の平均粒径:20.0μm以下、
     旧オーステナイト粒の平均アスペクト比:3.00以下であり、
     長径が30μm以上であるフレッシュマルテンサイトおよび残留オーステナイトの集合体の面積率が5%以下であることを特徴とする熱延鋼板。
    The chemical composition is in mass%,
    C: 0.13-0.23%,
    Si: 0.70-1.79%,
    Mn: 1.79-3.00%,
    P: 0.060% or less,
    S: 0.005% or less,
    N: 0.0070% or less,
    O: 0.010% or less,
    Al: 0.010-0.430%,
    Ti: 0.006 to 0.055%,
    Nb: 0.005-0.040%,
    B: 0.0001 to 0.0030%,
    Cr: 0-0.660%,
    Mo: 0 to 0.300%,
    Cu: 0 to 1.000%,
    Ni: 0-1.000%,
    Sn: 0-0.100%,
    Ca: 0-0.0200%,
    As: 0 to 0.100%,
    Bi: 0 to 0.020%,
    Mg: 0 to 0.0200%,
    Zr: 0 to 0.400%,
    V: 0 to 0.200%,
    REM: 0-0.1000%,
    Co: 0 to 0.2000%,
    Contains W: 0 to 0.2000% and Zn: 0 to 0.2000%,
    The remainder consists of Fe and impurities,
    In metallographic structure,
    In area%,
    Bainite: 10% or more,
    Tempered martensite: 10% or more,
    Total of bainite and tempered martensite: 70-96%,
    Fresh martensite: 20% or less,
    Retained austenite: 4-12%,
    Ferrite: 5% or less,
    Perlite: 5% or less,
    Average grain size of prior austenite grains: 20.0 μm or less,
    Average aspect ratio of prior austenite grains: 3.00 or less,
    A hot-rolled steel sheet characterized in that the area ratio of aggregates of fresh martensite and retained austenite having a major axis of 30 μm or more is 5% or less.
  2.  前記金属組織において、
     前記パーライト:3%未満であることを特徴とする請求項1に記載の熱延鋼板。
    In the metal structure,
    The hot rolled steel sheet according to claim 1, wherein the pearlite content is less than 3%.
  3.  前記ベイナイトのうち、荷重5000μN、荷重速度500μN/sでのナノインデンテーション硬さの平均値が4.7GPa以下となる領域が30%以下であることを特徴とする請求項1または2に記載の熱延鋼板。 3. The bainite according to claim 1 or 2, wherein a region in which the average value of nanoindentation hardness at a load of 5000 μN and a loading rate of 500 μN/s is 4.7 GPa or less is 30% or less. Hot rolled steel plate.
  4.  前記化学組成が、質量%で、
    Cr:0.020~0.660%、
    Mo:0.001~0.300%、
    Cu:0.001~1.000%、
    Ni:0.001~1.000%、
    Sn:0.001~0.100%、
    Ca:0.0005~0.0200%、
    As:0.001~0.100%、
    Bi:0.001~0.020%、
    Mg:0.0005~0.0200%、
    Zr:0.001~0.400%、
    V :0.001~0.200%、
    REM:0.0005~0.1000%、
    Co:0.0005~0.2000%、
    W :0.0005~0.2000%、および
    Zn:0.0005~0.2000%
    からなる群のうち1種または2種以上を含有することを特徴とする請求項1または2に記載の熱延鋼板。
    The chemical composition is in mass%,
    Cr: 0.020-0.660%,
    Mo: 0.001-0.300%,
    Cu: 0.001 to 1.000%,
    Ni: 0.001 to 1.000%,
    Sn: 0.001 to 0.100%,
    Ca: 0.0005-0.0200%,
    As: 0.001 to 0.100%,
    Bi: 0.001 to 0.020%,
    Mg: 0.0005-0.0200%,
    Zr: 0.001-0.400%,
    V: 0.001-0.200%,
    REM: 0.0005-0.1000%,
    Co: 0.0005-0.2000%,
    W: 0.0005 to 0.2000%, and Zn: 0.0005 to 0.2000%
    The hot-rolled steel sheet according to claim 1 or 2, characterized in that it contains one or more of the group consisting of:
  5.  前記化学組成が、質量%で、
    Cr:0.020~0.660%、
    Mo:0.001~0.300%、
    Cu:0.001~1.000%、
    Ni:0.001~1.000%、
    Sn:0.001~0.100%、
    Ca:0.0005~0.0200%、
    As:0.001~0.100%、
    Bi:0.001~0.020%、
    Mg:0.0005~0.0200%、
    Zr:0.001~0.400%、
    V :0.001~0.200%、
    REM:0.0005~0.1000%、
    Co:0.0005~0.2000%、
    W :0.0005~0.2000%、および
    Zn:0.0005~0.2000%
    からなる群のうち1種または2種以上を含有することを特徴とする請求項3に記載の熱延鋼板。
    The chemical composition is in mass%,
    Cr: 0.020-0.660%,
    Mo: 0.001-0.300%,
    Cu: 0.001 to 1.000%,
    Ni: 0.001 to 1.000%,
    Sn: 0.001 to 0.100%,
    Ca: 0.0005-0.0200%,
    As: 0.001 to 0.100%,
    Bi: 0.001 to 0.020%,
    Mg: 0.0005-0.0200%,
    Zr: 0.001-0.400%,
    V: 0.001-0.200%,
    REM: 0.0005-0.1000%,
    Co: 0.0005-0.2000%,
    W: 0.0005 to 0.2000%, and Zn: 0.0005 to 0.2000%
    The hot-rolled steel sheet according to claim 3, characterized in that it contains one or more of the group consisting of:
PCT/JP2023/023384 2022-07-07 2023-06-23 Hot-rolled steel sheet WO2024009812A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-109509 2022-07-07
JP2022109509 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024009812A1 true WO2024009812A1 (en) 2024-01-11

Family

ID=89453340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023384 WO2024009812A1 (en) 2022-07-07 2023-06-23 Hot-rolled steel sheet

Country Status (1)

Country Link
WO (1) WO2024009812A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017933A1 (en) * 2015-07-27 2017-02-02 Jfeスチール株式会社 High strength hot rolled steel sheet and manufacturing method for same
WO2020170681A1 (en) * 2019-02-18 2020-08-27 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing same
CN112760556A (en) * 2020-11-30 2021-05-07 江苏联峰能源装备有限公司 Preparation method of high-strength and high-toughness bainite non-quenched and tempered steel
WO2021225073A1 (en) * 2020-05-08 2021-11-11 日本製鉄株式会社 Hot rolled steel sheet and method for producing same
WO2022180954A1 (en) * 2021-02-26 2022-09-01 日本製鉄株式会社 Steel sheet, and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017933A1 (en) * 2015-07-27 2017-02-02 Jfeスチール株式会社 High strength hot rolled steel sheet and manufacturing method for same
WO2020170681A1 (en) * 2019-02-18 2020-08-27 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing same
WO2021225073A1 (en) * 2020-05-08 2021-11-11 日本製鉄株式会社 Hot rolled steel sheet and method for producing same
CN112760556A (en) * 2020-11-30 2021-05-07 江苏联峰能源装备有限公司 Preparation method of high-strength and high-toughness bainite non-quenched and tempered steel
WO2022180954A1 (en) * 2021-02-26 2022-09-01 日本製鉄株式会社 Steel sheet, and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR101766567B1 (en) Hot-rolled steel sheet and method for manufacturing same
WO2019186928A1 (en) Hot-stamped formed product
JP2004315900A (en) High strength steel sheet having excellent stretch-flanging property and its production method
JP6460287B1 (en) Steel sheet for hot stamping
JP6597938B1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
JP2008174776A (en) High-strength cold-rolled steel sheet excellent in stretch-flange formability and impact energy absorption characteristic and its production method
WO2020136988A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP2008056993A (en) High strength hot dip galvanized steel sheet having excellent elongation and corrosion resistance, and its production method
CN114630917A (en) Hot-rolled steel sheet and method for producing same
WO2023063010A1 (en) Hot-rolled steel plate
WO2022180954A1 (en) Steel sheet, and method for manufacturing same
WO2021193310A1 (en) High-strength hot-rolled steel sheet and method for producing same
WO2023149374A1 (en) Hot-rolled steel sheet
JP7260825B2 (en) hot rolled steel
JP7216933B2 (en) Steel plate and its manufacturing method
WO2024009812A1 (en) Hot-rolled steel sheet
WO2023007876A1 (en) Hot-rolled steel sheet
CN115244204A (en) Hot rolled steel plate
WO2023132342A1 (en) Hot-rolled steel sheet and method for producing same
WO2024053701A1 (en) Hot-rolled steel sheet
WO2022180956A1 (en) Steel sheet and method for producing same
JP7397381B2 (en) Steel plates for hot stamping and hot stamping molded bodies
WO2024080327A1 (en) Hot-rolled steel sheet
CN114945690B (en) Steel sheet and method for producing same
JP7397380B2 (en) Steel plates for hot stamping and hot stamping molded bodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835346

Country of ref document: EP

Kind code of ref document: A1