WO2024053701A1 - Hot-rolled steel sheet - Google Patents

Hot-rolled steel sheet Download PDF

Info

Publication number
WO2024053701A1
WO2024053701A1 PCT/JP2023/032635 JP2023032635W WO2024053701A1 WO 2024053701 A1 WO2024053701 A1 WO 2024053701A1 JP 2023032635 W JP2023032635 W JP 2023032635W WO 2024053701 A1 WO2024053701 A1 WO 2024053701A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rolled steel
steel sheet
hot
rolling
Prior art date
Application number
PCT/JP2023/032635
Other languages
French (fr)
Japanese (ja)
Inventor
洋志 首藤
栄作 桜田
洵 安藤
壽生 杉山
和政 筒井
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024053701A1 publication Critical patent/WO2024053701A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a hot rolled steel plate. Specifically, hot-rolled steel sheets are used after being formed into various shapes by press working, etc., and in particular, have high strength and critical thickness reduction rate at break, as well as excellent ductility and shear workability.
  • the present invention relates to a hot rolled steel sheet having excellent fatigue properties after press forming.
  • the critical thickness reduction rate at break and ductility are positioned as important indicators of formability.
  • the critical rupture plate thickness reduction rate is a value determined from the plate thickness of the tensile test piece before rupture and the minimum value of the plate thickness of the tensile test piece after rupture. If the critical thickness reduction rate at rupture is low, it is not preferable because it is likely to break early when tensile strain is applied during press forming.
  • Automotive parts are formed by press forming, and blank plates for press forming are often manufactured by shearing, which is highly productive. Blank plates manufactured by shearing must have excellent end face accuracy after shearing.
  • steel sheets used for automobile parts are required to have excellent fatigue properties after press forming.
  • Patent Document 1 discloses a hot-rolled steel sheet that is a material for a cold-rolled steel sheet with excellent surface properties after press working, in which the degree of Mn segregation and the degree of P segregation in the central part of the sheet thickness are controlled.
  • Patent Document 1 does not consider the critical thickness reduction rate at rupture, shear workability, and fatigue properties after press forming of the hot rolled steel sheet.
  • the present invention was made in view of the above-mentioned circumstances, and the present invention has been made in view of the above-mentioned circumstances.
  • the purpose is to provide rolled steel sheets.
  • the gist of the invention is as follows. (1)
  • the hot rolled steel sheet according to one aspect of the present invention has a chemical composition in mass %, C: 0.050-0.250%, Si: 0.05-3.00%, Mn: 1.00-4.00%, sol.
  • each element symbol in the formulas (A) and (B) indicates the content in mass % of the element, and when the element is not contained, 0% is substituted.
  • P (i, j) in the following formulas (1) to (5) is a gray level co-occurrence matrix
  • L in the following formula (2) is a normalization constant of the brightness value that the SEM image can take.
  • i and j in the following formulas (2) and (3) are natural numbers from 1 to the above L
  • ⁇ x and ⁇ y in the following formula (3) are the following formulas (4) and (5), respectively. It is indicated by.
  • the hot-rolled steel sheet according to (1) above has an average grain size of less than 3.0 ⁇ m in the surface layer region, which is a region starting from the surface and ending at a position 20 ⁇ m deep in the sheet thickness direction. It may be.
  • (3) The hot rolled steel sheet according to (1) or (2) above has the chemical composition in mass%, Ti: 0.001 to 0.500%, Nb: 0.001-0.500%, V: 0.001-0.500%, Cu: 0.01-2.00%, Mo: 0.01-1.00%, Ni: 0.02-2.00%, B: 0.0001 to 0.0100%, Ca: 0.0005-0.0200%, Mg: 0.0005-0.0200%, REM: 0.0005-0.1000%, Bi: 0.0005-0.0200%, As: 0.001 to 0.100%, Zr: 0.01-1.00%, Co: 0.01 to 1.00%, Zn: 0.01-1.00%, W: 0.01 to 1.00%, and Sn: 0.01 to 0.05% It may contain one or more selected from the group consist
  • the hot-rolled steel sheet that has high strength, critical thickness reduction rate at rupture, excellent ductility and shear workability, and has excellent fatigue properties after press forming. can. Further, according to the above-described preferred embodiment of the present invention, it is possible to obtain a hot-rolled steel sheet that has the above-mentioned properties and further suppresses the occurrence of cracking in bending, that is, has excellent resistance to cracking in bending. can.
  • the hot-rolled steel sheet according to the above aspect of the present invention is suitable as an industrial material used for automobile parts, mechanical structural parts, and even building parts.
  • FIG. 1 is an example of a sheared end surface of a hot rolled steel plate according to an example of the present invention. It is an example of a sheared end surface of a hot rolled steel plate according to a comparative example.
  • FIG. 3 is a diagram for explaining press molding performed in an example. It is a figure for demonstrating the punch shape used for the said press forming.
  • the chemical composition of the hot rolled steel sheet according to this embodiment is, in mass%, C: 0.050 to 0.250%, Si: 0.05 to 3.00%, Mn: 1.00 to 4.00. %, sol. Al: 0.001 to 0.500%, Cr: 0.060 to 2.000%, P: 0.100% or less, S: 0.0300% or less, N: 0.1000% or less, O: 0. 0100% or less, and the remainder: contains Fe and impurities, and satisfies formula (A) (0.060% ⁇ Ti+Nb+V ⁇ 0.500%).
  • A formula
  • C 0.050-0.250%
  • C increases the area ratio of the hard phase and also increases the strength of ferrite by combining with precipitation-strengthening elements such as Ti, Nb, and V. If the C content is less than 0.050%, desired strength cannot be obtained. Therefore, the C content is set to 0.050% or more.
  • the C content is preferably 0.055% or more, more preferably 0.060% or more, even more preferably 0.065% or more.
  • the C content exceeds 0.250%, the area ratio of ferrite decreases, and the ductility of the hot rolled steel sheet decreases. Therefore, the C content is set to 0.250% or less.
  • the C content is preferably 0.150% or less.
  • Si 0.05-3.00%
  • Si has the function of promoting the formation of ferrite to improve the ductility of the hot-rolled steel sheet, and the function of solid solution strengthening of ferrite to increase the strength of the hot-rolled steel sheet. Further, Si has the effect of making the steel sound by deoxidizing (suppressing the occurrence of defects such as blowholes in the steel). If the Si content is less than 0.05%, the above effects cannot be obtained. Therefore, the Si content is set to 0.05% or more.
  • the Si content is preferably 0.40% or more, more preferably 0.60% or more.
  • the Si content is set to 3.00% or less.
  • the Si content is preferably 2.50% or less, more preferably 2.00% or less.
  • Mn 1.00-4.00% Mn has the effect of suppressing ferrite transformation and increasing the strength of the hot rolled steel sheet. If the Mn content is less than 1.00%, desired strength cannot be obtained. Therefore, the Mn content is set to 1.00% or more.
  • the Mn content is preferably 1.10% or more, more preferably 1.20% or more.
  • the Mn content exceeds 4.00%, the hard phase becomes periodic band-like due to segregation of Mn, making it difficult to obtain desired shearing workability. Therefore, the Mn content is set to 4.00% or less.
  • the Mn content is preferably 3.50% or less, more preferably 3.00% or less, even more preferably 2.50% or less.
  • each element symbol in the formula (A) indicates the content of the element in mass %, and when the element is not contained, 0% is substituted.
  • Ti, Nb, and V are elements that finely precipitate in steel as carbides and nitrides and improve the strength of steel through precipitation strengthening. If the total content of Ti, Nb and V is less than 0.060%, these effects cannot be obtained. Therefore, the total content of Ti, Nb, and V is set to 0.060% or more. That is, the value of the middle side of the formula (A) is set to 0.060% or more.
  • Ti, Nb, and V are not necessary that all of Ti, Nb, and V be contained; it is sufficient that at least one of them is contained, and the total content thereof may be 0.060% or more.
  • the total content of Ti, Nb and V is preferably 0.080% or more, more preferably 0.100% or more.
  • the contents of Ti, Nb and V are each preferably 0.001% or more.
  • the total content of Ti, Nb and V is set to 0.500% or less. That is, the value of the middle side of the formula (A) is set to 0.500% or less. Preferably it is 0.300% or less, more preferably 0.250% or less, even more preferably 0.200% or less.
  • sol. Al 0.001-0.500%
  • Al has the effect of deoxidizing the steel and making it sound, and also has the effect of promoting the formation of ferrite and increasing the ductility of the hot rolled steel sheet.
  • sol. Al content shall be 0.001% or more.
  • sol. Al content is preferably 0.010% or more.
  • the Al content is preferably 0.450% or less, more preferably 0.400% or less, even more preferably 0.350% or less.
  • sol. Al means acid-soluble Al, and indicates solid solution Al that exists in steel in a solid solution state.
  • Cr:0.060 ⁇ 2.000% Cr has the effect of increasing the hardenability of hot rolled steel sheets. Further, when combined with desired manufacturing conditions, Cr is concentrated in the outermost layer region of the hot rolled steel sheet, thereby suppressing scale growth and having the effect of reducing the arithmetic mean roughness Ra after press forming. If the Cr content is less than 0.060%, the above effects cannot be obtained. Therefore, the Cr content is set to 0.060% or more.
  • the Cr content is preferably 0.200% or more, more preferably 0.400% or more, even more preferably 0.600% or more.
  • the Cr content exceeds 2.000%, the chemical conversion treatability of the hot rolled steel sheet will be significantly reduced. Therefore, the Cr content is set to 2.000% or less.
  • the Cr content is preferably 1.800% or less, more preferably 1.600% or less.
  • P 0.100% or less
  • P is also an element that has the effect of increasing the strength of the hot rolled steel sheet through solid solution strengthening. Therefore, P may be actively included.
  • P is an element that tends to segregate, and when the P content exceeds 0.100%, the ductility and critical thickness reduction rate of the hot rolled steel sheet due to grain boundary segregation decrease significantly. Therefore, the P content is set to 0.100% or less.
  • the P content is preferably 0.030% or less.
  • the lower limit of the P content does not need to be particularly specified and may be 0%, but from the viewpoint of refining cost, it is preferably 0.001%.
  • S 0.0300% or less S forms sulfide inclusions in the steel and reduces the ductility and critical thickness reduction rate at break of the hot rolled steel sheet.
  • the S content is set to 0.0300% or less.
  • the S content is preferably 0.0050% or less.
  • the lower limit of the S content does not need to be particularly specified and may be 0%, but from the viewpoint of refining cost, it is preferably 0.0001%.
  • N 0.1000% or less N has the effect of reducing the ductility and critical thickness reduction rate at break of the hot rolled steel sheet.
  • the N content exceeds 0.1000%, the ductility and critical thickness reduction rate at break of the hot rolled steel sheet are significantly reduced. Therefore, the N content is set to 0.1000% or less.
  • the N content is preferably 0.0800% or less, more preferably 0.0700% or less, even more preferably 0.0100% or less.
  • the lower limit of the N content does not need to be particularly specified and may be 0%, but if one or more of Ti, Nb and V is contained to make the metal structure finer, carbonitriding
  • the N content is preferably 0.0010% or more, more preferably 0.0020% or more.
  • O 0.0100% or less
  • O content is set to 0.0100% or less.
  • the O content is preferably 0.0080% or less, more preferably 0.0050% or less.
  • the O content may be 0%, but in order to disperse a large number of fine oxides during deoxidation of molten steel, the O content may be 0.0005% or more, or 0.0010% or more.
  • the remainder of the chemical composition of the hot rolled steel sheet according to this embodiment may be Fe and impurities.
  • impurities refer to things that are mixed in from ore as a raw material, scrap, or the manufacturing environment, and/or things that are allowed within a range that does not adversely affect the hot rolled steel sheet according to this embodiment. do.
  • the hot rolled steel sheet according to this embodiment may contain the following elements as optional elements in place of a part of Fe.
  • the lower limit of the content is 0%. The arbitrary elements will be explained in detail below.
  • Cu, Mo, Ni, and B all have the effect of improving the hardenability of the hot rolled steel sheet. Further, Cu and Mo precipitate as carbides in the steel and have the effect of increasing the strength of the hot rolled steel sheet. Furthermore, when containing Cu, Ni has the effect of effectively suppressing intergranular cracking of the slab caused by Cu. Therefore, one or more of these elements may be contained.
  • the Cu content is preferably 0.01% or more, more preferably 0.05% or more. However, if the Cu content exceeds 2.00%, intergranular cracking of the slab may occur. Therefore, the Cu content is set to 2.00% or less. The Cu content is preferably 1.50% or less, more preferably 1.00% or less.
  • Mo has the effect of increasing the hardenability of the hot-rolled steel sheet and the effect of precipitating as carbides in the steel to increase the strength of the hot-rolled steel sheet.
  • the Mo content is preferably 0.01% or more, more preferably 0.02% or more.
  • the Mo content is set to 1.00% or less.
  • Mo content is preferably 0.50% or less, more preferably 0.20% or less.
  • Ni has the effect of increasing the hardenability of the hot rolled steel sheet. Further, when containing Cu, Ni has the effect of effectively suppressing intergranular cracking of the slab caused by Cu. In order to more reliably obtain the effects of the above action, the Ni content is preferably 0.02% or more. Since Ni is an expensive element, it is economically undesirable to contain a large amount of Ni. Therefore, the Ni content is set to 2.00% or less.
  • B has the effect of increasing the hardenability of the hot rolled steel sheet.
  • the B content is preferably 0.0001% or more, more preferably 0.0002% or more.
  • the B content is set to 0.0100% or less.
  • the B content is preferably 0.0050% or less.
  • Ca, Mg, and REM all have the effect of increasing the ductility of the hot rolled steel sheet by adjusting the shape of inclusions in the steel to a preferable shape. Furthermore, Bi has the effect of increasing the ductility of the hot rolled steel sheet by making the solidification structure finer. Therefore, one or more of these elements may be contained. In order to more reliably obtain the effects of the above action, the content of any one or more of Ca, Mg, REM and Bi is preferably 0.0005% or more.
  • the Ca content or Mg content exceeds 0.0200%, or if the REM content exceeds 0.1000%, inclusions will be excessively generated in the steel, which will actually reduce the ductility of the hot rolled steel sheet.
  • the Bi content exceeds 0.0200%, the effect of the above action will be saturated, which is not economically preferable. Therefore, the Ca content and Mg content should be 0.0200% or less, the REM content should be 0.1000% or less, and the Bi content should be 0.0200% or less. Bi content is preferably 0.0100% or less.
  • REM refers to a total of 17 elements consisting of Sc, Y, and lanthanoids
  • the content of REM refers to the total content of these elements.
  • lanthanoids they are added industrially in the form of mischmetal.
  • the As content be 0.001% or more.
  • the As content is set to 0.100% or less.
  • Zr 0.01 ⁇ 1.00% Co:0.01 ⁇ 1.00% Zn: 0.01-1.00% W: 0.01 ⁇ 1.00% Zr+Co+Zn+W ⁇ 1.00%...(B) Sn: 0.01 ⁇ 0.05%
  • each element symbol in the formula (B) indicates the content of the element in mass %, and when the element is not contained, 0% is substituted.
  • Zr, Co, Zn and W the present inventors have confirmed that the effect of the hot rolled steel sheet according to the present embodiment is not impaired even if these elements are contained in a total of 1.00% or less. There is. Therefore, one or more of Zr, Co, Zn, and W may be contained in a total amount of 1.00% or less.
  • the value on the left side of the equation (B) may be 1.00% or less. Since Zr, Co, Zn, and W do not need to be contained, their respective contents may be 0%. In order to solid solution strengthen the steel sheet and improve its strength, the contents of Zr, Co, Zn, and W may each be 0.01% or more. Moreover, the present inventors have confirmed that even if a small amount of Sn is contained, the effect of the hot rolled steel sheet according to the present embodiment is not impaired. However, if a large amount of Sn is contained, defects may occur during hot rolling, so the Sn content is set to 0.05% or less. Since Sn does not need to be contained, the Sn content may be 0%. In order to improve the corrosion resistance of the hot rolled steel sheet, the Sn content may be 0.01% or more.
  • the chemical composition of the hot-rolled steel sheet described above may be measured by a general analytical method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • sol. Al may be measured by ICP-AES using a filtrate obtained by thermally decomposing a sample with an acid.
  • C and S may be measured using a combustion-infrared absorption method, N using an inert gas melting-thermal conductivity method, and O using an inert gas melting-non-dispersive infrared absorption method.
  • the chemical composition may be analyzed after removing the plating layer by mechanical grinding or the like, if necessary.
  • the hot-rolled steel sheet according to the present embodiment has a metal structure at a 1/4 depth position from the surface in the thickness direction, in terms of area%, residual austenite is less than 3.0%, ferrite is 15.0% or more, 60.0%, pearlite is less than 5.0%, and the entropy value is obtained by analyzing the SEM image of the metal structure using the gray level co-occurrence matrix method and is expressed by the following formula (1). is 10.7 or more, the Inverse difference normalized value shown by the following formula (2) is 1.020 or more, and the Cluster Shade value shown by the following formula (3) is -8.0 ⁇ 10 5 to 8.
  • the standard deviation of the Mn concentration is 0.60% by mass or less
  • the solid solution in the outermost layer region is a region starting from the surface and ending at a depth of 5 ⁇ m in the plate thickness direction.
  • the Cr concentration is 0.10% by mass or more
  • the number density of Cr oxides having an equivalent sphere radius of 0.1 ⁇ m or more on the surface is 1.0 ⁇ 10 4 pieces/cm 2 or less.
  • the hot rolled steel sheet according to the present embodiment has high strength and critical thickness reduction rate at rupture, as well as excellent ductility and shear workability, and can obtain excellent fatigue properties after press forming.
  • the microstructure fraction of the metallographic structure, the entropy value, the inverse difference normalized value, the Cluster Shade value, and the standard deviation of the Mn concentration in a region at a depth of 1/4 from the surface in the plate thickness direction are defined. . The reason is that the metal structure at this position shows a typical metal structure of a steel plate.
  • the "surface” here refers to the interface between the plating layer and the steel sheet when the hot-rolled steel sheet has a plating layer
  • the "1/4 depth position from the surface” refers to the hot-rolled steel sheet. A position at a depth of 1/4 of the thickness of the plate in the thickness direction from the surface of the plate.
  • Retained austenite is a metal structure that exists as a face-centered cubic lattice even at room temperature. Retained austenite has the effect of increasing the ductility of hot rolled steel sheets through transformation induced plasticity (TRIP).
  • TRIP transformation induced plasticity
  • retained austenite transforms into high-carbon martensite during shearing, which becomes the starting point for cracks during deformation and causes a decrease in the rate of thickness reduction at critical rupture.
  • the area ratio of retained austenite is set to be less than 3.0%.
  • the area percentage of retained austenite is preferably less than 1.5%, more preferably less than 1.0%. Since it is preferable to have as little retained austenite as possible, the area ratio of retained austenite may be 0%.
  • Methods for measuring the area ratio of retained austenite include methods using X-ray diffraction, EBSP (electron back scattering diffraction pattern) analysis, and magnetic measurement.
  • the area ratio of retained austenite is measured by X-ray diffraction.
  • the volume fraction of retained austenite is calculated from the integrated intensity using an intensity averaging method. The obtained volume fraction of retained austenite is regarded as the area fraction of retained austenite.
  • the area ratio of ferrite is set to 15.0% or more. Preferably it is 20.0% or more, more preferably 25.0% or more, even more preferably 30.0% or more. On the other hand, since ferrite has low strength, if the area ratio is excessive, desired strength cannot be obtained. Therefore, the ferrite area ratio is set to less than 60.0%. Preferably it is 50.0% or less, more preferably 45.0% or less.
  • Pearlite is a lamellar metal structure in which cementite is precipitated in layers between ferrite particles, and is a soft metal structure compared to bainite and martensite. If the area ratio of pearlite is 5.0% or more, carbon is consumed by cementite contained in pearlite, and the strength of martensite and bainite, which are the remaining structures, decreases, making it impossible to obtain the desired strength. Therefore, the area ratio of pearlite is made less than 5.0%.
  • the area ratio of pearlite is preferably 3.0% or less. In order to improve the stretch flangeability of the hot rolled steel sheet, it is preferable to reduce the area ratio of pearlite as much as possible, and it is even more preferable that the area ratio of pearlite is 0%.
  • the hot rolled steel sheet according to the present embodiment includes bainite, martensite, and tempered marten with a total area ratio of more than 32.0% and 85.0% or less as residual structures other than retained austenite, ferrite, and pearlite.
  • a hard tissue consisting of one or more types of sites is included.
  • the area ratio of ferrite and pearlite is measured by the following method.
  • the sample has a size that allows observation of about 10 mm in the rolling direction.
  • the cross section of the sample is polished to a mirror finish, and then polished for 8 minutes at room temperature using colloidal silica with a particle size of 0.25 ⁇ m that does not contain an alkaline solution to remove the strain introduced into the surface layer of the sample. .
  • an EBSD analysis device consisting of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used.
  • the degree of vacuum in the EBSD analyzer is 9.6 ⁇ 10 ⁇ 5 Pa or less, the acceleration voltage is 15 kV, the irradiation current level is 13, and the electron beam irradiation level is 62. Note that the number of observation fields is 5.
  • backscattered electron images are taken in each of the same observation fields from which the crystal orientation information described above was obtained.
  • the accelerating voltage is 15 kV
  • the irradiation current level is 12 to 13
  • the electron beam irradiation level is 62.
  • the focal length (WD: Working Distance) is 5 mm.
  • the area ratio of ferrite and pearlite is identified from the backscattered electron image and the crystal orientation information.
  • crystal grains in which cementite is precipitated in a lamellar shape are identified in a backscattered electron image. In the backscattered electron image, cementite is observed as a white contrast.
  • the cementite in this pearlite has a lamellar form, and the crystal grains in which the white contrast of the lamellar form is observed at intervals of 1.0 ⁇ m or less are defined as pearlite crystal grains.
  • the area ratio of pearlite is obtained.
  • the obtained crystal orientation information for the crystal grains excluding the crystal grains determined to be pearlite was used using the "Grain Average Misorientation" function installed in the software "OIM Analysis (registered trademark)" included with the EBSD analyzer.
  • a region where the Grain Average Misorientation value is 1.0° or less is determined to be ferrite.
  • the Grain Tolerance Angle is set to 15 degrees, and the area ratio of ferrite is obtained by determining the area ratio of the region determined to be ferrite.
  • the area ratio of the residual structure is obtained by subtracting the area ratio of retained austenite, ferrite, and pearlite from 100%.
  • the rolling direction of the hot rolled steel sheet is determined by the following method. First, a test piece is taken so that a cross section parallel to the surface of the hot rolled steel sheet can be observed. After finishing the cross section of the test piece taken in the plate pressure direction with mirror polishing, it is observed using an optical microscope.
  • the observation plane is a plane parallel to the surface of the plate at an arbitrary depth in the range of 1/4 to 1/2 in the plate thickness direction, and on the observation plane, the direction parallel to the stretching direction of the crystal grains is determined as the rolling direction. do.
  • Entropy value 10.7 or more
  • Inverse difference normalized value 1.020 or more
  • E value entropy value
  • I value inverse difference normalized value
  • the E value represents the periodicity of the metal structure.
  • the E value represents the periodicity of the metal structure.
  • the E value decreases.
  • the E value is less than 10.7, secondary shear surfaces are likely to occur. Starting from the periodically arranged structure, cracks occur from the cutting edge of the shearing tool very early in the shearing process, forming a fractured surface, and then a sheared surface is formed again. It is estimated that this makes secondary shear planes more likely to occur. Therefore, the E value is set to 10.7 or more.
  • it is 10.8 or more, more preferably 11.0 or more.
  • the I value represents the uniformity of the metal structure, and increases as the area of a region with a certain brightness increases.
  • a high I value means that the uniformity of the metal structure is high.
  • the I value is set to 1.020 or more. Preferably it is 1.025 or more, more preferably 1.030 or more. The higher the I value, the better, and although the upper limit is not particularly specified, it may be 1.200 or less, 1.150 or less, or 1.100 or less.
  • the Cluster Shade value indicates the degree of distortion of the metal structure.
  • the CS value is a positive value if there are many points with brightness above the average value of the average value of brightness in the image obtained by photographing the metal structure, and a positive value if there are many points with brightness below the average value. It becomes a negative value.
  • the brightness increases where the surface of the object to be observed has large irregularities, and the brightness decreases where the irregularities are small.
  • the unevenness of the surface of an object to be observed is greatly affected by the grain size and intensity distribution within the metal structure.
  • the CS value in this embodiment increases when the strength variation of the metal structure is large or the structure unit is small, and becomes small when the strength variation is small or the structure unit is large.
  • the CS value is set to -8.0 ⁇ 10 5 or more. It is preferably -7.5 ⁇ 10 5 or more, and even more preferably -7.0 ⁇ 10 5 or more.
  • the critical thickness reduction rate at break of the hot rolled steel sheet decreases.
  • the CS value is set to 8.0 ⁇ 10 5 or less. It is preferably 7.5 ⁇ 10 5 or less, and even more preferably 7.0 ⁇ 10 5 or less.
  • the E value, I value and CS value can be obtained by the following method.
  • the imaging area of the SEM image taken to calculate the E value, I value, and CS value is a cross section parallel to the rolling direction at the center in the direction perpendicular to the rolling direction and the sheet thickness direction.
  • the area is 160 ⁇ m ⁇ 160 ⁇ m centered at a 1/4 depth position from the surface in the thickness direction, and the number of observation fields is 5.
  • an SU-6600 Schottky electron gun manufactured by Hitachi High-Technologies Corporation is used, with a tungsten emitter and an accelerating voltage of 1.5 kV. Based on the above settings, a SEM image is output at a magnification of 1000 times and a gray scale of 256 gradations.
  • the obtained SEM image was cut out into an area of 880 x 880 pixels (the observation area is 160 ⁇ m x 160 ⁇ m in actual size), and the limit magnification of contrast enhancement described in Non-Patent Document 3 was set to 2.0. , performs smoothing processing with a tile grid size of 8 ⁇ 8. By rotating the smoothed SEM image counterclockwise in 1 degree increments from 0 degrees to 179 degrees, excluding 90 degrees, and creating images in 1 degree increments, a total of 179 images are obtained. . Next, for each of these 179 images, frequency values of brightness between adjacent pixels are collected in the form of a matrix using the GLCM method described in Non-Patent Document 1.
  • P(i,j) in the following equations (1) to (5) is a gray level co-occurrence matrix, and the value at the i-th row and j-th column of the matrix P is expressed as P(i,j).
  • P(i,j) is a gray level co-occurrence matrix
  • P(i,j) is a gray level co-occurrence matrix
  • P(i,j) is a gray level co-occurrence matrix
  • P(i,j) the value at the i-th row and j-th column of the matrix P.
  • it is calculated using the 256 x 256 matrix P, so if you want to emphasize this point, modify the following formulas (1) to (5) to the following formulas (1') to (5'). be able to.
  • L in the following formula (2) is the number of grayscale levels that the SEM image can take (Quantization levels of grayscale), and in this embodiment, as described above, the SEM image is output with a grayscale of 256 gradations. Therefore, L is 256.
  • Standard deviation of Mn concentration 0.60% by mass or less
  • the standard deviation of Mn concentration of the hot rolled steel sheet according to the present embodiment is 0.60% by mass or less.
  • the standard deviation of the Mn concentration is preferably 0.50% by mass or less, more preferably 0.47% by mass or less.
  • the lower limit of the standard deviation of the Mn concentration is preferably as small as possible from the viewpoint of suppressing excessive burrs, but due to manufacturing process constraints, the actual lower limit is 0.10% by mass.
  • the standard deviation of Mn concentration can be obtained by the following method. First, a sample is taken at the center in a direction perpendicular to the rolling direction and the thickness direction so that a region at a depth of 1/4 from the surface in the thickness direction can be observed in a cross section parallel to the rolling direction. The size of the sample is such that it can be observed about 10 mm in the rolling direction, although it depends on the measuring device. Next, after mirror polishing the sample, the standard deviation of the Mn concentration is measured using an electron probe microanalyzer (EPMA).
  • EPMA electron probe microanalyzer
  • the measurement conditions were an accelerating voltage of 15 kV, a magnification of 5000 times, and a distribution image of Mn concentration in a range of 20 ⁇ m in the sample rolling direction and 20 ⁇ m in the sample plate thickness direction centered on a 1/4 depth position from the surface in the plate thickness direction. Measure. More specifically, the Mn concentration is measured at 40,000 or more locations with a measurement interval of 0.1 ⁇ m. Next, the standard deviation of the Mn concentration is obtained by calculating the standard deviation based on the Mn concentration obtained from all measurement points.
  • Solid solution Cr concentration in the outermost layer region 0.10% by mass or more
  • the present inventors found that when the solid solution Cr concentration in the outermost layer region (a region 5 ⁇ m deep from the surface in the plate thickness direction) is high, It has been found that by reducing the number density of Cr oxides with a sphere equivalent radius of 0.1 ⁇ m or more, it is possible to suppress deterioration of fatigue properties of hot rolled steel sheets after press forming. If the solid solution Cr concentration in the outermost layer region is less than 0.10% by mass, deterioration of fatigue properties after press forming of the hot rolled steel sheet cannot be suppressed. Therefore, the solid solution Cr concentration in the outermost layer region is set to 0.10% by mass or more.
  • the solid solution Cr concentration in the outermost layer region is preferably 0.20% by mass or more, more preferably 0.40% by mass or more.
  • the solid solution Cr concentration in the outermost layer region may be 5.00% by mass or less.
  • the region 5 ⁇ m deep from the surface in the thickness direction is the depth in the thickness direction of the range starting from the surface of the hot rolled steel sheet and ending at a position 5 ⁇ m deep in the thickness direction.
  • the solid solution Cr concentration in the outermost layer region can be analyzed by GD-MS (Glow Discharge-Mass Spectrometry) analysis.
  • GD-MS analysis is an analysis method that tracks changes in composition from the surface of a hot rolled steel sheet in the depth direction as the discharge time progresses.
  • a region 5 ⁇ m deep from the surface in the sheet thickness direction startsing from the surface
  • the average value of the Cr concentration in mass % in a region whose end point is a position 5 ⁇ m deep in the plate thickness direction is determined.
  • This operation is performed at any three or more locations (preferably five or more locations) and the average value of the obtained values is calculated to obtain the solid solution Cr concentration in the outermost layer region.
  • the depth position where the Fe concentration is 90% by mass when analyzed by GD-MS is the interface between the plating layer and the hot-rolled steel sheet, that is, the surface of the hot-rolled steel sheet. regarded as.
  • the number density of Cr oxides with a sphere equivalent radius of 0.1 ⁇ m or more on the surface 1.0 ⁇ 10 4 pieces/cm 2 or less
  • the number density of Cr oxides with a sphere equivalent radius of 0.1 ⁇ m or more on the surface is 1 When the number exceeds .0 ⁇ 10 4 pieces/cm 2 , the surface roughness becomes large when the hot rolled steel sheet is press-formed. Since this surface roughness deteriorates the fatigue characteristics of the pressed part, it is preferable that the surface roughness is small.
  • the Cr oxide defined here has an equivalent sphere radius of 0.1 ⁇ m or more, and is relatively coarse. It is thought that this coarse Cr oxide inhibits sliding between the hot rolled steel sheet and the mold, causing an increase in surface roughness.
  • the number density of Cr oxides having an equivalent sphere radius of 0.1 ⁇ m or more on the surface is set to be 1.0 ⁇ 10 4 pieces/cm 2 or less.
  • the number density of Cr oxides with a sphere equivalent radius of 0.1 ⁇ m or more on the surface is preferably 0.8 ⁇ 10 4 pieces/cm 2 or less, more preferably 0.6 ⁇ 10 4 pieces/cm 2 or less. It is.
  • the number density of Cr oxides having an equivalent sphere radius of 0.1 ⁇ m or more on the surface may be 0.1 ⁇ 10 4 pieces/cm 2 or more.
  • the number density of Cr oxides on the surface is measured by the following method.
  • a sample is cut out from a hot-rolled steel plate so that the surface in the thickness direction is the observation surface. After degreasing the observation surface at 60° C. for 60 seconds using FC-E6403 manufactured by Nippon Parkerizing Co., Ltd., it is immersed in acetone and subjected to ultrasonic cleaning for 90 seconds. Thereafter, 10 or more fields of view are observed at a magnification of 3000 times.
  • the composition of the precipitate can be measured by EDS (energy dispersive X-ray spectrometer).
  • the number of regions containing Cr and O with a former equivalent radius of 0.1 ⁇ m or more is counted in each field of view and divided by the measurement area to obtain the number density of Cr oxides. Note that if the precipitate is subjected to EDS analysis and 20 atomic percent or more of each of Cr and O is detected, the precipitate is considered to be a Cr oxide.
  • the above-mentioned measurement is performed after removing the plating layer by pickling with fuming nitric acid.
  • Average crystal grain size in the surface layer region less than 3.0 ⁇ m
  • cracking in bending of hot rolled steel sheets can be suppressed.
  • the mechanism of cracking in bending is estimated as follows. During bending, compressive stress is generated on the inside of the bend.
  • the region 20 ⁇ m deep from the surface in the thickness direction is the depth in the thickness direction of the range starting from the surface of the hot rolled steel sheet and ending at a position 20 ⁇ m deep in the thickness direction.
  • the average grain size in the surface layer region of the hot rolled steel sheet is preferably less than 3.0 ⁇ m. Therefore, in this embodiment, the average grain size in the surface layer region may be less than 3.0 ⁇ m.
  • the average crystal grain size in the surface layer region is more preferably 2.5 ⁇ m or less. Although the lower limit of the average crystal grain size in the surface layer region is not particularly specified, it may be 0.5 ⁇ m.
  • the crystal grain size in the surface layer region is measured using the EBSP-OIM (Electron Back Scatter Diffraction Pattern-Orientation Image Microscopy) method.
  • the EBSP-OIM method is performed using a device that combines a scanning electron microscope and an EBSP analyzer, and OIM Analysis (registered trademark) manufactured by AMETEK.
  • OIM Analysis registered trademark manufactured by AMETEK.
  • the analyzable area of the EBSP-OIM method is the area that can be observed with SEM. Depending on the resolution of the SEM, the EBSP-OIM method allows analysis with a minimum resolution of 20 nm.
  • retained austenite is not a structure generated by phase transformation at 600° C. or lower and does not have the effect of dislocation accumulation, so retained austenite is not analyzed in this measurement method.
  • retained austenite having an fcc crystal structure can be excluded from the analysis target.
  • Tensile Strength Properties Among the mechanical properties of hot rolled steel sheets, tensile strength properties (tensile strength, total elongation) are evaluated in accordance with JIS Z 2241:2011.
  • the test piece is a JIS Z 2241:2011 No. 5 test piece.
  • the test piece may be collected at a 1/4 position from the end face in a direction perpendicular to the rolling direction and the plate thickness direction, and the plate width direction may be the longitudinal direction of the test piece.
  • the hot rolled steel sheet according to this embodiment has a tensile strength of 980 MPa or more. Preferably it is 1000 MPa or more. If the tensile strength is less than 980 MPa, the applicable parts will be limited and the contribution to reducing the weight of the vehicle body will be small. Although there is no need to specifically limit the upper limit, it may be set to 1780 MPa from the viewpoint of suppressing mold wear.
  • the total elongation of the hot rolled steel sheet according to the present embodiment is preferably 10.0% or more, and the product of tensile strength and total elongation (TS ⁇ El) is preferably 13000 MPa ⁇ % or more.
  • the total elongation is more preferably 11.0% or more, even more preferably 13.0% or more.
  • the product of tensile strength and total elongation is more preferably 14,000 MPa ⁇ % or more, and even more preferably 15,000 MPa ⁇ % MPa or more.
  • the thickness of the hot rolled steel plate according to this embodiment is not particularly limited, but may be 0.5 to 8.0 mm. If the thickness of the hot rolled steel plate is less than 0.5 mm, it may be difficult to ensure the rolling completion temperature and the rolling load may become excessive, making hot rolling difficult. Therefore, the thickness of the hot rolled steel plate according to this embodiment may be 0.5 mm or more. Preferably it is 1.2 mm or more or 1.4 mm or more. On the other hand, if the plate thickness exceeds 8.0 mm, it may be difficult to refine the metal structure and obtain the above-mentioned metal structure. Therefore, the plate thickness may be 8.0 mm or less. Preferably it is 6.0 mm or less.
  • the hot rolled steel sheet according to the present embodiment having the above-mentioned chemical composition and metallographic structure may be provided with a plating layer on the surface for the purpose of improving corrosion resistance, etc., to form a surface-treated steel sheet.
  • the plating layer may be an electroplating layer or a hot-dip plating layer. Examples of the electroplating layer include electrogalvanizing, electrolytic Zn--Ni alloy plating, and the like.
  • hot-dip plating layer examples include hot-dip galvanizing, alloyed hot-dip galvanizing, hot-dip aluminum plating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, and hot-dip Zn-Al-Mg-Si alloy plating. Ru.
  • the amount of plating deposited is not particularly limited, and may be the same as the conventional one. Further, it is also possible to further improve the corrosion resistance by performing an appropriate chemical conversion treatment (for example, applying and drying a silicate-based chromium-free chemical conversion treatment liquid) after plating.
  • a preferred method for manufacturing the hot rolled steel sheet according to this embodiment having the above-mentioned chemical composition and metallographic structure is as follows.
  • the following steps (1) to (11) are sequentially performed.
  • the temperature of the slab and the temperature of the steel plate in this embodiment refer to the surface temperature of the slab and the surface temperature of the steel plate.
  • stress refers to the tension applied to the steel plate in the rolling direction.
  • a stress of 170 kPa or more is applied to the steel plate from the end of the last stage of hot rolling until the start of the final stage of rolling.
  • the rolling reduction in the final stage of hot rolling is 8% or more, and the hot rolling is completed so that the rolling completion temperature Tf is 900°C or more and less than 1010°C.
  • a stress of less than 200 kPa is applied to the steel plate after the final stage of hot rolling until the steel plate is cooled to 800°C.
  • Within 1 second after completion of hot rolling cool to a temperature range below hot rolling completion temperature Tf - 50°C, and then cool to a temperature range of 600 to 780°C at an average cooling rate of 50°C/s or more. do.
  • a more preferable cooling condition is to cool to a temperature range below the hot rolling completion temperature Tf - 50° C. within 1 second after the completion of hot rolling.
  • (8) Perform slow cooling at a temperature range of 600 to 780°C with an average cooling rate of less than 5°C/s for 2.0 seconds or more.
  • After completion of slow cooling cool so that the average cooling rate in the temperature range of 450 to 600°C is 30°C/s or more and less than 50°C/s.
  • Cooling is performed so that the average cooling rate in the temperature range from the winding temperature to 450°C is 50°C/s or more.
  • (11) Wind up in a temperature range of 350°C or less.
  • the slab to be subjected to hot rolling is preferably held at a temperature range of 700 to 850°C for 900 seconds or more during slab heating, and then further heated and held at a temperature range of 1100°C or higher for 6000 seconds or more.
  • the steel plate temperature may be varied within this temperature range or may be kept constant.
  • the steel plate temperature may be varied in the temperature range of 1100°C or higher, or may be kept constant.
  • Mn is distributed between ferrite and austenite, and by lengthening the transformation time, Mn can diffuse into the ferrite region. This eliminates the Mn micro-segregation that is unevenly distributed in the slab and significantly reduces the standard deviation of the Mn concentration. Further, by holding the temperature in a temperature range of 1100° C. or higher for 6000 seconds or more, the standard deviation of the Mn concentration can be significantly reduced.
  • Hot rolling it is preferable to use a liver mill or a tandem mill as multi-pass rolling. Particularly from the viewpoint of industrial productivity and the stress load on the steel plate during rolling, it is more preferable that at least the last two stages are hot rolled using a tandem mill.
  • Hot rolling includes rough rolling and finish rolling, each of which is performed multiple times (stages). Rough rolling is a process of rolling a slab to a minimum thickness of 25 mm, and finish rolling is a process of rolling a plate after rough rolling to a target thickness.
  • descaling By performing descaling one or more times in a temperature range of 1150° C. or higher before rough rolling, it is possible to remove the primary scale formed in the heating furnace and suppress the occurrence of subsequent descaling defects.
  • the number density of Cr oxides on the surface of the hot rolled steel sheet can be preferably controlled.
  • the upper limit of the number of times of descaling in the temperature range of 1150° C. or higher is not particularly limited, but may be 5 times or less.
  • rolling and descaling are performed multiple times. During rough rolling, descaling is performed between rollings or after multiple rollings. In this embodiment, during rough rolling, descaling is performed twice or more in a temperature range of 1130°C or higher, and the maximum value of the total rolling reduction between each descaling in a temperature range of 1130°C or higher is set to 40 It is preferable to set it as less than %. By performing descaling two or more times in a temperature range of 1130°C or higher, the thickness of the scale formed in the first stage of rough rolling is reduced or the scale is removed, thereby reducing the number density of Cr oxides on the surface of the hot rolled steel sheet. can be preferably controlled.
  • the number density of Cr oxides can be preferably controlled.
  • the total rolling reduction rate between each descaling in the temperature range of 1130°C or higher is t0, where the plate thickness before the nth descaling in the temperature range of 1130°C or higher is t0 , and the n+1th descaling in the temperature range of 1130°C or higher is
  • the subsequent exit plate thickness is t 1 , it can be expressed as ⁇ (t 0 ⁇ t 1 )/t 0 ⁇ 100(%).
  • rolling may be performed only once, or rolling may be performed multiple times.
  • Hot rolling reduction 90% or more in the temperature range of 850 to 1100°C
  • hot rolling includes rough rolling and finish rolling.
  • the total rolling reduction in the temperature range of 850 to 1100°C is defined as the inlet plate thickness before the first rolling in this temperature range, and the outlet plate thickness after the final rolling in this temperature range.
  • t 1 t 1
  • it can be expressed as ⁇ (t 0 ⁇ t 1 )/t 0 ⁇ 100(%).
  • the band-like structure of the hot rolled steel sheet is improved, the periodicity of the metal structure is reduced, and the E value is increased.
  • the term "rolling one stage before the final stage of hot rolling” as used herein refers to rolling one stage before the final stage of finish rolling. For example, when finish rolling is performed in seven passes of F1, F2...F6, and F7, the sixth pass (F6) is referred to as the pass of the sixth stage (F6).
  • the stress applied to the steel plate is less than 170 kPa, it may not be possible to set the E value to the desired value.
  • the stress applied to the steel plate is more preferably 190 kPa or more.
  • the stress applied to a steel plate refers to the tension applied in the longitudinal direction of the steel plate, and can be controlled by adjusting the roll rotation speed during tandem rolling. It can be calculated by dividing by the cross-sectional area of the steel plate.
  • Reduction ratio in the final stage of hot rolling 8% or more, hot rolling completion temperature Tf: 900°C or more, less than 1010°C
  • the rolling reduction ratio in the final stage of hot rolling is 8% or more, and hot rolling is completed.
  • the temperature Tf is 900°C or higher.
  • the formation of ferrite in the final structure (metal structure of the hot-rolled steel sheet after production) can be suppressed, and a high-strength hot-rolled steel sheet can be obtained.
  • Tf to less than 1010° C.
  • coarsening of the austenite grain size can be suppressed, the periodicity of the metal structure can be reduced, and the E value can be set to a desired value.
  • Stress applied to the steel plate after the final stage of hot rolling until the steel plate is cooled to 800°C Less than 200 kPa After the final stage of hot rolling, the stress applied to the steel plate until the steel plate is cooled to 800°C It is preferable to apply a stress of less than 200 kPa to the steel plate until the steel plate is heated. By applying a stress of less than 200 kPa to the steel sheet, recrystallization of austenite proceeds preferentially in the rolling direction, and an increase in periodicity of the metal structure can be suppressed. As a result, the E value can be set to a desired value.
  • the stress applied to the steel plate is more preferably 180 kPa or less.
  • Cooling In order to suppress the growth of austenite crystal grains refined by hot rolling, cooling should be performed at 50°C or higher within 1 second after the completion of hot rolling, that is, the amount of cooling within 1 second after completing hot rolling should be It is more preferable that the temperature is at least °C.
  • cooling with a high average cooling rate is performed immediately after the completion of hot rolling, for example, cooling water is applied to the surface of the steel sheet. Just spray it on.
  • the average cooling rate refers to the temperature drop range of the steel plate from the start of accelerated cooling (when the steel plate is introduced into the cooling equipment) to the end of accelerated cooling (when the steel plate is taken out from the cooling equipment). This is the value divided by the time required from the start to the completion of accelerated cooling.
  • the temperature is preferably 300° C./s or less.
  • the cooling stop temperature of accelerated cooling is preferably set to 600° C. or higher in order to perform slow cooling, which will be described later.
  • the average cooling rate is the width of the temperature drop of the steel plate from the cooling stop temperature of accelerated cooling to the stop temperature of slow cooling divided by the time required from the time of stopping accelerated cooling to the time of stopping slow cooling. Refers to value.
  • the time for performing slow cooling is preferably 3.0 seconds or more.
  • the upper limit of the time for slow cooling is determined by the equipment layout, but may be approximately less than 10.0 seconds. Further, although there is no particular lower limit to the average cooling rate of slow cooling, since increasing the temperature without cooling involves a large investment in equipment, it may be set to 0° C./s or more.
  • the average cooling rate in the temperature range of 450 to 600 °C is 30 °C/s or more and less than 50 °C/s. It is preferable to perform cooling so that the average cooling rate in the area is 30° C./s or more and less than 50° C./s.
  • the CS value can be set to a desired value. When the average cooling rate is 50° C./s or more, a flat lath-like structure with low brightness is likely to be formed, and the CS value becomes less than ⁇ 8.0 ⁇ 10 5 .
  • the average cooling rate here refers to the range from the cooling stop temperature of slow cooling with an average cooling rate of less than 5°C/s to the cooling of cooling with an average cooling rate of 30°C/s or more and less than 50°C/s.
  • the temperature drop range of the steel plate to the stop temperature is determined from the time when slow cooling is stopped when the average cooling rate is less than 5°C/s to the time when cooling is stopped when the average cooling rate is 30°C/s or more and less than 50°C/s. This is the value divided by the time required to reach the destination.
  • Average cooling rate in the temperature range from coiling temperature to 450°C: 50°C/s or more In order to suppress the area ratio of pearlite and retained austenite and obtain the desired strength and formability, it is preferable that the average cooling rate in the temperature range is 50° C./s or more. Thereby, the matrix structure can be made hard.
  • the average cooling rate here refers to the range of temperature drop of the steel plate from the cooling stop temperature to the coiling temperature when the average cooling rate is 30°C/s or more and less than 50°C/s. It refers to the value divided by the time required from the time of stopping cooling to winding, which is 30° C./s or more and less than 50° C./s.
  • Winding temperature 350°C or less
  • the winding temperature shall be 350°C or less.
  • the conditions in the Examples are examples of conditions adopted to confirm the feasibility and effects of the present invention.
  • the present invention is not limited to this example of one condition.
  • the present invention can adopt various conditions as long as the purpose of the present invention is achieved without departing from the gist of the present invention.
  • the obtained hot-rolled steel sheet was subjected to the above-mentioned method to determine the area ratio of the metallographic structure, E value, I value, CS value, standard deviation of Mn concentration, solid solution Cr concentration in the outermost layer region, and equivalent sphere radius at the surface.
  • the number density of Cr oxides of 0.1 ⁇ m or more, the average crystal grain size in the surface layer region, the tensile strength TS, and the total elongation El were determined.
  • the measurement results obtained are shown in Tables 5A to 6B.
  • the remaining structure was one or more of bainite, martensite, and tempered martensite.
  • Limiting rate of thickness reduction at break The limit rate of thickness reduction at break of hot-rolled steel sheets was evaluated by a tensile test. A tensile test was conducted in the same manner as when the tensile properties were evaluated. When the plate thickness before the tensile test is t 1 and the minimum value of the plate thickness at the center in the width direction (short side direction) of the tensile test piece after rupture is t 2 , (t 1 - t 2 ) ⁇ 100/ By calculating the value of t1 , the critical plate thickness reduction rate at rupture was obtained. The tensile test was carried out five times, and the average value of the three tests, excluding the maximum and minimum values of the limit thickness reduction rate at break, was calculated to obtain the limit thickness reduction rate at break.
  • the critical thickness reduction rate at rupture was 60.0% or more, the hot rolled steel sheet was judged to have passed the test as having a high critical rupture thickness reduction rate. On the other hand, when the critical thickness reduction rate at break was less than 60.0%, it was determined that the hot rolled steel sheet did not have a high critical failure plate thickness reduction rate and was rejected.
  • Shearing workability (secondary shear surface evaluation) The shear workability of the hot-rolled steel sheet was evaluated by a punching test. Three punched holes were made for each example using a hole diameter of 10 mm, a clearance of 10%, and a punching speed of 3 m/s. Next, the cross section perpendicular to the rolling direction and the cross section parallel to the rolling direction of the punched hole were respectively embedded in resin, and the cross-sectional shapes were photographed using a scanning electron microscope. In the obtained observation photograph, a sheared end surface as shown in FIG. 1 or 2 can be observed. Note that FIG. 1 is an example of a sheared end surface of a hot rolled steel sheet according to an example of the present invention, and FIG.
  • FIG. 2 is an example of a sheared end surface of a hot rolled steel sheet according to a comparative example.
  • the diagram shows a sag, a sheared surface, a fractured surface, and a sheared end surface of a burr.
  • FIG. 2 shows the sheared end surface of the burr - sheared surface - fractured surface - sheared surface - fractured surface.
  • the sag is the area of the smooth R-shaped surface
  • the sheared surface is the area of the punched end face separated by shear deformation
  • the fractured surface is the area of the punched end face separated by a crack generated near the cutting edge.
  • a burr is a surface having protrusions protruding from the lower surface of a hot-rolled steel sheet.
  • Fatigue properties after press forming were evaluated by the arithmetic mean roughness Ra of the surface of the hot rolled steel sheet after press forming.
  • one surface A of the hot-rolled steel sheet in the thickness direction was ground to give a thickness of 1.6 mm or less to the other surface B of the test piece 10.
  • Press molding was performed by pulling out in one direction D while pressing with a load.
  • the shape of the punch is shown in FIG. 4 (FIG. 9 of Patent No. 5,655,394).
  • the arithmetic mean roughness Ra of the surface was measured by the following method.
  • measurement points were set at 200 mm intervals in the rolling direction and a direction orthogonal to the rolling direction and the plate thickness direction, and the surface roughness was measured at each measurement point.
  • the measurement length at each measurement point was 5 mm.
  • a roughness curve was obtained by sequentially applying contour curve filters with cutoff values ⁇ c and ⁇ s to the measured cross-sectional curve. Specifically, from the obtained measurement results, components with a wavelength ⁇ c of 0.8 mm or less and components with a wavelength ⁇ s of 2.5 mm or more were removed to obtain a roughness curve.
  • the arithmetic mean roughness Ra of each measurement location was calculated in accordance with JIS B 0601:2013. By calculating the average value of the obtained values, the arithmetic mean roughness Ra of the surface of the hot rolled steel sheet after press forming was obtained.
  • the hot-rolled steel sheet after press-forming had excellent fatigue properties after press-forming and was judged to be acceptable.
  • the arithmetic mean roughness Ra of the surface was more than 3.0 ⁇ m, it was determined that the hot rolled steel sheet did not have excellent fatigue properties after press forming and was rejected.
  • a bending test piece was obtained by cutting out a rectangular test piece of 100 mm x 30 mm at a 1/2 position from the end face of the hot rolled steel plate in a direction perpendicular to the rolling direction and the plate thickness direction. Both bending where the bending ridgeline is parallel to the rolling direction (L direction) (L-axis bending) and bending where the bending ridgeline is parallel to the direction perpendicular to the rolling direction and the plate thickness direction (C-direction) (C-axis bending) A test was conducted in accordance with the V-block method (bending angle ⁇ is 90°) of JIS Z 2248:2022.
  • the minimum bending radius without cracking was determined, and the resistance to internal cracking in bending was investigated.
  • the value obtained by dividing the average value (R) of the minimum bending radius of the L axis and the C axis by the plate thickness (t) was taken as the limit bending R/t and used as an index value of resistance to internal cracking in bending.
  • R/t was 2.5 or less, it was determined that the hot rolled steel sheet had excellent resistance to internal cracking in bending.
  • the presence or absence of cracks can be determined by mirror-polishing a cross section of the test piece cut along a plane parallel to the bending direction and perpendicular to the plate surface, and then observing cracks under an optical microscope. It was determined that a crack was present when the length of the crack exceeded 30 ⁇ m.
  • the hot rolled steel sheets according to the examples of the present invention have high strength and critical thickness reduction rate at rupture, as well as excellent ductility and shear workability, as well as excellent fatigue properties after press forming. It can be seen that it has Furthermore, it can be seen that among the examples of the present invention, the hot-rolled steel sheets in which the average grain size in the surface layer region is less than 3.0 ⁇ m have excellent internal bending cracking resistance in addition to having the above-mentioned properties. On the other hand, it can be seen that the hot rolled steel sheet according to the comparative example has deteriorated in one or more properties.
  • the hot-rolled steel sheet that has high strength, critical thickness reduction rate at rupture, excellent ductility and shear workability, and has excellent fatigue properties after press forming. Can be done. Further, according to the above-described preferred embodiment of the present invention, it is possible to obtain a hot-rolled steel sheet that has the above-mentioned properties and further suppresses the occurrence of cracking in bending, that is, has excellent resistance to cracking in bending. can.
  • the hot-rolled steel sheet according to the present invention is suitable as an industrial material used for automobile parts, mechanical structural parts, and even building parts.

Abstract

This hot-rolled steel sheet has a specific chemical composition; the metal structure of this hot-rolled steel sheet at a position where the depth from the surface is 1/4 in the sheet thickness direction comprises, in area%, less than 3.0% of residual austenite, not less than 15.0% but less than 60.0% of ferrite and less than 5.0% of pearlite, while having an E value of 10.7 or more, an I value of 1.020 or more, a CS value of -8.0 × 105 to 8.0 × 105, and a standard deviation of the Mn concentration of 0.60% by mass or less; the average solid solution Cr concentration in the outermost layer region is 0.10% by mass or more; and the average number density of Cr oxides having a sphere equivalent radius of 0.1 µm or more in the surface is 1.0 × 104 per cm2 or less.

Description

熱延鋼板hot rolled steel plate
 本発明は、熱延鋼板に関する。具体的には、プレス加工等により様々な形状に成形して利用される熱延鋼板、特に、高い強度および限界破断板厚減少率を有し、且つ優れた延性およびせん断加工性を有するとともに、プレス成形後において優れた疲労特性を有する熱延鋼板に関する。
 本願は、2022年9月8日に、日本に出願された特願2022-142994号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a hot rolled steel plate. Specifically, hot-rolled steel sheets are used after being formed into various shapes by press working, etc., and in particular, have high strength and critical thickness reduction rate at break, as well as excellent ductility and shear workability. The present invention relates to a hot rolled steel sheet having excellent fatigue properties after press forming.
This application claims priority based on Japanese Patent Application No. 2022-142994 filed in Japan on September 8, 2022, the contents of which are incorporated herein.
 近年、地球環境保護の観点から、多くの分野において炭酸ガス排出量の削減が取り組まれている。自動車メーカーにおいても低燃費化を目的とした車体軽量化の技術開発が盛んに行われている。しかし、乗員の安全確保のために耐衝突特性の向上にも重点が置かれるため、車体軽量化は容易ではない。 In recent years, efforts have been made to reduce carbon dioxide emissions in many fields from the perspective of protecting the global environment. Automobile manufacturers are also actively developing technologies to reduce the weight of vehicle bodies with the aim of improving fuel efficiency. However, it is not easy to reduce the weight of the vehicle body, as emphasis is placed on improving collision resistance to ensure passenger safety.
 車体軽量化と耐衝突特性とを両立させるべく、高強度鋼板を用いて部材を薄肉化することが検討されている。このため、高い強度と優れた成形性とを兼備する鋼板が強く望まれており、これらの要求に応えるべく、幾つかの技術が従来から提案されている。自動車部材には様々な加工様式があるため、要求される成形性は適用される部材により異なる。その中でも、限界破断板厚減少率および延性は成形性の重要な指標として位置付けられている。限界破断板厚減少率とは、破断前の引張試験片の板厚と、破断後の引張試験片の板厚の最小値とから求められる値である。限界破断板厚減少率が低い場合、プレス成形中の引張ひずみが付与された際に早期に破断し易くなるため、好ましくない。 In order to reduce the weight of the car body and improve crash resistance, the use of high-strength steel plates to make the parts thinner is being considered. For this reason, there is a strong desire for a steel plate that has both high strength and excellent formability, and several techniques have been proposed to meet these demands. Since there are various processing methods for automobile parts, the required formability differs depending on the part to which it is applied. Among these, the critical thickness reduction rate at break and ductility are positioned as important indicators of formability. The critical rupture plate thickness reduction rate is a value determined from the plate thickness of the tensile test piece before rupture and the minimum value of the plate thickness of the tensile test piece after rupture. If the critical thickness reduction rate at rupture is low, it is not preferable because it is likely to break early when tensile strain is applied during press forming.
 自動車部材はプレス成形によって成形されるが、そのプレス成形のブランク板は生産性が高いせん断加工によって製造されることが多い。せん断加工によって製造されるブランク板では、せん断加工後の端面精度に優れる必要がある。 Automotive parts are formed by press forming, and blank plates for press forming are often manufactured by shearing, which is highly productive. Blank plates manufactured by shearing must have excellent end face accuracy after shearing.
 例えば、せん断加工後の端面(せん断端面)の様相が、せん断面-破断面-せん断面となる2次せん断面が発生すると、せん断端面の精度が著しく劣化する。 For example, if a secondary shear surface occurs in which the end surface (sheared end surface) after shearing is sheared surface-fractured surface-sheared surface, the accuracy of the sheared end surface will be significantly degraded.
 また、自動車部材に適用される鋼板には、プレス成形後において疲労特性に優れることが要求される。 Furthermore, steel sheets used for automobile parts are required to have excellent fatigue properties after press forming.
 例えば、特許文献1には、板厚中央部におけるMn偏析度およびP偏析度を制御した、プレス加工後の表面性状に優れた冷延鋼板の素材となる熱延鋼板が開示されている。
 しかしながら、特許文献1では、熱延鋼板の限界破断板厚減少率、せん断加工性およびプレス成形後の疲労特性について考慮されていない。
For example, Patent Document 1 discloses a hot-rolled steel sheet that is a material for a cold-rolled steel sheet with excellent surface properties after press working, in which the degree of Mn segregation and the degree of P segregation in the central part of the sheet thickness are controlled.
However, Patent Document 1 does not consider the critical thickness reduction rate at rupture, shear workability, and fatigue properties after press forming of the hot rolled steel sheet.
国際公開第2020/044445号International Publication No. 2020/044445
 本発明は、上述の実情に鑑みてなされたものであり、高い強度および限界破断板厚減少率、並びに、優れた延性およびせん断加工性を有するとともに、プレス成形後において優れた疲労特性を有する熱延鋼板を提供することを目的とする。 The present invention was made in view of the above-mentioned circumstances, and the present invention has been made in view of the above-mentioned circumstances. The purpose is to provide rolled steel sheets.
 本発明の要旨は、以下の通りである。
(1)本発明の一態様に係る熱延鋼板は、化学組成が、質量%で、
C :0.050~0.250%、
Si:0.05~3.00%、
Mn:1.00~4.00%、
sol.Al:0.001~0.500%、
Cr:0.060~2.000%、
P :0.100%以下、
S :0.0300%以下、
N :0.1000%以下、
O :0.0100%以下、
Ti:0~0.500%、
Nb:0~0.500%、
V :0~0.500%、
Cu:0~2.00%、
Mo:0~1.00%、
Ni:0~2.00%、
B :0~0.0100%、
Ca:0~0.0200%、
Mg:0~0.0200%、
REM:0~0.1000%、
Bi:0~0.0200%、
As:0~0.100%、
Zr:0~1.00%、
Co:0~1.00%、
Zn:0~1.00%、
W :0~1.00%、および
Sn:0~0.05%を含有し、
 残部がFeおよび不純物からなり、
 下記式(A)および(B)を満たし、
 板厚方向の表面から1/4深さ位置における金属組織が、
  面積%で、
  残留オーステナイトが3.0%未満であり、
  フェライトが15.0%以上、60.0%未満であり、
  パーライトが5.0%未満であり、
  グレーレベル共起行列法により、前記金属組織のSEM画像を解析することによって得られる、下記式(1)で示されるEntropy値が10.7以上であり、
  下記式(2)で示されるInverse difference normalized値が1.020以上であり、
  下記式(3)で示されるCluster Shade値が-8.0×10~8.0×10であり、
  Mn濃度の標準偏差が0.60質量%以下であり、
 前記表面を始点として、板厚方向に5μm深さの位置を終点とする領域である最表層領域における固溶Cr濃度が0.10質量%以上であり、
 前記表面における、球相当半径で0.1μm以上のCr酸化物の個数密度が1.0×10個/cm以下である。
  0.060%≦Ti+Nb+V≦0.500% …(A)
  Zr+Co+Zn+W≦1.00% …(B)
 ただし、前記式(A)および(B)中の各元素記号は、当該元素の質量%での含有量を示し、当該元素を含有しない場合は0%を代入する。
 ここで、下記式(1)~(5)中のP(i,j)はグレーレベル共起行列であり、下記式(2)中のLは前記SEM画像の取り得る輝度値の規格化定数であり、下記式(2)および(3)中のiおよびjは1~前記Lの自然数であり、下記式(3)中のμおよびμはそれぞれ下記式(4)および(5)で示される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
(2)上記(1)に記載の熱延鋼板は、前記表面を始点として、前記板厚方向に20μm深さの位置を終点とする領域である表層領域における平均結晶粒径が3.0μm未満であってもよい。
(3)上記(1)または(2)に記載の熱延鋼板は、前記化学組成が、質量%で、
Ti:0.001~0.500%、
Nb:0.001~0.500%、
V :0.001~0.500%、
Cu:0.01~2.00%、
Mo:0.01~1.00%、
Ni:0.02~2.00%、
B :0.0001~0.0100%、
Ca:0.0005~0.0200%、
Mg:0.0005~0.0200%、
REM:0.0005~0.1000%、
Bi:0.0005~0.0200%、
As:0.001~0.100%、
Zr:0.01~1.00%、
Co:0.01~1.00%、
Zn:0.01~1.00%、
W :0.01~1.00%、および
Sn:0.01~0.05%
からなる群から選択される1種または2種以上を含有してもよい。
The gist of the invention is as follows.
(1) The hot rolled steel sheet according to one aspect of the present invention has a chemical composition in mass %,
C: 0.050-0.250%,
Si: 0.05-3.00%,
Mn: 1.00-4.00%,
sol. Al: 0.001-0.500%,
Cr: 0.060-2.000%,
P: 0.100% or less,
S: 0.0300% or less,
N: 0.1000% or less,
O: 0.0100% or less,
Ti: 0 to 0.500%,
Nb: 0 to 0.500%,
V: 0 to 0.500%,
Cu: 0-2.00%,
Mo: 0-1.00%,
Ni: 0-2.00%,
B: 0 to 0.0100%,
Ca: 0-0.0200%,
Mg: 0 to 0.0200%,
REM: 0-0.1000%,
Bi: 0 to 0.0200%,
As: 0 to 0.100%,
Zr: 0 to 1.00%,
Co: 0-1.00%,
Zn: 0 to 1.00%,
Contains W: 0 to 1.00% and Sn: 0 to 0.05%,
The remainder consists of Fe and impurities,
The following formulas (A) and (B) are satisfied,
The metal structure at the 1/4 depth position from the surface in the thickness direction is
In area%,
The retained austenite is less than 3.0%,
Ferrite is 15.0% or more and less than 60.0%,
Pearlite is less than 5.0%,
The Entropy value expressed by the following formula (1) obtained by analyzing the SEM image of the metal structure using the gray level co-occurrence matrix method is 10.7 or more,
The Inverse difference normalized value shown by the following formula (2) is 1.020 or more,
The Cluster Shade value shown by the following formula (3) is -8.0×10 5 to 8.0×10 5 ,
The standard deviation of the Mn concentration is 0.60% by mass or less,
The solid solution Cr concentration in the outermost layer region, which is a region starting from the surface and ending at a position 5 μm deep in the plate thickness direction, is 0.10% by mass or more,
The number density of Cr oxides having an equivalent sphere radius of 0.1 μm or more on the surface is 1.0×10 4 pieces/cm 2 or less.
0.060%≦Ti+Nb+V≦0.500%…(A)
Zr+Co+Zn+W≦1.00%…(B)
However, each element symbol in the formulas (A) and (B) indicates the content in mass % of the element, and when the element is not contained, 0% is substituted.
Here, P (i, j) in the following formulas (1) to (5) is a gray level co-occurrence matrix, and L in the following formula (2) is a normalization constant of the brightness value that the SEM image can take. , i and j in the following formulas (2) and (3) are natural numbers from 1 to the above L, and μ x and μ y in the following formula (3) are the following formulas (4) and (5), respectively. It is indicated by.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
(2) The hot-rolled steel sheet according to (1) above has an average grain size of less than 3.0 μm in the surface layer region, which is a region starting from the surface and ending at a position 20 μm deep in the sheet thickness direction. It may be.
(3) The hot rolled steel sheet according to (1) or (2) above has the chemical composition in mass%,
Ti: 0.001 to 0.500%,
Nb: 0.001-0.500%,
V: 0.001-0.500%,
Cu: 0.01-2.00%,
Mo: 0.01-1.00%,
Ni: 0.02-2.00%,
B: 0.0001 to 0.0100%,
Ca: 0.0005-0.0200%,
Mg: 0.0005-0.0200%,
REM: 0.0005-0.1000%,
Bi: 0.0005-0.0200%,
As: 0.001 to 0.100%,
Zr: 0.01-1.00%,
Co: 0.01 to 1.00%,
Zn: 0.01-1.00%,
W: 0.01 to 1.00%, and Sn: 0.01 to 0.05%
It may contain one or more selected from the group consisting of:
 本発明に係る上記態様によれば、高い強度および限界破断板厚減少率、並びに、優れた延性およびせん断加工性を有するとともに、プレス成形後において優れた疲労特性を有する熱延鋼板を得ることができる。
 また、本発明に係る上記の好ましい態様によれば、上記諸特性を有した上で更に、曲げ内割れの発生が抑制された、すなわち耐曲げ内割れ性に優れた熱延鋼板を得ることができる。
 本発明の上記態様に係る熱延鋼板は、自動車部材、機械構造部材さらには建築部材に用いられる工業用素材として好適である。
According to the above aspect of the present invention, it is possible to obtain a hot-rolled steel sheet that has high strength, critical thickness reduction rate at rupture, excellent ductility and shear workability, and has excellent fatigue properties after press forming. can.
Further, according to the above-described preferred embodiment of the present invention, it is possible to obtain a hot-rolled steel sheet that has the above-mentioned properties and further suppresses the occurrence of cracking in bending, that is, has excellent resistance to cracking in bending. can.
The hot-rolled steel sheet according to the above aspect of the present invention is suitable as an industrial material used for automobile parts, mechanical structural parts, and even building parts.
本発明例に係る熱延鋼板のせん断端面の一例である。1 is an example of a sheared end surface of a hot rolled steel plate according to an example of the present invention. 比較例に係る熱延鋼板のせん断端面の一例である。It is an example of a sheared end surface of a hot rolled steel plate according to a comparative example. 実施例にて実施したプレス成形を説明するための図である。FIG. 3 is a diagram for explaining press molding performed in an example. 前記プレス成形に使用したパンチ形状を説明するための図である。It is a figure for demonstrating the punch shape used for the said press forming.
 本実施形態に係る熱延鋼板の化学組成および金属組織について、以下により具体的に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。 The chemical composition and metal structure of the hot rolled steel sheet according to the present embodiment will be explained in more detail below. However, the present invention is not limited to only the configuration disclosed in this embodiment, and various changes can be made without departing from the spirit of the present invention.
 以下に「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。以下の説明において、化学組成に関する%は特に指定しない限り質量%である。 The numerically limited ranges described below with "~" in between include the lower limit and the upper limit. Numerical values indicated as "less than" or "greater than" do not include the value within the numerical range. In the following description, percentages regarding chemical compositions are percentages by mass unless otherwise specified.
 化学組成
 本実施形態に係る熱延鋼板の化学組成は、質量%で、C:0.050~0.250%、Si:0.05~3.00%、Mn:1.00~4.00%、sol.Al:0.001~0.500%、Cr:0.060~2.000%、P:0.100%以下、S:0.0300%以下、N:0.1000%以下、O:0.0100%以下、並びに、残部:Feおよび不純物を含み、式(A)(0.060%≦Ti+Nb+V≦0.500%)を満たす。
 以下に各元素について詳細に説明する。
Chemical composition The chemical composition of the hot rolled steel sheet according to this embodiment is, in mass%, C: 0.050 to 0.250%, Si: 0.05 to 3.00%, Mn: 1.00 to 4.00. %, sol. Al: 0.001 to 0.500%, Cr: 0.060 to 2.000%, P: 0.100% or less, S: 0.0300% or less, N: 0.1000% or less, O: 0. 0100% or less, and the remainder: contains Fe and impurities, and satisfies formula (A) (0.060%≦Ti+Nb+V≦0.500%).
Each element will be explained in detail below.
 C:0.050~0.250%
 Cは、硬質相の面積率を上昇させるとともに、Ti、Nb、V等の析出強化元素と結合することで、フェライトの強度を上昇させる。C含有量が0.050%未満では、所望の強度を得ることができない。したがって、C含有量は0.050%以上とする。C含有量は、好ましくは0.055%以上、より好ましくは0.060%以上、より一層好ましくは0.065%以上である。
 一方、C含有量が0.250%超では、フェライトの面積率が低下することで、熱延鋼板の延性が低下する。したがって、C含有量は0.250%以下とする。C含有量は好ましくは0.150%以下である。
C: 0.050-0.250%
C increases the area ratio of the hard phase and also increases the strength of ferrite by combining with precipitation-strengthening elements such as Ti, Nb, and V. If the C content is less than 0.050%, desired strength cannot be obtained. Therefore, the C content is set to 0.050% or more. The C content is preferably 0.055% or more, more preferably 0.060% or more, even more preferably 0.065% or more.
On the other hand, when the C content exceeds 0.250%, the area ratio of ferrite decreases, and the ductility of the hot rolled steel sheet decreases. Therefore, the C content is set to 0.250% or less. The C content is preferably 0.150% or less.
 Si:0.05~3.00%
 Siは、フェライトの生成を促進して熱延鋼板の延性を向上させる作用と、フェライトを固溶強化して熱延鋼板の強度を上昇させる作用とを有する。また、Siは脱酸により鋼を健全化する(鋼にブローホールなどの欠陥が生じることを抑制する)作用を有する。Si含有量が0.05%未満では、上記作用による効果を得ることができない。したがって、Si含有量は0.05%以上とする。Si含有量は、好ましくは0.40%以上、より好ましくは0.60%以上である。
 しかし、Si含有量が3.00%超では、熱延鋼板の表面性状および化成処理性、さらには延性および溶接性が著しく劣化するとともに、A変態点が著しく上昇する。これにより、安定して熱間圧延を行うことが困難になる。また、フェライトが過剰に生成し易くなり、強度が低下することに加え、冷却後にオーステナイトが残留し易くなり、限界破断板厚減少率が低下する。したがって、Si含有量は3.00%以下とする。Si含有量は、好ましくは2.50%以下、より好ましくは2.00%以下である。
Si: 0.05-3.00%
Si has the function of promoting the formation of ferrite to improve the ductility of the hot-rolled steel sheet, and the function of solid solution strengthening of ferrite to increase the strength of the hot-rolled steel sheet. Further, Si has the effect of making the steel sound by deoxidizing (suppressing the occurrence of defects such as blowholes in the steel). If the Si content is less than 0.05%, the above effects cannot be obtained. Therefore, the Si content is set to 0.05% or more. The Si content is preferably 0.40% or more, more preferably 0.60% or more.
However, if the Si content exceeds 3.00%, the surface quality and chemical conversion treatability of the hot-rolled steel sheet, as well as the ductility and weldability are significantly deteriorated, and the A3 transformation point is significantly increased. This makes it difficult to perform hot rolling stably. In addition, ferrite tends to be produced excessively, which lowers the strength. In addition, austenite tends to remain after cooling, and the critical thickness reduction rate at rupture decreases. Therefore, the Si content is set to 3.00% or less. The Si content is preferably 2.50% or less, more preferably 2.00% or less.
 Mn:1.00~4.00%
 Mnは、フェライト変態を抑制して熱延鋼板の強度を高める作用を有する。Mn含有量が1.00%未満では、所望の強度を得ることができない。したがって、Mn含有量は1.00%以上とする。Mn含有量は、好ましくは1.10%以上であり、より好ましくは1.20%以上である。
 一方、Mn含有量が4.00%超では、Mnの偏析に起因して、硬質相の形態が周期的なバンド状となり、所望のせん断加工性を得ることが困難となる。したがって、Mn含有量は4.00%以下とする。Mn含有量は、好ましくは3.50%以下、より好ましくは3.00%以下、より一層好ましくは2.50%以下である。
Mn: 1.00-4.00%
Mn has the effect of suppressing ferrite transformation and increasing the strength of the hot rolled steel sheet. If the Mn content is less than 1.00%, desired strength cannot be obtained. Therefore, the Mn content is set to 1.00% or more. The Mn content is preferably 1.10% or more, more preferably 1.20% or more.
On the other hand, if the Mn content exceeds 4.00%, the hard phase becomes periodic band-like due to segregation of Mn, making it difficult to obtain desired shearing workability. Therefore, the Mn content is set to 4.00% or less. The Mn content is preferably 3.50% or less, more preferably 3.00% or less, even more preferably 2.50% or less.
 Ti:0~0.500%
 Nb:0~0.500%
 V :0~0.500%
 0.060%≦Ti+Nb+V≦0.500% …(A)
 ただし、前記式(A)中の各元素記号は、当該元素の質量%での含有量を示し、当該元素を含有しない場合は0%を代入する。
 Ti、NbおよびVは、炭化物および窒化物として鋼中に微細析出し、析出強化により鋼の強度を向上させる元素である。Ti、NbおよびVの合計の含有量が0.060%未満であると、これらの効果を得ることができない。そのため、Ti、NbおよびVの合計の含有量を0.060%以上とする。すなわち、前記式(A)の中辺の値を0.060%以上とする。なお、Ti、NbおよびVの全てが含有されている必要はなく、いずれか1種でも含まれていればよく、その合計の含有量が0.060%以上であればよい。Ti、NbおよびVの合計の含有量は、好ましくは0.080%以上、より好ましくは0.100%以上である。Ti、NbおよびVの含有量はそれぞれ、好ましくは0.001%以上である。
 一方、Ti、NbおよびVの合計の含有量が0.500%を超えると、熱延鋼板の加工性が劣化する。そのため、Ti、NbおよびVの合計の含有量を0.500%以下とする。すなわち、前記式(A)の中辺の値を0.500%以下とする。好ましくは0.300%以下であり、より好ましくは0.250%以下であり、より一層好ましくは0.200%以下である。
Ti: 0~0.500%
Nb: 0-0.500%
V: 0~0.500%
0.060%≦Ti+Nb+V≦0.500%…(A)
However, each element symbol in the formula (A) indicates the content of the element in mass %, and when the element is not contained, 0% is substituted.
Ti, Nb, and V are elements that finely precipitate in steel as carbides and nitrides and improve the strength of steel through precipitation strengthening. If the total content of Ti, Nb and V is less than 0.060%, these effects cannot be obtained. Therefore, the total content of Ti, Nb, and V is set to 0.060% or more. That is, the value of the middle side of the formula (A) is set to 0.060% or more. Note that it is not necessary that all of Ti, Nb, and V be contained; it is sufficient that at least one of them is contained, and the total content thereof may be 0.060% or more. The total content of Ti, Nb and V is preferably 0.080% or more, more preferably 0.100% or more. The contents of Ti, Nb and V are each preferably 0.001% or more.
On the other hand, when the total content of Ti, Nb and V exceeds 0.500%, the workability of the hot rolled steel sheet deteriorates. Therefore, the total content of Ti, Nb and V is set to 0.500% or less. That is, the value of the middle side of the formula (A) is set to 0.500% or less. Preferably it is 0.300% or less, more preferably 0.250% or less, even more preferably 0.200% or less.
 sol.Al:0.001~0.500%
 Alは、Siと同様に、鋼を脱酸して鋼を健全化する作用を有するとともに、フェライトの生成を促進し、熱延鋼板の延性を高める作用を有する。sol.Al含有量が0.001%未満では上記作用による効果を得ることができない。したがって、sol.Al含有量は、0.001%以上とする。sol.Al含有量は、好ましくは0.010%以上である。
 一方、sol.Al含有量が0.500%超では、上記効果が飽和するとともに経済的に好ましくないため、sol.Al含有量は0.500%以下とする。sol.Al含有量は、好ましくは0.450%以下、より好ましくは0.400%以下、より一層好ましくは0.350%以下である。
 なお、sol.Alとは酸可溶性Alを意味し、固溶状態で鋼中に存在する固溶Alのことを示す。
sol. Al: 0.001-0.500%
Like Si, Al has the effect of deoxidizing the steel and making it sound, and also has the effect of promoting the formation of ferrite and increasing the ductility of the hot rolled steel sheet. sol. If the Al content is less than 0.001%, the above effects cannot be obtained. Therefore, sol. Al content shall be 0.001% or more. sol. Al content is preferably 0.010% or more.
On the other hand, sol. If the Al content exceeds 0.500%, the above effects are saturated and it is economically unfavorable, so sol. Al content shall be 0.500% or less. sol. The Al content is preferably 0.450% or less, more preferably 0.400% or less, even more preferably 0.350% or less.
In addition, sol. Al means acid-soluble Al, and indicates solid solution Al that exists in steel in a solid solution state.
 Cr:0.060~2.000%
 Crは、熱延鋼板の焼入性を高める作用を有する。また、Crは、所望の製造条件と組み合わせることで、熱延鋼板の最表層領域に濃化することでスケールの成長を抑制し、プレス成形後の算術平均粗さRaを低減する作用を有する。Cr含有量が0.060%未満では上記作用による効果を得ることができない。そのため、Cr含有量は0.060%以上とする。Cr含有量は、好ましくは0.200%以上であり、より好ましくは0.400%以上であり、より一層好ましくは0.600%以上である。
 一方、Cr含有量が2.000%超では、熱延鋼板の化成処理性が著しく低下する。したがって、Cr含有量は2.000%以下とする。Cr含有量は、好ましくは1.800%以下であり、より好ましくは1.600%以下である。
Cr:0.060~2.000%
Cr has the effect of increasing the hardenability of hot rolled steel sheets. Further, when combined with desired manufacturing conditions, Cr is concentrated in the outermost layer region of the hot rolled steel sheet, thereby suppressing scale growth and having the effect of reducing the arithmetic mean roughness Ra after press forming. If the Cr content is less than 0.060%, the above effects cannot be obtained. Therefore, the Cr content is set to 0.060% or more. The Cr content is preferably 0.200% or more, more preferably 0.400% or more, even more preferably 0.600% or more.
On the other hand, if the Cr content exceeds 2.000%, the chemical conversion treatability of the hot rolled steel sheet will be significantly reduced. Therefore, the Cr content is set to 2.000% or less. The Cr content is preferably 1.800% or less, more preferably 1.600% or less.
 P:0.100%以下
 Pは、固溶強化により熱延鋼板の強度を高める作用を有する元素でもある。したがって、Pを積極的に含有させてもよい。しかし、Pは偏析し易い元素であり、P含有量が0.100%を超えると、粒界偏析に起因する熱延鋼板の延性および限界破断板厚減少率の低下が顕著となる。したがって、P含有量は、0.100%以下とする。P含有量は、好ましくは0.030%以下である。P含有量の下限は特に規定する必要はなく0%であってもよいが、精錬コストの観点から、0.001%とすることが好ましい。
P: 0.100% or less P is also an element that has the effect of increasing the strength of the hot rolled steel sheet through solid solution strengthening. Therefore, P may be actively included. However, P is an element that tends to segregate, and when the P content exceeds 0.100%, the ductility and critical thickness reduction rate of the hot rolled steel sheet due to grain boundary segregation decrease significantly. Therefore, the P content is set to 0.100% or less. The P content is preferably 0.030% or less. The lower limit of the P content does not need to be particularly specified and may be 0%, but from the viewpoint of refining cost, it is preferably 0.001%.
 S:0.0300%以下
 Sは、鋼中に硫化物系介在物を形成して熱延鋼板の延性および限界破断板厚減少率を低下させる。S含有量が0.0300%を超えると、熱延鋼板の延性および限界破断板厚減少率が著しく低下する。したがって、S含有量は0.0300%以下とする。S含有量は、好ましくは0.0050%以下である。S含有量の下限は特に規定する必要はなく0%であってもよいが、精錬コストの観点から、0.0001%とすることが好ましい。
S: 0.0300% or less S forms sulfide inclusions in the steel and reduces the ductility and critical thickness reduction rate at break of the hot rolled steel sheet. When the S content exceeds 0.0300%, the ductility and critical thickness reduction rate at break of the hot rolled steel sheet decrease significantly. Therefore, the S content is set to 0.0300% or less. The S content is preferably 0.0050% or less. The lower limit of the S content does not need to be particularly specified and may be 0%, but from the viewpoint of refining cost, it is preferably 0.0001%.
 N:0.1000%以下
 Nは、熱延鋼板の延性および限界破断板厚減少率を低下させる作用を有する。N含有量が0.1000%超では、熱延鋼板の延性および限界破断板厚減少率が著しく低下する。したがって、N含有量は0.1000%以下とする。N含有量は、好ましくは0.0800%以下であり、より好ましくは0.0700%以下であり、より一層好ましくは0.0100%以下である。N含有量の下限は特に規定する必要はなく0%であってもよいが、Ti、NbおよびVの1種または2種以上を含有させて金属組織をより微細化する場合には、炭窒化物の析出を促進させるためにN含有量は0.0010%以上とすることが好ましく、0.0020%以上とすることがより好ましい。
N: 0.1000% or less N has the effect of reducing the ductility and critical thickness reduction rate at break of the hot rolled steel sheet. When the N content exceeds 0.1000%, the ductility and critical thickness reduction rate at break of the hot rolled steel sheet are significantly reduced. Therefore, the N content is set to 0.1000% or less. The N content is preferably 0.0800% or less, more preferably 0.0700% or less, even more preferably 0.0100% or less. The lower limit of the N content does not need to be particularly specified and may be 0%, but if one or more of Ti, Nb and V is contained to make the metal structure finer, carbonitriding In order to promote the precipitation of substances, the N content is preferably 0.0010% or more, more preferably 0.0020% or more.
 O:0.0100%以下
 Oは、鋼中に多く含まれると破壊の起点となる粗大な酸化物を形成し、脆性破壊や水素誘起割れを引き起こす。そのため、O含有量は0.0100%以下とする。O含有量は、好ましくは0.0080%以下、より好ましくは0.0050%以下である。O含有量は0%であってもよいが、溶鋼の脱酸時に微細な酸化物を多数分散させるために、O含有量は0.0005%以上、または0.0010%以上としてもよい。
O: 0.0100% or less When O is contained in large amounts in steel, it forms coarse oxides that serve as starting points for fractures, causing brittle fractures and hydrogen-induced cracking. Therefore, the O content is set to 0.0100% or less. The O content is preferably 0.0080% or less, more preferably 0.0050% or less. The O content may be 0%, but in order to disperse a large number of fine oxides during deoxidation of molten steel, the O content may be 0.0005% or more, or 0.0010% or more.
 本実施形態に係る熱延鋼板の化学組成の残部は、Feおよび不純物であってもよい。本実施形態において、不純物とは、原料としての鉱石、スクラップ、または製造環境等から混入されるもの、および/または本実施形態に係る熱延鋼板に悪影響を与えない範囲で許容されるものを意味する。 The remainder of the chemical composition of the hot rolled steel sheet according to this embodiment may be Fe and impurities. In this embodiment, impurities refer to things that are mixed in from ore as a raw material, scrap, or the manufacturing environment, and/or things that are allowed within a range that does not adversely affect the hot rolled steel sheet according to this embodiment. do.
 本実施形態に係る熱延鋼板は、Feの一部に代えて、下記元素を任意元素として含有してもよい。これらの任意元素を含有させない場合の含有量の下限は0%である。以下、任意元素について詳細に説明する。 The hot rolled steel sheet according to this embodiment may contain the following elements as optional elements in place of a part of Fe. When these arbitrary elements are not contained, the lower limit of the content is 0%. The arbitrary elements will be explained in detail below.
 Cu:0.01~2.00%
 Mo:0.01~1.00%
 Ni:0.02~2.00%
 B:0.0001~0.0100%
 Cu、Mo、NiおよびBは、いずれも、熱延鋼板の焼入性を高める作用を有する。また、CuおよびMoは鋼中に炭化物として析出して熱延鋼板の強度を高める作用を有する。さらに、Niは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。
Cu: 0.01-2.00%
Mo: 0.01~1.00%
Ni: 0.02-2.00%
B: 0.0001-0.0100%
Cu, Mo, Ni, and B all have the effect of improving the hardenability of the hot rolled steel sheet. Further, Cu and Mo precipitate as carbides in the steel and have the effect of increasing the strength of the hot rolled steel sheet. Furthermore, when containing Cu, Ni has the effect of effectively suppressing intergranular cracking of the slab caused by Cu. Therefore, one or more of these elements may be contained.
 上述したようにCuは、熱延鋼板の焼入れ性を高める作用および低温で鋼中に炭化物として析出して熱延鋼板の強度を高める作用を有する。上記作用による効果をより確実に得るためには、Cu含有量は0.01%以上とすることが好ましく、0.05%以上とすることがより好ましい。しかし、Cu含有量が2.00%超では、スラブの粒界割れが生じる場合がある。したがって、Cu含有量は2.00%以下とする。Cu含有量は、好ましくは1.50%以下、より好ましくは1.00%以下である。 As mentioned above, Cu has the effect of increasing the hardenability of the hot-rolled steel sheet and the effect of precipitating as carbides in the steel at low temperatures to increase the strength of the hot-rolled steel sheet. In order to more reliably obtain the effects of the above action, the Cu content is preferably 0.01% or more, more preferably 0.05% or more. However, if the Cu content exceeds 2.00%, intergranular cracking of the slab may occur. Therefore, the Cu content is set to 2.00% or less. The Cu content is preferably 1.50% or less, more preferably 1.00% or less.
 上述したようにMoは、熱延鋼板の焼入性を高める作用および鋼中に炭化物として析出して熱延鋼板の強度を高める作用を有する。上記作用による効果をより確実に得るためには、Mo含有量を0.01%以上とすることが好ましく、0.02%以上とすることがより好ましい。しかし、Mo含有量を1.00%超としても上記作用による効果は飽和して経済的に好ましくない。したがって、Mo含有量は1.00%以下とする。Mo含有量は、好ましくは0.50%以下、より好ましくは0.20%以下である。 As described above, Mo has the effect of increasing the hardenability of the hot-rolled steel sheet and the effect of precipitating as carbides in the steel to increase the strength of the hot-rolled steel sheet. In order to more reliably obtain the effects of the above action, the Mo content is preferably 0.01% or more, more preferably 0.02% or more. However, even if the Mo content exceeds 1.00%, the effect of the above action will be saturated, which is not economically preferable. Therefore, the Mo content is set to 1.00% or less. Mo content is preferably 0.50% or less, more preferably 0.20% or less.
 上述したようにNiは、熱延鋼板の焼入性を高める作用を有する。またNiは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。上記作用による効果をより確実に得るためには、Ni含有量は0.02%以上とすることが好ましい。Niは、高価な元素であるため、多量に含有させることは経済的に好ましくない。したがって、Ni含有量は2.00%以下とする。 As mentioned above, Ni has the effect of increasing the hardenability of the hot rolled steel sheet. Further, when containing Cu, Ni has the effect of effectively suppressing intergranular cracking of the slab caused by Cu. In order to more reliably obtain the effects of the above action, the Ni content is preferably 0.02% or more. Since Ni is an expensive element, it is economically undesirable to contain a large amount of Ni. Therefore, the Ni content is set to 2.00% or less.
 上述したようにBは、熱延鋼板の焼入れ性を高める作用を有する。この作用による効果をより確実に得るためには、B含有量を0.0001%以上とすることが好ましく、0.0002%以上とすることがより好ましい。しかし、B含有量が0.0100%超では、熱延鋼板の成形性が著しく低下するため、B含有量は0.0100%以下とする。B含有量は、0.0050%以下とすることが好ましい。 As mentioned above, B has the effect of increasing the hardenability of the hot rolled steel sheet. In order to more reliably obtain the effect of this action, the B content is preferably 0.0001% or more, more preferably 0.0002% or more. However, if the B content exceeds 0.0100%, the formability of the hot rolled steel sheet will be significantly reduced, so the B content is set to 0.0100% or less. The B content is preferably 0.0050% or less.
 Ca:0.0005~0.0200%
 Mg:0.0005~0.0200%
 REM:0.0005~0.1000%
 Bi:0.0005~0.0200%
 Ca、MgおよびREMは、いずれも、鋼中の介在物の形状を好ましい形状に調整することにより、熱延鋼板の延性を高める作用を有する。また、Biは、凝固組織を微細化することにより、熱延鋼板の延性を高める作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。上記作用による効果をより確実に得るためには、Ca、Mg、REMおよびBiのいずれか1種以上の含有量を0.0005%以上とすることが好ましい。しかし、Ca含有量またはMg含有量が0.0200%を超えると、あるいはREM含有量が0.1000%を超えると、鋼中に介在物が過剰に生成され、却って熱延鋼板の延性を低下させる場合がある。また、Bi含有量を0.0200%超としても、上記作用による効果は飽和してしまい、経済的に好ましくない。したがって、Ca含有量およびMg含有量を0.0200%以下、REM含有量を0.1000%以下、並びにBi含有量を0.0200%以下とする。Bi含有量は、好ましくは0.0100%以下である。
 ここで、REMは、Sc、Yおよびランタノイドからなる合計17元素を指し、上記REMの含有量は、これらの元素の合計含有量を指す。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
Ca: 0.0005-0.0200%
Mg: 0.0005-0.0200%
REM: 0.0005-0.1000%
Bi: 0.0005-0.0200%
Ca, Mg, and REM all have the effect of increasing the ductility of the hot rolled steel sheet by adjusting the shape of inclusions in the steel to a preferable shape. Furthermore, Bi has the effect of increasing the ductility of the hot rolled steel sheet by making the solidification structure finer. Therefore, one or more of these elements may be contained. In order to more reliably obtain the effects of the above action, the content of any one or more of Ca, Mg, REM and Bi is preferably 0.0005% or more. However, if the Ca content or Mg content exceeds 0.0200%, or if the REM content exceeds 0.1000%, inclusions will be excessively generated in the steel, which will actually reduce the ductility of the hot rolled steel sheet. There may be cases where Furthermore, even if the Bi content exceeds 0.0200%, the effect of the above action will be saturated, which is not economically preferable. Therefore, the Ca content and Mg content should be 0.0200% or less, the REM content should be 0.1000% or less, and the Bi content should be 0.0200% or less. Bi content is preferably 0.0100% or less.
Here, REM refers to a total of 17 elements consisting of Sc, Y, and lanthanoids, and the content of REM refers to the total content of these elements. In the case of lanthanoids, they are added industrially in the form of mischmetal.
 As:0.001~0.100%
 Asは、オーステナイト単相化温度を低下させることにより、旧オーステナイト粒を細粒化させて、熱延鋼板の延性の向上に寄与する。この効果を確実に得るためには、As含有量を0.001%以上とすることが好ましい。
 一方、Asを多量に含有させても上記効果は飽和するため、As含有量は0.100%以下とする。
As: 0.001-0.100%
By lowering the austenite single phase temperature, As makes prior austenite grains finer and contributes to improving the ductility of the hot rolled steel sheet. In order to reliably obtain this effect, it is preferable that the As content be 0.001% or more.
On the other hand, since the above effect is saturated even if a large amount of As is contained, the As content is set to 0.100% or less.
 Zr:0.01~1.00%
 Co:0.01~1.00%
 Zn:0.01~1.00%
 W :0.01~1.00%
 Zr+Co+Zn+W≦1.00% …(B)
 Sn:0.01~0.05%
 ただし、前記式(B)中の各元素記号は、当該元素の質量%での含有量を示し、当該元素を含有しない場合は0%を代入する。
 Zr、Co、ZnおよびWについて、本発明者らは、これらの元素を合計で1.00%以下含有させても、本実施形態に係る熱延鋼板の効果は損なわれないことを確認している。そのため、Zr、Co、ZnおよびWのうち1種または2種以上を合計で1.00%以下含有させてもよい。すなわち、前記式(B)の左辺の値を1.00%以下としてもよい。Zr、Co、ZnおよびWは含有させなくてもよいため、それぞれの含有量は0%であってもよい。鋼板を固溶強化させて強度を向上させるため、Zr、Co、ZnおよびWの含有量はそれぞれ0.01%以上であってもよい。
 また、本発明者らは、Snを少量含有させても本実施形態に係る熱延鋼板の効果は損なわれないことを確認している。しかし、Snを多量に含有させると熱間圧延時に疵が発生する場合があるため、Sn含有量は0.05%以下とする。Snは含有させなくてもよいため、Sn含有量は0%であってもよい。熱延鋼板の耐食性を高めるため、Sn含有量は0.01%以上としてもよい。
Zr: 0.01~1.00%
Co:0.01~1.00%
Zn: 0.01-1.00%
W: 0.01~1.00%
Zr+Co+Zn+W≦1.00%…(B)
Sn: 0.01~0.05%
However, each element symbol in the formula (B) indicates the content of the element in mass %, and when the element is not contained, 0% is substituted.
Regarding Zr, Co, Zn and W, the present inventors have confirmed that the effect of the hot rolled steel sheet according to the present embodiment is not impaired even if these elements are contained in a total of 1.00% or less. There is. Therefore, one or more of Zr, Co, Zn, and W may be contained in a total amount of 1.00% or less. That is, the value on the left side of the equation (B) may be 1.00% or less. Since Zr, Co, Zn, and W do not need to be contained, their respective contents may be 0%. In order to solid solution strengthen the steel sheet and improve its strength, the contents of Zr, Co, Zn, and W may each be 0.01% or more.
Moreover, the present inventors have confirmed that even if a small amount of Sn is contained, the effect of the hot rolled steel sheet according to the present embodiment is not impaired. However, if a large amount of Sn is contained, defects may occur during hot rolling, so the Sn content is set to 0.05% or less. Since Sn does not need to be contained, the Sn content may be 0%. In order to improve the corrosion resistance of the hot rolled steel sheet, the Sn content may be 0.01% or more.
 上述した熱延鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 熱延鋼板が表面にめっき層を備える場合は、必要に応じて、機械研削等によりめっき層を除去してから、化学組成の分析を行ってもよい。
The chemical composition of the hot-rolled steel sheet described above may be measured by a general analytical method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). In addition, sol. Al may be measured by ICP-AES using a filtrate obtained by thermally decomposing a sample with an acid. C and S may be measured using a combustion-infrared absorption method, N using an inert gas melting-thermal conductivity method, and O using an inert gas melting-non-dispersive infrared absorption method.
When the hot-rolled steel sheet has a plating layer on its surface, the chemical composition may be analyzed after removing the plating layer by mechanical grinding or the like, if necessary.
 熱延鋼板の金属組織
 次に、本実施形態に係る熱延鋼板の金属組織について説明する。
 本実施形態に係る熱延鋼板は、板厚方向の表面から1/4深さ位置における金属組織が、面積%で、残留オーステナイトが3.0%未満であり、フェライトが15.0%以上、60.0%未満であり、パーライトが5.0%未満であり、グレーレベル共起行列法により、前記金属組織のSEM画像を解析することによって得られる、下記式(1)で示されるEntropy値が10.7以上であり、下記式(2)で示されるInverse difference normalized値が1.020以上であり、下記式(3)で示されるCluster Shade値が-8.0×10~8.0×10であり、Mn濃度の標準偏差が0.60質量%以下であり、前記表面を始点として、板厚方向に5μm深さの位置を終点とする領域である最表層領域における固溶Cr濃度が0.10質量%以上であり、前記表面における、球相当半径で0.1μm以上のCr酸化物の個数密度が1.0×10個/cm以下である。
Metal structure of hot rolled steel sheet Next, the metal structure of the hot rolled steel sheet according to the present embodiment will be explained.
The hot-rolled steel sheet according to the present embodiment has a metal structure at a 1/4 depth position from the surface in the thickness direction, in terms of area%, residual austenite is less than 3.0%, ferrite is 15.0% or more, 60.0%, pearlite is less than 5.0%, and the entropy value is obtained by analyzing the SEM image of the metal structure using the gray level co-occurrence matrix method and is expressed by the following formula (1). is 10.7 or more, the Inverse difference normalized value shown by the following formula (2) is 1.020 or more, and the Cluster Shade value shown by the following formula (3) is -8.0×10 5 to 8. 0x105 , the standard deviation of the Mn concentration is 0.60% by mass or less, and the solid solution in the outermost layer region is a region starting from the surface and ending at a depth of 5 μm in the plate thickness direction. The Cr concentration is 0.10% by mass or more, and the number density of Cr oxides having an equivalent sphere radius of 0.1 μm or more on the surface is 1.0×10 4 pieces/cm 2 or less.
 そのため、本実施形態に係る熱延鋼板は、高い強度および限界破断板厚減少率、並びに、優れた延性およびせん断加工性を有するとともに、プレス成形後において優れた疲労特性を得ることができる。
 なお、本実施形態では、板厚方向の表面から1/4深さ位置の領域における金属組織の組織分率、Entropy値、Inverse difference normalized値、Cluster Shade値、およびMn濃度の標準偏差を規定する。その理由は、この位置における金属組織が、鋼板の代表的な金属組織を示すからである。
 また、ここでいう「表面」とは、熱延鋼板がめっき層を備える場合においてはめっき層と鋼板との界面のことをいい、「表面から1/4深さ位置」とは、熱延鋼板の表面から、板厚方向に、板厚の1/4の深さである位置のことをいう。
Therefore, the hot rolled steel sheet according to the present embodiment has high strength and critical thickness reduction rate at rupture, as well as excellent ductility and shear workability, and can obtain excellent fatigue properties after press forming.
In addition, in this embodiment, the microstructure fraction of the metallographic structure, the entropy value, the inverse difference normalized value, the Cluster Shade value, and the standard deviation of the Mn concentration in a region at a depth of 1/4 from the surface in the plate thickness direction are defined. . The reason is that the metal structure at this position shows a typical metal structure of a steel plate.
In addition, the "surface" here refers to the interface between the plating layer and the steel sheet when the hot-rolled steel sheet has a plating layer, and the "1/4 depth position from the surface" refers to the hot-rolled steel sheet. A position at a depth of 1/4 of the thickness of the plate in the thickness direction from the surface of the plate.
 残留オーステナイトの面積率:3.0%未満
 残留オーステナイトは室温でも面心立方格子として存在する金属組織である。残留オーステナイトは、変態誘起塑性(TRIP)により熱延鋼板の延性を高める作用を有する。一方、残留オーステナイトは、せん断加工中には高炭素のマルテンサイトに変態するため、変形中のき裂の起点となり、限界破断板厚減少率低下の原因となる。残留オーステナイトの面積率が3.0%以上では、上記作用が顕在化し、熱延鋼板の限界板厚減少率が低下する。したがって、残留オーステナイトの面積率は3.0%未満とする。残留オーステナイトの面積率は、好ましくは1.5%未満、より好ましくは1.0%未満である。
 残留オーステナイトは少ない程好ましいため、残留オーステナイトの面積率は0%であってもよい。
Area ratio of retained austenite: less than 3.0% Retained austenite is a metal structure that exists as a face-centered cubic lattice even at room temperature. Retained austenite has the effect of increasing the ductility of hot rolled steel sheets through transformation induced plasticity (TRIP). On the other hand, retained austenite transforms into high-carbon martensite during shearing, which becomes the starting point for cracks during deformation and causes a decrease in the rate of thickness reduction at critical rupture. When the area ratio of retained austenite is 3.0% or more, the above-mentioned effect becomes obvious and the critical plate thickness reduction rate of the hot rolled steel sheet decreases. Therefore, the area ratio of retained austenite is set to be less than 3.0%. The area percentage of retained austenite is preferably less than 1.5%, more preferably less than 1.0%.
Since it is preferable to have as little retained austenite as possible, the area ratio of retained austenite may be 0%.
 残留オーステナイトの面積率の測定方法には、X線回折、EBSP(電子後方散乱回折像、Electron Back Scattering Diffraction Pattern)解析、磁気測定による方法などがある。本実施形態では、残留オーステナイトの面積率はX線回折により測定する。 Methods for measuring the area ratio of retained austenite include methods using X-ray diffraction, EBSP (electron back scattering diffraction pattern) analysis, and magnetic measurement. In this embodiment, the area ratio of retained austenite is measured by X-ray diffraction.
 本実施形態におけるX線回折による残留オーステナイト面積率の測定では、まず、熱延鋼板の板厚方向の表面から1/4深さ位置の断面において、圧延方向の任意の位置で1mm以上、圧延方向及び板厚方向に直交する方向における中央を中心に1mm以上の領域における金属組織が観察できるようにサンプルを採取する。上記サンプルを、Co-Kα線を用いて、α(110)、α(200)、α(211)、γ(111)、γ(200)、γ(220)の計6ピークの積分強度を求める。次に、前記積分強度から強度平均法を用いて残留オーステナイトの体積率を算出する。得られた残留オーステナイトの体積率を、残留オーステナイトの面積率とみなす。 In the measurement of the retained austenite area ratio by X-ray diffraction in this embodiment, first, in a cross section at a depth of 1/4 from the surface in the thickness direction of a hot rolled steel sheet, 1 mm or more at any position in the rolling direction, A sample is taken so that the metal structure can be observed in an area of 1 mm or more centered on the center in the direction perpendicular to the plate thickness direction. For the above sample, use Co-Kα rays to determine the integrated intensity of a total of 6 peaks: α(110), α(200), α(211), γ(111), γ(200), and γ(220). . Next, the volume fraction of retained austenite is calculated from the integrated intensity using an intensity averaging method. The obtained volume fraction of retained austenite is regarded as the area fraction of retained austenite.
 フェライトの面積率:15.0%以上、60.0%未満
 フェライトは比較的高温でfccがbccに変態したときに生成する組織である。フェライトは加工硬化率が高いため、熱延鋼板の強度-延性バランスを高める作用がある。上記の作用を得るため、フェライトの面積率は15.0%以上とする。好ましくは20.0%以上であり、より好ましくは25.0%以上であり、より一層好ましくは30.0%以上である。
 一方、フェライトは強度が低いため、面積率が過剰であると所望の強度を得ることができない。このため、フェライト面積率は60.0%未満とする。好ましくは50.0%以下であり、より好ましくは45.0%以下である。
Area ratio of ferrite: 15.0% or more and less than 60.0% Ferrite is a structure that is generated when fcc is transformed into bcc at a relatively high temperature. Since ferrite has a high work hardening rate, it has the effect of increasing the strength-ductility balance of hot rolled steel sheets. In order to obtain the above effect, the area ratio of ferrite is set to 15.0% or more. Preferably it is 20.0% or more, more preferably 25.0% or more, even more preferably 30.0% or more.
On the other hand, since ferrite has low strength, if the area ratio is excessive, desired strength cannot be obtained. Therefore, the ferrite area ratio is set to less than 60.0%. Preferably it is 50.0% or less, more preferably 45.0% or less.
 パーライトの面積率:5.0%未満
 パーライトは、フェライト同士の間にセメンタイトが層状に析出したラメラ状の金属組織であり、またベイナイトやマルテンサイトと比較すると軟質な金属組織である。パーライトの面積率が5.0%以上であると、パーライトに含まれるセメンタイトに炭素が消費され、残部組織であるマルテンサイトおよびベイナイトの強度が低下し、所望の強度を得ることができない。したがって、パーライトの面積率は5.0%未満とする。パーライトの面積率は、好ましくは3.0%以下である。
 熱延鋼板の伸びフランジ性を向上させるために、パーライトの面積率は可能な限り低減することが好ましく、パーライトの面積率は0%であることがより一層好ましい。
Area ratio of pearlite: less than 5.0% Pearlite is a lamellar metal structure in which cementite is precipitated in layers between ferrite particles, and is a soft metal structure compared to bainite and martensite. If the area ratio of pearlite is 5.0% or more, carbon is consumed by cementite contained in pearlite, and the strength of martensite and bainite, which are the remaining structures, decreases, making it impossible to obtain the desired strength. Therefore, the area ratio of pearlite is made less than 5.0%. The area ratio of pearlite is preferably 3.0% or less.
In order to improve the stretch flangeability of the hot rolled steel sheet, it is preferable to reduce the area ratio of pearlite as much as possible, and it is even more preferable that the area ratio of pearlite is 0%.
 なお、本実施形態に係る熱延鋼板には、残留オーステナイト、フェライトおよびパーライト以外の残部組織として、合計の面積率が32.0%超、85.0%以下のベイナイト、マルテンサイトおよび焼き戻しマルテンサイトの1種または2種以上からなる硬質組織が含まれる。 In addition, the hot rolled steel sheet according to the present embodiment includes bainite, martensite, and tempered marten with a total area ratio of more than 32.0% and 85.0% or less as residual structures other than retained austenite, ferrite, and pearlite. A hard tissue consisting of one or more types of sites is included.
 フェライトおよびパーライトの面積率の測定は、以下の方法で行う。まず、圧延方向及び板厚方向に直交する方向における中央において、圧延方向に平行な板厚断面で、板厚方向の表面から1/4深さ位置の領域における金属組織が観察できるようにサンプルを採取する。サンプルは、圧延方向に10mm程度観察できる大きさとする。次に、上記サンプル断面を研磨し鏡面に仕上げた後、室温においてアルカリ性溶液を含まない、粒径0.25μmのコロイダルシリカを用いて8分間研磨し、サンプルの表層に導入されたひずみを除去する。上記サンプル断面の圧延方向の任意の位置で200μm以上、板厚方向の表面から1/4深さ位置を中心に200μm以上の領域を、圧延方向及び板厚方向に0.1μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。上記測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製DVC5型検出器)とで構成されたEBSD解析装置を用いる。この際、EBSD解析装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射レベルは62とする。なお、観察視野数は5視野とする。 The area ratio of ferrite and pearlite is measured by the following method. First, at the center in the direction orthogonal to the rolling direction and the plate thickness direction, the sample was prepared so that the metal structure in a region 1/4 depth from the surface in the plate thickness direction could be observed in a plate thickness section parallel to the rolling direction. Collect. The sample has a size that allows observation of about 10 mm in the rolling direction. Next, the cross section of the sample is polished to a mirror finish, and then polished for 8 minutes at room temperature using colloidal silica with a particle size of 0.25 μm that does not contain an alkaline solution to remove the strain introduced into the surface layer of the sample. . An area of 200 μm or more at any position in the rolling direction of the above sample cross section, and a region of 200 μm or more centering on a 1/4 depth position from the surface in the plate thickness direction, is measured using an electron beam at measurement intervals of 0.1 μm in the rolling direction and the plate thickness direction. Obtain crystal orientation information by measuring by backscattering diffraction method. For the above measurements, an EBSD analysis device consisting of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used. At this time, the degree of vacuum in the EBSD analyzer is 9.6×10 −5 Pa or less, the acceleration voltage is 15 kV, the irradiation current level is 13, and the electron beam irradiation level is 62. Note that the number of observation fields is 5.
 さらに、前述の結晶方位情報を得たそれぞれの同一観察視野において反射電子像を撮影する。なお、この像の撮影では、加速電圧は15kV、照射電流レベルは12~13、電子線の照射レベルは62とする。焦点距離(WD:Working Distance)は5mmとする。当該反射電子像と前記結晶方位情報とから、フェライトとパーライトの面積率を同定する。まず、反射電子像において、セメンタイトがラメラ状に析出した結晶粒を特定する。反射電子像においては、セメンタイトが白いコントラストとして観察される。このパーライト中のセメンタイトはラメラの形態を有しており、ラメラ形態の白いコントラストが1.0μm以下の間隔で観察された結晶粒をパーライトの結晶粒とする。当該結晶粒の面積率を算出することで、パーライトの面積率を得る。
 その後、パーライトと判別された結晶粒を除く結晶粒に対し、得られた結晶方位情報をEBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Grain Average Misorientation」機能を用いて、Grain Average Misorientation値が1.0°以下の領域をフェライトと判定する。この際、Grain Tolerance Angleは15°に設定しておき、フェライトと判定された領域の面積率を求めることで、フェライトの面積率を得る。
Further, backscattered electron images are taken in each of the same observation fields from which the crystal orientation information described above was obtained. Note that in photographing this image, the accelerating voltage is 15 kV, the irradiation current level is 12 to 13, and the electron beam irradiation level is 62. The focal length (WD: Working Distance) is 5 mm. The area ratio of ferrite and pearlite is identified from the backscattered electron image and the crystal orientation information. First, crystal grains in which cementite is precipitated in a lamellar shape are identified in a backscattered electron image. In the backscattered electron image, cementite is observed as a white contrast. The cementite in this pearlite has a lamellar form, and the crystal grains in which the white contrast of the lamellar form is observed at intervals of 1.0 μm or less are defined as pearlite crystal grains. By calculating the area ratio of the crystal grains, the area ratio of pearlite is obtained.
After that, the obtained crystal orientation information for the crystal grains excluding the crystal grains determined to be pearlite was used using the "Grain Average Misorientation" function installed in the software "OIM Analysis (registered trademark)" included with the EBSD analyzer. Then, a region where the Grain Average Misorientation value is 1.0° or less is determined to be ferrite. At this time, the Grain Tolerance Angle is set to 15 degrees, and the area ratio of ferrite is obtained by determining the area ratio of the region determined to be ferrite.
  残部組織の面積率は、100%から、残留オーステナイト、フェライトおよびパーライトの面積率を差し引くことで得る。
 また、本実施形態において熱延鋼板の圧延方向は以下の方法により判別する。
 まず、熱延鋼板の表面と平行な断面が観察できるように試験片を採取する。板圧方向で採取した試験片の断面を鏡面研磨で仕上げた後、光学顕微鏡を用いて観察する。観察面は板厚方向で1/4から1/2の範囲の任意の深さで板の表面と平行な面とし、当該観察面において、結晶粒の延伸方向と平行な方向を圧延方向と判別する。
The area ratio of the residual structure is obtained by subtracting the area ratio of retained austenite, ferrite, and pearlite from 100%.
Furthermore, in this embodiment, the rolling direction of the hot rolled steel sheet is determined by the following method.
First, a test piece is taken so that a cross section parallel to the surface of the hot rolled steel sheet can be observed. After finishing the cross section of the test piece taken in the plate pressure direction with mirror polishing, it is observed using an optical microscope. The observation plane is a plane parallel to the surface of the plate at an arbitrary depth in the range of 1/4 to 1/2 in the plate thickness direction, and on the observation plane, the direction parallel to the stretching direction of the crystal grains is determined as the rolling direction. do.
 Entropy値:10.7以上、Inverse difference normalized値:1.020以上
 2次せん断面の発生を抑制するには、十分にせん断面が形成された後に破断面を形成させることが重要であり、せん断加工時に工具の刃先から早期にき裂が発生することを抑制する必要がある。そのためには、金属組織の周期性が低く、且つ金属組織の均一性が高いことが重要である。本実施形態では、金属組織の周期性を示すEntropy値(E値)および金属組織の均一性を示すInverse difference normalized値(I値)を制御することで、2次せん断面の発生を抑制する。
Entropy value: 10.7 or more, Inverse difference normalized value: 1.020 or more In order to suppress the generation of secondary shear surfaces, it is important to form a fracture surface after a sufficient shear surface has been formed. It is necessary to suppress early crack formation from the cutting edge of the tool during machining. For this purpose, it is important that the periodicity of the metal structure is low and the uniformity of the metal structure is high. In this embodiment, the generation of secondary shear planes is suppressed by controlling the entropy value (E value) indicating the periodicity of the metal structure and the inverse difference normalized value (I value) indicating the uniformity of the metal structure.
 E値は金属組織の周期性を表す。バンド状組織が形成する等の影響で輝度が周期的に配列している、すなわち金属組織の周期性が高い場合にはE値は低下する。本実施形態では、周期性が低い金属組織とする必要があるため、E値を高める必要がある。E値が10.7未満であると、2次せん断面が発生しやすくなる。周期的に配列した組織を起点として、せん断加工のごく早期にせん断工具の刃先からき裂が発生して破断面が形成され、その後再びせん断面が形成される。これにより、2次せん断面が発生しやすくなると推定される。よって、E値は10.7以上とする。好ましくは10.8以上であり、より好ましくは11.0以上である。E値は高い程好ましく、上限は特に規定しないが、13.0以下、12.5以下、または12.0以下としてもよい。 The E value represents the periodicity of the metal structure. When the brightness is arranged periodically due to the formation of a band-like structure, that is, when the periodicity of the metal structure is high, the E value decreases. In this embodiment, since it is necessary to have a metal structure with low periodicity, it is necessary to increase the E value. If the E value is less than 10.7, secondary shear surfaces are likely to occur. Starting from the periodically arranged structure, cracks occur from the cutting edge of the shearing tool very early in the shearing process, forming a fractured surface, and then a sheared surface is formed again. It is estimated that this makes secondary shear planes more likely to occur. Therefore, the E value is set to 10.7 or more. Preferably it is 10.8 or more, more preferably 11.0 or more. The higher the E value is, the more preferable it is, and although the upper limit is not particularly specified, it may be 13.0 or less, 12.5 or less, or 12.0 or less.
 I値は金属組織の均一性を表し、一定の輝度を持つ領域の面積が広いほど上昇する。I値が高いことは、金属組織の均一性が高いことを意味する。本実施形態では、均一性が高い金属組織とする必要があるため、I値を高める必要がある。I値が1.020未満であると、結晶粒内の析出物および元素濃度差に起因する硬度分布の影響により、せん断加工のごく早期にせん断工具の刃先からき裂が発生して破断面が形成され、その後再びせん断面が形成される。これにより、2次せん断面が発生しやすくなると推定される。よって、I値は1.020以上とする。好ましくは1.025以上であり、より好ましくは1.030以上である。I値は高い程好ましく、上限は特に規定しないが、1.200以下、1.150以下、または1.100以下としてもよい。 The I value represents the uniformity of the metal structure, and increases as the area of a region with a certain brightness increases. A high I value means that the uniformity of the metal structure is high. In this embodiment, since it is necessary to have a highly uniform metal structure, it is necessary to increase the I value. If the I value is less than 1.020, cracks will occur from the cutting edge of the shearing tool at the very early stage of shearing and a fractured surface will form due to the influence of hardness distribution caused by precipitates and element concentration differences within the crystal grains. The shear plane is then formed again. It is estimated that this makes secondary shear planes more likely to occur. Therefore, the I value is set to 1.020 or more. Preferably it is 1.025 or more, more preferably 1.030 or more. The higher the I value, the better, and although the upper limit is not particularly specified, it may be 1.200 or less, 1.150 or less, or 1.100 or less.
 Cluster Shade値:-8.0×10~8.0×10
 Cluster Shade値(CS値)は金属組織の歪度を示す。CS値は、金属組織を撮影して得られた画像中の輝度の平均値に対し、平均値を上回る輝度を持つ点が多いと正の値となり、平均値を下回る輝度を持つ点が多いと負の値となる。
Cluster Shade value: -8.0×10 5 ~8.0×10 5
The Cluster Shade value (CS value) indicates the degree of distortion of the metal structure. The CS value is a positive value if there are many points with brightness above the average value of the average value of brightness in the image obtained by photographing the metal structure, and a positive value if there are many points with brightness below the average value. It becomes a negative value.
 電子顕微鏡の2次電子像においては、観察対象物の表面凹凸が大きい場所では輝度が大きくなり、凹凸が小さい場所では輝度が小さくなる。観察対象物の表面の凹凸は、金属組織内の粒径や強度分布に大きく影響を受ける。本実施形態におけるCS値は、金属組織の強度のばらつきが大きいまたは組織単位が小さいと大きくなり、強度のばらつきが小さいまたは組織単位が大きいと小さくなる。 In a secondary electron image of an electron microscope, the brightness increases where the surface of the object to be observed has large irregularities, and the brightness decreases where the irregularities are small. The unevenness of the surface of an object to be observed is greatly affected by the grain size and intensity distribution within the metal structure. The CS value in this embodiment increases when the strength variation of the metal structure is large or the structure unit is small, and becomes small when the strength variation is small or the structure unit is large.
 本実施形態では、CS値を0に近い所望の範囲に保つことが重要である。CS値が-8.0×10未満であると、熱延鋼板の限界破断板厚減少率が低下する。これは、金属組織中に粒径の大きい結晶粒が存在し、極限変形中にその結晶粒が優先的に破壊するためと推定される。そのため、CS値は-8.0×10以上とする。好ましくは-7.5×10以上であり、より一層好ましくは-7.0×10以上である。
 一方、CS値が8.0×10超であると、熱延鋼板の限界破断板厚減少率が低下する。これは、金属組織中の微視的な強度のばらつきが大きく、極限変形中のひずみが局所に集中し破断し易くなるためと推定される。そのため、CS値は8.0×10以下とする。好ましくは7.5×10以下であり、より一層好ましくは7.0×10以下である。
In this embodiment, it is important to keep the CS value within a desired range close to zero. When the CS value is less than −8.0×10 5 , the critical thickness reduction rate at break of the hot rolled steel sheet decreases. This is presumed to be because crystal grains with large grain sizes exist in the metal structure, and these crystal grains are preferentially destroyed during ultimate deformation. Therefore, the CS value is set to -8.0×10 5 or more. It is preferably -7.5×10 5 or more, and even more preferably -7.0×10 5 or more.
On the other hand, when the CS value is more than 8.0×10 5 , the critical thickness reduction rate at break of the hot rolled steel sheet decreases. This is presumed to be because the microscopic strength variation in the metal structure is large, and the strain during ultimate deformation is locally concentrated, making it easier to break. Therefore, the CS value is set to 8.0×10 5 or less. It is preferably 7.5×10 5 or less, and even more preferably 7.0×10 5 or less.
 E値、I値およびCS値は以下の方法により得ることができる。
 本実施形態において、E値、I値およびCS値を算出するために撮影するSEM画像の撮影領域は、圧延方向及び板厚方向に直交する方向における中央において、圧延方向に平行な断面で、板厚方向の表面から1/4深さ位置を中心に160μm×160μmとし、観察視野数は5視野とする。SEM画像の撮影には、株式会社日立ハイテクノロジーズ製SU-6600ショットキー電子銃を使用し、エミッタをタングステンとし、加速電圧を1.5kVとする。以上の設定のもと、倍率1000倍で、256階調のグレースケールにてSEM画像を出力する。
The E value, I value and CS value can be obtained by the following method.
In this embodiment, the imaging area of the SEM image taken to calculate the E value, I value, and CS value is a cross section parallel to the rolling direction at the center in the direction perpendicular to the rolling direction and the sheet thickness direction. The area is 160 μm×160 μm centered at a 1/4 depth position from the surface in the thickness direction, and the number of observation fields is 5. To take the SEM images, an SU-6600 Schottky electron gun manufactured by Hitachi High-Technologies Corporation is used, with a tungsten emitter and an accelerating voltage of 1.5 kV. Based on the above settings, a SEM image is output at a magnification of 1000 times and a gray scale of 256 gradations.
 次に、得られたSEM画像を880×880ピクセルの領域(観察領域は実寸で160μm×160μm)に切り出した画像に、非特許文献3に記載の、コントラスト強調の制限倍率を2.0とした、タイルグリッドサイズが8×8の平滑化処理を施す。90度を除いて、0度から179度まで1度毎に反時計回りに平滑化処理後のSEM画像を回転させ、1度毎に画像を作成することで、合計で179枚の画像を得る。次に、これら179枚の画像それぞれに対し、非特許文献1に記載のGLCM法を用いて、隣接するピクセル間の輝度の頻度値を行列の形式にて採取する。 Next, the obtained SEM image was cut out into an area of 880 x 880 pixels (the observation area is 160 μm x 160 μm in actual size), and the limit magnification of contrast enhancement described in Non-Patent Document 3 was set to 2.0. , performs smoothing processing with a tile grid size of 8×8. By rotating the smoothed SEM image counterclockwise in 1 degree increments from 0 degrees to 179 degrees, excluding 90 degrees, and creating images in 1 degree increments, a total of 179 images are obtained. . Next, for each of these 179 images, frequency values of brightness between adjacent pixels are collected in the form of a matrix using the GLCM method described in Non-Patent Document 1.
 以上の方法により採取された179個の頻度値の行列を、kを元画像からの回転角度として、p(k=0・・・89、91、・・・179)と表現する。各画像に対し、生成されたpを全てのk(k=0・・・89、91・・・179)について合計した後に、各成分の総和が1となるように規格化した256×256の行列Pを算出する。更に、非特許文献2に記載の下記式(1)~(5)を用いて、E値、I値およびCS値をそれぞれ算出する。なお、全視野について測定して得られた平均値を算出する。
 下記式(1)~式(5)中のP(i,j)はグレーレベル共起行列であり、行列Pのi行j列目の値をP(i,j)と表記している。なお、前述のとおり256×256の行列Pを用いて算出されるため、この点を強調したい場合、下記式(1)~(5)を下記式(1’)~(5’)に修正することができる。ここで、下記式(2)中のLはSEM画像の取り得るグレースケールのレベル数(Quantization levels of grayscale)であり、本実施形態では上述の通り256階調のグレースケールにてSEM画像を出力するため、Lは256である。下記式(2)および(3)中のiおよびjは1~前記Lの自然数であり、下記式(3)中のμおよびμはそれぞれ下記式(4)および(5)で示される。
下記式(1’)~(5’)では、行列Pのi行j列目の値をPijと表記している。
The matrix of 179 frequency values collected by the above method is expressed as p k (k=0...89, 91,...179), where k is the rotation angle from the original image. For each image, the generated p k is summed for all k (k = 0...89, 91...179), and then normalized so that the sum of each component is 1. Calculate the matrix P of . Furthermore, using the following formulas (1) to (5) described in Non-Patent Document 2, the E value, I value, and CS value are calculated, respectively. Note that the average value obtained by measuring the entire visual field is calculated.
P(i,j) in the following equations (1) to (5) is a gray level co-occurrence matrix, and the value at the i-th row and j-th column of the matrix P is expressed as P(i,j). As mentioned above, it is calculated using the 256 x 256 matrix P, so if you want to emphasize this point, modify the following formulas (1) to (5) to the following formulas (1') to (5'). be able to. Here, L in the following formula (2) is the number of grayscale levels that the SEM image can take (Quantization levels of grayscale), and in this embodiment, as described above, the SEM image is output with a grayscale of 256 gradations. Therefore, L is 256. i and j in the following formulas (2) and (3) are natural numbers from 1 to the above L, and μ x and μ y in the following formula (3) are shown by the following formulas (4) and (5), respectively. .
In formulas (1') to (5') below, the value at the i-th row and j-th column of the matrix P is expressed as P ij .
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 Mn濃度の標準偏差:0.60質量%以下
 本実施形態に係る熱延鋼板のMn濃度の標準偏差は0.60質量%以下である。これにより、硬質相を均一に分散させることができ、せん断加工のごく早期にせん断工具の刃先からき裂が発生することを防ぐことができる。その結果、2次せん断面の発生を抑制することができる。Mn濃度の標準偏差は、0.50質量%以下が好ましく、0.47質量%以下がより好ましい。Mn濃度の標準偏差の下限は、過大バリの抑制の観点から、その値は小さいほど望ましいが、製造プロセスの制約より、実質的な下限は0.10質量%である。
Standard deviation of Mn concentration: 0.60% by mass or less The standard deviation of Mn concentration of the hot rolled steel sheet according to the present embodiment is 0.60% by mass or less. Thereby, the hard phase can be uniformly dispersed, and it is possible to prevent cracks from forming at the cutting edge of the shearing tool very early in the shearing process. As a result, the generation of secondary shear planes can be suppressed. The standard deviation of the Mn concentration is preferably 0.50% by mass or less, more preferably 0.47% by mass or less. The lower limit of the standard deviation of the Mn concentration is preferably as small as possible from the viewpoint of suppressing excessive burrs, but due to manufacturing process constraints, the actual lower limit is 0.10% by mass.
 Mn濃度の標準偏差は以下の方法により得ることができる。まず、圧延方向及び板厚方向に直交する方向における中央において、圧延方向に平行な断面で、板厚方向の表面から1/4深さ位置における領域が観察できるようにサンプルを採取する。サンプルは、測定装置にもよるが、圧延方向に10mm程度観察できる大きさとする。次に、上記サンプルを鏡面研磨した後、電子プローブマイクロアナライザ(EPMA)を用いて、Mn濃度の標準偏差を測定する。測定条件は加速電圧を15kVとし、倍率を5000倍として試料圧延方向に20μm及び板厚方向の表面から1/4深さ位置を中心に試料板厚方向に20μmの範囲におけるMn濃度の分布像を測定する。より具体的には、測定間隔を0.1μmとし、40000か所以上のMn濃度を測定する。次いで、全測定点から得られたMn濃度に基づいて標準偏差を算出することで、Mn濃度の標準偏差を得る。 The standard deviation of Mn concentration can be obtained by the following method. First, a sample is taken at the center in a direction perpendicular to the rolling direction and the thickness direction so that a region at a depth of 1/4 from the surface in the thickness direction can be observed in a cross section parallel to the rolling direction. The size of the sample is such that it can be observed about 10 mm in the rolling direction, although it depends on the measuring device. Next, after mirror polishing the sample, the standard deviation of the Mn concentration is measured using an electron probe microanalyzer (EPMA). The measurement conditions were an accelerating voltage of 15 kV, a magnification of 5000 times, and a distribution image of Mn concentration in a range of 20 μm in the sample rolling direction and 20 μm in the sample plate thickness direction centered on a 1/4 depth position from the surface in the plate thickness direction. Measure. More specifically, the Mn concentration is measured at 40,000 or more locations with a measurement interval of 0.1 μm. Next, the standard deviation of the Mn concentration is obtained by calculating the standard deviation based on the Mn concentration obtained from all measurement points.
 最表層領域における固溶Cr濃度:0.10質量%以上
 本発明者らは、最表層領域(板厚方向の表面から5μm深さの領域)における固溶Cr濃度が高い場合において、表面における、球相当半径で0.1μm以上のCr酸化物の個数密度を低減することで、熱延鋼板のプレス成形後における疲労特性の劣化を抑制できることを知見した。最表層領域における固溶Cr濃度が0.10質量%未満であると、熱延鋼板のプレス成形後における疲労特性の劣化を抑制することができない。そのため、最表層領域における固溶Cr濃度は0.10質量%以上とする。最表層領域における固溶Cr濃度は、好ましくは0.20質量%以上であり、より好ましくは0.40質量%以上である。
 最表層領域における固溶Cr濃度は5.00質量%以下としてもよい。
 なお、本実施形態において板厚方向の表面から5μm深さの領域とは、熱延鋼板の表面を始点として、板厚方向に5μm深さの位置を終点とする範囲の板厚方向の深さを有する層状の領域のことをいう。ここでいう「表面」とは上述の通り、熱延鋼板がめっき層を備える場合においてはめっき層と鋼板との界面のことをいう。
Solid solution Cr concentration in the outermost layer region: 0.10% by mass or more The present inventors found that when the solid solution Cr concentration in the outermost layer region (a region 5 μm deep from the surface in the plate thickness direction) is high, It has been found that by reducing the number density of Cr oxides with a sphere equivalent radius of 0.1 μm or more, it is possible to suppress deterioration of fatigue properties of hot rolled steel sheets after press forming. If the solid solution Cr concentration in the outermost layer region is less than 0.10% by mass, deterioration of fatigue properties after press forming of the hot rolled steel sheet cannot be suppressed. Therefore, the solid solution Cr concentration in the outermost layer region is set to 0.10% by mass or more. The solid solution Cr concentration in the outermost layer region is preferably 0.20% by mass or more, more preferably 0.40% by mass or more.
The solid solution Cr concentration in the outermost layer region may be 5.00% by mass or less.
In this embodiment, the region 5 μm deep from the surface in the thickness direction is the depth in the thickness direction of the range starting from the surface of the hot rolled steel sheet and ending at a position 5 μm deep in the thickness direction. A layered region with As mentioned above, the "surface" here refers to the interface between the plating layer and the steel sheet when the hot rolled steel sheet includes a plating layer.
 最表層領域における固溶Cr濃度は、GD-MS(Glow Discharge-Mass Spectrometry)解析により分析することができる。GD-MS解析は、放電時間の経過と共に、熱延鋼板の表面から深さ方向への組成の変化を追跡する分析方法である。
 本実施形態では、熱延鋼板の任意の位置からサンプルを採取し、そのサンプルについて板厚方向にGD-MS解析したときの、板厚方向の表面から5μm深さの領域(表面を始点として、板厚方向に5μm深さの位置を終点とする領域)におけるCr濃度の質量%での平均値を求める。この操作を、任意の3か所以上(好ましくは5か所以上)で行い、得られた値の平均値を算出することで、最表層領域における固溶Cr濃度を得る。
 熱延鋼板が表面にめっき層を備える場合には、GD-MS分析したときの、Fe濃度が90質量%となる深さ位置をめっき層と熱延鋼板との界面、すなわち熱延鋼板の表面とみなす。
The solid solution Cr concentration in the outermost layer region can be analyzed by GD-MS (Glow Discharge-Mass Spectrometry) analysis. GD-MS analysis is an analysis method that tracks changes in composition from the surface of a hot rolled steel sheet in the depth direction as the discharge time progresses.
In this embodiment, when a sample is taken from an arbitrary position of a hot rolled steel sheet and GD-MS analysis is performed on the sample in the sheet thickness direction, a region 5 μm deep from the surface in the sheet thickness direction (starting from the surface) The average value of the Cr concentration in mass % in a region whose end point is a position 5 μm deep in the plate thickness direction is determined. This operation is performed at any three or more locations (preferably five or more locations) and the average value of the obtained values is calculated to obtain the solid solution Cr concentration in the outermost layer region.
When the hot-rolled steel sheet has a plating layer on the surface, the depth position where the Fe concentration is 90% by mass when analyzed by GD-MS is the interface between the plating layer and the hot-rolled steel sheet, that is, the surface of the hot-rolled steel sheet. regarded as.
 表面における、球相当半径で0.1μm以上のCr酸化物の個数密度:1.0×10個/cm以下
 表面における、球相当半径で0.1μm以上のCr酸化物の個数密度が1.0×10個/cm超であると、熱延鋼板をプレス成形した際、表面粗さが大きくなる。この表面粗さは、プレス部品の疲労特性を劣化させるため、小さい方が好ましい。ここで定義するCr酸化物は球相当半径で0.1μm以上のものであり、比較的粗大なものである。この粗大なCr酸化物により熱延鋼板と金型との間の摺動が阻害され、表面粗さの増大の原因になると考えられる。一般的に、Cr酸化物はスケールの最下部に存在することに加えて地鉄との密着性が高いため、Cr含有鋼において表面におけるCr酸化物の個数密度を低減することは困難である。本実施形態では、デスケーリング時の温度と粗圧延の温度・圧下率とを制御することにより、この課題を解決する。そのため、表面における、球相当半径で0.1μm以上のCr酸化物の個数密度は1.0×10個/cm以下とする。表面における、球相当半径で0.1μm以上のCr酸化物の個数密度は、好ましくは0.8×10個/cm以下であり、より好ましくは0.6×10個/cm以下である。
 表面における、球相当半径で0.1μm以上のCr酸化物の個数密度は0.1×10個/cm以上としてもよい。
The number density of Cr oxides with a sphere equivalent radius of 0.1 μm or more on the surface: 1.0 × 10 4 pieces/cm 2 or less The number density of Cr oxides with a sphere equivalent radius of 0.1 μm or more on the surface is 1 When the number exceeds .0×10 4 pieces/cm 2 , the surface roughness becomes large when the hot rolled steel sheet is press-formed. Since this surface roughness deteriorates the fatigue characteristics of the pressed part, it is preferable that the surface roughness is small. The Cr oxide defined here has an equivalent sphere radius of 0.1 μm or more, and is relatively coarse. It is thought that this coarse Cr oxide inhibits sliding between the hot rolled steel sheet and the mold, causing an increase in surface roughness. Generally, in addition to being present at the bottom of the scale, Cr oxides have high adhesion to the base iron, so it is difficult to reduce the number density of Cr oxides on the surface of Cr-containing steel. In this embodiment, this problem is solved by controlling the temperature during descaling and the temperature and rolling reduction rate during rough rolling. Therefore, the number density of Cr oxides having an equivalent sphere radius of 0.1 μm or more on the surface is set to be 1.0×10 4 pieces/cm 2 or less. The number density of Cr oxides with a sphere equivalent radius of 0.1 μm or more on the surface is preferably 0.8×10 4 pieces/cm 2 or less, more preferably 0.6×10 4 pieces/cm 2 or less. It is.
The number density of Cr oxides having an equivalent sphere radius of 0.1 μm or more on the surface may be 0.1×10 4 pieces/cm 2 or more.
 表面におけるCr酸化物の個数密度は以下の方法により測定する。
 熱延鋼板から板厚方向における表面が観察面となるようにサンプルを切り出す。日本パーカライジング社製のFC-E6403を用いて観察面を60℃で60秒脱脂した後,アセトンに浸漬して90秒超音波洗浄を行う。その後、倍率3000倍で10視野以上観察する。析出物の組成はEDS(エネルギー分散型X線分光器)により測定することができる。CrおよびOを含有する旧相当半径0.1μm以上の領域の個数を各視野でカウントし、測定面積で除することで、Cr酸化物の個数密度を得る。なお、析出物についてEDS分析して、CrおよびOがそれぞれ20原子パーセント以上検出された場合、その析出物をCr酸化物とみなす。
 なお、熱延鋼板が表面にめっき層を備える場合には、発煙硝酸による酸洗によりめっき層を除去してから、上述の測定を行う。
The number density of Cr oxides on the surface is measured by the following method.
A sample is cut out from a hot-rolled steel plate so that the surface in the thickness direction is the observation surface. After degreasing the observation surface at 60° C. for 60 seconds using FC-E6403 manufactured by Nippon Parkerizing Co., Ltd., it is immersed in acetone and subjected to ultrasonic cleaning for 90 seconds. Thereafter, 10 or more fields of view are observed at a magnification of 3000 times. The composition of the precipitate can be measured by EDS (energy dispersive X-ray spectrometer). The number of regions containing Cr and O with a former equivalent radius of 0.1 μm or more is counted in each field of view and divided by the measurement area to obtain the number density of Cr oxides. Note that if the precipitate is subjected to EDS analysis and 20 atomic percent or more of each of Cr and O is detected, the precipitate is considered to be a Cr oxide.
In addition, when a hot-rolled steel sheet is provided with a plating layer on the surface, the above-mentioned measurement is performed after removing the plating layer by pickling with fuming nitric acid.
 表層領域における平均結晶粒径:3.0μm未満
 表層領域(板厚方向の表面から20μm深さの領域)における結晶粒径を細かくすることで、熱延鋼板の曲げ内割れを抑制することができる。熱延鋼板の強度が高くなるほど、曲げ加工時に曲げ内側から亀裂が生じやすくなる(以下、曲げ内割れと呼称する)。曲げ内割れのメカニズムは以下のように推定される。曲げ加工時には曲げ内側に圧縮の応力が生じる。最初は曲げ内側全体が均一に変形しながら加工が進むが、加工量が大きくなると均一な変形のみで変形を担えなくなり、局所にひずみが集中することで変形が進む(せん断変形帯の発生)。このせん断変形帯が更に成長することで曲げ内側表面からせん断帯に沿った亀裂が発生し、成長する。高強度化に伴い曲げ内割れが発生しやすくなる理由は、高強度化に伴う加工硬化能の低下により、均一な変形が進みにくくなり、変形の偏りが生じやすくなることで、加工早期に(または緩い加工条件で)せん断変形帯が生じるためと推定される。
 なお、本実施形態において板厚方向の表面から20μm深さの領域とは、熱延鋼板の表面を始点として、板厚方向に20μm深さの位置を終点とする範囲の板厚方向の深さを有する層状の領域のことをいう。
Average crystal grain size in the surface layer region: less than 3.0 μm By reducing the grain size in the surface layer region (area 20 μm deep from the surface in the thickness direction), cracking in bending of hot rolled steel sheets can be suppressed. . The higher the strength of the hot-rolled steel sheet, the more likely cracks will occur from the inside of the bend during bending (hereinafter referred to as cracks within bending). The mechanism of cracking in bending is estimated as follows. During bending, compressive stress is generated on the inside of the bend. Initially, processing progresses while the entire inside of the bend deforms uniformly, but as the amount of processing increases, uniform deformation alone is no longer sufficient to support the deformation, and the deformation progresses as strain concentrates locally (generation of shear deformation bands). As this shear deformation band further grows, a crack is generated along the shear band from the inner surface of the bend and grows. The reason why cracks in bending are more likely to occur as strength increases is that due to the decrease in work hardening ability associated with increase in strength, it becomes difficult for uniform deformation to progress, and deformation tends to occur unevenly. This is presumed to be due to the formation of shear deformation bands (or under loose processing conditions).
In this embodiment, the region 20 μm deep from the surface in the thickness direction is the depth in the thickness direction of the range starting from the surface of the hot rolled steel sheet and ending at a position 20 μm deep in the thickness direction. A layered region with
 本発明者らの研究により、曲げ内割れは、引張強さ980MPa級以上の鋼板で顕著になることが分かった。また、本発明者らは、熱延鋼板の表層領域における結晶粒径が細かいほど、局所的なひずみ集中が抑制され、曲げ内割れが発生しにくくなることを見出した。上記作用を得るためには、熱延鋼板の表層領域における平均結晶粒径は3.0μm未満とすることが好ましい。そのため、本実施形態では、表層領域における平均結晶粒径を3.0μm未満としてもよい。表層領域における平均結晶粒径は、より好ましくは2.5μm以下である。表層領域の平均結晶粒径の下限は特に規定しないが、0.5μmとしてもよい。 Through research conducted by the present inventors, it has been found that cracking in bending becomes noticeable in steel plates with a tensile strength of 980 MPa class or higher. Furthermore, the present inventors have discovered that the finer the crystal grain size in the surface layer region of a hot rolled steel sheet, the more local strain concentration is suppressed and the occurrence of in-bending cracks becomes less likely. In order to obtain the above effect, the average grain size in the surface layer region of the hot rolled steel sheet is preferably less than 3.0 μm. Therefore, in this embodiment, the average grain size in the surface layer region may be less than 3.0 μm. The average crystal grain size in the surface layer region is more preferably 2.5 μm or less. Although the lower limit of the average crystal grain size in the surface layer region is not particularly specified, it may be 0.5 μm.
 表層領域における結晶粒径は、EBSP-OIM(Electron Back Scatter Diffraction Pattern-Orientation Image Microscopy)法を用いて測定する。EBSP-OIM法は、走査型電子顕微鏡とEBSP解析装置とを組み合わせた装置及びAMETEK社製のOIM Analysis(登録商標)を用いて行う。EBSP-OIM法の分析可能エリアは、SEMで観察できる領域である。SEMの分解能にもよるが、EBSP-OIM法によれば、最小20nmの分解能で分析できる。 The crystal grain size in the surface layer region is measured using the EBSP-OIM (Electron Back Scatter Diffraction Pattern-Orientation Image Microscopy) method. The EBSP-OIM method is performed using a device that combines a scanning electron microscope and an EBSP analyzer, and OIM Analysis (registered trademark) manufactured by AMETEK. The analyzable area of the EBSP-OIM method is the area that can be observed with SEM. Depending on the resolution of the SEM, the EBSP-OIM method allows analysis with a minimum resolution of 20 nm.
 熱延鋼板の圧延方向に並行な方向と板厚方向で作られる断面で、板厚方向の表面から20μm深さの表層領域において、倍率1200倍にて、少なくとも5視野で測定を行い、隣接する測定点の角度差が5°以上の場所を結晶粒界と定義し、面積平均の結晶粒径を算出する。 A cross section made in the direction parallel to the rolling direction and the plate thickness direction of a hot rolled steel plate, in the surface layer region 20 μm deep from the surface in the plate thickness direction, at a magnification of 1200 times, at least 5 fields of view, and adjacent A location where the angular difference between the measurement points is 5° or more is defined as a grain boundary, and the area average grain size is calculated.
 なお、残留オーステナイトは600℃以下の相変態で生成した組織でなく、転位蓄積の効果を有さないので、本測定方法では、残留オーステナイトは解析の対象としない。EBSP-OIM法では、結晶構造がfccである残留オーステナイトを解析対象から除外することができる。 Note that retained austenite is not a structure generated by phase transformation at 600° C. or lower and does not have the effect of dislocation accumulation, so retained austenite is not analyzed in this measurement method. In the EBSP-OIM method, retained austenite having an fcc crystal structure can be excluded from the analysis target.
 引張強度特性
 熱延鋼板の機械的性質のうち引張強度特性(引張強さ、全伸び)は、JIS Z 2241:2011に準拠して評価する。試験片はJIS Z 2241:2011の5号試験片とする。試験片の採取位置は、圧延方向及び板厚方向に直交する方向の端面から1/4位置とし、板幅方向を試験片の長手方向とすればよい。
Tensile Strength Properties Among the mechanical properties of hot rolled steel sheets, tensile strength properties (tensile strength, total elongation) are evaluated in accordance with JIS Z 2241:2011. The test piece is a JIS Z 2241:2011 No. 5 test piece. The test piece may be collected at a 1/4 position from the end face in a direction perpendicular to the rolling direction and the plate thickness direction, and the plate width direction may be the longitudinal direction of the test piece.
 本実施形態に係る熱延鋼板は、引張強さが980MPa以上である。好ましくは1000MPa以上である。引張強さが980MPa未満であると、適用部品が限定され、車体軽量化の寄与が小さい。上限は特に限定する必要は無いが、金型摩耗抑制の観点から、1780MPaとしてもよい。 The hot rolled steel sheet according to this embodiment has a tensile strength of 980 MPa or more. Preferably it is 1000 MPa or more. If the tensile strength is less than 980 MPa, the applicable parts will be limited and the contribution to reducing the weight of the vehicle body will be small. Although there is no need to specifically limit the upper limit, it may be set to 1780 MPa from the viewpoint of suppressing mold wear.
 また、本実施形態に係る熱延鋼板の全伸びは10.0%以上とすることが好ましく、引張強さと全伸びとの積(TS×El)は13000MPa・%以上とすることが好ましい。全伸びは11.0%以上とすることがより好ましく、13.0%以上とすることがより一層好ましい。また、引張強さと全伸びとの積は14000MPa・%以上とすることがより好ましく、15000MPa・%MPa以上とすることがより一層好ましい。全伸びを10.0%以上且つ引張強さと全伸びとの積を13000MPa・%以上とすることで、適用部品が限定されることなく、車体軽量化に大きく寄与することができる。 Further, the total elongation of the hot rolled steel sheet according to the present embodiment is preferably 10.0% or more, and the product of tensile strength and total elongation (TS×El) is preferably 13000 MPa·% or more. The total elongation is more preferably 11.0% or more, even more preferably 13.0% or more. Further, the product of tensile strength and total elongation is more preferably 14,000 MPa·% or more, and even more preferably 15,000 MPa·% MPa or more. By setting the total elongation to 10.0% or more and the product of tensile strength and total elongation to 13000 MPa·% or more, the applicable parts are not limited and it can greatly contribute to reducing the weight of the vehicle body.
 板厚
 本実施形態に係る熱延鋼板の板厚は特に限定されないが、0.5~8.0mmとしてもよい。熱延鋼板の板厚が0.5mm未満では、圧延完了温度の確保が困難になるとともに圧延荷重が過大となって、熱間圧延が困難となる場合がある。したがって、本実施形態に係る熱延鋼板の板厚は0.5mm以上としてもよい。好ましくは1.2mm以上または1.4mm以上である。一方、板厚が8.0mm超では、金属組織の微細化が困難となり、上述した金属組織を得ることが困難となる場合がある。したがって、板厚は8.0mm以下としてもよい。好ましくは6.0mm以下である。
Plate Thickness The thickness of the hot rolled steel plate according to this embodiment is not particularly limited, but may be 0.5 to 8.0 mm. If the thickness of the hot rolled steel plate is less than 0.5 mm, it may be difficult to ensure the rolling completion temperature and the rolling load may become excessive, making hot rolling difficult. Therefore, the thickness of the hot rolled steel plate according to this embodiment may be 0.5 mm or more. Preferably it is 1.2 mm or more or 1.4 mm or more. On the other hand, if the plate thickness exceeds 8.0 mm, it may be difficult to refine the metal structure and obtain the above-mentioned metal structure. Therefore, the plate thickness may be 8.0 mm or less. Preferably it is 6.0 mm or less.
 めっき層
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板は、表面に耐食性の向上等を目的としてめっき層を備えさせて表面処理鋼板としてもよい。めっき層は電気めっき層であってもよく溶融めっき層であってもよい。電気めっき層としては、電気亜鉛めっき、電気Zn-Ni合金めっき等が例示される。溶融めっき層としては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。めっき付着量は特に制限されず、従来と同様としてよい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施して、耐食性をさらに高めることも可能である。
Plating Layer The hot rolled steel sheet according to the present embodiment having the above-mentioned chemical composition and metallographic structure may be provided with a plating layer on the surface for the purpose of improving corrosion resistance, etc., to form a surface-treated steel sheet. The plating layer may be an electroplating layer or a hot-dip plating layer. Examples of the electroplating layer include electrogalvanizing, electrolytic Zn--Ni alloy plating, and the like. Examples of the hot-dip plating layer include hot-dip galvanizing, alloyed hot-dip galvanizing, hot-dip aluminum plating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, and hot-dip Zn-Al-Mg-Si alloy plating. Ru. The amount of plating deposited is not particularly limited, and may be the same as the conventional one. Further, it is also possible to further improve the corrosion resistance by performing an appropriate chemical conversion treatment (for example, applying and drying a silicate-based chromium-free chemical conversion treatment liquid) after plating.
 製造条件
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板の好適な製造方法は、以下の通りである。
Manufacturing Conditions A preferred method for manufacturing the hot rolled steel sheet according to this embodiment having the above-mentioned chemical composition and metallographic structure is as follows.
 本実施形態に係る熱延鋼板の好適な製造方法では、以下の工程(1)~(11)を順次行う。なお、本実施形態におけるスラブの温度および鋼板の温度は、スラブの表面温度および鋼板の表面温度のことをいう。また、応力は鋼板の圧延方向に負荷する張力のことをいう。 In a preferred method for manufacturing a hot-rolled steel sheet according to the present embodiment, the following steps (1) to (11) are sequentially performed. Note that the temperature of the slab and the temperature of the steel plate in this embodiment refer to the surface temperature of the slab and the surface temperature of the steel plate. Moreover, stress refers to the tension applied to the steel plate in the rolling direction.
(1)スラブを700~850℃の温度域で900秒以上保持した後、更に加熱し、1100℃以上の温度域で6000秒以上保持する。
(2)粗圧延前に1150℃以上の温度域にて1回以上デスケーリングを行い、粗圧延中に1130℃以上の温度域にて2回以上デスケーリングを行い、且つ、1130℃以上の温度域での各デスケーリング間の合計圧下率の最大値を40%未満とする。
(3)850~1100℃の温度域で合計90%以上の圧下率となるような熱間圧延を行う。
(4)熱間圧延の最終1段前の圧延後から最終段の圧延開始までに、170kPa以上の応力を鋼板に負荷する。
(5)熱間圧延の最終段における圧下率を8%以上とし、圧延完了温度Tfが900℃以上、1010℃未満となるように熱間圧延を完了する。
(6)熱間圧延の最終段の圧延後から、鋼板が800℃に冷却されるまでに、200kPa未満の応力を鋼板に負荷する。
(7)熱間圧延完了後1秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却した後、50℃/s以上の平均冷却速度で600~780℃の温度域まで冷却する。ただし、熱間圧延完了後1秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却することは、より好ましい冷却条件である。
(8)600~780℃の温度域で、平均冷却速度が5℃/s未満である緩冷却を2.0秒以上行う。
(9)緩冷却終了後、450~600℃の温度域の平均冷却速度が30℃/s以上、50℃/s未満となるように冷却する。
(10)巻取り温度~450℃の温度域の平均冷却速度が50℃/s以上となるように冷却する。
(11)350℃以下の温度域で巻き取る。
(1) After holding the slab in a temperature range of 700 to 850°C for 900 seconds or more, it is further heated and held in a temperature range of 1100°C or more for 6000 seconds or more.
(2) Descaling is performed at least once in a temperature range of 1150°C or higher before rough rolling, and descaling is performed at least twice in a temperature range of 1130°C or higher during rough rolling, and the temperature is 1130°C or higher. The maximum value of the total rolling reduction rate between each descaling in the area shall be less than 40%.
(3) Hot rolling is carried out in a temperature range of 850 to 1100°C with a total rolling reduction of 90% or more.
(4) A stress of 170 kPa or more is applied to the steel plate from the end of the last stage of hot rolling until the start of the final stage of rolling.
(5) The rolling reduction in the final stage of hot rolling is 8% or more, and the hot rolling is completed so that the rolling completion temperature Tf is 900°C or more and less than 1010°C.
(6) A stress of less than 200 kPa is applied to the steel plate after the final stage of hot rolling until the steel plate is cooled to 800°C.
(7) Within 1 second after completion of hot rolling, cool to a temperature range below hot rolling completion temperature Tf - 50°C, and then cool to a temperature range of 600 to 780°C at an average cooling rate of 50°C/s or more. do. However, a more preferable cooling condition is to cool to a temperature range below the hot rolling completion temperature Tf - 50° C. within 1 second after the completion of hot rolling.
(8) Perform slow cooling at a temperature range of 600 to 780°C with an average cooling rate of less than 5°C/s for 2.0 seconds or more.
(9) After completion of slow cooling, cool so that the average cooling rate in the temperature range of 450 to 600°C is 30°C/s or more and less than 50°C/s.
(10) Cooling is performed so that the average cooling rate in the temperature range from the winding temperature to 450°C is 50°C/s or more.
(11) Wind up in a temperature range of 350°C or less.
 上記製造方法を採用することにより、高い強度および限界破断板厚減少率、並びに、優れた延性およびせん断加工性を有するとともに、プレス成形後において優れた疲労特性を有する熱延鋼板を安定して製造することができる。 By adopting the above manufacturing method, we can stably produce hot-rolled steel sheets that have high strength, critical thickness reduction at rupture, excellent ductility and shear workability, and have excellent fatigue properties after press forming. can do.
(1)スラブ、熱間圧延に供する際のスラブ温度および保持時間
 熱間圧延に供するスラブは、連続鋳造により得られたスラブや鋳造・分塊により得られたスラブなどを用いることができる。また、必要によっては、それらに熱間加工または冷間加工を加えたものを用いることができる。
(1) Slab, slab temperature and holding time when subjected to hot rolling As the slab subjected to hot rolling, a slab obtained by continuous casting, a slab obtained by casting/blowing, etc. can be used. Moreover, if necessary, those obtained by hot working or cold working can be used.
 熱間圧延に供するスラブは、スラブ加熱時に、700~850℃の温度域で900秒以上保持した後、更に加熱し、1100℃以上の温度域で6000秒以上保持することが好ましい。なお、700~850℃の温度域での保持では、鋼板温度をこの温度域で変動させてもよく、一定としてもよい。また、1100℃以上での保持では、鋼板温度を1100℃以上の温度域で変動させてもよく、一定としてもよい。 The slab to be subjected to hot rolling is preferably held at a temperature range of 700 to 850°C for 900 seconds or more during slab heating, and then further heated and held at a temperature range of 1100°C or higher for 6000 seconds or more. Note that when maintaining the temperature in a temperature range of 700 to 850°C, the steel plate temperature may be varied within this temperature range or may be kept constant. Further, when maintaining the temperature at 1100°C or higher, the steel plate temperature may be varied in the temperature range of 1100°C or higher, or may be kept constant.
 700~850℃の温度域におけるオーステナイト変態において、Mnがフェライトとオーステナイトとの間で分配し、その変態時間を長くすることによって、Mnがフェライト領域内を拡散することができる。これにより、スラブに偏在するMnミクロ偏析を解消し、Mn濃度の標準偏差を著しく減ずることができる。また、1100℃以上の温度域で6000秒以上保持することで、Mn濃度の標準偏差を著しく減ずることができる。 During austenite transformation in the temperature range of 700 to 850°C, Mn is distributed between ferrite and austenite, and by lengthening the transformation time, Mn can diffuse into the ferrite region. This eliminates the Mn micro-segregation that is unevenly distributed in the slab and significantly reduces the standard deviation of the Mn concentration. Further, by holding the temperature in a temperature range of 1100° C. or higher for 6000 seconds or more, the standard deviation of the Mn concentration can be significantly reduced.
 熱間圧延は、多パス圧延としてレバースミルまたはタンデムミルを用いることが好ましい。特に工業的生産性の観点および圧延中の鋼板への応力負荷の観点から、少なくとも最終の2段はタンデムミルを用いた熱間圧延とすることがより好ましい。熱間圧延は、粗圧延と、仕上げ圧延と、を含み、それぞれ複数回(段)の圧延が行われる。粗圧延は、スラブを最小で25mmまで圧延する工程であり、仕上げ圧延は、粗圧延後の板を目標の板厚まで圧延する工程である。 For hot rolling, it is preferable to use a liver mill or a tandem mill as multi-pass rolling. Particularly from the viewpoint of industrial productivity and the stress load on the steel plate during rolling, it is more preferable that at least the last two stages are hot rolled using a tandem mill. Hot rolling includes rough rolling and finish rolling, each of which is performed multiple times (stages). Rough rolling is a process of rolling a slab to a minimum thickness of 25 mm, and finish rolling is a process of rolling a plate after rough rolling to a target thickness.
(2)粗圧延前のデスケーリング:1150℃以上の温度域にて1回以上、粗圧延中のデスケーリング:1130℃以上の温度域にて2回以上、粗圧延中の1130℃以上の温度域における各デスケーリング間の合計圧下率の最大値:40%未満
 粗圧延前のデスケーリング条件、粗圧延中のデスケーリング条件および各デスケーリング間の圧延条件を制御することで、熱延鋼板の表面におけるCr酸化物の個数密度を好ましく制御することができる。デスケーリングは、水噴射によって行うことができる。
(2) Descaling before rough rolling: once or more in a temperature range of 1150°C or higher, descaling during rough rolling: 2 or more times in a temperature range of 1130°C or higher, at a temperature of 1130°C or higher during rough rolling Maximum value of total rolling reduction between each descaling in the area: less than 40% By controlling the descaling conditions before rough rolling, the descaling conditions during rough rolling, and the rolling conditions between each descaling, the The number density of Cr oxides on the surface can be preferably controlled. Descaling can be done by water jets.
 粗圧延前には、1150℃以上の温度域にて1回以上デスケーリングを行うことが好ましい。粗圧延前において1回以上のデスケーリングを1150℃以上の温度域で行うことで、加熱炉内で形成した1次スケールを除去し、その後のデスケーリング不良の発生を抑制できる。その結果、熱延鋼板の表面においてCr酸化物の個数密度を好ましく制御することができる。1150℃以上の温度域におけるデスケーリングの回数の上限は特に限定しないが、5回以下としてもよい。 It is preferable to perform descaling at least once in a temperature range of 1150° C. or higher before rough rolling. By performing descaling one or more times in a temperature range of 1150° C. or higher before rough rolling, it is possible to remove the primary scale formed in the heating furnace and suppress the occurrence of subsequent descaling defects. As a result, the number density of Cr oxides on the surface of the hot rolled steel sheet can be preferably controlled. The upper limit of the number of times of descaling in the temperature range of 1150° C. or higher is not particularly limited, but may be 5 times or less.
 粗圧延では複数回の圧延およびデスケーリングが行われる。粗圧延中には、圧延と圧延との間に、あるいは、複数回の圧延の後にデスケーリングが行われる。本実施形態では、粗圧延中に、1130℃以上の温度域にて2回以上のデスケーリングを行い、且つ、1130℃以上の温度域での各デスケーリング間の合計圧下率の最大値を40%未満とすることが好ましい。1130℃以上の温度域で2回以上のデスケーリングを行うことで、粗圧延前段において形成したスケール厚を低減し、あるいはスケールを除去することで、熱延鋼板の表面におけるCr酸化物の個数密度を好ましく制御することができる。
 1130℃以上の温度域での各デスケーリング間の合計圧下率の最大値を40%未満とすることで、デスケーリング間の圧延でスケールが地鉄間に噛み込まず、熱延鋼板の表面におけるCr酸化物の個数密度を好ましく制御することができる。
In rough rolling, rolling and descaling are performed multiple times. During rough rolling, descaling is performed between rollings or after multiple rollings. In this embodiment, during rough rolling, descaling is performed twice or more in a temperature range of 1130°C or higher, and the maximum value of the total rolling reduction between each descaling in a temperature range of 1130°C or higher is set to 40 It is preferable to set it as less than %. By performing descaling two or more times in a temperature range of 1130°C or higher, the thickness of the scale formed in the first stage of rough rolling is reduced or the scale is removed, thereby reducing the number density of Cr oxides on the surface of the hot rolled steel sheet. can be preferably controlled.
By setting the maximum value of the total rolling reduction during each descaling in a temperature range of 1130°C or higher to less than 40%, scale will not get caught between the base steel during rolling between descaling, and the surface of the hot rolled steel sheet will be reduced. The number density of Cr oxides can be preferably controlled.
 1130℃以上の温度域における各デスケーリング間の合計圧下率は、1130℃以上の温度域におけるn回目のデスケーリング前の板厚をtとし、1130℃以上の温度域におけるn+1回目のデスケーリング後の出口板厚をtとしたとき、{(t-t)/t}×100(%)で表すことができる。n回目のデスケーリングとn+1回目のデスケーリングとの間には、1回のみの圧延が行われてもよく、複数回の圧延が行われてもよい。 The total rolling reduction rate between each descaling in the temperature range of 1130°C or higher is t0, where the plate thickness before the nth descaling in the temperature range of 1130°C or higher is t0 , and the n+1th descaling in the temperature range of 1130°C or higher is When the subsequent exit plate thickness is t 1 , it can be expressed as {(t 0 −t 1 )/t 0 }×100(%). Between the n-th descaling and the (n+1)-th descaling, rolling may be performed only once, or rolling may be performed multiple times.
(3)熱間圧延の圧下率:850~1100℃の温度域で合計90%以上
 850~1100℃の温度域での合計圧下率が90%以上となるような熱間圧延を行うことにより、主に再結晶オーステナイト粒の微細化が図られるとともに、未再結晶オーステナイト粒内へのひずみエネルギーの蓄積が促進される。そして、オーステナイトの再結晶が促進されるとともにMnの原子拡散が促進され、Mn濃度の標準偏差を小さくすることができる。したがって、850~1100℃の温度域での合計圧下率が90%以上となるような熱間圧延を行うことが好ましい。
 なお、ここでいう熱間圧延には粗圧延および仕上げ圧延を含む。
(3) Hot rolling reduction: 90% or more in the temperature range of 850 to 1100°C By performing hot rolling such that the total reduction in the temperature range of 850 to 1100°C is 90% or more, Mainly, the recrystallized austenite grains are made finer, and the accumulation of strain energy in the unrecrystallized austenite grains is promoted. Then, the recrystallization of austenite is promoted and the atomic diffusion of Mn is promoted, so that the standard deviation of the Mn concentration can be reduced. Therefore, it is preferable to perform hot rolling such that the total rolling reduction in the temperature range of 850 to 1100° C. is 90% or more.
Note that hot rolling here includes rough rolling and finish rolling.
 なお、850~1100℃の温度域の合計圧下率とは、この温度域の圧延における最初の圧延前の入口板厚をtとし、この温度域の圧延における最終段の圧延後の出口板厚をtとしたとき、{(t-t)/t}×100(%)で表すことができる。 Note that the total rolling reduction in the temperature range of 850 to 1100°C is defined as the inlet plate thickness before the first rolling in this temperature range, and the outlet plate thickness after the final rolling in this temperature range. When t 1 is t 1 , it can be expressed as {(t 0 −t 1 )/t 0 }×100(%).
(4)熱間圧延の最終1段前の圧延後から、最終段の圧延開始までに鋼板に負荷する応力:170kPa以上
 熱間圧延の最終1段前の圧延後から、最終段の圧延開始までに、170kPa以上の応力を鋼板に負荷することが好ましい。これにより、最終段1段前の圧延後の再結晶オーステナイトのうち、{110}<001>の結晶方位を有する結晶粒の数を低減することができる。{110}<001>は再結晶し難い結晶方位であるため、この結晶方位の形成を抑制することで最終段の圧下による再結晶を効果的に促進することができる。結果として、熱延鋼板のバンド状組織が改善され、金属組織の周期性が低減し、E値が上昇する。
 なお、ここでいう熱間圧延の最終1段前の圧延とは、仕上げ圧延の最終1段前の圧延のことである。例えば、仕上げ圧延をF1、F2…F6、F7の7段のパスで行う場合には、6段目(F6)のパスのことをいう。
(4) Stress applied to the steel plate from the time of rolling before the final stage of hot rolling until the start of rolling of the final stage: 170 kPa or more From the end of rolling of the first stage before the final stage of hot rolling until the start of rolling of the final stage In addition, it is preferable to apply a stress of 170 kPa or more to the steel plate. This makes it possible to reduce the number of crystal grains having the {110}<001> crystal orientation in the recrystallized austenite after rolling one stage before the final stage. Since {110}<001> is a crystal orientation that is difficult to recrystallize, by suppressing the formation of this crystal orientation, recrystallization by the final stage of rolling can be effectively promoted. As a result, the band-like structure of the hot rolled steel sheet is improved, the periodicity of the metal structure is reduced, and the E value is increased.
Note that the term "rolling one stage before the final stage of hot rolling" as used herein refers to rolling one stage before the final stage of finish rolling. For example, when finish rolling is performed in seven passes of F1, F2...F6, and F7, the sixth pass (F6) is referred to as the pass of the sixth stage (F6).
 鋼板に負荷する応力が170kPa未満の場合、E値を所望の値とすることができない場合がある。鋼板に負荷する応力は、より好ましくは190kPa以上である。
 鋼板に負荷する応力とは、鋼板の長手方向に負荷する張力のことであり、タンデム圧延中のロール回転速度の調整により制御可能であり、圧延スタンドで測定した圧延方向の荷重を、通板している鋼板の断面積で除することで求めることができる。
If the stress applied to the steel plate is less than 170 kPa, it may not be possible to set the E value to the desired value. The stress applied to the steel plate is more preferably 190 kPa or more.
The stress applied to a steel plate refers to the tension applied in the longitudinal direction of the steel plate, and can be controlled by adjusting the roll rotation speed during tandem rolling. It can be calculated by dividing by the cross-sectional area of the steel plate.
(5)熱間圧延の最終段における圧下率:8%以上、熱間圧延完了温度Tf:900℃以上、1010℃未満
 熱間圧延の最終段における圧下率は8%以上とし、熱間圧延完了温度Tfは900℃以上とすることが好ましい。熱間圧延の最終段における圧下率を8%以上とすることで、最終段の圧下による再結晶を促進することができる。結果として熱延鋼板のバンド状組織が改善され、金属組織の周期性が低減し、E値が上昇する。熱間圧延完了温度Tfを900℃以上とすることで、オーステナイト中のフェライト核生成サイト数の過剰な増大を抑制することができる。その結果、最終組織(製造後の熱延鋼板の金属組織)におけるフェライトの生成を抑えられ、高強度の熱延鋼板を得ることができる。また、Tfを1010℃未満とすることで、オーステナイト粒径の粗大化を抑制でき、金属組織の周期性を低減して、E値を所望の値とすることができる。
(5) Reduction ratio in the final stage of hot rolling: 8% or more, hot rolling completion temperature Tf: 900°C or more, less than 1010°C The rolling reduction ratio in the final stage of hot rolling is 8% or more, and hot rolling is completed. Preferably, the temperature Tf is 900°C or higher. By setting the reduction ratio in the final stage of hot rolling to 8% or more, recrystallization due to the reduction in the final stage can be promoted. As a result, the band-like structure of the hot rolled steel sheet is improved, the periodicity of the metal structure is reduced, and the E value is increased. By setting the hot rolling completion temperature Tf to 900° C. or higher, it is possible to suppress an excessive increase in the number of ferrite nucleation sites in austenite. As a result, the formation of ferrite in the final structure (metal structure of the hot-rolled steel sheet after production) can be suppressed, and a high-strength hot-rolled steel sheet can be obtained. Further, by setting Tf to less than 1010° C., coarsening of the austenite grain size can be suppressed, the periodicity of the metal structure can be reduced, and the E value can be set to a desired value.
(6)熱間圧延の最終段の圧延後から、鋼板が800℃に冷却されるまでに鋼板に負荷する応力:200kPa未満
 熱間圧延の最終段の圧延後から、鋼板が800℃に冷却されるまでに,200kPa未満の応力を鋼板に負荷することが好ましい。200kPa未満の応力を鋼板に負荷することで、オーステナイトの再結晶が圧延方向に優先的に進み、金属組織の周期性の増大を抑制できる。その結果、E値を所望の値とすることができる。鋼板に負荷する応力は、より好ましくは180kPa以下である。
(6) Stress applied to the steel plate after the final stage of hot rolling until the steel plate is cooled to 800°C: Less than 200 kPa After the final stage of hot rolling, the stress applied to the steel plate until the steel plate is cooled to 800°C It is preferable to apply a stress of less than 200 kPa to the steel plate until the steel plate is heated. By applying a stress of less than 200 kPa to the steel sheet, recrystallization of austenite proceeds preferentially in the rolling direction, and an increase in periodicity of the metal structure can be suppressed. As a result, the E value can be set to a desired value. The stress applied to the steel plate is more preferably 180 kPa or less.
(7)熱間圧延完了後1秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却した後、50℃/s以上の平均冷却速度で600~780℃の温度域まで加速冷却
 熱間圧延により細粒化したオーステナイト結晶粒の成長を抑制するため、熱間圧延完了後1秒以内に、50℃以上冷却すること、すなわち、熱間圧延完了後1秒間の冷却量が50℃以上であることがより好ましい。熱間圧延完了後1秒以内に熱間圧延完了温度Tf-50℃以下の温度域まで冷却するためには、熱間圧延完了直後に平均冷却速度の大きい冷却を行う、例えば冷却水を鋼板表面に噴射すればよい。熱間圧延完了後1秒以内にTf-50℃以下の温度域まで冷却することにより、表層の結晶粒径を微細化でき、熱延鋼板の耐曲げ内割れ性を高めることができる。
(7) Within 1 second after completion of hot rolling, cool to a temperature range below hot rolling completion temperature Tf - 50°C, and then accelerate to a temperature range of 600 to 780°C at an average cooling rate of 50°C/s or more. Cooling In order to suppress the growth of austenite crystal grains refined by hot rolling, cooling should be performed at 50°C or higher within 1 second after the completion of hot rolling, that is, the amount of cooling within 1 second after completing hot rolling should be It is more preferable that the temperature is at least ℃. In order to cool the steel plate to a temperature range below the hot rolling completion temperature Tf - 50°C within 1 second after the completion of hot rolling, cooling with a high average cooling rate is performed immediately after the completion of hot rolling, for example, cooling water is applied to the surface of the steel sheet. Just spray it on. By cooling to a temperature range of Tf-50° C. or lower within 1 second after completion of hot rolling, the grain size of the surface layer can be made finer, and the resistance to internal cracking in bending of the hot rolled steel sheet can be improved.
 また、上記冷却後に50℃/s以上の平均冷却速度で780℃以下の温度域まで加速冷却を行うことで、析出強化量が少ないフェライトおよびパーライトの生成を抑制できる。これにより、熱延鋼板の強度が向上する。なお、ここでいう平均冷却速度とは、加速冷却開始時(冷却設備への鋼板の導入時)から加速冷却完了時(冷却設備から鋼板の導出時)までの鋼板の温度降下幅を、加速冷却開始時から加速冷却完了時までの所要時間で除した値のことをいう。 Further, by performing accelerated cooling after the above cooling to a temperature range of 780°C or less at an average cooling rate of 50°C/s or more, the formation of ferrite and pearlite, which have a small amount of precipitation strengthening, can be suppressed. This improves the strength of the hot rolled steel sheet. Note that the average cooling rate here refers to the temperature drop range of the steel plate from the start of accelerated cooling (when the steel plate is introduced into the cooling equipment) to the end of accelerated cooling (when the steel plate is taken out from the cooling equipment). This is the value divided by the time required from the start to the completion of accelerated cooling.
 冷却速度の上限値は特に規定しないが、冷却速度を速くすると冷却設備が大掛かりとなり、設備コストが高くなる。このため、設備コストを考えると、300℃/s以下が好ましい。また、加速冷却の冷却停止温度は、後述する緩冷却を行うために600℃以上とするとよい。 Although there is no particular upper limit for the cooling rate, increasing the cooling rate requires larger cooling equipment and increases equipment costs. Therefore, considering the equipment cost, the temperature is preferably 300° C./s or less. Further, the cooling stop temperature of accelerated cooling is preferably set to 600° C. or higher in order to perform slow cooling, which will be described later.
(8)600~780℃の温度域で、平均冷却速度が5℃/s未満である緩冷却を2.0秒以上行う
 600~780℃の温度域で、平均冷却速度が5℃/s未満である緩冷却を2.0秒以上行うことにより、析出強化したフェライトを十分に析出させることができる。これにより、熱延鋼板の強度と延性とを両立することができる。
 なお、ここでいう平均冷却速度とは、加速冷却の冷却停止温度から緩冷却の停止温度までの鋼板の温度降下幅を、加速冷却の停止時から緩冷却の停止時までの所要時間で除した値のことをいう。
(8) Perform slow cooling with an average cooling rate of less than 5°C/s in the temperature range of 600 to 780°C for 2.0 seconds or more. In the temperature range of 600 to 780°C, perform slow cooling with an average cooling rate of less than 5°C/s. By performing slow cooling for 2.0 seconds or more, precipitation-strengthened ferrite can be sufficiently precipitated. This makes it possible to achieve both strength and ductility of the hot rolled steel sheet.
Note that the average cooling rate here is the width of the temperature drop of the steel plate from the cooling stop temperature of accelerated cooling to the stop temperature of slow cooling divided by the time required from the time of stopping accelerated cooling to the time of stopping slow cooling. Refers to value.
 緩冷却を行う時間は、好ましくは3.0秒以上である。緩冷却を行う時間の上限は、設備レイアウトによって決定されるが、おおむね10.0秒未満とすればよい。また、緩冷却の平均冷却速度の下限は特に設けないが、冷却させずに昇温させることは設備上大きな投資を伴うため、0℃/s以上としてもよい。 The time for performing slow cooling is preferably 3.0 seconds or more. The upper limit of the time for slow cooling is determined by the equipment layout, but may be approximately less than 10.0 seconds. Further, although there is no particular lower limit to the average cooling rate of slow cooling, since increasing the temperature without cooling involves a large investment in equipment, it may be set to 0° C./s or more.
(9)緩冷却終了後、450~600℃の温度域の平均冷却速度が30℃/s以上、50℃/s未満となるように冷却する
 上記緩冷却終了後は、450~600℃の温度域の平均冷却速度が30℃/s以上、50℃/s未満となるように冷却することが好ましい。上記温度域の平均冷却速度を30℃/s以上、50℃/s未満とすることで、CS値を所望の値とすることができる。平均冷却速度が50℃/s以上の場合は、輝度が低い平坦なラス状の組織が生成し易く、CS値が-8.0×10未満となる。平均冷却速度が30℃/s未満の場合には、未変態部分への炭素の濃化が促進され、硬質な組織の強度が上昇し軟質な組織との強度差が拡大するため、CS値が8.0×10超となる。
 なお、ここでいう平均冷却速度とは、平均冷却速度が5℃/s未満である緩冷却の冷却停止温度から、平均冷却速度が30℃/s以上、50℃/s未満である冷却の冷却停止温度までの鋼板の温度降下幅を、平均冷却速度が5℃/s未満である緩冷却の停止時から、平均冷却速度が30℃/s以上、50℃/s未満である冷却の停止時までの所要時間で除した値のことをいう。
(9) After completion of slow cooling, cool so that the average cooling rate in the temperature range of 450 to 600 °C is 30 °C/s or more and less than 50 °C/s. It is preferable to perform cooling so that the average cooling rate in the area is 30° C./s or more and less than 50° C./s. By setting the average cooling rate in the above temperature range to 30° C./s or more and less than 50° C./s, the CS value can be set to a desired value. When the average cooling rate is 50° C./s or more, a flat lath-like structure with low brightness is likely to be formed, and the CS value becomes less than −8.0×10 5 . When the average cooling rate is less than 30°C/s, the concentration of carbon in the untransformed part is promoted, the strength of the hard structure increases, and the strength difference with the soft structure increases, so the CS value decreases. It becomes more than 8.0×10 5 .
Note that the average cooling rate here refers to the range from the cooling stop temperature of slow cooling with an average cooling rate of less than 5°C/s to the cooling of cooling with an average cooling rate of 30°C/s or more and less than 50°C/s. The temperature drop range of the steel plate to the stop temperature is determined from the time when slow cooling is stopped when the average cooling rate is less than 5°C/s to the time when cooling is stopped when the average cooling rate is 30°C/s or more and less than 50°C/s. This is the value divided by the time required to reach the destination.
(10)巻取り温度~450℃の温度域の平均冷却速度:50℃/s以上
 パーライトや残留オーステナイトの面積率を抑え、所望の強度と成形性を得るために、巻取り温度~450℃の温度域の平均冷却速度を50℃/s以上とすることが好ましい。これにより、母相組織を硬質にすることができる。
 なお、ここでいう平均冷却速度とは、平均冷却速度が30℃/s以上、50℃/s未満である冷却の冷却停止温度から巻取り温度までの鋼板の温度降下幅を、平均冷却速度が30℃/s以上、50℃/s未満である冷却の停止時から巻取りまでの所要時間で除した値のことをいう。
(10) Average cooling rate in the temperature range from coiling temperature to 450℃: 50℃/s or more In order to suppress the area ratio of pearlite and retained austenite and obtain the desired strength and formability, It is preferable that the average cooling rate in the temperature range is 50° C./s or more. Thereby, the matrix structure can be made hard.
Note that the average cooling rate here refers to the range of temperature drop of the steel plate from the cooling stop temperature to the coiling temperature when the average cooling rate is 30°C/s or more and less than 50°C/s. It refers to the value divided by the time required from the time of stopping cooling to winding, which is 30° C./s or more and less than 50° C./s.
(11)巻取り温度:350℃以下
 巻取り温度は350℃以下とする。巻取り温度を350℃以下とすることで、鉄炭化物の析出量を減少させ、且つ硬質相内の硬度分布のばらつきを低減できる。その結果、I値を増加することができ、2次せん断面の発生を抑制することができる。
(11) Winding temperature: 350°C or less The winding temperature shall be 350°C or less. By setting the winding temperature to 350° C. or lower, it is possible to reduce the amount of iron carbide precipitation and to reduce variations in hardness distribution within the hard phase. As a result, the I value can be increased and the generation of secondary shear planes can be suppressed.
 次に、実施例により本発明の一態様の効果を更に具体的に説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明はこの一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, the effects of one aspect of the present invention will be explained in more detail with reference to Examples. The conditions in the Examples are examples of conditions adopted to confirm the feasibility and effects of the present invention. The present invention is not limited to this example of one condition. The present invention can adopt various conditions as long as the purpose of the present invention is achieved without departing from the gist of the present invention.
 表1および表2に示す化学組成を有する鋼を溶製し、連続鋳造により厚みが240~300mmのスラブを製造した。得られたスラブを用いて、表3A~表4Bに示す製造条件により、表5A~表6Bに示す熱延鋼板を得た。
 なお、緩冷却の平均冷却速度は5℃/s未満とした。また、表4Aおよび表4Bに記載した巻取り温度は50℃が測定下限であるため,50℃と記載した例の実際の巻取り温度は50℃以下である。
Steel having the chemical composition shown in Tables 1 and 2 was melted, and slabs with a thickness of 240 to 300 mm were manufactured by continuous casting. Using the obtained slabs, hot rolled steel plates shown in Tables 5A to 6B were obtained under the manufacturing conditions shown in Tables 3A to 4B.
Note that the average cooling rate of the slow cooling was less than 5° C./s. Furthermore, since the lower measurement limit of the winding temperature listed in Table 4A and Table 4B is 50°C, the actual winding temperature of the example described as 50°C is 50°C or lower.
 得られた熱延鋼板に対し、上述の方法により、金属組織の面積率、E値、I値、CS値、Mn濃度の標準偏差、最表層領域における固溶Cr濃度、表面における、球相当半径で0.1μm以上のCr酸化物の個数密度および表層領域における平均結晶粒径、引張強さTS、並びに、全伸びElを求めた。得られた測定結果を表5A~表6Bに示す。
 なお、残部組織はベイナイト、マルテンサイトおよび焼き戻しマルテンサイトの1種または2種以上であった。
The obtained hot-rolled steel sheet was subjected to the above-mentioned method to determine the area ratio of the metallographic structure, E value, I value, CS value, standard deviation of Mn concentration, solid solution Cr concentration in the outermost layer region, and equivalent sphere radius at the surface. The number density of Cr oxides of 0.1 μm or more, the average crystal grain size in the surface layer region, the tensile strength TS, and the total elongation El were determined. The measurement results obtained are shown in Tables 5A to 6B.
The remaining structure was one or more of bainite, martensite, and tempered martensite.
 熱延鋼板の特性の評価方法
 引張特性
 引張強さTSが980MPa以上、且つ全伸びElが10.0%以上、且つ引張強さTS×全伸びElが13000MPa・%以上であった場合、高い強度を有し、且つ優れた延性を有する熱延鋼板であるとして合格と判定した。いずれか一つでも満たさなかった場合、高い強度を有し、且つ優れた延性を有する熱延鋼板でないとして不合格と判定した。
Method for evaluating properties of hot rolled steel sheets Tensile properties High strength when tensile strength TS is 980 MPa or more, total elongation El is 10.0% or more, and tensile strength TS x total elongation El is 13000 MPa・% or more. The hot-rolled steel sheet was judged to have passed the test because it had the following characteristics and excellent ductility. If any one of the conditions was not satisfied, it was determined that the hot rolled steel sheet did not have high strength and excellent ductility and was rejected.
 限界破断板厚減少率
 熱延鋼板の限界破断板厚減少率は引張試験により評価した。
 引張特性を評価したときと同様の方法により引張試験を行った。引張試験前の板厚をt、破断後の引張試験片の幅方向(短手方向)中央部における板厚の最小値をtとしたときに、(t-t)×100/tの値を算出することで、限界破断板厚減少率を得た。引張試験は5回実施し、限界破断板厚減少率の最大値および最小値を除いた3回の平均値を算出することで、限界破断板厚減少率を得た。
Limiting rate of thickness reduction at break The limit rate of thickness reduction at break of hot-rolled steel sheets was evaluated by a tensile test.
A tensile test was conducted in the same manner as when the tensile properties were evaluated. When the plate thickness before the tensile test is t 1 and the minimum value of the plate thickness at the center in the width direction (short side direction) of the tensile test piece after rupture is t 2 , (t 1 - t 2 )×100/ By calculating the value of t1 , the critical plate thickness reduction rate at rupture was obtained. The tensile test was carried out five times, and the average value of the three tests, excluding the maximum and minimum values of the limit thickness reduction rate at break, was calculated to obtain the limit thickness reduction rate at break.
 限界破断板厚減少率が60.0%以上であった場合、高い限界破断板厚減少率を有する熱延鋼板であるとして合格と判定した。一方、限界破断板厚減少率が60.0%未満であった場合、高い限界破断板厚減少率を有する熱延鋼板でないとして不合格と判定した。 If the critical thickness reduction rate at rupture was 60.0% or more, the hot rolled steel sheet was judged to have passed the test as having a high critical rupture thickness reduction rate. On the other hand, when the critical thickness reduction rate at break was less than 60.0%, it was determined that the hot rolled steel sheet did not have a high critical failure plate thickness reduction rate and was rejected.
 せん断加工性(2次せん断面評価)
 熱延鋼板のせん断加工性は、打ち抜き試験により評価した。
 穴直径10mm、クリアランス10%、打ち抜き速度3m/sで各実施例につき打ち抜き穴を3個ずつ作製した。次に打ち抜き穴の圧延方向に直角な断面および圧延方向に平行な断面をそれぞれ樹脂に埋め込み、走査型電子顕微鏡で断面形状を撮影した。得られた観察写真では、図1または図2に示すようなせん断端面を観察することができる。なお、図1は本発明例に係る熱延鋼板のせん断端面の一例であり、図2は比較例に係る熱延鋼板のせん断端面の一例である。図1では、ダレ―せん断面―破断面―バリのせん断端面である。一方、図2では、ダレ―せん断面―破断面―せん断面―破断面―バリのせん断端面である。ここで、ダレとはR状の滑らかな面の領域であり、せん断面とはせん断変形により分離した打ち抜き端面の領域であり、破断面とは刃先近傍から発生したき裂によって分離した打ち抜き端面の領域であり、バリとは熱延鋼板の下面からはみ出した突起を有する面である。
Shearing workability (secondary shear surface evaluation)
The shear workability of the hot-rolled steel sheet was evaluated by a punching test.
Three punched holes were made for each example using a hole diameter of 10 mm, a clearance of 10%, and a punching speed of 3 m/s. Next, the cross section perpendicular to the rolling direction and the cross section parallel to the rolling direction of the punched hole were respectively embedded in resin, and the cross-sectional shapes were photographed using a scanning electron microscope. In the obtained observation photograph, a sheared end surface as shown in FIG. 1 or 2 can be observed. Note that FIG. 1 is an example of a sheared end surface of a hot rolled steel sheet according to an example of the present invention, and FIG. 2 is an example of a sheared end surface of a hot rolled steel sheet according to a comparative example. In FIG. 1, the diagram shows a sag, a sheared surface, a fractured surface, and a sheared end surface of a burr. On the other hand, FIG. 2 shows the sheared end surface of the burr - sheared surface - fractured surface - sheared surface - fractured surface. Here, the sag is the area of the smooth R-shaped surface, the sheared surface is the area of the punched end face separated by shear deformation, and the fractured surface is the area of the punched end face separated by a crack generated near the cutting edge. A burr is a surface having protrusions protruding from the lower surface of a hot-rolled steel sheet.
 得られたせん断端面のうち、圧延方向に垂直な面2面、および圧延方向に平行な面2面において、例えば図2に示すような、せん断面-破断面-せん断面が見られた場合には、2次せん断面が形成されたと判断した。各打ち抜き穴につき4面、合計12面を観察し、2次せん断面が表れた面が一つもなかった場合、優れたせん断加工性を有する熱延鋼板であるとして合格と判定し、表中に「無」と記載した。一方、2次せん断面が一つでも形成された場合、優れたせん断加工性を有する熱延鋼板でないとして不合格と判定し、表中に「有」と記載した。 Among the obtained sheared end faces, if a sheared surface-fractured surface-sheared surface is observed on two surfaces perpendicular to the rolling direction and two surfaces parallel to the rolling direction, as shown in FIG. determined that a secondary shear plane was formed. We observed 4 surfaces for each punched hole, 12 surfaces in total, and if no surface showed a secondary shear surface, it was determined that the hot rolled steel sheet had excellent shear workability and passed, and the It was written as "None". On the other hand, if even one secondary shear plane was formed, it was determined that the hot-rolled steel sheet did not have excellent shearing workability, and was judged to be rejected, and "present" was written in the table.
 プレス成形後の疲労特性
 プレス成形後の疲労特性は、プレス成形後の熱延鋼板の表面の算術平均粗さRaにより評価した。
 熱延鋼板の板厚方向における一方の表面Aを研削し、板厚を1.6mm以下とした試験片10の他方の表面Bに対し、図3に示すように、パンチ1を2.5tの荷重で押し付けながら一方向Dに引き抜くことでプレス成形を行った。パンチ形状は図4に示す(特許第5655394号の図9)。プレス成形後の熱延鋼板について、レベラーで形状を矯正した後,表面の算術平均粗さRaを次の方法により測定した。
 1000mm×1000mmの試料表面について、圧延方向および圧延方向及び板厚方向に直交する方向を200mm間隔の箇所を測定箇所とし、各測定箇所において表面の粗度を測定した。ただし、各測定箇所での測定長さは5mmとした。測定して得られた断面曲線にカットオフ値λcおよびλsの輪郭曲線フィルタを順次適用することによって粗さ曲線を得た。具体的には、得られた測定結果から、波長λcが0.8mm以下の成分および波長λsが2.5mm以上の成分を除去して、粗さ曲線を得た。得られた粗さ曲線をもとに、JIS B 0601:2013に準拠し、各測定箇所の算術平均粗さRaを算出した。得られた値の平均値を算出することで、プレス成形後の熱延鋼板の表面の算術平均粗さRaを得た。
Fatigue properties after press forming The fatigue properties after press forming were evaluated by the arithmetic mean roughness Ra of the surface of the hot rolled steel sheet after press forming.
As shown in FIG. 3, one surface A of the hot-rolled steel sheet in the thickness direction was ground to give a thickness of 1.6 mm or less to the other surface B of the test piece 10. As shown in FIG. Press molding was performed by pulling out in one direction D while pressing with a load. The shape of the punch is shown in FIG. 4 (FIG. 9 of Patent No. 5,655,394). After the shape of the hot rolled steel plate after press forming was corrected using a leveler, the arithmetic mean roughness Ra of the surface was measured by the following method.
Regarding the sample surface of 1000 mm x 1000 mm, measurement points were set at 200 mm intervals in the rolling direction and a direction orthogonal to the rolling direction and the plate thickness direction, and the surface roughness was measured at each measurement point. However, the measurement length at each measurement point was 5 mm. A roughness curve was obtained by sequentially applying contour curve filters with cutoff values λc and λs to the measured cross-sectional curve. Specifically, from the obtained measurement results, components with a wavelength λc of 0.8 mm or less and components with a wavelength λs of 2.5 mm or more were removed to obtain a roughness curve. Based on the obtained roughness curve, the arithmetic mean roughness Ra of each measurement location was calculated in accordance with JIS B 0601:2013. By calculating the average value of the obtained values, the arithmetic mean roughness Ra of the surface of the hot rolled steel sheet after press forming was obtained.
 プレス成形後の熱延鋼板について、表面の算術平均粗さRaが3.0μm以下であった場合、プレス成形後において優れた疲労特性を有する熱延鋼板であるとして合格と判定した。一方、表面の算術平均粗さRaが3.0μm超であった場合、プレス成形後において優れた疲労特性を有さない熱延鋼板であるとして不合格と判定した。 If the arithmetic mean roughness Ra of the surface of the hot-rolled steel sheet after press-forming was 3.0 μm or less, the hot-rolled steel sheet had excellent fatigue properties after press-forming and was judged to be acceptable. On the other hand, when the arithmetic mean roughness Ra of the surface was more than 3.0 μm, it was determined that the hot rolled steel sheet did not have excellent fatigue properties after press forming and was rejected.
 耐曲げ内割れ性
 以下の曲げ試験により、耐曲げ内割れ性を評価した。
 熱延鋼板の圧延方向及び板厚方向に直交する方向の端面から1/2位置において、100mm×30mmの短冊形状の試験片を切り出して曲げ試験片を得た。曲げ稜線が圧延方向(L方向)に平行である曲げ(L軸曲げ)と、曲げ稜線が圧延方向及び板厚方向に垂直な方向(C方向)に平行である曲げ(C軸曲げ)の両者について、JIS Z 2248:2022のVブロック法(曲げ角度θは90°)に準拠した試験を行った。これにより、亀裂の発生しない最小曲げ半径を求め、耐曲げ内割れ性を調査した。L軸とC軸との最小曲げ半径の平均値(R)を板厚(t)で除した値を限界曲げR/tとして耐曲げ内割れ性の指標値とした。R/tが2.5以下であった場合、耐曲げ内割れ性に優れた熱延鋼板であると判断した。
Resistance to internal cracking in bending The resistance to internal cracking in bending was evaluated by the following bending test.
A bending test piece was obtained by cutting out a rectangular test piece of 100 mm x 30 mm at a 1/2 position from the end face of the hot rolled steel plate in a direction perpendicular to the rolling direction and the plate thickness direction. Both bending where the bending ridgeline is parallel to the rolling direction (L direction) (L-axis bending) and bending where the bending ridgeline is parallel to the direction perpendicular to the rolling direction and the plate thickness direction (C-direction) (C-axis bending) A test was conducted in accordance with the V-block method (bending angle θ is 90°) of JIS Z 2248:2022. As a result, the minimum bending radius without cracking was determined, and the resistance to internal cracking in bending was investigated. The value obtained by dividing the average value (R) of the minimum bending radius of the L axis and the C axis by the plate thickness (t) was taken as the limit bending R/t and used as an index value of resistance to internal cracking in bending. When R/t was 2.5 or less, it was determined that the hot rolled steel sheet had excellent resistance to internal cracking in bending.
 ただし、亀裂の有無は、試験後の試験片を曲げ方向と平行でかつ板面に垂直な面で切断した断面を鏡面研磨後、光学顕微鏡で亀裂を観察し、試験片の曲げ内側に観察される亀裂長さが30μmを超える場合に亀裂有と判断した。 However, the presence or absence of cracks can be determined by mirror-polishing a cross section of the test piece cut along a plane parallel to the bending direction and perpendicular to the plate surface, and then observing cracks under an optical microscope. It was determined that a crack was present when the length of the crack exceeded 30 μm.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表5A~表6Bを見ると、本発明例に係る熱延鋼板は、高い強度および限界破断板厚減少率、並びに、優れた延性およびせん断加工性を有するとともに、プレス成形後において優れた疲労特性を有することが分かる。また、本発明例のうち、表層領域の平均結晶粒径が3.0μm未満である熱延鋼板は、上記諸特性を有した上で更に、優れた耐曲げ内割れ性を有することが分かる。
 一方、比較例に係る熱延鋼板は、いずれか1つ以上の特性が劣化していることが分かる。
Looking at Tables 5A to 6B, the hot rolled steel sheets according to the examples of the present invention have high strength and critical thickness reduction rate at rupture, as well as excellent ductility and shear workability, as well as excellent fatigue properties after press forming. It can be seen that it has Furthermore, it can be seen that among the examples of the present invention, the hot-rolled steel sheets in which the average grain size in the surface layer region is less than 3.0 μm have excellent internal bending cracking resistance in addition to having the above-mentioned properties.
On the other hand, it can be seen that the hot rolled steel sheet according to the comparative example has deteriorated in one or more properties.
 本発明に係る上記態様によれば、高い強度および限界破断板厚減少率、並びに、優れた延性およびせん断加工性を有するとともに、プレス成形後において優れた疲労特性を有する熱延鋼板を提供することができる。また、本発明に係る上記の好ましい態様によれば、上記諸特性を有した上で更に、曲げ内割れの発生が抑制された、すなわち耐曲げ内割れ性に優れた熱延鋼板を得ることができる。
 本発明に係る熱延鋼板は、自動車部材、機械構造部材さらには建築部材に用いられる工業用素材として好適である。
According to the above aspects of the present invention, it is possible to provide a hot-rolled steel sheet that has high strength, critical thickness reduction rate at rupture, excellent ductility and shear workability, and has excellent fatigue properties after press forming. Can be done. Further, according to the above-described preferred embodiment of the present invention, it is possible to obtain a hot-rolled steel sheet that has the above-mentioned properties and further suppresses the occurrence of cracking in bending, that is, has excellent resistance to cracking in bending. can.
The hot-rolled steel sheet according to the present invention is suitable as an industrial material used for automobile parts, mechanical structural parts, and even building parts.

Claims (3)

  1.  化学組成が、質量%で、
    C :0.050~0.250%、
    Si:0.05~3.00%、
    Mn:1.00~4.00%、
    sol.Al:0.001~0.500%、
    Cr:0.060~2.000%、
    P :0.100%以下、
    S :0.0300%以下、
    N :0.1000%以下、
    O :0.0100%以下、
    Ti:0~0.500%、
    Nb:0~0.500%、
    V :0~0.500%、
    Cu:0~2.00%、
    Mo:0~1.00%、
    Ni:0~2.00%、
    B :0~0.0100%、
    Ca:0~0.0200%、
    Mg:0~0.0200%、
    REM:0~0.1000%、
    Bi:0~0.0200%、
    As:0~0.100%、
    Zr:0~1.00%、
    Co:0~1.00%、
    Zn:0~1.00%、
    W :0~1.00%、および
    Sn:0~0.05%を含有し、
     残部がFeおよび不純物からなり、
     下記式(A)および(B)を満たし、
     板厚方向の表面から1/4深さ位置における金属組織が、
      面積%で、
      残留オーステナイトが3.0%未満であり、
      フェライトが15.0%以上、60.0%未満であり、
      パーライトが5.0%未満であり、
      グレーレベル共起行列法により、前記金属組織のSEM画像を解析することによって得られる、下記式(1)で示されるEntropy値が10.7以上であり、
      下記式(2)で示されるInverse difference normalized値が1.020以上であり、
      下記式(3)で示されるCluster Shade値が-8.0×10~8.0×10であり、
      Mn濃度の標準偏差が0.60質量%以下であり、
     前記表面を始点として、板厚方向に5μm深さの位置を終点とする領域である最表層領域における固溶Cr濃度が0.10質量%以上であり、
     前記表面における、球相当半径で0.1μm以上のCr酸化物の個数密度が1.0×10個/cm以下である
    ことを特徴とする熱延鋼板。
      0.060%≦Ti+Nb+V≦0.500% …(A)
      Zr+Co+Zn+W≦1.00% …(B)
     ただし、前記式(A)および(B)中の各元素記号は、当該元素の質量%での含有量を示し、当該元素を含有しない場合は0%を代入する。
     ここで、下記式(1)~(5)中のP(i,j)はグレーレベル共起行列であり、下記式(2)中のLは前記SEM画像の取り得るグレースケールのレベル数であり、下記式(2)および(3)中のiおよびjは1~前記Lの自然数であり、下記式(3)中のμおよびμはそれぞれ下記式(4)および(5)で示される。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    The chemical composition is in mass%,
    C: 0.050-0.250%,
    Si: 0.05-3.00%,
    Mn: 1.00-4.00%,
    sol. Al: 0.001-0.500%,
    Cr: 0.060-2.000%,
    P: 0.100% or less,
    S: 0.0300% or less,
    N: 0.1000% or less,
    O: 0.0100% or less,
    Ti: 0 to 0.500%,
    Nb: 0 to 0.500%,
    V: 0 to 0.500%,
    Cu: 0-2.00%,
    Mo: 0-1.00%,
    Ni: 0-2.00%,
    B: 0 to 0.0100%,
    Ca: 0-0.0200%,
    Mg: 0 to 0.0200%,
    REM: 0-0.1000%,
    Bi: 0 to 0.0200%,
    As: 0 to 0.100%,
    Zr: 0 to 1.00%,
    Co: 0-1.00%,
    Zn: 0 to 1.00%,
    Contains W: 0 to 1.00% and Sn: 0 to 0.05%,
    The remainder consists of Fe and impurities,
    The following formulas (A) and (B) are satisfied,
    The metal structure at the 1/4 depth position from the surface in the thickness direction is
    In area%,
    The retained austenite is less than 3.0%,
    Ferrite is 15.0% or more and less than 60.0%,
    Pearlite is less than 5.0%,
    The Entropy value expressed by the following formula (1) obtained by analyzing the SEM image of the metal structure using the gray level co-occurrence matrix method is 10.7 or more,
    The Inverse difference normalized value shown by the following formula (2) is 1.020 or more,
    The Cluster Shade value shown by the following formula (3) is -8.0×10 5 to 8.0×10 5 ,
    The standard deviation of the Mn concentration is 0.60% by mass or less,
    The solid solution Cr concentration in the outermost layer region, which is a region starting from the surface and ending at a position 5 μm deep in the plate thickness direction, is 0.10% by mass or more,
    A hot-rolled steel sheet characterized in that the number density of Cr oxides having a sphere equivalent radius of 0.1 μm or more on the surface is 1.0×10 4 pieces/cm 2 or less.
    0.060%≦Ti+Nb+V≦0.500%…(A)
    Zr+Co+Zn+W≦1.00%…(B)
    However, each element symbol in the formulas (A) and (B) indicates the content in mass % of the element, and when the element is not contained, 0% is substituted.
    Here, P (i, j) in the following formulas (1) to (5) is a gray level co-occurrence matrix, and L in the following formula (2) is the number of gray scale levels that the SEM image can take. i and j in the following formulas (2) and (3) are natural numbers from 1 to the above L, and μ x and μ y in the following formula (3) are represented by the following formulas (4) and (5), respectively. shown.
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
  2.  前記表面を始点として、前記板厚方向に20μm深さの位置を終点とする領域である表層領域における平均結晶粒径が3.0μm未満であることを特徴とする請求項1に記載の熱延鋼板。 The hot rolled sheet according to claim 1, wherein the average crystal grain size in a surface layer region, which is a region starting from the surface and ending at a position 20 μm deep in the plate thickness direction, is less than 3.0 μm. steel plate.
  3.  前記化学組成が、質量%で、
    Ti:0.001~0.500%、
    Nb:0.001~0.500%、
    V :0.001~0.500%、
    Cu:0.01~2.00%、
    Mo:0.01~1.00%、
    Ni:0.02~2.00%、
    B :0.0001~0.0100%、
    Ca:0.0005~0.0200%、
    Mg:0.0005~0.0200%、
    REM:0.0005~0.1000%、
    Bi:0.0005~0.0200%、
    As:0.001~0.100%、
    Zr:0.01~1.00%、
    Co:0.01~1.00%、
    Zn:0.01~1.00%、
    W :0.01~1.00%、および
    Sn:0.01~0.05%
    からなる群から選択される1種または2種以上を含有する
    ことを特徴とする請求項1または2に記載の熱延鋼板。
    The chemical composition is in mass%,
    Ti: 0.001 to 0.500%,
    Nb: 0.001-0.500%,
    V: 0.001-0.500%,
    Cu: 0.01-2.00%,
    Mo: 0.01-1.00%,
    Ni: 0.02-2.00%,
    B: 0.0001 to 0.0100%,
    Ca: 0.0005-0.0200%,
    Mg: 0.0005-0.0200%,
    REM: 0.0005-0.1000%,
    Bi: 0.0005-0.0200%,
    As: 0.001 to 0.100%,
    Zr: 0.01 to 1.00%,
    Co: 0.01 to 1.00%,
    Zn: 0.01-1.00%,
    W: 0.01 to 1.00%, and Sn: 0.01 to 0.05%
    The hot rolled steel sheet according to claim 1 or 2, characterized in that it contains one or more selected from the group consisting of:
PCT/JP2023/032635 2022-09-08 2023-09-07 Hot-rolled steel sheet WO2024053701A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-142994 2022-09-08
JP2022142994 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024053701A1 true WO2024053701A1 (en) 2024-03-14

Family

ID=90191282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032635 WO2024053701A1 (en) 2022-09-08 2023-09-07 Hot-rolled steel sheet

Country Status (1)

Country Link
WO (1) WO2024053701A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479722B2 (en) * 1983-08-23 1992-12-16 Hitachi Ltd
WO2022044493A1 (en) * 2020-08-27 2022-03-03 日本製鉄株式会社 Hot-rolled steel sheet
WO2023063010A1 (en) * 2021-10-11 2023-04-20 日本製鉄株式会社 Hot-rolled steel plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479722B2 (en) * 1983-08-23 1992-12-16 Hitachi Ltd
WO2022044493A1 (en) * 2020-08-27 2022-03-03 日本製鉄株式会社 Hot-rolled steel sheet
WO2023063010A1 (en) * 2021-10-11 2023-04-20 日本製鉄株式会社 Hot-rolled steel plate

Similar Documents

Publication Publication Date Title
JP7239009B2 (en) hot rolled steel
WO2023063010A1 (en) Hot-rolled steel plate
WO2022044493A1 (en) Hot-rolled steel sheet
WO2022180954A1 (en) Steel sheet, and method for manufacturing same
WO2023149374A1 (en) Hot-rolled steel sheet
JP7260825B2 (en) hot rolled steel
WO2022044495A1 (en) Hot-rolled steel sheet
JP7348574B2 (en) hot rolled steel plate
WO2024053701A1 (en) Hot-rolled steel sheet
WO2021251276A1 (en) Steel sheet and manufacturing method therefor
WO2023063014A1 (en) Hot-rolled steel plate
WO2024048584A1 (en) Hot-rolled steel sheet
WO2024080327A1 (en) Hot-rolled steel sheet
JP7260824B2 (en) hot rolled steel
WO2022044492A1 (en) Hot-rolled steel sheet
JP7440804B2 (en) hot rolled steel plate
WO2022044494A1 (en) Hot-rolled steel sheet
JP7168137B1 (en) High-strength steel plate and its manufacturing method
KR20240051972A (en) hot rolled steel plate
CN117940597A (en) Hot rolled steel sheet
WO2023095866A1 (en) Hot-rolled steel sheet
WO2023281808A1 (en) Hot-rolled steel sheet