WO2024009742A1 - Load transmission mechanism unit for training machine and training machine employing same - Google Patents

Load transmission mechanism unit for training machine and training machine employing same Download PDF

Info

Publication number
WO2024009742A1
WO2024009742A1 PCT/JP2023/022592 JP2023022592W WO2024009742A1 WO 2024009742 A1 WO2024009742 A1 WO 2024009742A1 JP 2023022592 W JP2023022592 W JP 2023022592W WO 2024009742 A1 WO2024009742 A1 WO 2024009742A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
transmission mechanism
load transmission
crankshaft
sliding
Prior art date
Application number
PCT/JP2023/022592
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 小山
Original Assignee
株式会社ワールドウィングエンタープライズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワールドウィングエンタープライズ filed Critical 株式会社ワールドウィングエンタープライズ
Publication of WO2024009742A1 publication Critical patent/WO2024009742A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously

Definitions

  • the present invention relates to a load transmission mechanism for a training device and a training device using the same.
  • Patent Document 1 discloses a training device that allows both arms to be exercised.
  • the training device of Patent Document 1 has a load transmission mechanism that includes a rotating shaft called an elevating swinging member, gears, etc. between a wire extending from a weight on the training device side and a grip part held by a user.
  • a load transmission mechanism that includes a rotating shaft called an elevating swinging member, gears, etc. between a wire extending from a weight on the training device side and a grip part held by a user.
  • the training equipment of Patent Document 1 is equipped with an elevating and swinging member (load transmission mechanism part). , it is possible to apply the load caused by the arm twisting motion that the user is trying to exercise. Therefore, rather than training the muscles in a monotonous direction, the muscles around the arm bones are moved more by twisting motions that involve a load, and it becomes possible to acquire muscle strength with flexibility and elasticity.
  • the inventor has conducted extensive studies on the lifting and swinging member (load transmission mechanism) of the training equipment disclosed in Patent Document 1. Then, the inventors improved the device so that loads can be applied from more directions to the axis of the lifting and swinging member (load transmission mechanism) to which the grip portion held by the user is connected. For example, it becomes possible to apply a load not only in the pulling direction and the twisting direction but also in the pushing direction. Furthermore, the inventor has improved the lifting/lowering swinging member (load transmission mechanism) so that it can be applied not only to the movements of the user's arms but also to the legs.
  • the present invention was made in view of the above points, and by applying loads from more directions to the shaft that constitutes the load transmission mechanism, it is possible to acquire muscles with more flexibility and elasticity.
  • a load transmission mechanism for a training device and a training device using the same are provided.
  • the load transmission mechanism for a training device has an input section to which a user inputs force is connected to an end, a main drive shaft that rotates together with the input section, and a main drive shaft that rotates together with the input section.
  • an intermediate shaft portion that rotates in conjunction with each other; a first rotation transmission portion that is suspended between the main drive shaft portion and the intermediate shaft portion and transmits mutual rotation of the main drive shaft portion and the intermediate shaft portion; a second rotation transmission section that is provided between the shaft section and a crankshaft section perpendicular to the intermediate shaft section and transmits mutual rotation of the intermediate shaft section and the crankshaft section; a main drive shaft section; and an intermediate shaft section.
  • a sliding shaft that is disposed in the outer casing and is allowed to be displaced in a direction in which the shaft rotates, and is biased in a linear direction by an external force; Rotation in a direction perpendicular to the central axis is allowed by the combination of the plurality of connection pieces, and a connection joint part in which one of the plurality of connection pieces is connected to the sliding shaft part, the connection joint.
  • the crankshaft is connected to the crankshaft by being allowed to rotate about a central axis perpendicular to the axial direction of the crankshaft in a connection piece different from the one connecting piece connected to the sliding shaft.
  • the rotation and axial movement of the shaft section are converted into vertical displacement of the sliding shaft section, and when the user horizontally moves the main drive shaft section through the input section, the external force applied to the sliding shaft section is applied to the main drive shaft section. It is characterized in that the information is transmitted to the input unit through.
  • the load transmission mechanism for a training device includes a main drive shaft part to which an input part through which a user inputs force is connected to an end part, which rotates together with the input part, and a main drive shaft part that is linked to the rotation of the main drive shaft part.
  • an intermediate shaft portion that rotates, a first rotation transmission portion that is suspended between the main drive shaft portion and the intermediate shaft portion and transmits mutual rotation of the main drive shaft portion and the intermediate shaft portion; and an intermediate shaft portion.
  • a second rotation transmitting part that is provided between the intermediate shaft part and the crankshaft part perpendicular to the intermediate shaft part and transmits mutual rotation of the intermediate shaft part and the crankshaft part, and the main drive shaft part and the intermediate shaft part.
  • a sliding shaft that is biased in a linear direction by an external force a rotation having a central axis perpendicular to the axial direction of the sliding shaft, and a plurality of rotations in a direction perpendicular to the central axis.
  • connection piece which is different from the one piece, is connected to the crankshaft with rotation allowed and has a central axis perpendicular to the axial direction of the crankshaft, and the rotation and axial movement of the crankshaft are controlled by a sliding shaft.
  • the input section may be a grip section held by the user or a foot rest section for the user.
  • the connecting joint portion may be configured with a plurality of connected universal joints as main members.
  • the outer casing is provided with a connecting part for connecting to the training equipment, and as the main drive shaft moves horizontally, the inner casing may be slid inside the outer casing.
  • the load transmission mechanism for training equipment according to the second aspect may include a connecting part for connecting to the training equipment.
  • the first rotation transmission part is a transmission chain
  • the main drive shaft part is provided with a main drive shaft sprocket
  • the intermediate shaft An intermediate shaft sprocket may be provided at the main shaft sprocket
  • the transmission chain may be suspended between the main shaft sprocket and the intermediate shaft sprocket.
  • An eighth aspect is the load transmission mechanism for a training device according to the first or second aspect, in which the second rotation transmission section includes an intermediate shaft bevel gear provided in the intermediate shaft portion and a crankshaft portion.
  • the crankshaft bevel gear may be provided with a crankshaft bevel gear that meshes with the intermediate shaft bevel gear.
  • the gripping section may be an annular object.
  • the external force may be generated by a load applying portion that freely adjusts the magnitude of the load on the training device.
  • An eleventh aspect is that in the load transmission mechanism for a training device according to the first or second aspect, the sliding bearing that pivotally supports the sliding shaft portion is arranged such that the sliding shaft portion rotates in the axial direction of the crankshaft portion. It is also possible to have a bearing hole through which the bearing hole is inserted obliquely.
  • a twelfth aspect is that in the load transmission mechanism for a training device according to the first or second aspect, the sliding bearing that pivotally supports the sliding shaft is inserted orthogonally to the axial direction of the crankshaft. a first bearing hole that intersects with the first bearing hole and is inserted through the shaft diagonally with respect to the axial direction of the crankshaft portion; It is good also as moving between a 1st bearing hole and a 2nd bearing hole with movement of.
  • a thirteenth aspect is that in the load transmission mechanism for a training device according to the first or second aspect, the sliding bearing that pivotally supports the sliding shaft portion has a bearing hole in the shape of an inverted truncated cone. Good too.
  • a fourteenth aspect is that in the load transmission mechanism for a training device according to the first or second aspect, the sliding bearing that pivotally supports the sliding shaft portion may have a constricted portion at the center in the axial direction. good.
  • the training device according to the fifteenth aspect may include the training device load transmission mechanism section according to the first or second aspect.
  • the load transmission mechanism for a training device includes a main drive shaft part to which an input part through which a user inputs force is connected to an end part, which rotates together with the input part, and a main drive shaft part that rotates in conjunction with the rotation of the main drive shaft part.
  • a moving intermediate shaft portion a first rotation transmission portion suspended between the main drive shaft portion and the intermediate shaft portion and transmitting mutual rotation of the main drive shaft portion and the intermediate shaft portion; and an intermediate shaft portion; a second rotation transmission section that is provided between the intermediate shaft section and the crankshaft section perpendicular to the intermediate shaft section and transmits mutual rotation of the intermediate shaft section and the crankshaft section; a main drive shaft section, an intermediate shaft section, and a crank;
  • An inner casing that houses the shaft; an outer casing that houses the inner casing and allows the inner casing to move internally in the axial direction of the crankshaft; and an outer casing that moves in a direction perpendicular to the axial direction of the crankshaft.
  • a sliding shaft portion disposed in the outer casing and biased in a linear direction by an external force; Rotation having a second central axis perpendicular to the central axis is allowed by a combination of the plurality of connecting pieces, and a connecting joint part in which one of the plurality of connecting pieces is connected to the sliding shaft part.
  • the connecting joint part is connected to the crankshaft part by being allowed to rotate about a central axis perpendicular to the axial direction of the crankshaft part in a connecting piece part different from the one connecting part connected to the sliding shaft part.
  • the rotation and axial movement of the crankshaft are converted into vertical displacement of the sliding shaft, and when the user horizontally moves the main drive shaft through the input section, the external force applied to the sliding shaft is It is possible to provide a load transmission mechanism for a training device and a training device using the same, which enables the learning of muscles with more flexibility and elasticity by transmitting the load to the input section through the active shaft.
  • FIG. 3 is a diagram for explaining an operation accompanying horizontal movement of a main drive shaft portion of a load transmission mechanism portion for a training device according to a first embodiment.
  • FIG. 3 is a diagram for explaining operations accompanying rotation and horizontal movement of the main drive shaft of the training device load transmission mechanism according to the first embodiment.
  • FIG. 3 is a perspective view of the first training device.
  • FIG. 3 is a front view of the first training device. It is a perspective view of the 1st usage form of the 1st training device. It is a front view of the 1st usage form of the 1st training device. It is a perspective view of the 2nd usage form of the 1st training device. It is a front view of the 2nd usage form of the 1st training device. It is a front view for demonstrating the internal structure of the load transmission mechanism part for training instruments based on 2nd Embodiment. It is a top view for demonstrating the internal structure of the load transmission mechanism part for training instruments based on 2nd Embodiment. It is a figure for explaining the composition of the load transmission mechanism part for training equipment concerning a 3rd embodiment.
  • FIG. 7 is a first diagram for explaining an operation involving rotation and parallel movement of a main drive shaft of a load transmission mechanism for a training device according to a third embodiment
  • FIG. 2 is a second diagram for explaining an operation involving rotation and parallel movement of a main drive shaft of a load transmission mechanism for a training device according to a third embodiment
  • FIG. 3 is a perspective view of the second training device. It is an enlarged view of the footrest part of the 2nd training apparatus. It is a side view which shows the 1st aspect of the usage form of a 2nd training device. It is a side view which shows the 2nd aspect of the usage pattern of a 2nd training device. It is a side view which shows the 3rd aspect of the usage form of a 2nd training device.
  • a load transmission mechanism section 1A for training equipment according to the first embodiment disclosed in FIGS. 1 to 5 a load transmission mechanism section 1B for training equipment according to the second embodiment disclosed in FIGS. 12 to 13, and FIG.
  • the load transmission mechanism section 1D for training equipment according to the fourth embodiment disclosed in FIGS. 25 to 24 and the load transmission mechanism section 1E for training equipment according to the fifth embodiment disclosed in FIGS. It is connected to the equipment 100 or the second training equipment 201.
  • a training device load transmission mechanism section 1C according to the third embodiment disclosed in FIGS. 14 to 16 is connected to a second training device 201, which will be described later.
  • the training equipment load transmission mechanism units 1A, 1B, 1C, 1D, and 1E are mechanisms for transmitting loads such as weights on the first training equipment 100 and the second training equipment 201 to the users of the training equipment. It is a mechanical member equipped with
  • the load transmission mechanism parts 1A, 1B, 1D, and 1E for training equipment include a grip part 11 (see FIG. 1, etc.) that is grasped by the user, and are used for arm and shoulder training equipment, and are used to transfer the load for the training equipment.
  • the transmission mechanism section 1C includes a user's foot rest section 271 (see FIG. 14, etc.), and is used as a leg training device.
  • the grip parts 11 and 260 and the footrest part 271 are input parts through which the user inputs force.
  • the user holds the grip section 11 serving as the input section with the left and right hands, respectively, with the backs of both arms facing the left and right sides of the first training device 100 in an initial state, which will be described later. Then, the user inputs a pulling force to the grip part 11 by simultaneously lowering both arms while gripping the grip part 11 with both hands. Further, the user holds the grip section 11, which serves as the input section, with the left and right hands, respectively, with the backs of both arms facing the left and right sides of the first training device 100 in the initial state. Then, the user grasps the grip part 11 with both hands and simultaneously opens the chest outward with both arms extended, thereby transferring the load to the grip part 11, which serves as the input part, to the load transmission mechanism 1A.
  • Input force so that it rotates outward.
  • the user is seated on the right side of the seat 211 of the second training device 201 in the initial state, which will be described later.
  • the user then raises his right arm and grasps the grip section 260.
  • the user inputs a pulling force to the grip part 260 serving as an input part by swinging the right arm forward while maintaining the state of gripping the grip part 260 with the right hand.
  • the user is seated on the right side of the seat 211 of the second training device 201, which will be described later, and places the left leg on the footrest 271 that serves as the input section of the load transmission mechanism section 1C, with the knee bent. Take.
  • the user inputs a pushing force to the footrest 271 by extending the left foot.
  • the training device load transmission mechanism section 1A includes an outer casing 2 and an inner casing 3.
  • the inner casing 3 is housed in the outer casing 2 and reciprocates inside the outer casing 2 in one direction.
  • a slide rail (not shown) is interposed between the outer casing 2 and the inner casing 3 to reduce the sliding friction that occurs between the outer casing 2 and the inner casing 3.
  • Slide rails include roller types and bearing types.
  • the inner casing 3 includes a main drive shaft 4 , an intermediate shaft 5 , and a crankshaft 6
  • the outer casing 2 includes a sliding shaft 13 . Power can be transmitted between the main drive shaft part 4 and the sliding shaft part 13 via each shaft part between the main drive shaft part 4 and the sliding shaft part 13 .
  • each shaft section of the main drive shaft section 4, the intermediate shaft section 5, and the crankshaft section 6 is rotatably supported by the inner housing 3.
  • the main drive shaft portion 4 is rotatably supported by main drive shaft bearings 4a and 4b attached to the inner case 3, and the intermediate shaft portion 5 is attached to the inner case 3. It is rotatably supported by intermediate shaft bearings 5a and 5b.
  • the sliding shaft portion 13 is disposed in the outer housing 2 so as to be allowed to be displaced in a direction perpendicular to the axial direction of the crankshaft portion 6, and is biased in a linear direction by an external force.
  • the sliding shaft portion 13 is pivotally supported by a sliding bearing 13a provided in the outer housing 2, and is allowed to be displaced in the vertical direction in FIG. Furthermore, the sliding bearing 13a may be supported by line contact with the sliding shaft portion 13.
  • the inner circumferential surface of the sliding bearing 13a may have a mortar shape, and a portion of the inner circumferential surface may be in line contact with the outer circumferential surface of the sliding shaft portion 13 to be pivotally supported. According to this, the sliding shaft portion 13 can reduce sliding friction with the sliding bearing 13a, and can perform smoother vertical displacement in FIG. 1.
  • a connecting portion 7 is provided in the outer housing 2 in order to connect the training device load transmission mechanism portion 1A of the first embodiment to a first training device 100 (see FIGS. 6 to 11), which will be described later.
  • the connection portion 7 of the training device load transmission mechanism portion 1A has a cylindrical connection tube portion 8.
  • a guide column 140 (see FIGS. 6 to 11) is inserted into the connecting tube 8.
  • a member having low sliding resistance, such as fluororesin, is used, for example.
  • the training device load transmission mechanism section 1A can be smoothly moved up and down and rotated in the first training device 100.
  • the inner casing 3 of the training device load transmission mechanism section 1A of the first embodiment allows horizontal movement relative to the outer casing 2, the connecting section 7, and the guide column 140. That is, the main drive shaft portion 4 provided in the inner housing 3 can be horizontally moved relative to the outer housing 2, the connecting portion 7, and the guide column 140.
  • the connecting joint portion 12 rotates with a first center axis 12g orthogonal to the axial direction of the sliding shaft portion 13, and rotates with a second center axis 12h orthogonal to the first center axis 12g.
  • the combination of the plurality of connection pieces 30 is allowed, and one (30 (12e)) of the plurality of connection pieces 30 is connected to the sliding shaft 13.
  • the connecting piece portion 30 (third joint piece 12e) of the connecting joint portion 12 is connected to the lower end portion (first end portion 13b) of the sliding shaft portion 13.
  • the connecting joint part 12 has a first central axis 12g that is perpendicular to the axial direction of the sliding shaft part 13 (the axial direction means the direction in which the shaft extends or the longitudinal direction of the shaft. The same applies hereinafter).
  • the rotation and the rotation having the second central axis 12h orthogonal to the first central axis 12g are allowed by the combination of the plurality of connecting pieces 30, and the sliding shaft part 13 has the plurality of connecting pieces 30
  • One (third joint piece 12e) of (the first joint piece 12a, the second joint piece 12c, and the third joint piece 12e) is connected.
  • the central axes including the first central axis 12g, the second central axis 12h, the third central axis 12j, and the fourth central axis 12k are rotational axes that pass through the center of rotation. same as below.
  • the connecting joint part 12 has one connecting piece part 30 (third joint piece 12e) connected to the sliding shaft part 13 and a different connecting piece part 30 (first joint piece 12a, second joint piece 12c) connected to the sliding shaft part 13.
  • the shaft part 6 is connected to the crankshaft part 6 with a central axis orthogonal to the axial direction that is allowed to rotate, and the rotation and axial movement of the crankshaft part 6 is controlled by the vertical displacement of the sliding shaft part 13. Convert to
  • the connecting joint part 12 includes a first joint piece 12a, a second joint piece 12c, and a third joint piece 12e, which are the connecting piece parts 30.
  • the first joint piece 12a and the second joint piece 12c are connected by a first universal joint 12b, which is a universal joint 40.
  • the second joint piece 12c and the third joint piece 12e are connected by a second universal joint 12d, which is a universal joint 40.
  • the universal joint 40 can freely change the angle at which the two rotating shafts join to transmit the rotational motion of one rotating shaft to the other rotating shaft at an angle.
  • the universal joint 40 may be any of various types of universal joints or a rod member called a connecting rod 41 (see FIG. 30).
  • a connecting rod 41 is used in the universal joint 40 (first universal joint 12b and second universal joint 12d) shown in FIG.
  • the connecting rod 41 includes two through holes (a first through hole 41a and a second through hole 41b) that are orthogonal to each other.
  • a pin 12f serving as the first central axis 12g is inserted into the first through hole 41a, and a pin 12f serving as the third central axis 12j is inserted through the second through hole 41b (see FIG. 1).
  • Examples of the universal joint include a top-shaped universal joint and a constant velocity universal joint.
  • the connecting joint part 12 includes three connecting pieces 30, a first joint piece 12a, a second joint piece 12c, and a third joint piece 12e, and a universal joint 40 (first joint piece) connecting these adjacent connecting pieces 30.
  • the connecting joint portion 12 is configured to include three connecting pieces 30, the present invention is not limited to this, and may include four or more connecting pieces 30.
  • the connecting joint 12 includes at least two universal joints 40 .
  • a connecting joint 12 that includes four connecting pieces 30 includes two or three universal joints 40 .
  • the first joint piece 12a is rotatably attached with a pin 12f so as to straddle the side surface of the crankshaft portion 6.
  • the pin 12f is orthogonal to the rotation axis of the crankshaft portion 6, and serves as the rotation axis of the first joint piece 12a.
  • the first joint piece 12a is attached to the crankshaft portion 6 so as to be swingable about the pin 12f as a rotation axis.
  • the connecting joint portion 12 includes two universal joints 40, and the first joint piece 12a and the crankshaft portion 6 are swingably connected, so that rotation and axial movement of the crankshaft portion 6 are prevented. can be converted into vertical displacement of the sliding shaft portion 13.
  • the first universal joint 12b connects the first joint piece 12a and the second joint piece 12c using two rotating shafts that intersect at right angles. It can be bent at a predetermined angle in two orthogonal directions using the universal joint 12b as a base point.
  • the second universal joint 12d connects the second joint piece 12c and the third joint piece 12e using two rotating shafts that intersect at right angles. It can be bent at a predetermined angle in two orthogonal directions using the universal joint 12d as a base point.
  • the first joint piece 12a has a fourth central axis 12k (pin 12f) perpendicular to the axial direction of the crankshaft part 6 at one end thereof, and is allowed to rotate and is connected to the crankshaft part 6. 12a rotates along the axial direction of the crankshaft portion 6. Moreover, since the first joint piece 12a is connected to the second joint piece 12c via the first universal joint 12b at the other end, the first joint piece 12a can be bent in two directions perpendicular to the second joint piece 12c. can do.
  • the second joint piece 12c is connected to the third joint piece 12e via the second universal joint 12d at the end opposite to the end connected to the first joint piece 12a.
  • the piece 12c can be bent in two directions perpendicular to the third joint piece 12e.
  • the third joint piece 12e is connected to the first end 13b of the sliding shaft portion 13 at the end opposite to the end connected to the second joint piece 12c.
  • a grip portion 11 that is gripped by a user is connected to the lower end of the main drive shaft portion 4 .
  • the grip section 11 is an input section through which the user inputs force. The movements of the user's hands and arms are transmitted to the main drive shaft section 4 through the grip section 11, and the main drive shaft section 4 itself rotates and moves horizontally.
  • the gripping portion 11 connected to the main drive shaft portion 4 is held by an annular object, particularly the fingers of a hand, and therefore has a rectangular annular shape.
  • the grip portion 11 has a rectangular (square) shape in plan view, and forms a continuous ring.
  • the intermediate shaft portion 5 rotates in conjunction with the rotation of the main drive shaft portion 4.
  • a first rotation transmission section 1K is provided which is suspended between the main drive shaft section 4 and the intermediate shaft section 5 and transmits mutual rotation of the main drive shaft section 4 and the intermediate shaft section 5.
  • the rotation of the main drive shaft portion 4 is transmitted to the intermediate shaft portion 5 by the first rotation transmission portion 1K.
  • a force that causes the intermediate shaft portion 5 to rotate due to an external force acting on the sliding shaft portion 13 is transmitted to the main drive shaft portion 4 by the first rotation transmission portion 1K.
  • the driving shaft portion 4 and the intermediate shaft portion 5 are arranged parallel to each other.
  • the main drive shaft part 4 and the intermediate shaft part 5 are rotatably supported by the inner case 3, and the main drive shaft part 4 and the intermediate shaft part 5 are connected and fixed by the inner case 3. 3 transmits the horizontal movement of the main drive shaft section 4 and the intermediate shaft section 5 to each other.
  • the first rotation transmission section 1K includes a transmission chain 10 (indicated by thick broken lines in FIGS. 1 to 5).
  • Examples of the transmission chain 10 include a roller chain and a leaf chain.
  • the main drive shaft section 4 is provided with a main drive shaft sprocket 4C
  • the intermediate shaft section 5 is provided with an intermediate shaft sprocket 5C.
  • the first rotation transmission section 1K may be a combination of a belt and a pulley (not shown) instead of employing the transmission chain 10.
  • belts include V-belts, flat belts, toothed belts, and the like.
  • the intermediate shaft portion 5 and the crankshaft portion 6 are in a perpendicular relationship, and a second rotation transmission portion 1M is provided between the intermediate shaft portion 5 and the crankshaft portion 6.
  • the second rotation transmission section 1M transmits mutual rotation between the intermediate shaft section 5 and the crankshaft section 6.
  • the second rotation transmission section 1M plays a role of transmitting rotation between two axes that intersect at right angles.
  • the term "between two shafts” refers to the space between the intermediate shaft section 5 and the crankshaft section 6.
  • the second rotation transmission section 1M includes an intermediate shaft bevel gear 5d provided on the intermediate shaft section 5, and a crankshaft bevel gear provided on the crankshaft section 6 that meshes with the intermediate shaft bevel gear 5d.
  • a gear 6c is provided.
  • the rotational movement of the intermediate shaft portion 5 is interlocked with the crankshaft portion 6 at right angles.
  • the mechanism of the second rotation transmission section 1M that orthogonally connects the intermediate shaft section 5 and the crankshaft section 6 includes, for example, a mechanism such as a combination of a crown gear and a spur gear, a worm and a worm wheel, and the like.
  • the sliding shaft portion 13 is arranged in the outer housing 2 at a position parallel to the intermediate shaft portion 5. Rotation and horizontal movement in the axial direction of the crankshaft portion 6 are converted into vertical movement on the paper via the connecting joint portion 12 and transmitted to the sliding shaft portion 13 .
  • the sliding shaft portion 13 is connected to a load applying portion 130 that can adjust the magnitude of the load on the first training device 100 (see FIGS. 6 to 11).
  • the connecting joint portion 12 As the crankshaft portion 6 rotates and moves horizontally in the axial direction, the connecting joint portion 12 is moved, and a vertical motion is generated in the sliding shaft portion 13 via the connecting joint portion 12.
  • the sliding shaft 13 moves up and down due to the axial rotation of the main drive shaft 4 and the horizontal movement in the axial direction of the crankshaft 6, and the first training device 100 (see FIGS. 6 and 6) connected to the sliding shaft 13 moves up and down. 11) moves up and down.
  • the first rotation transmission section 1K includes a main drive shaft sprocket 4c provided on the main drive shaft section 4, an intermediate shaft sprocket 5c, and a main drive shaft sprocket 4c and an intermediate shaft sprocket 5c. and a transmission chain 10 suspended between them.
  • the second rotation transmission portion 1M includes an intermediate shaft bevel gear 5d provided on the intermediate shaft portion 5, and a crankshaft bevel gear 6c meshing with the intermediate shaft bevel gear 5d.
  • the rotation of the main drive shaft section 4 is transmitted to the crankshaft section 6 by the first rotation transmission section 1K and the second rotation transmission section 1M. Since the main drive shaft section 4 and the crankshaft section 6 are pivotally supported in the inner case 3, the horizontal movement of the crankshaft section 6 of the main drive shaft section 4 in the axial direction is caused by moving the crankshaft section 6 through the inner case 3. 6.
  • the sliding shaft section 13 moves forward and backward by the rotation of the crankshaft section 6 and the horizontal movement in the axial direction by the connecting joint section 12.
  • the main driving shaft section 4 grip section 11
  • the main driving shaft section 4 is biased by a force proportional to the load of the load applying section 130 (see FIGS. 6 to 11).
  • the grip part 11 which is an input part, against the rotational biasing force with respect to the main drive shaft part 4
  • the sliding shaft part 13 is drawn into the outer casing 2, and the sliding shaft part 13 is pulled into the outer housing 2.
  • the load application section 130 connected to the dynamic shaft section 13 is tensed (pulled up).
  • FIG. 2 is a diagram showing the initial posture during operation of the load transmission mechanism section 1A for training equipment (hereinafter referred to as load transmission mechanism section 1A), and FIG. 3 shows the rotation of the main drive shaft section 4 of the load transmission mechanism section 1A.
  • FIG. 4 is a diagram for explaining the operation accompanying the horizontal movement of the main drive shaft section 4 of the load transmission mechanism section 1A, and FIG. FIG. 4 is a diagram for explaining operations accompanying rotation and horizontal movement of the portion 4.
  • the initial position in the operation of the load transmission mechanism section 1A shown in FIG. 2 is a state in which the main drive shaft section 4 is located at the far right in FIG. 2 and the connecting joint section 12 is extended upward the most. That is, in the initial posture of the operation of the load transmission mechanism section 1A, the second end 13c of the sliding shaft section 13 is at the highest position.
  • the load transmission mechanism section 1A shown in FIG. 3 shows a state where the main drive shaft section 4 remains in the initial position shown in FIG. 2 and only rotates.
  • the grip part 11 is rotated by the user, the rotation of the grip part 11 becomes the rotation of the main drive shaft part 4, and the rotation is transmitted to the intermediate shaft part 5 via the first rotation transmission part 1K, Further, the rotational motion is transmitted to the crankshaft section 6 via the second rotation transmission section 1M.
  • the crankshaft portion 6 rotates, the first universal joint 12b and the second universal joint 12d of the connecting joint portion 12 bend in the circumferential direction of the crankshaft.
  • the connecting joint part 12 Due to the bending, the connecting joint part 12 is curved inside the load transmission mechanism part 1A, and the sliding shaft part 13 is drawn into the inside of the load transmission mechanism part 1A, and the first training device 100 ( Lift up the load applying section 130 (weight 131) (see FIGS. 6 to 11). Therefore, the load of the load applying section 130 (weight 131) acts on the rotation of the grip section 11 by the user.
  • the load transmission mechanism section 1A shown in FIG. 4 is shown in a state in which the main drive shaft section 4 is horizontally moved to the left in the figure without rotation from the position of the main drive shaft section 4 in the initial posture shown in FIG.
  • the grip part 11 is horizontally moved to the left side in the figure by the user, and the horizontal movement of the grip part 11 becomes the horizontal movement of the main drive shaft part 4, and the horizontal movement moves the intermediate shaft part 5 and the crankshaft via the inner housing 3. 6.
  • the crankshaft 6 moves horizontally, the first universal joint 12b and the second universal joint 12d of the connecting joint 12 bend in the axial direction of the crankshaft 6.
  • the connecting joint part 12 Due to the bending, the connecting joint part 12 is curved inside the load transmission mechanism part 1A, and the sliding shaft part 13 is drawn into the inside of the load transmission mechanism part 1A, and the first training device 100 ( Lift up the load applying section 130 (weight 131) (see FIGS. 6 to 11). Therefore, the load of the load applying section 130 (weight 131) acts on the horizontal movement of the grip section 11 by the user.
  • the load transmission mechanism section 1A shown in FIG. 5 is shown in a state in which the main drive shaft 4 is rotated and horizontally moved to the left in the figure from the position of the main drive shaft 4 in the initial posture shown in FIG.
  • the grip part 11 When the grip part 11 is rotated by the user, it is horizontally moved to the left in the figure, and the rotation and horizontal movement of the grip part 11 become the rotation and horizontal movement of the main drive shaft part 4.
  • the rotation of the grip portion 11 is transmitted to the intermediate shaft portion 5 via the first rotation transmission portion 1K, and further transmitted to the crankshaft portion 6 via the second rotation transmission portion 1M.
  • Horizontal movement of the grip portion 11 is transmitted to the intermediate shaft portion 5 and the crankshaft portion 6 via the inner housing 3.
  • the first universal joint 12b and the second universal joint 12d of the connecting joint section 12 are bent in the circumferential direction and the axial direction of the crankshaft. Due to the bending, the connecting joint part 12 is curved inside the load transmission mechanism part 1A, and the sliding shaft part 13 is drawn into the inside of the load transmission mechanism part 1A, and the first training device 100 ( Lift up the load applying section 130 (weight 131) (see FIGS. 6 to 11). Therefore, the load of the load applying section 130 (weight 131) acts on the rotation and horizontal movement of the grip section 11 by the user.
  • the force (restoring force) to return to the initial state shown in FIG. 2 due to the action of the load on the load applying section 130 (weight 131) is 11.
  • the user either maintains the states shown in FIGS. 3, 4, and 5 while resisting this restoring force, further rotates or horizontally moves the grip portion 11, or returns it to the initial posture.
  • the configuration of the first training device 100 is shown in FIGS. 6 and 7.
  • the first training device 100 is a device equipped with a load transmission mechanism section 1A.
  • the first training device 100 includes a seating portion 110, a framework 120 that supports the seating portion 110, and a load imparting device provided on the framework 120 that can freely adjust the magnitude of the load. 130, two guide columns 140 fixed to the framework 120 at a predetermined interval in the vertical direction so that the seating section 110 is in the center position, and one end side of the two guide columns 140 can be moved up and down.
  • Two load transmission mechanism parts 1A fitted together so as to be freely rotatable in the horizontal direction, and a grip part 11 connected to the lower end part of the grip part 11 of these two load transmission mechanism parts 1A.
  • a tensioning member 180 is provided, which is connected to the other end of the tensioning member 180 within the load transmission mechanism section 1A, and a load is applied to the rotation of the gripping section 11 about the axis by the load applying section 130.
  • the seating section 110 consists of a seat 111 suitable for the user of the first training device 100 to sit facing forward, and a seat support 112 provided vertically on the underside of the seat 111.
  • the framework 120 stably installs the first training device 100 on the floor and serves as the framework of the entire first training device 100, to which the seating portion 110, the load applying portion 130, the two guide columns 140, etc. are fixed. .
  • the seat support 112 is inserted into a hole vertically extending in front of the center of the lower surface of the framework 120, and the seating portion 110 is supported by the framework 120.
  • the framework 120 includes a thigh presser 121 that prevents the thighs of a user seated on the seat 111 from lifting up.
  • the thigh presser part 121 is provided to allow the user to create an appropriate arch in the back during training.
  • the load applying unit 130 can freely adjust the magnitude of the load provided to the framework 120, and includes a weight 131 made of a plurality of plate-shaped plates, which are heavy metal members, and the weight 131 can be freely moved up and down on the framework 120.
  • the weight guide column 132 is provided with a clamp (not shown) that can connect and separate the weights 131 from each other. By increasing or decreasing the number of weights 131, the load on the load applying section 130 is adjusted.
  • a pair of cylindrical weight guide columns 132 are vertically fixed to the framework 120 at the rear of the seating section 110 with their upper and lower ends spaced apart from each other by a predetermined lateral interval, and each plate-shaped plate of the weight 131 has its through hole. are inserted and stacked, and supported by the framework 120 so as to be vertically movable.
  • the two load transmission mechanism parts 1A are respectively fitted to the two guide columns 140 via the connection parts 7 so as to be vertically movable and horizontally rotatable.
  • the grip portion 11 connected to the main drive shaft portion 4 of the load transmission mechanism portion 1A is a handle of an annular object that serves as an input portion through which a user grips with his/her hand and inputs force. Each gripping part 11 can rotate in the horizontal direction with respect to the load transmission mechanism part 1A. Further, the grip portion 11 can also be rocked. In the initial state (see FIGS. 6 and 7), each gripping part 11 is in a position where the back of the hand of the user who grips each gripping part 11 faces the outside of the first training device 100.
  • each grip portion 11 is located further above the position of the hand of the user seated on the seat 111 who extends his arm upward.
  • the user can then lower the load transmission mechanism section 1A through the grip section 11.
  • the user can open both arms from the midline (the line between the left and right sides of the body) to the outside at the chest (see FIGS. 8 and 9).
  • the first training device 100 shown in FIGS. 6, 7, 8, and 9 is used by moving both arms simultaneously, whereas the first training device 100 shown in FIGS. 10 and 11 is used with one arm at a time. Get it working and use it.
  • the tension members 180 of the first training device 100 shown in FIGS. 6, 7, 8, and 9 are two ropes or wires of the same length, and one end of each of the two tension members 180 is attached to a weight. 131, and the other end of each is connected to the load transmission mechanism section 1A.
  • Two tension members 180, one end of which is fixed to the weight 131, are each wound around the direction change guide wheel 170.
  • the direction change guide wheel 170 converts the downward load applied to the tension member 80 by the weight 131 into an upward load.
  • the tension member 180 of the first training device 100 shown in FIGS. 10 and 11 uses one rope or wire. Both ends of this one tension member 180 are respectively connected to two load transmission mechanism parts 1A.
  • a movable pulley is provided in a box portion 133 provided at the upper end of the weight 131, and the tension member 180 is wound around this movable pulley.
  • the tension member 180 lifts the weight 131 upward together with the moving pulley using the other load transmission mechanism 1A as a fulcrum.
  • a load transmission mechanism section 1B for training equipment according to a second embodiment (hereinafter referred to as load transmission mechanism section 1B), which will be described later, and a load transmission mechanism section 1D for training equipment according to a fourth embodiment (hereinafter referred to as load transmission mechanism section 1D) ), and a training device load transfer mechanism section 1E (referred to as load transfer mechanism section 1E) according to the fifth embodiment is used by being attached to the first training device 100 in place of the load transfer mechanism section 1A. be able to.
  • the two load transmission mechanism parts 1B, 1D, and 1E are connected to the two guide columns 140 of the first training device 100 by connection parts 7 so as to be vertically movable and horizontally rotatable. They are fitted together freely.
  • weights 131 are placed according to the load taking into account the user's muscle strength, purpose, and the like.
  • the user sits on the seat 111 facing forward, and adjusts and fixes the seat 111 to an appropriate height so that the soles of the user's feet are in contact with the floor.
  • the thigh presser 121 is adjusted to an appropriate height and fixed to such an extent that it contacts the upper surface of the thigh of the user seated on the seat 111.
  • the user stands up, adjusts the initial state of the load transmission mechanism section 1A facing the front direction (see FIGS. 6 and 7), turns the back of the hand to the left and right sides of the first training device 100, and holds the grip section 11. Grasp each. Then, the user sits on the seat 111 facing forward while grasping the gripping part 11 with the hand extended upward and pulling the gripping part 11 downward.
  • the user twists both upper arms outward against the rotational urging force acting on the gripping part 11 by a force proportional to the load of the load applying part 130, and twists each gripping part 11 into the load transmission mechanism part 1A.
  • the grips are rotated in the horizontal direction so that the backs of the hands gripping each grip portion 11 face toward the front of the first training device 100.
  • both the flexor and extensor muscles "relax" and the shoulders and arms become relaxed.
  • the gripping part 11 is urged upward by the load of the load applying part 130, and muscles in the vicinity of the shoulder girdle and the like are appropriately "stretched".
  • the user flexes both arms against the load of the load applying section 130 to "shorten” the muscles so that the appropriately “stretched” muscles near the shoulder girdle cause a “reflex.” and pull down the grip part 11.
  • the grip portion 11 is pulled down with both hands while further adding “relaxation” and “extension” motions of twisting the upper arm outward.
  • This action of twisting the upper arms outward causes each gripping part 11 to further pivot outwardly in the horizontal direction with respect to the load transmission mechanism part 1A, thereby pulling up the weight 131 and reducing the load in the initial movement of pulling both arms down. Decrease.
  • the user pulls down both arms, and further extends the upper arms outward while twisting them outward, which is appropriately adjusted by the load applying unit 130 in each of the three directions: downward, rotational, and lateral directions. Since the load can be applied, each muscle group that has been appropriately “stretched and contracted” can obtain the timing of "relaxation-stretching-shortening” and perform movements in a well-coordinated manner. Note that when the upper arm is extended outward, a load appropriately adjusted by the load applying section 130 (weight 131) is applied to the horizontal movement of the grip section 11 (main driving shaft section 4).
  • each load transmission mechanism part 1A resists the force that rotates and urges each load transmission mechanism part 1A to face in the front direction. Gradually spread both arms outward so that they are facing. Since the force that rotationally biases the load transmission mechanism section 1A to face the front direction is approximately inversely proportional to the position (height) of the load transmission mechanism section 1A, it is necessary to bend both arms and pull down the grip section 11. As a result, the resistance to spreading the arms outward decreases. Therefore, when the user bends both arms and pulls down the grip 11, the user outputs a substantially constant amount of muscle force so as to spread both arms outward, thereby gradually moving both arms outward while pulling down the grip 11. It is possible to perform the widening movement smoothly, and it is possible to prevent co-contraction of the agonist and antagonist muscles.
  • each grip part 11 is approximately the height of the shoulder, and then twists the upper arm inward and closes both arms while following each urging force due to the load of the load applying part 130.
  • the back of the hand is slowly returned to the seated state according to the grip part 11. This completes one cycle of training. Then repeat this training for the appropriate number of cycles.
  • FIG. 12 is a front view for explaining the internal structure of the load transfer mechanism section 1B according to the second embodiment
  • FIG. 13 is a top view for explaining the internal structure of the load transfer mechanism section 1B.
  • the load transmission mechanism section 1B is used while being connected to the first training device 100 described above and the second training device 201 described later.
  • the load transmission mechanism section 1B has a different configuration of a housing section 22 (see FIG. 12) from the load transmission mechanism section 1A according to the first embodiment, and the housing section 22 has a different structure than the load transmission mechanism section 1A according to the first embodiment. Unlike the outer casing 2 and inner casing 3 of the mechanism section 1A, the casing section 22 plays the role of the casing of the load transmission mechanism section 1B.
  • the same components as the load transfer mechanism section 1A according to the first embodiment are denoted by the reference numerals used in the explanation of the load transfer mechanism section 1A in FIGS. 12 and 13. The explanation will be omitted, and only the configuration that is different from the load transmission mechanism section 1A according to the first embodiment will be explained in detail.
  • the main drive shaft part 4 has an end connected to the grip part 11 gripped by the user or the user's foot rest part 271, which is an input part through which the user inputs force, and rotates together with the grip part 11 or the foot rest part 271. move.
  • FIGS. 12 and 13 show an example in which the grip portion 11 is connected to the main drive shaft portion 4 as an input portion.
  • the end of the main drive shaft part 4 is made to protrude to the same side as the second end part 13c of the sliding shaft part 13, and the sliding shaft part
  • the footrest 271 is connected to the end of the main drive shaft 4 that protrudes on the same side as the second end 13c of the main drive shaft 4.
  • the first rotation transmission part 1K is suspended between the intermediate shaft part 5 which rotates in conjunction with the rotation of the main drive shaft part 4 and the main drive shaft part 4 and the intermediate shaft part 5, and is suspended between the main drive shaft part 4 and the intermediate shaft part 5.
  • the mutual rotation with the intermediate shaft portion 5 is transmitted.
  • the second rotation transmission section 1M is provided between the intermediate shaft section 5 and the crankshaft section 6 orthogonal to the intermediate shaft section 5, and transmits mutual rotation between the intermediate shaft section 5 and the crankshaft section 6. do.
  • connection fixing part 23 connects the main drive shaft part 4, the intermediate shaft part 5, and the crankshaft part 6, and transmits horizontal movement of the main drive shaft part 4, the intermediate shaft part 5, and the crankshaft part 6 to each other.
  • the sliding shaft portion 13 is allowed to be displaced in a direction perpendicular to the axial direction of the crankshaft portion 6, and is urged in a linear direction by an external force.
  • the connecting joint portion 12 rotates with a first center axis 12g orthogonal to the axial direction of the sliding shaft portion 13, and rotates with a second center axis 12h orthogonal to the first center axis 12g.
  • the combination of the plurality of connection pieces 30 is allowed, and one of the plurality of connection pieces 30 is connected to the sliding shaft portion 13 .
  • the connecting joint portion 12 is configured such that a connecting piece portion 30 connected to the sliding shaft portion 13 and a different connecting piece portion 30 are allowed to rotate about a central axis orthogonal to the axial direction of the crankshaft portion 6. It is connected to the shaft part 6 and converts rotation and axial movement of the crankshaft part 6 into vertical displacement of the sliding shaft part 13, so that the user can use the grip part 11 or the foot rest part 271 to move the main drive shaft part 4. When moving horizontally, an external force applied to the sliding shaft portion 13 is transmitted to the grip portion 11 or the footrest portion 271 through the main drive shaft portion 4.
  • the main drive shaft portion 4, intermediate shaft portion 5, crankshaft portion 6, and sliding shaft portion 13 of the load transmission mechanism portion 1B are rotatably housed in the housing portion 22.
  • the main drive shaft portion 4, the intermediate shaft portion 5, and the crankshaft portion 6 are connected by a connecting fixing portion 23, and these move horizontally in the axial direction of the crankshaft portion 6 as a unit.
  • the connection fixing part 23 includes a first fixing piece 23a and a second fixing piece 23b.
  • the first fixed piece 23a and the second fixed piece 23b are plate-shaped with flat surfaces, and the first fixed piece 23a and the second fixed piece 23b are connected to be perpendicular to each other (see FIG. 12).
  • the first fixed piece 23a has a main drive shaft bearing 23c and an intermediate shaft bearing 23d on its surface, rotatably supports the main drive shaft 4 by the main drive shaft bearing 23c, and rotates the intermediate shaft part 5 by the intermediate shaft bearing 23d. Support freely. Since the surface of the first fixed piece 23a is a flat plate, the main drive shaft bearing 23c and the intermediate shaft bearing 23d are held perpendicular to the surface of the first fixed piece 23a, and the main drive shaft part 4 and the intermediate shaft part 5 is kept parallel to.
  • the second fixed piece 23B includes a crankshaft bearing 23e, and rotatably supports the crankshaft portion 6 by the crankshaft bearing 23e.
  • the housing portion 22 includes a sliding bearing 13a, and supports the sliding shaft portion 13 so as to be vertically displaceable.
  • the vertical direction here is a direction parallel to the axial direction of the main drive shaft portion 4 and the intermediate shaft portion 5, and a direction perpendicular to the axial direction of the crankshaft portion 6.
  • a linear motion guide section 20, which will be described later, is provided inside the housing section 22, and the linear motion guide section 20 moves the slider 20c in a straight line parallel to the axial direction of the crankshaft section 6 inside the housing section 22. I will guide you to.
  • the first fixed piece 23 a is fixed to the linear motion guide section 20 and provided inside the housing section 22 .
  • the linear guide section 20 includes a first guide 20a, a second guide 20b, a slider 20c, and a guide support base 20d.
  • the first guide 20a and the second guide 20b are fixed to a guide support 20d so that their longitudinal directions coincide with the axial direction of the crankshaft 6 and are parallel to each other. Fixed inside.
  • the slider 20c is provided so as to straddle the first guide 20a and the second guide 20b, and slides while being guided by the first guide 20a and the second guide 20b.
  • the load transmission mechanism section 1B of the second embodiment compared to the load transmission mechanism section 1A of the first embodiment, since it does not have the inner casing 3, it has a configuration that plays the role of the casing of the load transmission mechanism section 1B. can be simplified, and the overall weight of the load transmission mechanism section 1B can be reduced.
  • FIG. 31 is a diagram for explaining a first modification 1Ba of the load transmission mechanism section 1B for training equipment according to the second embodiment
  • FIG. 32 is a diagram for explaining the load transmission mechanism section 1B for training equipment according to the second embodiment. It is a figure for demonstrating the 2nd modification 1Bb.
  • FIG. 31 First modification 1Ba of load transmission mechanism section 1B for training equipment according to second embodiment>
  • a first modification 1Ba of the load transmission mechanism section 1B will be described with reference to FIG. 31.
  • FIG. 31 common parts between the first modification 1Ba (see FIG. 31) and the load transfer mechanism section 1B (see FIGS. 12 and 13) are used in the load transfer mechanism section 1B (see FIGS. 12 and 13). The description thereof will be omitted.
  • the difference between the first modification 1Ba and the load transmission mechanism section 1B lies in the configuration of the connecting joint section 12.
  • the connecting joint part 12 of the load transmission mechanism part 1B includes a first joint piece 12a, a second joint piece 12c, and a third joint piece 12e, which are the connecting piece parts 30.
  • the first modification 1Ba includes a ball joint 42 instead of the second joint piece 12c. Therefore, the connecting joint part 12 of the first modification 1Ba includes the first joint piece 12a which is the connecting piece part 30, the ball joint 42, and the third joint piece 12e.
  • the connecting joint part 12 has a rotation having a central axis 12g perpendicular to the axial direction of the sliding shaft part 13 and a rotation in a direction perpendicular to the central axis 12g, which is a combination of the plurality of connecting pieces 30. Accordingly, one of the plurality of connecting pieces 30 (30 (12e)) is connected to the sliding shaft 13.
  • the first joint piece 12a and the ball joint 42 are connected by the first universal joint 12b, which is the universal joint 40 (41).
  • the ball joint 42 and the third joint piece 12e are connected by a second universal joint 12d, which is a universal joint 40 (41).
  • the first universal joint 12b and the second universal joint 12d of the universal joint 40 employ a connecting rod 41 (see FIG. 30).
  • a ball joint is a joint that consists of a ball stud, which is a round rod attached to a metal ball, and a socket that makes spherical contact with the ball stud.It is rotatable in any direction and has high rigidity in the translational direction. Examples of ball studs include link balls and tri-ball joints.
  • the first joint piece 12a is rotatably connected to the crankshaft portion 6 about the fourth central axis 12k.
  • the first universal joint 12b is rotatably connected to the first joint piece 12a about the third central axis 12j.
  • the first universal joint 12b and the second universal joint 12d are connected via a ball joint 42 so as to be rotatable in any direction.
  • the second universal joint 12d is rotatably connected to the third joint piece 12e about the first central axis 12g.
  • the third joint piece 12e is connected to the lower end portion of the sliding shaft portion 13 so as to be rotatable about the central axis of the sliding shaft portion 13.
  • the connecting joint portion 12 smoothly converts horizontal movement of the crankshaft portion 6 in the axial direction and rotation around the crankshaft portion 6 into reciprocating movement of the sliding shaft portion 13 in the vertical direction. Can be done.
  • connection joint part 12 of the first modification 1Ba by using a ball joint 42 in a part of the connecting piece part 30, the bending condition of the connecting joint part 12 becomes smooth, and the rotation and horizontal movement of the driving shaft part 4 are controlled. This can be transmitted to the sliding shaft portion 13 more smoothly.
  • the connection joint part 12 of the first modification 1Ba includes a load transmission mechanism part 1A according to the first embodiment, a load transmission mechanism part 1C according to the third embodiment, a load transmission mechanism part 1D according to the fourth embodiment, And it can be used as the connecting joint part 12 of the load transmission mechanism part 1E according to the fifth embodiment.
  • the load transmission mechanism parts 1A, 1C, 1D, and 1E can obtain the same effect as the first modification 1Ba, and by using the ball joint 42 in a part of the connecting piece part 30, the connecting joint The bending of the portion 12 becomes smoother, and the rotation and horizontal movement of the main drive shaft portion 4 can be more smoothly transmitted to the sliding shaft portions 13, 14, and 15.
  • connection position with the connecting joint part 12 is different between the crankshaft part 9 of the second modification 1Bb and the crankshaft part 6 of the load transmission mechanism part 1B.
  • the distance between the base end of the crankshaft section 9 and the connection position of the connection joint section 12 of the second modification 1Bb is the same as the distance between the base end of the crankshaft section 6 of the load transmission mechanism section 1B and the connection position of the connection joint section 12. (see FIGS. 12 and 32).
  • This difference appears in the difference in initial posture between the second modified example 1Bb and the load transmission mechanism section 1B.
  • the initial posture of the second modified example 1Bb is such that the main drive shaft portion 4 (grip portion 11) is located at the far left in FIG. 32, and the initial posture of the load transmission mechanism portion 1B is as shown in FIG. In this state, the main drive shaft portion 4 (grip portion 11) at 12 is located at the far right.
  • the second modification 1Bb and the load transmission mechanism section 1B differ in the direction of horizontal movement in which the load of the main drive shaft section 4 is applied.
  • the load transmission mechanism section 1B A load is applied in the direction opposite to the direction of movement (rightward in FIG. 12).
  • the main drive shaft portion 4 moves in a direction approaching the sliding shaft portion 13 (rightward in FIG. 12)
  • a load is applied in the same direction as the moving direction (rightward in FIG. 12). join.
  • the main drive shaft portion 4 moves in the direction approaching the sliding shaft portion 13 (to the right in FIG. 32) from the initial posture (leftmost in FIG. 32). At this time, a load is applied in the direction opposite to the direction of movement (leftward in FIG. 32).
  • a load is applied in the same direction as the moving direction (to the left in FIG. 32). join.
  • the second modification 1Bb and the load transmission mechanism section 1B apply loads in opposite directions for the same motion, so by using both in combination, a wide variety of muscle strength training can be performed.
  • FIG. 14 is a diagram for explaining the configuration of the load transmission mechanism section 1C
  • FIG. 15 is a first diagram for explaining the operation involving rotation and parallel movement of the main drive shaft section 276 of the load transmission mechanism section 1C
  • 16 is the same FIG. 2
  • FIG. 18 is an enlarged view of the footrest 271 of the second training device 201.
  • the load transmission mechanism section 1C is used while being connected to a second training device 201, which will be described later.
  • a footrest section 271 that serves as a user's force input section is connected to a main drive shaft section 276.
  • the load transfer mechanism section 1C is different from the load transfer mechanism section 1A according to the first embodiment in the configuration of the main drive shaft section 276 from the main drive shaft section 4 of the load transfer mechanism section 1A (see FIG. 1).
  • the main drive shaft section 276 differs from the load transmission mechanism section 1A in that its end portion protrudes from the same side as the sliding shaft section 13, and the footrest section 271 is connected to the end section.
  • the same components as the load transfer mechanism section 1A according to the first embodiment are designated by the reference numerals used in the explanation of the load transfer mechanism section 1A in FIGS. 14 to 16 and FIG. 18. The explanation thereof will be omitted, and only the configuration that is different from the load transmission mechanism section 1A according to the first embodiment will be explained in detail.
  • the load transmission mechanism section 1C is rotated 90 degrees from the load transmission mechanism section 1A (see FIG. 1) according to the first embodiment and used in an upright position so that the axial direction of the crankshaft section 6 is substantially vertical. Ru.
  • the main drive shaft portion 276 is located near the upper portion 277 of the main body.
  • the user places either the left or right foot on the footrest 271.
  • the footrest 271 has an area that is one size larger than the user's foot.
  • the footrest 271 includes a third rotation shaft 273, a side plate 274a, a side plate 274b, and a connection plate 275.
  • a driving shaft portion 276 is connected perpendicularly to the center of the connecting plate 275.
  • flat side plates 274a and 274b connected perpendicularly to the connection plate 275 are provided.
  • a third rotation shaft 273 is vertically and rotatably connected to the side plates 274a and 274b.
  • the third rotation shaft 273 is rotatably supported by a bearing 272 (see FIG. 18) provided on the back surface of the footrest 271. Thereby, the footrest portion 271 can rotate around the third rotation axis 273. Further, the footrest portion 271 can rotate around the main drive shaft portion 276.
  • the footrest 271 can rotate around two mutually orthogonal different axes. Therefore, by providing the structures shown in FIGS. 14 and 18, the user has greater freedom in how to place the foot, such as the direction of the foot and the bending angle of the foot, and can place the sole of the foot on the footrest 271 stress-free.
  • the user can press the footrest 271 with his/her foot at a desired angle. Therefore, the user can use the second training device 201 to apply a load to his or her body, including the feet, in a manner desired by the user (angle or force).
  • the user's initial posture is to bend the knee joint and place the foot on the footrest 271 with the top of the foot facing straight upwards (see FIG. 19).
  • the state of the footrest 271 at this time is such that the footrest 271 is located at the top of the load transmission mechanism 1C as shown in FIG. with the instep facing straight upwards.
  • the sliding shaft portion 13 is exposed to the outside of the outer housing 2 to the maximum extent possible.
  • the user rotates the leg while gradually stretching the knee joint and tilting the knee joint inward (see FIGS. 20 and 21).
  • the user moves the footrest 271 upward in parallel by pushing up the footrest 271 as if pushing the leg diagonally upward when extending the knee joint.
  • the user tilts the knee joint inward as much as possible (see FIG. 21).
  • the footrest 271 is positioned at the top of the load transmission mechanism 1C as shown in FIG. It is in a rotating state. In the state shown in FIG. 16, the sliding shaft portion 13 is pulled into the outer housing 2 to the maximum extent.
  • FIG. 15 shows a state in the middle of transition from the state shown in FIG. 14 to the state shown in FIG. 16.
  • the rotation of the main drive shaft section 276 is caused to slide through the first rotation transmission section 1K, the second rotation transmission section 1M, and the connecting joint section 12. This is transmitted to the dynamic shaft portion 13, and the sliding shaft portion 13 is displaced relative to the outer housing 2, and this displacement vertically displaces the weight of the load applying portion 230.
  • the user can rotate the footrest 271 while resisting the urging force generated by the load applying section 230.
  • the sliding shaft portion 13 is displaced relative to the outer housing 2, and this displacement vertically displaces the weight of the load applying portion 230.
  • the user can move the footrest section 271 in parallel while resisting the urging force generated by the load applying section 230.
  • a force that attempts to return to the initial state shown in FIG. 14 acts on the foot rest section 271 due to the action of the load of the weight of the load applying section 130.
  • the user either maintains the state shown in FIG. 15 while resisting this restoring force, further rotates or translates the footrest 271 (see FIG. 16), or returns to the initial posture (see FIG. 14). ).
  • FIG. 17 is a perspective view showing the appearance of the second training device 201.
  • the second training device 201 includes a seating section 210 for a user to sit on, a load applying section 230 for applying a load, a cylindrical guide column 240 extending in the vertical direction, and a guide column 240.
  • an elevating section 250 that is guided by and connected to the elevating section so as to be movable and rotatable in the vertical direction; a grip section 260 provided on the elevating section 250; and a foot rest section 271 for placing the sole of the user's foot.
  • a load transmission mechanism section 1C including slide rails 222a, 222b and a foot rest section 271, one end of which is connected to the elevating section 250 and the other end of which is connected to the load transmission mechanism section 1C, which allows the load by the load application section 230 to be transferred. It includes a tension member 280 that is applied to the lifting section 250 and the load transmission mechanism section 1C.
  • the elevating section 250 can apply and use a training equipment load transmission mechanism part 1A, a training equipment load transmission mechanism part 1B, a training equipment load transmission mechanism part 1D, and a training equipment load transmission mechanism part 1E, which will be described later. can.
  • the grip part 260 is attached to the grip part 11 of the training equipment load transmission mechanism part 1A, the training equipment load transmission mechanism part 1B, the training equipment load transmission mechanism part 1D, and the training equipment load transmission mechanism part 1E, which will be described later. This corresponds to an input section through which the user inputs force.
  • FIG. 17 is a perspective view of the second training device 201
  • FIG. 18 is an enlarged view of the area around the load transmission mechanism section 1C.
  • the seating portion 210 is supported by a framework 220 that serves as the base frame of the second training device 201.
  • the framework 220 serves as the skeleton of the entire second training device 201, and has the function of stably installing the second training device 201 on the floor.
  • the frame 220 can be formed by, for example, processing a prismatic pipe or plate made of a material having a certain level of rigidity, such as steel, aluminum, stainless steel, or resin, and fixing the material with bolts, welding, or the like.
  • the seating section 210 includes a seat 211 on which a user sits, and a seat support 212 that supports the seat 211.
  • Seat post 212 is fixed to framework 220.
  • the seat support 212 then holds the seat 211.
  • the seat support column 212 includes a through hole through which the tension member 280 passes in the front-rear direction.
  • the seat 211 is a place where the user of the second training device 201 sits, and has a rectangular shape that is long in the left-right direction of the second training device 201, as shown in FIG. This is to allow the user to sit on either the right or left side of the seat 211, but it does not need to be rectangular as long as the user can sit comfortably, and may be square or circular. Good too.
  • the seating section 210 may include a backrest 215 behind the seat 211 and between it and the load applying section 230 for supporting the user's body during use.
  • the framework 220 is provided with a guide column 240 that extends in the vertical direction. As shown in FIG. 17, the guide column 240 is provided at a position forward of the load application section 230 and rearward of the seating section 210. As shown in FIG. 17 , the framework 220 includes an upper housing 225 for guiding the extension direction of the tension member 280 internally behind the guide column 240 . The lower end of the guide column 240 is connected to the framework 220, and the upper end is connected to and fixed to the upper housing 225.
  • the guide column 240 may be provided with a shock absorber 241.
  • the shock absorber 241 is a member for alleviating the shock when the elevating section 250 comes into contact with the upper housing 225 and the framework 220.
  • the shock absorber 241 may be realized by rubber, sponge, or the like, for example.
  • An elevating section 250 shown in FIG. 17 is attached to the guide column 240.
  • the elevating section 250 is attached to the guide column 240 so as to be movable up and down.
  • the elevating section 250 has a through hole through which the guide column 240 is inserted. Therefore, the elevating section 250 moves up and down along the guide column 240.
  • the elevating section 250 is attached to the guide column 240 so as to be rotatable with respect to the guide column 240 with the guide column 240 as a central axis. Therefore, the guide column 240 is required to have a certain degree of rigidity. Therefore, the guide column 240 may be made of stainless steel or the like, for example.
  • the lifting section 250 includes a load transmission mechanism section 1A according to the first embodiment described above, a load transmission mechanism section 1B according to the second embodiment, and a load transmission mechanism according to the fourth embodiment described below.
  • the portion 1D or the load transmission mechanism portion 1E according to the fifth embodiment may be applied.
  • FIG. 17 is an enlarged view of the load transmission mechanism section 1C of the second training device 201.
  • the load applying section 230 includes a pair of cylindrical weight guide columns 232 (only one of which is shown due to space constraints in FIG. 17) whose top and bottom are fixed to the framework 220;
  • the weight is configured to be movable up and down relative to the weight guide column 232.
  • the weight is provided with a through hole through which the weight guide column 232 is inserted.
  • the load applying section 230 may be configured to be able to adjust the magnitude of the load to be applied.
  • the weight serving as the weight member may be a plate-shaped member, and the load may be adjusted depending on the number of the weights. Therefore, the load applying section 230 may include a clamp (not shown) that connects and detaches the weights from each other.
  • the weight guide column 232 may be provided with a shock absorbing material 231 to prevent the weight from colliding with the framework 220 with a shock exceeding a certain level.
  • FIGS. 19 to 21 are left side views showing examples of exercises using the second training device 201, including an example of exercising the legs.
  • the user is seated on the right side of the second training device 201, that is, on the right side of the seat 211 (upper front side in the paper of FIG. 19). That is, the user sits on the seat 211 with the load transmission mechanism section 1C on the left side and the backrest 215 on the right side. Then, as shown in FIG. 19, the user places his left leg on the footrest 271 of the load transmission mechanism section 1C and bends his knee.
  • the load transmission mechanism section 1C includes a load application section 230 connected to the tension member 280 connected to the connection section 279 toward the rear of the second training device 201 (leftward in the paper plane of FIGS. 19 to 21). load is given.
  • the load transmission mechanism section 1C is slowly slid along the slide rails 222a and 222b so as to return to its original position. Repeat this exercise a certain number of times. That is, the user repeats the posture between FIG. 19 and FIG. 20 a predetermined number of times.
  • the user may push the load transmission mechanism part 1C further by twisting the waist further than in the state shown in FIG. can be trained.
  • This posture is possible because the footrest 271 is configured to be rotatable relative to the main body of the load transmission mechanism 1C.
  • the user may extend/contract the legs between FIG. 19 and FIG. 20, or may extend/contract the legs between FIG. 19 and FIG. 21.
  • the user is seated on the opposite side of the seat 211 in FIGS. 19 to 21 and on the left side of the second training device 201 (the back side on the paper of FIGS. 19 to 21). That is, by sitting on the seat 211 with the load transmission mechanism section 1C on the right side of the user and the backrest 215 on the left side, the user can also exercise with his or her right leg.
  • the user can perform rotational exercise around the waist while training both legs symmetrically. Specifically, the user opens his legs and performs a kicking motion to push out the load transmission mechanism section 1C. Therefore, it is a good example for strengthening muscles around the user's hip joints, pelvis, thighs, knees, etc.
  • Each muscle group in the legs can achieve the timing of "relaxation-stretching-shortening" and perform movements in a well-coordinated manner.
  • no load is applied to the left leg by the load applying section 230, and the muscles can be said to be in a "stretched” state.
  • the state shown in FIG. 19 is a state in which the feet are simply placed on the foot rest portion 271, and is in an overall relaxed state, so it can be said to be a "relaxed” state. I can say it.
  • the user applies force to his/her foot to push the load transmission mechanism section 1C to which the load is applied by the load application section 230. That is, in the process shown in FIGS. 19 to 20 or 21, the load applying unit 230 applies a load to the user's left leg, causing the muscles of the user's left leg to be in a “shortened” state.
  • the load applied to the foot by the load applying section 230 is increased. That is, as shown in FIG. 20 or 21, when the load transmission mechanism section 1C is rotated, the user's feet can be brought into a "relaxed" state.
  • the state shown in FIG. 19 may be the initial state, or the state shown in FIGS.
  • 20 and 21 may be the initial state and one cycle of movement may be performed, but the "relaxed" state Since it is desirable to start the exercise from the state shown in FIGS. 20 and 21, it is desirable to obtain the cooperation of others and start the exercise from the state shown in FIG. 20 or 21.
  • the second training device 201 in a form that corresponds to both legs. Since the size can be made compact (the width can be made narrower than when two load transmission mechanism parts 1C are provided for both legs), the area of the space that should be prepared as the installation space for the second training equipment 201 is reduced. can be made smaller. In addition, in the exercise shown in FIGS. 19 to 20, the user performs the exercise while sitting on the second training device 201 on the seat section 210 with the load transmission mechanism section 1C facing forward and the backrest 215 at the back. You can.
  • the first training device 100 and the second training device 201 described above are devices that appropriately train muscles of the shoulders, arms, back, legs, etc. through initial load training (registered trademark).
  • initial load training is defined as ⁇ using the body's change to the position where the reflex occurs and the accompanying change in the center of gravity, etc., to promote the series of movements of relaxation, stretching, and shortening of the agonist muscles, and to promote the relaxation, stretching, and shortening of the agonist muscles.
  • Initial load training is a completely different type of training from final load training, in which the load is applied until the end, causing muscle tension (hardening) and increasing the size of the muscles.
  • it is necessary to train with an understanding of the overall movement image, such as the point at which the load is applied, the point and angle at which the load is released, the rhythm, and the continuity of muscle output.
  • Conventional load training involves the problem that it is difficult to maintain proper movement and form due to body balance, partial stiffness, etc.
  • the first training device 100 and the second training device 201 that realize initial load training can easily induce training with an ideal series of movements and form.
  • Initial load training using the first training device 100 and the second training device 201 uses the load of the training device to cause reflexes in the muscles, so that the muscles that should normally work work well and the functions of muscles and nerves are improved.
  • This is training to improve.
  • Load is used as a catalyst to encourage relaxed muscles to stretch and shorten in a timely manner.
  • This kind of training promotes the series of relaxation-stretching-shortening movements, and prevents co-contraction, thereby improving the function and coordination of nerves and muscles, and reducing physical effects such as muscle pain and fatigue.
  • Flexible and elastic muscles can be obtained with less strain on the muscles and without muscle stiffness.
  • FIG. 33 is a diagram for explaining a modification example 1Ca of the training device load transmission mechanism section 1C according to the third embodiment.
  • FIG. 33 the common parts of the modification 1Ca (see FIG. 33) and the load transfer mechanism section 1C (see FIGS. 14, 15, and 16) are as follows.
  • the reference numerals used in (see) will be used, and the explanation thereof will be omitted.
  • a modification 1Ca of the load transmission mechanism section 1C will be described with reference to FIG. 33.
  • Modification 1Ca is different from the load transmission mechanism section 1C (see FIGS. 14, 15, and 16) in the moving direction of the foot rest section 271 (main driving shaft section 4). In the load transmission mechanism section 1C (see FIGS.
  • the moving direction of the footrest section 271 (main driving shaft section 4) is perpendicular to the moving direction of the sliding shaft section 13. That is, the angle formed by the moving direction of the foot rest part 271 (main driving shaft part 4) and the moving direction of the sliding shaft part 13 is 90 degrees.
  • the moving direction of the foot rest part 271 (main driving shaft part 4) of Modification 1Ca is 45 degrees with respect to the moving direction of the sliding shaft part 13. That is, the angle formed by the moving direction of the foot rest part 271 (main driving shaft part 4) and the moving direction of the sliding shaft part 13 is 45 degrees.
  • the footrest 271 (main drive shaft 4) can be moved diagonally upward, so the load due to the weight of the footrest 271, main drive shaft 4, etc. can be reduced. Since the adjustment range can be widened from small to large loads, it can be used even by people with weak muscles such as children, women, and the elderly.
  • FIG. 22 is a diagram for explaining the configuration of the training equipment load transmission mechanism section 1D according to the fourth embodiment
  • FIG. 23 is a diagram for explaining the operation of the training equipment load transmission mechanism section 1D according to the fourth embodiment.
  • FIG. 24 is a diagram for explaining a sliding bearing 14a used in a training device load transmission mechanism 1D according to a fourth embodiment.
  • the load transmission mechanism section 1D is used while being connected to the first training device 100 and the second training device 201.
  • the structure of the sliding bearing 14a of the load transmission mechanism section 1D is different from the sliding bearing 13a of the load transmission mechanism section 1B according to the second embodiment. Therefore, the operation of the sliding shaft section 14 of the load transmission mechanism section 1D is different from that of the sliding shaft section 13 of the load transmission mechanism section 1B.
  • the same components as the load transfer mechanism section 1B according to the second embodiment will be described with reference numerals used in the explanation of the load transfer mechanism section 1B in FIGS. 22 to 24. will be omitted, and only the configuration and operation that are different from the load transmission mechanism section 1B according to the second embodiment will be described in detail.
  • the sliding shaft section 14 of the load transmission mechanism section 1D corresponds to the sliding shaft section 13 of the load transmission mechanism section 1B, has the same shape as the sliding shaft section 13, and its operation is similar to that of the sliding shaft section 13. different from.
  • the sliding bearing 14a that pivotally supports the sliding shaft 14 has a bearing hole 14d through which the sliding shaft 14 is inserted diagonally with respect to the axial direction of the crankshaft 6 (see FIG. 24).
  • the sliding bearing 13a of the training device load transmission mechanism 1B according to the second embodiment includes a bearing hole 13d formed vertically from the upper surface to the lower surface.
  • the sliding bearing 14a of the load transmission mechanism section 1D includes a bearing hole 14d that is obliquely inclined from the upper surface to the lower surface.
  • the sliding shaft portion 14 inserted into the sliding bearing 14a is drawn into or protruded from the housing portion 22 at an angle with respect to the axial direction of the crankshaft portion 6.
  • the angle between the sliding shaft section 13 of the load transmission mechanism section 1B and the crankshaft section 6 according to the second embodiment is a right angle
  • the central axis of the sliding shaft section 14 of the load transmission mechanism section 1D and the crankshaft section Since the angle formed with the central axis of 6 is an obtuse angle larger than a right angle, the connecting joint section 12 connecting the sliding shaft section 13 and the crankshaft section 6 is deformed due to rotation or horizontal movement of the crankshaft section 6. The amount is smaller in the connecting joint part 12 of the load transmission mechanism part 1D.
  • the sliding bearing 14a instead of the sliding bearing 13a, the resistance such as friction accompanying the deformation of the connecting joint 12 of the load transmission mechanism section 1D becomes smaller.
  • the movement can be performed more smoothly, and the amount of deformation of the connecting joint 12 can be reduced, so that wear of the connecting joint 12 can be suppressed.
  • the sliding bearing 14a of the load transmission mechanism section 1D according to the fourth embodiment may be applied to the load transmission mechanism section 1A according to the first embodiment.
  • the sliding bearing 14a is applied to the load transmission mechanism section 1A
  • the sliding bearing 14a is attached to the load transmission mechanism section 1A instead of the sliding bearing 13a.
  • the sliding shaft section 13 of the load transmission mechanism section 1A corresponds to the sliding shaft section 14 of the load transmission mechanism section 1D, and has the same shape as the sliding shaft section 14.
  • the sliding shaft portion 13 of the load transmission mechanism portion 1A is pivotally supported by the sliding bearing 14a, the sliding shaft portion 13 operates in the same manner as the sliding shaft portion 14.
  • the sliding bearing 14a in place of the sliding bearing 13a, the resistance such as friction caused by the deformation of the connecting joint 12 of the load transmission mechanism section 1A is reduced, so that the operation of the load transmission mechanism section 1A is This can be done more smoothly, and the amount of deformation of the connecting joint 12 can be reduced, so wear of the connecting joint 12 can be suppressed.
  • the sliding bearing 14a of the load transmission mechanism section 1D according to the fourth embodiment may be applied to the load transmission mechanism section 1C according to the third embodiment.
  • the sliding bearing 14a is applied to the load transmission mechanism section 1C
  • the sliding bearing 14a is attached to the load transmission mechanism section 1C instead of the sliding bearing 13a.
  • the sliding shaft section 13 of the load transmission mechanism section 1C corresponds to the sliding shaft section 14 of the load transmission mechanism section 1D, and has the same shape as the sliding shaft section 14.
  • the sliding shaft portion 13 of the load transmission mechanism portion 1C is pivotally supported by the sliding bearing 14a, the sliding shaft portion 13 operates in the same manner as the sliding shaft portion 14.
  • the sliding bearing 14a in place of the sliding bearing 13a, the resistance such as friction caused by the deformation of the connecting joint 12 of the load transmission mechanism section 1C is reduced, so that the operation of the load transmission mechanism section 1C is This can be done more smoothly, and the amount of deformation of the connecting joint 12 can be reduced, so wear of the connecting joint 12 can be suppressed.
  • FIG. 25 is a diagram for explaining the configuration of the training equipment load transmission mechanism section 1E according to the fifth embodiment
  • FIG. 26 is a diagram for explaining the operation of the training equipment load transmission mechanism section 1E according to the fifth embodiment.
  • FIG. 27 is a diagram for explaining the operation of the sliding shaft section 15 of the training device load transmission mechanism section 1E according to the fifth embodiment
  • FIG. It is a figure for demonstrating the sliding bearing 15a of the load transmission mechanism part 1E for instruments.
  • FIG. 28(a) is a perspective view of the sliding bearing 15a.
  • FIG. 28(b) is a cross-sectional view of a surface of the sliding bearing 15a cut along the cutting surface 15e shown in FIG. 28(a), viewed from the direction of arrow A.
  • the load transmission mechanism section 1E is used while being connected to the first training device 100 and the second training device 201.
  • the structure of the sliding bearing 15a of the load transmission mechanism section 1E is different from the sliding bearing 13a of the load transmission mechanism section 1B according to the second embodiment. Therefore, the operation of the sliding shaft section 15 of the load transmission mechanism section 1E is different from that of the sliding shaft section 13 of the load transmission mechanism section 1B.
  • the same components as the load transfer mechanism section 1B according to the second embodiment will be described with reference numerals used in the explanation of the load transfer mechanism section 1B in FIGS. 25 to 28. will be omitted, and only the configuration and operation that are different from the load transmission mechanism section 1B according to the second embodiment will be described in detail.
  • the sliding shaft section 15 of the load transmission mechanism section 1E corresponds to the sliding shaft section 13 of the load transmission mechanism section 1B, has the same shape as the sliding shaft section 13, and operates in the same manner as the sliding shaft section 13. different from.
  • a sliding bearing 15a that pivotally supports the sliding shaft section 15 is inserted orthogonally to the axial direction of the crankshaft section 6.
  • the sliding shaft portion 15 has a first bearing hole 15j and a second bearing hole 15k that intersects the first bearing hole 15j and is inserted obliquely to the axial direction of the crankshaft portion 6. As the portion 6 moves in the axial direction, it moves between the first bearing hole 15j and the second bearing hole 15k.
  • the bearing hole 15d of the sliding bearing 15a includes a first bearing hole 15j and a second bearing hole 15k.
  • the first bearing hole 15j is formed by an upper cylindrical side surface 15f and a lower cylindrical side surface 15g
  • the second bearing hole 15k is formed by an upper oblique conical side surface 15h and a lower oblique conical side surface. 15i.
  • the sliding shaft portion 15 can be supported in the first bearing hole 15j and in the second bearing hole 15k. It is possible to transition between supported states. 25 and 27(a) show a state in which the sliding shaft portion 15 is supported in the first bearing hole 15j, and FIG. 26 and FIG. 27(b) show a state in which the sliding shaft portion 15 is supported in the second bearing hole 15k. Indicates the state in which the
  • the sliding shaft portion 15 is supported by the first bearing hole 15j in the vertical state, and supported by the second bearing hole 15k in the maximum tilted state.
  • the sliding shaft portion 15 is supported by the constriction portion 15m in a state between the vertical state and the maximum tilted state.
  • the constricted portion 15m is formed at the boundary between the upper cylindrical side surface 15f and the lower oblique conical side surface 15i, and at the boundary between the upper oblique conical side surface 15h and the lower cylindrical side surface 15g. be done.
  • the portion of the sliding shaft portion 15 that protrudes to the outside of the casing portion 22 is the most long.
  • the grip portion 11 is in a vertical state and supported by the first bearing hole 15j.
  • the main drive shaft section 4 is located on the rightmost side on the paper surface of FIG.
  • the sliding shaft portion 15 is gradually drawn into the housing portion 22 and the inclination angle increases.
  • the main drive shaft portion 4 transitions from being supported by the first bearing hole 15j to being supported by the constricted portion 15m.
  • the side plane 15l of the sliding bearing 15a is a flat surface.
  • the side plane 15l is used for positioning the sliding bearing 15a. By bringing the side plane 15l into contact with a plane that serves as a reference for positioning the sliding bearing 15a, the position and angle of the sliding bearing 15a are defined.
  • the sliding shaft section 15 is inclined, so that the degree of bending of the connecting joint section 12 can be suppressed. Therefore, by employing the sliding bearing 15a instead of the sliding bearing 13a, resistance such as friction accompanying deformation of the connecting joint section 12 of the load transmission mechanism section 1E becomes smaller, so that the load transmission mechanism The operation of the portion 1E can be performed more smoothly, and the amount of deformation of the connecting joint portion 12 can be reduced, so that wear and the like of the connecting joint portion 12 can be suppressed.
  • the sliding bearing 15a of the load transmission mechanism section 1E according to the fifth embodiment may be applied to the load transmission mechanism section 1A according to the first embodiment.
  • the sliding bearing 15a is attached to the load transmission mechanism section 1A instead of the sliding bearing 13a.
  • the sliding shaft section 13 of the load transmission mechanism section 1A corresponds to the sliding shaft section 15 of the load transmission mechanism section 1E, and has the same shape as the sliding shaft section 15.
  • the sliding shaft portion 13 of the load transmission mechanism portion 1A is pivotally supported by the sliding bearing 15a, the sliding shaft portion 13 operates in the same manner as the sliding shaft portion 15.
  • the sliding bearing 15a in place of the sliding bearing 13a, the resistance such as friction caused by the deformation of the connecting joint 12 of the load transmission mechanism section 1A is reduced, so that the operation of the load transmission mechanism section 1A is This can be done more smoothly, and the amount of deformation of the connecting joint 12 can be reduced, so wear of the connecting joint 12 can be suppressed.
  • the sliding bearing 15a of the load transmission mechanism section 1E according to the fifth embodiment may be applied to the load transmission mechanism section 1C according to the third embodiment.
  • the sliding bearing 15a is attached to the load transmission mechanism section 1C instead of the sliding bearing 13a.
  • the sliding shaft section 13 of the load transmission mechanism section 1C corresponds to the sliding shaft section 15 of the load transmission mechanism section 1E, and has the same shape as the sliding shaft section 15.
  • the sliding shaft portion 13 of the load transmission mechanism portion 1C is pivotally supported by the sliding bearing 15a, the sliding shaft portion 13 operates in the same manner as the sliding shaft portion 15.
  • the sliding bearing 15a in place of the sliding bearing 13a, the resistance such as friction caused by the deformation of the connecting joint 12 of the load transmission mechanism section 1C is reduced, so that the operation of the load transmission mechanism section 1C is This can be done more smoothly, and the amount of deformation of the connecting joint 12 can be reduced, so wear of the connecting joint 12 can be suppressed.
  • FIG. 29(a) is a perspective view of a sliding bearing 16a as a first modification
  • FIG. 29(b) is a perspective view of a sliding bearing 17a as a second modification.
  • a sliding bearing 16a that pivotally supports the sliding shaft portion 15 according to the first modification has a bearing hole 16d in the shape of an inverted truncated cone.
  • the sliding bearing 16a of the first modification has a different shape of the bearing hole 15d compared to the sliding bearing 15a described above. That is, the sliding bearing 16a is different from the above-described sliding bearing 15a in that the bearing hole 16d of the sliding bearing 16a has an inverted truncated conical shape.
  • the bearing hole 16d includes an oblique conical side surface 16e and a minimum diameter bearing hole 16f at the lower end.
  • the sliding shaft portion 15 When the sliding shaft portion 15 is in the vertical state and the inclined state, the sliding shaft portion 15 is supported by the minimum diameter bearing hole portion 16f. In the state where the sliding shaft portion 15 is tilted to the maximum extent, the sliding shaft portion 15 abuts the oblique conical side surface portion 16e and is squeezed by the oblique conical side surface portion 16e and the minimum diameter bearing hole portion 16f.
  • the sliding bearing 17a that pivotally supports the sliding shaft portion 15 according to the second modification has a constricted portion 17g at the center in the axial direction.
  • the sliding bearing 17a of the second modification has a different shape of the bearing hole 15d compared to the sliding bearing 15a described above. That is, the bearing hole 17d of the sliding bearing 17a has an upper oblique conical side surface portion 17e and a lower oblique conical side surface portion 17f, resembling a hand drum, which is different from the aforementioned sliding bearing 15a. different.
  • the constricted portion 17g is formed at the boundary between the upper oblique conical side surface portion 17e and the lower oblique conical side surface portion 17f.
  • the sliding shaft portion 15 is supported by the constricted portion 17g.
  • the sliding shaft portion 15 In the state where the sliding shaft portion 15 is tilted to the maximum extent, the sliding shaft portion 15 abuts the upper oblique conical side surface portion 17e or the lower oblique conical side surface portion 17f, and the constriction portion 17g and the upper oblique conical side portion 17e or the lower oblique conical side portion 17f. It is supported by the lower oblique conical side surface portion 17f.
  • the present disclosure is not limited to the load transmission mechanism parts 1A, 1B, and 1C for training equipment according to the embodiments described above, and the first training equipment 100 and second training equipment 201 using the same, but is Various other modifications or applications can be implemented without departing from the gist of the present disclosure described in the scope.
  • a main drive shaft portion to which a grip portion gripped by a user or a user footrest operating portion is connected to an end portion thereof and rotates together with the grip portion or the footrest portion; an intermediate shaft portion that rotates in conjunction with the rotation of the main driving shaft portion; a first rotation transmitting part suspended between the main drive shaft part and the intermediate shaft part, and transmitting mutual rotation of the main drive shaft part and the intermediate shaft part; a crankshaft portion that is provided orthogonally to the intermediate shaft portion and rotates with a central axis that is perpendicular to the central axis of the intermediate shaft portion; a second rotation transmission section that is provided between the intermediate shaft section and the crankshaft section and transmits mutual rotation of the intermediate shaft section and the crankshaft section; a fixing member to which the main drive shaft, the intermediate shaft, and the crankshaft are fixed; a connecting joint portion including a plurality of connected universal joints;
  • a load transmission mechanism section for a training device characterized in that the load is transmitted to the section.

Abstract

Provided are a load transmission mechanism unit for a training machine that enables build-up of more flexible and elastic muscles, and a training machine employing the same. This load transmission mechanism unit comprises: a main driving shaft portion to an end portion of which an input portion is connected and that rotates together with the input potion; an intermediate shaft portion that rotates in coordination with rotation of the main driving shaft portion; a first rotation transmission portion; a second rotation transmission portion; an inner housing; an outer housing; a sliding shaft portion that is arranged in the outer housing and biased in a linear direction by an external force; rotation having a first central axis orthogonal to the axial direction of the sliding shaft portion; and a coupling joint portion. The coupling joint portion converts rotation and axial movement of a crank shaft portion into a displacement of the sliding shaft portion in an up-and-down direction. When a user moves the main driving shaft portion horizontally through a gripping portion or a footrest portion, an external force applied to the sliding shaft portion is transmitted to the grip portion or the footrest portion through the main driving shaft portion.

Description

トレーニング器具用負荷伝達機構部及びこれを用いたトレーニング器具Load transmission mechanism for training equipment and training equipment using the same
 本発明は、トレーニング器具用負荷伝達機構部及びこれを用いたトレーニング器具に関する。 The present invention relates to a load transmission mechanism for a training device and a training device using the same.
 肩部、腕部、背部、脚部などの部位に対してトレーニングを行う際に、ユーザが用いるトレーニング器具は各種存在する。例えば、特許文献1は、両腕の運動をすることができるトレーニング器具を開示している。 There are various types of training equipment that users use when training body parts such as the shoulders, arms, back, and legs. For example, Patent Document 1 discloses a training device that allows both arms to be exercised.
 特許文献1に記載のトレーニング器具によると、筋肉の硬化を伴うことなく、筋肉痛、疲労等の身体へ与える負担が少なく、また、柔軟で弾力性の富んだ肩部、腕部、背部などの筋肉等を得ることができる。 According to the training device described in Patent Document 1, there is no hardening of muscles, there is less burden on the body such as muscle pain and fatigue, and the training device is flexible and has a lot of elasticity in the shoulders, arms, back, etc. You can gain muscle etc.
 特許文献1のトレーニング器具は、トレーニング器具側のウェイト(錘)から延びるワイヤーとユーザが握る握持部との間に、昇降揺動部材と称される回動軸と歯車等を備える負荷伝達機構部を設けている。単にウェイトとユーザが握る握持部とをワイヤーによって直に接続する構成のトレーニング器具と比較して、特許文献1のトレーニング器具は昇降揺動部材(負荷伝達機構部)が設けられていることにより、ユーザが鍛えようとする腕のひねり動作により生じる負荷を加えることができる。そのため、単調方向の筋肉の鍛錬に留まらず、負荷が伴うひねり動作により腕の骨の周りの筋肉をより多く動かすこととなり、柔軟性及び弾力性を備えた筋力の習得が可能となる。 The training device of Patent Document 1 has a load transmission mechanism that includes a rotating shaft called an elevating swinging member, gears, etc. between a wire extending from a weight on the training device side and a grip part held by a user. We have established a department. Compared to training equipment that simply connects the weight and the grip part that the user grasps directly using a wire, the training equipment of Patent Document 1 is equipped with an elevating and swinging member (load transmission mechanism part). , it is possible to apply the load caused by the arm twisting motion that the user is trying to exercise. Therefore, rather than training the muscles in a monotonous direction, the muscles around the arm bones are moved more by twisting motions that involve a load, and it becomes possible to acquire muscle strength with flexibility and elasticity.
特開2006-187317号公報Japanese Patent Application Publication No. 2006-187317
 発明者は特許文献1のトレーニング器具の昇降揺動部材(負荷伝達機構部)について鋭意検討を重ねた。そして、発明者はユーザが握持する握持部が接続される昇降揺動部材(負荷伝達機構部)の軸に更に多くの方向から負荷が作用するように改良するに至った。例えば、引っ張る方向、及びひねる方向のみならず、押す方向に対しても負荷を作用させることが可能になる。更に、発明者はユーザの腕のみならず脚の動作にも摘要することができるように昇降揺動部材(負荷伝達機構部)を改良するに至った。 The inventor has conducted extensive studies on the lifting and swinging member (load transmission mechanism) of the training equipment disclosed in Patent Document 1. Then, the inventors improved the device so that loads can be applied from more directions to the axis of the lifting and swinging member (load transmission mechanism) to which the grip portion held by the user is connected. For example, it becomes possible to apply a load not only in the pulling direction and the twisting direction but also in the pushing direction. Furthermore, the inventor has improved the lifting/lowering swinging member (load transmission mechanism) so that it can be applied not only to the movements of the user's arms but also to the legs.
 本発明は前記の点に鑑みなされたものであり、負荷伝達機構部を構成する当該軸に更に多くの方向から負荷を作用させることにより、より柔軟性及び弾力性を備えた筋肉の習得を可能にするトレーニング器具用負荷伝達機構部及びこれを用いたトレーニング器具を提供する。 The present invention was made in view of the above points, and by applying loads from more directions to the shaft that constitutes the load transmission mechanism, it is possible to acquire muscles with more flexibility and elasticity. Provided are a load transmission mechanism for a training device and a training device using the same.
 すなわち、第1の態様に係るトレーニング器具用負荷伝達機構部は、ユーザが力を入力する入力部が端部に接続され、入力部と共に回動する主動軸部と、主動軸部の回動に連動して回動する中間軸部と、主動軸部と中間軸部との間に懸架され、主動軸部と中間軸部との互いの回動を伝達する第1回動伝達部と、中間軸部と、中間軸部と直交するクランク軸部との間に設けられ、中間軸部とクランク軸部との互いの回動を伝達する第2回動伝達部と、主動軸部、中間軸部、及びクランク軸部を収納する内側筐体と、内側筐体を収容し、内側筐体がクランク軸の軸方向に内部で移動する外側筐体と、クランク軸部の軸方向に対して直交する方向に変位が許容されて外側筐体に配置され、外力により直線方向に付勢される摺動軸部と、摺動軸部の軸方向に対して直交する中心軸を有する回動と、中心軸に直交する方向への回動とが、複数の連結片部の組み合わせにより許容され、摺動軸部に複数の連結片部の一が接続される連結関節部と、を備え、連結関節部は、摺動軸部に接続された一の連結片部と異なる連結片部において、クランク軸部の軸方向に直交する中心軸を有する回動が許容されてクランク軸部に接続され、クランク軸部の回動及び軸方向の移動を摺動軸部の上下方向の変位に変換し、ユーザが入力部を通じて主動軸部を水平移動させる際に、摺動軸部に加える外力が主動軸部を通じて入力部へ伝達されることを特徴とする。 That is, the load transmission mechanism for a training device according to the first aspect has an input section to which a user inputs force is connected to an end, a main drive shaft that rotates together with the input section, and a main drive shaft that rotates together with the input section. an intermediate shaft portion that rotates in conjunction with each other; a first rotation transmission portion that is suspended between the main drive shaft portion and the intermediate shaft portion and transmits mutual rotation of the main drive shaft portion and the intermediate shaft portion; a second rotation transmission section that is provided between the shaft section and a crankshaft section perpendicular to the intermediate shaft section and transmits mutual rotation of the intermediate shaft section and the crankshaft section; a main drive shaft section; and an intermediate shaft section. and an inner casing that houses the crankshaft, an outer casing that houses the inner casing and in which the inner casing moves in the axial direction of the crankshaft, and an outer casing that is perpendicular to the axial direction of the crankshaft. a sliding shaft that is disposed in the outer casing and is allowed to be displaced in a direction in which the shaft rotates, and is biased in a linear direction by an external force; Rotation in a direction perpendicular to the central axis is allowed by the combination of the plurality of connection pieces, and a connection joint part in which one of the plurality of connection pieces is connected to the sliding shaft part, the connection joint. The crankshaft is connected to the crankshaft by being allowed to rotate about a central axis perpendicular to the axial direction of the crankshaft in a connection piece different from the one connecting piece connected to the sliding shaft. The rotation and axial movement of the shaft section are converted into vertical displacement of the sliding shaft section, and when the user horizontally moves the main drive shaft section through the input section, the external force applied to the sliding shaft section is applied to the main drive shaft section. It is characterized in that the information is transmitted to the input unit through.
 第2の態様に係るトレーニング器具用負荷伝達機構部は、ユーザが力を入力する入力部が端部に接続され、入力部と共に回動する主動軸部と、主動軸部の回動に連動して回動する中間軸部と、主動軸部と中間軸部との間に懸架され、主動軸部と中間軸部との互いの回動を伝達する第1回動伝達部と、中間軸部と、中間軸部と直交するクランク軸部との間に設けられ、中間軸部とクランク軸部との互いの回動を伝達する第2回動伝達部と、主動軸部と中間軸部とクランク軸部とを連結し、主動軸部と中間軸部とクランク軸部との互いの水平移動を伝達する連結固定部と、クランク軸部の軸方向に対して直交する方向の変位が許容され、外力により直線方向に付勢される摺動軸部と、摺動軸部の軸方向に対して直交する中心軸を有する回動と、中心軸に直交する方向への回動とが、複数の連結片部の組み合わせにより許容され、摺動軸部に複数の連結片部の一が接続される連結関節部と、を備え、連結関節部は、摺動軸部に接続された一の連結片部と異なる連結片部において、クランク軸部の軸方向に直交する中心軸を有する回動が許容されてクランク軸部に接続され、クランク軸部の回動及び軸方向の移動を摺動軸部の上下方向の変位に変換し、ユーザが入力部を通じて主動軸部を水平移動させる際に、摺動軸部に加える外力が主動軸部を通じて入力部へ伝達されることを特徴とする。 The load transmission mechanism for a training device according to the second aspect includes a main drive shaft part to which an input part through which a user inputs force is connected to an end part, which rotates together with the input part, and a main drive shaft part that is linked to the rotation of the main drive shaft part. an intermediate shaft portion that rotates, a first rotation transmission portion that is suspended between the main drive shaft portion and the intermediate shaft portion and transmits mutual rotation of the main drive shaft portion and the intermediate shaft portion; and an intermediate shaft portion. and a second rotation transmitting part that is provided between the intermediate shaft part and the crankshaft part perpendicular to the intermediate shaft part and transmits mutual rotation of the intermediate shaft part and the crankshaft part, and the main drive shaft part and the intermediate shaft part. A connecting and fixing part that connects the crankshaft and transmits the horizontal movement of the main drive shaft, intermediate shaft, and crankshaft, and a connecting and fixing part that connects the crankshaft and allows displacement in a direction perpendicular to the axial direction of the crankshaft. , a sliding shaft that is biased in a linear direction by an external force, a rotation having a central axis perpendicular to the axial direction of the sliding shaft, and a plurality of rotations in a direction perpendicular to the central axis. a connecting joint part in which one of the plurality of connecting pieces is connected to the sliding shaft part, the connecting joint part being allowed by the combination of the connecting pieces parts of the sliding shaft part; The connection piece, which is different from the one piece, is connected to the crankshaft with rotation allowed and has a central axis perpendicular to the axial direction of the crankshaft, and the rotation and axial movement of the crankshaft are controlled by a sliding shaft. When the user moves the main drive shaft horizontally through the input part, the external force applied to the sliding shaft is transmitted to the input part through the main drive shaft.
 第3の態様は、第1又は第2の態様に係るトレーニング器具用負荷伝達機構部において、入力部は、ユーザが握持する握持部又はユーザの足置き部であることとしてもよい。 In a third aspect, in the training device load transmission mechanism according to the first or second aspect, the input section may be a grip section held by the user or a foot rest section for the user.
 第4の態様は、第1又は第2の態様に係るトレーニング器具用負荷伝達機構部において、連結関節部は、連結された複数の自在継手を主要部材として構成されることとしてもよい。 In a fourth aspect, in the load transmission mechanism for a training device according to the first or second aspect, the connecting joint portion may be configured with a plurality of connected universal joints as main members.
 第5の態様は、第1の態様に係るトレーニング器具用負荷伝達機構部において、トレーニング器具と接続するための接続部が外側筐体に備えられ、主動軸部の水平移動に伴い、内側筐体が外側筐体の内部をスライドすることとしてもよい。 In a fifth aspect, in the load transmission mechanism for training equipment according to the first aspect, the outer casing is provided with a connecting part for connecting to the training equipment, and as the main drive shaft moves horizontally, the inner casing may be slid inside the outer casing.
 第6の態様は、第2の態様に係るトレーニング器具用負荷伝達機構部において、トレーニング器具と接続するための接続部が備えられることとしてもよい。 In a sixth aspect, the load transmission mechanism for training equipment according to the second aspect may include a connecting part for connecting to the training equipment.
 第7の態様は、第1又は第2の態様に係るトレーニング器具用負荷伝達機構部において、第1回動伝達部は、伝達チェーンであり、主動軸部に主動軸スプロケットが備えられ、中間軸部に中間軸スプロケットが備えられ、伝達チェーンが主動軸スプロケットと中間軸スプロケットとの間に懸架されることとしてもよい。 In a seventh aspect, in the load transmission mechanism for training equipment according to the first or second aspect, the first rotation transmission part is a transmission chain, the main drive shaft part is provided with a main drive shaft sprocket, and the intermediate shaft An intermediate shaft sprocket may be provided at the main shaft sprocket, and the transmission chain may be suspended between the main shaft sprocket and the intermediate shaft sprocket.
 第8の態様は、第1又は第2の態様に係るトレーニング器具用負荷伝達機構部において、第2回動伝達部は、中間軸部に備えられる中間軸傘歯車と、クランク軸部に備えられ中間軸傘歯車と歯合するクランク軸傘歯車とを備えることとしてもよい。 An eighth aspect is the load transmission mechanism for a training device according to the first or second aspect, in which the second rotation transmission section includes an intermediate shaft bevel gear provided in the intermediate shaft portion and a crankshaft portion. The crankshaft bevel gear may be provided with a crankshaft bevel gear that meshes with the intermediate shaft bevel gear.
 第9の態様は、第3の態様に係るトレーニング器具用負荷伝達機構部において、握持部が環状物であることとしてもよい。
 第10の態様は、第1又は第2の態様に係るトレーニング器具用負荷伝達機構部において、外力はトレーニング器具の負荷の大きさを自在に調整する負荷付与部により生じることとしてもよい。
 第11の態様は、第1又は第2の態様に係るトレーニング器具用負荷伝達機構部において、摺動軸部を軸支する摺動軸受は、クランク軸部の軸方向に対して摺動軸部を斜めに挿通させる軸受穴を有することとしてもよい。
 第12の態様は、第1又は第2の態様に係るトレーニング器具用負荷伝達機構部において、摺動軸部を軸支する摺動軸受は、クランク軸部の軸方向に対して直交して挿通する第1軸受穴と、第1軸受穴に交差し、かつ、クランク軸部の軸方向に対して斜めに挿通する第2軸受穴を有し、摺動軸部は、クランク軸部の軸方向の移動に伴い第1軸受穴と第2軸受穴との間を移動することとしてもよい。
 第13の態様は、第1又は第2の態様に係るトレーニング器具用負荷伝達機構部において、摺動軸部を軸支する摺動軸受は、逆円すい台の形状をした軸受穴を有することとしてもよい。
 第14の態様は、第1又は第2の態様に係るトレーニング器具用負荷伝達機構部において、摺動軸部を軸支する摺動軸受は、軸方向の中央部にくびれ部を有することとしてもよい。
 第15の態様に係るトレーニング器具は、第1又は第2の態様に係るトレーニング器具用負荷伝達機構部を備えたこととしてもよい。
In a ninth aspect, in the training device load transmission mechanism section according to the third aspect, the gripping section may be an annular object.
In a tenth aspect, in the training device load transmission mechanism according to the first or second aspect, the external force may be generated by a load applying portion that freely adjusts the magnitude of the load on the training device.
An eleventh aspect is that in the load transmission mechanism for a training device according to the first or second aspect, the sliding bearing that pivotally supports the sliding shaft portion is arranged such that the sliding shaft portion rotates in the axial direction of the crankshaft portion. It is also possible to have a bearing hole through which the bearing hole is inserted obliquely.
A twelfth aspect is that in the load transmission mechanism for a training device according to the first or second aspect, the sliding bearing that pivotally supports the sliding shaft is inserted orthogonally to the axial direction of the crankshaft. a first bearing hole that intersects with the first bearing hole and is inserted through the shaft diagonally with respect to the axial direction of the crankshaft portion; It is good also as moving between a 1st bearing hole and a 2nd bearing hole with movement of.
A thirteenth aspect is that in the load transmission mechanism for a training device according to the first or second aspect, the sliding bearing that pivotally supports the sliding shaft portion has a bearing hole in the shape of an inverted truncated cone. Good too.
A fourteenth aspect is that in the load transmission mechanism for a training device according to the first or second aspect, the sliding bearing that pivotally supports the sliding shaft portion may have a constricted portion at the center in the axial direction. good.
The training device according to the fifteenth aspect may include the training device load transmission mechanism section according to the first or second aspect.
 本開示に係るトレーニング器具用負荷伝達機構部は、ユーザが力を入力する入力部が端部に接続され、入力部と共に回動する主動軸部と、主動軸部の回動に連動して回動する中間軸部と、主動軸部と中間軸部との間に懸架され、主動軸部と中間軸部との互いの回動を伝達する第1回動伝達部と、中間軸部と、中間軸部と直交するクランク軸部との間に設けられ、中間軸部とクランク軸部との互いの回動を伝達する第2回動伝達部と、主動軸部、中間軸部、及びクランク軸部を収納する内側筐体と、内側筐体を収容し、内側筐体がクランク軸の軸方向に内部で移動する外側筐体と、クランク軸部の軸方向に対して直交する方向に変位が許容されて外側筐体に配置され、外力により直線方向に付勢される摺動軸部と、摺動軸部の軸方向に対して直交する第1中心軸を有する回動と、第1中心軸に直交する第2中心軸を有する回動とが、複数の連結片部の組み合わせにより許容され、摺動軸部に複数の連結片部の一が接続される連結関節部と、を備え、連結関節部は、摺動軸部に接続された一の連結片部と異なる連結片部において、クランク軸部の軸方向に直交する中心軸を有する回動が許容されてクランク軸部に接続され、クランク軸部の回動及び軸方向の移動を摺動軸部の上下方向の変位に変換し、ユーザが入力部を通じて主動軸部を水平移動させる際に、摺動軸部に加える外力が主動軸部を通じて入力部へ伝達されることにより、より柔軟性及び弾力性を備えた筋肉の習得を可能にするトレーニング器具用負荷伝達機構部及びこれを用いたトレーニング器具を提供することができる。 The load transmission mechanism for a training device according to the present disclosure includes a main drive shaft part to which an input part through which a user inputs force is connected to an end part, which rotates together with the input part, and a main drive shaft part that rotates in conjunction with the rotation of the main drive shaft part. a moving intermediate shaft portion; a first rotation transmission portion suspended between the main drive shaft portion and the intermediate shaft portion and transmitting mutual rotation of the main drive shaft portion and the intermediate shaft portion; and an intermediate shaft portion; a second rotation transmission section that is provided between the intermediate shaft section and the crankshaft section perpendicular to the intermediate shaft section and transmits mutual rotation of the intermediate shaft section and the crankshaft section; a main drive shaft section, an intermediate shaft section, and a crank; An inner casing that houses the shaft; an outer casing that houses the inner casing and allows the inner casing to move internally in the axial direction of the crankshaft; and an outer casing that moves in a direction perpendicular to the axial direction of the crankshaft. a sliding shaft portion disposed in the outer casing and biased in a linear direction by an external force; Rotation having a second central axis perpendicular to the central axis is allowed by a combination of the plurality of connecting pieces, and a connecting joint part in which one of the plurality of connecting pieces is connected to the sliding shaft part. , the connecting joint part is connected to the crankshaft part by being allowed to rotate about a central axis perpendicular to the axial direction of the crankshaft part in a connecting piece part different from the one connecting part connected to the sliding shaft part. The rotation and axial movement of the crankshaft are converted into vertical displacement of the sliding shaft, and when the user horizontally moves the main drive shaft through the input section, the external force applied to the sliding shaft is It is possible to provide a load transmission mechanism for a training device and a training device using the same, which enables the learning of muscles with more flexibility and elasticity by transmitting the load to the input section through the active shaft.
第1実施形態に係るトレーニング器具用負荷伝達機構部の構成を説明するための図である。It is a figure for explaining the composition of the load transmission mechanism part for training equipment concerning a 1st embodiment. 第1実施形態に係るトレーニング器具用負荷伝達機構部の動作における初期姿勢を示す図である。It is a figure showing the initial posture in operation of the load transmission mechanism part for training equipment concerning a 1st embodiment. 第1実施形態に係るトレーニング器具用負荷伝達機構部の主動軸部の回動に伴う動作を説明するための図である。It is a figure for explaining operation accompanying rotation of a main drive shaft part of a load transmission mechanism part for training equipment concerning a 1st embodiment. 第1実施形態に係るトレーニング器具用負荷伝達機構部の主動軸部の水平移動に伴う動作を説明するための図である。FIG. 3 is a diagram for explaining an operation accompanying horizontal movement of a main drive shaft portion of a load transmission mechanism portion for a training device according to a first embodiment. 第1実施形態に係るトレーニング器具用負荷伝達機構部の主動軸部の回動及び水平移動に伴う動作を説明するための図である。FIG. 3 is a diagram for explaining operations accompanying rotation and horizontal movement of the main drive shaft of the training device load transmission mechanism according to the first embodiment. 第1トレーニング器具の斜視図である。FIG. 3 is a perspective view of the first training device. 第1トレーニング器具の正面図である。FIG. 3 is a front view of the first training device. 第1トレーニング器具の第1使用形態の斜視図である。It is a perspective view of the 1st usage form of the 1st training device. 第1トレーニング器具の第1使用形態の正面図である。It is a front view of the 1st usage form of the 1st training device. 第1トレーニング器具の第2使用形態の斜視図である。It is a perspective view of the 2nd usage form of the 1st training device. 第1トレーニング器具の第2使用形態の正面図である。It is a front view of the 2nd usage form of the 1st training device. 第2実施形態に係るトレーニング器具用負荷伝達機構部の内部構成を説明するための正面図である。It is a front view for demonstrating the internal structure of the load transmission mechanism part for training instruments based on 2nd Embodiment. 第2実施形態に係るトレーニング器具用負荷伝達機構部の内部構成を説明するための上面図である。It is a top view for demonstrating the internal structure of the load transmission mechanism part for training instruments based on 2nd Embodiment. 第3実施形態に係るトレーニング器具用負荷伝達機構部の構成を説明するための図である。It is a figure for explaining the composition of the load transmission mechanism part for training equipment concerning a 3rd embodiment. 第3実施形態に係るトレーニング器具用負荷伝達機構部の主動軸部の回動及び平行移動を伴う動作を説明するための第1図である。FIG. 7 is a first diagram for explaining an operation involving rotation and parallel movement of a main drive shaft of a load transmission mechanism for a training device according to a third embodiment; 第3実施形態に係るトレーニング器具用負荷伝達機構部の主動軸部の回動及び平行移動を伴う動作を説明するための第2図である。FIG. 2 is a second diagram for explaining an operation involving rotation and parallel movement of a main drive shaft of a load transmission mechanism for a training device according to a third embodiment; 第2トレーニング器具の斜視図である。FIG. 3 is a perspective view of the second training device. 第2トレーニング器具の足置き部の拡大図である。It is an enlarged view of the footrest part of the 2nd training apparatus. 第2トレーニング器具の使用形態における第1の態様を示す側面図である。It is a side view which shows the 1st aspect of the usage form of a 2nd training device. 第2トレーニング器具の使用形態における第2の態様を示す側面図である。It is a side view which shows the 2nd aspect of the usage pattern of a 2nd training device. 第2トレーニング器具の使用形態における第3の態様を示す側面図である。It is a side view which shows the 3rd aspect of the usage form of a 2nd training device. 第4実施形態に係るトレーニング器具用負荷伝達機構部の構成を説明するための図である。It is a figure for explaining the composition of the load transmission mechanism part for training equipment concerning a 4th embodiment. 第4実施形態に係るトレーニング器具用負荷伝達機構部の動作について説明するための図である。It is a figure for explaining operation of the load transmission mechanism part for training equipment concerning a 4th embodiment. 第4実施形態に係るトレーニング器具用負荷伝達機構部に用いられる摺動軸受を説明するための図である。It is a figure for explaining the sliding bearing used for the load transmission mechanism part for training equipment concerning a 4th embodiment. 第5実施形態に係るトレーニング器具用負荷伝達機構部の構成を説明するための図である。It is a figure for explaining the composition of the load transmission mechanism part for training equipment concerning a 5th embodiment. 第5実施形態に係るトレーニング器具用負荷伝達機構部の動作について説明するための図である。It is a figure for explaining operation of the load transmission mechanism part for training equipment concerning a 5th embodiment. 第5実施形態に係るトレーニング器具用負荷伝達機構部の摺動軸部の動作について説明するための図である。It is a figure for demonstrating the operation|movement of the sliding shaft part of the load transmission mechanism part for training instruments based on 5th Embodiment. 第5実施形態に係るトレーニング器具用負荷伝達機構部の摺動軸受を説明するための図である。It is a figure for demonstrating the sliding bearing of the load transmission mechanism part for training instruments based on 5th Embodiment. 第5実施形態に係るトレーニング器具用負荷伝達機構部の摺動軸受の第1変形例及び第2変形例について説明するための図である。It is a figure for demonstrating the 1st modification and the 2nd modification of the sliding bearing of the load transmission mechanism part for training instruments based on 5th Embodiment. 第1実施形態に係るトレーニング器具用負荷伝達機構部の自在継手の一例を示す斜視図である。It is a perspective view showing an example of the universal joint of the load transmission mechanism part for training equipment concerning a 1st embodiment. 第2実施形態に係るトレーニング器具用負荷伝達機構部の第1変形例について説明するための図である。It is a figure for explaining the 1st modification of the load transmission mechanism part for training equipment concerning a 2nd embodiment. 第2実施形態に係るトレーニング器具用負荷伝達機構部の第2変形例について説明するための図である。It is a figure for demonstrating the 2nd modification of the load transmission mechanism part for training instruments based on 2nd Embodiment. 第3実施形態に係るトレーニング器具用負荷伝達機構部の変形例について説明するための図である。It is a figure for explaining the modification of the load transmission mechanism part for training equipment concerning a 3rd embodiment. 第1実施形態に係るトレーニング器具用負荷伝達機構部の構成を説明するための図である。It is a figure for explaining the composition of the load transmission mechanism part for training equipment concerning a 1st embodiment.
 <以下の説明の概要>
 図1ないし5、及び図34に開示の第1実施形態に係るトレーニング器具用負荷伝達機構部1A、図12ないし13に開示の第2実施形態に係るトレーニング器具用負荷伝達機構部1B、図22ないし24に開示の第4実施形態に係るトレーニング器具用負荷伝達機構部1D、及び、図25ないし29に開示の第5実施形態に係るトレーニング器具用負荷伝達機構部1Eは、後述する第1トレーニング器具100または第2トレーニング器具201に接続される。図14ないし16に開示の第3実施形態に係るトレーニング器具用負荷伝達機構部1Cは、後述する第2トレーニング器具201に接続される。
<Summary of the following explanation>
1 to 5 and 34, a load transmission mechanism section 1A for training equipment according to the first embodiment disclosed in FIGS. 1 to 5, a load transmission mechanism section 1B for training equipment according to the second embodiment disclosed in FIGS. 12 to 13, and FIG. The load transmission mechanism section 1D for training equipment according to the fourth embodiment disclosed in FIGS. 25 to 24 and the load transmission mechanism section 1E for training equipment according to the fifth embodiment disclosed in FIGS. It is connected to the equipment 100 or the second training equipment 201. A training device load transmission mechanism section 1C according to the third embodiment disclosed in FIGS. 14 to 16 is connected to a second training device 201, which will be described later.
 トレーニング器具用負荷伝達機構部1A、1B、1C、1D、及び1Eは、第1トレーニング器具100、及び第2トレーニング器具201側のウェイト等の負荷を当該トレーニング器具のユーザに伝達するための機構を備えた機械部材である。トレーニング器具用負荷伝達機構部1A、1B、1D、及び1Eはユーザが握持する握持部11(図1等参照)を備え、腕部、肩部のトレーニング器具に用いられ、トレーニング器具用負荷伝達機構部1Cはユーザの足置き部271(図14等参照)を備え、脚部のトレーニング器具に用いられる。
 握持部11、260及び足置き部271は、ユーザが力を入力する入力部である。
 例えば、ユーザは、両腕の手の甲を後述の初期状態の第1トレーニング器具100の左右に向けて、入力部となる握持部11をそれぞれ左右の手で把持する。そして、ユーザは両手のそれぞれで握持部11を把持しながら、両腕を同時に下方に降ろすことで握持部11に引き下げる力を入力する。
 また、ユーザは、両腕の手の甲を初期状態の第1トレーニング器具100の左右に向けて、入力部となる握持部11をそれぞれ左右の手で把持する。そして、ユーザは両手のそれぞれで握持部11を把持しながら、両腕を伸ばした状態で同時に外側に開き開胸運動を行うことで、入力部となる握持部11に負荷伝達機構部1Aを外側に旋回運動をさせるように力を入力する。
 また、ユーザは、後述の初期状態の第2トレーニング器具201の座席211の右側に着座する。そして、ユーザは右腕を上げて把持部260を把持する。そして、ユーザは右手で把持部260を把持した状態を維持したまま右腕を前方に振り下ろすことで、入力部となる把持部260に引き下げる力を入力する。
 また、ユーザは、後述の第2トレーニング器具201の座席211の右側に着座し、左脚を負荷伝達機構部1Cの入力部となる足置き部271に載置し、ひざを屈曲させた状態をとる。そして、ユーザは、左足を伸ばしていくことで、足置き部271に押す力を入力する。
The training equipment load transmission mechanism units 1A, 1B, 1C, 1D, and 1E are mechanisms for transmitting loads such as weights on the first training equipment 100 and the second training equipment 201 to the users of the training equipment. It is a mechanical member equipped with The load transmission mechanism parts 1A, 1B, 1D, and 1E for training equipment include a grip part 11 (see FIG. 1, etc.) that is grasped by the user, and are used for arm and shoulder training equipment, and are used to transfer the load for the training equipment. The transmission mechanism section 1C includes a user's foot rest section 271 (see FIG. 14, etc.), and is used as a leg training device.
The grip parts 11 and 260 and the footrest part 271 are input parts through which the user inputs force.
For example, the user holds the grip section 11 serving as the input section with the left and right hands, respectively, with the backs of both arms facing the left and right sides of the first training device 100 in an initial state, which will be described later. Then, the user inputs a pulling force to the grip part 11 by simultaneously lowering both arms while gripping the grip part 11 with both hands.
Further, the user holds the grip section 11, which serves as the input section, with the left and right hands, respectively, with the backs of both arms facing the left and right sides of the first training device 100 in the initial state. Then, the user grasps the grip part 11 with both hands and simultaneously opens the chest outward with both arms extended, thereby transferring the load to the grip part 11, which serves as the input part, to the load transmission mechanism 1A. Input force so that it rotates outward.
Further, the user is seated on the right side of the seat 211 of the second training device 201 in the initial state, which will be described later. The user then raises his right arm and grasps the grip section 260. Then, the user inputs a pulling force to the grip part 260 serving as an input part by swinging the right arm forward while maintaining the state of gripping the grip part 260 with the right hand.
Further, the user is seated on the right side of the seat 211 of the second training device 201, which will be described later, and places the left leg on the footrest 271 that serves as the input section of the load transmission mechanism section 1C, with the knee bent. Take. Then, the user inputs a pushing force to the footrest 271 by extending the left foot.
 <第1実施形態に係るトレーニング器具用負荷伝達機構部1A>
 図1ないし5、及び図34を参照して、第1実施形態のトレーニング器具用負荷伝達機構部1Aの構成及び動作について説明する。トレーニング器具用負荷伝達機構部1Aは、外側筐体2及び内側筐体3を備える。内側筐体3は、外側筐体2に収納され、外側筐体2の内部を一方向に往復移動する。外側筐体2と内側筐体3との間には図示しないスライドレールを介在させて外側筐体2と内側筐体3との間に生じる摺動摩擦を低減させている。スライドレールは、ローラータイプ及びベアリングタイプなどのものがある。
<Load transmission mechanism section 1A for training equipment according to the first embodiment>
With reference to FIGS. 1 to 5 and FIG. 34, the configuration and operation of the training device load transmission mechanism section 1A of the first embodiment will be described. The training device load transmission mechanism section 1A includes an outer casing 2 and an inner casing 3. The inner casing 3 is housed in the outer casing 2 and reciprocates inside the outer casing 2 in one direction. A slide rail (not shown) is interposed between the outer casing 2 and the inner casing 3 to reduce the sliding friction that occurs between the outer casing 2 and the inner casing 3. Slide rails include roller types and bearing types.
<第1実施形態のトレーニング器具用負荷伝達機構部1Aの構成についての説明>
 内側筐体3は主動軸部4と中間軸部5とクランク軸部6とを備え、外側筐体2は摺動軸部13を備える。主動軸部4と摺動軸部13の間の各軸部を介して主動軸部4と摺動軸部13の相互に動力が伝達可能である。
<Description of the configuration of the training device load transmission mechanism section 1A of the first embodiment>
The inner casing 3 includes a main drive shaft 4 , an intermediate shaft 5 , and a crankshaft 6 , and the outer casing 2 includes a sliding shaft 13 . Power can be transmitted between the main drive shaft part 4 and the sliding shaft part 13 via each shaft part between the main drive shaft part 4 and the sliding shaft part 13 .
 第1実施形態のトレーニング器具用負荷伝達機構部1Aでは、主動軸部4、中間軸部5、及びクランク軸部6の各軸部は、内側筐体3に回動可能に軸支される。図1から理解されるように、主動軸部4は内側筐体3に取り付けられた主動軸軸受4a、4bに回動自在に軸支され、中間軸部5は内側筐体3に取り付けられた中間軸軸受5a、5bに回動自在に軸支される。 In the training device load transmission mechanism section 1A of the first embodiment, each shaft section of the main drive shaft section 4, the intermediate shaft section 5, and the crankshaft section 6 is rotatably supported by the inner housing 3. As can be understood from FIG. 1, the main drive shaft portion 4 is rotatably supported by main drive shaft bearings 4a and 4b attached to the inner case 3, and the intermediate shaft portion 5 is attached to the inner case 3. It is rotatably supported by intermediate shaft bearings 5a and 5b.
 摺動軸部13は、クランク軸部6の軸方向に対して直交する方向に変位が許容されて外側筐体2に配置され、外力により直線方向に付勢される。 The sliding shaft portion 13 is disposed in the outer housing 2 so as to be allowed to be displaced in a direction perpendicular to the axial direction of the crankshaft portion 6, and is biased in a linear direction by an external force.
 摺動軸部13は、外側筐体2に設けられた摺動軸受13aに軸支されて、図1における上下方向に変位を許容される。また、摺動軸受13aは、摺動軸部13に対して線接触により軸支されてもよい。例えば、摺動軸受13aの内周面がすり鉢形状をしており、当該内周面の一部が摺動軸部13の外周面に線接触することで軸支されてもよい。これによれば、摺動軸部13は、摺動軸受13aとの間の摺動摩擦を低減させることができ、より滑らかな図1における上下方向の変位をすることができる。 The sliding shaft portion 13 is pivotally supported by a sliding bearing 13a provided in the outer housing 2, and is allowed to be displaced in the vertical direction in FIG. Furthermore, the sliding bearing 13a may be supported by line contact with the sliding shaft portion 13. For example, the inner circumferential surface of the sliding bearing 13a may have a mortar shape, and a portion of the inner circumferential surface may be in line contact with the outer circumferential surface of the sliding shaft portion 13 to be pivotally supported. According to this, the sliding shaft portion 13 can reduce sliding friction with the sliding bearing 13a, and can perform smoother vertical displacement in FIG. 1.
 第1実施形態のトレーニング器具用負荷伝達機構部1Aを後述する第1トレーニング器具100(図6ないし11参照)に接続するため、接続部7が外側筐体2に備えられる。トレーニング器具用負荷伝達機構部1Aの接続部7が採用する形態は、筒状の接続筒部8である。案内支柱140(図6ないし11参照)が接続筒部8内に挿通される。接続筒部8には、例えば、フッ素樹脂等の摺動抵抗の低い部材が用いられる。結果、トレーニング器具用負荷伝達機構部1Aは第1トレーニング器具100において円滑に上下に昇降かつ旋回可能となる。 A connecting portion 7 is provided in the outer housing 2 in order to connect the training device load transmission mechanism portion 1A of the first embodiment to a first training device 100 (see FIGS. 6 to 11), which will be described later. The connection portion 7 of the training device load transmission mechanism portion 1A has a cylindrical connection tube portion 8. A guide column 140 (see FIGS. 6 to 11) is inserted into the connecting tube 8. For the connecting tube portion 8, a member having low sliding resistance, such as fluororesin, is used, for example. As a result, the training device load transmission mechanism section 1A can be smoothly moved up and down and rotated in the first training device 100.
 第1実施形態のトレーニング器具用負荷伝達機構部1Aの内側筐体3は、外側筐体2、接続部7、及び案内支柱140に対して相対的に水平移動を可能とする。即ち、内側筐体3に設けられた主動軸部4は、外側筐体2、接続部7、及び案内支柱140に対して相対的に水平移動を可能とする。 The inner casing 3 of the training device load transmission mechanism section 1A of the first embodiment allows horizontal movement relative to the outer casing 2, the connecting section 7, and the guide column 140. That is, the main drive shaft portion 4 provided in the inner housing 3 can be horizontally moved relative to the outer housing 2, the connecting portion 7, and the guide column 140.
 連結関節部12は、摺動軸部13の軸方向に対して直交する第1中心軸12gを有する回動と、第1中心軸12gに直交する第2中心軸12hを有する回動とが、複数の連結片部30の組み合わせにより許容され、摺動軸部13に複数の連結片部30の一(30(12e))が接続される。
 摺動軸部13の下端部(第1端部13b)に連結関節部12の連結片部30(第3関節片12e)が接続される。連結関節部12は、摺動軸部13の軸方向(軸方向とは軸が延伸する方向、若しくは軸の長手方向を意味する。以下同じ。)に対して直交する第1中心軸12gを有する回動と、当該第1中心軸12gに直交する第2中心軸12hを有する回動とが、複数の連結片部30の組み合わせにより許容され、摺動軸部13に当該複数の連結片部30(第1関節片12a、第2関節片12c、第3関節片12e)の一(第3関節片12e)が接続される。
 第1中心軸12g、第2中心軸12h、第3中心軸12j、及び第4中心軸12kをはじめとする中心軸は、回動の回転中心を通る回転軸である。以下同じ。
The connecting joint portion 12 rotates with a first center axis 12g orthogonal to the axial direction of the sliding shaft portion 13, and rotates with a second center axis 12h orthogonal to the first center axis 12g. The combination of the plurality of connection pieces 30 is allowed, and one (30 (12e)) of the plurality of connection pieces 30 is connected to the sliding shaft 13.
The connecting piece portion 30 (third joint piece 12e) of the connecting joint portion 12 is connected to the lower end portion (first end portion 13b) of the sliding shaft portion 13. The connecting joint part 12 has a first central axis 12g that is perpendicular to the axial direction of the sliding shaft part 13 (the axial direction means the direction in which the shaft extends or the longitudinal direction of the shaft. The same applies hereinafter). The rotation and the rotation having the second central axis 12h orthogonal to the first central axis 12g are allowed by the combination of the plurality of connecting pieces 30, and the sliding shaft part 13 has the plurality of connecting pieces 30 One (third joint piece 12e) of (the first joint piece 12a, the second joint piece 12c, and the third joint piece 12e) is connected.
The central axes including the first central axis 12g, the second central axis 12h, the third central axis 12j, and the fourth central axis 12k are rotational axes that pass through the center of rotation. same as below.
 連結関節部12は、摺動軸部13に接続された一の連結片部30(第3関節片12e)と異なる連結片部30(第1関節片12a、第2関節片12c)において、クランク軸部6の軸方向に直交する中心軸を有する回動が許容されてクランク軸部6に接続され、クランク軸部6の回動及び軸方向の移動を摺動軸部13の上下方向の変位に変換する。 The connecting joint part 12 has one connecting piece part 30 (third joint piece 12e) connected to the sliding shaft part 13 and a different connecting piece part 30 (first joint piece 12a, second joint piece 12c) connected to the sliding shaft part 13. The shaft part 6 is connected to the crankshaft part 6 with a central axis orthogonal to the axial direction that is allowed to rotate, and the rotation and axial movement of the crankshaft part 6 is controlled by the vertical displacement of the sliding shaft part 13. Convert to
 連結関節部12は、連結片部30である第1関節片12a、第2関節片12c、第3関節片12eを備える。第1関節片12aと第2関節片12cとは、自在継手40である第1自在継手12bにより接続される。第2関節片12cと第3関節片12eとは、自在継手40である第2自在継手12dにより接続される。
 自在継手40は、2つの回転軸が接合する角度を自由に変化させて、一方の回転軸の回転運動に角度をつけて他方の回転軸に伝えることができる。自在継手40は、各種の自在軸継手(ユニバーサルジョイント)、若しくはコンロッド(コネクティングロッド)41(図30参照)と呼ばれる棒部材でもよい。図1に示す自在継手40(第1自在継手12b及び第2自在継手12dに)はコンロッド41が用いられる。コンロッド41は互いに直交する二つの貫通穴(第1貫通穴41a及び第2貫通穴41b)を備えている。第1貫通穴41aは第1中心軸12gとなるピン12fが挿通され、第2貫通穴41bは第3中心軸12jとなるピン12fが挿通される(図1参照)。
 自在軸継手(ユニバーサルジョイント)は、例えば、こま形自在軸継手、及び等速自在軸継手などが挙げられる。
 連結関節部12は、3個の連結片部30である第1関節片12a、第2関節片12c、第3関節片12eと、隣接するこれら連結片部30を接続する自在継手40(第1自在継手12b、第2自在継手12d)により構成される。なお、連結関節部12は3個の連結片部30を備えて構成されているが、これに限るものではなく、4個以上の連結片部30を備えてもよい。連結関節部12は少なくとも2個の自在継手40を備える。例えば、4個の連結片部30を備える連結関節部12は、2個若しくは3個の自在継手40を備える。第1関節片12aは、クランク軸部6の側面に跨るようにピン12fでもって回動自在に取り付けられる。ピン12fは、クランク軸部6の回転軸に直交し、第1関節片12aの回動の回転軸となる。第1関節片12aはピン12fを回転軸として揺動可能となるようにクランク軸部6に取り付けられる。
 連結関節部12は2個の自在継手40を備え、かつ、第1関節片12aとクランク軸部6とが揺動可能に接続されているため、クランク軸部6の回動及び軸方向の移動を摺動軸部13の上下方向の変位に変換することができる。
The connecting joint part 12 includes a first joint piece 12a, a second joint piece 12c, and a third joint piece 12e, which are the connecting piece parts 30. The first joint piece 12a and the second joint piece 12c are connected by a first universal joint 12b, which is a universal joint 40. The second joint piece 12c and the third joint piece 12e are connected by a second universal joint 12d, which is a universal joint 40.
The universal joint 40 can freely change the angle at which the two rotating shafts join to transmit the rotational motion of one rotating shaft to the other rotating shaft at an angle. The universal joint 40 may be any of various types of universal joints or a rod member called a connecting rod 41 (see FIG. 30). A connecting rod 41 is used in the universal joint 40 (first universal joint 12b and second universal joint 12d) shown in FIG. The connecting rod 41 includes two through holes (a first through hole 41a and a second through hole 41b) that are orthogonal to each other. A pin 12f serving as the first central axis 12g is inserted into the first through hole 41a, and a pin 12f serving as the third central axis 12j is inserted through the second through hole 41b (see FIG. 1).
Examples of the universal joint include a top-shaped universal joint and a constant velocity universal joint.
The connecting joint part 12 includes three connecting pieces 30, a first joint piece 12a, a second joint piece 12c, and a third joint piece 12e, and a universal joint 40 (first joint piece) connecting these adjacent connecting pieces 30. It is composed of a universal joint 12b and a second universal joint 12d). Although the connecting joint portion 12 is configured to include three connecting pieces 30, the present invention is not limited to this, and may include four or more connecting pieces 30. The connecting joint 12 includes at least two universal joints 40 . For example, a connecting joint 12 that includes four connecting pieces 30 includes two or three universal joints 40 . The first joint piece 12a is rotatably attached with a pin 12f so as to straddle the side surface of the crankshaft portion 6. The pin 12f is orthogonal to the rotation axis of the crankshaft portion 6, and serves as the rotation axis of the first joint piece 12a. The first joint piece 12a is attached to the crankshaft portion 6 so as to be swingable about the pin 12f as a rotation axis.
The connecting joint portion 12 includes two universal joints 40, and the first joint piece 12a and the crankshaft portion 6 are swingably connected, so that rotation and axial movement of the crankshaft portion 6 are prevented. can be converted into vertical displacement of the sliding shaft portion 13.
 第1自在継手12bは、第1関節片12aと第2関節片12cとを直角に交差する2本の回転軸を用いて接続し、第1関節片12aと第2関節片12cとは第1自在継手12bを基点にして直交する2方向に所定角度折れ曲がることができる。 The first universal joint 12b connects the first joint piece 12a and the second joint piece 12c using two rotating shafts that intersect at right angles. It can be bent at a predetermined angle in two orthogonal directions using the universal joint 12b as a base point.
 第2自在継手12dは、第2関節片12cと第3関節片12eとを直角に交差する2本の回転軸を用いて接続し、第2関節片12cと第3関節片12eとは第2自在継手12dを基点にして直交する2方向に所定角度折れ曲がることができる。 The second universal joint 12d connects the second joint piece 12c and the third joint piece 12e using two rotating shafts that intersect at right angles. It can be bent at a predetermined angle in two orthogonal directions using the universal joint 12d as a base point.
 第1関節片12aはその一端においてクランク軸部6の軸方向に直交する第4中心軸12k(ピン12f)を有する回動が許容されてクランク軸部6に接続されるので、第1関節片12aはクランク軸部6の軸方向に沿うように回動する。また、第1関節片12aはその他端において第1自在継手12bを介して第2関節片12cに接続されるので、第1関節片12aは第2関節片12cに対して直交する2方向に屈曲することができる。 The first joint piece 12a has a fourth central axis 12k (pin 12f) perpendicular to the axial direction of the crankshaft part 6 at one end thereof, and is allowed to rotate and is connected to the crankshaft part 6. 12a rotates along the axial direction of the crankshaft portion 6. Moreover, since the first joint piece 12a is connected to the second joint piece 12c via the first universal joint 12b at the other end, the first joint piece 12a can be bent in two directions perpendicular to the second joint piece 12c. can do.
 第2関節片12cは、第1関節片12aと接続している端部とは反対側の端部において、第2自在継手12dを介して第3関節片12eに接続されるので、第2関節片12cは第3関節片12eに対して直交する2方向に屈曲することができる。 The second joint piece 12c is connected to the third joint piece 12e via the second universal joint 12d at the end opposite to the end connected to the first joint piece 12a. The piece 12c can be bent in two directions perpendicular to the third joint piece 12e.
 第3関節片12eは、第2関節片12cと接続している端部とは反対側の端部において、摺動軸部13の第1端部13bに接続される。 The third joint piece 12e is connected to the first end 13b of the sliding shaft portion 13 at the end opposite to the end connected to the second joint piece 12c.
 主動軸部4は、下端部にユーザが握持する握持部11が接続される。握持部11は、ユーザが力を入力する入力部である。そして、ユーザの手、腕の動きは握持部11を介して主動軸部4に伝わり主動軸部4自体も回動及び水平移動をする。後出の第1トレーニング器具100から理解されるように、主動軸部4に接続される握持部11は環状物、特には手の指により握られるため、矩形の環状である。図6ないし11に示されるように、握持部11は平面視において矩形(四角形)状であり、切れ目無くつながった環を形成している。 A grip portion 11 that is gripped by a user is connected to the lower end of the main drive shaft portion 4 . The grip section 11 is an input section through which the user inputs force. The movements of the user's hands and arms are transmitted to the main drive shaft section 4 through the grip section 11, and the main drive shaft section 4 itself rotates and moves horizontally. As will be understood from the first training device 100 described later, the gripping portion 11 connected to the main drive shaft portion 4 is held by an annular object, particularly the fingers of a hand, and therefore has a rectangular annular shape. As shown in FIGS. 6 to 11, the grip portion 11 has a rectangular (square) shape in plan view, and forms a continuous ring.
 中間軸部5は主動軸部4の回動と連動して回動する。そして、主動軸部4と中間軸部5との間に懸架され主動軸部4と中間軸部5の互いの回動を伝達する第1回動伝達部1Kが備えられる。主動軸部4の回動は、第1回動伝達部1Kによって、中間軸部5に伝えられる。また、摺動軸部13に作用する外力に起因する中間軸部5の回動しようとする力は、第1回動伝達部1Kによって、主動軸部4に伝達される。主動軸部4と中間軸部5は互いに平行となる配置である。 The intermediate shaft portion 5 rotates in conjunction with the rotation of the main drive shaft portion 4. A first rotation transmission section 1K is provided which is suspended between the main drive shaft section 4 and the intermediate shaft section 5 and transmits mutual rotation of the main drive shaft section 4 and the intermediate shaft section 5. The rotation of the main drive shaft portion 4 is transmitted to the intermediate shaft portion 5 by the first rotation transmission portion 1K. Further, a force that causes the intermediate shaft portion 5 to rotate due to an external force acting on the sliding shaft portion 13 is transmitted to the main drive shaft portion 4 by the first rotation transmission portion 1K. The driving shaft portion 4 and the intermediate shaft portion 5 are arranged parallel to each other.
 主動軸部4と中間軸部5とは、内側筐体3に回動自在に軸支されており、主動軸部4と中間軸部5とは内側筐体3により連結固定され、内側筐体3によって主動軸部4と中間軸部5との互いの水平移動が伝達される。 The main drive shaft part 4 and the intermediate shaft part 5 are rotatably supported by the inner case 3, and the main drive shaft part 4 and the intermediate shaft part 5 are connected and fixed by the inner case 3. 3 transmits the horizontal movement of the main drive shaft section 4 and the intermediate shaft section 5 to each other.
 トレーニング器具用負荷伝達機構部1Aでは、第1回動伝達部1Kは伝達チェーン10を備える(図1ないし5中、太い破線で示される。)。伝達チェーン10は、例としてローラーチェーン、リーフチェーンなどが挙げられる。第1回動伝達部1Kの伝達チェーン10の懸架と噛み合わせのため、主動軸部4に主動軸スプロケット4Cと中間軸部5に中間軸スプロケット5Cが備えられる。第1回動伝達部1Kは、伝達チェーン10を採用する代わりにベルトとプーリーの組み合わせ(図示せず)としてもよい。ベルトの例として、Vベルト、平ベルト、歯付きベルトなどが挙げられる。 In the training equipment load transmission mechanism section 1A, the first rotation transmission section 1K includes a transmission chain 10 (indicated by thick broken lines in FIGS. 1 to 5). Examples of the transmission chain 10 include a roller chain and a leaf chain. In order to suspend and engage the transmission chain 10 of the first rotation transmission section 1K, the main drive shaft section 4 is provided with a main drive shaft sprocket 4C, and the intermediate shaft section 5 is provided with an intermediate shaft sprocket 5C. The first rotation transmission section 1K may be a combination of a belt and a pulley (not shown) instead of employing the transmission chain 10. Examples of belts include V-belts, flat belts, toothed belts, and the like.
 図1に示すように、中間軸部5とクランク軸部6とは直交する関係にあり、中間軸部5とクランク軸部6との間には、第2回動伝達部1Mが備えられる。第2回動伝達部1Mは、中間軸部5とクランク軸部6との互いの回動を伝達する。第2回動伝達部1Mは、直角に交差する2軸間で回転を伝達する役割を担う。ここで2軸間とは、中間軸部5とクランク軸部6との間のことである。 As shown in FIG. 1, the intermediate shaft portion 5 and the crankshaft portion 6 are in a perpendicular relationship, and a second rotation transmission portion 1M is provided between the intermediate shaft portion 5 and the crankshaft portion 6. The second rotation transmission section 1M transmits mutual rotation between the intermediate shaft section 5 and the crankshaft section 6. The second rotation transmission section 1M plays a role of transmitting rotation between two axes that intersect at right angles. Here, the term "between two shafts" refers to the space between the intermediate shaft section 5 and the crankshaft section 6.
 第1実施形態において、第2回動伝達部1Mは、中間軸部5に備えられる中間軸部傘歯車5dと、クランク軸部6に備えられ中間軸部傘歯車5dと歯合するクランク軸傘歯車6cを備える。中間軸部5の回動動作はクランク軸部6に直角に連動する。なお、中間軸部5とクランク軸部6とを直交して接続する第2回動伝達部1Mの機構として、例えば、クラウンギヤと平歯車、ウォームとウォームホイールの組み合わせ等の機構が挙げられる。 In the first embodiment, the second rotation transmission section 1M includes an intermediate shaft bevel gear 5d provided on the intermediate shaft section 5, and a crankshaft bevel gear provided on the crankshaft section 6 that meshes with the intermediate shaft bevel gear 5d. A gear 6c is provided. The rotational movement of the intermediate shaft portion 5 is interlocked with the crankshaft portion 6 at right angles. Note that the mechanism of the second rotation transmission section 1M that orthogonally connects the intermediate shaft section 5 and the crankshaft section 6 includes, for example, a mechanism such as a combination of a crown gear and a spur gear, a worm and a worm wheel, and the like.
 摺動軸部13は外側筐体2において中間軸部5と平行となる位置に配置される。クランク軸部6の回動及び軸方向への水平移動は連結関節部12を介して紙面上では上下動の動作に変換され、摺動軸部13に伝達される。摺動軸部13は、第1トレーニング器具100(図6ないし11参照)の負荷の大きさを調整自在な負荷付与部130に連結される。 The sliding shaft portion 13 is arranged in the outer housing 2 at a position parallel to the intermediate shaft portion 5. Rotation and horizontal movement in the axial direction of the crankshaft portion 6 are converted into vertical movement on the paper via the connecting joint portion 12 and transmitted to the sliding shaft portion 13 . The sliding shaft portion 13 is connected to a load applying portion 130 that can adjust the magnitude of the load on the first training device 100 (see FIGS. 6 to 11).
 クランク軸部6の回動及び軸方向の水平移動に伴って連結関節部12が動かされ、連結関節部12を介して摺動軸部13に上下動の動作が生じる。つまり、主動軸部4の軸回転及びクランク軸部6の軸方向への水平移動により摺動軸部13が上下動し、摺動軸部13に連結された第1トレーニング器具100(図6ないし11参照)の負荷付与部130(ウェイト131)が上下動する。なお、トレーニング器具用負荷伝達機構部1Aにおいて、第1回動伝達部1Kは主動軸部4に設けられた主動軸スプロケット4cと、中間軸スプロケット5cと、主動軸スプロケット4cと中間軸スプロケット5cの間に懸架された伝達チェーン10とを備える。第2回動伝達部1Mは、中間軸部5に設けられた中間軸部傘歯車5dと、同中間軸部傘歯車5dと歯合するクランク軸傘歯車6cとを備える。第1回動伝達部1K及び第2回動伝達部1Mにより、主動軸部4の回転がクランク軸部6に伝達される。主動軸部4とクランク軸部6とは内側筐体3において軸支されていることから、主動軸部4のクランク軸部6の軸方向への水平移動は内側筐体3を介してクランク軸部6に伝達される。 As the crankshaft portion 6 rotates and moves horizontally in the axial direction, the connecting joint portion 12 is moved, and a vertical motion is generated in the sliding shaft portion 13 via the connecting joint portion 12. In other words, the sliding shaft 13 moves up and down due to the axial rotation of the main drive shaft 4 and the horizontal movement in the axial direction of the crankshaft 6, and the first training device 100 (see FIGS. 6 and 6) connected to the sliding shaft 13 moves up and down. 11) moves up and down. In addition, in the load transmission mechanism section 1A for training equipment, the first rotation transmission section 1K includes a main drive shaft sprocket 4c provided on the main drive shaft section 4, an intermediate shaft sprocket 5c, and a main drive shaft sprocket 4c and an intermediate shaft sprocket 5c. and a transmission chain 10 suspended between them. The second rotation transmission portion 1M includes an intermediate shaft bevel gear 5d provided on the intermediate shaft portion 5, and a crankshaft bevel gear 6c meshing with the intermediate shaft bevel gear 5d. The rotation of the main drive shaft section 4 is transmitted to the crankshaft section 6 by the first rotation transmission section 1K and the second rotation transmission section 1M. Since the main drive shaft section 4 and the crankshaft section 6 are pivotally supported in the inner case 3, the horizontal movement of the crankshaft section 6 of the main drive shaft section 4 in the axial direction is caused by moving the crankshaft section 6 through the inner case 3. 6.
 トレーニング器具用負荷伝達機構部1Aにおいて、連結関節部12により、クランク軸部6の回動及び軸方向の水平移動により摺動軸部13が進退動する。こうして、主動軸部4(握持部11)は負荷付与部130(ともに図6ないし11参照)の負荷に比例する力によって付勢される。そして、ユーザが入力部である握持部11を主動軸部4に対して回転付勢力に抗して軸回転させることにより、摺動軸部13は外側筐体2の内部に引き込まれ、摺動軸部13に連結された負荷付与部130は引張される(引き上げられる)。さらに、ユーザが握持部11を主動軸部4に対して付勢力に抗ってクランク軸部6の軸方向に水平移動させることにより、摺動軸部13は外側筐体2の内部に引き込まれ、摺動軸部13に連結された負荷付与部130は引張される(引き上げられる)。 In the training device load transmission mechanism section 1A, the sliding shaft section 13 moves forward and backward by the rotation of the crankshaft section 6 and the horizontal movement in the axial direction by the connecting joint section 12. In this way, the main driving shaft section 4 (grip section 11) is biased by a force proportional to the load of the load applying section 130 (see FIGS. 6 to 11). Then, when the user rotates the grip part 11, which is an input part, against the rotational biasing force with respect to the main drive shaft part 4, the sliding shaft part 13 is drawn into the outer casing 2, and the sliding shaft part 13 is pulled into the outer housing 2. The load application section 130 connected to the dynamic shaft section 13 is tensed (pulled up). Furthermore, when the user horizontally moves the grip part 11 against the main drive shaft part 4 in the axial direction of the crankshaft part 6 against the biasing force, the sliding shaft part 13 is pulled into the inside of the outer housing 2. As a result, the load application section 130 connected to the sliding shaft section 13 is pulled (pulled up).
<トレーニング器具用負荷伝達機構部1Aの動作についての説明>
 図2から図5を参照して、トレーニング器具用負荷伝達機構部1Aの動作について説明する。図2はトレーニング器具用負荷伝達機構部1A(以下、負荷伝達機構部1Aとする)の動作における初期姿勢を示す図であり、図3は負荷伝達機構部1Aの主動軸部4の回動に伴う動作を説明するための図であり、図4は負荷伝達機構部1Aの主動軸部4の水平移動に伴う動作を説明するための図であり、図5は負荷伝達機構部1Aの主動軸部4の回動及び水平移動に伴う動作を説明するための図である。
<Description of the operation of the training equipment load transmission mechanism section 1A>
The operation of the training device load transmission mechanism section 1A will be described with reference to FIGS. 2 to 5. FIG. 2 is a diagram showing the initial posture during operation of the load transmission mechanism section 1A for training equipment (hereinafter referred to as load transmission mechanism section 1A), and FIG. 3 shows the rotation of the main drive shaft section 4 of the load transmission mechanism section 1A. FIG. 4 is a diagram for explaining the operation accompanying the horizontal movement of the main drive shaft section 4 of the load transmission mechanism section 1A, and FIG. FIG. 4 is a diagram for explaining operations accompanying rotation and horizontal movement of the portion 4. FIG.
 図2に示す負荷伝達機構部1Aの動作における初期姿勢は、主動軸部4が図2中の一番右に位置し、連結関節部12が上向きに一番伸張している状態である。すなわち、負荷伝達機構部1Aの動作における初期姿勢では、摺動軸部13の第2端部13cが最も高い位置にある。 The initial position in the operation of the load transmission mechanism section 1A shown in FIG. 2 is a state in which the main drive shaft section 4 is located at the far right in FIG. 2 and the connecting joint section 12 is extended upward the most. That is, in the initial posture of the operation of the load transmission mechanism section 1A, the second end 13c of the sliding shaft section 13 is at the highest position.
 図3に示す負荷伝達機構部1Aは、図2に示す初期姿勢における主動軸部4の位置に留まり回動のみ行われた状態を示す。ユーザにより握持部11が回動され、握持部11の回動が主動軸部4の回動となり、当該回動が第1回動伝達部1Kを介して中間軸部5に伝達され、さらに第2回動伝達部1Mを介してクランク軸部6に伝達される。クランク軸部6の回動に伴い、連結関節部12の第1自在継手12b及び第2自在継手12dがクランク軸の周方向に屈曲する。当該屈曲により負荷伝達機構部1Aの内部で連結関節部12が湾曲して摺動軸部13を負荷伝達機構部1Aの内部に引き込み、摺動軸部13に連結された第1トレーニング器具100(図6ないし11参照)の負荷付与部130(ウェイト131)を持ち上げる。従って、ユーザによる握持部11の回動に対して、負荷付与部130(ウェイト131)の負荷が作用することとなる。 The load transmission mechanism section 1A shown in FIG. 3 shows a state where the main drive shaft section 4 remains in the initial position shown in FIG. 2 and only rotates. The grip part 11 is rotated by the user, the rotation of the grip part 11 becomes the rotation of the main drive shaft part 4, and the rotation is transmitted to the intermediate shaft part 5 via the first rotation transmission part 1K, Further, the rotational motion is transmitted to the crankshaft section 6 via the second rotation transmission section 1M. As the crankshaft portion 6 rotates, the first universal joint 12b and the second universal joint 12d of the connecting joint portion 12 bend in the circumferential direction of the crankshaft. Due to the bending, the connecting joint part 12 is curved inside the load transmission mechanism part 1A, and the sliding shaft part 13 is drawn into the inside of the load transmission mechanism part 1A, and the first training device 100 ( Lift up the load applying section 130 (weight 131) (see FIGS. 6 to 11). Therefore, the load of the load applying section 130 (weight 131) acts on the rotation of the grip section 11 by the user.
 図4に示す負荷伝達機構部1Aは、図2に示す初期姿勢における主動軸部4の位置から主動軸部4を回動することなく図中左側に水平移動させた状態を示す。ユーザにより握持部11が図中左側に水平移動され、握持部11の水平移動が主動軸部4の水平移動となり、当該水平移動が内側筐体3を介して中間軸部5及びクランク軸部6に伝達される。クランク軸部6の当該水平移動に伴い、連結関節部12の第1自在継手12b及び第2自在継手12dがクランク軸部6の軸方向に屈曲する。当該屈曲により負荷伝達機構部1Aの内部で連結関節部12が湾曲して摺動軸部13を負荷伝達機構部1Aの内部に引き込み、摺動軸部13に連結された第1トレーニング器具100(図6ないし11参照)の負荷付与部130(ウェイト131)を持ち上げる。従って、ユーザによる握持部11の水平移動に対して、負荷付与部130(ウェイト131)の負荷が作用することとなる。 The load transmission mechanism section 1A shown in FIG. 4 is shown in a state in which the main drive shaft section 4 is horizontally moved to the left in the figure without rotation from the position of the main drive shaft section 4 in the initial posture shown in FIG. The grip part 11 is horizontally moved to the left side in the figure by the user, and the horizontal movement of the grip part 11 becomes the horizontal movement of the main drive shaft part 4, and the horizontal movement moves the intermediate shaft part 5 and the crankshaft via the inner housing 3. 6. As the crankshaft 6 moves horizontally, the first universal joint 12b and the second universal joint 12d of the connecting joint 12 bend in the axial direction of the crankshaft 6. Due to the bending, the connecting joint part 12 is curved inside the load transmission mechanism part 1A, and the sliding shaft part 13 is drawn into the inside of the load transmission mechanism part 1A, and the first training device 100 ( Lift up the load applying section 130 (weight 131) (see FIGS. 6 to 11). Therefore, the load of the load applying section 130 (weight 131) acts on the horizontal movement of the grip section 11 by the user.
 図5に示す負荷伝達機構部1Aは、図2に示す初期姿勢における主動軸部4の位置から主動軸部4を回動すると供に図中左側に水平移動させた状態を示す。ユーザにより握持部11が回動されると供に図中左側に水平移動され、握持部11の回動及び水平移動が主動軸部4の回動及び水平移動となる。握持部11の回動は第1回動伝達部1Kを介して中間軸部5に伝達され、さらに第2回動伝達部1Mを介してクランク軸部6に伝達される。握持部11の水平移動は内側筐体3を介して中間軸部5及びクランク軸部6に伝達される。クランク軸部6の当該回動及び当該水平移動に伴い、連結関節部12の第1自在継手12b及び第2自在継手12dがクランク軸の周方向及び軸方向に屈曲する。当該屈曲により負荷伝達機構部1Aの内部で連結関節部12が湾曲して摺動軸部13を負荷伝達機構部1Aの内部に引き込み、摺動軸部13に連結された第1トレーニング器具100(図6ないし11参照)の負荷付与部130(ウェイト131)を持ち上げる。従って、ユーザによる握持部11の回動及び水平移動に対して、負荷付与部130(ウェイト131)の負荷が作用することとなる。 The load transmission mechanism section 1A shown in FIG. 5 is shown in a state in which the main drive shaft 4 is rotated and horizontally moved to the left in the figure from the position of the main drive shaft 4 in the initial posture shown in FIG. When the grip part 11 is rotated by the user, it is horizontally moved to the left in the figure, and the rotation and horizontal movement of the grip part 11 become the rotation and horizontal movement of the main drive shaft part 4. The rotation of the grip portion 11 is transmitted to the intermediate shaft portion 5 via the first rotation transmission portion 1K, and further transmitted to the crankshaft portion 6 via the second rotation transmission portion 1M. Horizontal movement of the grip portion 11 is transmitted to the intermediate shaft portion 5 and the crankshaft portion 6 via the inner housing 3. With the rotation and horizontal movement of the crankshaft section 6, the first universal joint 12b and the second universal joint 12d of the connecting joint section 12 are bent in the circumferential direction and the axial direction of the crankshaft. Due to the bending, the connecting joint part 12 is curved inside the load transmission mechanism part 1A, and the sliding shaft part 13 is drawn into the inside of the load transmission mechanism part 1A, and the first training device 100 ( Lift up the load applying section 130 (weight 131) (see FIGS. 6 to 11). Therefore, the load of the load applying section 130 (weight 131) acts on the rotation and horizontal movement of the grip section 11 by the user.
 握持部11を回動すると共に水平移動する動作は、握持部11を回動のみ又は水平移動のみする場合に比べて、連結関節部12の湾曲の程度が大きくなり摺動軸部13を負荷伝達機構部1Aの内部により多く引き込みより多くのエネルギーを消費することとなる。 When the gripping part 11 is rotated and horizontally moved, the degree of curvature of the connecting joint part 12 becomes larger than when the gripping part 11 is only rotated or only horizontally moved. This results in more energy being consumed inside the load transmission mechanism section 1A than when it is being pulled in.
 なお、図3、4、5に示す負荷伝達機構部1Aの状態では、負荷付与部130(ウェイト131)の負荷の作用により図2に示す初期状態に戻ろうとする力(復元力)が握持部11に作用する。ユーザはこの復元力に抗いながら図3、4、5の状態を維持するか、握持部11をさらに回動若しくは水平移動させるか、又は初期姿勢の状態に戻すこととなる。 In addition, in the state of the load transmission mechanism section 1A shown in FIGS. 3, 4, and 5, the force (restoring force) to return to the initial state shown in FIG. 2 due to the action of the load on the load applying section 130 (weight 131) is 11. The user either maintains the states shown in FIGS. 3, 4, and 5 while resisting this restoring force, further rotates or horizontally moves the grip portion 11, or returns it to the initial posture.
 <第1トレーニング器具100>
 第1トレーニング器具100の構成は図6ないし図7にて示される。第1トレーニング器具100は、負荷伝達機構部1Aを装着した器具である。
<First training equipment 100>
The configuration of the first training device 100 is shown in FIGS. 6 and 7. The first training device 100 is a device equipped with a load transmission mechanism section 1A.
<第1トレーニング器具100の構成についての説明>
 第1トレーニング器具100は、図6ないし図11に示すように、着座部110と、同着座部110を支持する枠組120と、同枠組120に設けられた負荷の大きさが調整自在の負荷付与部130と、枠組120に着座部110がその中央位置となるように所定の間隔をあけて鉛直方向に固定された2本の案内支柱140と、2本の案内支柱140のその一端側が上下動自在で且つ水平方向に回転自在にそれぞれ嵌合された2個の負荷伝達機構部1Aと、この2個の負荷伝達機構部1Aの握持部11の下端部に連結された握持部11と、一端が負荷付与部130に連結され、他端が枠組120に設けた方向転換案内車170を巻回して負荷伝達機構部1Aの案内支柱140の嵌合位置よりも他端側に連結された引張部材180が備えられ、負荷伝達機構部1A内において引張部材180の他端側と連結して負荷付与部130により握持部11の軸を中心とする回転に負荷が与えられる。
<Description of the configuration of the first training device 100>
As shown in FIGS. 6 to 11, the first training device 100 includes a seating portion 110, a framework 120 that supports the seating portion 110, and a load imparting device provided on the framework 120 that can freely adjust the magnitude of the load. 130, two guide columns 140 fixed to the framework 120 at a predetermined interval in the vertical direction so that the seating section 110 is in the center position, and one end side of the two guide columns 140 can be moved up and down. Two load transmission mechanism parts 1A fitted together so as to be freely rotatable in the horizontal direction, and a grip part 11 connected to the lower end part of the grip part 11 of these two load transmission mechanism parts 1A. , one end was connected to the load applying part 130, and the other end was connected to the other end side of the load transmission mechanism part 1A from the fitting position of the guide column 140 by winding the direction change guide wheel 170 provided on the framework 120. A tensioning member 180 is provided, which is connected to the other end of the tensioning member 180 within the load transmission mechanism section 1A, and a load is applied to the rotation of the gripping section 11 about the axis by the load applying section 130.
 着座部110は、第1トレーニング器具100を使用するユーザが正面方向を向いて着座するために適切な座席111と、当該座席111の下面に鉛直に設けられた座席支柱112とからなる。 The seating section 110 consists of a seat 111 suitable for the user of the first training device 100 to sit facing forward, and a seat support 112 provided vertically on the underside of the seat 111.
 枠組120は、第1トレーニング器具100を床面に安定させて設置するとともに、第1トレーニング器具100全体の骨格となり、着座部110、負荷付与部130、2本の案内支柱140等が固定される。枠組120の下面中央部より前方にて鉛直方向に貫設された孔に、座席支柱112は挿通され、着座部110は枠組120に支持される。枠組120は、座席111に着座した使用者の大腿部が浮き上がることを防止する大腿部押え部121を備える。大腿部押え部121は、使用者がトレーニング中に背中に適切なアーチを作るために備えることが好ましい。 The framework 120 stably installs the first training device 100 on the floor and serves as the framework of the entire first training device 100, to which the seating portion 110, the load applying portion 130, the two guide columns 140, etc. are fixed. . The seat support 112 is inserted into a hole vertically extending in front of the center of the lower surface of the framework 120, and the seating portion 110 is supported by the framework 120. The framework 120 includes a thigh presser 121 that prevents the thighs of a user seated on the seat 111 from lifting up. Preferably, the thigh presser part 121 is provided to allow the user to create an appropriate arch in the back during training.
 負荷付与部130は、枠組120に設けられた負荷の大きさを調整自在とし、金属製の重量部材である複数枚の板状プレートからなるウェイト131と、同ウェイト131を枠組120に上下動自在に支持するウェイト案内支柱132と、ウェイト131を相互に連結離別自在とすることが可能なクランプ(図示せず)を具備する。ウェイト131の枚数が加減されて負荷付与部130の荷重(負荷)は調整される。一対の円柱状のウェイト案内支柱132は、着座部110の後方にて枠組120に上下端が所定の左右の間隔を隔ててそれぞれ鉛直方向に固定され、ウェイト131の各板状プレートがその貫通孔を挿通され積層し、枠組120に上下動自在に支持されている。 The load applying unit 130 can freely adjust the magnitude of the load provided to the framework 120, and includes a weight 131 made of a plurality of plate-shaped plates, which are heavy metal members, and the weight 131 can be freely moved up and down on the framework 120. The weight guide column 132 is provided with a clamp (not shown) that can connect and separate the weights 131 from each other. By increasing or decreasing the number of weights 131, the load on the load applying section 130 is adjusted. A pair of cylindrical weight guide columns 132 are vertically fixed to the framework 120 at the rear of the seating section 110 with their upper and lower ends spaced apart from each other by a predetermined lateral interval, and each plate-shaped plate of the weight 131 has its through hole. are inserted and stacked, and supported by the framework 120 so as to be vertically movable.
 2個の負荷伝達機構部1Aは、2本の案内支柱140に接続部7により上下動自在、かつ水平方向に回動自在にそれぞれ嵌合されている。負荷伝達機構部1Aの主動軸部4に接続される握持部11は、ユーザが手でそれぞれ把持し力を入力する入力部となる環状物のハンドルである。各握持部11は負荷伝達機構部1Aに対してそれぞれ水平方向に軸回転できる。また、握持部11の揺動も可能である。各握持部11は、初期状態(図6及び図7参照)においては、各握持部11を把持した使用者の手の甲が第1トレーニング器具100の外側を向く位置である。各握持部11は、初期状態においては、座席111に着座したユーザが腕を上方に伸ばした手の位置よりさらに上方に位置する。そして、ユーザは握持部11を通じて負荷伝達機構部1Aを下降させることが可能である。このとき、ユーザは両腕を正中(体の左右の真ん中のライン)から外側へ胸元にて開くことができる(図8及び図9参照)。 The two load transmission mechanism parts 1A are respectively fitted to the two guide columns 140 via the connection parts 7 so as to be vertically movable and horizontally rotatable. The grip portion 11 connected to the main drive shaft portion 4 of the load transmission mechanism portion 1A is a handle of an annular object that serves as an input portion through which a user grips with his/her hand and inputs force. Each gripping part 11 can rotate in the horizontal direction with respect to the load transmission mechanism part 1A. Further, the grip portion 11 can also be rocked. In the initial state (see FIGS. 6 and 7), each gripping part 11 is in a position where the back of the hand of the user who grips each gripping part 11 faces the outside of the first training device 100. In the initial state, each grip portion 11 is located further above the position of the hand of the user seated on the seat 111 who extends his arm upward. The user can then lower the load transmission mechanism section 1A through the grip section 11. At this time, the user can open both arms from the midline (the line between the left and right sides of the body) to the outside at the chest (see FIGS. 8 and 9).
 図6、図7、図8、及び図9に示す第1トレーニング器具100は両腕を同時に動作させて使用するのに対して、図10、及び図11に示す第1トレーニング器具100は片腕ずつ動作させて使用する。
 図6、図7、図8、及び図9に示す第1トレーニング器具100の引張部材180は、同長の2本のロープまたはワイヤーが用いられ、2本の引張部材180の各々の一端はウェイト131に連結され、各々の他端は負荷伝達機構部1Aに連結されている。ウェイト131に一端が固定された2本の引張部材180は、それぞれ方向転換案内車170に巻回されている。当該方向転換案内車170は、ウェイト131によって引張部材80に付与される下方向への負荷を上方向への負荷に転換している。
 これに対して、図10、及び図11に示す第1トレーニング器具100の引張部材180は1本のロープまたはワイヤーが用いられる。この1本の引張部材180の両端は2個の負荷伝達機構部1Aにそれぞれ連結される。ウェイト131の上端に設けられた箱部133の中に動滑車が1個設けられ、引張部材180はこの動滑車に巻回されている。2個ある負荷伝達機構部1Aの一方を引き下げると、引張部材180は他方の負荷伝達機構部1Aを支点として動滑車とともにウェイト131を上部に持ち上げる。
The first training device 100 shown in FIGS. 6, 7, 8, and 9 is used by moving both arms simultaneously, whereas the first training device 100 shown in FIGS. 10 and 11 is used with one arm at a time. Get it working and use it.
The tension members 180 of the first training device 100 shown in FIGS. 6, 7, 8, and 9 are two ropes or wires of the same length, and one end of each of the two tension members 180 is attached to a weight. 131, and the other end of each is connected to the load transmission mechanism section 1A. Two tension members 180, one end of which is fixed to the weight 131, are each wound around the direction change guide wheel 170. The direction change guide wheel 170 converts the downward load applied to the tension member 80 by the weight 131 into an upward load.
On the other hand, the tension member 180 of the first training device 100 shown in FIGS. 10 and 11 uses one rope or wire. Both ends of this one tension member 180 are respectively connected to two load transmission mechanism parts 1A. A movable pulley is provided in a box portion 133 provided at the upper end of the weight 131, and the tension member 180 is wound around this movable pulley. When one of the two load transmission mechanisms 1A is pulled down, the tension member 180 lifts the weight 131 upward together with the moving pulley using the other load transmission mechanism 1A as a fulcrum.
 図6及び図7に示す初期状態の場合、負荷伝達機構部1Aの回転は規制される。これに対し、図8及び図9の状態では、負荷伝達機構部1Aが正面方向を向くように回転付勢させる力に抗して、ユーザが負荷伝達機構部1Aを所定角度まで回転させることが可能となる。負荷伝達機構部1Aが正面方向を向くように回転付勢する力は、負荷付与部130の負荷に比例するとともに、負荷伝達機構部1Aの上下位置におおよそ逆比例している。 In the initial state shown in FIGS. 6 and 7, rotation of the load transmission mechanism section 1A is restricted. On the other hand, in the states shown in FIGS. 8 and 9, the user cannot rotate the load transmission mechanism 1A to a predetermined angle against the force that urges the load transmission mechanism 1A to rotate so as to face the front direction. It becomes possible. The force that urges the load transmission mechanism 1A to rotate so as to face in the front direction is proportional to the load on the load applying section 130 and approximately inversely proportional to the vertical position of the load transmission mechanism 1A.
 なお、図10及び図11のように、第1トレーニング器具100では左右の負荷伝達機構部1Aの昇降動作を異ならせてトレーニングすることも可能である。
 後述する第2実施形態に係るトレーニング器具用負荷伝達機構部1B(以下、負荷伝達機構部1Bという。)、第4実施形態に係るトレーニング器具用負荷伝達機構部1D(以下、負荷伝達機構部1Dという。)、及び第5実施形態に係るトレーニング器具用負荷伝達機構部1E(負荷伝達機構部1Eという。)は、負荷伝達機構部1Aに代えて、第1トレーニング器具100に装着して使用することができる。2個の負荷伝達機構部1B,1D、1Eは、負荷伝達機構部1Aと同様に、第1トレーニング器具100の2本の案内支柱140に接続部7により上下動自在、かつ水平方向に回動自在にそれぞれ嵌合される。
In addition, as shown in FIGS. 10 and 11, in the first training device 100, it is also possible to perform training by making the lifting and lowering operations of the left and right load transmission mechanism parts 1A different.
A load transmission mechanism section 1B for training equipment according to a second embodiment (hereinafter referred to as load transmission mechanism section 1B), which will be described later, and a load transmission mechanism section 1D for training equipment according to a fourth embodiment (hereinafter referred to as load transmission mechanism section 1D) ), and a training device load transfer mechanism section 1E (referred to as load transfer mechanism section 1E) according to the fifth embodiment is used by being attached to the first training device 100 in place of the load transfer mechanism section 1A. be able to. The two load transmission mechanism parts 1B, 1D, and 1E, like the load transmission mechanism part 1A, are connected to the two guide columns 140 of the first training device 100 by connection parts 7 so as to be vertically movable and horizontally rotatable. They are fitted together freely.
 <第1トレーニング器具100の使用方法についての説明>
 第1トレーニング器具100について、代表的な使用方法を順に説明する。始めにユーザの筋力、目的等を考慮した負荷に合わせて重量のウェイト131が配置される。ユーザは正面を向いて座席111に着座し、足裏が床面に接地するように座席111を適切な高さに調整して固定する。さらに、座席111に着座したユーザの大腿部の上面と接する程度に大腿部押え部121を適切な高さに調整して固定する。
<Explanation on how to use the first training device 100>
Typical usage methods for the first training device 100 will be explained in order. First, weights 131 are placed according to the load taking into account the user's muscle strength, purpose, and the like. The user sits on the seat 111 facing forward, and adjusts and fixes the seat 111 to an appropriate height so that the soles of the user's feet are in contact with the floor. Furthermore, the thigh presser 121 is adjusted to an appropriate height and fixed to such an extent that it contacts the upper surface of the thigh of the user seated on the seat 111.
 次に、使用者は立ち上がり、正面方向を向いた負荷伝達機構部1Aの初期状態(図6及び図7参照)に合わせ、手の甲を第1トレーニング器具100の左右に向けて、握持部11をそれぞれ把持する。そして、握持部11を上方に伸ばした手で把持しながら、また握持部11を下方に引っ張りながら座席111に正面方向を向いて着座する。 Next, the user stands up, adjusts the initial state of the load transmission mechanism section 1A facing the front direction (see FIGS. 6 and 7), turns the back of the hand to the left and right sides of the first training device 100, and holds the grip section 11. Grasp each. Then, the user sits on the seat 111 facing forward while grasping the gripping part 11 with the hand extended upward and pulling the gripping part 11 downward.
 次に、ユーザは負荷付与部130の負荷に比例した力によって握持部11に作用する回転付勢力に抗して、両上腕を外側に捻り、各握持部11を負荷伝達機構部1Aに対して水平方向に軸回転させて、各握持部11を把持した手の甲をそれぞれ第1トレーニング器具100の正面方向に向ける。この「かわし動作」のポジションをとることにより、屈筋と伸筋とが共に「弛緩」して肩や腕がリラックスした状態になる。また、負荷付与部130の負荷により握持部11が上方向に付勢されており、肩甲帯付近等の筋肉が適度に「伸張」される。 Next, the user twists both upper arms outward against the rotational urging force acting on the gripping part 11 by a force proportional to the load of the load applying part 130, and twists each gripping part 11 into the load transmission mechanism part 1A. On the other hand, the grips are rotated in the horizontal direction so that the backs of the hands gripping each grip portion 11 face toward the front of the first training device 100. By adopting this "dodging motion" position, both the flexor and extensor muscles "relax" and the shoulders and arms become relaxed. Moreover, the gripping part 11 is urged upward by the load of the load applying part 130, and muscles in the vicinity of the shoulder girdle and the like are appropriately "stretched".
 次に、ユーザは、適度に「伸張」された肩甲帯付近等の筋肉が「反射」を引き起こすように、負荷付与部130の負荷に抗して両腕を屈曲し筋肉を「短縮」させて握持部11を引き下げる。このとき、さらに上腕を外側に捻る「弛緩」と「伸張」の動作を加えながら、両手で握持部11を引き下げる。この上腕を外側に捻る動作によって各握持部11を負荷伝達機構部1Aに対してさらに外側水平方向に軸回転することにより、ウェイト131を引き上げることになり、両腕を引き下げる初動作における負荷が減少する。このように、両腕を屈曲して握持部11を引き下げて筋肉を「短縮」させるとき、さらに上腕を外側に捻ることによって、「弛緩」と「伸張」の動作を加えながら適切な「短縮」のタイミングを出現させることより、各筋肉群が「弛緩-伸張-短縮」のタイミングを得て、連動性よく動作を行うことができる。 Next, the user flexes both arms against the load of the load applying section 130 to "shorten" the muscles so that the appropriately "stretched" muscles near the shoulder girdle cause a "reflex." and pull down the grip part 11. At this time, the grip portion 11 is pulled down with both hands while further adding "relaxation" and "extension" motions of twisting the upper arm outward. This action of twisting the upper arms outward causes each gripping part 11 to further pivot outwardly in the horizontal direction with respect to the load transmission mechanism part 1A, thereby pulling up the weight 131 and reducing the load in the initial movement of pulling both arms down. Decrease. In this way, when bending both arms and pulling down the grip part 11 to "shorten" the muscles, by further twisting the upper arms outward, the appropriate "shortening" is performed while adding "relaxation" and "stretching" motions. By making the timing of "relaxation-stretching-shortening" appear, each muscle group can obtain the timing of "relaxation-stretching-shortening" and perform movements in good coordination.
 さらに、ユーザは、両腕を引き下げて、さらに上腕を外側に捻りながら外側に伸ばすという、下方向、回転方向、及び横方向の3方向のそれぞれに対して負荷付与部130によって適切に調節された負荷をかけることができるので、適度に「伸縮」された各筋肉群が「弛緩-伸張-短縮」のタイミングを得て、連動性よく動作を行うことができる。なお、上腕を外側に伸ばす際には、握持部11(主動軸部4)の水平移動に対して負荷付与部130(ウェイト131)によって適切に調整された負荷が付勢される。 Furthermore, the user pulls down both arms, and further extends the upper arms outward while twisting them outward, which is appropriately adjusted by the load applying unit 130 in each of the three directions: downward, rotational, and lateral directions. Since the load can be applied, each muscle group that has been appropriately "stretched and contracted" can obtain the timing of "relaxation-stretching-shortening" and perform movements in a well-coordinated manner. Note that when the upper arm is extended outward, a load appropriately adjusted by the load applying section 130 (weight 131) is applied to the horizontal movement of the grip section 11 (main driving shaft section 4).
 ユーザは、両腕を屈曲して握持部11を引き下げるとき、各負荷伝達機構部1Aが正面方向を向くように回転付勢される力に抗して、各負荷伝達機構部1Aがそれぞれ外側を向くように両腕を外側に漸次広げる。負荷伝達機構部1Aが正面方向を向くように回転付勢される力は負荷伝達機構部1Aの位置(高さ)に略逆比例するため、両腕を屈曲させて握持部11を引き下げることに伴い、両腕を外側に広げることに対する抗力が減少する。そのため、両腕を屈曲させて握持部11を引き下げるとき、使用者は両腕を外側に広げるように略一定の筋力を出力させることにより、握持部11を引き下げながら、両腕を漸次外側に広げる動作を滑らかに行うことができ、主動筋と拮抗筋の共縮を防ぐことが可能となる。 When the user bends both arms and pulls down the grip part 11, each load transmission mechanism part 1A resists the force that rotates and urges each load transmission mechanism part 1A to face in the front direction. Gradually spread both arms outward so that they are facing. Since the force that rotationally biases the load transmission mechanism section 1A to face the front direction is approximately inversely proportional to the position (height) of the load transmission mechanism section 1A, it is necessary to bend both arms and pull down the grip section 11. As a result, the resistance to spreading the arms outward decreases. Therefore, when the user bends both arms and pulls down the grip 11, the user outputs a substantially constant amount of muscle force so as to spread both arms outward, thereby gradually moving both arms outward while pulling down the grip 11. It is possible to perform the widening movement smoothly, and it is possible to prevent co-contraction of the agonist and antagonist muscles.
 次に、ユーザは、各握持部11を略肩部の高さまで引き下げた後、負荷付与部130の負荷による各付勢力に従いながら、上腕を内側に捻り両腕を内側に閉じながら両腕を伸ばすことにより、手の甲を握持部11に従って着座した状態にゆっくりと戻す。これにより、トレーニングの1サイクルが終了する。そして、このトレーニングを適切な回数のサイクルだけ繰り返す。 Next, the user lowers each grip part 11 to approximately the height of the shoulder, and then twists the upper arm inward and closes both arms while following each urging force due to the load of the load applying part 130. By stretching, the back of the hand is slowly returned to the seated state according to the grip part 11. This completes one cycle of training. Then repeat this training for the appropriate number of cycles.
 <第2実施形態に係るトレーニング器具用負荷伝達機構部1B>
 次に、図12及び図13を参照して、第2実施形態に係るトレーニング器具用負荷伝達機構部1B(以下、負荷伝達機構部1Bとする。)について説明する。図12は第2実施形態に係る負荷伝達機構部1Bの内部構成を説明するための正面図であり、図13は負荷伝達機構部1Bの内部構成を説明するための上面図である。負荷伝達機構部1Bは、前述した第1トレーニング器具100及び後述する第2トレーニング器具201に接続されて使用される。
<Load transmission mechanism section 1B for training equipment according to second embodiment>
Next, with reference to FIGS. 12 and 13, a training device load transmission mechanism section 1B (hereinafter referred to as load transmission mechanism section 1B) according to a second embodiment will be described. FIG. 12 is a front view for explaining the internal structure of the load transfer mechanism section 1B according to the second embodiment, and FIG. 13 is a top view for explaining the internal structure of the load transfer mechanism section 1B. The load transmission mechanism section 1B is used while being connected to the first training device 100 described above and the second training device 201 described later.
 負荷伝達機構部1Bは、第1実施形態に係る負荷伝達機構部1Aと比較して、筐体部22(図12参照)の構成が異なり、筐体部22は第1実施形態に係る負荷伝達機構部1Aの外側筐体2及び内側筐体3のように二部構成になっておらず、筐体部22が負荷伝達機構部1Bの筐体の役割を担う。以下、負荷伝達機構部1Bの説明では、第1実施形態に係る負荷伝達機構部1Aと共通する構成については図12及び図13において負荷伝達機構部1Aの説明に用いた符号を付してその説明を省略し、第1実施形態に係る負荷伝達機構部1Aと異なる構成についてのみ詳細に説明する。 The load transmission mechanism section 1B has a different configuration of a housing section 22 (see FIG. 12) from the load transmission mechanism section 1A according to the first embodiment, and the housing section 22 has a different structure than the load transmission mechanism section 1A according to the first embodiment. Unlike the outer casing 2 and inner casing 3 of the mechanism section 1A, the casing section 22 plays the role of the casing of the load transmission mechanism section 1B. Hereinafter, in the description of the load transfer mechanism section 1B, the same components as the load transfer mechanism section 1A according to the first embodiment are denoted by the reference numerals used in the explanation of the load transfer mechanism section 1A in FIGS. 12 and 13. The explanation will be omitted, and only the configuration that is different from the load transmission mechanism section 1A according to the first embodiment will be explained in detail.
 主動軸部4は、ユーザが力を入力する入力部であるユーザが握持する握持部11又はユーザの足置き部271が端部に接続され、握持部11又は足置き部271と共に回動する。
 なお、図12及び図13は、入力部として握持部11を主動軸部4に接続した例を示している。入力部として握持部11に代えて足置き部271を用いる場合は、主動軸部4の端部を摺動軸部13の第2端部13cと同じ側に突出させて、摺動軸部13の第2端部13cと同じ側に突出した主動軸部4の端部に足置き部271を接続する。
 第1回動伝達部1Kは、主動軸部4の回動に連動して回動する中間軸部5と、主動軸部4と中間軸部5との間に懸架され、主動軸部4と中間軸部5との互いの回動を伝達する。
 第2回動伝達部1Mは、中間軸部5と、中間軸部5と直交するクランク軸部6との間に設けられ、中間軸部5とクランク軸部6との互いの回動を伝達する。
The main drive shaft part 4 has an end connected to the grip part 11 gripped by the user or the user's foot rest part 271, which is an input part through which the user inputs force, and rotates together with the grip part 11 or the foot rest part 271. move.
Note that FIGS. 12 and 13 show an example in which the grip portion 11 is connected to the main drive shaft portion 4 as an input portion. When using the foot rest part 271 instead of the grip part 11 as an input part, the end of the main drive shaft part 4 is made to protrude to the same side as the second end part 13c of the sliding shaft part 13, and the sliding shaft part The footrest 271 is connected to the end of the main drive shaft 4 that protrudes on the same side as the second end 13c of the main drive shaft 4.
The first rotation transmission part 1K is suspended between the intermediate shaft part 5 which rotates in conjunction with the rotation of the main drive shaft part 4 and the main drive shaft part 4 and the intermediate shaft part 5, and is suspended between the main drive shaft part 4 and the intermediate shaft part 5. The mutual rotation with the intermediate shaft portion 5 is transmitted.
The second rotation transmission section 1M is provided between the intermediate shaft section 5 and the crankshaft section 6 orthogonal to the intermediate shaft section 5, and transmits mutual rotation between the intermediate shaft section 5 and the crankshaft section 6. do.
 連結固定部23は、主動軸部4と中間軸部5とクランク軸部6とを連結し、主動軸部4と中間軸部5とクランク軸部6との互いの水平移動を伝達する。
 摺動軸部13は、クランク軸部6の軸方向に対して直交する方向の変位が許容され、外力により直線方向に付勢される。
 連結関節部12は、摺動軸部13の軸方向に対して直交する第1中心軸12gを有する回動と、第1中心軸12gに直交する第2中心軸12hを有する回動とが、複数の連結片部30の組み合わせにより許容され、摺動軸部13に複数の連結片部30の一が接続される。
The connection fixing part 23 connects the main drive shaft part 4, the intermediate shaft part 5, and the crankshaft part 6, and transmits horizontal movement of the main drive shaft part 4, the intermediate shaft part 5, and the crankshaft part 6 to each other.
The sliding shaft portion 13 is allowed to be displaced in a direction perpendicular to the axial direction of the crankshaft portion 6, and is urged in a linear direction by an external force.
The connecting joint portion 12 rotates with a first center axis 12g orthogonal to the axial direction of the sliding shaft portion 13, and rotates with a second center axis 12h orthogonal to the first center axis 12g. The combination of the plurality of connection pieces 30 is allowed, and one of the plurality of connection pieces 30 is connected to the sliding shaft portion 13 .
 連結関節部12は、摺動軸部13に接続された一の連結片部30と異なる連結片部30において、クランク軸部6の軸方向に直交する中心軸を有する回動が許容されてクランク軸部6に接続され、クランク軸部6の回動及び軸方向の移動を摺動軸部13の上下方向の変位に変換し、ユーザが握持部11又は足置き部271を通じて主動軸部4を水平移動させる際に、摺動軸部13に加える外力が主動軸部4を通じて握持部11又は足置き部271へ伝達される。 The connecting joint portion 12 is configured such that a connecting piece portion 30 connected to the sliding shaft portion 13 and a different connecting piece portion 30 are allowed to rotate about a central axis orthogonal to the axial direction of the crankshaft portion 6. It is connected to the shaft part 6 and converts rotation and axial movement of the crankshaft part 6 into vertical displacement of the sliding shaft part 13, so that the user can use the grip part 11 or the foot rest part 271 to move the main drive shaft part 4. When moving horizontally, an external force applied to the sliding shaft portion 13 is transmitted to the grip portion 11 or the footrest portion 271 through the main drive shaft portion 4.
 負荷伝達機構部1Bの主動軸部4、中間軸部5、クランク軸部6、及び摺動軸部13を筐体部22に回動自在に収納される。主動軸部4、中間軸部5、及びクランク軸部6は連結固定部23によって連結され、これらは一体となってクランク軸部6の軸方向に水平移動する。連結固定部23は第1固定片23a及び第2固定片23bを備える。第1固定片23a及び第2固定片23bは表面が平らな板状であり、第1固定片23aと第2固定片23bとは直交するように接続されている(図12参照)。 The main drive shaft portion 4, intermediate shaft portion 5, crankshaft portion 6, and sliding shaft portion 13 of the load transmission mechanism portion 1B are rotatably housed in the housing portion 22. The main drive shaft portion 4, the intermediate shaft portion 5, and the crankshaft portion 6 are connected by a connecting fixing portion 23, and these move horizontally in the axial direction of the crankshaft portion 6 as a unit. The connection fixing part 23 includes a first fixing piece 23a and a second fixing piece 23b. The first fixed piece 23a and the second fixed piece 23b are plate-shaped with flat surfaces, and the first fixed piece 23a and the second fixed piece 23b are connected to be perpendicular to each other (see FIG. 12).
 第1固定片23aは、表面に主動軸軸受23c及び中間軸軸受23dを備え、主動軸軸受23cにより主動軸部4を回動自在に支承し、中間軸軸受23dにより中間軸部5を回動自在に支承する。第1固定片23aの表面は平らな板状であるため、主動軸軸受23c及び中間軸軸受23dは第1固定片23aの表面に対して垂直に保持され、主動軸部4と中間軸部5とは平行状態に保たれる。第2固定片23Bは、クランク軸軸受23eを備え、クランク軸軸受23eによりクランク軸部6を回動自在に支承する。第2固定片23Bの表面は平らな板状であるため、クランク軸部6は第2固定片23bの表面に対して垂直に保持される。第1固定片23aと第2固定片23bとは直交するように接続されているので、クランク軸部6は主動軸部4及び中間軸部5に対して垂直に設置される。筐体部22は摺動軸受13aを備え、摺動軸受13aにより摺動軸部13を上下方向に変位可能に支持する。ここでの上下方向は、主動軸部4及び中間軸部5の軸方向に平行となる方向であり、クランク軸部6の軸方向に対して直交する方向である。 The first fixed piece 23a has a main drive shaft bearing 23c and an intermediate shaft bearing 23d on its surface, rotatably supports the main drive shaft 4 by the main drive shaft bearing 23c, and rotates the intermediate shaft part 5 by the intermediate shaft bearing 23d. Support freely. Since the surface of the first fixed piece 23a is a flat plate, the main drive shaft bearing 23c and the intermediate shaft bearing 23d are held perpendicular to the surface of the first fixed piece 23a, and the main drive shaft part 4 and the intermediate shaft part 5 is kept parallel to. The second fixed piece 23B includes a crankshaft bearing 23e, and rotatably supports the crankshaft portion 6 by the crankshaft bearing 23e. Since the surface of the second fixed piece 23B is flat and plate-shaped, the crankshaft portion 6 is held perpendicular to the surface of the second fixed piece 23b. Since the first fixed piece 23a and the second fixed piece 23b are connected so as to be perpendicular to each other, the crankshaft portion 6 is installed perpendicularly to the main drive shaft portion 4 and the intermediate shaft portion 5. The housing portion 22 includes a sliding bearing 13a, and supports the sliding shaft portion 13 so as to be vertically displaceable. The vertical direction here is a direction parallel to the axial direction of the main drive shaft portion 4 and the intermediate shaft portion 5, and a direction perpendicular to the axial direction of the crankshaft portion 6.
 後述の直動案内部20は筐体部22の内部に備えられ、直動案内部20は筐体部22の内部においてスライダ20cをクランク軸部6の軸方向に平行となる直線移動をするように案内する。
 第1固定片23aは、直動案内部20に固定され筐体部22の内部に備えられている。直動案内部20は第1ガイド20a、第2ガイド20b、スライダ20c、及びガイド支持台20dを備える。第1ガイド20aと第2ガイド20bとはクランク軸部6の軸方向にその長手方向を一致させて互いに平行になるようにガイド支持台20dに固定され、ガイド支持台20dは筐体部22の内部に固定される。スライダ20cは、第1ガイド20aと第2ガイド20bとに跨がるように備えられ、第1ガイド20aと第2ガイド20bとに案内されてスライド(摺動)する。
A linear motion guide section 20, which will be described later, is provided inside the housing section 22, and the linear motion guide section 20 moves the slider 20c in a straight line parallel to the axial direction of the crankshaft section 6 inside the housing section 22. I will guide you to.
The first fixed piece 23 a is fixed to the linear motion guide section 20 and provided inside the housing section 22 . The linear guide section 20 includes a first guide 20a, a second guide 20b, a slider 20c, and a guide support base 20d. The first guide 20a and the second guide 20b are fixed to a guide support 20d so that their longitudinal directions coincide with the axial direction of the crankshaft 6 and are parallel to each other. Fixed inside. The slider 20c is provided so as to straddle the first guide 20a and the second guide 20b, and slides while being guided by the first guide 20a and the second guide 20b.
 ユーザが握持部11をクランク軸部6の軸方向に水平移動させると、握持部11の当該水平移動が主動軸部4の水平移動となり、主動軸部4の水平移動は連結固定部23を介して中間軸部5及びクランク軸部6に伝達される。 When the user horizontally moves the grip part 11 in the axial direction of the crankshaft part 6, the horizontal movement of the grip part 11 becomes a horizontal movement of the main drive shaft part 4, and the horizontal movement of the main drive shaft part 4 is caused by the connection fixing part 23. The signal is transmitted to the intermediate shaft portion 5 and the crankshaft portion 6 via.
 第2実施形態の負荷伝達機構部1Bによれば、第1実施形態の負荷伝達機構部1Aと比較して、内側筐体3を持たないために、負荷伝達機構部1Bの筐体を担う構成を簡略化できて、負荷伝達機構部1Bの全体の重量を軽量化することができる。 According to the load transmission mechanism section 1B of the second embodiment, compared to the load transmission mechanism section 1A of the first embodiment, since it does not have the inner casing 3, it has a configuration that plays the role of the casing of the load transmission mechanism section 1B. can be simplified, and the overall weight of the load transmission mechanism section 1B can be reduced.
 次に、図31及び図32を参照して、第2実施形態の負荷伝達機構部1Bの第1変形例1Ba及び第2変形例1Bbについて説明する。図31は第2実施形態に係るトレーニング器具用負荷伝達機構部1Bの第1変形例1Baについて説明するための図であり、図32は第2実施形態に係るトレーニング器具用負荷伝達機構部1Bの第2変形例1Bbについて説明するための図である。 Next, a first modification 1Ba and a second modification 1Bb of the load transmission mechanism section 1B of the second embodiment will be described with reference to FIGS. 31 and 32. FIG. 31 is a diagram for explaining a first modification 1Ba of the load transmission mechanism section 1B for training equipment according to the second embodiment, and FIG. 32 is a diagram for explaining the load transmission mechanism section 1B for training equipment according to the second embodiment. It is a figure for demonstrating the 2nd modification 1Bb.
<第2実施形態に係るトレーニング器具用負荷伝達機構部1Bの第1変形例1Ba>
 図31を参照して負荷伝達機構部1Bの第1変形例1Baについて説明する。図31において、第1変形例1Ba(図31参照)と負荷伝達機構部1B(図12、図13参照)との共通する部分については負荷伝達機構部1B(図12、図13参照)に用いた符号を付すものとし、その説明は省略する。以下、第1変形例1Baについて負荷伝達機構部1Bと異なる部分についてのみ説明する。第1変形例1Baと負荷伝達機構部1Bとの相違点は連結関節部12の構成にある。負荷伝達機構部1Bの連結関節部12は、連結片部30である第1関節片12a、第2関節片12c、第3関節片12eを備える。これに対して、第1変形例1Baは第2関節片12cに代えてボールジョイント42を備える。従って、第1変形例1Baの連結関節部12は、連結片部30である第1関節片12a、ボールジョイント42、第3関節片12eを備える。
 連結関節部12は、摺動軸部13の軸方向に対して直交する中心軸12gを有する回動と、中心軸12gに直交する方向への回動とが、複数の連結片部30の組み合わせにより許容され、摺動軸部13に複数の連結片部30の一(30(12e))が接続される。
<First modification 1Ba of load transmission mechanism section 1B for training equipment according to second embodiment>
A first modification 1Ba of the load transmission mechanism section 1B will be described with reference to FIG. 31. In FIG. 31, common parts between the first modification 1Ba (see FIG. 31) and the load transfer mechanism section 1B (see FIGS. 12 and 13) are used in the load transfer mechanism section 1B (see FIGS. 12 and 13). The description thereof will be omitted. Hereinafter, only the portions of the first modification 1Ba that are different from the load transmission mechanism section 1B will be described. The difference between the first modification 1Ba and the load transmission mechanism section 1B lies in the configuration of the connecting joint section 12. The connecting joint part 12 of the load transmission mechanism part 1B includes a first joint piece 12a, a second joint piece 12c, and a third joint piece 12e, which are the connecting piece parts 30. On the other hand, the first modification 1Ba includes a ball joint 42 instead of the second joint piece 12c. Therefore, the connecting joint part 12 of the first modification 1Ba includes the first joint piece 12a which is the connecting piece part 30, the ball joint 42, and the third joint piece 12e.
The connecting joint part 12 has a rotation having a central axis 12g perpendicular to the axial direction of the sliding shaft part 13 and a rotation in a direction perpendicular to the central axis 12g, which is a combination of the plurality of connecting pieces 30. Accordingly, one of the plurality of connecting pieces 30 (30 (12e)) is connected to the sliding shaft 13.
 第1関節片12aとボールジョイント42とは、自在継手40(41)である第1自在継手12bにより接続される。ボールジョイント42と第3関節片12eとは、自在継手40(41)である第2自在継手12dにより接続される。自在継手40の第1自在継手12bと第2自在継手12dは、コンロッド41(図30参照)が採用される。 The first joint piece 12a and the ball joint 42 are connected by the first universal joint 12b, which is the universal joint 40 (41). The ball joint 42 and the third joint piece 12e are connected by a second universal joint 12d, which is a universal joint 40 (41). The first universal joint 12b and the second universal joint 12d of the universal joint 40 employ a connecting rod 41 (see FIG. 30).
 ボールジョイントとは、金属球に丸棒を付けたボールスタッドとそれに球面接触するソケットから構成され、任意の方向に回転可能で、かつ並進方向には高い剛性をもつジョイントのことである。ボールスタッドの例としては、リンクボール、及びトリボールジョイントなどがある。
 図31に示す様に、第1関節片12aはクランク軸部6に第4中心軸12kを回転中心とする回動可能に接続される。第1自在継手12bは、第1関節片12aに第3中心軸12jを回転中心とする回動可能に接続される。第1自在継手12bと第2自在継手12dとは、ボールジョイント42を介して任意の方向に回転可能に接続される。第2自在継手12dは、第3関節片12eに第1中心軸12gを回転中心とする回動可能に接続される。第3関節片12eは、摺動軸部13の下端部に摺動軸部13の中心軸を中心とする回動可能に接続される。これにより、連結関節部12は、クランク軸部6の軸方向への水平移動、及びクランク軸部6を中心とする回動を摺動軸部13の鉛直方向の往復移動に滑らかに変換することができる。
A ball joint is a joint that consists of a ball stud, which is a round rod attached to a metal ball, and a socket that makes spherical contact with the ball stud.It is rotatable in any direction and has high rigidity in the translational direction. Examples of ball studs include link balls and tri-ball joints.
As shown in FIG. 31, the first joint piece 12a is rotatably connected to the crankshaft portion 6 about the fourth central axis 12k. The first universal joint 12b is rotatably connected to the first joint piece 12a about the third central axis 12j. The first universal joint 12b and the second universal joint 12d are connected via a ball joint 42 so as to be rotatable in any direction. The second universal joint 12d is rotatably connected to the third joint piece 12e about the first central axis 12g. The third joint piece 12e is connected to the lower end portion of the sliding shaft portion 13 so as to be rotatable about the central axis of the sliding shaft portion 13. Thereby, the connecting joint portion 12 smoothly converts horizontal movement of the crankshaft portion 6 in the axial direction and rotation around the crankshaft portion 6 into reciprocating movement of the sliding shaft portion 13 in the vertical direction. Can be done.
 第1変形例1Baの連結関節部12は、連結片部30の1部にボールジョイント42を用いることで、連結関節部12の曲がり具合が滑らかになり、主動軸部4の回転及び水平移動をより滑らかに摺動軸部13に伝えることができる。
 なお、第1変形例1Baの連結関節部12は、第1実施形態に係る負荷伝達機構部1A、第3実施形態に係る負荷伝達機構部1C、第4実施形態に係る負荷伝達機構部1D、及び第5実施形態に係る負荷伝達機構部1Eの連結関節部12として用いることができる。
 この場合、負荷伝達機構部1A、1C、1D、及び1Eは、第1変形例1Baと同様の効果を得ることができ、連結片部30の1部にボールジョイント42を用いることで、連結関節部12の曲がり具合が滑らかになり、主動軸部4の回転及び水平移動をより滑らかに摺動軸部13、14、15に伝えることができる。
In the connecting joint part 12 of the first modification 1Ba, by using a ball joint 42 in a part of the connecting piece part 30, the bending condition of the connecting joint part 12 becomes smooth, and the rotation and horizontal movement of the driving shaft part 4 are controlled. This can be transmitted to the sliding shaft portion 13 more smoothly.
In addition, the connection joint part 12 of the first modification 1Ba includes a load transmission mechanism part 1A according to the first embodiment, a load transmission mechanism part 1C according to the third embodiment, a load transmission mechanism part 1D according to the fourth embodiment, And it can be used as the connecting joint part 12 of the load transmission mechanism part 1E according to the fifth embodiment.
In this case, the load transmission mechanism parts 1A, 1C, 1D, and 1E can obtain the same effect as the first modification 1Ba, and by using the ball joint 42 in a part of the connecting piece part 30, the connecting joint The bending of the portion 12 becomes smoother, and the rotation and horizontal movement of the main drive shaft portion 4 can be more smoothly transmitted to the sliding shaft portions 13, 14, and 15.
<第2実施形態に係るトレーニング器具用負荷伝達機構部1Bの第2変形例1Bb>
 次に図32を参照して負荷伝達機構部1Bの第2変形例1Bbについて説明する。図32において、第2変形例1Bb(図32参照)と負荷伝達機構部1B(図12、図13参照)との共通する部分については負荷伝達機構部1B(図12、図13参照)に用いた符号を付すものとし、その説明は省略する。以下、第2変形例1Bbについて負荷伝達機構部1Bと異なる部分についてのみ説明する。
<Second modification 1Bb of load transmission mechanism section 1B for training equipment according to second embodiment>
Next, a second modification 1Bb of the load transmission mechanism section 1B will be described with reference to FIG. 32. In FIG. 32, the common parts of the second modification 1Bb (see FIG. 32) and the load transfer mechanism section 1B (see FIGS. 12 and 13) are applicable to the load transfer mechanism section 1B (see FIGS. 12 and 13). The description thereof will be omitted. Hereinafter, only the portions of the second modification 1Bb that are different from the load transmission mechanism section 1B will be described.
 第2変形例1Bbのクランク軸部9と負荷伝達機構部1Bのクランク軸部6とにおいて、連結関節部12との連結位置が異なる。第2変形例1Bbのクランク軸部9の基端部と連結関節部12の連結位置との距離は、負荷伝達機構部1Bのクランク軸部6の基端部と連結関節部12の連結位置との距離より大きい(図12、図32参照)。この違いは、第2変形例1Bbと負荷伝達機構部1Bとの初期姿勢の違いに現れる。具体的には、第2変形例1Bbの初期姿勢は図32における主動軸部4(握持部11)が一番左に位置している状態であり、負荷伝達機構部1Bの初期姿勢は図12における主動軸部4(握持部11)が一番右に位置している状態である。 The connection position with the connecting joint part 12 is different between the crankshaft part 9 of the second modification 1Bb and the crankshaft part 6 of the load transmission mechanism part 1B. The distance between the base end of the crankshaft section 9 and the connection position of the connection joint section 12 of the second modification 1Bb is the same as the distance between the base end of the crankshaft section 6 of the load transmission mechanism section 1B and the connection position of the connection joint section 12. (see FIGS. 12 and 32). This difference appears in the difference in initial posture between the second modified example 1Bb and the load transmission mechanism section 1B. Specifically, the initial posture of the second modified example 1Bb is such that the main drive shaft portion 4 (grip portion 11) is located at the far left in FIG. 32, and the initial posture of the load transmission mechanism portion 1B is as shown in FIG. In this state, the main drive shaft portion 4 (grip portion 11) at 12 is located at the far right.
 更に、第2変形例1Bbと負荷伝達機構部1Bとでは、主動軸部4の負荷が加わる水平移動の方向が異なる。負荷伝達機構部1Bは、初期姿勢(図12において一番右)から主動軸部4(握持部11)が摺動軸部13から遠ざかる方向(図12において左方向)に移動する際に、移動する方向とは反対方向(図12において右方向)の負荷が加わる。そして、主動軸部4(握持部11)が摺動軸部13に近づく方向(図12において右方向)に移動する際に、移動する方向と同じ方向(図12において右方向)に負荷が加わる。 Further, the second modification 1Bb and the load transmission mechanism section 1B differ in the direction of horizontal movement in which the load of the main drive shaft section 4 is applied. When the main drive shaft section 4 (grip section 11) moves away from the sliding shaft section 13 (leftward direction in FIG. 12) from the initial posture (rightmost position in FIG. 12), the load transmission mechanism section 1B A load is applied in the direction opposite to the direction of movement (rightward in FIG. 12). When the main drive shaft portion 4 (grip portion 11) moves in a direction approaching the sliding shaft portion 13 (rightward in FIG. 12), a load is applied in the same direction as the moving direction (rightward in FIG. 12). join.
 一方で、第2変形例1Bbは、初期姿勢(図32において一番左)から主動軸部4(握持部11)が摺動軸部13に近づく方向(図32において右方向)に移動する際に、移動する方向とは反対方向(図32において左方向)の負荷が加わる。そして、主動軸部4(握持部11)が摺動軸部13から遠ざかる方向(図32において左方向)に移動する際に、移動する方向と同じ方向(図32において左方向)に負荷が加わる。 On the other hand, in the second modification 1Bb, the main drive shaft portion 4 (grip portion 11) moves in the direction approaching the sliding shaft portion 13 (to the right in FIG. 32) from the initial posture (leftmost in FIG. 32). At this time, a load is applied in the direction opposite to the direction of movement (leftward in FIG. 32). When the main drive shaft section 4 (grip section 11) moves away from the sliding shaft section 13 (to the left in FIG. 32), a load is applied in the same direction as the moving direction (to the left in FIG. 32). join.
 第2変形例1Bbと負荷伝達機構部1Bとでは、同一の動作に対する負荷の加わる方向が正反対となるため、両者を併用することで多種多様な筋力トレーニングを行うことができる。 The second modification 1Bb and the load transmission mechanism section 1B apply loads in opposite directions for the same motion, so by using both in combination, a wide variety of muscle strength training can be performed.
<第3実施形態に係るトレーニング器具用負荷伝達機構部1C>
 図14ないし16及び図18を参照して、第3実施形態のトレーニング器具用負荷伝達機構部1C(以下負荷伝達機構部1Cとする。)の構成及び動作について説明する。図14は負荷伝達機構部1Cの構成を説明するための図であり、図15は負荷伝達機構部1Cの主動軸部276の回動及び平行移動を伴う動作を説明するための第1図であり、図16は同第2図であり、図18は第2トレーニング器具201の足置き部271の拡大図である。負荷伝達機構部1Cは後述する第2トレーニング器具201に接続されて使用される。
<Load transmission mechanism section 1C for training equipment according to third embodiment>
With reference to FIGS. 14 to 16 and FIG. 18, the configuration and operation of a training device load transfer mechanism section 1C (hereinafter referred to as load transfer mechanism section 1C) of the third embodiment will be described. FIG. 14 is a diagram for explaining the configuration of the load transmission mechanism section 1C, and FIG. 15 is a first diagram for explaining the operation involving rotation and parallel movement of the main drive shaft section 276 of the load transmission mechanism section 1C. 16 is the same FIG. 2, and FIG. 18 is an enlarged view of the footrest 271 of the second training device 201. The load transmission mechanism section 1C is used while being connected to a second training device 201, which will be described later.
 負荷伝達機構部1Cは主動軸部276にユーザの力の入力部となる足置き部271が接続される。負荷伝達機構部1Cは、第1実施形態に係る負荷伝達機構部1Aと比較して、主動軸部276の構成において負荷伝達機構部1Aの主動軸部4(図1参照)と異なる。主動軸部276は、摺動軸部13と同じ側面にその端部を突出させており、当該端部に足置き部271が接続されている点で負荷伝達機構部1Aと異なる。以下、負荷伝達機構部1Cの説明では、第1実施形態に係る負荷伝達機構部1Aと共通する構成については図14ないし16及び図18において負荷伝達機構部1Aの説明に用いた符号を付してその説明を省略し、第1実施形態に係る負荷伝達機構部1Aと異なる構成についてのみ詳細に説明する。 In the load transmission mechanism section 1C, a footrest section 271 that serves as a user's force input section is connected to a main drive shaft section 276. The load transfer mechanism section 1C is different from the load transfer mechanism section 1A according to the first embodiment in the configuration of the main drive shaft section 276 from the main drive shaft section 4 of the load transfer mechanism section 1A (see FIG. 1). The main drive shaft section 276 differs from the load transmission mechanism section 1A in that its end portion protrudes from the same side as the sliding shaft section 13, and the footrest section 271 is connected to the end section. Hereinafter, in the description of the load transfer mechanism section 1C, the same components as the load transfer mechanism section 1A according to the first embodiment are designated by the reference numerals used in the explanation of the load transfer mechanism section 1A in FIGS. 14 to 16 and FIG. 18. The explanation thereof will be omitted, and only the configuration that is different from the load transmission mechanism section 1A according to the first embodiment will be explained in detail.
 負荷伝達機構部1Cは、第1実施形態に係る負荷伝達機構部1A(図1参照)から90度回転させて、クランク軸部6の軸方向がほぼ鉛直となるように立てた状態で使用される。本体上部277付近に主動軸部276が位置する。 The load transmission mechanism section 1C is rotated 90 degrees from the load transmission mechanism section 1A (see FIG. 1) according to the first embodiment and used in an upright position so that the axial direction of the crankshaft section 6 is substantially vertical. Ru. The main drive shaft portion 276 is located near the upper portion 277 of the main body.
 ユーザは、左右の何れかの足を足置き部271に載せる。足置き部271はユーザの足の大きさより一回り大きい面積を持つ。足置き部271は、第3回動軸273と、側板274aと、側板274bと、接続板275と、を備える。 The user places either the left or right foot on the footrest 271. The footrest 271 has an area that is one size larger than the user's foot. The footrest 271 includes a third rotation shaft 273, a side plate 274a, a side plate 274b, and a connection plate 275.
 接続板275は、その中央部に対して垂直に主動軸部276が接続される。接続板275の両端には、接続板275に対して垂直に接続された平板状の側板274a、274bが設けられる。側板274a、274bには、第3回動軸273が回動自在に垂直に接続される。 A driving shaft portion 276 is connected perpendicularly to the center of the connecting plate 275. At both ends of the connection plate 275, flat side plates 274a and 274b connected perpendicularly to the connection plate 275 are provided. A third rotation shaft 273 is vertically and rotatably connected to the side plates 274a and 274b.
 第3回動軸273は、足置き部271の裏面に設けられた軸受272(図18参照)により回動自在に軸支されている。これにより、足置き部271は、第3回動軸273回りに回動することができる。また、足置き部271は、主動軸部276回りに回動することができる。 The third rotation shaft 273 is rotatably supported by a bearing 272 (see FIG. 18) provided on the back surface of the footrest 271. Thereby, the footrest portion 271 can rotate around the third rotation axis 273. Further, the footrest portion 271 can rotate around the main drive shaft portion 276.
 即ち、足置き部271は、二つの互いに直交する異なる軸回りに回動することができる。したがって、図14、18に示す構造を備えることにより、ユーザは、足の向き及び足の曲げ角など足の置き方の自由度が広がり、ストレスフリーで足置き部271に足裏を載置して、自身の足を所望の角度で足置き部271を足で押すことができる。よって、ユーザは自身の望む形(角度や力)で、第2トレーニング器具201により、足を含む自身の身体に対して負荷を与えることができる。 That is, the footrest 271 can rotate around two mutually orthogonal different axes. Therefore, by providing the structures shown in FIGS. 14 and 18, the user has greater freedom in how to place the foot, such as the direction of the foot and the bending angle of the foot, and can place the sole of the foot on the footrest 271 stress-free. The user can press the footrest 271 with his/her foot at a desired angle. Therefore, the user can use the second training device 201 to apply a load to his or her body, including the feet, in a manner desired by the user (angle or force).
<第3実施形態に係るトレーニング器具用負荷伝達機構部1Cの動作についての説明>
 ユーザは負荷伝達機構部1Cを用いて様々な脚の運動をすることができる。図14ないし16を参照し、以下に脚の運動の一例を示しながら負荷伝達機構部1Cの動作について説明する。脚の運動の一例として、ユーザの膝関節を屈伸させる運動に伴う、負荷伝達機構部1Cの動作について説明する。
<Description of the operation of the training device load transmission mechanism section 1C according to the third embodiment>
The user can perform various leg exercises using the load transmission mechanism section 1C. Referring to FIGS. 14 to 16, the operation of the load transmission mechanism section 1C will be described below while showing an example of leg movement. As an example of leg movement, the operation of the load transmission mechanism section 1C accompanying the movement of bending and extending the user's knee joint will be described.
 ユーザの初期姿勢として膝関節を屈曲させて足の甲を真っ直ぐ上方に向けて足置き部271に置く姿勢をとる(図19参照)。このときの足置き部271の状態は、図14に示す様に足置き部271は負荷伝達機構部1Cの最上部に位置するとともに、足置き部271の向き、延いてはユーザの足の向きは甲を真っ直ぐ上方に向けた状態にある。図14に示す状態では摺動軸部13は外側筐体2の外部に最大限出ている。 The user's initial posture is to bend the knee joint and place the foot on the footrest 271 with the top of the foot facing straight upwards (see FIG. 19). The state of the footrest 271 at this time is such that the footrest 271 is located at the top of the load transmission mechanism 1C as shown in FIG. with the instep facing straight upwards. In the state shown in FIG. 14, the sliding shaft portion 13 is exposed to the outside of the outer housing 2 to the maximum extent possible.
 次に、ユーザは膝関節を徐々に伸ばしつつ、当該膝関節を内側に倒すようにして脚を回転させる(図20、21参照)。ユーザは膝関節を伸ばす際に脚を斜め上方に押し上げるようにして足置き部271を押し上げることで足置き部271を上方へ平行移動させる。膝関節を最大限開いた状態において、ユーザは膝関節を内側に最大限倒すようにする(図21参照)。このときの足置き部271の状態は、図16に示すように足置き部271は負荷伝達機構部1Cの最上部に位置するとともに、足置き部271は主動軸部276の軸周りを最大限回動した状態にある。図16に示す状態では摺動軸部13は外側筐体2の内部に最大限引き込まれている。 Next, the user rotates the leg while gradually stretching the knee joint and tilting the knee joint inward (see FIGS. 20 and 21). The user moves the footrest 271 upward in parallel by pushing up the footrest 271 as if pushing the leg diagonally upward when extending the knee joint. With the knee joint fully open, the user tilts the knee joint inward as much as possible (see FIG. 21). At this time, the footrest 271 is positioned at the top of the load transmission mechanism 1C as shown in FIG. It is in a rotating state. In the state shown in FIG. 16, the sliding shaft portion 13 is pulled into the outer housing 2 to the maximum extent.
 負荷伝達機構部1Cの状態において、図15は図14に示す状態から図16に示す状態へ移行する途中の状態を示す。 In the state of the load transmission mechanism section 1C, FIG. 15 shows a state in the middle of transition from the state shown in FIG. 14 to the state shown in FIG. 16.
 負荷伝達機構部1Cにおいて、足置き部271を回動することで、主動軸部276の回動が第1回動伝達部1K、第2回動伝達部1M、連結関節部12を介して摺動軸部13に伝達され、摺動軸部13は外側筐体2に対して相対的に変位し、当該変位が負荷付与部230のウェイトを上下に変位させる。ユーザは、負荷付与部230により生じる付勢力に抗いながら足置き部271の回動運動を行うことができる。 In the load transmission mechanism section 1C, by rotating the foot rest section 271, the rotation of the main drive shaft section 276 is caused to slide through the first rotation transmission section 1K, the second rotation transmission section 1M, and the connecting joint section 12. This is transmitted to the dynamic shaft portion 13, and the sliding shaft portion 13 is displaced relative to the outer housing 2, and this displacement vertically displaces the weight of the load applying portion 230. The user can rotate the footrest 271 while resisting the urging force generated by the load applying section 230.
 さらに、負荷伝達機構部1Cにおいて、足置き部271を図14中における上方に平行移動させることで、主動軸部276の平行移動が内側筐体3及び連結関節部12を介して摺動軸部13に伝達され、摺動軸部13は外側筐体2に対して相対的に変位し、当該変位が負荷付与部230のウェイトを上下に変位させる。ユーザは、負荷付与部230により生じる付勢力に抗いながら足置き部271の平行移動を行うことができる。 Furthermore, in the load transmission mechanism section 1C, by moving the footrest section 271 upward in parallel in FIG. 13, the sliding shaft portion 13 is displaced relative to the outer housing 2, and this displacement vertically displaces the weight of the load applying portion 230. The user can move the footrest section 271 in parallel while resisting the urging force generated by the load applying section 230.
 なお、図15に示す負荷伝達機構部1Cの状態では、負荷付与部130のウェイトの負荷の作用により図14に示す初期状態に戻ろうとする力(復元力)が足置き部271に作用する。ユーザはこの復元力に抗いながら図15の状態を維持するか、足置き部271をさらに回動若しくは平行移動させるか(図16参照)、又は初期姿勢の状態に戻すこととなる(図14参照)。 Note that in the state of the load transmission mechanism section 1C shown in FIG. 15, a force (restoring force) that attempts to return to the initial state shown in FIG. 14 acts on the foot rest section 271 due to the action of the load of the weight of the load applying section 130. The user either maintains the state shown in FIG. 15 while resisting this restoring force, further rotates or translates the footrest 271 (see FIG. 16), or returns to the initial posture (see FIG. 14). ).
 <第2トレーニング器具201>
 図17ないし21を参照して第2トレーニング器具201の構成及び動作について説明する。図17は、第2トレーニング器具201の外観を示す斜視図である。
 <第2トレーニング器具201の構成についての説明>
 図17に示すように、第2トレーニング器具201は、ユーザが着座するための着座部210と、負荷を付与する負荷付与部230と、鉛直方向に伸びる円柱状の案内支柱240と、案内支柱240に案内されて上下方向に移動自在、かつ、回動自在に接続された昇降部250と、昇降部250に設けられた把持部260と、ユーザの足裏を載置するための足置き部271と、スライドレール222a、222bと、足置き部271を備える負荷伝達機構部1Cと、一端が昇降部250に接続され、他端が負荷伝達機構部1Cに接続され、負荷付与部230による負荷を昇降部250及び負荷伝達機構部1Cに対して付与する引張部材280と、を備える。
 昇降部250は、トレーニング器具用負荷伝達機構部1A、トレーニング器具用負荷伝達機構部1B、及び、後述のトレーニング器具用負荷伝達機構部1D、トレーニング器具用負荷伝達機構部1Eを適用し用いることができる。把持部260は、トレーニング器具用負荷伝達機構部1A、トレーニング器具用負荷伝達機構部1B、及び、後述のトレーニング器具用負荷伝達機構部1D、トレーニング器具用負荷伝達機構部1Eの握持部11に相当し、ユーザが力を入力する入力部である。
<Second training equipment 201>
The configuration and operation of the second training device 201 will be explained with reference to FIGS. 17 to 21. FIG. 17 is a perspective view showing the appearance of the second training device 201. As shown in FIG.
<Description of the configuration of the second training device 201>
As shown in FIG. 17, the second training device 201 includes a seating section 210 for a user to sit on, a load applying section 230 for applying a load, a cylindrical guide column 240 extending in the vertical direction, and a guide column 240. an elevating section 250 that is guided by and connected to the elevating section so as to be movable and rotatable in the vertical direction; a grip section 260 provided on the elevating section 250; and a foot rest section 271 for placing the sole of the user's foot. and a load transmission mechanism section 1C including slide rails 222a, 222b and a foot rest section 271, one end of which is connected to the elevating section 250 and the other end of which is connected to the load transmission mechanism section 1C, which allows the load by the load application section 230 to be transferred. It includes a tension member 280 that is applied to the lifting section 250 and the load transmission mechanism section 1C.
The elevating section 250 can apply and use a training equipment load transmission mechanism part 1A, a training equipment load transmission mechanism part 1B, a training equipment load transmission mechanism part 1D, and a training equipment load transmission mechanism part 1E, which will be described later. can. The grip part 260 is attached to the grip part 11 of the training equipment load transmission mechanism part 1A, the training equipment load transmission mechanism part 1B, the training equipment load transmission mechanism part 1D, and the training equipment load transmission mechanism part 1E, which will be described later. This corresponds to an input section through which the user inputs force.
 以下、第2トレーニング器具201について図面を用いて詳細に説明する。まず、図17、図18を用いて、第2トレーニング器具201の構造を説明する。図17は、前述の通り、第2トレーニング器具201の斜視図であり、図18は、負荷伝達機構部1C周りの拡大図である。 Hereinafter, the second training device 201 will be explained in detail using the drawings. First, the structure of the second training device 201 will be explained using FIGS. 17 and 18. As described above, FIG. 17 is a perspective view of the second training device 201, and FIG. 18 is an enlarged view of the area around the load transmission mechanism section 1C.
 図17に示されるように、第2トレーニング器具201において、着座部210は、第2トレーニング器具201の基礎フレームとなる枠組220により支持される。枠組220は、第2トレーニング器具201全体の骨格となり、第2トレーニング器具201を床面に安定させて設置させる機能を担う。枠組220は、例えば、鉄鋼やアルミニウム、ステンレス、樹脂等の一定以上の剛性を有する素材からなる角柱パイプ材や板材などを加工して、ボルトや溶接等により固定して形成することができる。着座部210は、ユーザが着座する座席211と、座席211を支持する座席支柱212と、から成る。座席支柱212は、枠組220に対して固定される。そして、座席支柱212は、座席211を保持する。座席支柱212は、図示していないが、引張部材280を前後方向に通過させるための貫通孔を備える。座席211は、第2トレーニング器具201の使用者(ユーザ)が着座する箇所であり、図17に示すように、第2トレーニング器具201の左右方向に長い長方形となっている。これは、座席211の右側と左側のいずれにも着座できるようにするためであるが、ユーザが無理なく着座できるのであれば長方形でなくともよく、正方形であってもよいし、円形であってもよい。 As shown in FIG. 17, in the second training device 201, the seating portion 210 is supported by a framework 220 that serves as the base frame of the second training device 201. The framework 220 serves as the skeleton of the entire second training device 201, and has the function of stably installing the second training device 201 on the floor. The frame 220 can be formed by, for example, processing a prismatic pipe or plate made of a material having a certain level of rigidity, such as steel, aluminum, stainless steel, or resin, and fixing the material with bolts, welding, or the like. The seating section 210 includes a seat 211 on which a user sits, and a seat support 212 that supports the seat 211. Seat post 212 is fixed to framework 220. The seat support 212 then holds the seat 211. Although not shown, the seat support column 212 includes a through hole through which the tension member 280 passes in the front-rear direction. The seat 211 is a place where the user of the second training device 201 sits, and has a rectangular shape that is long in the left-right direction of the second training device 201, as shown in FIG. This is to allow the user to sit on either the right or left side of the seat 211, but it does not need to be rectangular as long as the user can sit comfortably, and may be square or circular. Good too.
 図17に示すように、着座部210は、座席211の後方であって、負荷付与部230との間に、ユーザが使用時に体を支持させるための背もたれ215を備えてもよい。 As shown in FIG. 17, the seating section 210 may include a backrest 215 behind the seat 211 and between it and the load applying section 230 for supporting the user's body during use.
 枠組220には、鉛直方向に伸びる案内支柱240が設けられる。図17に示されるように、案内支柱240は、負荷付与部230よりも前方、かつ、着座部210よりも後方の位置に設けられる。図17に示されるように、枠組220は、案内支柱240の後方に、内部で、引張部材280の伸長方向を誘導するための上部筐体225を備える。そして、案内支柱240は、その下端が枠組220に接続され、上端が上部筐体225に接続されて固定される。 The framework 220 is provided with a guide column 240 that extends in the vertical direction. As shown in FIG. 17, the guide column 240 is provided at a position forward of the load application section 230 and rearward of the seating section 210. As shown in FIG. 17 , the framework 220 includes an upper housing 225 for guiding the extension direction of the tension member 280 internally behind the guide column 240 . The lower end of the guide column 240 is connected to the framework 220, and the upper end is connected to and fixed to the upper housing 225.
 図17に示されるように、案内支柱240には衝撃吸収材241が設けられてもよい。衝撃吸収材241は、昇降部250が、上部筐体225及び枠組220に対して、接触する際の衝撃を緩和するための部材である。衝撃吸収材241は、一例としてゴムやスポンジ等により実現されてもよい。 As shown in FIG. 17, the guide column 240 may be provided with a shock absorber 241. The shock absorber 241 is a member for alleviating the shock when the elevating section 250 comes into contact with the upper housing 225 and the framework 220. The shock absorber 241 may be realized by rubber, sponge, or the like, for example.
 案内支柱240には、図17に示される昇降部250が取り付けられる。図17に示されるように、昇降部250は、案内支柱240に対して上下移動自在に取り付けられている。図示していないが、昇降部250は、案内支柱240を挿通するための貫通孔を有する。したがって、昇降部250は、案内支柱240に沿って上下移動する。また、昇降部250は、案内支柱240を中心軸として、案内支柱240に対して回動自在に、案内支柱240に取り付けられている。したがって、案内支柱240には一定の剛性が求められる。よって、案内支柱240は、一例として、ステンレス等により作製されてよい。第2トレーニング器具201において、昇降部250として、前出の第1実施形態に係る負荷伝達機構部1A、第2実施形態に係る負荷伝達機構部1B、後述の第4実施形態に係る負荷伝達機構部1D、または第5実施形態に係る負荷伝達機構部1Eが適用されるようにしても良い。 An elevating section 250 shown in FIG. 17 is attached to the guide column 240. As shown in FIG. 17, the elevating section 250 is attached to the guide column 240 so as to be movable up and down. Although not shown, the elevating section 250 has a through hole through which the guide column 240 is inserted. Therefore, the elevating section 250 moves up and down along the guide column 240. Further, the elevating section 250 is attached to the guide column 240 so as to be rotatable with respect to the guide column 240 with the guide column 240 as a central axis. Therefore, the guide column 240 is required to have a certain degree of rigidity. Therefore, the guide column 240 may be made of stainless steel or the like, for example. In the second training device 201, the lifting section 250 includes a load transmission mechanism section 1A according to the first embodiment described above, a load transmission mechanism section 1B according to the second embodiment, and a load transmission mechanism according to the fourth embodiment described below. The portion 1D or the load transmission mechanism portion 1E according to the fifth embodiment may be applied.
 図17に示されるように、第2トレーニング器具201の負荷伝達機構部1Cは、スライドレール222a、222bに沿って摺動する。そのスライドレール222aは、第2トレーニング器具201の枠組220と枠組220の前方に配される枠組221に懸架され、両端部で固定される。図18は、第2トレーニング器具201のうちの負荷伝達機構部1C周りの拡大図である。 As shown in FIG. 17, the load transmission mechanism section 1C of the second training device 201 slides along the slide rails 222a and 222b. The slide rail 222a is suspended by a framework 220 of the second training device 201 and a framework 221 disposed in front of the framework 220, and is fixed at both ends. FIG. 18 is an enlarged view of the load transmission mechanism section 1C of the second training device 201.
 負荷付与部230は、図17に示すように、枠組220に対してその上下が固定された一対の円柱状のウェイト案内支柱232(図17では紙面の関係上片方のみを示している)と、ウェイト案内支柱232に対して上下動自在に構成されたウェイトとからなる。ウェイトにはウェイト案内支柱232を挿通するための貫通孔が設けられている。負荷付与部230は、付与する負荷の大きさを調整可能に構成されてよく、具体的には、重量部材となるウェイトを板状の部材とし、その枚数によって、負荷を調整することとしてよい。したがって、負荷付与部230は、ウェイトを相互に連結離別自在とするクランプ(不図示)を備えることとしてもよい。ウェイトの板状の部材それぞれを固定の重量とすることで、段階的に負荷の大きさを変更することができる。また、ウェイト案内支柱232には、衝撃吸収材231が設けられてよく、ウェイトが枠組220と一定以上の衝撃を以て衝突することを抑制する。 As shown in FIG. 17, the load applying section 230 includes a pair of cylindrical weight guide columns 232 (only one of which is shown due to space constraints in FIG. 17) whose top and bottom are fixed to the framework 220; The weight is configured to be movable up and down relative to the weight guide column 232. The weight is provided with a through hole through which the weight guide column 232 is inserted. The load applying section 230 may be configured to be able to adjust the magnitude of the load to be applied. Specifically, the weight serving as the weight member may be a plate-shaped member, and the load may be adjusted depending on the number of the weights. Therefore, the load applying section 230 may include a clamp (not shown) that connects and detaches the weights from each other. By setting each plate-shaped member of the weight to a fixed weight, the magnitude of the load can be changed in stages. Further, the weight guide column 232 may be provided with a shock absorbing material 231 to prevent the weight from colliding with the framework 220 with a shock exceeding a certain level.
 <第2トレーニング器具201の使用方法>
 図19ないし21を参照して、第2トレーニング器具201の使用方法について説明する。図19~図21は、第2トレーニング器具201を使用する運動の例であって、足の運動をする例を示す左側面図である。
<How to use the second training device 201>
A method of using the second training device 201 will be described with reference to FIGS. 19 to 21. FIGS. 19 to 21 are left side views showing examples of exercises using the second training device 201, including an example of exercising the legs.
 図19に示すように、ユーザは、第2トレーニング器具201の右側、即ち、座席211の右側に着座する(図19の紙面上手前側)。即ち、ユーザは、負荷伝達機構部1Cを左側、背もたれ215を右側にして、座席211に着座する。そして、図19に示すように、ユーザは、左脚を負荷伝達機構部1Cの足置き部271に載置し、ひざを屈曲させた状態をとる。 As shown in FIG. 19, the user is seated on the right side of the second training device 201, that is, on the right side of the seat 211 (upper front side in the paper of FIG. 19). That is, the user sits on the seat 211 with the load transmission mechanism section 1C on the left side and the backrest 215 on the right side. Then, as shown in FIG. 19, the user places his left leg on the footrest 271 of the load transmission mechanism section 1C and bends his knee.
 この状態から、ユーザは、左足を伸ばしていき、負荷伝達機構部1Cを押す。すると、図20に示すように、負荷伝達機構部1Cは、スライドレール222a、222bに沿って摺動していく。このとき、負荷伝達機構部1Cには、第2トレーニング器具201後方(図19~図21の紙面左方向)に向けて、接続部279に接続された引張部材280に接続された負荷付与部230の負荷が付与される。 From this state, the user stretches his left leg and pushes the load transmission mechanism section 1C. Then, as shown in FIG. 20, the load transmission mechanism section 1C slides along the slide rails 222a and 222b. At this time, the load transmission mechanism section 1C includes a load application section 230 connected to the tension member 280 connected to the connection section 279 toward the rear of the second training device 201 (leftward in the paper plane of FIGS. 19 to 21). load is given.
 そして、図20に示すように足を伸ばした状態から、ゆっくりと負荷伝達機構部1Cをスライドレール222a、222bに沿って、元の位置に戻すように摺動させる。この運動を一定回数繰り返し実行する。つまり、ユーザは、図19と図20との間の姿勢を所定回数繰り返す。 Then, as shown in FIG. 20, from the state where the legs are extended, the load transmission mechanism section 1C is slowly slid along the slide rails 222a and 222b so as to return to its original position. Repeat this exercise a certain number of times. That is, the user repeats the posture between FIG. 19 and FIG. 20 a predetermined number of times.
 なお、ユーザは、図21に示すように、図20に示す状態よりも更に腰に捻りを加える方法で、負荷伝達機構部1Cをより遠くまで押してもよく、その場合により足を伸ばしつつ腰回りを鍛えることができる。このような姿勢が可能なのも、足置き部271が、負荷伝達機構部1C本体に対して回動自在に構成されているからである。ユーザは、図19と図20の間で足の伸縮運動を行ってもよいし、図19と図21の間で足の伸縮運動を行ってもよい。 In addition, as shown in FIG. 21, the user may push the load transmission mechanism part 1C further by twisting the waist further than in the state shown in FIG. can be trained. This posture is possible because the footrest 271 is configured to be rotatable relative to the main body of the load transmission mechanism 1C. The user may extend/contract the legs between FIG. 19 and FIG. 20, or may extend/contract the legs between FIG. 19 and FIG. 21.
 また、図示していないが、図19~図21における座席211の反対側であって第2トレーニング器具201の左側に着座する(図19~21の紙面上奥側)。即ちユーザが自身の右側に負荷伝達機構部1Cを左側に背もたれ215が位置するように座席211に着座することで、ユーザは右足による運動をすることもできる。 Although not shown, the user is seated on the opposite side of the seat 211 in FIGS. 19 to 21 and on the left side of the second training device 201 (the back side on the paper of FIGS. 19 to 21). That is, by sitting on the seat 211 with the load transmission mechanism section 1C on the right side of the user and the backrest 215 on the left side, the user can also exercise with his or her right leg.
 したがって、左右対称に、ユーザは、両足を鍛えつつ、腰回りの回転運動を行うことができる。具体的には、ユーザは開脚して負荷伝達機構部1Cを蹴るようにして押し出す動作を行う。このため、ユーザの股関節周り、骨盤の周囲、大腿部、膝等の筋肉の強化に好例である。 Therefore, the user can perform rotational exercise around the waist while training both legs symmetrically. Specifically, the user opens his legs and performs a kicking motion to push out the load transmission mechanism section 1C. Therefore, it is a good example for strengthening muscles around the user's hip joints, pelvis, thighs, knees, etc.
 脚の各筋肉群が「弛緩-伸長-短縮」のタイミングを得て、連動性よく動作を行うことができる。具体的には、図19に示す状態では、左足には負荷付与部230の負荷がかからず、筋肉が「伸長」している状態であると言える。また、図19に示す状態は、足置き部271に、ただ、足を載置しているだけの状態でもあり、全体的にリラックスした状態であるので、「弛緩」している状態であるとも言える。 Each muscle group in the legs can achieve the timing of "relaxation-stretching-shortening" and perform movements in a well-coordinated manner. Specifically, in the state shown in FIG. 19, no load is applied to the left leg by the load applying section 230, and the muscles can be said to be in a "stretched" state. In addition, the state shown in FIG. 19 is a state in which the feet are simply placed on the foot rest portion 271, and is in an overall relaxed state, so it can be said to be a "relaxed" state. I can say it.
 ここから、ユーザが、足に力を加えて、負荷付与部230による負荷が加えられている負荷伝達機構部1Cを押していく。即ち、図19から図20又は図21に示す過程において、ユーザの左脚に負荷付与部230の負荷がかかり、ユーザの左脚の筋肉に、「短縮」状態を生じさせることができる。そして、図20又は図21に示す状態において、足置き部271を負荷伝達機構部1Cに対して回転させることで、内部のクランク機構により接続部279が負荷伝達機構部1C内に引き込まれることによって、足にかかる負荷付与部230による負荷が加重される。即ち、図20又は図21に示すように、負荷伝達機構部1Cを回転させる状態では、ユーザの足に、「弛緩」状態を生じさせることができる。 From here, the user applies force to his/her foot to push the load transmission mechanism section 1C to which the load is applied by the load application section 230. That is, in the process shown in FIGS. 19 to 20 or 21, the load applying unit 230 applies a load to the user's left leg, causing the muscles of the user's left leg to be in a “shortened” state. In the state shown in FIG. 20 or 21, by rotating the footrest 271 relative to the load transmission mechanism 1C, the connecting portion 279 is pulled into the load transmission mechanism 1C by the internal crank mechanism. , the load applied to the foot by the load applying section 230 is increased. That is, as shown in FIG. 20 or 21, when the load transmission mechanism section 1C is rotated, the user's feet can be brought into a "relaxed" state.
 そして、図20や図21に示す状態から図19に示す状態に移行する過程において、脚を図19の状態に戻していくことで、筋肉の「伸長」状態を生じさせることができる。
 したがって、図19に示す状態から、図20や図21に示す状態になるまで、負荷伝達機構部1Cを動かし、そこから、図19に示す状態に戻す運動のサイクルを繰り返すことで、「弛緩-伸長-短縮」のタイミングを生じさせて、連動性よく動作を行うことができる。なお、脚の運動についても、図19に示す状態を初期状態としてもよいし、図20や図21に示す状態を初期状態として1サイクルの運動を行うこととしてもよいが、「弛緩」した状態から運動を開始することが望ましいことから、他者の協力等を得て、図20や図21に示す状態から運動を開始することが望ましい。
Then, in the process of transitioning from the state shown in FIGS. 20 and 21 to the state shown in FIG. 19, by returning the leg to the state shown in FIG. 19, the "stretched" state of the muscles can be caused.
Therefore, by repeating the cycle of moving the load transmission mechanism 1C from the state shown in FIG. 19 to the state shown in FIGS. 20 and 21, and then returning it to the state shown in FIG. By creating the timing of "extension-contraction", the movements can be performed in a well-coordinated manner. Regarding the movement of the legs, the state shown in FIG. 19 may be the initial state, or the state shown in FIGS. 20 and 21 may be the initial state and one cycle of movement may be performed, but the "relaxed" state Since it is desirable to start the exercise from the state shown in FIGS. 20 and 21, it is desirable to obtain the cooperation of others and start the exercise from the state shown in FIG. 20 or 21.
 また、両脚ではなく片脚ずつ鍛える構造とすることで、一度に両方を鍛えるための負荷伝達機構部1Cを用意する必要がないので、両足に対応する形で第2トレーニング器具201を構成するよりもサイズをコンパクトにすることができる(負荷伝達機構部1Cを両脚のために二つ備えるよりも幅を狭くすることができる)ので、第2トレーニング器具201の設置スペースとして用意するべきスペースの面積を小さくすることができる。なお、図19~図20の運動において、ユーザは、第2トレーニング器具201に、対して、負荷伝達機構部1Cを正面にし、背もたれ215を背にして着座部210に着座して、運動を行ってもよい。 Moreover, by adopting a structure that trains one leg at a time instead of both legs, there is no need to prepare a load transmission mechanism section 1C for training both legs at once, so it is better to configure the second training device 201 in a form that corresponds to both legs. Since the size can be made compact (the width can be made narrower than when two load transmission mechanism parts 1C are provided for both legs), the area of the space that should be prepared as the installation space for the second training equipment 201 is reduced. can be made smaller. In addition, in the exercise shown in FIGS. 19 to 20, the user performs the exercise while sitting on the second training device 201 on the seat section 210 with the load transmission mechanism section 1C facing forward and the backrest 215 at the back. You can.
 <第1トレーニング器具100及び第2トレーニング器具201のまとめ>
 前述の第1トレーニング器具100及び第2トレーニング器具201は、初動負荷トレーニング(登録商標)により肩部、腕部、背部、脚の筋肉等に対するトレーニングを適切に行う器具である。ここで、初動負荷トレーニングとは、「反射の起こるポジションへの身体変化及びそれに伴う重心位置変化等を利用し、主働筋の弛緩-伸張-短縮の一連動作過程を促進させるとともに、その拮抗筋並びに拮抗的に作用する筋の共縮を防ぎながら行うトレーニング」と定義される。初動負荷トレーニングは、最後まで負荷を与えて筋肉の緊張状態(硬化)を伴いながら筋肉を肥大化する終動負荷トレーニングとは全く異なるトレーニングである。初動負荷トレーニングは、負荷を与えるポイント、負荷を解き放つポイントと角度、リズム、筋出力の連続性など全体としての動作イメージを把握してトレーニングを行うことが必要である。従来の負荷トレーニングは身体のバランスや部分的硬化等によって適切な動作やフォームを取ることが困難であるという問題を内包している。しかし、初動負荷トレーニングを実現する第1トレーニング器具100及び第2トレーニング器具201により理想的な一連動作やフォームを伴ったトレーニングが容易に誘導される。
<Summary of the first training device 100 and the second training device 201>
The first training device 100 and the second training device 201 described above are devices that appropriately train muscles of the shoulders, arms, back, legs, etc. through initial load training (registered trademark). Here, initial load training is defined as ``using the body's change to the position where the reflex occurs and the accompanying change in the center of gravity, etc., to promote the series of movements of relaxation, stretching, and shortening of the agonist muscles, and to promote the relaxation, stretching, and shortening of the agonist muscles. It is defined as "training performed while preventing co-contraction of muscles that act antagonistically." Initial load training is a completely different type of training from final load training, in which the load is applied until the end, causing muscle tension (hardening) and increasing the size of the muscles. In initial load training, it is necessary to train with an understanding of the overall movement image, such as the point at which the load is applied, the point and angle at which the load is released, the rhythm, and the continuity of muscle output. Conventional load training involves the problem that it is difficult to maintain proper movement and form due to body balance, partial stiffness, etc. However, the first training device 100 and the second training device 201 that realize initial load training can easily induce training with an ideal series of movements and form.
 第1トレーニング器具100及び第2トレーニング器具201を用いた初動負荷トレーニングによって、「中心部(身体根幹部)から末端部への分節間の力伝達」、すなわち、自らは伸びようとせず縮む特性を持つ人体の筋を弛緩させリラックスした状態とし、感覚受容器である筋紡錘・腱器官に適切な負荷を与え、適度に筋を伸張したところから、あるいは受動的に伸張されたところから筋が短縮する時の力発揮を誘発し、瞬時、連続性をもって負荷が漸減することにより、共縮を起こさないのは心筋だけと言われてきた人体の他の筋が心筋のように共縮を起こすことのない活動状態を得ることができ、神経筋制御を促進・発達させることが可能となる。 Through initial load training using the first training device 100 and the second training device 201, “force transmission between segments from the center (body trunk) to the distal region”, that is, the characteristic of contracting without trying to expand, is achieved. By relaxing the muscles of the human body and placing an appropriate load on the muscle spindles and tendon organs that are sensory receptors, the muscles can be shortened from the point where they are stretched moderately or from the point where they are passively stretched. It is said that the myocardium is the only muscle that does not cause co-contraction, but other muscles in the human body can cause co-contraction like the myocardium. It is possible to obtain a state of activity free of stress, and it becomes possible to promote and develop neuromuscular control.
 第1トレーニング器具100及び第2トレーニング器具201を用いた初動負荷トレーニングは、当該トレーニング器具の負荷を利用して筋肉に反射を起こし、本来働かなければならない筋肉がうまく働き、筋肉と神経の機能を高めるトレーニングである。弛緩した筋肉にタイミングの良い伸縮、短縮を促すための触媒として負荷を用いている。そして、このようなトレーニングによって、弛緩-伸張-短縮の一連動作の促進が図られ、さらに共縮が防止されることにより、神経と筋肉の機能や協調性を高め、筋肉痛や疲労など身体への負担が少なく、筋肉の硬化を伴うことなく、柔軟で弾力性の富んだ筋肉が得られる。又、強制的な心拍数や血圧の上昇が少なく有酸素的に代謝を促進させることにより、糖尿病、高血圧など生活習慣病の予防や靭帯損傷、骨折等の治癒促進に有効であるとともに、神経・筋肉・関節のストレスの解除、老廃物の除去等、身体に有益な状態を作り出すことができる。 Initial load training using the first training device 100 and the second training device 201 uses the load of the training device to cause reflexes in the muscles, so that the muscles that should normally work work well and the functions of muscles and nerves are improved. This is training to improve. Load is used as a catalyst to encourage relaxed muscles to stretch and shorten in a timely manner. This kind of training promotes the series of relaxation-stretching-shortening movements, and prevents co-contraction, thereby improving the function and coordination of nerves and muscles, and reducing physical effects such as muscle pain and fatigue. Flexible and elastic muscles can be obtained with less strain on the muscles and without muscle stiffness. In addition, by aerobically promoting metabolism with less forced increase in heart rate and blood pressure, it is effective in preventing lifestyle-related diseases such as diabetes and hypertension, and promoting healing of ligament damage and fractures, as well as improving nerve and It can create beneficial conditions for the body, such as relieving stress in muscles and joints and removing waste products.
<第3実施形態に係るトレーニング器具用負荷伝達機構部1Cの変形例1Ca>
 次に、図33を参照して第2トレーニング器具201に用いる第3実施形態に係る負荷伝達機構部1Cの変形例1Caについて以下に説明する。図33は第3実施形態に係るトレーニング器具用負荷伝達機構部1Cの変形例1Caについて説明するための図である。
<Modification 1Ca of load transmission mechanism section 1C for training equipment according to third embodiment>
Next, a modification 1Ca of the load transmission mechanism section 1C according to the third embodiment used in the second training device 201 will be described below with reference to FIG. 33. FIG. 33 is a diagram for explaining a modification example 1Ca of the training device load transmission mechanism section 1C according to the third embodiment.
 図33において、変形例1Ca(図33参照)と負荷伝達機構部1C(図14、図15、図16参照)との共通する部分については負荷伝達機構部1C(図14、図15、図16参照)に用いた符号を付すものとし、その説明は省略する。以下、変形例1Ca(図33参照)について負荷伝達機構部1C(図14、図15、図16参照)と異なる部分についてのみ説明する。
 図33を参照して負荷伝達機構部1Cの変形例1Caについて説明する。変形例1Caは、負荷伝達機構部1C(図14、15、16参照)に対して、足置き部271(主動軸部4)の移動方向が異なる。負荷伝達機構部1C(図14、15、16参照)において、足置き部271(主動軸部4)の移動方向は、摺動軸部13の移動方向に対して直角となる。即ち、足置き部271(主動軸部4)の移動方向と摺動軸部13の移動方向とのなす角は90度となる。
In FIG. 33, the common parts of the modification 1Ca (see FIG. 33) and the load transfer mechanism section 1C (see FIGS. 14, 15, and 16) are as follows. The reference numerals used in (see) will be used, and the explanation thereof will be omitted. Hereinafter, only the portions of the modified example 1Ca (see FIG. 33) that are different from the load transmission mechanism section 1C (see FIGS. 14, 15, and 16) will be described.
A modification 1Ca of the load transmission mechanism section 1C will be described with reference to FIG. 33. Modification 1Ca is different from the load transmission mechanism section 1C (see FIGS. 14, 15, and 16) in the moving direction of the foot rest section 271 (main driving shaft section 4). In the load transmission mechanism section 1C (see FIGS. 14, 15, and 16), the moving direction of the footrest section 271 (main driving shaft section 4) is perpendicular to the moving direction of the sliding shaft section 13. That is, the angle formed by the moving direction of the foot rest part 271 (main driving shaft part 4) and the moving direction of the sliding shaft part 13 is 90 degrees.
 これに対して、変形例1Ca(図33参照)の足置き部271(主動軸部4)の移動方向は、摺動軸部13の移動方向に対して45度となる。即ち、足置き部271(主動軸部4)の移動方向と摺動軸部13の移動方向とのなす角は45度となる。 On the other hand, the moving direction of the foot rest part 271 (main driving shaft part 4) of Modification 1Ca (see FIG. 33) is 45 degrees with respect to the moving direction of the sliding shaft part 13. That is, the angle formed by the moving direction of the foot rest part 271 (main driving shaft part 4) and the moving direction of the sliding shaft part 13 is 45 degrees.
 変形例1Ca(図33参照)は、足置き部271(主動軸部4)を斜め上方に移動することができるため、足置き部271及び主動軸部4などの重量による負荷を軽減することができ、小さい負荷から大きい負荷まで調整幅を大きくすることができるため利用者が子供、女性及び高齢者など筋力の弱い人でも利用することができる。 In modification 1Ca (see FIG. 33), the footrest 271 (main drive shaft 4) can be moved diagonally upward, so the load due to the weight of the footrest 271, main drive shaft 4, etc. can be reduced. Since the adjustment range can be widened from small to large loads, it can be used even by people with weak muscles such as children, women, and the elderly.
 また、負荷伝達機構部1Cにおいて足置き部271(主動軸部4)を真上方向に移動させる場合、脚に力が入りにくい場合があるが、変形例1Caは足置き部271(主動軸部4)を斜め上方に移動させるので、脚に力が入り易く筋力トレーニングがし易いなどの効果を得ることができる。 Furthermore, when moving the footrest 271 (main drive shaft 4) directly upward in the load transmission mechanism 1C, it may be difficult to apply force to the legs; 4) is moved diagonally upward, so it is possible to obtain effects such as easier force to be applied to the legs and easier muscle training.
<第4実施形態に係るトレーニング器具用負荷伝達機構部1D>
 図22ないし24を参照して、第4実施形態のトレーニング器具用負荷伝達機構部1D(以下負荷伝達機構部1Dとする。)の構成及び動作について説明する。図22は第4実施形態に係るトレーニング器具用負荷伝達機構部1Dの構成を説明するための図であり、図23は第4実施形態に係るトレーニング器具用負荷伝達機構部1Dの動作について説明するための図であり、図24は第4実施形態に係るトレーニング器具用負荷伝達機構部1Dに用いられる摺動軸受14aを説明するための図である。
 負荷伝達機構部1Dは、第1トレーニング器具100及び第2トレーニング器具201に接続されて使用される。
<Load transmission mechanism section 1D for training equipment according to fourth embodiment>
With reference to FIGS. 22 to 24, the configuration and operation of a training device load transmission mechanism section 1D (hereinafter referred to as load transmission mechanism section 1D) of the fourth embodiment will be described. FIG. 22 is a diagram for explaining the configuration of the training equipment load transmission mechanism section 1D according to the fourth embodiment, and FIG. 23 is a diagram for explaining the operation of the training equipment load transmission mechanism section 1D according to the fourth embodiment. FIG. 24 is a diagram for explaining a sliding bearing 14a used in a training device load transmission mechanism 1D according to a fourth embodiment.
The load transmission mechanism section 1D is used while being connected to the first training device 100 and the second training device 201.
 負荷伝達機構部1Dの摺動軸受14aの構成が第2実施形態に係る負荷伝達機構部1Bの摺動軸受13aと異なる。このため、負荷伝達機構部1Dの摺動軸部14の動作が負荷伝達機構部1Bの摺動軸部13と異なる。以下、負荷伝達機構部1Dの説明では、第2実施形態に係る負荷伝達機構部1Bと共通する構成については図22ないし24において負荷伝達機構部1Bの説明に用いた符号を付してその説明を省略し、第2実施形態に係る負荷伝達機構部1Bと異なる構成及び動作についてのみ詳細に説明する。
 なお、負荷伝達機構部1Dの摺動軸部14は、負荷伝達機構部1Bの摺動軸部13に相当し、形状は摺動軸部13と同様であり、その動作が摺動軸部13と異なる。
The structure of the sliding bearing 14a of the load transmission mechanism section 1D is different from the sliding bearing 13a of the load transmission mechanism section 1B according to the second embodiment. Therefore, the operation of the sliding shaft section 14 of the load transmission mechanism section 1D is different from that of the sliding shaft section 13 of the load transmission mechanism section 1B. Hereinafter, in the description of the load transfer mechanism section 1D, the same components as the load transfer mechanism section 1B according to the second embodiment will be described with reference numerals used in the explanation of the load transfer mechanism section 1B in FIGS. 22 to 24. will be omitted, and only the configuration and operation that are different from the load transmission mechanism section 1B according to the second embodiment will be described in detail.
The sliding shaft section 14 of the load transmission mechanism section 1D corresponds to the sliding shaft section 13 of the load transmission mechanism section 1B, has the same shape as the sliding shaft section 13, and its operation is similar to that of the sliding shaft section 13. different from.
 摺動軸部14を軸支する摺動軸受14aは、クランク軸部6の軸方向に対して摺動軸部14を斜めに挿通させる軸受穴14dを有する(図24参照)。図12に示す様に第2実施形態に係るトレーニング器具用負荷伝達機構部1Bの摺動軸受13aは上面から下面に向かって垂直に形成された軸受穴13dを備える。これに対して、負荷伝達機構部1Dの摺動軸受14aは、上面から下面に向かって斜めに傾斜する軸受穴14dを備える。 The sliding bearing 14a that pivotally supports the sliding shaft 14 has a bearing hole 14d through which the sliding shaft 14 is inserted diagonally with respect to the axial direction of the crankshaft 6 (see FIG. 24). As shown in FIG. 12, the sliding bearing 13a of the training device load transmission mechanism 1B according to the second embodiment includes a bearing hole 13d formed vertically from the upper surface to the lower surface. On the other hand, the sliding bearing 14a of the load transmission mechanism section 1D includes a bearing hole 14d that is obliquely inclined from the upper surface to the lower surface.
 摺動軸受14aに挿通される摺動軸部14は、クランク軸部6の軸方向に対して傾斜を持って筐体部22に引き込まれ、または突き出される。
 第2実施形態に係る負荷伝達機構部1Bの摺動軸部13とクランク軸部6とのなす角は直角であるが、負荷伝達機構部1Dの摺動軸部14の中心軸とクランク軸部6の中心軸とのなす角は直角よりも大きい鈍角となるため、摺動軸部13とクランク軸部6とを連結する連結関節部12のクランク軸部6の回動又は水平移動に伴う変形量は負荷伝達機構部1Dの連結関節部12の方が小さい。従って、摺動軸受13aに代えて摺動軸受14aを採用することで、負荷伝達機構部1Dの連結関節部12の変形に伴う摩擦などの抵抗は、より小さくなるので、負荷伝達機構部1Dの動作は、よりスムーズに行うことができ、さらに連結関節部12の変形量を小さくすることができるので連結関節部12の摩耗などを抑制することができる。
The sliding shaft portion 14 inserted into the sliding bearing 14a is drawn into or protruded from the housing portion 22 at an angle with respect to the axial direction of the crankshaft portion 6.
Although the angle between the sliding shaft section 13 of the load transmission mechanism section 1B and the crankshaft section 6 according to the second embodiment is a right angle, the central axis of the sliding shaft section 14 of the load transmission mechanism section 1D and the crankshaft section Since the angle formed with the central axis of 6 is an obtuse angle larger than a right angle, the connecting joint section 12 connecting the sliding shaft section 13 and the crankshaft section 6 is deformed due to rotation or horizontal movement of the crankshaft section 6. The amount is smaller in the connecting joint part 12 of the load transmission mechanism part 1D. Therefore, by employing the sliding bearing 14a instead of the sliding bearing 13a, the resistance such as friction accompanying the deformation of the connecting joint 12 of the load transmission mechanism section 1D becomes smaller. The movement can be performed more smoothly, and the amount of deformation of the connecting joint 12 can be reduced, so that wear of the connecting joint 12 can be suppressed.
 なお、第4実施形態に係る負荷伝達機構部1Dの摺動軸受14aは、第1実施形態に係る負荷伝達機構部1Aに適用してもよい。負荷伝達機構部1Aに摺動軸受14aを適用する場合、摺動軸受13aに代えて摺動軸受14aを負荷伝達機構部1Aに装着する。負荷伝達機構部1Aの摺動軸部13は、負荷伝達機構部1Dの摺動軸部14に相当し、形状は摺動軸部14と同じである。負荷伝達機構部1Aの摺動軸部13が摺動軸受14aに軸支された場合は、摺動軸部13は摺動軸部14と同様の動作をする。
 従って、摺動軸受13aに代えて摺動軸受14aを装着することにより、負荷伝達機構部1Aの連結関節部12の変形に伴う摩擦などの抵抗は小さくなるので、負荷伝達機構部1Aの動作はよりスムーズに行うことができ、さらに連結関節部12の変形量を小さくすることができるので連結関節部12の摩耗などを抑制することができる。
Note that the sliding bearing 14a of the load transmission mechanism section 1D according to the fourth embodiment may be applied to the load transmission mechanism section 1A according to the first embodiment. When the sliding bearing 14a is applied to the load transmission mechanism section 1A, the sliding bearing 14a is attached to the load transmission mechanism section 1A instead of the sliding bearing 13a. The sliding shaft section 13 of the load transmission mechanism section 1A corresponds to the sliding shaft section 14 of the load transmission mechanism section 1D, and has the same shape as the sliding shaft section 14. When the sliding shaft portion 13 of the load transmission mechanism portion 1A is pivotally supported by the sliding bearing 14a, the sliding shaft portion 13 operates in the same manner as the sliding shaft portion 14.
Therefore, by installing the sliding bearing 14a in place of the sliding bearing 13a, the resistance such as friction caused by the deformation of the connecting joint 12 of the load transmission mechanism section 1A is reduced, so that the operation of the load transmission mechanism section 1A is This can be done more smoothly, and the amount of deformation of the connecting joint 12 can be reduced, so wear of the connecting joint 12 can be suppressed.
 さらに、第4実施形態に係る負荷伝達機構部1Dの摺動軸受14aは、第3実施形態に係る負荷伝達機構部1Cに適用してもよい。負荷伝達機構部1Cに摺動軸受14aを適用する場合、摺動軸受13aに代えて摺動軸受14aを負荷伝達機構部1Cに装着する。負荷伝達機構部1Cの摺動軸部13は、負荷伝達機構部1Dの摺動軸部14に相当し、形状は摺動軸部14と同じである。負荷伝達機構部1Cの摺動軸部13が摺動軸受14aに軸支された場合は、摺動軸部13は摺動軸部14と同様の動作をする。
 従って、摺動軸受13aに代えて摺動軸受14aを装着することにより、負荷伝達機構部1Cの連結関節部12の変形に伴う摩擦などの抵抗は小さくなるので、負荷伝達機構部1Cの動作はよりスムーズに行うことができ、さらに連結関節部12の変形量を小さくすることができるので連結関節部12の摩耗などを抑制することができる。
Furthermore, the sliding bearing 14a of the load transmission mechanism section 1D according to the fourth embodiment may be applied to the load transmission mechanism section 1C according to the third embodiment. When the sliding bearing 14a is applied to the load transmission mechanism section 1C, the sliding bearing 14a is attached to the load transmission mechanism section 1C instead of the sliding bearing 13a. The sliding shaft section 13 of the load transmission mechanism section 1C corresponds to the sliding shaft section 14 of the load transmission mechanism section 1D, and has the same shape as the sliding shaft section 14. When the sliding shaft portion 13 of the load transmission mechanism portion 1C is pivotally supported by the sliding bearing 14a, the sliding shaft portion 13 operates in the same manner as the sliding shaft portion 14.
Therefore, by installing the sliding bearing 14a in place of the sliding bearing 13a, the resistance such as friction caused by the deformation of the connecting joint 12 of the load transmission mechanism section 1C is reduced, so that the operation of the load transmission mechanism section 1C is This can be done more smoothly, and the amount of deformation of the connecting joint 12 can be reduced, so wear of the connecting joint 12 can be suppressed.
<第5実施形態に係るトレーニング器具用負荷伝達機構部1E>
 図25ないし28を参照して、第5実施形態のトレーニング器具用負荷伝達機構部1E(以下負荷伝達機構部1Eとする。)の構成及び動作について説明する。図25は第5実施形態に係るトレーニング器具用負荷伝達機構部1Eの構成を説明するための図であり、図26は第5実施形態に係るトレーニング器具用負荷伝達機構部1Eの動作について説明するための図であり、図27は第5実施形態に係るトレーニング器具用負荷伝達機構部1Eの摺動軸部15の動作について説明するための図であり、図28は第5実施形態に係るトレーニング器具用負荷伝達機構部1Eの摺動軸受15aを説明するための図である。図28(a)は摺動軸受15aの斜視図である。図28(b)は図28(a)に示す切断面15eにより摺動軸受15aを切断した面を矢印A方向から見た断面図である。
 負荷伝達機構部1Eは、第1トレーニング器具100及び第2トレーニング器具201に接続されて使用される。
<Load transmission mechanism section 1E for training equipment according to the fifth embodiment>
With reference to FIGS. 25 to 28, the configuration and operation of a training device load transmission mechanism section 1E (hereinafter referred to as load transmission mechanism section 1E) of the fifth embodiment will be described. FIG. 25 is a diagram for explaining the configuration of the training equipment load transmission mechanism section 1E according to the fifth embodiment, and FIG. 26 is a diagram for explaining the operation of the training equipment load transmission mechanism section 1E according to the fifth embodiment. FIG. 27 is a diagram for explaining the operation of the sliding shaft section 15 of the training device load transmission mechanism section 1E according to the fifth embodiment, and FIG. It is a figure for demonstrating the sliding bearing 15a of the load transmission mechanism part 1E for instruments. FIG. 28(a) is a perspective view of the sliding bearing 15a. FIG. 28(b) is a cross-sectional view of a surface of the sliding bearing 15a cut along the cutting surface 15e shown in FIG. 28(a), viewed from the direction of arrow A.
The load transmission mechanism section 1E is used while being connected to the first training device 100 and the second training device 201.
 負荷伝達機構部1Eの摺動軸受15aの構成が第2実施形態に係る負荷伝達機構部1Bの摺動軸受13aと異なる。このため、負荷伝達機構部1Eの摺動軸部15の動作が負荷伝達機構部1Bの摺動軸部13と異なる。以下、負荷伝達機構部1Eの説明では、第2実施形態に係る負荷伝達機構部1Bと共通する構成については図25ないし28において負荷伝達機構部1Bの説明に用いた符号を付してその説明を省略し、第2実施形態に係る負荷伝達機構部1Bと異なる構成及び動作についてのみ詳細に説明する。
 なお、負荷伝達機構部1Eの摺動軸部15は、負荷伝達機構部1Bの摺動軸部13に相当し、形状は摺動軸部13と同じであり、その動作が摺動軸部13と異なる。
The structure of the sliding bearing 15a of the load transmission mechanism section 1E is different from the sliding bearing 13a of the load transmission mechanism section 1B according to the second embodiment. Therefore, the operation of the sliding shaft section 15 of the load transmission mechanism section 1E is different from that of the sliding shaft section 13 of the load transmission mechanism section 1B. Hereinafter, in the description of the load transfer mechanism section 1E, the same components as the load transfer mechanism section 1B according to the second embodiment will be described with reference numerals used in the explanation of the load transfer mechanism section 1B in FIGS. 25 to 28. will be omitted, and only the configuration and operation that are different from the load transmission mechanism section 1B according to the second embodiment will be described in detail.
The sliding shaft section 15 of the load transmission mechanism section 1E corresponds to the sliding shaft section 13 of the load transmission mechanism section 1B, has the same shape as the sliding shaft section 13, and operates in the same manner as the sliding shaft section 13. different from.
 トレーニング器具用負荷伝達機構部1E(以下、負荷伝達機構部1Eという)は、摺動軸部15を軸支する摺動軸受15aは、クランク軸部6の軸方向に対して直交して挿通する第1軸受穴15jと、第1軸受穴15jに交差し、かつ、クランク軸部6の軸方向に対して斜めに挿通する第2軸受穴15kを有し、摺動軸部15は、クランク軸部6の軸方向の移動に伴い第1軸受穴15jと第2軸受穴15kとの間を移動する。 In the training device load transmission mechanism section 1E (hereinafter referred to as load transmission mechanism section 1E), a sliding bearing 15a that pivotally supports the sliding shaft section 15 is inserted orthogonally to the axial direction of the crankshaft section 6. The sliding shaft portion 15 has a first bearing hole 15j and a second bearing hole 15k that intersects the first bearing hole 15j and is inserted obliquely to the axial direction of the crankshaft portion 6. As the portion 6 moves in the axial direction, it moves between the first bearing hole 15j and the second bearing hole 15k.
 摺動軸受15aの軸受穴15dは第1軸受穴15jと第2軸受穴15kを備える。図28(b)に示す様に、第1軸受穴15jは上部筒側面部15fと下部円筒側面部15gとによって形成され、第2軸受穴15kは上部斜円錐側面部15hと下部斜円錐側面部15iとによって形成される。 The bearing hole 15d of the sliding bearing 15a includes a first bearing hole 15j and a second bearing hole 15k. As shown in FIG. 28(b), the first bearing hole 15j is formed by an upper cylindrical side surface 15f and a lower cylindrical side surface 15g, and the second bearing hole 15k is formed by an upper oblique conical side surface 15h and a lower oblique conical side surface. 15i.
 図25ないし27に示す様に、第1軸受穴15jと第2軸受穴15kとは交差するため、摺動軸部15は、第1軸受穴15jに支持された状態と第2軸受穴15kに支持された状態との間を遷移することができる。図25及び図27(a)は摺動軸部15が第1軸受穴15jに支持された状態を示し、図26及び図27(b)は摺動軸部15が第2軸受穴15kに支持された状態を示す。 As shown in FIGS. 25 to 27, since the first bearing hole 15j and the second bearing hole 15k intersect, the sliding shaft portion 15 can be supported in the first bearing hole 15j and in the second bearing hole 15k. It is possible to transition between supported states. 25 and 27(a) show a state in which the sliding shaft portion 15 is supported in the first bearing hole 15j, and FIG. 26 and FIG. 27(b) show a state in which the sliding shaft portion 15 is supported in the second bearing hole 15k. Indicates the state in which the
 摺動軸部15は、鉛直状態では第1軸受穴15jに支持され、最大限傾斜した状態では第2軸受穴15kに支持される。摺動軸部15は、鉛直状態と最大限傾斜した状態との間の状態では、くびれ部15mに支持される。くびれ部15mは、図28(b)に示す様に、上部筒側面部15fと下部斜円錐側面部15iとの境界、及び、上部斜円錐側面部15hと下部円筒側面部15gとの境界に形成される。 The sliding shaft portion 15 is supported by the first bearing hole 15j in the vertical state, and supported by the second bearing hole 15k in the maximum tilted state. The sliding shaft portion 15 is supported by the constriction portion 15m in a state between the vertical state and the maximum tilted state. As shown in FIG. 28(b), the constricted portion 15m is formed at the boundary between the upper cylindrical side surface 15f and the lower oblique conical side surface 15i, and at the boundary between the upper oblique conical side surface 15h and the lower cylindrical side surface 15g. be done.
 負荷伝達機構部1Eの握持部11にユーザの力の入力が無い状態、即ち、負荷伝達機構部1Eの初期状態において、摺動軸部15は筐体部22の外部に突出する部分が最も長い。この初期状態のとき、握持部11は鉛直状態となり第1軸受穴15jに支持される。負荷伝達機構部1Eの初期状態において、主動軸部4は図25の紙面上最も右側に位置する。 In a state in which no user force is input to the grip portion 11 of the load transmission mechanism portion 1E, that is, in an initial state of the load transmission mechanism portion 1E, the portion of the sliding shaft portion 15 that protrudes to the outside of the casing portion 22 is the most long. In this initial state, the grip portion 11 is in a vertical state and supported by the first bearing hole 15j. In the initial state of the load transmission mechanism section 1E, the main drive shaft section 4 is located on the rightmost side on the paper surface of FIG.
 そして、ユーザにより握持部11への水平移動若しくは回動の入力が行われることによって、摺動軸部15は筐体部22内部に徐々に引き込まれるとともに傾斜角が大きくなる。この状態において、主動軸部4は、第1軸受穴15jによる支持からくびれ部15mに支持される状態に遷移する。 Then, when the user inputs horizontal movement or rotation to the grip portion 11, the sliding shaft portion 15 is gradually drawn into the housing portion 22 and the inclination angle increases. In this state, the main drive shaft portion 4 transitions from being supported by the first bearing hole 15j to being supported by the constricted portion 15m.
 さらに、ユーザにより握持部11への水平移動及び回動の入力が行われることによって、最大限傾斜した状態となり、くびれ部15mによる摺動軸部15の支持から第2軸受穴15kによる支持に遷移する。 Furthermore, when the user inputs horizontal movement and rotation to the gripping part 11, the state is tilted to the maximum extent, and the sliding shaft part 15 is changed from being supported by the constricted part 15m to being supported by the second bearing hole 15k. Transition.
 摺動軸受15aの側平面15lは平な面である。側平面15lは摺動軸受15aの位置合わせに用いられる。摺動軸受15aの位置決めの基準となる平面に側平面15lを当接させることで、摺動軸受15aの位置及び角度を規定する。 The side plane 15l of the sliding bearing 15a is a flat surface. The side plane 15l is used for positioning the sliding bearing 15a. By bringing the side plane 15l into contact with a plane that serves as a reference for positioning the sliding bearing 15a, the position and angle of the sliding bearing 15a are defined.
 負荷伝達機構部1Eは、摺動軸受15aを用いることによって、摺動軸部15が傾斜するので連結関節部12の屈曲する大きさを抑制することができる。これにより、従って、摺動軸受13aに代えて摺動軸受15aを採用することで、負荷伝達機構部1Eの連結関節部12の変形に伴う摩擦などの抵抗は、より小さくなるので、負荷伝達機構部1Eの動作は、よりスムーズに行うことができ、さらに連結関節部12の変形量を小さくすることができるので連結関節部12の摩耗などを抑制することができる。 In the load transmission mechanism section 1E, by using the sliding bearing 15a, the sliding shaft section 15 is inclined, so that the degree of bending of the connecting joint section 12 can be suppressed. Therefore, by employing the sliding bearing 15a instead of the sliding bearing 13a, resistance such as friction accompanying deformation of the connecting joint section 12 of the load transmission mechanism section 1E becomes smaller, so that the load transmission mechanism The operation of the portion 1E can be performed more smoothly, and the amount of deformation of the connecting joint portion 12 can be reduced, so that wear and the like of the connecting joint portion 12 can be suppressed.
 なお、第5実施形態に係る負荷伝達機構部1Eの摺動軸受15aは、第1実施形態に係る負荷伝達機構部1Aに適用してもよい。負荷伝達機構部1Aに摺動軸受15aを適用する場合、摺動軸受13aに代えて摺動軸受15aを負荷伝達機構部1Aに装着する。負荷伝達機構部1Aの摺動軸部13は、負荷伝達機構部1Eの摺動軸部15に相当し、形状は摺動軸部15と同じである。負荷伝達機構部1Aの摺動軸部13が摺動軸受15aに軸支された場合は、摺動軸部13は摺動軸部15と同様の動作をする。
 従って、摺動軸受13aに代えて摺動軸受15aを装着することにより、負荷伝達機構部1Aの連結関節部12の変形に伴う摩擦などの抵抗は小さくなるので、負荷伝達機構部1Aの動作はよりスムーズに行うことができ、さらに連結関節部12の変形量を小さくすることができるので連結関節部12の摩耗などを抑制することができる。
Note that the sliding bearing 15a of the load transmission mechanism section 1E according to the fifth embodiment may be applied to the load transmission mechanism section 1A according to the first embodiment. When applying the sliding bearing 15a to the load transmission mechanism section 1A, the sliding bearing 15a is attached to the load transmission mechanism section 1A instead of the sliding bearing 13a. The sliding shaft section 13 of the load transmission mechanism section 1A corresponds to the sliding shaft section 15 of the load transmission mechanism section 1E, and has the same shape as the sliding shaft section 15. When the sliding shaft portion 13 of the load transmission mechanism portion 1A is pivotally supported by the sliding bearing 15a, the sliding shaft portion 13 operates in the same manner as the sliding shaft portion 15.
Therefore, by installing the sliding bearing 15a in place of the sliding bearing 13a, the resistance such as friction caused by the deformation of the connecting joint 12 of the load transmission mechanism section 1A is reduced, so that the operation of the load transmission mechanism section 1A is This can be done more smoothly, and the amount of deformation of the connecting joint 12 can be reduced, so wear of the connecting joint 12 can be suppressed.
 さらに、第5実施形態に係る負荷伝達機構部1Eの摺動軸受15aは、第3実施形態に係る負荷伝達機構部1Cに適用してもよい。負荷伝達機構部1Cに摺動軸受15aを適用する場合、摺動軸受13aに代えて摺動軸受15aを負荷伝達機構部1Cに装着する。負荷伝達機構部1Cの摺動軸部13は、負荷伝達機構部1Eの摺動軸部15に相当し、形状は摺動軸部15と同じである。負荷伝達機構部1Cの摺動軸部13が摺動軸受15aに軸支された場合は、摺動軸部13は摺動軸部15と同様の動作をする。
 従って、摺動軸受13aに代えて摺動軸受15aを装着することにより、負荷伝達機構部1Cの連結関節部12の変形に伴う摩擦などの抵抗は小さくなるので、負荷伝達機構部1Cの動作はよりスムーズに行うことができ、さらに連結関節部12の変形量を小さくすることができるので連結関節部12の摩耗などを抑制することができる。
Furthermore, the sliding bearing 15a of the load transmission mechanism section 1E according to the fifth embodiment may be applied to the load transmission mechanism section 1C according to the third embodiment. When applying the sliding bearing 15a to the load transmission mechanism section 1C, the sliding bearing 15a is attached to the load transmission mechanism section 1C instead of the sliding bearing 13a. The sliding shaft section 13 of the load transmission mechanism section 1C corresponds to the sliding shaft section 15 of the load transmission mechanism section 1E, and has the same shape as the sliding shaft section 15. When the sliding shaft portion 13 of the load transmission mechanism portion 1C is pivotally supported by the sliding bearing 15a, the sliding shaft portion 13 operates in the same manner as the sliding shaft portion 15.
Therefore, by installing the sliding bearing 15a in place of the sliding bearing 13a, the resistance such as friction caused by the deformation of the connecting joint 12 of the load transmission mechanism section 1C is reduced, so that the operation of the load transmission mechanism section 1C is This can be done more smoothly, and the amount of deformation of the connecting joint 12 can be reduced, so wear of the connecting joint 12 can be suppressed.
<負荷伝達機構部1Eの摺動軸受15aの変形例についての説明>
 図29を参照して、負荷伝達機構部1Eの摺動軸受15aの変形例について説明する。第5実施形態に係るトレーニング器具用負荷伝達機構部1Eの摺動軸受15aの第1変形例及び第2変形例について説明するための図である。図29(a)は第1変形例である摺動軸受16aの斜視図であり、図29(b)は第2変形例である摺動軸受17aの斜視図である。
<Description of modification of sliding bearing 15a of load transmission mechanism section 1E>
With reference to FIG. 29, a modification of the sliding bearing 15a of the load transmission mechanism section 1E will be described. It is a figure for demonstrating the 1st modification and the 2nd modification of the sliding bearing 15a of the load transmission mechanism part 1E for training instruments based on 5th Embodiment. FIG. 29(a) is a perspective view of a sliding bearing 16a as a first modification, and FIG. 29(b) is a perspective view of a sliding bearing 17a as a second modification.
 図29(a)に示す様に、第1変形例に係る摺動軸部15を軸支する摺動軸受16aは、逆円すい台の形状をした軸受穴16dを有する。
 第1変形例の摺動軸受16aは、上記した摺動軸受15aと比較して、軸受穴15dの形状が異なる。即ち、摺動軸受16aの軸受穴16dの形状が逆円すい台の形状をしている点で、上記した摺動軸受15aと異なる。
As shown in FIG. 29(a), a sliding bearing 16a that pivotally supports the sliding shaft portion 15 according to the first modification has a bearing hole 16d in the shape of an inverted truncated cone.
The sliding bearing 16a of the first modification has a different shape of the bearing hole 15d compared to the sliding bearing 15a described above. That is, the sliding bearing 16a is different from the above-described sliding bearing 15a in that the bearing hole 16d of the sliding bearing 16a has an inverted truncated conical shape.
 軸受穴16dは、斜円錐側面部16eを備え、下端部に最小径軸受穴部16fを備える。
 摺動軸部15が鉛直状態及び傾斜状態のとき、摺動軸部15は最小径軸受穴部16fによって支持される。そして、摺動軸部15が最大限傾斜した状態において、摺動軸部15は斜円錐側面部16eに当接し、斜円錐側面部16e及び最小径軸受穴部16fによりしじされる。
The bearing hole 16d includes an oblique conical side surface 16e and a minimum diameter bearing hole 16f at the lower end.
When the sliding shaft portion 15 is in the vertical state and the inclined state, the sliding shaft portion 15 is supported by the minimum diameter bearing hole portion 16f. In the state where the sliding shaft portion 15 is tilted to the maximum extent, the sliding shaft portion 15 abuts the oblique conical side surface portion 16e and is squeezed by the oblique conical side surface portion 16e and the minimum diameter bearing hole portion 16f.
 図29(b)に示す様に、第2変形例に係る摺動軸部15を軸支する摺動軸受17aは、軸方向の中央部にくびれ部17gを有する。
 第2変形例の摺動軸受17aは、上記した摺動軸受15aと比較して、軸受穴15dの形状が異なる。即ち、摺動軸受17aの軸受穴17dの形状が、上部斜円錐側面部17eと下部斜円錐側面部17fとを備え、鼓に似た形状をしている点で、上記した摺動軸受15aと異なる。
As shown in FIG. 29(b), the sliding bearing 17a that pivotally supports the sliding shaft portion 15 according to the second modification has a constricted portion 17g at the center in the axial direction.
The sliding bearing 17a of the second modification has a different shape of the bearing hole 15d compared to the sliding bearing 15a described above. That is, the bearing hole 17d of the sliding bearing 17a has an upper oblique conical side surface portion 17e and a lower oblique conical side surface portion 17f, resembling a hand drum, which is different from the aforementioned sliding bearing 15a. different.
 くびれ部17gは、上部斜円錐側面部17eと下部斜円錐側面部17fとの境界に形成される。摺動軸部15が鉛直状態及び傾斜状態のとき、摺動軸部15はくびれ部17gによって支持される。そして、摺動軸部15が最大限傾斜した状態において、摺動軸部15は上部斜円錐側面部17e又は下部斜円錐側面部17fに当接し、くびれ部17gと、上部斜円錐側面部17e若しくは下部斜円錐側面部17fによって支持される。 The constricted portion 17g is formed at the boundary between the upper oblique conical side surface portion 17e and the lower oblique conical side surface portion 17f. When the sliding shaft portion 15 is in the vertical state and the inclined state, the sliding shaft portion 15 is supported by the constricted portion 17g. In the state where the sliding shaft portion 15 is tilted to the maximum extent, the sliding shaft portion 15 abuts the upper oblique conical side surface portion 17e or the lower oblique conical side surface portion 17f, and the constriction portion 17g and the upper oblique conical side portion 17e or the lower oblique conical side portion 17f. It is supported by the lower oblique conical side surface portion 17f.
 本開示は上記した実施形態に係るトレーニング器具用負荷伝達機構部1A、1B、1C、及びこれを用いた第1トレーニング器具100、及び第2トレーニング器具201に限定されるものではなく、特許請求の範囲に記載した本開示の要旨を逸脱しない限りにおいて、その他種々の変形例、若しくは応用例により実施可能である。 The present disclosure is not limited to the load transmission mechanism parts 1A, 1B, and 1C for training equipment according to the embodiments described above, and the first training equipment 100 and second training equipment 201 using the same, but is Various other modifications or applications can be implemented without departing from the gist of the present disclosure described in the scope.
(付記請求項)
 本件のトレーニング器具用負荷伝達機構部の構成については、下記の特徴のとおりまとめることができる。すなわち、
 ユーザが握持する握持部又はユーザの足置き部動作部が端部に接続され、前記握持部又は前記足置き部と共に回動する主動軸部と、
 前記主動軸部の回動に連動して回動する中間軸部と、
 前記主動軸部と前記中間軸部との間に懸架され、前記主動軸部と前記中間軸部との互いの回動を伝達する第1回動伝達部と、
 前記中間軸部と直交して設けられ、前記中間軸部の中心軸と直交する中心軸でもって回動するクランク軸部と、
 前記中間軸部と前記クランク軸部との間に設けられ、前記中間軸部と前記クランク軸部との互いの回動を伝達する第2回動伝達部と、
 前記主動軸部、前記中間軸部、及び前記クランク軸部が固定される固定部材と、
 連結された複数の自在継手を備える連結関節部と、
 一端部は外力による張力を受け、他端部は前記連結関節部に接続され、前記クランク軸部の回動及び軸方向の変位が前記連結関節部を介することで前記クランク軸部の軸方向に直交する方向の変位となる摺動軸部と、
 を備え、
 前記ユーザが前記握持部又は前記足置き部を通じて前記主動軸部を回転若しくは水平移動させる際に、前記摺動軸部に加えられる前記外力が前記主動軸部を通じて前記握持部又は前記足置き部へ伝達される
 ことを特徴とするトレーニング器具用負荷伝達機構部。
(Additional claim)
The configuration of the load transmission mechanism for training equipment in this case can be summarized as the following characteristics. That is,
a main drive shaft portion to which a grip portion gripped by a user or a user footrest operating portion is connected to an end portion thereof and rotates together with the grip portion or the footrest portion;
an intermediate shaft portion that rotates in conjunction with the rotation of the main driving shaft portion;
a first rotation transmitting part suspended between the main drive shaft part and the intermediate shaft part, and transmitting mutual rotation of the main drive shaft part and the intermediate shaft part;
a crankshaft portion that is provided orthogonally to the intermediate shaft portion and rotates with a central axis that is perpendicular to the central axis of the intermediate shaft portion;
a second rotation transmission section that is provided between the intermediate shaft section and the crankshaft section and transmits mutual rotation of the intermediate shaft section and the crankshaft section;
a fixing member to which the main drive shaft, the intermediate shaft, and the crankshaft are fixed;
a connecting joint portion including a plurality of connected universal joints;
One end receives tension due to an external force, and the other end is connected to the connecting joint, so that rotation and axial displacement of the crankshaft can be caused in the axial direction of the crankshaft through the connecting joint. a sliding shaft portion that undergoes displacement in orthogonal directions;
Equipped with
When the user rotates or horizontally moves the main driving shaft through the gripping part or the footrest, the external force applied to the sliding shaft is applied to the gripping part or the footrest through the driving shaft. A load transmission mechanism section for a training device, characterized in that the load is transmitted to the section.
1A 第1実施形態に係るトレーニング器具用負荷伝達機構部
1B 第2実施形態に係るトレーニング器具用負荷伝達機構部
1Ba 第2実施形態に係るトレーニング器具用負荷伝達機構部の第1変形例
1Bb 第2実施形態に係るトレーニング器具用負荷伝達機構部の第2変形例
1C 第3実施形態に係るトレーニング器具用負荷伝達機構部
1Ca 第3実施形態に係るトレーニング器具用負荷伝達機構部の変形例
1D 第4実施形態に係るトレーニング器具用負荷伝達機構部
1E 第5実施形態に係るトレーニング器具用負荷伝達機構部
1K 第1回動伝達部
1M 第2回動伝達部
2 外側筐体
3 内側筐体
4 主動軸部
4a 主動軸軸受
4b 主動軸軸受
4c 主動軸スプロケット
5 中間軸部
5a 中間軸軸受
5b 中間軸軸受
5c 中間軸スプロケット
5d 中間軸傘歯車
6 クランク軸部
6a クランク軸軸受
6b クランク軸軸受
6c クランク軸傘歯車
7 接続部
8 接続筒部
9 クランク軸部
10 伝達チェーン
11 握持部
11a 握り棒
11b 枠部
12 連結関節部
12a 第1関節片
12b 第1自在継手
12c 第2関節片
12d 第2自在継手
12e 第3関節片
12f ピン
12g 第1中心軸
12h 第2中心軸
12j 第3中心軸
12k 第4中心軸
13 摺動軸部
13a 摺動軸受
13b 第1端部
13c 第2端部
13d 軸受穴
14 摺動軸部(第4実施形態)
14a 摺動軸受
14b 第1端部
14c 第2端部
14d 軸受穴
15 摺動軸部(第5実施形態)
15a 摺動軸受
15b 第1端部
15c 第2端部
15d 軸受穴
15e 切断面
15f 上部筒側面部
15g 下部円筒側面部
15h 上部斜円錐側面部
15i 下部斜円錐側面部
15j 第1軸受穴
15k 第2軸受穴
15l 側平面
15m くびれ部
16a 摺動軸受(第1変形例)
16d 軸受穴
16e 斜円錐側面部
16f 最小径軸受穴部
17a 摺動軸受(第2変形例)
17d 軸受穴
17e 上部斜円錐側面部
17f 下部斜円錐側面部
17g くびれ部
20 直道案内部
20a 第1ガイド
20b 第2ガイド
20c スライダ
20d ガイド支持台
22 筐体部
23 連結固定部
23a 第1固定片
23b 第2固定片
23c 主動軸軸受
23d 中間軸軸受
23e クランク軸軸受
30 連結片部
40 自在継手
41 コンロッド
41a 第1貫通穴
41b 第2貫通穴
42 ボールジョイント
100 第1トレーニング器具
110 着座部
111 座席
112 座席支柱
120 枠組
121 大腿部押さえ部
130 負荷付与部
131 ウェイト
132 ウェイト案内支柱
133 箱部
140 案内支柱
170 方向転換案内車
180 引張部材
201 第2トレーニング器具
210 着座部
211 座席
212 座席支柱
215 背もたれ
220 枠組
221 枠組
222a スライドレール
222b スライドレール
225 上部筐体
230 負荷付与部
231 衝撃吸収材
232 ウェイト案内支柱
240 案内支柱
241 衝撃吸収材
250 昇降揺動部材
251 軸
2252 箱状覆体
253 枠体
254 案内部
257 摺動軸
260 握持部
262 手裏当て部
263 枠体
264 回動軸
270 摺動部
271 足置き部
272 軸受
273 第3回動軸
274a 側板
274b 側板
275 接続板
276 主動軸部
277 本体上部
278 本体下部
279 接続部
280 引張部材
280a 第1引張部材
280b 接続部
280c 第2引張部材
280d 接続部材
285a 滑車
285b 滑車
285c 動滑車
285d 滑車
285e 滑車
285f 滑車
285g 滑車
285h 滑車
290 負荷伝達部
291 回転伝達部
291a スプロケット
291b スプロケット
291c チェーン
291d 傘歯車
291e 傘歯車
292 クランク機構部
292a クランク軸
292b 連結片
1A Load transmission mechanism section for training equipment according to the first embodiment 1B Load transmission mechanism section for training equipment according to the second embodiment 1Ba First modification of the load transmission mechanism section for training equipment according to the second embodiment 1Bb Second Second modification example 1C of the load transmission mechanism section for training equipment according to the embodiment 1C Modification example 1C of the load transmission mechanism section for training equipment according to the third embodiment Modification example 1D of the load transmission mechanism section for training equipment according to the third embodiment Fourth Load transmission mechanism section 1E for training equipment according to the embodiment Load transmission mechanism section 1K for training equipment according to the fifth embodiment First rotation transmission section 1M Second rotation transmission section 2 Outer housing 3 Inner housing 4 Main drive shaft Part 4a Main drive shaft bearing 4b Main drive shaft bearing 4c Main drive shaft sprocket 5 Intermediate shaft part 5a Intermediate shaft bearing 5b Intermediate shaft bearing 5c Intermediate shaft sprocket 5d Intermediate shaft bevel gear 6 Crankshaft part 6a Crankshaft bearing 6b Crankshaft bearing 6c Crankshaft bevel Gear 7 Connection part 8 Connection cylinder part 9 Crankshaft part 10 Transmission chain 11 Grip part 11a Grip rod 11b Frame part 12 Connection joint part 12a First joint piece 12b First universal joint 12c Second joint piece 12d Second universal joint 12e Third joint piece 12f Pin 12g First central axis 12h Second central axis 12j Third central axis 12k Fourth central axis 13 Sliding shaft portion 13a Sliding bearing 13b First end 13c Second end 13d Bearing hole 14 Sliding Moving shaft part (4th embodiment)
14a Sliding bearing 14b First end 14c Second end 14d Bearing hole 15 Sliding shaft (fifth embodiment)
15a Sliding bearing 15b First end 15c Second end 15d Bearing hole 15e Cutting surface 15f Upper cylindrical side surface 15g Lower cylindrical side surface 15h Upper oblique conical side surface 15i Lower oblique conical side surface 15j First bearing hole 15k Second Bearing hole 15l Side plane 15m Constriction 16a Sliding bearing (first modification)
16d Bearing hole 16e Oblique conical side surface 16f Minimum diameter bearing hole 17a Sliding bearing (second modification)
17d Bearing hole 17e Upper oblique conical side surface portion 17f Lower oblique conical side surface portion 17g Narrow portion 20 Straight guide portion 20a First guide 20b Second guide 20c Slider 20d Guide support base 22 Housing portion 23 Connection fixing portion 23a First fixing piece 23b Second fixed piece 23c Main shaft bearing 23d Intermediate shaft bearing 23e Crankshaft bearing 30 Connection piece 40 Universal joint 41 Connecting rod 41a First through hole 41b Second through hole 42 Ball joint 100 First training device 110 Seating section 111 Seat 112 Seat Column 120 Framework 121 Thigh presser 130 Load applying section 131 Weight 132 Weight guide column 133 Box section 140 Guide column 170 Direction guide wheel 180 Tension member 201 Second training device 210 Seating section 211 Seat 212 Seat column 215 Backrest 220 Framework 221 Framework 222a Slide rail 222b Slide rail 225 Upper housing 230 Load applying section 231 Shock absorber 232 Weight guide column 240 Guide column 241 Shock absorber 250 Elevating swinging member 251 Axis 2252 Box-like cover 253 Frame 254 Guide section 257 Sliding shaft 260 Gripping section 262 Hand support section 263 Frame body 264 Rotating shaft 270 Sliding section 271 Foot rest section 272 Bearing 273 Third rotating shaft 274a Side plate 274b Side plate 275 Connection plate 276 Main drive shaft section 277 Main body upper part 278 Lower body part 279 Connection part 280 Tension member 280a First tension member 280b Connection part 280c Second tension member 280d Connection member 285a Pulley 285b Pulley 285c Moving pulley 285d Pulley 285e Pulley 285f Pulley 285g Pulley 285h Pulley 290 Load transmission part 291 Rotation transmission part 291a Sprocket 291b Sprocket 291c Chain 291d Bevel gear 291e Bevel gear 292 Crank mechanism section 292a Crankshaft 292b Connection piece

Claims (15)

  1.  ユーザが力を入力する入力部が端部に接続され、前記入力部と共に回動する主動軸部と、
     前記主動軸部の回動に連動して回動する中間軸部と、
     前記主動軸部と前記中間軸部との間に懸架され、前記主動軸部と前記中間軸部との互いの回動を伝達する第1回動伝達部と、
     前記中間軸部と、前記中間軸部と直交するクランク軸部との間に設けられ、前記中間軸部と前記クランク軸部との互いの回動を伝達する第2回動伝達部と、
     前記主動軸部、前記中間軸部、及び前記クランク軸部を収納する内側筐体と、
     前記内側筐体を収容し、前記内側筐体が前記クランク軸の軸方向に内部で移動する外側筐体と、
     前記クランク軸部の軸方向に対して直交する方向に変位が許容されて前記外側筐体に配置され、外力により直線方向に付勢される摺動軸部と、
     前記摺動軸部の軸方向に対して直交する中心軸を有する回動と、前記中心軸に直交する方向への回動とが、複数の連結片部の組み合わせにより許容され、前記摺動軸部に前記複数の連結片部の一が接続される連結関節部と、
    を備え、
     前記連結関節部は、前記摺動軸部に接続された前記一の連結片部と異なる連結片部において、前記クランク軸部の軸方向に直交する中心軸を有する回動が許容されて前記クランク軸部に接続され、前記クランク軸部の回動及び軸方向の移動を前記摺動軸部の上下方向の変位に変換し、
     前記ユーザが前記入力部を通じて前記主動軸部を水平移動させる際に、前記摺動軸部に加える前記外力が前記主動軸部を通じて前記入力部へ伝達される
     ことを特徴とするトレーニング器具用負荷伝達機構部。
    an input part through which a user inputs force is connected to an end part, and a main drive shaft part rotates together with the input part;
    an intermediate shaft portion that rotates in conjunction with the rotation of the main driving shaft portion;
    a first rotation transmitting part suspended between the main drive shaft part and the intermediate shaft part, and transmitting mutual rotation of the main drive shaft part and the intermediate shaft part;
    a second rotation transmission section that is provided between the intermediate shaft section and a crankshaft section orthogonal to the intermediate shaft section, and that transmits mutual rotation of the intermediate shaft section and the crankshaft section;
    an inner casing that houses the main drive shaft, the intermediate shaft, and the crankshaft;
    an outer casing that accommodates the inner casing and in which the inner casing moves in an axial direction of the crankshaft;
    a sliding shaft portion that is disposed in the outer casing and is allowed to be displaced in a direction perpendicular to the axial direction of the crankshaft portion, and is biased in a linear direction by an external force;
    Rotation having a central axis perpendicular to the axial direction of the sliding shaft portion and rotation in a direction perpendicular to the central axis are allowed by a combination of a plurality of connecting pieces, and the sliding shaft portion a connecting joint portion to which one of the plurality of connecting pieces is connected;
    Equipped with
    The connecting joint portion is configured such that a connecting piece portion connected to the sliding shaft portion that is different from the first connecting piece portion is allowed to rotate about a central axis perpendicular to the axial direction of the crankshaft portion. connected to a shaft portion, converts rotation and axial movement of the crankshaft portion into vertical displacement of the sliding shaft portion;
    Load transmission for a training device, characterized in that when the user horizontally moves the main drive shaft through the input part, the external force applied to the sliding shaft is transmitted to the input part through the main drive shaft. Mechanism department.
  2.  ユーザが力を入力する入力部が端部に接続され、前記入力部と共に回動する主動軸部と、
     前記主動軸部の回動に連動して回動する中間軸部と、
     前記主動軸部と前記中間軸部との間に懸架され、前記主動軸部と前記中間軸部との互いの回動を伝達する第1回動伝達部と、
     前記中間軸部と、前記中間軸部と直交するクランク軸部との間に設けられ、前記中間軸部と前記クランク軸部との互いの回動を伝達する第2回動伝達部と、
     前記主動軸部と前記中間軸部と前記クランク軸部とを連結し、前記主動軸部と前記中間軸部と前記クランク軸部との互いの水平移動を伝達する連結固定部と、
     前記クランク軸部の軸方向に対して直交する方向の変位が許容され、外力により直線方向に付勢される摺動軸部と、
     前記摺動軸部の軸方向に対して直交する中心軸を有する回動と、前記中心軸に直交する方向への回動とが、複数の連結片部の組み合わせにより許容され、前記摺動軸部に前記複数の連結片部の一が接続される連結関節部と、
    を備え、
     前記連結関節部は、前記摺動軸部に接続された前記一の連結片部と異なる連結片部において、前記クランク軸部の軸方向に直交する中心軸を有する回動が許容されて前記クランク軸部に接続され、前記クランク軸部の回動及び軸方向の移動を前記摺動軸部の上下方向の変位に変換し、
     前記ユーザが前記入力部を通じて前記主動軸部を水平移動させる際に、前記摺動軸部に加える前記外力が前記主動軸部を通じて前記入力部へ伝達される
     ことを特徴とするトレーニング器具用負荷伝達機構部。
    an input part through which a user inputs force is connected to an end part, and a main drive shaft part rotates together with the input part;
    an intermediate shaft portion that rotates in conjunction with the rotation of the main driving shaft portion;
    a first rotation transmitting part suspended between the main drive shaft part and the intermediate shaft part, and transmitting mutual rotation of the main drive shaft part and the intermediate shaft part;
    a second rotation transmission section that is provided between the intermediate shaft section and a crankshaft section orthogonal to the intermediate shaft section, and that transmits mutual rotation of the intermediate shaft section and the crankshaft section;
    a connecting fixing part that connects the main drive shaft, the intermediate shaft, and the crankshaft, and transmits mutual horizontal movement of the main drive shaft, the intermediate shaft, and the crankshaft;
    a sliding shaft portion that is allowed to be displaced in a direction perpendicular to the axial direction of the crankshaft portion and is biased in a linear direction by an external force;
    Rotation having a central axis perpendicular to the axial direction of the sliding shaft portion and rotation in a direction perpendicular to the central axis are allowed by a combination of a plurality of connecting pieces, and the sliding shaft portion a connecting joint portion to which one of the plurality of connecting pieces is connected;
    Equipped with
    The connecting joint portion is configured such that a connecting piece portion connected to the sliding shaft portion that is different from the first connecting piece portion is allowed to rotate about a central axis perpendicular to the axial direction of the crankshaft portion. connected to a shaft portion, converts rotation and axial movement of the crankshaft portion into vertical displacement of the sliding shaft portion;
    Load transmission for a training device, characterized in that when the user horizontally moves the main drive shaft through the input part, the external force applied to the sliding shaft is transmitted to the input part through the main drive shaft. Mechanism department.
  3.  前記入力部は、前記ユーザが握持する握持部又は前記ユーザの足置き部であることを特徴とする請求項1又は2に記載のトレーニング器具用負荷伝達機構部。 The load transmission mechanism section for a training device according to claim 1 or 2, wherein the input section is a grip section held by the user or a foot rest section of the user.
  4.  前記連結関節部は、連結された複数の自在継手を主要部材として構成されることを特徴とする請求項1又は2に記載のトレーニング器具用負荷伝達機構部。 The load transmission mechanism for a training device according to claim 1 or 2, wherein the connecting joint includes a plurality of connected universal joints as main members.
  5.  トレーニング器具と接続するための接続部が前記外側筐体に備えられ、
     前記主動軸部の前記水平移動に伴い、前記内側筐体が前記外側筐体の内部をスライドすることを特徴とする請求項1に記載のトレーニング器具用負荷伝達機構部。
    A connection part for connecting to training equipment is provided on the outer casing,
    The load transmission mechanism section for a training device according to claim 1, wherein the inner casing slides inside the outer casing as the main driving shaft section moves horizontally.
  6.  トレーニング器具と接続するための接続部が備えられることを特徴とする請求項2に記載のトレーニング器具用負荷伝達機構部。 The load transmission mechanism for a training device according to claim 2, further comprising a connecting portion for connecting to a training device.
  7.  前記第1回動伝達部は、伝達チェーンであり、
     前記主動軸部に主動軸スプロケットが備えられ、
     前記中間軸部に中間軸スプロケットが備えられ、
     前記伝達チェーンが前記主動軸スプロケットと前記中間軸スプロケットとの間に懸架されることを特徴とする請求項1又は2に記載のトレーニング器具用負荷伝達機構部。
    The first rotation transmission section is a transmission chain,
    The main drive shaft portion is provided with a main drive shaft sprocket,
    The intermediate shaft portion is provided with an intermediate shaft sprocket,
    The load transmission mechanism section for a training device according to claim 1 or 2, wherein the transmission chain is suspended between the main drive shaft sprocket and the intermediate shaft sprocket.
  8.  前記第2回動伝達部は、
     前記中間軸部に備えられる中間軸傘歯車と、
     前記クランク軸部に備えられ前記中間軸傘歯車と歯合するクランク軸傘歯車とを備えることを特徴とする請求項1又は2に記載のトレーニング器具用負荷伝達機構部。
    The second rotation transmission section is
    an intermediate shaft bevel gear provided in the intermediate shaft portion;
    The load transmission mechanism section for a training device according to claim 1 or 2, further comprising a crankshaft bevel gear that is provided on the crankshaft section and meshes with the intermediate shaft bevel gear.
  9.  前記握持部が環状物であることを特徴とする請求項3に記載のトレーニング器具用負荷伝達機構部。 The load transmission mechanism section for a training device according to claim 3, wherein the gripping section is an annular object.
  10.  前記外力はトレーニング器具の負荷の大きさを自在に調整する負荷付与部により生じることを特徴とする請求項1又は2に記載のトレーニング器具用負荷伝達機構部。 The load transmission mechanism section for a training device according to claim 1 or 2, wherein the external force is generated by a load applying section that freely adjusts the magnitude of the load on the training device.
  11.  前記摺動軸部を軸支する摺動軸受は、前記クランク軸部の軸方向に対して前記摺動軸部を斜めに挿通させる軸受穴を有することを特徴とする請求項1又は2に記載のトレーニング器具用負荷伝達機構部。 3. The sliding bearing that pivotally supports the sliding shaft portion has a bearing hole through which the sliding shaft portion is inserted diagonally with respect to the axial direction of the crankshaft portion. load transmission mechanism for training equipment.
  12.  前記摺動軸部を軸支する摺動軸受は、前記クランク軸部の軸方向に対して直交して挿通する第1軸受穴と、前記第1軸受穴に交差し、かつ、前記クランク軸部の軸方向に対して斜めに挿通する第2軸受穴を有し、
     前記摺動軸部は、前記クランク軸部の軸方向の移動に伴い前記第1軸受穴と第2軸受穴との間を移動することを特徴とする請求項1又は2に記載のトレーニング器具用負荷伝達機構部。
    A sliding bearing that pivotally supports the sliding shaft includes a first bearing hole that is inserted perpendicularly to the axial direction of the crankshaft, and a sliding bearing that intersects with the first bearing hole and that extends through the crankshaft. has a second bearing hole inserted obliquely with respect to the axial direction of the
    The training device according to claim 1 or 2, wherein the sliding shaft portion moves between the first bearing hole and the second bearing hole as the crankshaft portion moves in the axial direction. Load transmission mechanism section.
  13.  前記摺動軸部を軸支する摺動軸受は、逆円すい台の形状をした軸受穴を有することを特徴とする請求項1又は2に記載のトレーニング器具用負荷伝達機構部。 The load transmission mechanism section for a training device according to claim 1 or 2, wherein the sliding bearing that pivotally supports the sliding shaft section has a bearing hole in the shape of an inverted truncated cone.
  14.  前記摺動軸部を軸支する摺動軸受は、軸方向の中央部にくびれ部を有することを特徴とする請求項1又は2に記載のトレーニング器具用負荷伝達機構部。 The load transmission mechanism section for a training device according to claim 1 or 2, wherein the sliding bearing that pivotally supports the sliding shaft section has a constriction section at the center in the axial direction.
  15.  請求項1又は2に記載のトレーニング器具用負荷伝達機構部を備えたことを特徴とするトレーニング器具。 A training device comprising the load transmission mechanism for a training device according to claim 1 or 2.
PCT/JP2023/022592 2022-07-04 2023-06-19 Load transmission mechanism unit for training machine and training machine employing same WO2024009742A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-108017 2022-07-04
JP2022108017 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024009742A1 true WO2024009742A1 (en) 2024-01-11

Family

ID=89453281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022592 WO2024009742A1 (en) 2022-07-04 2023-06-19 Load transmission mechanism unit for training machine and training machine employing same

Country Status (1)

Country Link
WO (1) WO2024009742A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592498B1 (en) * 1997-03-21 2003-07-15 Patrick John Trainor Exercise devices
WO2006070486A1 (en) * 2004-12-28 2006-07-06 World Wing Enterprise Corporation Training apparatus
KR102115695B1 (en) * 2019-01-30 2020-05-28 변현정 weight machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592498B1 (en) * 1997-03-21 2003-07-15 Patrick John Trainor Exercise devices
WO2006070486A1 (en) * 2004-12-28 2006-07-06 World Wing Enterprise Corporation Training apparatus
JP2006218194A (en) * 2004-12-28 2006-08-24 World Wing Enterprise Corp Training apparatus
KR102115695B1 (en) * 2019-01-30 2020-05-28 변현정 weight machine

Similar Documents

Publication Publication Date Title
US11167163B2 (en) Leg rehabilitation exercise apparatus
US7686746B2 (en) Training apparatus
US7585263B2 (en) Abdominal exercise machine
TWI537027B (en) Improved exercise apparatus
KR20100086706A (en) Strengthening and rehabilitating exercise apparatus
KR20140094102A (en) Apparatus For Excercise of Muscle
TW200934553A (en) Standing-position type passive exercise machine
JP5806120B2 (en) Exercise assistance device
JP2001008987A (en) Machine for practicing cross-pattern walking
WO2024009742A1 (en) Load transmission mechanism unit for training machine and training machine employing same
KR100388130B1 (en) Hand-standing machine
JP4054784B2 (en) Training device for strengthening trunk muscles
WO2023021720A1 (en) Load transmission mechanism unit for training equipment, and training equipment using same
JP2023119061A (en) Training instrument
JP2023119062A (en) Training instrument
JP2006187590A (en) Training machine
CN116712292A (en) Rehabilitation exercise device
JP2002095772A (en) Health promoting apparatus
JP4559440B2 (en) Training equipment
CN107551450A (en) A kind of multifunctional body-building chair
KR20180017553A (en) Sliding exerciser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835276

Country of ref document: EP

Kind code of ref document: A1