WO2024009726A1 - Heating device for vehicle - Google Patents

Heating device for vehicle Download PDF

Info

Publication number
WO2024009726A1
WO2024009726A1 PCT/JP2023/022301 JP2023022301W WO2024009726A1 WO 2024009726 A1 WO2024009726 A1 WO 2024009726A1 JP 2023022301 W JP2023022301 W JP 2023022301W WO 2024009726 A1 WO2024009726 A1 WO 2024009726A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
vehicle
heater
snow
bumper
Prior art date
Application number
PCT/JP2023/022301
Other languages
French (fr)
Japanese (ja)
Inventor
隆仁 中村
啓暢 土方
康志 浅野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023030221A external-priority patent/JP2024008812A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024009726A1 publication Critical patent/WO2024009726A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/48Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds
    • B60R19/50Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds with lights or registration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/56Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/62Other vehicle fittings for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/275Lens surfaces, e.g. coatings or surface structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/60Heating of lighting devices, e.g. for demisting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/90Heating arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present disclosure relates to a vehicle heater device.
  • Patent Document 1 describes a heater device in which a heating wire is provided on the lens of a headlight.
  • This Patent Document 1 describes a technique for preventing fogging on the inner surface of the lens by using a coating provided on the inner side of the lens.
  • a technique is described in which a heating wire provided on a lens is bonded and held by coating.
  • techniques are described for reducing or eliminating fog, droplets, and ice on lenses by increasing the thermal conductivity of heating wires through coatings.
  • the heating wire is called a conductive trace (i.e., a conductive wire).
  • the amount of heat generated by the heater it is also possible to increase the amount of heat generated by the heater to melt all the snow that has accumulated on the lens. However, if this is done, the amount of heat generated by the heater will correspond to the latent heat of the snow accumulated on the lens, and the power consumed by the heater will increase.
  • both the water-repellent coating and the hydrophobic coating are coatings that have the property of repelling water.
  • a hydrophobic coating refers to one in which the contact angle between the coating surface and water is 40° to 90°
  • a water-repellent coating refers to one in which the contact angle between the coating surface and water is 90° or more.
  • both water-repellent and hydrophobic coatings can prevent snow from accumulating on the surface of the lens in the case of dry snow, but in the case of wet snow. It was found that once snow is deposited due to a collision, snow accumulates from that point.
  • An object of the present disclosure is to provide a vehicle heater device that can reduce power consumed by the heater in order to ensure optical function or sensor function in wet snow.
  • a vehicle heater device includes a light source or sensor, a lens, a heater, and a hydrophilic coating.
  • the light source or sensor emits light or transmits and receives electromagnetic waves to the outside of the vehicle.
  • the lens is provided in the irradiation direction of light emitted from the light source or in the transmission/reception direction of electromagnetic waves transmitted and received by the sensor, and transmits light or electromagnetic waves.
  • the heater is provided on the lens and generates heat when energized.
  • the hydrophilic coating is applied to the surface of the lens or heater that is closest to the outside air.
  • a vehicle heater device includes a sensor, a cover member, a heater, and a hydrophilic coating.
  • the sensor transmits and receives electromagnetic waves to the outside of the vehicle.
  • the cover member is provided in the direction of transmission and reception of electromagnetic waves transmitted and received by the sensor, and transmits the electromagnetic waves.
  • the heater is provided on the cover member and generates heat when energized.
  • the hydrophilic coating is applied to the surface of the cover member or heater that is closest to the outside air.
  • another aspect of the present disclosure also has the same effect as one aspect of the present disclosure.
  • FIG. 1 is a perspective view of a vehicle equipped with a vehicle heater device according to a first embodiment.
  • FIG. 1 is a sectional view of a vehicle heater device according to a first embodiment.
  • FIG. 3 is a diagram showing a region coated with a hydrophilic coating when viewed in the direction of arrow III in FIG. 2, that is, when viewed from the front of the vehicle heater device.
  • FIG. 3 is an explanatory diagram for explaining how snow attached to a lens slides off the lens together with a film of water.
  • FIG. 3 is a diagram showing how snow attached to a lens is melted by the heat of a heater and becomes water, and the water is spread over the surface of the lens by a hydrophilic coating.
  • FIG. 1 is a perspective view of a vehicle equipped with a vehicle heater device according to a first embodiment.
  • FIG. 1 is a sectional view of a vehicle heater device according to a first embodiment.
  • FIG. 3 is a diagram showing a region coated with a hydrophilic
  • FIG. 3 is a diagram showing how snow attached to a lens is melted by the heat of a heater and becomes water, and the water becomes bead-shaped water droplets on the surface of the lens due to a water-repellent or hydrophobic coating.
  • FIG. 6 it is a diagram showing a state in which snow is placed on bead-shaped water droplets.
  • FIG. 7 it is a diagram showing a state in which bead-shaped water droplets are absorbed heat by snow on top of the water droplets, freeze, and become ice.
  • FIG. 3 is a sectional view of a vehicle heater device according to a second embodiment.
  • FIG. 3 is a sectional view of a vehicle heater device according to a third embodiment.
  • Mighty Luck GII registered trademark
  • Hydrophilic Material A from the snow-shedding evaluation test results.
  • FIG. 2 is an explanatory diagram for explaining an FT-NIR analysis method. It is a table showing FT-NIR analysis conditions. It is a graph showing a method for distinguishing between water and ice by FT-NIR analysis. It is a graph showing the results of freezing delay measurements for Mighty Luck GII (registered trademark) and hydrophilic material A. It is a table showing the results of a snow melting evaluation test for each sample.
  • FT-NIR analysis method It is a table showing FT-NIR analysis conditions. It is a graph showing a method for distinguishing between water and ice by FT-NIR analysis. It is a graph showing the results of freezing delay measurements for Mighty Luck GII (registered trademark) and hydrophilic material A. It is a table showing the results of a snow melting evaluation test for each sample.
  • the vehicle heater device is configured as a headlight 2 of a vehicle 1, various sensors, etc., and is mounted on the vehicle 1.
  • a vehicle heater device configured as a headlight 2 of a vehicle 1 will be described.
  • the up-down direction, the front-back direction, and the left-right direction of the vehicle 1 are shown by arrows.
  • a headlight 2 as a vehicle heater device includes a housing 3, a light source 4, a lens 5, a heater 6, a hydrophilic coating 7, and the like. Note that in the drawings, the shape, size, thickness, etc. of each component are schematically shown for convenience of explanation.
  • the housing 3 is made of resin or the like, and forms the outer shell of the headlight 2 together with the lens 5.
  • a reflecting mirror 8 and the like are provided inside the casing 3.
  • the light source 4 is provided inside the housing 3 and emits light toward the outside of the vehicle 1.
  • the light emitted from the light source 4 is schematically shown by a chain double-dashed line with reference numeral 9.
  • the light source 4 is composed of, for example, an LED lamp, an HID lamp, or a halogen lamp. LED is an abbreviation for light-emitting diode, and HID is an abbreviation for high intensity discharge.
  • the light source 4 is an example of a "light source or sensor" described in the claims.
  • various sensors may be installed inside the housing 3, for example, to detect objects in front of the vehicle.
  • the various sensors include a sonar sensor, a millimeter wave radar sensor, a LIDAR sensor, and an image sensor.
  • LIDAR is an abbreviation for Light Detection and Ranging or Laser Imaging Detection and Ranging.
  • the lens 5 is an outer lens provided in the light irradiation direction of the light source 4.
  • the outer edge of the lens 5 is fixed to the housing 3.
  • the lens 5 is formed of a material (eg, glass or resin) that transmits the light emitted from the light source 4. Further, when various sensors are provided within the housing 3, the lens 5 is formed of a material (eg, glass or resin) that transmits electromagnetic waves transmitted and received by the sensor.
  • an internal space 10 is formed by the housing 3 and the lens 5.
  • the internal space 10 is a space formed in a hermetically closed state or a semi-sealed state.
  • the sealed state refers to a state in which the air in the internal space 10 and the outside air are cut off
  • the semi-sealed state refers to a state in which the circulation between the air in the internal space 10 and the outside air is restricted, but a slight circulation is allowed.
  • the heater 6 is an electric heater that is provided on the lens 5 and generates heat when energized.
  • the heater 6 is provided on the surface of the lens 5 on the light source 4 side (hereinafter referred to as "inner surface of the lens 5"). Therefore, the lens 5 prevents the heater 6 from being damaged by collisions with foreign objects from the outside.
  • the heater 6 of this embodiment is provided on substantially the entire inner surface of the lens 5.
  • the heater 6 is not limited thereto, and the heater 6 may be provided in an area that includes an area where the light source 4 is projected onto the lens 5 in the main direction of the light emitted from the light source 4, and that covers 50% or more of the entire surface area of the lens 5. It may be.
  • the heater 6 is configured using at least one of carbon nanotubes (hereinafter referred to as "CNT”), heating wires, or indium tin oxide (hereinafter referred to as "ITO”), for example.
  • CNT carbon nanotubes
  • ITO indium tin oxide
  • the heater 6 is a transparent conductive film in which CNTs are arranged in a transparent thin film, and is attached to the inner surface of the lens 5.
  • the hydrophilic coating 7 is applied to the surface of the lens 5 on the outside air side.
  • the surface of the lens 5 on the outside air side is sometimes referred to as the "surface of the lens 5" or "the outer surface of the lens 5.”
  • the hydrophilic coating 7 is configured so that water adhering to the surface of the lens 5 (that is, the surface of the portion of the lens 5 where the hydrophilic coating 7 is applied) spreads along the surface and flows down. .
  • the hydrophilic coating 7 is one in which the contact angle between the coating surface and water is 40° or less.
  • the thickness of the hydrophilic coating 7 is illustrated in the drawings for convenience of explanation, the actual thickness of the hydrophilic coating 7 is, for example, a thin film of about several nanometers to several tens of micrometers. Therefore, in this specification, "the surface of the lens 5" is sometimes used to mean the surface of the portion of the lens 5 on which the hydrophilic coating 7 is applied, in addition to the surface of the lens 5 itself.
  • the hydrophilic coating 7 of this embodiment is applied to substantially the entire surface of the lens 5.
  • the hydrophilic coating 7 is not limited thereto, and includes an area where the light source 4 is projected onto the lens 5 in the main direction of the light emitted from the light source 4, and an area that is 50% or more of the entire surface area of the lens 5. It may be applied to In that case, the hydrophilic coating 7 and the heater 6 are preferably provided so as to overlap in the thickness direction of the lens 5 in a range of 50% or more of the entire surface area of the lens 5.
  • FIG. 4 shows the behavior of the wet snow 12 attached to the lens 5.
  • the vehicle heater device can remove the wet snow 12 by not melting all the wet snow 12 by the heat generated by the heater 6, but by melting only the portion of the wet snow 12 on the lens 5 side.
  • water repellent or hydrophobic coating 14 a water repellent coating or a hydrophobic coating
  • FIG. 5 is a diagram showing how snow attached to the surface of the lens 5 is melted by the heat of the heater 6 and becomes water when the hydrophilic coating 7 is applied to the surface of the lens 5.
  • water that melts snow due to the heat of the heater 6 spreads along the surface of the lens 5 due to the action of the hydrophilic coating 7.
  • the distance D1 between the surface of the lens 5 and the surface of the water film 13 on the opposite side of the lens 5 (hereinafter referred to as "height D1 of the water film 13") is indicated by an arrow.
  • FIGS. 6 to 8 show how snow accumulates on the surface of the lens 5 when the water-repellent or hydrophobic coating 14 is applied to the surface of the lens 5. Note that FIGS. 6 to 8 show how snow accumulates over time.
  • FIG. 6 is a diagram showing how snow attached to the surface of the lens 5 coated with the water-repellent or hydrophobic coating 14 is melted by the heat of the heater 6 and becomes water.
  • the contact angle between the coating surface and water is larger than that of the hydrophilic coating 7, so the water melted by the heat of the heater 6 can interact with each other due to surface tension. They combine to form bead-shaped water droplets 15.
  • the distance D2 between the surface of the lens 5 and the surface of the water droplet 15 on the opposite side of the lens 5 (hereinafter referred to as "height D2 of the water droplet 15") is indicated by an arrow.
  • the height D2 of the water droplet 15 shown in FIG. 6 is higher than the height D1 of the water film 13 shown in FIG. 5. Therefore, as shown in FIG. 7 following FIG. 6, when snow 12 is further placed on top of the water droplets 15, the heat of the heater 6 becomes difficult to be transferred to the snow 12, so the heat of the heater 6 is used to cover the snow 12. It cannot be completely dissolved. As shown in FIG. 8 following FIG. 7, when more snow 12 is on the ground, the amount of heat absorbed by the accumulated snow 12 becomes larger than the amount of heat generated by the heater 6, and eventually the water droplets on the lens 5 freeze and turn into ice. It turns out to be 16. Then, snow will accumulate starting from the ice 16.
  • the water-repellent or hydrophobic coating 14 when the water-repellent or hydrophobic coating 14 is applied to the surface of the lens 5, once the snow 12 collides with the surface of the lens 5 and lands on it, the snow 12 will accumulate from that point as a starting point.
  • the amount of light emitted from the light source 4 of the headlight 2 to the outside of the lens 5 decreases, making it impossible to ensure the optical function of the headlight 2.
  • a sensor is installed in the headlight 2, if electromagnetic waves from the sensor cannot be transmitted or received outside the lens 5, the sensor function cannot be ensured.
  • the vehicle heater device of the first embodiment can have the following configuration and effects.
  • a hydrophilic coating 7 is applied to the outside air side surface of the lens 5 on which the heater 6 is provided. According to this, when wet snow 12 adheres to the lens 5, the part of the wet snow 12 on the lens 5 side is melted by the heat of the heater 6, and the water film 13 spreads along the surface of the lens 5. The wet snow 12 together with the water film 13 can be slid off the lens 5 by its own weight. This makes it possible to irradiate light from the light source 4 to the outside of the lens 5, or to transmit and receive electromagnetic waves from the sensor to the outside of the lens 5. In this way, this vehicle heater device can reduce the power consumed by the heater 6 by melting only the portion of the snow on the lens 5 side, rather than melting all the snow by the heat generated by the heater 6.
  • the heater 6 is provided on the inner surface of the lens 5. Thereby, the lens 5 prevents the heater 6 from being damaged due to collision of foreign objects from the outside.
  • the heater 6 is configured using at least one of CNT, heating wire, or ITO. According to this, the heater 6 may be made of CNT, heating wire, or ITO.
  • the hydrophilic coating 7 includes an area where the light source 4 is projected onto the lens 5 in the main direction of the light emitted from the light source 4, and 50% of the entire surface area of the lens 5. It may be set within the above range. If the hydrophilic coating 7 is provided in such a range, snow can be removed from the area in front of the light source 4 when the heater 6 is activated, and the optical function of the headlight 2 can be ensured.
  • the heater 6 is provided on the surface of the lens 5 on the outside air side. Therefore, the heater 6 can efficiently transfer heat to the snow. Furthermore, in the second embodiment, the hydrophilic coating 7 is applied to the surface of the heater 6 on the outside air side. That is, when the heater 6 is formed of a transparent conductive film, the hydrophilic coating 7 is applied to the surface of the transparent conductive film on the outside air side. On the other hand, when the heater 6 is formed of a heating wire, the hydrophilic coating 7 is applied to the surface of the heating wire on the outside air side, and is also applied to the surface of the lens 5 exposed between the heating wires. Ru.
  • the vehicle heater device of the second embodiment described above can also have the same effects as the first embodiment. Furthermore, in the second embodiment, the heater 6 is provided on the surface of the lens 5 on the outside air side. According to this, the heater 6 can efficiently transmit heat to the snow.
  • FIG. 1 A third embodiment will be described.
  • the headlight 2 is used as the vehicle heater device.
  • a vehicle heater device configured as a sensor device 20 mounted on the vehicle 1 will be described.
  • a sensor device 20 as a vehicle heater device of the third embodiment includes a housing 3, a sensor 21, a lens 5, a heater 6, a hydrophilic coating 7, and the like.
  • the sensor device 20 is used, for example, in advanced driver-assistance systems (ADAS).
  • ADAS advanced driver-assistance systems
  • the sensor device 20 may be mounted on the vehicle 1 in any direction, including front and rear, top and bottom, left and right, and diagonally, and there is no limitation on the mounting position.
  • the housing 3 is made of resin, metal, or the like, and forms the outer shell of the sensor device 20 together with the lens 5.
  • the sensor 21 is provided inside the housing 3 and transmits electromagnetic waves to the outside of the vehicle 1 and receives electromagnetic waves from the outside of the vehicle 1.
  • the region of electromagnetic waves transmitted from the sensor 21 is schematically shown with a chain double-dashed line labeled 22.
  • the sensor 21 is configured by, for example, a sonar sensor, a millimeter wave radar sensor, a LIDAR sensor, an image sensor, or the like.
  • the sensor 21 is an example of a "light source or sensor" described in the claims.
  • the lens 5 is provided in the direction in which the sensor 21 transmits and receives electromagnetic waves.
  • the outer edge of the lens 5 is fixed to the housing 3.
  • the lens 5 is formed of a material (for example, resin or glass) that transmits electromagnetic waves transmitted and received by the sensor 21.
  • the lens 5 may be, for example, black so as to block visible light.
  • the lens 5 is sometimes called a housing window or a cover member.
  • an internal space 10 is formed by the housing 3 and the lens 5.
  • the sensor device 20 is not limited to such a configuration.
  • the sensor device 20 may have a configuration in which the housing 3 and the lens 5 are placed apart from each other and the internal space 10 is not formed.
  • the lens 5 may be an emblem provided at the front of the vehicle, and the housing 3 and the sensor 21 may be arranged at the rear of the vehicle with respect to the emblem.
  • the heater 6 is an electric heater that is provided on the lens 5 and generates heat when energized. Note that in the third embodiment, the heater 6 is provided on the inner surface of the lens 5. Therefore, the lens 5 prevents the heater 6 from being damaged by collisions with foreign objects from the outside.
  • the configuration of the heater 6 is substantially the same as that described in the first and second embodiments, except that it does not need to be transparent.
  • the heater 6 of the third embodiment is provided on substantially the entire inner surface of the lens 5.
  • the heater 6 is not limited thereto, and the heater 6 is provided in an area that includes the area where the sensor 21 is projected onto the lens 5 in the main direction of the electromagnetic waves transmitted from the sensor 21, and that covers 50% or more of the entire surface area of the lens 5. It may be.
  • the hydrophilic coating 7 of the third embodiment is applied to substantially the entire surface of the lens 5.
  • the hydrophilic coating 7 is not limited thereto, and includes an area where the sensor 21 is projected onto the lens 5 in the main direction of electromagnetic waves transmitted from the sensor 21, and an area that is 50% or more of the entire surface area of the lens 5. It may be applied to In that case, the hydrophilic coating 7 and the heater 6 are preferably provided so as to overlap in the thickness direction of the lens 5 in a range of 50% or more of the entire surface area of the lens 5.
  • the vehicle heater device of the third embodiment described above can also have the same effects as the first and second embodiments.
  • the vehicle heater device of the fourth embodiment is also configured as a sensor device 20 mounted on the vehicle 1, as in the third embodiment.
  • the heater 6 included in the vehicle heater device is provided on the surface of the lens 5 on the outside air side.
  • the hydrophilic coating 7 is applied to the surface of the heater 6 on the outside air side. That is, when the heater 6 is formed of a transparent conductive film, the hydrophilic coating 7 is applied to the surface of the transparent conductive film on the outside air side.
  • the hydrophilic coating 7 is applied to the surface of the heating wire on the outside air side, and is also applied to the surface of the lens 5 exposed between the heating wires. Ru.
  • the configuration of the vehicle heater device of the fourth embodiment is the same as that described in the third embodiment.
  • the vehicle heater device of the fourth embodiment described above can also achieve the same effects as those of the first to third embodiments.
  • the vehicle heater device of the reference example is configured as a headlight 2, similar to that described in the first and second embodiments.
  • the front bumper 22 which is disposed below the vehicle with respect to the headlights 2, is moved further forward of the vehicle than the headlights 2. It sticks out. Furthermore, the surface of the front bumper 22 that faces upward of the vehicle (hereinafter referred to as "bumper top surface 23") is a nearly horizontal flat surface. Depending on the shape of the front bumper 22, snow 12a that has slipped off the lens 5 of the headlight 2 may accumulate on the upper surface 23 of the bumper, which may impede the optical function or sensor function of the headlight 2.
  • the configuration of the fifth embodiment described below is effective for the problem of this reference example.
  • the vehicle heater device of the fifth embodiment also includes a bumper heater 61 and a bumper hydrophilic coating for the front bumper 22. It is equipped with 71.
  • the bumper heater 61 is provided at a portion of the front bumper 22 at least below the lens 5 of the headlight 2 in the vehicle width direction. Note that at least a portion below the vehicle with respect to the lens 5 means a portion below the vehicle at least within the range of the lens 5 in the vehicle width direction. Further, the bumper heater 61 shown in FIG. 13 is provided over the entire front bumper 22 in the vehicle vertical direction. However, the present invention is not limited thereto, and the bumper heater 61 may be provided only in a region of the front bumper 22 that is above the center (that is, on the headlight 2 side) in the vehicle vertical direction. Alternatively, the bumper heater 61 may be provided only on the top surface 23 of the bumper, or only on the top surface 23 of the bumper and its surroundings.
  • the bumper heater 61 shown in FIG. 13 is provided on a surface of the front bumper 22 that faces toward the front of the vehicle and a surface that faces toward the top of the vehicle.
  • the bumper heater 61 is not limited thereto, and may be provided on the surface of the front bumper 22 facing toward the rear of the vehicle and the surface facing downward of the vehicle (that is, the back surface of the bumper).
  • the bumper heater 61 is configured using at least one of CNT, heating wire, and ITO, for example.
  • the bumper hydrophilic coating 71 is applied on the bumper heater 61 provided on the front bumper 22. That is, the bumper hydrophilic coating 71 is provided at a portion of the front bumper 22 that is at least below the lens 5 of the headlight 2 in the vehicle width direction. Further, the bumper hydrophilic coating 71 shown in FIG. 13 is provided on the entire front bumper 22 in the vehicle vertical direction. However, the present invention is not limited thereto, and the bumper hydrophilic coating 71 may be provided only in a region of the front bumper 22 that is above the center (that is, on the headlight 2 side) in the vehicle vertical direction. Alternatively, the bumper hydrophilic coating 71 may be provided only on the top surface 23 of the bumper, or only on the top surface 23 of the bumper and its surroundings.
  • the structure of the bumper hydrophilic coating 71 is the same as that described in the first embodiment, etc., so that water adhering to the bumper surface (that is, the surface of the portion where the bumper hydrophilic coating 71 is applied) is It is constructed so that it spreads along the line and flows down.
  • the vehicle heater device of the fifth embodiment described above has the following configuration and the effects thereof.
  • the vehicle heater device of the fifth embodiment includes a bumper heater 61 and a bumper hydrophilic coating 71 that are applied to a portion of the front bumper 22 below the lens 5 of the vehicle. According to this, even when snow accumulates on the front bumper 22, the portion of the snow on the bumper side is melted by the bumper heater 61 to form a film of water, and the snow along with the water film slides off the bumper due to its own weight and wind. It is possible to drop it. Therefore, this vehicle heater device can maintain the optical function of the headlight 2 or the sensor function of the sensor 21, and reduce the power consumed by the bumper heater 61.
  • the vehicle heater device includes a bumper heater 61 provided in a portion of the front bumper 22 below the lens 5 of the vehicle, and does not include the bumper hydrophilic coating 71. You can also use it as According to this, even if snow that has slipped off the headlight lens 5 may accumulate on the front bumper 22, the snow is melted by the bumper heater 61 and the optical function of the headlight 2 or the sensor 21 is Functionality can be ensured.
  • the vehicle heater device includes a bumper hydrophilic coating 71 applied to a portion of the front bumper 22 below the lens 5 of the vehicle, and does not include the bumper heater 61. You can also use it as According to this, even if snow that has slipped off the headlight lens 5 may accumulate on the front bumper 22, the bumper hydrophilic coating 71 prevents the snow from sliding off the front bumper 22 together with a film of water. It is possible. Therefore, the optical function of the headlight 2 or the sensor function of the sensor 21 can be ensured. Note that the water film may be formed by using water that has melted snow using the heat of the heater 6 provided on the lens 5 of the headlight 2.
  • the snow shedding property evaluation test is a test in which a plurality of test pieces were prepared with various coatings applied to each test piece, and the ease with which snow fell off with the various coatings was evaluated.
  • the test piece used was made of aluminum A1050, had a size of 100 x 100 x 1 mm, and had a surface roughness of Rz 0.002 ⁇ m (that is, a mirror surface).
  • Rz 0.002 ⁇ m that is, a mirror surface.
  • artificially produced wet snow was blown onto the coated surface of the test piece at a wind speed of 10 m/s at a 90° angle for 30 minutes in an environment at room temperature +1 to 2°C. The snow that was blown onto the test piece repeatedly adhered to the coated surface of the test piece and fell off.
  • FIG. 15 is a graph showing the state of snow accretion in the snow-shedding evaluation test.
  • the vertical axis shows the thickness or mass of snow accumulation
  • the horizontal axis shows time.
  • the snow grows between time T1 and time T2 (that is, the snow growth time), and then falls due to its own weight at time T2.
  • the period from time T2 to time T3 is a snow-free time in which no snow adheres to the test piece.
  • the snow grows again between time T3 and time T4 (that is, the snow growth time), and then falls due to its own weight at time T4.
  • the test ends at time T5.
  • the weight of fallen snow, the number of times it fell, the height of snow accumulation, and the adhesion time were evaluated. Note that, depending on the test piece, there were some that did not receive snowfall or no snow accumulation time.
  • the results of each test piece in the snow-shedding evaluation test are shown in FIG. 16.
  • the average snow weight is the average value of the snow weight for each snow growth time.
  • the average snowfall height is the average value of the snowfall height for each snowfall growth time.
  • the number of snow falls is the number of times snow fell within the test time (ie, 30 minutes).
  • the average snow accretion time is the average value of the snow accretion growth time.
  • the total weight of snowfall is the total weight of snow that fell during the test time.
  • the average snow adhesion is the average weight of fallen snow divided by the area of the coated surface of the test piece. Note that the average snow adhesion force is expressed in Excel, and for example, 5.0E-03 represents 5.0 ⁇ 10 ⁇ 3 .
  • the contact angle with water (hereinafter referred to as "contact angle") is the angle formed by the contact area between the coating surface of the test piece and water.
  • contact angle coatings with a contact angle of 40° or less are referred to as hydrophilic coatings
  • coatings with a contact angle of 40° to 90° are referred to as hydrophobic coatings
  • coatings with a contact angle of 90° or more are referred to as hydrophobic coatings. It's called a water-repellent coating.
  • the sliding angle to water (hereinafter referred to as the "sliding angle") is the horizontal angle at which the pure water slides down when 10 microliters of pure water is dropped onto the coated surface of a test piece and the test piece is tilted. is the angle of the specimen with respect to In this specification, if the sliding angle is 10° or less, the coating surface is considered to have high sliding properties.
  • hydrophilic material A had a much higher number of snowfalls than the other test pieces (10 times), the average snowfall time was short at 2.72 minutes, and the total weight of snowfall was small at 119.8g.
  • FIG. 17 shows No. 1 of the test pieces shown in the table of FIG. Mighty Luck GII (registered trademark) of No. 2 and No. 2 Mighty Luck GII (registered trademark). This is an excerpt of No. 11 hydrophilic material A.
  • Mighty Luck GII registered trademark
  • Hydrophilic material A is a product name of Resonac Co., Ltd. The former name of Resonac Co., Ltd. was Showa Denko Materials Co., Ltd.
  • FIG. 17 shows an image of the exterior after a 30-minute snow-shedding evaluation test. In this image, the snow appears white, and the areas where it has fallen appear black.
  • test piece is the part shown by the dashed line.
  • image of Mighty Luck GII registered trademark
  • hydrophilic material A it can be seen that the snowfall is divided into pieces.
  • the sliding angle shown in FIGS. 16 and 17 is the sliding angle when 10 microliters of pure water is dropped onto the coating surface of the test piece.
  • the sliding angle when 30 microliters of pure water was dropped on the surface was less than 10°.
  • the contact angle when 1 microliter of pure water was dropped onto the surface was 10°.
  • the mechanism of snow accretion and sliding is shown in Figure 18.
  • the snow 12 when snow 12 at a temperature below freezing adheres to the surface of the coating 31 of the test piece 30, the snow 12 is melted water that melts at the interface with the test piece on the test piece whose temperature is the same as room temperature, +1 to 2°C. 32, and when snow 12 adheres to the melt water 32, it falls due to its own weight.
  • the melt water 32 is also called interfacial melt water.
  • FIG. 19 is a graph showing the relationship between the sliding angle to water and the snow adhesion force for various coating materials. As shown by the broken line R in FIG. 19, there is a correlation between the sliding angle to water and the snow adhesion force. As shown in FIG. 19, it can be seen that, among hydrophilic coatings, hydrophilic material A has a very small sliding angle to water and a very small snow adhesion force.
  • hydrophilic coatings are water-repellent or hydrophobic by making the surface uneven and creating a layer of air between the protrusions. Therefore, it is undesirable to use water-repellent or hydrophobic coatings for sensors and lights, also because electromagnetic waves or light will be dispersed. From this point of view, hydrophilic coatings are suitable for coatings used in sensors and lights because electromagnetic waves or light do not scatter.
  • the freezing delay evaluation test is a test that evaluates the properties of various coating materials that make it difficult for melted water to freeze. In the freezing delay evaluation test, it was determined whether the interfacial melt water on the surface of the coating material was frozen or not using near-infrared spectroscopy, and the freezing delay effect was verified by the frost formation phenomenon.
  • FIG. 20 shows the analysis conditions of near-infrared spectroscopy in the freezing delay evaluation test.
  • Figure 22 shows a method for distinguishing between water and ice using near-infrared spectroscopy.
  • the peak wavelength of absorbance when there is water on the coating surface is 1460 nm
  • the peak wavelength of absorbance when there is ice on the coating surface is 1492 nm. It was confirmed that there was a difference between
  • the freezing time during which the peak wavelength of water shifts to the peak wavelength of ice from the start of the freezing delay evaluation test was measured.
  • the coating material was Mighty Lac GII (registered trademark)
  • the peak wavelength of absorbance shifted approximately 490 seconds after the start of the test. Therefore, when the coating material was Mighty Luck GII (registered trademark), the time from the start of the test until the interfacial melt water on the surface of the coating material turned into ice was about 490 seconds.
  • the coating material was hydrophilic material A, the peak wavelength of absorbance shifted approximately 760 seconds after the start of the test.
  • the coating material was hydrophilic material A
  • the time from the start of the test until the interfacial melt water on the surface of the coating material turned into ice was about 760 seconds.
  • hydrophilic material A had a longer freezing delay time than Mighty Luck GII (registered trademark). Therefore, it can be said that hydrophilic material A has excellent snow-shedding properties because it is difficult to freeze interfacial melt water on the coating surface.
  • the time from the start of the test until the interfacial melt water on the surface of the coating material becomes ice is approximately 500 seconds or more, it can be said that the hydrophilic coating has a longer freezing delay time than Mighty Luck GII (registered trademark). .
  • This test was conducted under the conditions of an environmental temperature of -5°C, a wind speed of 20 km/h, a snowfall amount of 30 mm/h, and an impact angle of snow on the test piece surface of 90°.
  • Sample 1 is a PC, specifically a PS PRO plastic sheet manufactured by RS Components Co., Ltd.
  • Sample 2 is a PC coated with a hard coat, and Acryking (registered trademark) manufactured by Mitsubishi Chemical Corporation was used as the hard coat.
  • Sample 3 is a PC subjected to surface treatment, and Diabeam (registered trademark) manufactured by Mitsubishi Chemical Corporation was used for the surface treatment.
  • Sample 4 is a PC surface treated, and for the surface treatment, Hydrophilic Material A manufactured by Resinac Co., Ltd. was used.
  • Sample 5 is a PC subjected to surface treatment, and Optool (registered trademark) of Daikin Industries, Ltd. was used for the surface treatment.
  • Tests 1 to 4 and 6 were cold start tests, and tests 5, 7 to 9 were hot start tests. Note that Tests 4 and 5 were conducted consecutively, and Tests 6 to 8 were also conducted consecutively.
  • hydrophilic A is the most preferable coating material that can reduce the power consumption of the heater.
  • Hydrophilic material A has hydrophilicity, as is clear from the above-mentioned snow-shedding evaluation test and freezing delay evaluation test, and also has characteristics such as water sliding properties and freezing delay characteristics.
  • the vehicle heater device is configured as the headlight 2 or sensor device 20 of the vehicle 1, but is not limited thereto, and is configured as a lighting device such as a tail lamp or turn signal lamp. You may.
  • the vehicle heater device is such that the front bumper 22 protrudes further toward the front of the vehicle than the headlights 2, and the upper surface 23 of the bumper is a nearly horizontal flat surface.
  • the vehicle heater device may include at least one of the bumper heater 61 and the bumper hydrophilic coating 71 regardless of the shape of the bumper of the vehicle 1 on which it is mounted.
  • the vehicle heater device includes the bumper heater 61 or the bumper hydrophilic coating 71 on the front bumper 22, but the present invention is not limited thereto.
  • the rear bumper disposed below the tail lamp may include at least one of a bumper heater 61 and a bumper hydrophilic coating 71.
  • the present disclosure is not limited to the embodiments described above, and can be modified as appropriate. Furthermore, the above-described embodiments and parts thereof are not unrelated to each other, and can be combined as appropriate, except in cases where combinations are clearly impossible. Furthermore, in each of the above embodiments, it goes without saying that the elements constituting the embodiments are not necessarily essential, except in cases where it is specifically stated that they are essential or where they are clearly considered essential in principle. stomach. In addition, in each of the above embodiments, when numerical values such as the number, numerical value, amount, range, etc. of the constituent elements of the embodiment are mentioned, when it is clearly stated that it is essential, or when it is clearly limited to a specific number in principle. It is not limited to that specific number, except in cases where In addition, in each of the above embodiments, when referring to the shape, positional relationship, etc. of constituent elements, etc., the shape, It is not limited to positional relationships, etc.
  • a light source (4) or sensor (21) that emits light or transmits and receives electromagnetic waves toward the outside of the vehicle (1); a lens (5) that is provided in the irradiation direction of light emitted from the light source or in the transmission and reception direction of electromagnetic waves transmitted and received by the sensor, and that transmits light or electromagnetic waves; a heater (6) that is provided on the lens and generates heat when energized;
  • a vehicle heater device comprising: a hydrophilic coating (7) applied to a surface of the lens or the heater that is closest to the outside air.
  • the vehicle heater device according to the first aspect, wherein the heater is provided on a surface of the lens on the light source side or the sensor side, or on a surface of the lens on the outside air side.
  • the heater is configured using at least one of carbon nanotubes, heating wires, and indium tin oxide.
  • the hydrophilic coating is applied to an area where the light source is projected onto the lens toward the main direction of light emitted from the light source, or where the sensor is projected onto the lens toward the main direction of electromagnetic waves transmitted from the sensor.
  • the vehicle heater device according to any one of the first to third aspects, which includes the projected region and is provided in a range of 50% or more of the entire surface area of the lens.
  • Any one of the first to fourth aspects further comprising a bumper heater (61) that is provided at a portion of the front bumper (22) or the rear bumper of the vehicle at least below the lens with respect to the vehicle and generates heat when energized.
  • the vehicle heater device described in [Sixth viewpoint]
  • a bumper heater that is provided at least in a portion of the front bumper or rear bumper of the vehicle below the vehicle with respect to the lens, and that generates heat when energized;
  • the vehicle according to any one of the first to fourth aspects, further comprising a bumper hydrophilic coating applied to a portion of the front bumper, the rear bumper, or the bumper heater that is located below the vehicle at least with respect to the lens.
  • Vehicle heater device
  • a sensor that transmits and receives electromagnetic waves to the outside of the vehicle (1); a cover member (5) that is provided in the direction of transmission and reception of electromagnetic waves transmitted and received by the sensor and that transmits the electromagnetic waves; a heater (6) that is provided on the cover member and generates heat when energized;
  • a vehicular heater device comprising: a hydrophilic coating (7) applied to a surface of the cover member or the heater that is closest to the outside air side.
  • the hydrophilic coating has a sliding mechanism in which the pure water slides down when 10 microliters of pure water is deposited on the surface of the hydrophilic coating and the angle of inclination of the surface of the hydrophilic coating with respect to the horizontal is set to 10 degrees or less.
  • the vehicle heater device according to any one of the first to eighth aspects, which is water-based.
  • the above-mentioned hydrophilic coating was tested by placing a test piece with the hydrophilic coating on the low temperature side of a Peltier element, installing it in a near-infrared spectrometer, and turning on the Peltier element under the following test conditions.
  • the time from the appearance of the peak wavelength of water at 1460 nm until the peak wavelength transitions to the peak wavelength of ice at 1492 nm is 500 seconds or more.
  • the voltage of the Peltier element is 12V
  • the temperature is 25°C
  • the relative humidity is 50% RH.
  • the measurement model is FT/IR-6700
  • the incident angle of near-infrared rays is 20°
  • the light source is halogen
  • the measurement range of the absorbance peak wavelength is 900 to 1700 nm
  • the resolution is 4 cm -1
  • the integration is 7 times
  • the measurement interval is 10 seconds
  • the measurement time is the peak wavelength of ice. This is until the height change at 1492 nm becomes small.

Abstract

This heating device for a vehicle comprises: a light source (4) or a sensor (21); a lens (5); a heater (6); and a hydrophilic coating (7). The light source (4) emits light towards the outside of a vehicle (1). Alternatively, the sensor (21) transmits and receives electromagnetic waves. The lens (5) is provided in a light emission direction in which the light is emitted from the light source (4), or in a transmission/reception direction in which the electromagnetic waves are transmitted and received by the sensor (21), and the lens (5) transmits the light or the electromagnetic waves. The heater (6) is provided to the lens (5) and generates heat by energization. The hydrophilic coating (7) is applied to the outermost surface, on the outside-air side, of the lens (5) or the heater (6).

Description

車両用ヒータ装置Vehicle heater device 関連出願への相互参照Cross-reference to related applications
 本出願は、2022年7月6日に出願された日本特許出願番号2022-109100号と、2023年2月28日に出願された日本特許出願番号2023-30221号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2022-109100 filed on July 6, 2022 and Japanese Patent Application No. 2023-30221 filed on February 28, 2023. The contents herein are incorporated by reference.
 本開示は、車両用ヒータ装置に関するものである。 The present disclosure relates to a vehicle heater device.
 近年、車載エレクトロニクスの進化により、自動車の先進運転支援システム(ADAS: Advanced driver-assistance systems)の開発が著しく、自動運転が現実になりつつある。日本の国土交通省では、自動運転のレベルを現在のレベル2(即ち、特定条件下での自動運転機能)から段階的に引き上げ、2025年~2030年を目途に完全自動運転となるレベル5を目指している。しかしながら、センサ製品は悪環境(例えば、積雪・凍結・豪雨・濃霧)では、センサの感度が低下する課題がある。そこで、車両に搭載されるヘッドライトまたはセンサ装置が備えるレンズをヒータにより温めることで、レンズへの着氷、着雪を防ぎ、光学機能またはセンサ機能を確保する車両用ヒータ装置が知られている。
 特許文献1には、ヘッドライトのレンズに電熱線を設けたヒータ装置が記載されている。この特許文献1には、レンズの内側に設けたコーティングにより、レンズの内面側の曇り等を防ぐ技術が記載されている。また、レンズに設けた電熱線をコーティングにより接着、保持する技術が記載されている。さらに、電熱線の熱伝導性をコーティングにより増加させることで、レンズの霧、液滴、氷を低減、排除する技術も記載されている。なお、特許文献1では、電熱線は、conductive trace(即ち、導電線)と呼ばれている。
In recent years, with the evolution of in-vehicle electronics, the development of advanced driver-assistance systems (ADAS) for automobiles has been remarkable, and autonomous driving is becoming a reality. Japan's Ministry of Land, Infrastructure, Transport and Tourism aims to gradually raise the level of autonomous driving from the current level 2 (i.e., autonomous driving function under specific conditions) to reach level 5, which is fully autonomous driving, between 2025 and 2030. want to be. However, sensor products have a problem in that the sensitivity of the sensor decreases in adverse environments (for example, snowfall, freezing, heavy rain, and dense fog). Therefore, a vehicle heater device is known that uses a heater to warm the lens of a headlight or sensor device mounted on a vehicle, thereby preventing ice and snow from accumulating on the lens and ensuring the optical function or sensor function. .
Patent Document 1 describes a heater device in which a heating wire is provided on the lens of a headlight. This Patent Document 1 describes a technique for preventing fogging on the inner surface of the lens by using a coating provided on the inner side of the lens. Furthermore, a technique is described in which a heating wire provided on a lens is bonded and held by coating. Additionally, techniques are described for reducing or eliminating fog, droplets, and ice on lenses by increasing the thermal conductivity of heating wires through coatings. Note that in Patent Document 1, the heating wire is called a conductive trace (i.e., a conductive wire).
米国特許出願2021/0388966A1明細書US Patent Application 2021/0388966A1 Specification
 しかしながら、特許文献1のようにヘッドライトのレンズの内側に電熱線等のヒータとコーティングを設けた場合、降雪時にレンズの外気側の表面(以下、単に「レンズの表面」という)に雪が付くと、ヒータの熱で融雪された水が摩擦力によりレンズの表面に留まる。そのため、レンズの表面の水の上に積もる雪に対してヒータからの熱が伝わりにくくなるので、ヒータの熱で融雪しきれなくなり、最終的にレンズ上の水が雪に吸熱されて凍結し、氷になってしまう。そして、その氷を起点にしてレンズに雪が積もると、ヘッドライトの光源からの光がレンズの外へ照射される光量が減少し、ヘッドライトの光学機能が確保できなくなる。 However, when a heater such as a heating wire and a coating are provided on the inside of the lens of a headlight as in Patent Document 1, snow builds up on the surface of the lens on the outside air side (hereinafter simply referred to as "lens surface") during snowfall. The water melted by the heat of the heater stays on the surface of the lens due to frictional force. This makes it difficult for the heat from the heater to transfer to the snow that accumulates on top of the water on the surface of the lens, making it impossible for the heat from the heater to melt the snow, and eventually the water on the lens absorbs heat from the snow and freezes. It turns into ice. If snow accumulates on the lens starting from the ice, the amount of light emitted from the headlight's light source to the outside of the lens decreases, making it impossible to ensure the optical function of the headlight.
 それに対し、ヒータの発熱量を上げてレンズに積もった雪を全て溶かすことも考えられる。しかし、そのようにすれば、ヒータの発熱量はレンズに積もった雪の潜熱に相当するものとなり、ヒータに消費される電力が増大してしまう。 On the other hand, it is also possible to increase the amount of heat generated by the heater to melt all the snow that has accumulated on the lens. However, if this is done, the amount of heat generated by the heater will correspond to the latent heat of the snow accumulated on the lens, and the power consumed by the heater will increase.
 ところで、着雪の対策としてレンズの表面に撥水性コーティングまたは疎水性コーティングを施し、レンズに雪が付かないようにすることも考えられる。なお、撥水性コーティングおよび疎水性コーティングはいずれも、水をはじく性質を有するコーティングである。具体的には、疎水性コーティングはコーティング表面と水との接触角が40°~90°ものをいい、撥水性コーティングはコーティング表面と水との接触角が90°以上のものをいう。 By the way, as a countermeasure against snow accumulation, it is also possible to apply a water-repellent coating or hydrophobic coating to the surface of the lens to prevent snow from accumulating on the lens. Note that both the water-repellent coating and the hydrophobic coating are coatings that have the property of repelling water. Specifically, a hydrophobic coating refers to one in which the contact angle between the coating surface and water is 40° to 90°, and a water-repellent coating refers to one in which the contact angle between the coating surface and water is 90° or more.
 しかし、本開示の開示者らが行った実験によれば、撥水性コーティングおよび疎水性コーティングはいずれも、乾雪の場合はレンズの表面への着雪を防止できるが、湿雪の場合は雪の衝突によって一旦着雪すると、そこを起点に雪が積もってしまうことが分かった。 However, according to experiments conducted by the disclosers of the present disclosure, both water-repellent and hydrophobic coatings can prevent snow from accumulating on the surface of the lens in the case of dry snow, but in the case of wet snow. It was found that once snow is deposited due to a collision, snow accumulates from that point.
 本開示は、湿雪に対し、光学機能またはセンサ機能を確保するためにヒータに消費される電力を低減することの可能な車両用ヒータ装置を提供することを目的とする。 An object of the present disclosure is to provide a vehicle heater device that can reduce power consumed by the heater in order to ensure optical function or sensor function in wet snow.
 本開示の1つの観点によれば、車両用ヒータ装置は、光源またはセンサ、レンズ、ヒータおよび親水性コーティングを備える。光源またはセンサは、車両の外部へ向けて光を照射または電磁波を送受信する。レンズは、光源から照射される光の照射方向またはセンサにより送受信される電磁波の送受信方向に設けられ、光または電磁波を透過する。ヒータは、レンズに設けられ、通電により発熱する。親水性コーティングは、レンズまたはヒータのうち最も外気側の表面に施されたものである。 According to one aspect of the present disclosure, a vehicle heater device includes a light source or sensor, a lens, a heater, and a hydrophilic coating. The light source or sensor emits light or transmits and receives electromagnetic waves to the outside of the vehicle. The lens is provided in the irradiation direction of light emitted from the light source or in the transmission/reception direction of electromagnetic waves transmitted and received by the sensor, and transmits light or electromagnetic waves. The heater is provided on the lens and generates heat when energized. The hydrophilic coating is applied to the surface of the lens or heater that is closest to the outside air.
 これによれば、親水性コーティングを施したレンズに雪が付いた場合、その雪のうちレンズ側の部位をヒータの熱により溶かすと、その溶けた水は親水性コーティングの作用によりレンズの表面(即ち、親水性コーティングを施した部位の表面)に沿って広がり、水の膜となる。その水の膜により、レンズの表面と積雪との摩擦力が小さくなり、水はレンズの表面にとどまることが出来ず、その水の膜と共に積雪が自らの重みによってレンズから滑り落ちる。これにより、光源からの光をレンズの外へ照射可能になり、または、センサからの電磁波をレンズの外に送受信可能になる。このように、この車両用ヒータ装置は、ヒータの発熱によって積雪を全て溶かすのでなく、積雪のうちレンズ側の部位のみを溶かすことで積雪を排除し、ヒータに消費される電力を低減できる。 According to this, when snow adheres to a lens coated with a hydrophilic coating, when the part of the snow on the lens side is melted by the heat of a heater, the melted water is transferred to the surface of the lens (i.e. , the surface of the area where the hydrophilic coating was applied) and forms a film of water. The film of water reduces the frictional force between the surface of the lens and the snow, and the water cannot remain on the surface of the lens, and the snow, together with the film of water, slides off the lens under its own weight. This makes it possible to irradiate light from the light source to the outside of the lens, or to transmit and receive electromagnetic waves from the sensor to the outside of the lens. In this way, this vehicle heater device does not melt all of the snow with the heat generated by the heater, but melts only the portion of the snow on the lens side, thereby eliminating the snow and reducing the power consumed by the heater.
 本開示の別の観点によれば、車両用ヒータ装置は、センサ、カバー部材、ヒータおよび親水性コーティングを備える。センサは、車両の外部へ電磁波を送受信する。カバー部材は、センサにより送受信される電磁波の送受信方向に設けられ、電磁波を透過する。ヒータは、カバー部材に設けられ、通電により発熱する。親水性コーティングは、カバー部材またはヒータのうち最も外気側の表面に施されたものである。 According to another aspect of the present disclosure, a vehicle heater device includes a sensor, a cover member, a heater, and a hydrophilic coating. The sensor transmits and receives electromagnetic waves to the outside of the vehicle. The cover member is provided in the direction of transmission and reception of electromagnetic waves transmitted and received by the sensor, and transmits the electromagnetic waves. The heater is provided on the cover member and generates heat when energized. The hydrophilic coating is applied to the surface of the cover member or heater that is closest to the outside air.
 これによれば、本開示の別の観点も、本開示の1つの観点と同じ作用効果を奏する。 According to this, another aspect of the present disclosure also has the same effect as one aspect of the present disclosure.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference numerals in parentheses attached to each component etc. indicate an example of the correspondence between that component etc. and specific components etc. described in the embodiments described later.
第1実施形態に係る車両用ヒータ装置が搭載される車両の斜視図である。FIG. 1 is a perspective view of a vehicle equipped with a vehicle heater device according to a first embodiment. 第1実施形態に係る車両用ヒータ装置の断面図である。FIG. 1 is a sectional view of a vehicle heater device according to a first embodiment. 図2のIII矢視、即ち車両用ヒータ装置の正面視において、親水性コーティングが施された領域を示す図である。FIG. 3 is a diagram showing a region coated with a hydrophilic coating when viewed in the direction of arrow III in FIG. 2, that is, when viewed from the front of the vehicle heater device. レンズに付いた雪が水の膜と共にレンズから滑り落ちる様子を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining how snow attached to a lens slides off the lens together with a film of water. レンズに付いた雪がヒータの熱で溶かされて水となり、その水が親水性コーティングによりレンズの表面に広がった様子を示す図である。FIG. 3 is a diagram showing how snow attached to a lens is melted by the heat of a heater and becomes water, and the water is spread over the surface of the lens by a hydrophilic coating. レンズに付いた雪がヒータの熱で溶かされて水となり、その水が撥水性または疎水性コーティングによりレンズの表面で玉状の水滴となった様子を示す図である。FIG. 3 is a diagram showing how snow attached to a lens is melted by the heat of a heater and becomes water, and the water becomes bead-shaped water droplets on the surface of the lens due to a water-repellent or hydrophobic coating. 図6に続き、玉状の水滴の上に雪が乗った状態を示す図である。Continuing from FIG. 6, it is a diagram showing a state in which snow is placed on bead-shaped water droplets. 図7に続き、玉状の水滴が、その水滴の上に乗った雪に吸熱されて凍結し、氷となった様子を示す図である。Continuing from FIG. 7, it is a diagram showing a state in which bead-shaped water droplets are absorbed heat by snow on top of the water droplets, freeze, and become ice. 第2実施形態に係る車両用ヒータ装置の断面図である。FIG. 3 is a sectional view of a vehicle heater device according to a second embodiment. 第3実施形態に係る車両用ヒータ装置の断面図である。FIG. 3 is a sectional view of a vehicle heater device according to a third embodiment. 第4実施形態に係る車両用ヒータ装置の断面図である。It is a sectional view of the vehicle heater device concerning a 4th embodiment. 参考例の車両用ヒータ装置が搭載された車両の前方部分の側面図である。It is a side view of the front part of the vehicle in which the vehicle heater device of the reference example is mounted. 第5実施形態に係る車両用ヒータ装置の断面図である。It is a sectional view of the vehicle heater device concerning a 5th embodiment. 落雪性評価試験の試験条件を示す表である。It is a table showing test conditions for a snow-shedding property evaluation test. 落雪性評価試験における着雪の様子を表したグラフである。It is a graph showing the state of snow accretion in a snow-shedding property evaluation test. 各種コーティングを施した試験片に対する落雪性評価試験の結果と、各種コーティングの接触角および滑落角を示す表である。2 is a table showing the results of a snow-shedding evaluation test for test specimens coated with various coatings, and the contact angle and sliding angle of the various coatings. 落雪性評価試験結果のうちマイティラックGII(登録商標)と親水材Aを抜粋した表である。This is a table showing excerpts of Mighty Luck GII (registered trademark) and Hydrophilic Material A from the snow-shedding evaluation test results. 着雪と滑落のメカニズムを説明した説明図である。It is an explanatory diagram explaining the mechanism of snow accretion and sliding. 各種コーティング材において対水滑落角と雪付着力との関係を示すグラフである。It is a graph showing the relationship between the sliding angle to water and the snow adhesion force for various coating materials. FT-NIR分析方法を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining an FT-NIR analysis method. FT-NIR分析条件を示す表である。It is a table showing FT-NIR analysis conditions. FT-NIR分析による水と氷の判別方法を示すグラフである。It is a graph showing a method for distinguishing between water and ice by FT-NIR analysis. マイティラックGII(登録商標)と親水材Aとで凍結遅延測定結果を示すグラフである。It is a graph showing the results of freezing delay measurements for Mighty Luck GII (registered trademark) and hydrophilic material A. 各サンプルにおける融雪評価試験の結果を示す表である。It is a table showing the results of a snow melting evaluation test for each sample.
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that in each of the following embodiments, parts that are the same or equivalent to each other will be denoted by the same reference numerals, and the description thereof will be omitted.
 (第1実施形態)
 第1実施形態について図面を参照しつつ説明する。図1に示すように、車両用ヒータ装置は、車両1のヘッドライト2または各種センサ等として構成され、車両1に搭載されるものである。第1実施形態では、車両用ヒータ装置は、車両1のヘッドライト2として構成されたものについて説明する。なお、各図面では、車両1における上下方向、前後方向、左右方向を矢印で示している。
(First embodiment)
A first embodiment will be described with reference to the drawings. As shown in FIG. 1, the vehicle heater device is configured as a headlight 2 of a vehicle 1, various sensors, etc., and is mounted on the vehicle 1. In the first embodiment, a vehicle heater device configured as a headlight 2 of a vehicle 1 will be described. In addition, in each drawing, the up-down direction, the front-back direction, and the left-right direction of the vehicle 1 are shown by arrows.
 図2に示すように、第1実施形態の車両用ヒータ装置としてのヘッドライト2は、筐体3、光源4、レンズ5、ヒータ6、親水性コーティング7などを備えている。なお、図面では、説明の便宜上、各構成の形状、大きさ、厚み等を模式的に示している。 As shown in FIG. 2, a headlight 2 as a vehicle heater device according to the first embodiment includes a housing 3, a light source 4, a lens 5, a heater 6, a hydrophilic coating 7, and the like. Note that in the drawings, the shape, size, thickness, etc. of each component are schematically shown for convenience of explanation.
 筐体3は、樹脂などにより形成され、ヘッドライト2の外郭をレンズ5と共に構成している。筐体3の内側には、反射鏡8などが設けられる。 The housing 3 is made of resin or the like, and forms the outer shell of the headlight 2 together with the lens 5. A reflecting mirror 8 and the like are provided inside the casing 3.
 光源4は、筐体3の内側に設けられ、車両1の外部に向けて光を照射するものである。図2では、光源4から照射される光を、符号9を付した2点鎖線で模式的に示している。光源4は、例えばLEDランプ、HIDランプまたはハロゲンランプなどにより構成される。LEDは、light-emitting diodeの略であり、HIDは、High Intensity Dischargeの略である。光源4は、特許請求の範囲に記載の「光源またはセンサ」の一例である。 The light source 4 is provided inside the housing 3 and emits light toward the outside of the vehicle 1. In FIG. 2, the light emitted from the light source 4 is schematically shown by a chain double-dashed line with reference numeral 9. In FIG. The light source 4 is composed of, for example, an LED lamp, an HID lamp, or a halogen lamp. LED is an abbreviation for light-emitting diode, and HID is an abbreviation for high intensity discharge. The light source 4 is an example of a "light source or sensor" described in the claims.
 なお、図示は省略するが、筐体3内には、例えば、車両前方の物体を検知するための各種センサを設置してもよい。各種センサは、例えば、ソナーセンサ、ミリ波レーダセンサ、LIDARセンサまたは画像センサ等である。LIDARはLight Detection and Ranging、または、Laser Imaging Detection and Rangingの略である。 Although not shown in the drawings, various sensors may be installed inside the housing 3, for example, to detect objects in front of the vehicle. Examples of the various sensors include a sonar sensor, a millimeter wave radar sensor, a LIDAR sensor, and an image sensor. LIDAR is an abbreviation for Light Detection and Ranging or Laser Imaging Detection and Ranging.
 レンズ5は、光源4の光照射方向に設けられるアウターレンズである。レンズ5の外縁は、筐体3に固定されている。レンズ5は、光源4から照射される光を透過する材料(例えば、ガラスまたは樹脂など)により形成される。また、筐体3内に各種センサが設けられる場合、レンズ5は、センサにより送受信される電磁波を透過する材料(例えば、ガラスまたは樹脂など)により形成される。 The lens 5 is an outer lens provided in the light irradiation direction of the light source 4. The outer edge of the lens 5 is fixed to the housing 3. The lens 5 is formed of a material (eg, glass or resin) that transmits the light emitted from the light source 4. Further, when various sensors are provided within the housing 3, the lens 5 is formed of a material (eg, glass or resin) that transmits electromagnetic waves transmitted and received by the sensor.
 なお、レンズ5の内側には、筐体3とレンズ5により内部空間10が形成されている。内部空間10は、密閉閉状態または半密閉状態に形成された空間である。なお、密閉状態とは、内部空間10の空気と外気とが遮断された状態をいい、半密閉状態とは、内部空間10の空気と外気との流通が制限されつつ、僅かな流通が許容された状態をいう。 Note that inside the lens 5, an internal space 10 is formed by the housing 3 and the lens 5. The internal space 10 is a space formed in a hermetically closed state or a semi-sealed state. Note that the sealed state refers to a state in which the air in the internal space 10 and the outside air are cut off, and the semi-sealed state refers to a state in which the circulation between the air in the internal space 10 and the outside air is restricted, but a slight circulation is allowed. A state in which
 ヒータ6は、レンズ5に設けられ、通電により発熱する電気ヒータである。なお、第1実施形態では、ヒータ6は、レンズ5のうち光源4側の面(以下、「レンズ5の内面」という)に設けられている。そのため、ヒータ6は、レンズ5により、外部からの異物の衝突などによる破損が防がれている。 The heater 6 is an electric heater that is provided on the lens 5 and generates heat when energized. In the first embodiment, the heater 6 is provided on the surface of the lens 5 on the light source 4 side (hereinafter referred to as "inner surface of the lens 5"). Therefore, the lens 5 prevents the heater 6 from being damaged by collisions with foreign objects from the outside.
 本実施形態のヒータ6は、レンズ5の内面のうち略全面に設けられている。ただし、それに限らず、ヒータ6は、光源4から照射される光の主方向に向けて光源4をレンズ5に投影した領域を含み、且つ、レンズ5の表面積全体の50%以上の範囲に設けられていてもよい。 The heater 6 of this embodiment is provided on substantially the entire inner surface of the lens 5. However, the heater 6 is not limited thereto, and the heater 6 may be provided in an area that includes an area where the light source 4 is projected onto the lens 5 in the main direction of the light emitted from the light source 4, and that covers 50% or more of the entire surface area of the lens 5. It may be.
 ヒータ6は、例えば、カーボンナノチューブ(以下、「CNT」という)、電熱線、または酸化インジウムスズ(以下、「ITO」という)の少なくともいずれか1つを用いて構成されている。CNTは、carbon nanotubeの略であり、ITOは、Indium Tin Oxideの略である。CNTを用いてヒータ6を構成する場合、ヒータ6は透明の薄膜にCNTを配置した透明導電フィルムとされ、レンズ5の内面に貼り付けられる。 The heater 6 is configured using at least one of carbon nanotubes (hereinafter referred to as "CNT"), heating wires, or indium tin oxide (hereinafter referred to as "ITO"), for example. CNT is an abbreviation for carbon nanotube, and ITO is an abbreviation for indium tin oxide. When constructing the heater 6 using CNTs, the heater 6 is a transparent conductive film in which CNTs are arranged in a transparent thin film, and is attached to the inner surface of the lens 5.
 図2および図3に示すように、親水性コーティング7は、レンズ5のうち外気側の表面に施されている。なお、本明細書では、レンズ5のうち外気側の表面を、「レンズ5の表面」または「レンズ5の外面」ということがある。親水性コーティング7は、レンズ5の表面(即ち、レンズ5のうち親水性コーティング7が施された部位の表面)に付着した水がその表面に沿って広がり、流れ落ちるように構成されたものである。具体的には、親水性コーティング7は、コーティング表面と水との接触角が40°以下のものをいう。図面では説明の便宜上、親水性コーティング7の厚みを大きく記載しているが、実際の親水性コーティング7の厚みは、例えば数nm~数十μm程度の薄膜とされる。そのため、本明細書では、「レンズ5の表面」を、レンズ5自体の表面に加えて、レンズ5のうち親水性コーティング7が施された部位の表面という意味で用いることもある。 As shown in FIGS. 2 and 3, the hydrophilic coating 7 is applied to the surface of the lens 5 on the outside air side. Note that in this specification, the surface of the lens 5 on the outside air side is sometimes referred to as the "surface of the lens 5" or "the outer surface of the lens 5." The hydrophilic coating 7 is configured so that water adhering to the surface of the lens 5 (that is, the surface of the portion of the lens 5 where the hydrophilic coating 7 is applied) spreads along the surface and flows down. . Specifically, the hydrophilic coating 7 is one in which the contact angle between the coating surface and water is 40° or less. Although the thickness of the hydrophilic coating 7 is illustrated in the drawings for convenience of explanation, the actual thickness of the hydrophilic coating 7 is, for example, a thin film of about several nanometers to several tens of micrometers. Therefore, in this specification, "the surface of the lens 5" is sometimes used to mean the surface of the portion of the lens 5 on which the hydrophilic coating 7 is applied, in addition to the surface of the lens 5 itself.
 本実施形態の親水性コーティング7は、レンズ5の表面の略全面に施されている。ただし、それに限らず、親水性コーティング7は、光源4から照射される光の主方向に向けて光源4をレンズ5に投影した領域を含み、且つ、レンズ5の表面積全体の50%以上の範囲に施されていてもよい。その場合、親水性コーティング7とヒータ6とは、レンズ5の表面積全体の50%以上の範囲においてレンズ5の厚み方向に重なるように設けられていることが好ましい。 The hydrophilic coating 7 of this embodiment is applied to substantially the entire surface of the lens 5. However, the hydrophilic coating 7 is not limited thereto, and includes an area where the light source 4 is projected onto the lens 5 in the main direction of the light emitted from the light source 4, and an area that is 50% or more of the entire surface area of the lens 5. It may be applied to In that case, the hydrophilic coating 7 and the heater 6 are preferably provided so as to overlap in the thickness direction of the lens 5 in a range of 50% or more of the entire surface area of the lens 5.
 次に、レンズ5の表面に親水性コーティング7を施した意義について説明する。 Next, the significance of applying the hydrophilic coating 7 to the surface of the lens 5 will be explained.
 図4は、レンズ5に付いた湿雪12の挙動を示したものである。図4に示すように、レンズ5に湿雪12が付いた場合、その湿雪12のうちレンズ5側の部位をヒータ6の熱により溶かすと、その溶けた水は親水性コーティング7の作用によりレンズ5の表面に沿って広がり、水の膜13となる。すると、その水の膜13により、レンズ5の表面と湿雪12との摩擦力が小さくなり、水はレンズ5の表面にとどまることが出来ず、矢印Aに示すように、その水の膜13と共に湿雪12が自らの重みによってレンズ5から滑り落ちる。このようにして、車両用ヒータ装置は、ヒータ6の発熱によって湿雪12を全て溶かすのでなく、湿雪12のうちレンズ5側の部位のみを溶かすことで湿雪12を排除できる。 FIG. 4 shows the behavior of the wet snow 12 attached to the lens 5. As shown in FIG. 4, when wet snow 12 adheres to the lens 5, when the part of the wet snow 12 on the lens 5 side is melted by the heat of the heater 6, the melted water is absorbed by the action of the hydrophilic coating 7. It spreads along the surface of the lens 5 and becomes a film of water 13. Then, the water film 13 reduces the frictional force between the surface of the lens 5 and the wet snow 12, and the water cannot stay on the surface of the lens 5, and as shown by arrow A, the water film 13 At the same time, the wet snow 12 slides off the lens 5 due to its own weight. In this way, the vehicle heater device can remove the wet snow 12 by not melting all the wet snow 12 by the heat generated by the heater 6, but by melting only the portion of the wet snow 12 on the lens 5 side.
 続いて、レンズ5の表面に親水性コーティング7を施した場合と、撥水性コーティングまたは疎水性コーティング(以下、「撥水性または疎水性コーティング14」という)を施した場合の違いについて説明する。なお、図5~図8では、各コーティングの厚みが例えば数nm~数十μm程度であることから、各コーティングの厚みを図示していない。 Next, the difference between the case where the hydrophilic coating 7 is applied to the surface of the lens 5 and the case where a water repellent coating or a hydrophobic coating (hereinafter referred to as "water repellent or hydrophobic coating 14") is applied will be explained. Note that in FIGS. 5 to 8, the thickness of each coating is not shown because the thickness of each coating is, for example, about several nm to several tens of μm.
 図5は、レンズ5の表面に親水性コーティング7を施した場合において、レンズ5の表面に付いた雪がヒータ6の熱で溶かされて水となった様子を示す図である。図5に示すように、親水性コーティング7の場合、ヒータ6の熱で雪が溶けた水は、親水性コーティング7の作用によりレンズ5の表面に沿って広がる。図5では、レンズ5の表面と、水の膜13のうちレンズ5とは反対側の表面との距離D1(以下、「水の膜13の高さD1」という)を矢印で示している。 FIG. 5 is a diagram showing how snow attached to the surface of the lens 5 is melted by the heat of the heater 6 and becomes water when the hydrophilic coating 7 is applied to the surface of the lens 5. As shown in FIG. 5, in the case of the hydrophilic coating 7, water that melts snow due to the heat of the heater 6 spreads along the surface of the lens 5 due to the action of the hydrophilic coating 7. In FIG. 5, the distance D1 between the surface of the lens 5 and the surface of the water film 13 on the opposite side of the lens 5 (hereinafter referred to as "height D1 of the water film 13") is indicated by an arrow.
 それに対し、図6~図8は、レンズ5の表面に撥水性または疎水性コーティング14を施した場合において、レンズ5の表面に雪が堆積する様子を示したものである。なお、図6~図8は、雪が堆積する様子を時間経過を追って示したものである。 On the other hand, FIGS. 6 to 8 show how snow accumulates on the surface of the lens 5 when the water-repellent or hydrophobic coating 14 is applied to the surface of the lens 5. Note that FIGS. 6 to 8 show how snow accumulates over time.
 まず、図6は、撥水性または疎水性コーティング14を施したレンズ5の表面に付いた雪がヒータ6の熱で溶かされて水となった様子を示す図である。図6に示すように、撥水性または疎水性コーティング14の場合、親水性コーティング7と比べてコーティング表面と水との接触角が大きいため、ヒータ6の熱で溶かされた水は表面張力により互いに結合して玉状の水滴15となる。図6では、レンズ5の表面と、水滴15のうちレンズ5とは反対側の表面との距離D2(以下、「水滴15の高さD2」という)を矢印で示している。ここで、図5で示した水の膜13の高さD1に比べて、図6で示した水滴15の高さD2の方が高い。
 そのため、図6に続く図7に示すように、水滴15の上にさらに雪12が乗った場合、その雪12に対してヒータ6の熱が伝わりにくくなるので、ヒータ6の熱で雪12を溶かしきれなくなる。
 図7に続く図8に示すように、さらに雪12が乗ると、その堆積した雪12の吸熱量がヒータ6の発熱量よりも大きくなり、最終的にレンズ5上の水滴が凍結して氷16になってしまう。そして、その氷16を起点として雪が積もることになる。
First, FIG. 6 is a diagram showing how snow attached to the surface of the lens 5 coated with the water-repellent or hydrophobic coating 14 is melted by the heat of the heater 6 and becomes water. As shown in FIG. 6, in the case of the water-repellent or hydrophobic coating 14, the contact angle between the coating surface and water is larger than that of the hydrophilic coating 7, so the water melted by the heat of the heater 6 can interact with each other due to surface tension. They combine to form bead-shaped water droplets 15. In FIG. 6, the distance D2 between the surface of the lens 5 and the surface of the water droplet 15 on the opposite side of the lens 5 (hereinafter referred to as "height D2 of the water droplet 15") is indicated by an arrow. Here, the height D2 of the water droplet 15 shown in FIG. 6 is higher than the height D1 of the water film 13 shown in FIG. 5.
Therefore, as shown in FIG. 7 following FIG. 6, when snow 12 is further placed on top of the water droplets 15, the heat of the heater 6 becomes difficult to be transferred to the snow 12, so the heat of the heater 6 is used to cover the snow 12. It cannot be completely dissolved.
As shown in FIG. 8 following FIG. 7, when more snow 12 is on the ground, the amount of heat absorbed by the accumulated snow 12 becomes larger than the amount of heat generated by the heater 6, and eventually the water droplets on the lens 5 freeze and turn into ice. It turns out to be 16. Then, snow will accumulate starting from the ice 16.
 このように、レンズ5の表面に撥水性または疎水性コーティング14を施した場合、レンズ5の表面に雪12が衝突して一旦着雪すると、そこを起点にして雪12が積もってしまう。そして、レンズ5の表面に雪12が堆積すると、ヘッドライト2の光源4からの光がレンズ5の外へ照射される光量が減少し、ヘッドライト2の光学機能が確保できなくなる。また、ヘッドライト2にセンサを設置した場合、センサからの電磁波がレンズ5の外に送受信できなくなると、センサ機能を確保できなくなる。 In this way, when the water-repellent or hydrophobic coating 14 is applied to the surface of the lens 5, once the snow 12 collides with the surface of the lens 5 and lands on it, the snow 12 will accumulate from that point as a starting point. When snow 12 accumulates on the surface of the lens 5, the amount of light emitted from the light source 4 of the headlight 2 to the outside of the lens 5 decreases, making it impossible to ensure the optical function of the headlight 2. Further, when a sensor is installed in the headlight 2, if electromagnetic waves from the sensor cannot be transmitted or received outside the lens 5, the sensor function cannot be ensured.
 それに対し、第1実施形態の車両用ヒータ装置は、次の構成および作用効果を奏することが可能である。
 (1)第1実施形態の車両用ヒータ装置は、ヒータ6が設けられたレンズ5の外気側の表面に親水性コーティング7を施している。
 これによれば、レンズ5に湿雪12が付いた場合、その湿雪12のうちレンズ5側の部位をヒータ6の熱により溶かし、レンズ5の表面に沿って広がる水の膜13として、その水の膜13と共に湿雪12を自重によりレンズ5から滑り落とすことが可能である。これにより、光源4からの光をレンズ5の外へ照射可能になり、または、センサからの電磁波をレンズ5の外に送受信可能になる。このように、この車両用ヒータ装置は、ヒータ6の発熱によって積雪を全て溶かすのでなく、積雪のうちレンズ5側の部位のみを溶かすことで、ヒータ6に消費される電力を低減できる。
On the other hand, the vehicle heater device of the first embodiment can have the following configuration and effects.
(1) In the vehicle heater device of the first embodiment, a hydrophilic coating 7 is applied to the outside air side surface of the lens 5 on which the heater 6 is provided.
According to this, when wet snow 12 adheres to the lens 5, the part of the wet snow 12 on the lens 5 side is melted by the heat of the heater 6, and the water film 13 spreads along the surface of the lens 5. The wet snow 12 together with the water film 13 can be slid off the lens 5 by its own weight. This makes it possible to irradiate light from the light source 4 to the outside of the lens 5, or to transmit and receive electromagnetic waves from the sensor to the outside of the lens 5. In this way, this vehicle heater device can reduce the power consumed by the heater 6 by melting only the portion of the snow on the lens 5 side, rather than melting all the snow by the heat generated by the heater 6.
 (2)第1実施形態では、ヒータ6は、レンズ5の内面に設けられている。これにより、ヒータ6は、レンズ5により、外部からの異物の衝突などにより破損することが防がれる。 (2) In the first embodiment, the heater 6 is provided on the inner surface of the lens 5. Thereby, the lens 5 prevents the heater 6 from being damaged due to collision of foreign objects from the outside.
 (3)第1実施形態では、ヒータ6は、CNT、電熱線またはITOの少なくともいずれか1つを用いて構成されている。これによれば、ヒータ6として、CNT、電熱線またはITOのいずれを採用してもよい。 (3) In the first embodiment, the heater 6 is configured using at least one of CNT, heating wire, or ITO. According to this, the heater 6 may be made of CNT, heating wire, or ITO.
 (4)第1実施形態では、親水性コーティング7は、光源4から照射される光の主方向に向けて光源4をレンズ5に投影した領域を含み、且つ、レンズ5の表面積全体の50%以上の範囲に設けられていてもよい。
 そのような範囲に親水性コーティング7が設けられていれば、ヒータ6を作動させた際に、光源4の前方領域から雪を排除でき、ヘッドライト2の光学機能を確保できる。
(4) In the first embodiment, the hydrophilic coating 7 includes an area where the light source 4 is projected onto the lens 5 in the main direction of the light emitted from the light source 4, and 50% of the entire surface area of the lens 5. It may be set within the above range.
If the hydrophilic coating 7 is provided in such a range, snow can be removed from the area in front of the light source 4 when the heater 6 is activated, and the optical function of the headlight 2 can be ensured.
 (第2実施形態)
 第2実施形態について説明する。第2実施形態は、第1実施形態に対してヒータ6と親水性コーティング7の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second embodiment)
A second embodiment will be described. The second embodiment differs from the first embodiment in that the configurations of the heater 6 and the hydrophilic coating 7 are changed, and other aspects are the same as the first embodiment, so the differences from the first embodiment are as follows. I will only explain.
 図9に示すように、第2実施形態では、ヒータ6は、レンズ5のうち外気側の表面に設けられている。そのため、ヒータ6は、雪に対して熱を効率よく伝えることが可能である。
 また、第2実施形態では、親水性コーティング7は、ヒータ6のうち外気側の表面に施されている。即ち、ヒータ6が透明導電フィルムで形成されている場合、親水性コーティング7は、その透明導電フィルムのうち外気側の表面に施される。一方、ヒータ6が電熱線で形成されている場合、親水性コーティング7は、電熱線のうち外気側の表面に施され、さらに、電熱線同士の間に露出するレンズ5の表面にも施される。
As shown in FIG. 9, in the second embodiment, the heater 6 is provided on the surface of the lens 5 on the outside air side. Therefore, the heater 6 can efficiently transfer heat to the snow.
Furthermore, in the second embodiment, the hydrophilic coating 7 is applied to the surface of the heater 6 on the outside air side. That is, when the heater 6 is formed of a transparent conductive film, the hydrophilic coating 7 is applied to the surface of the transparent conductive film on the outside air side. On the other hand, when the heater 6 is formed of a heating wire, the hydrophilic coating 7 is applied to the surface of the heating wire on the outside air side, and is also applied to the surface of the lens 5 exposed between the heating wires. Ru.
 以上説明した第2実施形態の車両用ヒータ装置も、上記第1実施形態と同様の作用効果を奏することができる。
 また、第2実施形態では、ヒータ6は、レンズ5のうち外気側の面に設けられている。これによれば、ヒータ6は、雪に対して熱を効率よく伝えることが可能である。
The vehicle heater device of the second embodiment described above can also have the same effects as the first embodiment.
Furthermore, in the second embodiment, the heater 6 is provided on the surface of the lens 5 on the outside air side. According to this, the heater 6 can efficiently transmit heat to the snow.
 (第3実施形態)
 第3実施形態について説明する。上記第1、第2実施形態では、車両用ヒータ装置をヘッドライト2として説明した。それに対し、第3実施形態では、車両用ヒータ装置が、車両1に搭載されるセンサ装置20として構成されたものについて説明する。
(Third embodiment)
A third embodiment will be described. In the first and second embodiments described above, the headlight 2 is used as the vehicle heater device. On the other hand, in the third embodiment, a vehicle heater device configured as a sensor device 20 mounted on the vehicle 1 will be described.
 図10に示すように、第3実施形態の車両用ヒータ装置としてのセンサ装置20は、筐体3、センサ21、レンズ5、ヒータ6、親水性コーティング7などを備えている。センサ装置20は、例えば、先進運転支援システム(ADAS;Advanced Driver-Assistance Systems)に用いられるものである。なお、センサ装置20が車両1に搭載される向きは、前後、上下、左右、斜めにおいてどのような向きであってもよく、その搭載位置についても限定はない。 As shown in FIG. 10, a sensor device 20 as a vehicle heater device of the third embodiment includes a housing 3, a sensor 21, a lens 5, a heater 6, a hydrophilic coating 7, and the like. The sensor device 20 is used, for example, in advanced driver-assistance systems (ADAS). Note that the sensor device 20 may be mounted on the vehicle 1 in any direction, including front and rear, top and bottom, left and right, and diagonally, and there is no limitation on the mounting position.
 筐体3は、樹脂または金属などにより形成され、センサ装置20の外郭をレンズ5と共に構成している。 The housing 3 is made of resin, metal, or the like, and forms the outer shell of the sensor device 20 together with the lens 5.
 センサ21は、筐体3の内側に設けられ、車両1の外部に向けて電磁波を送信し、また、車両1の外部から電磁波を受信するものである。図10では、センサ21から送信される電磁波の領域を、符号22を付した2点鎖線で模式的に示している。センサ21は、例えばソナーセンサ、ミリ波レーダセンサ、LIDARセンサ、または画像センサなどにより構成される。センサ21は、特許請求の範囲に記載の「光源またはセンサ」の一例である。 The sensor 21 is provided inside the housing 3 and transmits electromagnetic waves to the outside of the vehicle 1 and receives electromagnetic waves from the outside of the vehicle 1. In FIG. 10, the region of electromagnetic waves transmitted from the sensor 21 is schematically shown with a chain double-dashed line labeled 22. In FIG. The sensor 21 is configured by, for example, a sonar sensor, a millimeter wave radar sensor, a LIDAR sensor, an image sensor, or the like. The sensor 21 is an example of a "light source or sensor" described in the claims.
 レンズ5は、センサ21の電磁波の送受信方向に設けられる。レンズ5の外縁は、筐体3に固定されている。レンズ5は、センサ21により送受信される電磁波を透過する材料(例えば、樹脂またはガラスなど)により形成される。なお、レンズ5は、可視光線を遮断するように、例えば黒色としてもよい。レンズ5は、筐体窓またはカバー部材と呼ばれることもある。 The lens 5 is provided in the direction in which the sensor 21 transmits and receives electromagnetic waves. The outer edge of the lens 5 is fixed to the housing 3. The lens 5 is formed of a material (for example, resin or glass) that transmits electromagnetic waves transmitted and received by the sensor 21. Note that the lens 5 may be, for example, black so as to block visible light. The lens 5 is sometimes called a housing window or a cover member.
 なお、図10では、筐体3とレンズ5により内部空間10が形成されている。但し、センサ装置20は、そのような構成に限らず、例えば、筐体3とレンズ5とを離れた位置に配置し、内部空間10を形成しない構成としてもよい。例えば、レンズ5を車両前方に設けられるエンブレムとして、そのエンブレムに対して車両後方側に筐体3とセンサ21を配置してもよい。 Note that in FIG. 10, an internal space 10 is formed by the housing 3 and the lens 5. However, the sensor device 20 is not limited to such a configuration. For example, the sensor device 20 may have a configuration in which the housing 3 and the lens 5 are placed apart from each other and the internal space 10 is not formed. For example, the lens 5 may be an emblem provided at the front of the vehicle, and the housing 3 and the sensor 21 may be arranged at the rear of the vehicle with respect to the emblem.
 ヒータ6は、レンズ5に設けられ、通電により発熱する電気ヒータである。なお、第3実施形態では、ヒータ6は、レンズ5の内面に設けられている。そのため、ヒータ6は、レンズ5により、外部からの異物の衝突などによる破損が防がれている。ヒータ6の構成は、透明である必要がないことを除き、第1、第2実施形態で説明したものと実質的に同一である。 The heater 6 is an electric heater that is provided on the lens 5 and generates heat when energized. Note that in the third embodiment, the heater 6 is provided on the inner surface of the lens 5. Therefore, the lens 5 prevents the heater 6 from being damaged by collisions with foreign objects from the outside. The configuration of the heater 6 is substantially the same as that described in the first and second embodiments, except that it does not need to be transparent.
 第3実施形態のヒータ6は、レンズ5の内面のうち略全面に設けられている。ただし、それに限らず、ヒータ6は、センサ21から送信される電磁波の主方向に向けてセンサ21をレンズ5に投影した領域を含み、且つ、レンズ5の表面積全体の50%以上の範囲に設けられていてもよい。 The heater 6 of the third embodiment is provided on substantially the entire inner surface of the lens 5. However, the heater 6 is not limited thereto, and the heater 6 is provided in an area that includes the area where the sensor 21 is projected onto the lens 5 in the main direction of the electromagnetic waves transmitted from the sensor 21, and that covers 50% or more of the entire surface area of the lens 5. It may be.
 第3実施形態の親水性コーティング7は、レンズ5の表面の略全面に施されている。ただし、それに限らず、親水性コーティング7は、センサ21から送信される電磁波の主方向に向けてセンサ21をレンズ5に投影した領域を含み、且つ、レンズ5の表面積全体の50%以上の範囲に施されていてもよい。その場合、親水性コーティング7とヒータ6とは、レンズ5の表面積全体の50%以上の範囲においてレンズ5の厚み方向に重なるように設けられていることが好ましい。 The hydrophilic coating 7 of the third embodiment is applied to substantially the entire surface of the lens 5. However, the hydrophilic coating 7 is not limited thereto, and includes an area where the sensor 21 is projected onto the lens 5 in the main direction of electromagnetic waves transmitted from the sensor 21, and an area that is 50% or more of the entire surface area of the lens 5. It may be applied to In that case, the hydrophilic coating 7 and the heater 6 are preferably provided so as to overlap in the thickness direction of the lens 5 in a range of 50% or more of the entire surface area of the lens 5.
 以上説明した第3実施形態の車両用ヒータ装置も、上記第1、第2実施形態と同様の作用効果を奏することができる。 The vehicle heater device of the third embodiment described above can also have the same effects as the first and second embodiments.
 (第4実施形態)
 第4実施形態について説明する。第4実施形態の車両用ヒータ装置も、第3実施形態と同じく、車両1に搭載されるセンサ装置20として構成されたものである。
(Fourth embodiment)
A fourth embodiment will be described. The vehicle heater device of the fourth embodiment is also configured as a sensor device 20 mounted on the vehicle 1, as in the third embodiment.
 図11に示すように、第4実施形態では、車両用ヒータ装置が備えるヒータ6は、レンズ5のうち外気側の表面に設けられている。
 また、親水性コーティング7は、ヒータ6のうち外気側の表面に施されている。即ち、ヒータ6が透明導電フィルムで形成されている場合、親水性コーティング7は、その透明導電フィルムのうち外気側の表面に施される。一方、ヒータ6が電熱線で形成されている場合、親水性コーティング7は、電熱線のうち外気側の表面に施され、さらに、電熱線同士の間に露出するレンズ5の表面にも施される。
 それ以外、第4実施形態の車両用ヒータ装置の構成は、第3実施形態で説明したものと同一である。
As shown in FIG. 11, in the fourth embodiment, the heater 6 included in the vehicle heater device is provided on the surface of the lens 5 on the outside air side.
Moreover, the hydrophilic coating 7 is applied to the surface of the heater 6 on the outside air side. That is, when the heater 6 is formed of a transparent conductive film, the hydrophilic coating 7 is applied to the surface of the transparent conductive film on the outside air side. On the other hand, when the heater 6 is formed of a heating wire, the hydrophilic coating 7 is applied to the surface of the heating wire on the outside air side, and is also applied to the surface of the lens 5 exposed between the heating wires. Ru.
Other than that, the configuration of the vehicle heater device of the fourth embodiment is the same as that described in the third embodiment.
 以上説明した第4実施形態の車両用ヒータ装置も、上記第1~第3実施形態と同様の作用効果を奏することができる。 The vehicle heater device of the fourth embodiment described above can also achieve the same effects as those of the first to third embodiments.
 (参考例)
 次に、参考例の車両用ヒータ装置について説明する。参考例の車両用ヒータ装置は、上記第1、第2実施形態で説明したものと同じく、ヘッドライト2として構成されたものである。
(Reference example)
Next, a vehicle heater device as a reference example will be described. The vehicle heater device of the reference example is configured as a headlight 2, similar to that described in the first and second embodiments.
 ただし、図12に示すように、この参考例の車両用ヒータ装置が搭載される車両1は、ヘッドライト2に対して車両下方に配置されたフロントバンパー22が、ヘッドライト2よりも車両前方へ大きく突き出している。さらに、フロントバンパー22のうち車両上方を向く面(以下、「バンパーの上面23」という)が、水平に近い平坦面となっている。そのようなフロントバンパー22の形状によっては、ヘッドライト2のレンズ5から滑り落ちた雪12aがバンパーの上面23に溜まり、ヘッドライト2の光学機能またはセンサ機能が阻害される恐れがある。この参考例の課題に対し、次に説明する第5実施形態の構成が有効である。 However, as shown in FIG. 12, in the vehicle 1 in which the vehicle heater device of this reference example is installed, the front bumper 22, which is disposed below the vehicle with respect to the headlights 2, is moved further forward of the vehicle than the headlights 2. It sticks out. Furthermore, the surface of the front bumper 22 that faces upward of the vehicle (hereinafter referred to as "bumper top surface 23") is a nearly horizontal flat surface. Depending on the shape of the front bumper 22, snow 12a that has slipped off the lens 5 of the headlight 2 may accumulate on the upper surface 23 of the bumper, which may impede the optical function or sensor function of the headlight 2. The configuration of the fifth embodiment described below is effective for the problem of this reference example.
 (第5実施形態)
 第5実施形態について説明する。第5実施形態は、上記参考例で説明した課題に対して、それを解決するものである。
(Fifth embodiment)
A fifth embodiment will be described. The fifth embodiment is intended to solve the problems described in the reference example above.
 図13に示すように、第5実施形態の車両用ヒータ装置は、上記第1、第2実施形態で説明した構成に加えて、フロントバンパー22に対してもバンパー用ヒータ61およびバンパー用親水性コーティング71を備えている。 As shown in FIG. 13, in addition to the configuration described in the first and second embodiments, the vehicle heater device of the fifth embodiment also includes a bumper heater 61 and a bumper hydrophilic coating for the front bumper 22. It is equipped with 71.
 バンパー用ヒータ61は、車幅方向において、フロントバンパー22のうち少なくともヘッドライト2のレンズ5に対し車両下方の部位に設けられている。なお、少なくともレンズ5に対し車両下方の部位とは、少なくともレンズ5の車幅方向の範囲内で車両下方の部位という意味である。また、図13に示したバンパー用ヒータ61は、フロントバンパー22のうち車両上下方向の全体に設けられている。但し、それに限らず、バンパー用ヒータ61は、フロントバンパー22のうち車両上下方向において中央よりも上方(即ち、ヘッドライト2側)の領域のみに設けてもよい。或いは、バンパー用ヒータ61は、バンパーの上面23のみ、または、バンパーの上面23とその周囲のみに設けてもよい。 The bumper heater 61 is provided at a portion of the front bumper 22 at least below the lens 5 of the headlight 2 in the vehicle width direction. Note that at least a portion below the vehicle with respect to the lens 5 means a portion below the vehicle at least within the range of the lens 5 in the vehicle width direction. Further, the bumper heater 61 shown in FIG. 13 is provided over the entire front bumper 22 in the vehicle vertical direction. However, the present invention is not limited thereto, and the bumper heater 61 may be provided only in a region of the front bumper 22 that is above the center (that is, on the headlight 2 side) in the vehicle vertical direction. Alternatively, the bumper heater 61 may be provided only on the top surface 23 of the bumper, or only on the top surface 23 of the bumper and its surroundings.
 また、図13に示したバンパー用ヒータ61は、フロントバンパー22のうち車両前方を向く面および車両上方を向く面に設けられている。それに限らず、バンパー用ヒータ61は、フロントバンパー22のうち車両後方を向く面および車両下方向く面(即ち、バンパーの裏面)に設けられていてもよい。バンパー用ヒータ61は、例えば、CNT、電熱線またはITOの少なくともいずれか1つを用いて構成される。 Further, the bumper heater 61 shown in FIG. 13 is provided on a surface of the front bumper 22 that faces toward the front of the vehicle and a surface that faces toward the top of the vehicle. However, the bumper heater 61 is not limited thereto, and may be provided on the surface of the front bumper 22 facing toward the rear of the vehicle and the surface facing downward of the vehicle (that is, the back surface of the bumper). The bumper heater 61 is configured using at least one of CNT, heating wire, and ITO, for example.
 バンパー用親水性コーティング71は、フロントバンパー22に設けられたバンパー用ヒータ61の上に施されている。即ち、バンパー用親水性コーティング71は、車幅方向において、フロントバンパー22のうち少なくともヘッドライト2のレンズ5に対し車両下方の部位に設けられている。また、図13に示したバンパー用親水性コーティング71は、フロントバンパー22のうち車両上下方向の全体に設けられている。但し、それに限らず、バンパー用親水性コーティング71は、フロントバンパー22のうち車両上下方向において中央よりも上方(即ち、ヘッドライト2側)の領域のみに設けてもよい。或いは、バンパー用親水性コーティング71は、バンパーの上面23のみ、または、バンパーの上面23とその周囲のみに設けてもよい。 The bumper hydrophilic coating 71 is applied on the bumper heater 61 provided on the front bumper 22. That is, the bumper hydrophilic coating 71 is provided at a portion of the front bumper 22 that is at least below the lens 5 of the headlight 2 in the vehicle width direction. Further, the bumper hydrophilic coating 71 shown in FIG. 13 is provided on the entire front bumper 22 in the vehicle vertical direction. However, the present invention is not limited thereto, and the bumper hydrophilic coating 71 may be provided only in a region of the front bumper 22 that is above the center (that is, on the headlight 2 side) in the vehicle vertical direction. Alternatively, the bumper hydrophilic coating 71 may be provided only on the top surface 23 of the bumper, or only on the top surface 23 of the bumper and its surroundings.
 バンパー用親水性コーティング71の構成は、第1実施形態等で説明したものと同じく、バンパーの表面(即ち、バンパー用親水性コーティング71が施された部位の表面)に付着した水がその表面に沿って広がり、流れ落ちるように構成されたものである。 The structure of the bumper hydrophilic coating 71 is the same as that described in the first embodiment, etc., so that water adhering to the bumper surface (that is, the surface of the portion where the bumper hydrophilic coating 71 is applied) is It is constructed so that it spreads along the line and flows down.
 以上説明した第5実施形態の車両用ヒータ装置は、次の構成およびそれによる作用効果を奏する。
 第5実施形態の車両用ヒータ装置は、フロントバンパー22のうちレンズ5に対し車両下方の部位に施されたバンパー用ヒータ61とバンパー用親水性コーティング71を備えている。
 これによれば、フロントバンパー22の上に雪が溜まる場合でも、その雪のうちバンパー側の部位をバンパー用ヒータ61により溶かして水の膜とし、その水の膜と共に積雪を自重や風によりバンパーから滑り落とすことが可能である。したがって、この車両用ヒータ装置は、ヘッドライト2の光学機能またはセンサ21のセンサ機能を維持すると共に、バンパー用ヒータ61に消費される電力を低減できる。
The vehicle heater device of the fifth embodiment described above has the following configuration and the effects thereof.
The vehicle heater device of the fifth embodiment includes a bumper heater 61 and a bumper hydrophilic coating 71 that are applied to a portion of the front bumper 22 below the lens 5 of the vehicle.
According to this, even when snow accumulates on the front bumper 22, the portion of the snow on the bumper side is melted by the bumper heater 61 to form a film of water, and the snow along with the water film slides off the bumper due to its own weight and wind. It is possible to drop it. Therefore, this vehicle heater device can maintain the optical function of the headlight 2 or the sensor function of the sensor 21, and reduce the power consumed by the bumper heater 61.
 (第5実施形態の変形例1)
 上記第5実施形態の変形例1として、車両用ヒータ装置は、フロントバンパー22のうちレンズ5に対し車両下方の部位に設けられたバンパー用ヒータ61を備え、バンパー用親水性コーティング71を備えない構成としてもよい。これによれば、ヘッドライトのレンズ5から滑り落とされた雪がフロントバンパー22の上に溜まる可能性が有る場合でも、バンパー用ヒータ61によってその雪を溶かし、ヘッドライト2の光学機能またはセンサ21のセンサ機能を確保できる。
(Modification 1 of the fifth embodiment)
As a first modification of the fifth embodiment, the vehicle heater device includes a bumper heater 61 provided in a portion of the front bumper 22 below the lens 5 of the vehicle, and does not include the bumper hydrophilic coating 71. You can also use it as According to this, even if snow that has slipped off the headlight lens 5 may accumulate on the front bumper 22, the snow is melted by the bumper heater 61 and the optical function of the headlight 2 or the sensor 21 is Functionality can be ensured.
 (第5実施形態の変形例2)
 上記第5実施形態の変形例2として、車両用ヒータ装置は、フロントバンパー22のうちレンズ5に対し車両下方の部位に施されたバンパー用親水性コーティング71を備え、バンパー用ヒータ61を備えない構成としてもよい。これによれば、ヘッドライトのレンズ5から滑り落とされた雪がフロントバンパー22の上に溜まる可能性が有る場合でも、バンパー用親水性コーティング71によってその雪を水の膜と共にフロントバンパー22から滑り落とすことが可能である。したがって、ヘッドライト2の光学機能またはセンサ21のセンサ機能を確保できる。なお、水の膜は、ヘッドライト2のレンズ5に設けたヒータ6の熱で雪を溶かした水を利用すればよい。
(Modification 2 of the fifth embodiment)
As a second modification of the fifth embodiment, the vehicle heater device includes a bumper hydrophilic coating 71 applied to a portion of the front bumper 22 below the lens 5 of the vehicle, and does not include the bumper heater 61. You can also use it as According to this, even if snow that has slipped off the headlight lens 5 may accumulate on the front bumper 22, the bumper hydrophilic coating 71 prevents the snow from sliding off the front bumper 22 together with a film of water. It is possible. Therefore, the optical function of the headlight 2 or the sensor function of the sensor 21 can be ensured. Note that the water film may be formed by using water that has melted snow using the heat of the heater 6 provided on the lens 5 of the headlight 2.
 (評価試験)
 以下、本開示の開示者らが行った複数の評価試験について説明する。
(Evaluation test)
Hereinafter, a plurality of evaluation tests conducted by the disclosers of the present disclosure will be described.
 (落雪性評価試験)
 まず、落雪性評価試験について説明する。落雪性評価試験は、複数の試験片に対してそれぞれ各種コーティングを施したテストピースを用意し、各種コーティングにおける落雪のしやすさを評価した試験である。
(Snowfall evaluation test)
First, the snow shedding property evaluation test will be explained. The snow shedding property evaluation test is a test in which a plurality of test pieces were prepared with various coatings applied to each test piece, and the ease with which snow fell off with the various coatings was evaluated.
 図14に示すように、試験片として、材質はアルミニウムA1050、サイズは100×100×1mm、表面粗さはRz0.002μm(即ち、鏡面)のものを使用した。
 落雪性評価試験は、室温+1~2℃の環境下において、人工的に作った湿雪を、試験片のコーティング面に対し90°の角度から風速10m/sで30分間吹き付けた。試験片に吹き付けられた雪は、試験片のコーティング面に付着、落雪を繰り返した。
As shown in FIG. 14, the test piece used was made of aluminum A1050, had a size of 100 x 100 x 1 mm, and had a surface roughness of Rz 0.002 μm (that is, a mirror surface).
In the snow-shedding evaluation test, artificially produced wet snow was blown onto the coated surface of the test piece at a wind speed of 10 m/s at a 90° angle for 30 minutes in an environment at room temperature +1 to 2°C. The snow that was blown onto the test piece repeatedly adhered to the coated surface of the test piece and fell off.
 図15は、落雪性評価試験における着雪の様子をグラフに表したものである。縦軸は、着雪の厚さまたは質量を示し、横軸は時間を示している。
 図15に示すように、時刻T1で試験が開始されると、時刻T1から時刻T2の間(即ち、着雪成長時間)に着雪が成長した後、時刻T2で着雪が自重によって落下する。時刻T2から時刻T3は試験片に雪が着かない無着雪時間である。その後再び、時刻T3から時刻T4の間(即ち、着雪成長時間)に着雪が成長した後、時刻T4で着雪が自重によって落下する。複数回の着雪成長と落雪を繰り返した後、時刻T5で試験が終了する。落雪性評価試験では、落雪した雪の重量、落雪回数、雪の堆積高さ、付着時間などを評価した。なお、試験片によっては、落雪しないものや、無着雪時間が無いものも存在した。
FIG. 15 is a graph showing the state of snow accretion in the snow-shedding evaluation test. The vertical axis shows the thickness or mass of snow accumulation, and the horizontal axis shows time.
As shown in FIG. 15, when the test is started at time T1, the snow grows between time T1 and time T2 (that is, the snow growth time), and then falls due to its own weight at time T2. The period from time T2 to time T3 is a snow-free time in which no snow adheres to the test piece. After that, the snow grows again between time T3 and time T4 (that is, the snow growth time), and then falls due to its own weight at time T4. After repeating snow growth and snowfall multiple times, the test ends at time T5. In the snow shedding performance evaluation test, the weight of fallen snow, the number of times it fell, the height of snow accumulation, and the adhesion time were evaluated. Note that, depending on the test piece, there were some that did not receive snowfall or no snow accumulation time.
 落雪性評価試験における各試験片の結果を図16に示す。図16において、平均積雪重量は、着雪成長時間ごとの積雪重量の平均値である。平均積雪高さは、着雪成長時間ごとの積雪高さの平均値である。落雪回数は、試験時間内(即ち、30分間)に落雪した回数である。平均着雪時間は、着雪成長時間の平均値である。総着雪重量は、試験時間内に着雪した雪の総重量である。平均雪付着力は、平均落雪重量を試験片のコーティング面の面積で除算したものである。なお、平均雪付着力は、エクセル表記されており、例えば、5.0E-03は5.0×10-3を表している。 The results of each test piece in the snow-shedding evaluation test are shown in FIG. 16. In FIG. 16, the average snow weight is the average value of the snow weight for each snow growth time. The average snowfall height is the average value of the snowfall height for each snowfall growth time. The number of snow falls is the number of times snow fell within the test time (ie, 30 minutes). The average snow accretion time is the average value of the snow accretion growth time. The total weight of snowfall is the total weight of snow that fell during the test time. The average snow adhesion is the average weight of fallen snow divided by the area of the coated surface of the test piece. Note that the average snow adhesion force is expressed in Excel, and for example, 5.0E-03 represents 5.0×10 −3 .
 対水接触角(以下、「接触角」という)は、試験片のコーティング表面と水との接触部のなす角である。上述したように、本明細書では、接触角が40°以下のものを親水性コーティングといい、接触角が40°~90°ものを疎水性コーティングといい、接触角が90°以上のものを撥水性コーティングという。 The contact angle with water (hereinafter referred to as "contact angle") is the angle formed by the contact area between the coating surface of the test piece and water. As mentioned above, in this specification, coatings with a contact angle of 40° or less are referred to as hydrophilic coatings, coatings with a contact angle of 40° to 90° are referred to as hydrophobic coatings, and coatings with a contact angle of 90° or more are referred to as hydrophobic coatings. It's called a water-repellent coating.
 対水滑落角(以下、「滑落角」という)は、試験片のコーティング表面に10マイクロリットルの純水を着滴し、試験片を傾斜させた際に、その純水が滑落するときの水平に対する試験片の角度である。本明細書では、滑落角が10°以下であれば、コーティング表面の滑落性が高いと考える。 The sliding angle to water (hereinafter referred to as the "sliding angle") is the horizontal angle at which the pure water slides down when 10 microliters of pure water is dropped onto the coated surface of a test piece and the test piece is tilted. is the angle of the specimen with respect to In this specification, if the sliding angle is 10° or less, the coating surface is considered to have high sliding properties.
 図16の表のNO.11に示したように、親水材Aは他の試験片に対して落雪回数10回で非常に多く、平均着雪時間は2.72分と短く、総着雪重量も119.8gと少ない。 No. in the table of Figure 16. As shown in Fig. 11, hydrophilic material A had a much higher number of snowfalls than the other test pieces (10 times), the average snowfall time was short at 2.72 minutes, and the total weight of snowfall was small at 119.8g.
 図17は、図16の表に示した試験片のうち、NO.2のマイティラックGII(登録商標)と、NO.11の親水材Aを抜粋したものである。マイティラックGII(登録商標)は、日本ペイント株式会社の商品名である。親水材Aは、株式会社レゾナックの商品名である。なお、株式会社レゾナックは、旧社名が昭和電工マテリアルズ株式会社である。図17では、落雪性評価試験を30分間行った後の外観を撮影した画像を示している。この画像では、雪が白く見えており、落雪した箇所は黒っぽく見えている。なお、画像の中で、試験片は一点鎖線で示した部分である。マイティラックGII(登録商標)の画像では、試験片に付着した雪が連なって重力方向下側に伸びていることが見て取れる。一方、親水材Aの画像では、着雪がバラバラに分割されて落雪していることが見て取れる。 FIG. 17 shows No. 1 of the test pieces shown in the table of FIG. Mighty Luck GII (registered trademark) of No. 2 and No. 2 Mighty Luck GII (registered trademark). This is an excerpt of No. 11 hydrophilic material A. Mighty Luck GII (registered trademark) is a trade name of Nippon Paint Co., Ltd. Hydrophilic material A is a product name of Resonac Co., Ltd. The former name of Resonac Co., Ltd. was Showa Denko Materials Co., Ltd. FIG. 17 shows an image of the exterior after a 30-minute snow-shedding evaluation test. In this image, the snow appears white, and the areas where it has fallen appear black. In addition, in the image, the test piece is the part shown by the dashed line. In the image of Mighty Luck GII (registered trademark), it can be seen that the snow adhering to the test piece is continuous and extends downward in the direction of gravity. On the other hand, in the image of hydrophilic material A, it can be seen that the snowfall is divided into pieces.
 なお、図16および図17で示した滑落角は、試験片のコーティング表面に10マイクロリットルの純水を着滴したときの滑落角である。それに対し、図示は省略するが、試験片のコーティングを親水材Aとしたとき、その表面に30マイクロリットルの純水を着滴したときの滑落角は10°未満であった。また、試験片のコーティングを親水材Aとしたとき、その表面に1マイクロリットルの純水を着滴したときの接触角は10°であった。 Note that the sliding angle shown in FIGS. 16 and 17 is the sliding angle when 10 microliters of pure water is dropped onto the coating surface of the test piece. On the other hand, although not shown, when the test piece was coated with hydrophilic material A, the sliding angle when 30 microliters of pure water was dropped on the surface was less than 10°. Furthermore, when the test piece was coated with hydrophilic material A, the contact angle when 1 microliter of pure water was dropped onto the surface was 10°.
 ここで、着雪と滑落のメカニズムを図18に示す。図18に示すように、氷点下の雪12が試験片30のコーティング31の表面に付着すると、温度が室温と同じ+1~2℃の試験片上で雪12は試験片との界面で融解した融解水32となり、その融解水32に雪12が付着すると自重によって落雪する。なお、融解水32は、界面融解水とも呼ばれる。図示は省略するが、さらに雪12が付着し続けると雪12によって冷却された試験片により融解水が凍結し雪との結合力が高まり着雪が発生するものと考えた。従って、落雪し易くするためには、コーティングの性質を、融解水が滑落し易いものにすることと、融解水を凍結させ難くいものにすることが考えられる。融解水の滑落し易さは対水滑落角で評価し、落雪性は平均雪付着力で評価した。その結果、対水滑落角が小さい程雪付着力が小さく落雪性に優れることが判明した。従って、落雪性には滑水性が必要であると考えられる。 Here, the mechanism of snow accretion and sliding is shown in Figure 18. As shown in FIG. 18, when snow 12 at a temperature below freezing adheres to the surface of the coating 31 of the test piece 30, the snow 12 is melted water that melts at the interface with the test piece on the test piece whose temperature is the same as room temperature, +1 to 2°C. 32, and when snow 12 adheres to the melt water 32, it falls due to its own weight. Note that the melt water 32 is also called interfacial melt water. Although not shown, it is thought that if the snow 12 continues to adhere, the test piece cooled by the snow 12 will freeze the melted water, increasing the binding force with the snow and causing snow accretion. Therefore, in order to make it easier for snow to fall off, it is possible to make the properties of the coating so that melt water can easily slide off, and to make it difficult for melt water to freeze. The ease with which meltwater slides down was evaluated by the sliding angle to water, and the ability to fall snow was evaluated by the average snow adhesion force. As a result, it was found that the smaller the sliding angle to water, the smaller the snow adhesion force and the better the snow shedding performance. Therefore, it is considered that water sliding properties are necessary for snow shedding properties.
 図19は、各種コーティング材において対水滑落角と雪付着力との関係を示したグラフである。図19の破線Rに示したように、対水滑落角と雪付着力とは相関関係がある。図19に示したように、親水材Aは、親水性コーティングの中でも、対水滑落角が非常に小さく、雪付着力が非常に小さいことが見てとれる。 FIG. 19 is a graph showing the relationship between the sliding angle to water and the snow adhesion force for various coating materials. As shown by the broken line R in FIG. 19, there is a correlation between the sliding angle to water and the snow adhesion force. As shown in FIG. 19, it can be seen that, among hydrophilic coatings, hydrophilic material A has a very small sliding angle to water and a very small snow adhesion force.
 なお、上記で説明した落雪性評価試験では、親水性コーティングだけでなく、撥水性または疎水性コーティングについても試験を行っている。しかし、撥水性または疎水性コーティングは、表面を凹凸形状にすることで、その凸と凸との間に空気の層が出来て撥水または疎水となるものである。そのため、撥水性または疎水性コーティングをセンサやライトに使用することは、電磁波または光が分散してしまうといった理由からも好ましくない。その点からも、親水性コーティングは、電磁波または光が分散しないので、センサやライトに使用するコーティングに適している。 Note that in the snow-shedding evaluation test described above, not only hydrophilic coatings but also water-repellent or hydrophobic coatings were tested. However, water-repellent or hydrophobic coatings are water-repellent or hydrophobic by making the surface uneven and creating a layer of air between the protrusions. Therefore, it is undesirable to use water-repellent or hydrophobic coatings for sensors and lights, also because electromagnetic waves or light will be dispersed. From this point of view, hydrophilic coatings are suitable for coatings used in sensors and lights because electromagnetic waves or light do not scatter.
 (凍結遅延評価試験)
 次に、凍結遅延評価試験について説明する。凍結遅延評価試験は、各種コーティング材において融解水を凍結させ難くい性質について評価した試験である。凍結遅延評価試験では、コーティング材表面の界面融解水が凍結したか否かを近赤外線分光法により判別し、凍結遅延効果を着霜現象によって検証した。
(Freezing delay evaluation test)
Next, the freezing delay evaluation test will be explained. The freezing delay evaluation test is a test that evaluates the properties of various coating materials that make it difficult for melted water to freeze. In the freezing delay evaluation test, it was determined whether the interfacial melt water on the surface of the coating material was frozen or not using near-infrared spectroscopy, and the freezing delay effect was verified by the frost formation phenomenon.
 具体的に、図20に示すように、凍結遅延評価試験では、コーティング31を施した試験片30をペルチェ素子34の低温側に置いたものを近赤外線分光装置に組み込み、ペルチェ素子34を使って試験片30を冷却した。そして、ペルチェ素子34で試験片30を冷却することで、空気中の水分子35が凝縮してコーティング31の表面に凝縮水36が生じ、その凝縮水36が凍結する時間を測定した。図21に、凍結遅延評価試験における近赤外線分光法の分析条件を示す。 Specifically, as shown in FIG. 20, in the freezing delay evaluation test, a test piece 30 coated with a coating 31 was placed on the low-temperature side of a Peltier element 34 and was incorporated into a near-infrared spectrometer, and Test piece 30 was cooled. Then, by cooling the test piece 30 with the Peltier element 34, water molecules 35 in the air were condensed to form condensed water 36 on the surface of the coating 31, and the time it took for the condensed water 36 to freeze was measured. FIG. 21 shows the analysis conditions of near-infrared spectroscopy in the freezing delay evaluation test.
 図22に、近赤外線分光法による水と氷の判別方法を示す。凝縮水と氷(具体的には、霜)を分析した結果、コーティング表面に水がある時の吸光度のピーク波長が1460nm、コーティング表面に氷がある時の吸光度のピーク波長は1492nmとなり、ピーク波長に差があることが確認できた。 Figure 22 shows a method for distinguishing between water and ice using near-infrared spectroscopy. As a result of analyzing condensed water and ice (specifically, frost), the peak wavelength of absorbance when there is water on the coating surface is 1460 nm, and the peak wavelength of absorbance when there is ice on the coating surface is 1492 nm. It was confirmed that there was a difference between
 次に、図23に示すように、凍結遅延評価試験の開始から水のピーク波長が氷のピーク波長にシフトする凍結時間を計測した。その結果、コーティング材がマイティラックGII(登録商標)の場合、試験開始から約490秒で吸光度のピーク波長がシフトした。したがって、コーティング材がマイティラックGII(登録商標)の場合、試験開始からコーティング材表面の界面融解水が氷になるまでの時間は約490秒であった。それに対し、コーティング材が親水材Aの場合、試験開始から約760秒で吸光度のピーク波長がシフトした。したがって、コーティング材が親水材Aの場合、試験開始からコーティング材表面の界面融解水が氷になるまでの時間は約760秒であった。これにより、親水材Aは、マイティラックGII(登録商標)に対し、凍結遅延時間が長いことが確認できた。したがって、親水材Aは、コーティング表面の界面融解水を凍結させ難くいので、落雪性に優れるといえる。なお、親水性コーティングは、試験開始からコーティング材表面の界面融解水が氷になるまでの時間が約500秒以上であれば、マイティラックGII(登録商標)に対し、凍結遅延時間が長いといえる。 Next, as shown in FIG. 23, the freezing time during which the peak wavelength of water shifts to the peak wavelength of ice from the start of the freezing delay evaluation test was measured. As a result, when the coating material was Mighty Lac GII (registered trademark), the peak wavelength of absorbance shifted approximately 490 seconds after the start of the test. Therefore, when the coating material was Mighty Luck GII (registered trademark), the time from the start of the test until the interfacial melt water on the surface of the coating material turned into ice was about 490 seconds. On the other hand, when the coating material was hydrophilic material A, the peak wavelength of absorbance shifted approximately 760 seconds after the start of the test. Therefore, when the coating material was hydrophilic material A, the time from the start of the test until the interfacial melt water on the surface of the coating material turned into ice was about 760 seconds. This confirmed that hydrophilic material A had a longer freezing delay time than Mighty Luck GII (registered trademark). Therefore, it can be said that hydrophilic material A has excellent snow-shedding properties because it is difficult to freeze interfacial melt water on the coating surface. In addition, if the time from the start of the test until the interfacial melt water on the surface of the coating material becomes ice is approximately 500 seconds or more, it can be said that the hydrophilic coating has a longer freezing delay time than Mighty Luck GII (registered trademark). .
 (融雪電力量評価試験)
 続いて、融雪電力量評価試験について説明する。融雪電力量評価試験では、ヘッドランプヒータ等で一般に用いられる基材であるポリカーボネート(以下、「PC」という)に各種コーティング材を塗布した試験片について、着雪試験をしたときに雪が滑落するヒータの電力量を測定した。
(Snow melting power consumption evaluation test)
Next, a snow melting power consumption evaluation test will be explained. In the snow melting power consumption evaluation test, test pieces made of various coating materials applied to polycarbonate (hereinafter referred to as "PC"), which is a base material commonly used in headlamp heaters, etc. The amount of electricity was measured.
 この試験は、環境温度-5℃、風速20km/h、着雪量30mm/h、試験片面に対する雪の衝突角度90°の条件で行った。 This test was conducted under the conditions of an environmental temperature of -5°C, a wind speed of 20 km/h, a snowfall amount of 30 mm/h, and an impact angle of snow on the test piece surface of 90°.
 図24に示すように、試験片として、5つのサンプルを用意した。サンプル1は、PCであり、具体的には、アールエスコンポーネンツ株式会社のPS PRO プラスチックシートである。サンプル2は、PCにハードコートを施したものであり、ハードコートとして三菱ケミカル株式会社のアクリキング(登録商標)を使用した。サンプル3は、PCに表面処理を施したものであり、表面処理は、三菱ケミカル株式会社のダイヤビーム(登録商標)を使用した。サンプル4は、PCに表面処理を施したものであり、表面処理は、株式会社レジナックの親水材Aを使用した。サンプル5は、PCに表面処理を施したものであり、表面処理は、ダイキン工業株式会社のオプツール(登録商標)を使用した。 As shown in FIG. 24, five samples were prepared as test pieces. Sample 1 is a PC, specifically a PS PRO plastic sheet manufactured by RS Components Co., Ltd. Sample 2 is a PC coated with a hard coat, and Acryking (registered trademark) manufactured by Mitsubishi Chemical Corporation was used as the hard coat. Sample 3 is a PC subjected to surface treatment, and Diabeam (registered trademark) manufactured by Mitsubishi Chemical Corporation was used for the surface treatment. Sample 4 is a PC surface treated, and for the surface treatment, Hydrophilic Material A manufactured by Resinac Co., Ltd. was used. Sample 5 is a PC subjected to surface treatment, and Optool (registered trademark) of Daikin Industries, Ltd. was used for the surface treatment.
 試験1~4、6は、コールドスタート試験を行い、試験5、7~9は、ホットスタート試験を行った。なお、試験4と5は連続して行い、試験6~8も連続して行った。 Tests 1 to 4 and 6 were cold start tests, and tests 5, 7 to 9 were hot start tests. Note that Tests 4 and 5 were conducted consecutively, and Tests 6 to 8 were also conducted consecutively.
 コールドスタート試験では、サンプルが冷却された状態で所定の電力を通電させ雪を吹き付けた時、雪が滑落する電力量を測定した。図24の表の×印は雪が滑落しなかったことを示し、〇印は雪が滑落したことを示す。その結果、試験2においてサンプル4の親水材Aが1347W/mで最も低い電力で雪が滑落した。 In the cold start test, when a predetermined power was applied to the sample while it was cooled and snow was blown onto the sample, the amount of power required to cause the snow to slide down was measured. In the table of FIG. 24, the x mark indicates that the snow did not slide down, and the ○ mark indicates that the snow did slide down. As a result, in Test 2, the hydrophilic material A of Sample 4 caused snow to slide down at the lowest power of 1347 W/m 2 .
 ホットスタート試験では、サンプルが温まった状態で所定の電力を通電させ雪を吹き付けた時、雪が滑落する電力量を測定した。その結果、試験5においてサンプル4の親水材Aが1257W/mで最も低い電力で雪が滑落した。 In the hot start test, when a predetermined power was applied to the sample while it was warm and snow was blown onto the sample, the amount of power required to cause the snow to slide down was measured. As a result, in Test 5, the hydrophilic material A of Sample 4 caused snow to slide down at the lowest power of 1257 W/m 2 .
 この試験結果から、ヒータの消費電力を低減できるコーティング材として、親水性Aが最も好ましいと言える。親水材Aは、上記の落雪性評価試験と凍結遅延評価試験からも明らかなように、親水性を有し、さらに、滑水性、凍結遅延特性といった特性を有するものである。 From this test result, it can be said that hydrophilic A is the most preferable coating material that can reduce the power consumption of the heater. Hydrophilic material A has hydrophilicity, as is clear from the above-mentioned snow-shedding evaluation test and freezing delay evaluation test, and also has characteristics such as water sliding properties and freezing delay characteristics.
 (他の実施形態)
 (1)上記各実施形態では、車両用ヒータ装置は、車両1のヘッドライト2またはセンサ装置20として構成したものについて説明したが、それに限らず、例えば、テールランプ、ウィンカーランプなどの灯火装置として構成してもよい。
(Other embodiments)
(1) In each of the above embodiments, the vehicle heater device is configured as the headlight 2 or sensor device 20 of the vehicle 1, but is not limited thereto, and is configured as a lighting device such as a tail lamp or turn signal lamp. You may.
 (2)上記第5実施形態およびその変形例では、車両用ヒータ装置は、フロントバンパー22がヘッドライト2よりも車両前方へ大きく突き出し、バンパーの上面23が水平に近い平坦面となっているものについて説明したが、それに限らない。車両用ヒータ装置は、搭載される車両1のバンパーの形状に関わらず、バンパー用ヒータ61およびバンパー用親水性コーティング71の少なくとも一方を備えても差し支えない。 (2) In the fifth embodiment and its modifications, the vehicle heater device is such that the front bumper 22 protrudes further toward the front of the vehicle than the headlights 2, and the upper surface 23 of the bumper is a nearly horizontal flat surface. Although explained, it is not limited to that. The vehicle heater device may include at least one of the bumper heater 61 and the bumper hydrophilic coating 71 regardless of the shape of the bumper of the vehicle 1 on which it is mounted.
 (3)上記第5実施形態およびその変形例では、車両用ヒータ装置は、フロントバンパー22に対し、バンパー用ヒータ61またはバンパー用親水性コーティング71を備えるものとしたが、それに限らない。車両用ヒータ装置は、テールランプとして適用される場合、そのテールランプに対して車両下側に配置されるリヤバンパーに対しバンパー用ヒータ61およびバンパー用親水性コーティング71の少なくとも一方を備えてもよい。 (3) In the fifth embodiment and its modifications, the vehicle heater device includes the bumper heater 61 or the bumper hydrophilic coating 71 on the front bumper 22, but the present invention is not limited thereto. When the vehicle heater device is applied as a tail lamp, the rear bumper disposed below the tail lamp may include at least one of a bumper heater 61 and a bumper hydrophilic coating 71.
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態およびその一部は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 The present disclosure is not limited to the embodiments described above, and can be modified as appropriate. Furthermore, the above-described embodiments and parts thereof are not unrelated to each other, and can be combined as appropriate, except in cases where combinations are clearly impossible. Furthermore, in each of the above embodiments, it goes without saying that the elements constituting the embodiments are not necessarily essential, except in cases where it is specifically stated that they are essential or where they are clearly considered essential in principle. stomach. In addition, in each of the above embodiments, when numerical values such as the number, numerical value, amount, range, etc. of the constituent elements of the embodiment are mentioned, when it is clearly stated that it is essential, or when it is clearly limited to a specific number in principle. It is not limited to that specific number, except in cases where In addition, in each of the above embodiments, when referring to the shape, positional relationship, etc. of constituent elements, etc., the shape, It is not limited to positional relationships, etc.
(本開示の観点)
 上記した本開示については、例えば以下に示す観点として把握することができる。
 [第1の観点]
 車両用ヒータ装置において、
 車両(1)の外部へ向けて光を照射または電磁波を送受信する光源(4)またはセンサ(21)と、
 前記光源から照射される光の照射方向または前記センサにより送受信される電磁波の送受信方向に設けられ、光または電磁波を透過するレンズ(5)と、
 前記レンズに設けられ、通電により発熱するヒータ(6)と、
 前記レンズまたは前記ヒータのうち最も外気側の表面に施される親水性コーティング(7)と、を備える車両用ヒータ装置。
 [第2の観点]
 前記ヒータは、前記レンズのうち前記光源側または前記センサ側の面、または、前記レンズのうち外気側の面に設けられている、第1の観点に記載の車両用ヒータ装置。
 [第3の観点]
 前記ヒータは、カーボンナノチューブ、電熱線、または酸化インジウムスズの少なくともいずれか1つを用いて構成されている、第1または第2の観点に記載の車両用ヒータ装置。
 [第4の観点]
 前記親水性コーティングは、前記光源から照射される光の主方向に向けて前記光源を前記レンズに投影した領域、又は、前記センサから送信される電磁波の主方向に向けて前記センサを前記レンズに投影した領域を含み、且つ、前記レンズの表面積全体の50%以上の範囲に設けられる、第1ないし第3の観点のいずれか1つに記載の車両用ヒータ装置。
 [第5の観点]
 前記車両のフロントバンパー(22)またはリヤバンパーのうち少なくとも前記レンズに対し車両下方の部位に設けられ、通電により発熱するバンパー用ヒータ(61)をさらに備える、第1ないし第4の観点のいずれか1つに記載の車両用ヒータ装置。
 [第6の観点]
 前記車両のフロントバンパーまたはリヤバンパーのうち少なくとも前記レンズに対し車両下方の部位に施されたバンパー用親水性コーティング(71)をさらに備える、第1ないし第4の観点のいずれか1つに記載の車両用ヒータ装置。
 [第7の観点]
 前記車両のフロントバンパーまたはリヤバンパーのうち少なくとも前記レンズに対し車両下方の部位に設けられ、通電により発熱するバンパー用ヒータと、
 前記フロントバンパーまたは前記リヤバンパーまたは前記バンパー用ヒータのうち少なくとも前記レンズに対し車両下方の部位に施されるバンパー用親水性コーティングをさらに備える、第1ないし第4の観点のいずれか1つに記載の車両用ヒータ装置。
 [第8の観点]
 車両用ヒータ装置において、
 車両(1)の外部へ電磁波を送受信するセンサ(21)と、
 前記センサにより送受信される電磁波の送受信方向に設けられ、電磁波を透過するカバー部材(5)と、
 前記カバー部材に設けられ、通電により発熱するヒータ(6)と、
 前記カバー部材または前記ヒータのうち最も外気側の表面に施される親水性コーティング(7)と、を備える車両用ヒータ装置。
 [第9の観点]
 前記親水性コーティングは、前記親水性コーティングの表面に10マイクロリットルの純水を着滴し、水平に対する前記親水性コーティングの表面の傾斜角を10°以下としたときに前記純水が滑落する滑水性を有する、第1ないし第8の観点のいずれか1つに記載の車両用ヒータ装置。
 [第10の観点]
 前記親水性コーティングは、当該親水性コーティングを施した試験片をペルチェ素子の低温側に置いたものを近赤外線分光装置に組み込み、下記の試験条件下において、ペルチェ素子の電源を入れて、近赤外線分光法による吸光度のピーク波長を測定したとき、1460nmの水のピーク波長が現れてから、ピーク波長が1492nmの氷のピーク波長に遷移するまでの時間が500秒以上の凍結遅延特性を有する、第1ないし第9の観点のいずれか1つに記載の車両用ヒータ装置。
 但し、前記試験条件として、前記ペルチェ素子の電圧は12V、気温は25℃、相対湿度は50%RH、前記近赤外線分光法の測定条件として、測定機種はFT/IR-6700、前記試験片に対する近赤外線の入射角は20°、光源はハロゲン、前記吸光度のピーク波長の測定範囲は900~1700nm、分解能は4cm-1、積算は7回、測定間隔は10秒、測定時間は氷のピーク波長1492nmの高さ変化が小さくなるまでである。
(Perspective of this disclosure)
The present disclosure described above can be understood, for example, from the following viewpoints.
[First viewpoint]
In a vehicle heater device,
A light source (4) or sensor (21) that emits light or transmits and receives electromagnetic waves toward the outside of the vehicle (1);
a lens (5) that is provided in the irradiation direction of light emitted from the light source or in the transmission and reception direction of electromagnetic waves transmitted and received by the sensor, and that transmits light or electromagnetic waves;
a heater (6) that is provided on the lens and generates heat when energized;
A vehicle heater device comprising: a hydrophilic coating (7) applied to a surface of the lens or the heater that is closest to the outside air.
[Second viewpoint]
The vehicle heater device according to the first aspect, wherein the heater is provided on a surface of the lens on the light source side or the sensor side, or on a surface of the lens on the outside air side.
[Third viewpoint]
The vehicle heater device according to the first or second aspect, wherein the heater is configured using at least one of carbon nanotubes, heating wires, and indium tin oxide.
[Fourth viewpoint]
The hydrophilic coating is applied to an area where the light source is projected onto the lens toward the main direction of light emitted from the light source, or where the sensor is projected onto the lens toward the main direction of electromagnetic waves transmitted from the sensor. The vehicle heater device according to any one of the first to third aspects, which includes the projected region and is provided in a range of 50% or more of the entire surface area of the lens.
[Fifth viewpoint]
Any one of the first to fourth aspects, further comprising a bumper heater (61) that is provided at a portion of the front bumper (22) or the rear bumper of the vehicle at least below the lens with respect to the vehicle and generates heat when energized. The vehicle heater device described in .
[Sixth viewpoint]
The vehicle according to any one of the first to fourth aspects, further comprising a bumper hydrophilic coating (71) applied to at least a portion of the vehicle's front bumper or rear bumper below the lens. heater device.
[Seventh viewpoint]
a bumper heater that is provided at least in a portion of the front bumper or rear bumper of the vehicle below the vehicle with respect to the lens, and that generates heat when energized;
The vehicle according to any one of the first to fourth aspects, further comprising a bumper hydrophilic coating applied to a portion of the front bumper, the rear bumper, or the bumper heater that is located below the vehicle at least with respect to the lens. Vehicle heater device.
[Eighth viewpoint]
In a vehicle heater device,
a sensor (21) that transmits and receives electromagnetic waves to the outside of the vehicle (1);
a cover member (5) that is provided in the direction of transmission and reception of electromagnetic waves transmitted and received by the sensor and that transmits the electromagnetic waves;
a heater (6) that is provided on the cover member and generates heat when energized;
A vehicular heater device comprising: a hydrophilic coating (7) applied to a surface of the cover member or the heater that is closest to the outside air side.
[Ninth viewpoint]
The hydrophilic coating has a sliding mechanism in which the pure water slides down when 10 microliters of pure water is deposited on the surface of the hydrophilic coating and the angle of inclination of the surface of the hydrophilic coating with respect to the horizontal is set to 10 degrees or less. The vehicle heater device according to any one of the first to eighth aspects, which is water-based.
[Tenth viewpoint]
The above-mentioned hydrophilic coating was tested by placing a test piece with the hydrophilic coating on the low temperature side of a Peltier element, installing it in a near-infrared spectrometer, and turning on the Peltier element under the following test conditions. When the peak wavelength of absorbance is measured by spectroscopy, the time from the appearance of the peak wavelength of water at 1460 nm until the peak wavelength transitions to the peak wavelength of ice at 1492 nm is 500 seconds or more. The vehicle heater device according to any one of the first to ninth aspects.
However, as the test conditions, the voltage of the Peltier element is 12V, the temperature is 25°C, and the relative humidity is 50% RH.As the measurement conditions for the near-infrared spectroscopy, the measurement model is FT/IR-6700, and the The incident angle of near-infrared rays is 20°, the light source is halogen, the measurement range of the absorbance peak wavelength is 900 to 1700 nm, the resolution is 4 cm -1 , the integration is 7 times, the measurement interval is 10 seconds, and the measurement time is the peak wavelength of ice. This is until the height change at 1492 nm becomes small.

Claims (10)

  1.  車両用ヒータ装置において、
     車両(1)の外部へ向けて光を照射または電磁波を送受信する光源(4)またはセンサ(21)と、
     前記光源から照射される光の照射方向または前記センサにより送受信される電磁波の送受信方向に設けられ、光または電磁波を透過するレンズ(5)と、
     前記レンズに設けられ、通電により発熱するヒータ(6)と、
     前記レンズまたは前記ヒータのうち最も外気側の表面に施される親水性コーティング(7)と、を備える車両用ヒータ装置。
    In a vehicle heater device,
    A light source (4) or sensor (21) that emits light or transmits and receives electromagnetic waves toward the outside of the vehicle (1);
    a lens (5) that is provided in the irradiation direction of light emitted from the light source or in the transmission and reception direction of electromagnetic waves transmitted and received by the sensor, and that transmits light or electromagnetic waves;
    a heater (6) that is provided on the lens and generates heat when energized;
    A vehicle heater device comprising: a hydrophilic coating (7) applied to a surface of the lens or the heater that is closest to the outside air.
  2.  前記ヒータは、前記レンズのうち前記光源側または前記センサ側の面、または、前記レンズのうち外気側の面に設けられている、請求項1に記載の車両用ヒータ装置。 The vehicle heater device according to claim 1, wherein the heater is provided on a surface of the lens on the light source side or the sensor side, or on a surface of the lens on the outside air side.
  3.  前記ヒータは、カーボンナノチューブ、電熱線、または酸化インジウムスズの少なくともいずれか1つを用いて構成されている、請求項1または2に記載の車両用ヒータ装置。 The vehicle heater device according to claim 1 or 2, wherein the heater is configured using at least one of carbon nanotubes, heating wires, and indium tin oxide.
  4.  前記親水性コーティングは、前記光源から照射される光の主方向に向けて前記光源を前記レンズに投影した領域、又は、前記センサから送信される電磁波の主方向に向けて前記センサを前記レンズに投影した領域を含み、且つ、前記レンズの表面積全体の50%以上の範囲に設けられる、請求項1または2に記載の車両用ヒータ装置。 The hydrophilic coating is applied to an area where the light source is projected onto the lens toward the main direction of light emitted from the light source, or where the sensor is projected onto the lens toward the main direction of electromagnetic waves transmitted from the sensor. The vehicle heater device according to claim 1 or 2, wherein the vehicle heater device is provided in a range that includes the projected area and covers 50% or more of the entire surface area of the lens.
  5.  前記車両のフロントバンパー(22)またはリヤバンパーのうち少なくとも前記レンズに対し車両下方の部位に設けられ、通電により発熱するバンパー用ヒータ(61)をさらに備える、請求項1または2に記載の車両用ヒータ装置。 The vehicle heater according to claim 1 or 2, further comprising a bumper heater (61) that is provided in a portion of the front bumper (22) or the rear bumper of the vehicle at least below the lens and generates heat when energized. Device.
  6.  前記車両のフロントバンパーまたはリヤバンパーのうち少なくとも前記レンズに対し車両下方の部位に施されたバンパー用親水性コーティング(71)をさらに備える、請求項1または2に記載の車両用ヒータ装置。 The vehicle heater device according to claim 1 or 2, further comprising a bumper hydrophilic coating (71) applied to at least a portion of the front bumper or rear bumper of the vehicle below the lens.
  7.  前記車両のフロントバンパーまたはリヤバンパーのうち少なくとも前記レンズに対し車両下方の部位に設けられ、通電により発熱するバンパー用ヒータと、
     前記フロントバンパーまたは前記リヤバンパーまたは前記バンパー用ヒータのうち少なくとも前記レンズに対し車両下方の部位に施されたバンパー用親水性コーティングをさらに備える、請求項1または2に記載の車両用ヒータ装置。
    a bumper heater that is provided at least in a portion of the front bumper or rear bumper of the vehicle below the vehicle with respect to the lens, and that generates heat when energized;
    The vehicle heater device according to claim 1 or 2, further comprising a bumper hydrophilic coating applied to at least a portion of the front bumper, the rear bumper, or the bumper heater that is located below the lens of the vehicle.
  8.  車両用ヒータ装置において、
     車両(1)の外部へ電磁波を送受信するセンサ(21)と、
     前記センサにより送受信される電磁波の送受信方向に設けられ、電磁波を透過するカバー部材(5)と、
     前記カバー部材に設けられ、通電により発熱するヒータ(6)と、
     前記カバー部材または前記ヒータのうち最も外気側の表面に施される親水性コーティング(7)と、を備える車両用ヒータ装置。
    In a vehicle heater device,
    a sensor (21) that transmits and receives electromagnetic waves to the outside of the vehicle (1);
    a cover member (5) that is provided in the direction of transmission and reception of electromagnetic waves transmitted and received by the sensor and that transmits the electromagnetic waves;
    a heater (6) that is provided on the cover member and generates heat when energized;
    A vehicular heater device comprising: a hydrophilic coating (7) applied to a surface of the cover member or the heater that is closest to the outside air side.
  9.  前記親水性コーティングは、前記親水性コーティングの表面に10マイクロリットルの純水を着滴し、水平に対する前記親水性コーティングの表面の傾斜角を10°以下としたときに前記純水が滑落する滑水性を有する、請求項1、2または8に記載の車両用ヒータ装置。 The hydrophilic coating has a sliding mechanism in which the pure water slides down when 10 microliters of pure water is deposited on the surface of the hydrophilic coating and the angle of inclination of the surface of the hydrophilic coating with respect to the horizontal is set to 10 degrees or less. The vehicle heater device according to claim 1, 2 or 8, which is water-based.
  10.  前記親水性コーティングは、当該親水性コーティングを施した試験片をペルチェ素子の低温側に置いたものを近赤外線分光装置に組み込み、下記の試験条件において、ペルチェ素子の電源を入れて、近赤外線分光法による吸光度のピーク波長を測定したとき、1460nmの水のピーク波長が現れてから、ピーク波長が1492nmの氷のピーク波長に遷移するまでの時間が500秒以上の凍結遅延特性を有する、請求項1、2または8に記載の車両用ヒータ装置。
     但し、前記試験条件として、前記ペルチェ素子の電圧は12V、気温は25℃、相対湿度は50%RH、前記近赤外線分光法の測定条件として、測定機種はFT/IR-6700、前記試験片に対する近赤外線の入射角は20°、光源はハロゲン、前記吸光度のピーク波長の測定範囲は900~1700nm、分解能は4cm-1、積算は7回、測定間隔は10秒、測定時間は氷のピーク波長1492nmの高さ変化が小さくなるまでである。
    The above-mentioned hydrophilic coating was carried out by placing a test piece with the hydrophilic coating on the low temperature side of a Peltier element, installing it in a near-infrared spectrometer, turning on the power to the Peltier element under the following test conditions, and performing near-infrared spectroscopy. Claim: 1. The invention has freezing delay characteristics in which the time from the appearance of the peak wavelength of water at 1460 nm until the peak wavelength transitions to the peak wavelength of ice of 1492 nm is 500 seconds or more when the peak wavelength of absorbance is measured by the method. 9. The vehicle heater device according to 1, 2 or 8.
    However, as the test conditions, the voltage of the Peltier element is 12V, the temperature is 25°C, and the relative humidity is 50% RH.As the measurement conditions for the near-infrared spectroscopy, the measurement model is FT/IR-6700, and the The incident angle of near-infrared rays is 20°, the light source is halogen, the measurement range of the absorbance peak wavelength is 900 to 1700 nm, the resolution is 4 cm -1 , the integration is 7 times, the measurement interval is 10 seconds, and the measurement time is the peak wavelength of ice. This is until the height change at 1492 nm becomes small.
PCT/JP2023/022301 2022-07-06 2023-06-15 Heating device for vehicle WO2024009726A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-109100 2022-07-06
JP2022109100 2022-07-06
JP2023030221A JP2024008812A (en) 2022-07-06 2023-02-28 Vehicle heater
JP2023-030221 2023-02-28

Publications (1)

Publication Number Publication Date
WO2024009726A1 true WO2024009726A1 (en) 2024-01-11

Family

ID=89453198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022301 WO2024009726A1 (en) 2022-07-06 2023-06-15 Heating device for vehicle

Country Status (1)

Country Link
WO (1) WO2024009726A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305338A (en) * 2006-05-09 2007-11-22 Ichikoh Ind Ltd Vehicular lighting fixture
JP2016122352A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Water repellent mechanism and display device and signal having the water repellent mechanism
JP2018016251A (en) * 2016-07-29 2018-02-01 三菱自動車工業株式会社 Defroster for vehicular lamp fitting
JP2020132076A (en) * 2019-02-25 2020-08-31 株式会社デンソー Vehicular optical apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305338A (en) * 2006-05-09 2007-11-22 Ichikoh Ind Ltd Vehicular lighting fixture
JP2016122352A (en) * 2014-12-25 2016-07-07 大日本印刷株式会社 Water repellent mechanism and display device and signal having the water repellent mechanism
JP2018016251A (en) * 2016-07-29 2018-02-01 三菱自動車工業株式会社 Defroster for vehicular lamp fitting
JP2020132076A (en) * 2019-02-25 2020-08-31 株式会社デンソー Vehicular optical apparatus

Similar Documents

Publication Publication Date Title
CN104160779B (en) Having can the sheet material device of electrically heated scattered light diaphragm
DE102005015903B4 (en) headlights
CN111279246B (en) Camera device, rearview device and motor vehicle
CN106347247B (en) Solar energy activation structure for revealing hidden marks in body panel of vehicle
US10890310B2 (en) Freezing preventive LED lamp
EP3612413A1 (en) Combined approach lamp and logo lamp
JP2005195566A (en) Image processing system
KR102364589B1 (en) Road Sign Board
CN109644527B (en) Graphene heating device
WO2024009726A1 (en) Heating device for vehicle
JP2008170173A (en) Radar reflector
CN213093361U (en) Device for protecting radar of motor vehicle
JP2022032047A (en) Illumination device for automobile having heatable cover glass
CN112119325A (en) Rotatable cover plate for a vehicle sensor module
JP2024008812A (en) Vehicle heater
JP6751398B2 (en) Water heating device and lamp using the same
CN212182513U (en) Motor vehicle radar protection device
JP2002150812A (en) Headlamp for vehicle
TWI476437B (en) A vision enhancement system and a device therefor
CN108791203B (en) Sensor device for a motor vehicle, motor vehicle and method for operating a sensor device
JP2016121282A (en) Water repellent mechanism, and display device and signal having the water repellent mechanism
US11118748B1 (en) Reflector-less single lens vehicle lamp
FR3009371A1 (en) MOTOR VEHICLE SIGNALING PROJECTOR OR LIGHTS AND MICROWAVE MEMBRANE
Talwar et al. Infrared Vision for Fog Detection System to Improve Road Visibility
JP3209668B2 (en) Optical radar equipment for vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835260

Country of ref document: EP

Kind code of ref document: A1