WO2024009657A1 - Motor control device, motor control method, and elevator device - Google Patents

Motor control device, motor control method, and elevator device Download PDF

Info

Publication number
WO2024009657A1
WO2024009657A1 PCT/JP2023/020284 JP2023020284W WO2024009657A1 WO 2024009657 A1 WO2024009657 A1 WO 2024009657A1 JP 2023020284 W JP2023020284 W JP 2023020284W WO 2024009657 A1 WO2024009657 A1 WO 2024009657A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
motor
rotation angle
detection error
unit
Prior art date
Application number
PCT/JP2023/020284
Other languages
French (fr)
Japanese (ja)
Inventor
樹 志村
直人 大沼
貴 安部
恵治 松本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024009657A1 publication Critical patent/WO2024009657A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/08Driving gear ; Details thereof, e.g. seals with hoisting rope or cable operated by frictional engagement with a winding drum or sheave
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed

Definitions

  • the present invention relates to a motor control device, a motor control method, and an elevator device.
  • a first-order mechanical angle rotation angle detection error occurs due to eccentricity between the motor rotation axis and the sensor rotation center at the time of installation. Further, depending on the characteristics of the rotation angle sensor itself, there is a possibility that a pulsation component that fluctuates depending on the rotation angle is generated.
  • the first order of mechanical angle represents one time the mechanical rotation frequency of the motor. For example, if the rotation frequency is 3000 rpm (rotations per minute), the first order of mechanical angle will be 50 Hz, and the second order of mechanical angle will be 50 Hz. becomes 100Hz.
  • a magnetic encoder that detects the rotation angle by attaching a permanent magnet to the motor rotation shaft and detecting the direction of the magnetic flux density emitted by the permanent magnet has the problem of easily producing a pulsating component that is synchronized with the rotation angle. there were. For example, pulsations of 50 Hz and 100 Hz sometimes occurred. Due to this problem, especially in applications where a large torque is required when the motor is running at low speed, and the resonance point of the mechanical system driven by the motor is located at a low frequency, the pulsating component synchronized with the rotation angle of the rotation angle sensor may There was a risk that vibration noise would become noticeable at rotational speeds where the resonance points of the mechanical system coincided.
  • Patent Document 1 Conventionally, a technique described in Patent Document 1 has been known as a method for reducing sensor detection errors caused by a deviation between the rotational position of a motor rotor and the position of a permanent magnet.
  • This Patent Document 1 describes "error calculation means for calculating the error between the detected rotational position of the rotor and the magnetic pole position estimated by the magnetic pole position estimation means, and a permanent
  • the present invention includes a deviation detection means for detecting a deviation between the actual position of the magnet and the detected rotational position of the rotor, and a correction means for correcting the detected deviation.
  • the present invention has been made in view of this situation, and it is an object of the present invention to drive a motor by correcting the pulsation component that varies depending on the rotation angle detected by the rotation angle sensor.
  • the motor control device controls the motor based on the rotation speed and rotation angle of the motor.
  • This motor control device includes an estimation processing section having an axis error estimating section that estimates an axis error estimated value of the axis error of the motor using voltage and current applied to the motor and the rotational speed of the motor;
  • the present invention includes a detection error correction section that corrects the detected rotation angle of the motor based on the corrected rotation angle, and a calculation processing section that calculates the rotation speed and rotation angle of the motor based on the corrected detected rotation angle.
  • FIG. 1 is a schematic control diagram of a motor control system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of the internal configuration of a speed/angle calculation section according to the first embodiment of the present invention.
  • 1 is a block diagram showing an example of a hardware configuration of a microcomputer according to a first embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating an example of control processing of the angle detection error sampling section and the detection error component calculation section according to the first embodiment of the present invention.
  • FIG. 7 is a block diagram showing an example of the internal configuration of a speed/angle calculation section according to a second embodiment of the present invention.
  • FIG. 7 is a block diagram showing an example of the internal configuration of a speed/angle calculation section according to a third embodiment of the present invention. It is a schematic block diagram which shows the example of the whole structure of the elevator apparatus based on the 4th Embodiment of this invention.
  • FIG. 1 is a schematic control diagram of a motor control system 1 according to a first embodiment of the present invention. The configuration of the motor control system 1 will be described below.
  • the motor control system 1 includes a motor 40, an inverter 30, a current detection section 31, a rotation angle sensor 50, and a motor control device 10.
  • Inverter 30 applies voltage to motor 40 and supplies current to motor 40 .
  • the current detection unit 31 detects the current of the motor 40.
  • the rotation angle sensor 50 detects the rotation angle of the motor 40.
  • Motor control device 10 controls the voltage that inverter 30 applies to motor 40 .
  • the motor 40 can be controlled based on the rotation speed and rotation angle of the motor 40.
  • the motor control device 10 compares a rotational speed command ⁇ r* obtained from an external higher-level control unit with a rotational speed ⁇ calculated by a speed/angle calculation unit 20, which will be described later, and inputs a speed deviation to the speed control unit 102. .
  • a proportional-integral (PI) control unit is used as the speed control unit 102, and an integral value of the speed deviation is output.
  • a torque command T* obtained by adding the output of the speed control unit 102 and the starting torque that the motor control device 10 acquires from a higher-level control device (not shown) is input to the current command generation unit 103. Note that the starting torque represents a torque command value for the motor control device 10.
  • the current command generation unit 103 generates current commands Id*, d for the d-axis, which is the excitation axis (magnetic flux axis) on the rotational coordinate in vector control of the motor 40, so as to obtain a torque that matches the input torque command T*. Outputs the current command Iq* for the q-axis perpendicular to the axis.
  • the current detection unit 31 is composed of a Hall CT (Current Transformer) or the like, and detects the three-phase currents Iu, Iv, and Iw of the U-phase, V-phase, and W-phase flowing through the motor 40 together with their waveforms.
  • the current detection unit 31 does not necessarily need to detect currents of all three phases.
  • the current detection unit 31 may detect the current of any two phases, and calculate the remaining one phase assuming that the three-phase currents are in a balanced state, thereby calculating the three-phase currents Iu, Iv, and Iw. .
  • the uvw/dq coordinate conversion unit 107 converts the three-phase currents Iu, Iv, and Iw of the motor 40 detected by the current detection unit 31 into a rotation coordinate system using the rotation angle calculation value ⁇ input from the speed/angle calculation unit 20.
  • the d-axis current value Id and the q-axis current value Iq are calculated.
  • dq-axis current deviation After the deviations between the d-axis current command Id* and q-axis current command Iq* and the motor d-axis current value Id and q-axis current value Iq (hereinafter referred to as "dq-axis current deviation") are calculated, dq
  • the shaft current deviation is input to the current control section 104.
  • the current control unit 104 calculates the d-axis voltage command value Vd* and the q-axis voltage command value Vq* using the dq-axis current deviation and the rotational speed ⁇ calculated by the speed/angle calculation unit 20.
  • the d-axis voltage command value Vd* and the q-axis voltage command value Vq* are output to the dq/uvw coordinate conversion section 105 and the speed/angle calculation section 20.
  • the dq/uvw coordinate conversion unit 105 converts the d-axis voltage command value Vd* and the q-axis voltage command value Vq* into three-phase AC voltage using the rotation angle calculation value ⁇ input from the speed/angle calculation unit 20. do.
  • the converted three-phase AC voltage is output to the PWM processing section 106.
  • the PWM processing unit 106 performs PWM control of the three-phase AC voltage so that the output voltage of the inverter 30 follows the voltage command (d-axis voltage command value Vd*, q-axis voltage command value Vq*). With the above configuration, the motor 40 is controlled to a desired rotational speed.
  • the detected rotational speed value ⁇ s has pulsation components proportional to the true motor rotational speed ⁇ r, the pulsation order k, and the k-order angle detection error amplitude ak.
  • a conventional motor control device controls the speed of the motor 40 using a detected rotational speed value including these pulsation components, the output of a speed control unit that receives as input the deviation between the rotational speed command value and the detected rotational speed value. Since pulsations occur in the torque command value, motor torque pulsations occur. Then, as the rotational speed of the motor 40 increases, the pulsation component of the detected speed value becomes larger.
  • the motor torque pulsation causes vibration noise, and even when the motor 40 is operating at low speed, if the natural frequency of the load connected to the motor 40 is low, , even if the pulsation frequency was low, vibration noise could be excited.
  • the speed/angle calculation unit 20 which can correct the error in the rotation angle detected by the rotation angle sensor 50, is configured by applying position sensorless vector control technology. do.
  • FIG. 2 is a block diagram showing an example of the internal configuration of the speed/angle calculation section 20. As shown in FIG.
  • the speed/angle calculation section 20 is composed of an estimation processing section 21 and a calculation processing section 22.
  • the estimation processing section 21 includes an axis error estimation section 211 and an axis error estimation filter 212.
  • This axis error estimating unit 211 estimates an axis error estimated value of the axis error of the motor 40 using the current and voltage applied to the motor 40.
  • the axis error estimation unit 211 calculates the d-axis voltage command value Vd* and the q-axis voltage command value Vq* output from the current control unit 104, and the d-axis current value Id and q output from the uvw/dq coordinate conversion unit 107. Based on the shaft current value Iq and the rotation speed ⁇ estimated by the PI control unit 221 of the calculation processing unit 22, the angular error with respect to the actual rotation angle of the motor 40 is estimated as the shaft error. The angular error estimated by the axis error estimation unit 211 is output to the axis error estimation filter 212 as an axis error estimated value ⁇ e.
  • the motor 40 is a permanent magnet synchronous motor
  • the motor phase resistance is R
  • the d-axis inductance is Ld
  • the q-axis inductance is Lq
  • the d-axis interlinkage magnetic flux due to the permanent magnet is ⁇ d0
  • the differential operator is p
  • the error between the rotation angle ⁇ of the d-axis that can be recognized by the motor control device 10 (controller) and the true rotation angle of the d-axis is calculated as the estimated axis error value.
  • ⁇ e the following formula (4) holds true.
  • the motor control device 10 recognizes the rotation angle ⁇ input to the dq/uvw coordinate conversion unit 105 and the uvw/dq coordinate conversion unit 107.
  • the angle information used when the motor control device 10 handles the rotational coordinate system is the "rotation angle of the d-axis recognized by the motor control device 10 (controller)."
  • Equation (4) is a differential equation regarding ⁇ e, calculation on a microcomputer is complicated. Furthermore, since equation (4) includes a differential term of the dq-axis current values, it is easily affected by noise. Therefore, if an approximation is performed assuming a steady state in which the differential values of the d-axis current Id, q-axis current Iq, and ⁇ e are 0, the following equation (5) with the differential term eliminated holds true.
  • the microcomputer that controls the operation of the motor control device 10 calculates the motor phase resistance R, the d-axis inductance Ld, the q-axis inductance Lq, and the d-axis voltage command value Vd* and q. It can be easily calculated from only the axis voltage command value Vq* and the measured current value (d-axis current value Id and q-axis current value Iq). Therefore, the axis error estimating unit 211 according to the present embodiment can estimate the estimated axis error value ⁇ e of the rotation angle using equation (5). Note that the axis error estimation unit 211 is a function of a program that can be executed by a microcomputer.
  • the axis error estimation unit 211 estimates the axis error estimated value ⁇ e using equation (5), instead of the d-axis voltage command Vd* and the q-axis voltage command Vq*, a line directly detected by a voltage sensor, etc.
  • the d-axis voltage measurement value Vd and the q-axis voltage measurement value Vq obtained by coordinate transformation of the phase voltage or the phase voltage may be used.
  • the influence of the output voltage error of the inverter 30, etc. can be eliminated, so that the accuracy of estimating the estimated axis error value ⁇ e by the axis error estimator 211 is improved.
  • the axis error estimation unit 211 also uses a magnetic flux observer according to the characteristics of the motor 40 (including induction motors, synchronous reluctance motors, embedded magnet synchronous motors, surface magnet synchronous motors, etc.). It is also possible to use a method of estimating the axis error using , or a method of intentionally flowing current harmonics and estimating the axis error using motor saliency.
  • the axis error estimation filter 212 selectively reduces the sixth-order component of the current frequency applied to the motor 40 from the axis error estimation value.
  • the axis error estimation filter 212 filters the axis error estimation value ⁇ e calculated by the axis error estimation unit 211, and converts the filtered axis error estimation value ⁇ ef into an angle It is output to the detection error sampling section 224.
  • This axis error estimation filter 212 can reduce components higher than the current frequency of the motor 40 from the axis error estimated value ⁇ e.
  • the estimated axis error value ⁇ e output by the axis error estimation unit 211 contains many high frequency components such as noise components riding on the detected current of the current detection unit 31 and the sixth-order component of the current fundamental wave frequency caused by the dead time voltage error of the inverter. I'm here. Therefore, the axis error estimation filter 212 may be configured with a low-pass filter that cuts the noise component, a variable coefficient bandstop filter that selectively reduces the sixth-order component of the current fundamental frequency, or a filter that is a combination of these. desirable.
  • estimation error factors in position sensorless angle estimation using the voltage and current of the motor 40 include, for example, harmonic components of the motor induced voltage, offset and detection error of the current detection unit 31, fluctuations in dq-axis inductance due to magnetic saturation, Examples include rotation angle dependence of dq-axis inductance, change in motor phase resistance due to temperature change, and voltage drop due to ON resistance of power semiconductors of inverter 30. These factors mainly produce a DC offset component and a pulsation component of the first order or higher current frequency during position sensorless angle estimation. This is because the electrical characteristics of the motor 40 are symmetrical with respect to the electrical angle.
  • the detection error of the rotation angle sensor 50 is The pulsation frequency caused by this and the frequency higher than the first electrical angle that may occur in position sensorless angle estimation are separated in frequency.
  • the estimation processing unit 21 reduces the estimation error of the rotation angle in the position sensorless angle estimation by applying a low-pass filter or the like that cuts off the first-order or higher electrical angle to the estimated axis error value ⁇ e.
  • the estimated axis error value ⁇ e can be accurately estimated from the rotation angle detected by the rotation angle 50.
  • the calculation processing unit 22 includes a detection error correction unit 226 that corrects the detected rotation angle of the motor 40 based on the axis error estimated value estimated by the estimation processing unit 21, and corrects the detected rotation angle of the motor 40 based on the corrected detected rotation angle. Calculate the rotation speed and rotation angle of 40. For example, the calculation processing unit 22 calculates the rotation angle ⁇ and rotation speed ⁇ of the motor 40 after correcting the sensor detection error of the sensor detection angle ⁇ s input from the rotation angle sensor 50.
  • the calculation processing section 22 includes a PI control section 221, an integration section 222, a mechanical angle conversion section 223, an angle detection error sampling section 224, a detection error component calculation section 225, and a sensor detection error correction section 226. .
  • the calculation unit 228 compares the rotation angle calculation value ⁇ output from the integration unit 222 with the output from the sensor detection error correction unit 226 via the calculation unit 227, and determines the deviation ⁇ s.
  • the PI control unit 221 (an example of a rotation speed calculation unit) calculates the rotation speed based on the difference between the rotation angle and the detected rotation angle corrected by the detection error correction unit 226 based on the detection error component. For example, the PI control unit 221 calculates the rotational speed ⁇ by performing proportional integration of the deviation ⁇ s. At this time, the PI control unit 221 controls the deviation ⁇ s to zero.
  • the rotational speed ⁇ calculated by the PI control unit 221 is compared with the rotational speed command ⁇ r* input to the speed control unit 102 shown in FIG. is also output.
  • the integrating section 222 calculates the rotation angle based on the rotation speed. For example, the integrating section 222 integrates the rotational speed ⁇ to calculate the rotational angle calculation value ⁇ .
  • the rotation angle calculation value ⁇ is output to the dq/uvw coordinate conversion unit 105 and the uvw/dq coordinate conversion unit 107 shown in FIG. It is compared with the output of the calculation unit 227. Therefore, the sensor detection angle ⁇ s is input to the sensor detection error correction unit 226 before entering the PI control unit 221, and the error in the sensor detection angle ⁇ s is corrected.
  • the mechanical angle conversion unit 223 converts the estimated axis error value into an estimated mechanical angle detection error value. For example, the mechanical angle conversion unit 223 divides the estimated axis error value ⁇ ef output by the estimation processing unit 21 by the number of motor pole pairs P/2 (that is, multiplies it by 2/P) to obtain the estimated detection error value (mechanical angle) ⁇ m. Convert.
  • the angle detection error sampling unit 224 samples the waveform of the estimated mechanical angle detection error value converted by the mechanical angle conversion unit 223, and outputs angle detection error information.
  • the angle detection error sampling unit 224 samples the detection error estimation value (mechanical angle) ⁇ m converted into a mechanical angle for one rotation of the mechanical angle at equal intervals with respect to the sensor detection angle ⁇ s.
  • the number of points Ns sampled by the angle detection error sampling section 224 needs to be at least twice the pulsation order of the main mechanical angle of the angle detection error of the rotation angle sensor 50. In order to improve the estimation accuracy of the phase angle of the pulsating component of the angle detection error using the method shown in FIG. It is desirable to set it to four times or more of the mechanical angle pulsation order.
  • the detection error component calculation unit 225 calculates, as a detection error component, the amplitude and phase of the spatial order of the angle detection error waveform obtained from the angle detection error information output by the angle detection error sampling unit 224.
  • This detection error component includes the amplitude and phase of each pulsation order.
  • the detection error component calculation unit 225 performs, for example, a discrete Fourier transform on the angle detection error information to calculate the detection error occurring in the detected rotation angle included in the angle detection error information. Calculate the amplitude and phase of the spatial order of the pulsation.
  • the sensor detection error correction unit 226 corrects the detected rotation angle based on the amplitude and phase of the spatial order. For example, the sensor detection error correction unit 226 converts the antiphase component of each pulsation order calculated by the detection error component calculation unit 225 into a sensor according to the current sensor detection angle ⁇ s output by the rotation angle sensor 50 shown in FIG. By superimposing it on the detection angle ⁇ s, the rotation synchronous pulsation component of the sensor detection angle ⁇ s is removed. This process corrects the error included in the current sensor detection angle ⁇ s. Then, the sensor detection error correction unit 226 outputs the current sensor detection angle ⁇ s with the error corrected to the calculation unit 227.
  • the calculation unit 227 outputs to the calculation unit 228 a calculation value obtained by multiplying the error-corrected sensor detection angle ⁇ s by the number of motor pole pairs P/2.
  • the calculation unit 228 compares the calculation value input from the calculation unit 227 and the calculated rotation angle value ⁇ input from the integration unit 222, and calculates the deviation ⁇ s of the calculation value with respect to the calculated rotation angle value ⁇ .
  • the deviation ⁇ s is input to the PI control unit 221.
  • FIG. 3 is a block diagram showing an example of the hardware configuration of the microcomputer 60.
  • the microcomputer 60 is an example of hardware used as a computer that can operate as the motor control device 10 and the speed/angle calculation section 20 according to the present embodiment.
  • the motor control device 10 according to the present embodiment realizes the calculation method performed by the functional units shown in FIGS. 1 and 2 in cooperation by the microcomputer 60 (computer) executing a program.
  • the microcomputer 60 includes a CPU (Central Processing Unit) 61, a ROM (Read Only Memory) 62, and a RAM (Random Access Memory) 63, each connected to a bus 64. Furthermore, the microcomputer 60 includes a nonvolatile storage 65 and a network interface 66.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 61 reads software program codes that implement each function according to the present embodiment from the ROM 62, loads them into the RAM 63, and executes them. Variables, parameters, etc. generated during the calculation process of the CPU 61 are temporarily written in the RAM 63, and these variables, parameters, etc. are read out by the CPU 61 as appropriate.
  • an MPU Micro Processing Unit
  • non-volatile storage 65 for example, an HDD (Hard Disk Drive), SSD (Solid State Drive), flexible disk, optical disk, magneto-optical disk, CD-ROM, CD-R, magnetic tape, or non-volatile memory is used. It will be done.
  • an OS Operating System
  • programs for operating the microcomputer 60 are recorded in the nonvolatile storage 65.
  • the ROM 62 and the non-volatile storage 65 record programs and data necessary for the CPU 61 to operate, and are examples of computer-readable non-transitory storage media that store programs executed by the microcomputer 60. used as.
  • a NIC Network Interface Card
  • LAN Local Area Network
  • FIG. 4 is a flowchart showing an example of processing by the angle detection error sampling section 224 and the detection error component calculation section 225.
  • the process shown in FIG. 4 is part of the motor control method performed by the motor control device 10.
  • an example of processing by the angle detection error sampling section 224 and the detection error component calculation section 225 when actually identifying a sensor detection error using a microcomputer or the like will be described.
  • the angle detection error sampling section 224 waits until the rotational speed of the motor 40 reaches a certain level or higher in order to improve the sampling accuracy of the angle detection error. Therefore, the angle detection error sampling section 224 calculates the calculated rotation speed ⁇ after starting the identification of the sensor detection error. Then, the angle detection error sampling unit 224 determines whether the absolute value of the calculated rotational speed ⁇ exceeds the angular frequency threshold ⁇ c (S1).
  • the angular frequency threshold ⁇ c represents a rotation speed threshold at which the angle detection error sampling section 224 starts sampling the angle detection error. If the angle detection error sampling unit 224 determines that the absolute value of the calculated rotational speed ⁇ is equal to or less than the angular frequency threshold ⁇ c (NO in S1), it repeats the determination process in step S1.
  • angle detection error sampling unit 224 determines that the absolute value of the calculated rotational speed ⁇ exceeds the angular frequency threshold ⁇ c (YES in S1), it starts angle detection error sampling (S2).
  • the estimated axis error value ⁇ e output from the axis error estimator 211 that calculates the angle detection error waveform is originally approximated by Expression (5), ignoring the differential term of the differential equation expressed by Expression (4). It is a value. Therefore, it is desirable to set the angular frequency threshold ⁇ c near the final rotational speed command ⁇ r* specified by the upper control system.
  • the detection error component calculation unit 225 is configured using a method that depends on the voltage induced by the rotation of the motor 40, and the angle detection error sampled by the angle detection error sampling unit 224 is calculated using the method shown in equation (5). In order to calculate the error component, it is necessary to ensure the calculation accuracy of the angle detection error. Therefore, it is desirable that the angle detection error sampling section 224 sets the angular frequency threshold ⁇ c to 10% or more of the motor rated rotational speed.
  • the angle detection error sampling unit 224 determines whether sampling of the angle detection error waveform for one round of mechanical angle has been completed (S3). If sampling for one round of mechanical angle has not been completed (NO in S3), the angle detection error sampling unit 224 continues the process in step S2 again. On the other hand, if sampling for one round of mechanical angle has been completed (YES in S3), the angle detection error sampling unit 224 outputs angle detection error information.
  • the detection error component calculation unit 225 calculates the error component based on the angle detection error information (S4), and ends this process. As described above, for example, discrete Fourier transform can be used to calculate the error component.
  • the angle detection error pulsation of the rotation angle sensor 50 is estimated by the sensorless estimated rotation angle when the motor 40 is operated at medium to high speed, and the angle detection error pulsation of the rotation angle sensor 50 is estimated based on the estimated angle detection error information. Correct the sensor detection angle ⁇ s. Therefore, it is possible to control the motor 40 without being affected by the angle detection error of the rotation angle sensor 50, and to prevent vibration noise of the motor 40.
  • the motor control device 10 drives the motor 40 by correcting the pulsation component that varies depending on the rotation angle detected by the rotation angle sensor 50, thereby reducing vibration and noise in various devices driven by the motor 40. be able to.
  • Identification of the sensor detection error by the calculation processing unit 22 described above can be performed at any timing even when the motor 40 is connected to a load and is being operated. For example, when the detection error characteristics of the rotation angle sensor 50 change due to a temperature change, the calculation processing unit 22 repeats the above described process at a sufficiently short period relative to the temperature rise due to heat generation of the motor 40 or the time change rate of periodic environmental temperature change. Execute the identification process. By the calculation processing unit 22 repeatedly performing the sensor detection error identification process, vibration noise originating from the rotation angle sensor 50 can be prevented even if the characteristics of the rotation angle sensor 50 change.
  • the calculation processing unit 22 automatically corrects the detection error by executing the above identification process. Can be done.
  • the rotation synchronous pulsation component of the rotation angle sensor 50 can be removed, and vibration noise originating from the rotation angle sensor 50 can be prevented.
  • FIG. 5 is a block diagram showing a configuration example of a speed/angle calculation section 20A according to the second embodiment.
  • the speed/angle calculation unit 20A replaces the speed/angle calculation unit 20 included in the motor control device 10 according to the first embodiment shown in FIG.
  • the speed/angle calculation unit 20A according to the second embodiment has a function of outputting the rotation speed and angle detected by the rotation angle sensor 50 and the rotation speed and angle estimated without a position sensor.
  • a speed/angle calculation section 20A according to the second embodiment includes an estimation processing section 21A and a calculation processing section 22A.
  • the estimation processing section 21A includes a PI control section 213 and an integration section 214 in addition to the axis error estimation section 211 and the axis error estimation filter 212 included in the estimation processing section 21 according to the first embodiment.
  • the PI control unit 213 (an example of a rotational speed estimation unit) estimates the estimated rotational speed based on the estimated axis error value. For example, the PI control unit 213 performs position sensorless speed estimation so that the output of the axis error estimation filter 212 becomes zero. Therefore, the PI control unit 213 calculates the position sensorless estimated speed ⁇ e (electrical angle) by performing proportional integration of the estimated axis error value ⁇ ef output from the axis error estimation filter 212.
  • the position sensorless estimated speed ⁇ e (electrical angle) is output to the axis error estimation section 211, the axis error estimation filter 212, the integration section 214, and the mechanical angle estimation integration section 223A of the calculation processing section 22A. Further, when the rotation angle sensor 50 fails, the position sensorless estimated speed ⁇ e (electrical angle) is used by the speed control section 102 and the current control section 104 shown in FIG.
  • the integrating unit 214 estimates the estimated rotation angle based on the estimated rotation speed. For example, the integrating unit 214 integrates the position sensorless estimated speed ⁇ e (electrical angle) to calculate the position sensorless estimated angle ⁇ e (electrical angle). Further, when the rotation angle sensor 50 is out of order, the position sensorless estimated angle ⁇ e (electrical angle) is output to the dq/uvw coordinate conversion unit 105 and the uvw/dq coordinate conversion unit 107.
  • the calculation processing section 22A of the speed/angle calculation section 20A includes a mechanical angle estimation integration section 223A.
  • the mechanical angle estimation and integration unit 223A (an example of a conversion unit) converts the integrated estimated rotational speed into an estimated mechanical angle rotation angle.
  • the mechanical angle estimation and integration unit 223A uses the position sensorless estimated speed ⁇ e (electrical angle) calculated by the PI control unit 213 to calculate the position sensorless estimated angle ⁇ m (mechanical angle).
  • an electrical angle is calculated.
  • the calculation processing unit 22 sets the initial value of the mechanical angle estimation and integration unit 223A to the measured value of the mechanical angle obtained from the rotation angle sensor 50 in order to estimate the mechanical angle. Then, the mechanical angle estimation integration unit 223A calculates the position sensorless estimated angle ⁇ m (mechanical angle) without using a position sensor.
  • the detection error calculation unit 229 compares the estimated rotation angle of the mechanical angle and the detected rotation angle, and calculates the detection error difference between the estimated rotation angle of the mechanical angle and the detected rotation angle. For example, the detection error calculation unit 229 compares the sensor detection angle ⁇ s of the rotation angle sensor 50 and the position sensorless estimated angle ⁇ m (mechanical angle), and calculates the detection error estimated value (mechanical angle) ⁇ m as the detection error difference. do. This detection error estimated value (mechanical angle) ⁇ m is input to the angle detection error sampling section 224.
  • the angle detection error sampling section 224 samples the waveform of the detection error difference and outputs angle detection error information. For example, the angle detection error sampling unit 224 samples one rotation of the mechanical angle at equal intervals with respect to the sensor detection angle ⁇ s of the rotation angle sensor 50, except for the detection error estimated value (mechanical angle) ⁇ m, which is the detection error difference. .
  • the speed/angle calculation unit 20A can calculate the rotation angle and rotation speed without using any position sensor other than the rotation angle sensor 50. Therefore, the motor control device 10 including the speed/angle calculation section 20A shifts to position sensorless control when a failure of the rotation angle sensor 50 occurs. Then, the motor control device 10 continues to control the motor 40 using the position sensorless estimated speed ⁇ e and the position sensorless estimated angle ⁇ e (electrical angle), and can ensure redundancy of the motor control device 10.
  • FIG. 6 is a block diagram showing a configuration example of the speed/angle calculation section 20B according to the third embodiment.
  • the speed/angle calculation unit 20B replaces the speed/angle calculation unit 20 included in the motor control device 10 according to the first embodiment shown in FIG.
  • the speed/angle calculation unit 20B according to the third embodiment has a function of calculating the rotation speed and angle by switching between the rotation speed detected by the rotation angle sensor 50 and the rotation speed estimated without a position sensor. .
  • the configuration examples and operation examples of the functional units other than the speed/angle calculation unit 20B in the motor control device 10 are the same as those in the first embodiment, and therefore the description thereof will be omitted.
  • the estimation processing section 21 of the speed/angle calculation section 20B according to the third embodiment has the same configuration as the estimation processing section 21 according to the first embodiment.
  • the axis error estimation value ⁇ ef output from the axis error estimation filter 212 is output to the switching unit 230 of the calculation processing unit 22B.
  • the calculation processing unit 22B of the speed/angle calculation unit 20B according to the third embodiment includes a switching unit 230 in addition to each functional unit included in the calculation processing unit 22A according to the second embodiment.
  • the calculation processing unit 22B calculates the rotation speed and rotation angle based on the estimated axis error value or the calculated axis error value switched by the switching unit 230.
  • This calculation processing section 22B has a configuration in which the PI control section 213 and the integration section 214 of the calculation processing section 22A according to the second embodiment are integrated into a PI control section 221 and an integration section 222.
  • the switching unit 230 switches to either the axis error estimated value estimated by the estimation processing unit 21 or the axis error calculation value calculated by the detection error correction unit 226 based on the detected rotation angle.
  • the switching unit 230 has a difference ⁇ s (axis error calculation (an example of a value) and a switching signal from a higher-level control system are input. Based on the switching signal, the switching unit 230 switches the signal output to the PI control unit 221 to either the estimated axis error value ⁇ ef or the deviation ⁇ s of the calculated rotation angle value ⁇ .
  • the mechanical angle estimation and integration unit 223A (an example of a conversion unit) converts the rotational speed ⁇ calculated by the PI control unit 221 by integrating the estimated axis error value ⁇ ef or the deviation ⁇ s of the calculated rotational angle value ⁇ into the rotational angle ⁇ m of the mechanical angle. Convert.
  • the detection error calculation unit 229 compares the mechanical angle rotation angle ⁇ m and the detected rotation angle ⁇ s to calculate a detection error difference between the mechanical angle rotation angle ⁇ m and the detected rotation angle ⁇ s.
  • the angle detection error sampling section 224 samples the waveform of the detection error difference and outputs angle detection error information.
  • the detection error component calculation unit 225 calculates a detection error component included in the detected rotation angle based on the angle detection error information.
  • the PI control unit 221 calculates the rotation speed ⁇ based on either the estimated axis error value ⁇ ef or the deviation ⁇ s of the calculated rotation angle value ⁇ , which is switched and outputted by the switching unit 230.
  • the integrating section 222 integrates the calculated rotational speed ⁇ and outputs it as a calculated rotational angle value ⁇ .
  • the number of PI control sections and integration sections can be reduced compared to the speed/angle calculation section 20A according to the second embodiment. Therefore, it is possible to reduce the processing amount and memory usage of the microcomputer that implements the functions of the speed/angle calculation section 20B.
  • the switching unit 230 switches the rotation angle deviation output to the PI control unit 221 to either the estimated axis error value ⁇ ef or the deviation ⁇ s of the calculated rotation angle value ⁇ . For this reason, the motor control device 10 uses the rotational speed ⁇ and the rotational angle ⁇ calculated from the rotational angle deviation appropriate for controlling the motor 40.
  • FIG. 7 is a schematic configuration diagram showing an example of the overall configuration of an elevator device 300 according to the fourth embodiment.
  • the elevator device 300 according to the present embodiment includes the motor control device 10 having the speed/angle calculating section according to any one of the first to third embodiments described above.
  • a car 303 is connected to one end of the main rope 306, and a counterweight 304 is connected to the other end of the main rope 306.
  • the main rope 306 is wound around the sheave 307 and direction change pulley 305 of the hoist 301 .
  • the car 303 and the counterweight 304 are suspended within the hoistway 302.
  • the hoisting machine 301 is configured by an inverter 30, a motor 40, a sheave 307, a rotation angle sensor 50, and an electromagnetic brake 308.
  • a main rope 306 is wound around the sheave 307 to raise and lower the car 303.
  • the motor 40 included in the hoisting machine 301 is drive-controlled by the motor control device 10 and the inverter 30, and rotates the sheave 307.
  • the rotation of the sheave 307 causes the main rope 306 to be driven by the sheave 307 .
  • the car 303 and the counterweight 304 move up and down in vertically opposite directions within the hoistway 302.
  • the car 303 moves while being guided by a car guide rail (not shown), and the counterweight 304 also moves vertically while being guided by a counterweight guide rail (not shown).
  • the motor control device 10 executes the processes of the estimation processing section 21 and the calculation processing section 22 according to the first to third embodiments described above during an operating state in which the car 303 is moving up and down.
  • an electromagnetic brake 308 provided in the hoisting machine 301 brakes the rotation of the hoisting machine 301.
  • the electromagnetic brake 308 for example, a disc type electromagnetic brake is applied.
  • the hoisting machine 301 is configured to include one electromagnetic brake 308, but may be configured to include a plurality of electromagnetic brakes 308. With this configuration, the plurality of electromagnetic brakes 308 can constitute a multi-system brake by operating simultaneously.
  • the elevator device 300 In the elevator device 300, a plurality of natural vibration modes exist in the vicinity of several Hz to several tens of Hz due to the elasticity of the main rope 306, etc. Therefore, when the motor torque pulsation frequency of the hoisting machine 301 matches the above-mentioned natural vibration mode, vertical vibrations are excited in the car 303, deteriorating the passenger comfort. Therefore, if the rotation angle sensor 50 has an angle detection error, this may deteriorate the ride comfort.
  • deterioration of ride comfort is suppressed or prevented by correcting the angle detection error ⁇ e using the method according to the first to third embodiments.
  • Gearless hoisting machines which have become mainstream in recent years, often have a multi-pole structure with 20 or more motor poles in order to obtain large torque with a small size. Therefore, using the methods according to the first to third embodiments is suitable for correcting sensor detection errors in position sensorless angle estimation.
  • the elevator device 300 loads passengers into a car 303 at a plurality of elevator stops 310 provided on arbitrary floors of the building 330. Thereafter, in the elevator device 300, the motor control device 10 controls the rotational speed of the motor 40 according to the speed command output by the elevator control device 320, and the car 303 is stopped at the elevator landing 310 of the target floor, thereby transporting passengers. transport. At this time, if the departure floor and the destination floor are sufficiently far apart, there is a constant speed section in which the speed command output by the elevator control device 320 and the rotational speed of the motor 40 are constant.
  • the torque required by the hoisting machine 301 is mainly the sum of the following three types of torque.
  • Torque for accelerating and decelerating the mass of the car 301, counterweight 304, and main rope 306, and the rotational inertia of the hoist 301 and direction change pulley 305 (referred to as “acceleration/deceleration torque")
  • Torque to balance the difference in gravity applied to the car 301, the counterweight 304, and the main rope 306 (referred to as "balance torque”)
  • Friction between the car 301 or counterweight 304 and the guide rail, bearing loss of the sheave 307 and direction change pulley 305, and deformation of the main rope 306 by the sheave 307 and direction change pulley 305. (referred to as “running loss torque”)
  • the acceleration/deceleration torque becomes 0, so only the balance torque and running loss torque become the output torque of the hoist 301.
  • the balancing torque can also be considered to be approximately constant.
  • the running loss torque can also be considered to be approximately constant.
  • the rotational speed and torque of the motor 40 are approximately constant. Therefore, in the position sensorless angle detection error estimation using equation (5) etc., a steady state is assumed in which the differential value of the d-axis current Id of the motor 40, the q-axis current Iq, and the estimated axis error value ⁇ e is 0. The calculation formula is approximated. Therefore, if the rotation speed and torque are constant, the accuracy of estimating the rotation angle calculation value ⁇ is improved. Therefore, the timing for identifying the sensor detection error of the rotation angle sensor 50 is preferably during the constant speed section.
  • While the elevator device 300 continues to operate, for example, by identifying sensor detection errors every time a constant speed section occurs, maintenance-free and continuous operation can be performed against changes in angle detection error characteristics due to changes in sensor characteristics or surrounding environment. It is possible to perform effective correction.
  • the type of motor 40 shown in FIG. 1 may be an induction motor.
  • an AC voltage source that can output any voltage may be used.
  • the elevator device 300 according to the fourth embodiment may be a so-called machine room-less elevator in which a hoisting machine and an elevator control device are installed in a hoistway.
  • the motor control device 10 and the speed/angle calculating sections 20, 20A, and 20B according to the first to third embodiments may be used in a conveyance device such as a belt conveyor, in addition to the elevator device 300.
  • SYMBOLS 1 Motor control system, 10... Motor control device, 20... Speed/angle calculation part, 21... Estimation processing part, 22... Calculation processing part, 30... Inverter, 31... Current detection part, 40... Motor, 50... Rotation angle Sensor, 211... Axis error estimation section, 212... Axis error estimation filter, 221... PI control section, 222... Integration section, 223... Mechanical angle conversion section, 223A... Mechanical angle estimation integration section, 224... Angle detection error sampling section, 225...Detection error component calculation unit, 226...Sensor detection error correction unit, 227...Calculation unit, 228...Calculation unit, 300...Elevator device

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)

Abstract

Provided is a motor control device comprising an estimation processing unit which includes an axis error estimation unit for using a voltage and a current applied to a motor and a rotation speed of the motor to estimate an axis error estimation value of an axis error of the motor and a calculation processing unit which includes a detection error correction unit for correcting a detected rotation angle of the motor on the basis of the axis error estimation value and calculates the rotation speed and the rotation angle of the motor on the basis of the detected rotation angle after the correction. The motor control device controls the motor on the basis of the rotation speed and the rotation angle of the motor.

Description

モータ制御装置、モータ制御方法及びエレベーター装置Motor control device, motor control method and elevator device
 本発明は、モータ制御装置、モータ制御方法及びエレベーター装置に関する。 The present invention relates to a motor control device, a motor control method, and an elevator device.
 界磁に永久磁石を用いた永久磁石モータで精密なトルク・回転速度制御を行うためには、回転子の回転角度情報が必要である。回転角度情報の検出方法として、主に光学式エンコーダ、磁気エンコーダ、レゾルバといった回転角センサを用いて直接検出する手法と、モータの誘起電圧やインダクタンスの突極性を利用したセンサレス検出手法とがある。 In order to perform precise torque and rotational speed control with a permanent magnet motor that uses permanent magnets for the field, information on the rotation angle of the rotor is required. There are two main methods for detecting rotation angle information: a direct detection method using a rotation angle sensor such as an optical encoder, magnetic encoder, or resolver, and a sensorless detection method that uses the saliency of the motor's induced voltage or inductance.
 回転角センサは、取り付け時のモータ回転軸とセンサ回転中心間の偏心によって機械角1次の回転角度検出誤差が生じる。また、回転角センサ自体の特性に応じて回転角度に応じて変動する脈動成分が出る可能性がある。ここで、機械角1次の次数は、モータの機械的な回転周波数の1倍を表しており、例えば、3000rpm(rotations per minute)であれば、機械角1次は50Hzとなり、機械角2次は100Hzとなる。 In the rotation angle sensor, a first-order mechanical angle rotation angle detection error occurs due to eccentricity between the motor rotation axis and the sensor rotation center at the time of installation. Further, depending on the characteristics of the rotation angle sensor itself, there is a possibility that a pulsation component that fluctuates depending on the rotation angle is generated. Here, the first order of mechanical angle represents one time the mechanical rotation frequency of the motor. For example, if the rotation frequency is 3000 rpm (rotations per minute), the first order of mechanical angle will be 50 Hz, and the second order of mechanical angle will be 50 Hz. becomes 100Hz.
 特に、モータ回転軸に永久磁石を貼り付け、その永久磁石が発する磁束密度の方向を検出することで回転角度を検出する方式の磁気エンコーダは、回転角度に同期した脈動成分を生じやすいという問題があった。例えば、50Hz、100Hzの脈動が生じることがあった。この問題により、特にモータが低速時に大トルクが必要であり、かつモータで駆動される機構系の共振点が低周波に位置する用途とした場合、回転角センサの回転角度に同期した脈動成分と機構系共振点が一致する回転数で振動騒音が顕著になるおそれがあった。 In particular, a magnetic encoder that detects the rotation angle by attaching a permanent magnet to the motor rotation shaft and detecting the direction of the magnetic flux density emitted by the permanent magnet has the problem of easily producing a pulsating component that is synchronized with the rotation angle. there were. For example, pulsations of 50 Hz and 100 Hz sometimes occurred. Due to this problem, especially in applications where a large torque is required when the motor is running at low speed, and the resonance point of the mechanical system driven by the motor is located at a low frequency, the pulsating component synchronized with the rotation angle of the rotation angle sensor may There was a risk that vibration noise would become noticeable at rotational speeds where the resonance points of the mechanical system coincided.
 従来、モータ回転子の回転位置と、永久磁石位置のずれによって生じるセンサ検出誤差を低減する手法として、特許文献1に記載された技術が知られている。この特許文献1には、「検出された回転子の回転位置と磁極位置推定手段で推定された磁極位置との誤差を算出する誤差演算手段と、演算された誤差から回転子に設けられた永久磁石の実際位置と検出された回転子の回転位置とのずれを検出するずれ検出手段と、検出されたずれを補正する補正手段とを有する」と記載されている。 Conventionally, a technique described in Patent Document 1 has been known as a method for reducing sensor detection errors caused by a deviation between the rotational position of a motor rotor and the position of a permanent magnet. This Patent Document 1 describes "error calculation means for calculating the error between the detected rotational position of the rotor and the magnetic pole position estimated by the magnetic pole position estimation means, and a permanent The present invention includes a deviation detection means for detecting a deviation between the actual position of the magnet and the detected rotational position of the rotor, and a correction means for correcting the detected deviation.
特開平9-56199号公報Japanese Patent Application Publication No. 9-56199
 特許文献1に記載された技術では、磁極検出位置と磁極推定位置との誤差量として、回転角度によらない一定値が想定されている。このため、回転角センサの回転角度に応じて変動する脈動成分を補正できないという問題があった。脈動成分が残っていると、交流モータが一定回転せず、回転速度に脈動が生じるため、モータにより駆動される各種装置に振動や騒音が生じることがあった。 In the technique described in Patent Document 1, the amount of error between the detected magnetic pole position and the estimated magnetic pole position is assumed to be a constant value regardless of the rotation angle. Therefore, there has been a problem in that it is not possible to correct the pulsation component that varies depending on the rotation angle of the rotation angle sensor. If the pulsating component remains, the AC motor does not rotate at a constant rate and the rotational speed pulsates, which can cause vibrations and noise in various devices driven by the motor.
 本発明はこのような状況に鑑みて成されたものであり、回転角センサが検出する回転角度に応じて変動する脈動成分を補正してモータを駆動することを目的とする。 The present invention has been made in view of this situation, and it is an object of the present invention to drive a motor by correcting the pulsation component that varies depending on the rotation angle detected by the rotation angle sensor.
 本発明に係るモータ制御装置は、モータの回転速度及び回転角度に基づいてモータを制御する。このモータ制御装置は、モータに加わる電圧及び電流と、モータの回転速度とを用いて、モータの軸誤差の軸誤差推定値を推定する軸誤差推定部を有する推定処理部と、軸誤差推定値に基づいて、モータの検出回転角度を補正する検出誤差補正部を有し、補正された検出回転角度に基づいてモータの回転速度及び回転角度を算出する算出処理部と、を備える。 The motor control device according to the present invention controls the motor based on the rotation speed and rotation angle of the motor. This motor control device includes an estimation processing section having an axis error estimating section that estimates an axis error estimated value of the axis error of the motor using voltage and current applied to the motor and the rotational speed of the motor; The present invention includes a detection error correction section that corrects the detected rotation angle of the motor based on the corrected rotation angle, and a calculation processing section that calculates the rotation speed and rotation angle of the motor based on the corrected detected rotation angle.
 本発明によれば、軸誤差推定値に基づいて、モータの検出回転角度を補正することで、回転角センサが検出する回転角度に応じて変動する脈動成分を補正してモータを駆動するので、モータにより駆動される各種装置に振動や騒音を低減することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, by correcting the detected rotation angle of the motor based on the estimated axis error value, the motor is driven by correcting the pulsation component that varies depending on the rotation angle detected by the rotation angle sensor. Vibration and noise can be reduced in various devices driven by motors.
Problems, configurations, and effects other than those described above will be made clear by the following description of the embodiments.
本発明の第1の実施形態に係るモータ制御システムの制御模式図である。FIG. 1 is a schematic control diagram of a motor control system according to a first embodiment of the present invention. 本発明の第1の実施形態に係る速度・角度計算部の内部構成例を示すブロック図である。FIG. 2 is a block diagram showing an example of the internal configuration of a speed/angle calculation section according to the first embodiment of the present invention. 本発明の第1の実施形態に係るマイクロコンピュータのハードウェア構成例を示すブロック図である。1 is a block diagram showing an example of a hardware configuration of a microcomputer according to a first embodiment of the present invention. FIG. 本発明の第1の実施形態に係る角度検出誤差サンプリング部と検出誤差成分算出部の制御処理の例を示すフローチャートである。7 is a flowchart illustrating an example of control processing of the angle detection error sampling section and the detection error component calculation section according to the first embodiment of the present invention. 本発明の第2の実施形態に係る速度・角度計算部の内部構成例を示すブロック図である。FIG. 7 is a block diagram showing an example of the internal configuration of a speed/angle calculation section according to a second embodiment of the present invention. 本発明の第3の実施形態に係る速度・角度計算部の内部構成例を示すブロック図である。FIG. 7 is a block diagram showing an example of the internal configuration of a speed/angle calculation section according to a third embodiment of the present invention. 本発明の第4の実施形態に係るエレベーター装置の全体構成例を示す概略構成図である。It is a schematic block diagram which shows the example of the whole structure of the elevator apparatus based on the 4th Embodiment of this invention.
 以下、本発明を実施するための形態について、添付図面を参照して説明する。本明細書及び図面において、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。なお、本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、或る構成要素が他の構成要素の一部であること、或る構成要素の一部と他の構成要素の一部とが重複していること、等を許容する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. In this specification and the drawings, components having substantially the same functions or configurations are designated by the same reference numerals and redundant explanations will be omitted. It should be noted that the various components of the present invention do not necessarily have to exist independently, and it is possible that a plurality of components are formed as a single member, or that one component is formed of a plurality of members. It is allowed that a certain component is a part of another component, that a part of a certain component overlaps with a part of another component, etc.
[第1の実施形態]
 始めに、図1乃至図4を用いて、第1の実施形態に係るモータ制御装置の構成例及び動作例を説明する。
 図1は、本発明の第1の実施形態に係るモータ制御システム1の制御模式図である。以下、モータ制御システム1の構成について説明する。
[First embodiment]
First, a configuration example and an operation example of a motor control device according to a first embodiment will be described using FIGS. 1 to 4.
FIG. 1 is a schematic control diagram of a motor control system 1 according to a first embodiment of the present invention. The configuration of the motor control system 1 will be described below.
 モータ制御システム1は、モータ40と、インバータ30と、電流検出部31と、回転角センサ50と、モータ制御装置10と、を備える。
 インバータ30は、モータ40に電圧を印加し、モータ40に電流を供給する。
 電流検出部31は、モータ40の電流を検出する。
 回転角センサ50は、モータ40の回転角度を検出する。
 モータ制御装置10は、インバータ30がモータ40に印加する電圧を制御する。このモータ40の回転速度及び回転角度に基づいてモータ40を制御することができる。
The motor control system 1 includes a motor 40, an inverter 30, a current detection section 31, a rotation angle sensor 50, and a motor control device 10.
Inverter 30 applies voltage to motor 40 and supplies current to motor 40 .
The current detection unit 31 detects the current of the motor 40.
The rotation angle sensor 50 detects the rotation angle of the motor 40.
Motor control device 10 controls the voltage that inverter 30 applies to motor 40 . The motor 40 can be controlled based on the rotation speed and rotation angle of the motor 40.
 モータ制御装置10は、外部の上位制御部から取得した回転速度指令ωr*と、後述する速度・角度計算部20が算出した回転速度ωとを比較し、速度偏差を速度制御部102に入力する。 The motor control device 10 compares a rotational speed command ωr* obtained from an external higher-level control unit with a rotational speed ω calculated by a speed/angle calculation unit 20, which will be described later, and inputs a speed deviation to the speed control unit 102. .
 速度制御部102として、例えば比例積分(PI)制御部が用いられ、速度偏差の積分値が出力される。速度制御部102の出力と、モータ制御装置10が不図示の上位制御装置等から取得した起動トルクを加算したトルク指令T*が電流指令生成部103に入力される。なお、起動トルクは、モータ制御装置10に対するトルク指令値を表している。 For example, a proportional-integral (PI) control unit is used as the speed control unit 102, and an integral value of the speed deviation is output. A torque command T* obtained by adding the output of the speed control unit 102 and the starting torque that the motor control device 10 acquires from a higher-level control device (not shown) is input to the current command generation unit 103. Note that the starting torque represents a torque command value for the motor control device 10.
 電流指令生成部103は、入力されたトルク指令T*と一致したトルクが得られるようにモータ40のベクトル制御における回転座標上の励磁軸(磁束軸)であるd軸の電流指令Id*、d軸と直交するq軸の電流指令Iq*を出力する。 The current command generation unit 103 generates current commands Id*, d for the d-axis, which is the excitation axis (magnetic flux axis) on the rotational coordinate in vector control of the motor 40, so as to obtain a torque that matches the input torque command T*. Outputs the current command Iq* for the q-axis perpendicular to the axis.
 ここで、電流検出部31及びuvw/dq座標変換部107の構成について説明する。
 電流検出部31は、ホールCT(Current Transformer)等から構成され、モータ40に流れるU相、V相及びW相の3相電流Iu、Iv及びIwをその波形と共に検出する。ただし、電流検出部31が必ずしも3相全ての電流を検出する必要はない。電流検出部31がいずれかの2相の電流を検出し、残る1相は3相電流が平衡状態であると仮定して演算することにより、3相電流Iu、Iv及びIw求める構成としてもよい。
Here, the configurations of the current detection section 31 and the uvw/dq coordinate conversion section 107 will be explained.
The current detection unit 31 is composed of a Hall CT (Current Transformer) or the like, and detects the three-phase currents Iu, Iv, and Iw of the U-phase, V-phase, and W-phase flowing through the motor 40 together with their waveforms. However, the current detection unit 31 does not necessarily need to detect currents of all three phases. The current detection unit 31 may detect the current of any two phases, and calculate the remaining one phase assuming that the three-phase currents are in a balanced state, thereby calculating the three-phase currents Iu, Iv, and Iw. .
 uvw/dq座標変換部107は、電流検出部31が検出したモータ40の3相電流Iu、Iv及びIwを、速度・角度計算部20から入力される回転角度算出値θを用いて回転座標系のdq座標に変換し、d軸電流値Idとq軸電流値Iqを算出する。d軸電流指令Id*及びq軸電流指令Iq*と、モータd軸電流値Id及びq軸電流値Iqのそれぞれの偏差(以下、「dq軸電流偏差」と呼ぶ)が算出された後、dq軸電流偏差が電流制御部104に入力される。 The uvw/dq coordinate conversion unit 107 converts the three-phase currents Iu, Iv, and Iw of the motor 40 detected by the current detection unit 31 into a rotation coordinate system using the rotation angle calculation value θ input from the speed/angle calculation unit 20. The d-axis current value Id and the q-axis current value Iq are calculated. After the deviations between the d-axis current command Id* and q-axis current command Iq* and the motor d-axis current value Id and q-axis current value Iq (hereinafter referred to as "dq-axis current deviation") are calculated, dq The shaft current deviation is input to the current control section 104.
 電流制御部104は、dq軸電流偏差と、速度・角度計算部20が算出した回転速度ωとを用いて、d軸電圧指令値Vd*及びq軸電圧指令値Vq*を算出する。d軸電圧指令値Vd*及びq軸電圧指令値Vq*は、dq/uvw座標変換部105及び速度・角度計算部20に出力される。 The current control unit 104 calculates the d-axis voltage command value Vd* and the q-axis voltage command value Vq* using the dq-axis current deviation and the rotational speed ω calculated by the speed/angle calculation unit 20. The d-axis voltage command value Vd* and the q-axis voltage command value Vq* are output to the dq/uvw coordinate conversion section 105 and the speed/angle calculation section 20.
 dq/uvw座標変換部105は、d軸電圧指令値Vd*及びq軸電圧指令値Vq*を、速度・角度計算部20から入力される回転角度算出値θを用いて三相交流電圧に変換する。変換された三相交流電圧は、PWM処理部106に出力される。 The dq/uvw coordinate conversion unit 105 converts the d-axis voltage command value Vd* and the q-axis voltage command value Vq* into three-phase AC voltage using the rotation angle calculation value θ input from the speed/angle calculation unit 20. do. The converted three-phase AC voltage is output to the PWM processing section 106.
 PWM処理部106は、インバータ30の出力電圧が電圧指令(d軸電圧指令値Vd*、q軸電圧指令値Vq*)に追従するように、三相交流電圧のPWM制御を行う。
 上記の構成により、モータ40が所望の回転速度に制御される。
The PWM processing unit 106 performs PWM control of the three-phase AC voltage so that the output voltage of the inverter 30 follows the voltage command (d-axis voltage command value Vd*, q-axis voltage command value Vq*).
With the above configuration, the motor 40 is controlled to a desired rotational speed.
<従来のモータの制御方式の問題>
 ここで、従来のモータ40の制御方式の問題について説明する。
 回転角センサ50のセンサ検出角度θsが、真のモータ回転角度θrに対して次式(1)に示す回転角度に同期したk次脈動成分を含み、真のモータ回転速度ωrが一定であるとする。この時、センサ検出角度θsを直接微分して得られる回転速度検出値ωsは、式(2)で表される。
<Problems with conventional motor control methods>
Here, problems with the conventional control method for the motor 40 will be explained.
If the sensor detection angle θs of the rotation angle sensor 50 includes a k-th pulsation component synchronized with the rotation angle shown in the following equation (1) with respect to the true motor rotation angle θr, and the true motor rotation speed ωr is constant. do. At this time, the rotational speed detection value ωs obtained by directly differentiating the sensor detection angle θs is expressed by equation (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)に示すように、回転速度検出値ωsは、真のモータ回転速度ωrと、脈動次数kと、k次角度検出誤差振幅akのそれぞれに比例した脈動成分を持つ。従来のモータ制御装置が、これらの脈動成分を含む回転速度検出値を用いてモータ40の速度を制御する場合、回転速度指令値と回転速度検出値との偏差を入力とする速度制御部の出力であるトルク指令値に脈動が生じるため、モータトルク脈動が生じていた。そして、モータ40の回転速度が増加すればするほど速度検出値の脈動成分が大きくなる。このため、モータ40が高速回転する時には、モータトルク脈動が振動騒音の原因になるほか、モータ40の低速運転時であっても、モータ40に接続される負荷の固有振動数が低い場合には、脈動周波数が低くても振動騒音が励起されるおそれがあった。 As shown in equation (2), the detected rotational speed value ωs has pulsation components proportional to the true motor rotational speed ωr, the pulsation order k, and the k-order angle detection error amplitude ak. When a conventional motor control device controls the speed of the motor 40 using a detected rotational speed value including these pulsation components, the output of a speed control unit that receives as input the deviation between the rotational speed command value and the detected rotational speed value. Since pulsations occur in the torque command value, motor torque pulsations occur. Then, as the rotational speed of the motor 40 increases, the pulsation component of the detected speed value becomes larger. Therefore, when the motor 40 rotates at high speed, the motor torque pulsation causes vibration noise, and even when the motor 40 is operating at low speed, if the natural frequency of the load connected to the motor 40 is low, , even if the pulsation frequency was low, vibration noise could be excited.
 したがって、モータ40の回転角度に同期した脈動成分を含む回転角を検出する回転角センサを用いる場合には、モータ40の角度・速度計算においてモータトルク脈動を打ち消す必要がある。ここで、モータ40に印加する電圧と、モータ40に流れる電流とを用いて、回転角センサ50による位置検出なしでモータ40の回転角度情報を推定する位置センサレスベクトル制御の技術がある。そこで、以下の実施形態では、位置センサレスベクトル制御の技術を応用し、回転角センサ50による検出回転角の誤差を補正することが可能な第1の実施形態に係る速度・角度計算部20を構成する。 Therefore, when using a rotation angle sensor that detects a rotation angle that includes a pulsation component that is synchronized with the rotation angle of the motor 40, it is necessary to cancel the motor torque pulsation in calculating the angle and speed of the motor 40. Here, there is a position sensorless vector control technique in which rotation angle information of the motor 40 is estimated using a voltage applied to the motor 40 and a current flowing through the motor 40 without detecting the position by the rotation angle sensor 50. Therefore, in the following embodiment, the speed/angle calculation unit 20 according to the first embodiment, which can correct the error in the rotation angle detected by the rotation angle sensor 50, is configured by applying position sensorless vector control technology. do.
<第1の実施形態に係る技術の説明>
 次に、第1の実施形態に係る速度・角度計算部20の内部構成例及び動作例について、図2と図4を参照して説明する。
 図2は、速度・角度計算部20の内部構成例を示すブロック図である。
<Description of technology according to the first embodiment>
Next, an example of the internal configuration and operation of the speed/angle calculation section 20 according to the first embodiment will be described with reference to FIGS. 2 and 4.
FIG. 2 is a block diagram showing an example of the internal configuration of the speed/angle calculation section 20. As shown in FIG.
 速度・角度計算部20は、推定処理部21と、算出処理部22によって構成される。
 推定処理部21は、軸誤差推定部211及び軸誤差推定フィルタ212を備える。この軸誤差推定部211は、モータ40に加わる電流と電圧を用いて、モータ40の軸誤差の軸誤差推定値を推定する。
The speed/angle calculation section 20 is composed of an estimation processing section 21 and a calculation processing section 22.
The estimation processing section 21 includes an axis error estimation section 211 and an axis error estimation filter 212. This axis error estimating unit 211 estimates an axis error estimated value of the axis error of the motor 40 using the current and voltage applied to the motor 40.
 軸誤差推定部211は、電流制御部104から出力されるd軸電圧指令値Vd*及びq軸電圧指令値Vq*と、uvw/dq座標変換部107から出力されるd軸電流値Id及びq軸電流値Iqと、算出処理部22のPI制御部221が推定した回転速度ωとに基づいて、実際のモータ40の回転角度に対する角度誤差を軸誤差として推定する。軸誤差推定部211により推定される角度誤差は、軸誤差推定値Δθeとして軸誤差推定フィルタ212に出力される。モータ40が永久磁石同期モータである場合、モータ相抵抗をR、d軸インダクタンスをLd、q軸インダクタンスをLq、永久磁石によるd軸鎖交磁束をΨd0、微分演算子をpとすると、式(3)で示す拡張誘起電圧を用いた電圧方程式が成り立つ。 The axis error estimation unit 211 calculates the d-axis voltage command value Vd* and the q-axis voltage command value Vq* output from the current control unit 104, and the d-axis current value Id and q output from the uvw/dq coordinate conversion unit 107. Based on the shaft current value Iq and the rotation speed ω estimated by the PI control unit 221 of the calculation processing unit 22, the angular error with respect to the actual rotation angle of the motor 40 is estimated as the shaft error. The angular error estimated by the axis error estimation unit 211 is output to the axis error estimation filter 212 as an axis error estimated value Δθe. When the motor 40 is a permanent magnet synchronous motor, the motor phase resistance is R, the d-axis inductance is Ld, the q-axis inductance is Lq, the d-axis interlinkage magnetic flux due to the permanent magnet is Ψd0, and the differential operator is p, then the formula ( The voltage equation using the extended induced voltage shown in 3) holds true.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)に示した拡張誘起電圧の電圧方程式を用いることで、モータ制御装置10(コントローラ)が認識可能なd軸の回転角度θと、真のd軸回転角度の誤差を軸誤差推定値Δθeとしたとき、以下の式(4)が成り立つ。モータ制御装置10は、dq/uvw座標変換部105と、uvw/dq座標変換部107に入力される回転角度θを認識している。つまり、モータ制御装置10が回転座標系を扱う際の角度情報を「モータ制御装置10(コントローラ)が認識しているd軸の回転角度」としている。 By using the voltage equation of the extended induced voltage shown in equation (3), the error between the rotation angle θ of the d-axis that can be recognized by the motor control device 10 (controller) and the true rotation angle of the d-axis is calculated as the estimated axis error value. When Δθe, the following formula (4) holds true. The motor control device 10 recognizes the rotation angle θ input to the dq/uvw coordinate conversion unit 105 and the uvw/dq coordinate conversion unit 107. In other words, the angle information used when the motor control device 10 handles the rotational coordinate system is the "rotation angle of the d-axis recognized by the motor control device 10 (controller)."
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)は、Δθeについての微分方程式であるためマイクロコンピュータでの計算が煩雑である。また、式(4)は、dq軸電流値の微分項を含むため、ノイズの影響を受けやすい。そこで、d軸電流Id、q軸電流Iq、Δθeの微分値が0となる、定常状態を仮定して近似すれば、微分項を消去した次式(5)が成り立つ。 Since Equation (4) is a differential equation regarding Δθe, calculation on a microcomputer is complicated. Furthermore, since equation (4) includes a differential term of the dq-axis current values, it is easily affected by noise. Therefore, if an approximation is performed assuming a steady state in which the differential values of the d-axis current Id, q-axis current Iq, and Δθe are 0, the following equation (5) with the differential term eliminated holds true.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(5)は微分項を持たないので、モータ制御装置10の動作を制御するマイクロコンピュータは、モータ相抵抗R、d軸インダクタンスLd、q軸インダクタンスLqと、d軸電圧指令値Vd*及びq軸電圧指令値Vq*、電流計測値(d軸電流値Id及びq軸電流値Iq)のみから簡単に計算できる。よって、本実施形態に係る軸誤差推定部211は、式(5)を使用して、回転角度の軸誤差推定値Δθeを推定できる。なお、軸誤差推定部211は、マイクロコンピュータが実行可能なプログラムの一機能である。 Since equation (5) does not have a differential term, the microcomputer that controls the operation of the motor control device 10 calculates the motor phase resistance R, the d-axis inductance Ld, the q-axis inductance Lq, and the d-axis voltage command value Vd* and q. It can be easily calculated from only the axis voltage command value Vq* and the measured current value (d-axis current value Id and q-axis current value Iq). Therefore, the axis error estimating unit 211 according to the present embodiment can estimate the estimated axis error value Δθe of the rotation angle using equation (5). Note that the axis error estimation unit 211 is a function of a program that can be executed by a microcomputer.
 軸誤差推定部211が式(5)を用いて軸誤差推定値Δθeを推定する際には、d軸電圧指令Vd*とq軸電圧指令Vq*の代わりに、電圧センサ等で直接検出した線間電圧や相電圧を座標変換して得たd軸電圧測定値Vd及びq軸電圧測定値Vqを用いてもよい。その場合、インバータ30の出力電圧誤差等の影響を排除できるため、軸誤差推定部211による軸誤差推定値Δθeの推定精度が向上する。 When the axis error estimation unit 211 estimates the axis error estimated value Δθe using equation (5), instead of the d-axis voltage command Vd* and the q-axis voltage command Vq*, a line directly detected by a voltage sensor, etc. The d-axis voltage measurement value Vd and the q-axis voltage measurement value Vq obtained by coordinate transformation of the phase voltage or the phase voltage may be used. In this case, the influence of the output voltage error of the inverter 30, etc. can be eliminated, so that the accuracy of estimating the estimated axis error value Δθe by the axis error estimator 211 is improved.
 軸誤差推定部211には式(5)の他にも、例えば、モータ40(誘導モータ、シンクロナスリラクタンスモータ、埋込磁石同期電動機、表面磁石同期電動機など含む)の特性に応じて、磁束オブザーバを用いて推定する手法や、電流高調波を意図的に流し、モータ突極性を利用して軸誤差推定する手法なども利用できる。 In addition to equation (5), the axis error estimation unit 211 also uses a magnetic flux observer according to the characteristics of the motor 40 (including induction motors, synchronous reluctance motors, embedded magnet synchronous motors, surface magnet synchronous motors, etc.). It is also possible to use a method of estimating the axis error using , or a method of intentionally flowing current harmonics and estimating the axis error using motor saliency.
 次に、軸誤差推定フィルタ212の動作例について説明する。
 軸誤差推定フィルタ212は、軸誤差推定値からモータ40に通電される電流周波数の6次成分を選択的に低減する。例えば、軸誤差推定フィルタ212は、軸誤差推定部211が算出した軸誤差推定値Δθeをフィルタリングし、フィルタリング後の軸誤差推定値Δθefを、算出処理部22の機械角換算部223を介して角度検出誤差サンプリング部224に出力する。この軸誤差推定フィルタ212は、軸誤差推定値Δθeからモータ40の電流周波数以上の成分を低減することができる。軸誤差推定部211が出力する軸誤差推定値Δθeは、電流検出部31の検出電流に乗るノイズ成分や、インバータのデッドタイム電圧誤差によって生じる電流基本波周波数の6次成分といった高周波成分を多く含んでいる。したがって、軸誤差推定フィルタ212は、上記ノイズ成分をカットするローパスフィルタや、電流基本波周波数の6次成分を選択的に低減する可変係数バンドストップフィルタ、あるいはこれらを複合したフィルタで構成することが望ましい。
Next, an example of the operation of the axis error estimation filter 212 will be described.
The axis error estimation filter 212 selectively reduces the sixth-order component of the current frequency applied to the motor 40 from the axis error estimation value. For example, the axis error estimation filter 212 filters the axis error estimation value Δθe calculated by the axis error estimation unit 211, and converts the filtered axis error estimation value Δθef into an angle It is output to the detection error sampling section 224. This axis error estimation filter 212 can reduce components higher than the current frequency of the motor 40 from the axis error estimated value Δθe. The estimated axis error value Δθe output by the axis error estimation unit 211 contains many high frequency components such as noise components riding on the detected current of the current detection unit 31 and the sixth-order component of the current fundamental wave frequency caused by the dead time voltage error of the inverter. I'm here. Therefore, the axis error estimation filter 212 may be configured with a low-pass filter that cuts the noise component, a variable coefficient bandstop filter that selectively reduces the sixth-order component of the current fundamental frequency, or a filter that is a combination of these. desirable.
 その他、モータ40の電圧及び電流を用いた位置センサレス角度推定の推定誤差要因としては、例えばモータ誘起電圧の高調波成分、電流検出部31のオフセットや検出誤差、磁気飽和によるdq軸インダクタンスの変動、dq軸インダクタンスの回転角度依存性、温度変化によるモータ相抵抗の変化、インバータ30のパワー半導体のON抵抗による電圧降下などが挙げられる。これらの要因により、位置センサレス角度推定に際して、主として直流オフセット成分と電流周波数1次以上の脈動成分を生じる。これは、モータ40の電気的特性は電気角に対して対称であるからである。 In addition, estimation error factors in position sensorless angle estimation using the voltage and current of the motor 40 include, for example, harmonic components of the motor induced voltage, offset and detection error of the current detection unit 31, fluctuations in dq-axis inductance due to magnetic saturation, Examples include rotation angle dependence of dq-axis inductance, change in motor phase resistance due to temperature change, and voltage drop due to ON resistance of power semiconductors of inverter 30. These factors mainly produce a DC offset component and a pulsation component of the first order or higher current frequency during position sensorless angle estimation. This is because the electrical characteristics of the motor 40 are symmetrical with respect to the electrical angle.
 したがって、回転角センサ50の主要脈動次数が機械角の比較的低次にあり、かつ極数Pが20極以上となる多極モータ(例えば、モータ40)においては、回転角センサ50の検出誤差によって生じる脈動周波数と、位置センサレス角度推定に生じうる電気角1次以上の周波数とが周波数的に離れている。このため、推定処理部21は、電気角1次以上をカットするローパスフィルタ等を軸誤差推定値Δθeに適用することで、位置センサレス角度推定における回転角度の推定誤差を低減しつつ、回転角センサ50による検出される回転角から軸誤差推定値Δθeを正確に推定できる。 Therefore, in a multi-pole motor (for example, the motor 40) in which the main pulsation order of the rotation angle sensor 50 is a relatively low order of mechanical angle and the number of poles P is 20 or more, the detection error of the rotation angle sensor 50 is The pulsation frequency caused by this and the frequency higher than the first electrical angle that may occur in position sensorless angle estimation are separated in frequency. For this reason, the estimation processing unit 21 reduces the estimation error of the rotation angle in the position sensorless angle estimation by applying a low-pass filter or the like that cuts off the first-order or higher electrical angle to the estimated axis error value Δθe. The estimated axis error value Δθe can be accurately estimated from the rotation angle detected by the rotation angle 50.
 次に、算出処理部22の構成例について説明する。
 算出処理部22は、推定処理部21によって推定された軸誤差推定値に基づいて、モータ40の検出回転角度を補正する検出誤差補正部226を有し、補正された検出回転角度に基づいてモータ40の回転速度及び回転角度を算出する。例えば、算出処理部22は、回転角センサ50から入力されるセンサ検出角度θsのセンサ検出誤差を補正した後、モータ40の回転角度θと回転速度ωを算出する。この算出処理部22は、PI制御部221と、積分部222と、機械角換算部223と、角度検出誤差サンプリング部224と、検出誤差成分算出部225と、センサ検出誤差補正部226とを備える。
Next, a configuration example of the calculation processing section 22 will be explained.
The calculation processing unit 22 includes a detection error correction unit 226 that corrects the detected rotation angle of the motor 40 based on the axis error estimated value estimated by the estimation processing unit 21, and corrects the detected rotation angle of the motor 40 based on the corrected detected rotation angle. Calculate the rotation speed and rotation angle of 40. For example, the calculation processing unit 22 calculates the rotation angle θ and rotation speed ω of the motor 40 after correcting the sensor detection error of the sensor detection angle θs input from the rotation angle sensor 50. The calculation processing section 22 includes a PI control section 221, an integration section 222, a mechanical angle conversion section 223, an angle detection error sampling section 224, a detection error component calculation section 225, and a sensor detection error correction section 226. .
 始めに、演算部228によって、積分部222から出力される回転角度算出値θと、演算部227を介したセンサ検出誤差補正部226からの出力とが比較され、その偏差Δθsが求められる。
 PI制御部221(回転速度算出部の一例)は、検出誤差補正部226が検出誤差成分に基づいて補正した検出回転角度と、回転角度との差分に基づいて回転速度を算出する。例えば、PI制御部221は、偏差Δθsの比例積分を行って回転速度ωを算出する。この際、PI制御部221は、偏差Δθsを0に制御する。PI制御部221が算出した回転速度ωは、図1に示す速度制御部102に入力される回転速度指令ωr*と比較される他、図2に示す軸誤差推定部211及び軸誤差推定フィルタ212にも出力される。
First, the calculation unit 228 compares the rotation angle calculation value θ output from the integration unit 222 with the output from the sensor detection error correction unit 226 via the calculation unit 227, and determines the deviation Δθs.
The PI control unit 221 (an example of a rotation speed calculation unit) calculates the rotation speed based on the difference between the rotation angle and the detected rotation angle corrected by the detection error correction unit 226 based on the detection error component. For example, the PI control unit 221 calculates the rotational speed ω by performing proportional integration of the deviation Δθs. At this time, the PI control unit 221 controls the deviation Δθs to zero. The rotational speed ω calculated by the PI control unit 221 is compared with the rotational speed command ωr* input to the speed control unit 102 shown in FIG. is also output.
 積分部222(回転角度算出部の一例)は、回転速度に基づいて回転角度を算出する。例えば、積分部222は、回転速度ωを積分して回転角度算出値θを算出する。回転角度算出値θは、図1に示すdq/uvw座標変換部105とuvw/dq座標変換部107に出力される他、図2に示すPI制御部221への入力前に、演算部228によって演算部227の出力と比較される。そこで、センサ検出角度θsは、PI制御部221に入る前にセンサ検出誤差補正部226に入力され、センサ検出角度θsの誤差が補正される。 The integrating section 222 (an example of a rotation angle calculation section) calculates the rotation angle based on the rotation speed. For example, the integrating section 222 integrates the rotational speed ω to calculate the rotational angle calculation value θ. The rotation angle calculation value θ is output to the dq/uvw coordinate conversion unit 105 and the uvw/dq coordinate conversion unit 107 shown in FIG. It is compared with the output of the calculation unit 227. Therefore, the sensor detection angle θs is input to the sensor detection error correction unit 226 before entering the PI control unit 221, and the error in the sensor detection angle θs is corrected.
 機械角換算部223は、軸誤差推定値を機械角の検出誤差推定値に換算する。例えば、機械角換算部223は、推定処理部21が出力した軸誤差推定値Δθefをモータ極対数P/2で割り(すなわち2/Pを掛けて)、検出誤差推定値(機械角)Δθmに換算する。 The mechanical angle conversion unit 223 converts the estimated axis error value into an estimated mechanical angle detection error value. For example, the mechanical angle conversion unit 223 divides the estimated axis error value Δθef output by the estimation processing unit 21 by the number of motor pole pairs P/2 (that is, multiplies it by 2/P) to obtain the estimated detection error value (mechanical angle) Δθm. Convert.
 角度検出誤差サンプリング部224は、機械角換算部223によって換算された機械角の検出誤差推定値の波形をサンプリングして、角度検出誤差情報を出力する。例えば、角度検出誤差サンプリング部224は、機械角に換算された検出誤差推定値(機械角)Δθmを、センサ検出角度θsに対して等間隔で機械角1周分サンプリングする。角度検出誤差サンプリング部224がサンプリングする点数Nsは、標本化定理より回転角センサ50の角度検出誤差の主要機械角の脈動次数の2倍以上とする必要がある。後述する図4に示す手法で角度検出誤差の脈動成分の位相角の推定精度を向上するためには、角度検出誤差サンプリング部224がサンプリングする点数Nsを、回転角センサ50の角度検出誤差の主要機械角の脈動次数の4倍以上とすることが望ましい。 The angle detection error sampling unit 224 samples the waveform of the estimated mechanical angle detection error value converted by the mechanical angle conversion unit 223, and outputs angle detection error information. For example, the angle detection error sampling unit 224 samples the detection error estimation value (mechanical angle) Δθm converted into a mechanical angle for one rotation of the mechanical angle at equal intervals with respect to the sensor detection angle θs. According to the sampling theorem, the number of points Ns sampled by the angle detection error sampling section 224 needs to be at least twice the pulsation order of the main mechanical angle of the angle detection error of the rotation angle sensor 50. In order to improve the estimation accuracy of the phase angle of the pulsating component of the angle detection error using the method shown in FIG. It is desirable to set it to four times or more of the mechanical angle pulsation order.
 検出誤差成分算出部225は、角度検出誤差サンプリング部224が出力した角度検出誤差情報から求められる角度検出誤差波形の空間次数の振幅及び位相を検出誤差成分として算出する。この検出誤差成分には、各脈動次数の振幅及び位相が含まれる。検出誤差成分算出部225は、各次数の脈動振幅及び位相の算出に際して、例えば、角度検出誤差情報に対して離散フーリエ変換を行って、角度検出誤差情報に含まれる、検出回転角度に生じる検出誤差脈動の空間次数の振幅及び位相を算出する。この際、サンプリング点数Nsを2の冪乗数(例えば、2の4乗=16)に設定しておくことで、高速フーリエ変換の適用が容易になるため検出誤差成分算出部225の演算量を低減しやすくなる。 The detection error component calculation unit 225 calculates, as a detection error component, the amplitude and phase of the spatial order of the angle detection error waveform obtained from the angle detection error information output by the angle detection error sampling unit 224. This detection error component includes the amplitude and phase of each pulsation order. When calculating the pulsation amplitude and phase of each order, the detection error component calculation unit 225 performs, for example, a discrete Fourier transform on the angle detection error information to calculate the detection error occurring in the detected rotation angle included in the angle detection error information. Calculate the amplitude and phase of the spatial order of the pulsation. At this time, by setting the number of sampling points Ns to a power of 2 (for example, 2 to the 4th power = 16), it becomes easier to apply the fast Fourier transform, thereby reducing the amount of calculation by the detection error component calculation unit 225. It becomes easier.
 センサ検出誤差補正部226は、空間次数の振幅及び位相に基づいて検出回転角度を補正する。例えば、センサ検出誤差補正部226は、図1に示した回転角センサ50が出力した現在のセンサ検出角度θsに応じて、検出誤差成分算出部225が算出した各脈動次数の逆位相成分をセンサ検出角度θsに重畳することで、センサ検出角度θsの回転同期脈動成分を除去する。この処理により、現在のセンサ検出角度θsに含まれる誤差が補正される。そして、センサ検出誤差補正部226は、誤差を補正した現在のセンサ検出角度θsを演算部227に出力する。 The sensor detection error correction unit 226 corrects the detected rotation angle based on the amplitude and phase of the spatial order. For example, the sensor detection error correction unit 226 converts the antiphase component of each pulsation order calculated by the detection error component calculation unit 225 into a sensor according to the current sensor detection angle θs output by the rotation angle sensor 50 shown in FIG. By superimposing it on the detection angle θs, the rotation synchronous pulsation component of the sensor detection angle θs is removed. This process corrects the error included in the current sensor detection angle θs. Then, the sensor detection error correction unit 226 outputs the current sensor detection angle θs with the error corrected to the calculation unit 227.
 演算部227は、誤差が補正されたセンサ検出角度θsにモータ極対数P/2を乗じた演算値を演算部228に出力する。
 演算部228は、演算部227から入力した演算値と、積分部222から入力した回転角度算出値θとを比較して、演算値の回転角度算出値θに対する偏差Δθsを算出する。偏差ΔθsがPI制御部221に入力される。
The calculation unit 227 outputs to the calculation unit 228 a calculation value obtained by multiplying the error-corrected sensor detection angle θs by the number of motor pole pairs P/2.
The calculation unit 228 compares the calculation value input from the calculation unit 227 and the calculated rotation angle value θ input from the integration unit 222, and calculates the deviation Δθs of the calculation value with respect to the calculated rotation angle value θ. The deviation Δθs is input to the PI control unit 221.
 次に、モータ制御装置10を構成するマイクロコンピュータ60のハードウェア構成を説明する。
 図3は、マイクロコンピュータ60のハードウェア構成例を示すブロック図である。マイクロコンピュータ60は、本実施の形態に係るモータ制御装置10、及び速度・角度計算部20として動作可能なコンピュータとして用いられるハードウェアの一例である。本実施の形態に係るモータ制御装置10は、マイクロコンピュータ60(コンピュータ)がプログラムを実行することにより、図1と図2に示した各機能部が連携して行う演算方法を実現する。
Next, the hardware configuration of the microcomputer 60 that constitutes the motor control device 10 will be explained.
FIG. 3 is a block diagram showing an example of the hardware configuration of the microcomputer 60. The microcomputer 60 is an example of hardware used as a computer that can operate as the motor control device 10 and the speed/angle calculation section 20 according to the present embodiment. The motor control device 10 according to the present embodiment realizes the calculation method performed by the functional units shown in FIGS. 1 and 2 in cooperation by the microcomputer 60 (computer) executing a program.
 マイクロコンピュータ60は、バス64にそれぞれ接続されたCPU(Central Processing Unit)61、ROM(Read Only Memory)62、及びRAM(Random Access Memory)63を備える。さらに、マイクロコンピュータ60は、不揮発性ストレージ65及びネットワークインターフェイス66を備える。 The microcomputer 60 includes a CPU (Central Processing Unit) 61, a ROM (Read Only Memory) 62, and a RAM (Random Access Memory) 63, each connected to a bus 64. Furthermore, the microcomputer 60 includes a nonvolatile storage 65 and a network interface 66.
 CPU61は、本実施の形態に係る各機能を実現するソフトウェアのプログラムコードをROM62から読み出してRAM63にロードし、実行する。RAM63には、CPU61の演算処理の途中で発生した変数やパラメーター等が一時的に書き込まれ、これらの変数やパラメーター等がCPU61によって適宜読み出される。ただし、CPU61に代えてMPU(Micro Processing Unit)を用いてもよい。 The CPU 61 reads software program codes that implement each function according to the present embodiment from the ROM 62, loads them into the RAM 63, and executes them. Variables, parameters, etc. generated during the calculation process of the CPU 61 are temporarily written in the RAM 63, and these variables, parameters, etc. are read out by the CPU 61 as appropriate. However, instead of the CPU 61, an MPU (Micro Processing Unit) may be used.
 不揮発性ストレージ65としては、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フレキシブルディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ又は不揮発性のメモリ等が用いられる。この不揮発性ストレージ65には、OS(Operating System)、各種のパラメーターの他に、マイクロコンピュータ60を機能させるためのプログラムが記録されている。ROM62及び不揮発性ストレージ65は、CPU61が動作するために必要なプログラムやデータ等を記録しており、マイクロコンピュータ60によって実行されるプログラムを格納したコンピュータ読取可能な非一過性の記憶媒体の一例として用いられる。 As the non-volatile storage 65, for example, an HDD (Hard Disk Drive), SSD (Solid State Drive), flexible disk, optical disk, magneto-optical disk, CD-ROM, CD-R, magnetic tape, or non-volatile memory is used. It will be done. In addition to an OS (Operating System) and various parameters, programs for operating the microcomputer 60 are recorded in the nonvolatile storage 65. The ROM 62 and the non-volatile storage 65 record programs and data necessary for the CPU 61 to operate, and are examples of computer-readable non-transitory storage media that store programs executed by the microcomputer 60. used as.
 ネットワークインターフェイス66には、例えば、NIC(Network Interface Card)等が用いられ、NICの端子に接続されたLAN(Local Area Network)、専用線等を介して各種のデータを装置間で送受信することが可能である。 For example, a NIC (Network Interface Card) is used as the network interface 66, and various data can be sent and received between devices via a LAN (Local Area Network), dedicated line, etc. connected to the terminal of the NIC. It is possible.
 図4は、角度検出誤差サンプリング部224と検出誤差成分算出部225の処理の例を示すフローチャートである。図4に示す処理は、モータ制御装置10で行われるモータ制御方法の一部である。ここでは、実際にマイクロコンピュータ等でセンサ検出誤差を同定する際の、角度検出誤差サンプリング部224と検出誤差成分算出部225の処理の例について説明する。 FIG. 4 is a flowchart showing an example of processing by the angle detection error sampling section 224 and the detection error component calculation section 225. The process shown in FIG. 4 is part of the motor control method performed by the motor control device 10. Here, an example of processing by the angle detection error sampling section 224 and the detection error component calculation section 225 when actually identifying a sensor detection error using a microcomputer or the like will be described.
 始めに、角度検出誤差サンプリング部224は、角度検出誤差のサンプリング精度を上げるため、モータ40の回転速度が一定以上になるまで待つ。そこで、角度検出誤差サンプリング部224は、センサ検出誤差の同定を開始後、算出回転速度ωを算出する。そして、角度検出誤差サンプリング部224は、算出回転速度ωの絶対値が、角周波数閾値ωcを超えたか否かを判定する(S1)。ここで、角周波数閾値ωcは、角度検出誤差サンプリング部224が角度検出誤差サンプリングを開始する回転速度の閾値を表す。角度検出誤差サンプリング部224は、算出回転速度ωの絶対値が、角周波数閾値ωc以下であると判定した場合(S1のNO)、ステップS1の判定処理を繰り返す。 First, the angle detection error sampling section 224 waits until the rotational speed of the motor 40 reaches a certain level or higher in order to improve the sampling accuracy of the angle detection error. Therefore, the angle detection error sampling section 224 calculates the calculated rotation speed ω after starting the identification of the sensor detection error. Then, the angle detection error sampling unit 224 determines whether the absolute value of the calculated rotational speed ω exceeds the angular frequency threshold ωc (S1). Here, the angular frequency threshold ωc represents a rotation speed threshold at which the angle detection error sampling section 224 starts sampling the angle detection error. If the angle detection error sampling unit 224 determines that the absolute value of the calculated rotational speed ω is equal to or less than the angular frequency threshold ωc (NO in S1), it repeats the determination process in step S1.
 一方、角度検出誤差サンプリング部224は、算出回転速度ωの絶対値が、角周波数閾値ωcを超えたと判定した場合(S1のYES)、角度検出誤差サンプリングを開始する(S2)。 On the other hand, when the angle detection error sampling unit 224 determines that the absolute value of the calculated rotational speed ω exceeds the angular frequency threshold ωc (YES in S1), it starts angle detection error sampling (S2).
 角度検出誤差波形を算出する軸誤差推定部211から出力される軸誤差推定値Δθeは、本来、式(4)で表される微分方程式の微分項を無視して、式(5)で近似した値である。このため、角周波数閾値ωcは、上位制御系によって指定される最終的な回転速度指令ωr*付近に設定することが望ましい。また、モータ40の回転によって誘起される電圧に依存する方式で検出誤差成分算出部225を構成し、角度検出誤差サンプリング部224によってサンプリングされた角度検出誤差から、式(5)に示した方法で誤差成分を算出するためには、角度検出誤差の計算精度を確保する必要がある。そこで、角度検出誤差サンプリング部224は、モータ定格回転速度の10%以上に角周波数閾値ωcを設定することが望ましい。 The estimated axis error value Δθe output from the axis error estimator 211 that calculates the angle detection error waveform is originally approximated by Expression (5), ignoring the differential term of the differential equation expressed by Expression (4). It is a value. Therefore, it is desirable to set the angular frequency threshold ωc near the final rotational speed command ωr* specified by the upper control system. In addition, the detection error component calculation unit 225 is configured using a method that depends on the voltage induced by the rotation of the motor 40, and the angle detection error sampled by the angle detection error sampling unit 224 is calculated using the method shown in equation (5). In order to calculate the error component, it is necessary to ensure the calculation accuracy of the angle detection error. Therefore, it is desirable that the angle detection error sampling section 224 sets the angular frequency threshold ωc to 10% or more of the motor rated rotational speed.
 次に、角度検出誤差サンプリング部224は、角度検出誤差波形の機械角1周分のサンプリングが完了したか否かを判断する(S3)。機械角1周分のサンプリングが完了していなければ(S3のNO)、角度検出誤差サンプリング部224は、再びステップS2の処理を続ける。一方、角度検出誤差サンプリング部224は、機械角1周分のサンプリングが完了していれば(S3のYES)、角度検出誤差情報を出力する。 Next, the angle detection error sampling unit 224 determines whether sampling of the angle detection error waveform for one round of mechanical angle has been completed (S3). If sampling for one round of mechanical angle has not been completed (NO in S3), the angle detection error sampling unit 224 continues the process in step S2 again. On the other hand, if sampling for one round of mechanical angle has been completed (YES in S3), the angle detection error sampling unit 224 outputs angle detection error information.
 検出誤差成分算出部225は、角度検出誤差情報に基づいて、誤差成分を算出し(S4)、本処理を終了する。誤差成分の算出には、前述の通り、例えば離散フーリエ変換などが利用できる。 The detection error component calculation unit 225 calculates the error component based on the angle detection error information (S4), and ends this process. As described above, for example, discrete Fourier transform can be used to calculate the error component.
 以上説明した第1の実施形態に係るモータ制御装置10では、モータ40の中高速運転時にはセンサレス推定回転角度によって回転角センサ50の角度検出誤差脈動を推定し、推定した角度検出誤差情報を基にセンサ検出角度θsを補正する。このため、回転角センサ50の角度検出誤差の影響を受けることなくモータ40を制御し、モータ40の振動騒音を防止することが可能となる。特に、モータ制御装置10は、回転角センサ50が検出する回転角度に応じて変動する脈動成分を補正してモータ40を駆動するので、モータ40により駆動される各種装置に振動や騒音を低減することができる。 In the motor control device 10 according to the first embodiment described above, the angle detection error pulsation of the rotation angle sensor 50 is estimated by the sensorless estimated rotation angle when the motor 40 is operated at medium to high speed, and the angle detection error pulsation of the rotation angle sensor 50 is estimated based on the estimated angle detection error information. Correct the sensor detection angle θs. Therefore, it is possible to control the motor 40 without being affected by the angle detection error of the rotation angle sensor 50, and to prevent vibration noise of the motor 40. In particular, the motor control device 10 drives the motor 40 by correcting the pulsation component that varies depending on the rotation angle detected by the rotation angle sensor 50, thereby reducing vibration and noise in various devices driven by the motor 40. be able to.
 上記の算出処理部22によるセンサ検出誤差の同定は、モータ40を負荷に接続して運転している最中であっても、任意のタイミングで実行することができる。例えば、回転角センサ50の検出誤差特性が温度変化によって変化する場合、算出処理部22は、モータ40の発熱による温度上昇や、周期環境温度変化の時間変化率に対して十分短い周期で繰り返し上記の同定処理を実行する。算出処理部22が繰り返しセンサ検出誤差の同定処理を実行することで、回転角センサ50の特性が変化した場合であっても、回転角センサ50に由来する振動騒音を防止できる。 Identification of the sensor detection error by the calculation processing unit 22 described above can be performed at any timing even when the motor 40 is connected to a load and is being operated. For example, when the detection error characteristics of the rotation angle sensor 50 change due to a temperature change, the calculation processing unit 22 repeats the above described process at a sufficiently short period relative to the temperature rise due to heat generation of the motor 40 or the time change rate of periodic environmental temperature change. Execute the identification process. By the calculation processing unit 22 repeatedly performing the sensor detection error identification process, vibration noise originating from the rotation angle sensor 50 can be prevented even if the characteristics of the rotation angle sensor 50 change.
 また、モータ40の設置位置の変更等によって回転角センサ50の取り付け状況が変わった際にも、算出処理部22は、上記の同定処理を実行することで、自動的に検出誤差を補正することができる。算出処理部22を図2に示した構成とすることで、回転角センサ50が持つ回転同期脈動成分を除去し、回転角センサ50に由来する振動騒音を防止できる。 Furthermore, even when the installation status of the rotation angle sensor 50 changes due to a change in the installation position of the motor 40, etc., the calculation processing unit 22 automatically corrects the detection error by executing the above identification process. Can be done. By configuring the calculation processing unit 22 as shown in FIG. 2, the rotation synchronous pulsation component of the rotation angle sensor 50 can be removed, and vibration noise originating from the rotation angle sensor 50 can be prevented.
[第2の実施形態]
 次に、本発明の第2の実施形態に係る速度・角度計算部20Aの構成例及び動作例について、図5を参照して説明する。
 図5は、第2の実施形態に係る速度・角度計算部20Aの構成例を示すブロック図である。速度・角度計算部20Aは、図1に示した第1の実施形態に係るモータ制御装置10が備える速度・角度計算部20を置き換えたものである。第2の実施形態に係る速度・角度計算部20Aは、回転角センサ50が検出した回転速度及び角度と、位置センサレスで推定した回転速度及び角度と、を出力する機能を有している。
[Second embodiment]
Next, a configuration example and an operation example of the speed/angle calculation section 20A according to the second embodiment of the present invention will be described with reference to FIG. 5.
FIG. 5 is a block diagram showing a configuration example of a speed/angle calculation section 20A according to the second embodiment. The speed/angle calculation unit 20A replaces the speed/angle calculation unit 20 included in the motor control device 10 according to the first embodiment shown in FIG. The speed/angle calculation unit 20A according to the second embodiment has a function of outputting the rotation speed and angle detected by the rotation angle sensor 50 and the rotation speed and angle estimated without a position sensor.
 モータ制御装置10における速度・角度計算部20A以外の機能部の構成例及び動作例については第1の実施形態と同様であるため、説明を省略する。第2の実施形態に係る速度・角度計算部20Aは、推定処理部21Aと算出処理部22Aを備える。推定処理部21Aは、第1の実施形態に係る推定処理部21が有する軸誤差推定部211と軸誤差推定フィルタ212に加えて、PI制御部213と、積分部214と、を備える。 The configuration examples and operation examples of the functional units other than the speed/angle calculation unit 20A in the motor control device 10 are the same as those in the first embodiment, and therefore description thereof will be omitted. A speed/angle calculation section 20A according to the second embodiment includes an estimation processing section 21A and a calculation processing section 22A. The estimation processing section 21A includes a PI control section 213 and an integration section 214 in addition to the axis error estimation section 211 and the axis error estimation filter 212 included in the estimation processing section 21 according to the first embodiment.
 PI制御部213(回転速度推定部の一例)は、軸誤差推定値に基づいて推定回転速度を推定する。例えば、PI制御部213は、軸誤差推定フィルタ212の出力が0になるように位置センサレス速度推定を行う。このため、PI制御部213は、軸誤差推定フィルタ212から出力された軸誤差推定値Δθefの比例積分を行って、位置センサレス推定速度ωe(電気角)を算出する。位置センサレス推定速度ωe(電気角)は、軸誤差推定部211、軸誤差推定フィルタ212、積分部214、算出処理部22Aの機械角推定積分部223Aに出力される。また、回転角センサ50の故障時には、位置センサレス推定速度ωe(電気角)が、図1に示した速度制御部102及び電流制御部104で用いられる。 The PI control unit 213 (an example of a rotational speed estimation unit) estimates the estimated rotational speed based on the estimated axis error value. For example, the PI control unit 213 performs position sensorless speed estimation so that the output of the axis error estimation filter 212 becomes zero. Therefore, the PI control unit 213 calculates the position sensorless estimated speed ωe (electrical angle) by performing proportional integration of the estimated axis error value Δθef output from the axis error estimation filter 212. The position sensorless estimated speed ωe (electrical angle) is output to the axis error estimation section 211, the axis error estimation filter 212, the integration section 214, and the mechanical angle estimation integration section 223A of the calculation processing section 22A. Further, when the rotation angle sensor 50 fails, the position sensorless estimated speed ωe (electrical angle) is used by the speed control section 102 and the current control section 104 shown in FIG.
 積分部214(回転角度推定部の一例)は、推定回転速度に基づいて推定回転角度を推定する。例えば、積分部214は、位置センサレス推定速度ωe(電気角)を積分して、位置センサレス推定角度θe(電気角)を算出する。また、回転角センサ50の故障時には、位置センサレス推定角度θe(電気角)は、dq/uvw座標変換部105とuvw/dq座標変換部107に出力される。 The integrating unit 214 (an example of a rotation angle estimation unit) estimates the estimated rotation angle based on the estimated rotation speed. For example, the integrating unit 214 integrates the position sensorless estimated speed ωe (electrical angle) to calculate the position sensorless estimated angle θe (electrical angle). Further, when the rotation angle sensor 50 is out of order, the position sensorless estimated angle θe (electrical angle) is output to the dq/uvw coordinate conversion unit 105 and the uvw/dq coordinate conversion unit 107.
 また、第2の実施形態に係る速度・角度計算部20Aの算出処理部22Aは、機械角推定積分部223Aを備える。
 機械角推定積分部223A(換算部の一例)は、積分した推定回転速度を機械角の推定回転角度に換算する。例えば、機械角推定積分部223Aは、PI制御部213により算出された位置センサレス推定速度ωe(電気角)を用いて位置センサレス推定角度θm(機械角)を算出する。
Further, the calculation processing section 22A of the speed/angle calculation section 20A according to the second embodiment includes a mechanical angle estimation integration section 223A.
The mechanical angle estimation and integration unit 223A (an example of a conversion unit) converts the integrated estimated rotational speed into an estimated mechanical angle rotation angle. For example, the mechanical angle estimation and integration unit 223A uses the position sensorless estimated speed ωe (electrical angle) calculated by the PI control unit 213 to calculate the position sensorless estimated angle θm (mechanical angle).
 一般に、モータ40に印加される電圧及び電流を用いた位置センサレス角度推定では電気角度が算出される。本実施の形態に係る算出処理部22は、機械角を推定するために、機械角推定積分部223Aの初期値を回転角センサ50から取得した機械角の測定値とする。そして、機械角推定積分部223Aは、位置センサレスで位置センサレス推定角度θm(機械角)を算出する。 Generally, in position sensorless angle estimation using the voltage and current applied to the motor 40, an electrical angle is calculated. The calculation processing unit 22 according to the present embodiment sets the initial value of the mechanical angle estimation and integration unit 223A to the measured value of the mechanical angle obtained from the rotation angle sensor 50 in order to estimate the mechanical angle. Then, the mechanical angle estimation integration unit 223A calculates the position sensorless estimated angle θm (mechanical angle) without using a position sensor.
 検出誤差算出部229は、機械角の推定回転角度と、検出回転角度とを比較して、機械角の推定回転角度に対する検出回転角度の検出誤差差分を算出する。例えば、検出誤差算出部229は、回転角センサ50のセンサ検出角度θsと、位置センサレス推定角度θm(機械角)とを比較して、検出誤差推定値(機械角)Δθmを検出誤差差分として算出する。この検出誤差推定値(機械角)Δθmは、角度検出誤差サンプリング部224に入力される。 The detection error calculation unit 229 compares the estimated rotation angle of the mechanical angle and the detected rotation angle, and calculates the detection error difference between the estimated rotation angle of the mechanical angle and the detected rotation angle. For example, the detection error calculation unit 229 compares the sensor detection angle θs of the rotation angle sensor 50 and the position sensorless estimated angle θm (mechanical angle), and calculates the detection error estimated value (mechanical angle) Δθm as the detection error difference. do. This detection error estimated value (mechanical angle) Δθm is input to the angle detection error sampling section 224.
 角度検出誤差サンプリング部224は、検出誤差差分の波形をサンプリングして、角度検出誤差情報を出力する。例えば、角度検出誤差サンプリング部224は、検出誤差差分である検出誤差推定値(機械角)Δθmを除いて、回転角センサ50のセンサ検出角度θsに対して等間隔で機械角1周分サンプリングする。 The angle detection error sampling section 224 samples the waveform of the detection error difference and outputs angle detection error information. For example, the angle detection error sampling unit 224 samples one rotation of the mechanical angle at equal intervals with respect to the sensor detection angle θs of the rotation angle sensor 50, except for the detection error estimated value (mechanical angle) Δθm, which is the detection error difference. .
 そして、検出誤差成分算出部225は、角度検出誤差情報に基づいて検出回転角度に含まれる検出誤差成分を算出する。例えば、検出誤差成分算出部225は、角度検出誤差サンプリング部224がサンプリングした角度検出誤差情報に基づいて、各脈動次数の振幅及び位相を算出し、センサ検出誤差補正部226は、センサ検出角度θsの回転同期脈動成分を除去する。 Then, the detection error component calculation unit 225 calculates the detection error component included in the detected rotation angle based on the angle detection error information. For example, the detection error component calculation section 225 calculates the amplitude and phase of each pulsation order based on the angle detection error information sampled by the angle detection error sampling section 224, and the sensor detection error correction section 226 calculates the amplitude and phase of each pulsation order. The rotation synchronous pulsation component of is removed.
 以上説明した第2の実施形態に係る速度・角度計算部20Aでは、回転角センサ50以外にも位置センサレスで回転角度と回転速度を計算できる。このため、速度・角度計算部20Aを備えるモータ制御装置10は、回転角センサ50の故障が発生した場合には、位置センサレス制御に移行する。そして、モータ制御装置10は、位置センサレス推定速度ωeと位置センサレス推定角度θe(電気角)を用いてモータ40の制御を継続し、モータ制御装置10の冗長性を確保できる。 The speed/angle calculation unit 20A according to the second embodiment described above can calculate the rotation angle and rotation speed without using any position sensor other than the rotation angle sensor 50. Therefore, the motor control device 10 including the speed/angle calculation section 20A shifts to position sensorless control when a failure of the rotation angle sensor 50 occurs. Then, the motor control device 10 continues to control the motor 40 using the position sensorless estimated speed ωe and the position sensorless estimated angle θe (electrical angle), and can ensure redundancy of the motor control device 10.
[第3の実施形態]
 次に、本発明の第3の実施形態に係る速度・角度計算部20Bの構成例及び動作例について、図6を参照して説明する。
 図6は、第3の実施形態に係る速度・角度計算部20Bの構成例を示すブロック図である。速度・角度計算部20Bは、図1に示した第1の実施形態に係るモータ制御装置10が備える速度・角度計算部20を置き換えたものである。第3の実施形態に係る速度・角度計算部20Bは、回転角センサ50が検出した回転速度と、位置センサレスで推定した回転速度のいずれかを切り替えて、回転速度及び角度を算出する機能を有する。
[Third embodiment]
Next, a configuration example and an operation example of the speed/angle calculation section 20B according to the third embodiment of the present invention will be described with reference to FIG. 6.
FIG. 6 is a block diagram showing a configuration example of the speed/angle calculation section 20B according to the third embodiment. The speed/angle calculation unit 20B replaces the speed/angle calculation unit 20 included in the motor control device 10 according to the first embodiment shown in FIG. The speed/angle calculation unit 20B according to the third embodiment has a function of calculating the rotation speed and angle by switching between the rotation speed detected by the rotation angle sensor 50 and the rotation speed estimated without a position sensor. .
 モータ制御装置10における速度・角度計算部20B以外の機能部の構成例及び動作例については第1の実施形態と同様であるため、説明を省略する。第3の実施形態に係る速度・角度計算部20Bの推定処理部21は、第1の実施形態に係る推定処理部21と同様の構成としている。
 軸誤差推定フィルタ212から出力される軸誤差推定値Δθefは、算出処理部22Bの切替部230に出力される。
The configuration examples and operation examples of the functional units other than the speed/angle calculation unit 20B in the motor control device 10 are the same as those in the first embodiment, and therefore the description thereof will be omitted. The estimation processing section 21 of the speed/angle calculation section 20B according to the third embodiment has the same configuration as the estimation processing section 21 according to the first embodiment.
The axis error estimation value Δθef output from the axis error estimation filter 212 is output to the switching unit 230 of the calculation processing unit 22B.
 第3の実施形態に係る速度・角度計算部20Bの算出処理部22Bは、第2の実施形態に係る算出処理部22Aが有する各機能部に加えて、切替部230を備える。算出処理部22Bは、切替部230によって切り替えられた軸誤差推定値又は軸誤差算出値に基づいて回転速度及び回転角度を算出する。この算出処理部22Bは、第2の実施形態に係る算出処理部22Aが有するPI制御部213と積分部214を、PI制御部221と積分部222に統合した構成としている。 The calculation processing unit 22B of the speed/angle calculation unit 20B according to the third embodiment includes a switching unit 230 in addition to each functional unit included in the calculation processing unit 22A according to the second embodiment. The calculation processing unit 22B calculates the rotation speed and rotation angle based on the estimated axis error value or the calculated axis error value switched by the switching unit 230. This calculation processing section 22B has a configuration in which the PI control section 213 and the integration section 214 of the calculation processing section 22A according to the second embodiment are integrated into a PI control section 221 and an integration section 222.
 切替部230は、推定処理部21によって推定された軸誤差推定値、又は検出誤差補正部226が検出回転角度に基づいて算出した軸誤差算出値のいずれかに切り替える。例えば、切替部230には、軸誤差推定フィルタ212からの軸誤差推定値Δθef(軸誤差推定値の一例)と、センサ検出誤差補正部226からの回転角度算出値θの偏差Δθs(軸誤差算出値の一例)と、上位制御系からの切替信号とが入力される。そして、切替部230は、切替信号に基づいて、PI制御部221に出力する信号を、軸誤差推定値Δθef、又は回転角度算出値θの偏差Δθsのいずれかに切り替える。 The switching unit 230 switches to either the axis error estimated value estimated by the estimation processing unit 21 or the axis error calculation value calculated by the detection error correction unit 226 based on the detected rotation angle. For example, the switching unit 230 has a difference Δθs (axis error calculation (an example of a value) and a switching signal from a higher-level control system are input. Based on the switching signal, the switching unit 230 switches the signal output to the PI control unit 221 to either the estimated axis error value Δθef or the deviation Δθs of the calculated rotation angle value θ.
 機械角推定積分部223A(換算部の一例)は、PI制御部221が軸誤差推定値Δθef、又は回転角度算出値θの偏差Δθs積分して算出した回転速度ωを機械角の回転角度θmに換算する。
 検出誤差算出部229は、機械角の回転角度θmと、検出回転角度θsとを比較して、機械角の回転角度θmに対する検出回転角度θsの検出誤差差分を算出する。
 角度検出誤差サンプリング部224は、検出誤差差分の波形をサンプリングして、角度検出誤差情報を出力する。
 検出誤差成分算出部225は、角度検出誤差情報に基づいて検出回転角度に含まれる検出誤差成分を算出する。
The mechanical angle estimation and integration unit 223A (an example of a conversion unit) converts the rotational speed ω calculated by the PI control unit 221 by integrating the estimated axis error value Δθef or the deviation Δθs of the calculated rotational angle value θ into the rotational angle θm of the mechanical angle. Convert.
The detection error calculation unit 229 compares the mechanical angle rotation angle θm and the detected rotation angle θs to calculate a detection error difference between the mechanical angle rotation angle θm and the detected rotation angle θs.
The angle detection error sampling section 224 samples the waveform of the detection error difference and outputs angle detection error information.
The detection error component calculation unit 225 calculates a detection error component included in the detected rotation angle based on the angle detection error information.
 PI制御部221は、切替部230によって切り替えて出力される、軸誤差推定値Δθef、又は回転角度算出値θの偏差Δθsのいずれかに基づいて回転速度ωを算出する。
 積分部222は、算出された回転速度ωを積分し、回転角度算出値θとして出力する。
The PI control unit 221 calculates the rotation speed ω based on either the estimated axis error value Δθef or the deviation Δθs of the calculated rotation angle value θ, which is switched and outputted by the switching unit 230.
The integrating section 222 integrates the calculated rotational speed ω and outputs it as a calculated rotational angle value θ.
 以上説明した第3の実施形態に係る速度・角度計算部20Bでは、第2の実施形態に係る速度・角度計算部20Aに比べて、PI制御部と積分部の数を減らすことができる。このため、速度・角度計算部20Bの機能を実現するマイクロコンピュータの処理量及びメモリ使用量を低減できる。 In the speed/angle calculation section 20B according to the third embodiment described above, the number of PI control sections and integration sections can be reduced compared to the speed/angle calculation section 20A according to the second embodiment. Therefore, it is possible to reduce the processing amount and memory usage of the microcomputer that implements the functions of the speed/angle calculation section 20B.
 また、切替部230により、PI制御部221に出力される回転角度の偏差が、軸誤差推定値Δθef、又は回転角度算出値θの偏差Δθsのいずれかに切り替わる。このため、モータ40の制御に適切な回転角度の偏差により算出された回転速度ωと回転角度θがモータ制御装置10で利用される。 Furthermore, the switching unit 230 switches the rotation angle deviation output to the PI control unit 221 to either the estimated axis error value Δθef or the deviation Δθs of the calculated rotation angle value θ. For this reason, the motor control device 10 uses the rotational speed ω and the rotational angle θ calculated from the rotational angle deviation appropriate for controlling the motor 40.
[第4の実施形態]
 次に、本発明の第4の実施形態に係るエレベーター装置の構成例及び動作例について、図7を参照して説明する。
 図7は、第4の実施形態に係るエレベーター装置300の全体構成例を示す概略構成図である。本実施の形態に係るエレベーター装置300は、上述した第1乃至第3の実施形態のいずれかに係る速度・角度計算部を有するモータ制御装置10を備えるものとする。
[Fourth embodiment]
Next, a configuration example and an operation example of an elevator apparatus according to a fourth embodiment of the present invention will be described with reference to FIG. 7.
FIG. 7 is a schematic configuration diagram showing an example of the overall configuration of an elevator device 300 according to the fourth embodiment. The elevator device 300 according to the present embodiment includes the motor control device 10 having the speed/angle calculating section according to any one of the first to third embodiments described above.
 エレベーター装置300では、主ロープ306の一端部に乗りかご303が接続され、主ロープ306の他端部に釣合い錘304が接続される。主ロープ306は、巻上機301の綱車307及び方向転換プーリ305に巻き掛けられる。これにより、乗りかご303と釣合い錘304が、昇降路302内に吊られる。 In the elevator device 300, a car 303 is connected to one end of the main rope 306, and a counterweight 304 is connected to the other end of the main rope 306. The main rope 306 is wound around the sheave 307 and direction change pulley 305 of the hoist 301 . As a result, the car 303 and the counterweight 304 are suspended within the hoistway 302.
 巻上機301は、インバータ30、モータ40、綱車307、回転角センサ50、電磁ブレーキ308が一体となって構成されている。 The hoisting machine 301 is configured by an inverter 30, a motor 40, a sheave 307, a rotation angle sensor 50, and an electromagnetic brake 308.
 綱車307には、主ロープ306が巻き掛けられて乗りかご303を昇降させる。巻上機301が備えるモータ40は、モータ制御装置10及びインバータ30によって駆動制御され、綱車307を回転駆動する。綱車307の回転により、主ロープ306が綱車307によって駆動される。これにより、乗りかご303と釣合い錘304が、昇降路302内において、互いに上下反対方向に昇降する。なお、乗りかご303は、乗りかご用のガイドレール(図示せず)に案内されながら移動し、釣合い錘304も、図示しない釣合い錘用のガイドレールに案内されながら上下方向に移動する。モータ制御装置10は、乗りかご303が昇降している運転状態中に、上述した第1乃至第3の実施形態に係る推定処理部21及び算出処理部22の処理を実行する。 A main rope 306 is wound around the sheave 307 to raise and lower the car 303. The motor 40 included in the hoisting machine 301 is drive-controlled by the motor control device 10 and the inverter 30, and rotates the sheave 307. The rotation of the sheave 307 causes the main rope 306 to be driven by the sheave 307 . As a result, the car 303 and the counterweight 304 move up and down in vertically opposite directions within the hoistway 302. The car 303 moves while being guided by a car guide rail (not shown), and the counterweight 304 also moves vertically while being guided by a counterweight guide rail (not shown). The motor control device 10 executes the processes of the estimation processing section 21 and the calculation processing section 22 according to the first to third embodiments described above during an operating state in which the car 303 is moving up and down.
 乗りかご303を停止する際には、巻上機301に備えられた電磁ブレーキ308が巻上機301の回転を制動する。電磁ブレーキ308としては、例えばディスク式電磁ブレーキが適用される。なお、本実施形態では、巻上機301は、1台の電磁ブレーキ308を備える構成とするが、複数の電磁ブレーキ308を備える構成としてもよい。この構成とした場合、複数の電磁ブレーキ308は、同時に作動することで多重系ブレーキを構成できる。 When stopping the car 303, an electromagnetic brake 308 provided in the hoisting machine 301 brakes the rotation of the hoisting machine 301. As the electromagnetic brake 308, for example, a disc type electromagnetic brake is applied. In this embodiment, the hoisting machine 301 is configured to include one electromagnetic brake 308, but may be configured to include a plurality of electromagnetic brakes 308. With this configuration, the plurality of electromagnetic brakes 308 can constitute a multi-system brake by operating simultaneously.
 エレベーター装置300では、主ロープ306の弾性等に起因した固有振動モードが数Hz~数十Hz付近に複数存在する。このため、巻上機301のモータトルク脈動周波数が上記固有振動モードに一致した時、乗りかご303に上下振動が励起され、乗客の乗り心地が悪化する。したがって、回転角センサ50に角度検出誤差がある場合、これによって乗り心地が悪化する可能性がある。 In the elevator device 300, a plurality of natural vibration modes exist in the vicinity of several Hz to several tens of Hz due to the elasticity of the main rope 306, etc. Therefore, when the motor torque pulsation frequency of the hoisting machine 301 matches the above-mentioned natural vibration mode, vertical vibrations are excited in the car 303, deteriorating the passenger comfort. Therefore, if the rotation angle sensor 50 has an angle detection error, this may deteriorate the ride comfort.
 本実施形態では、第1乃至第3の実施形態に係る手法で角度検出誤差Δθeを補正することで、乗り心地の悪化を抑制し、あるいは防止する。近年主流のギアレス巻上機では、小型で大トルクを得るためにモータ極数を20極以上の多極構造とするケースが多い。このため、第1乃至第3の実施形態に係る手法を用いることは、位置センサレス角度推定におけるセンサ検出誤差を補正するために好適である。 In this embodiment, deterioration of ride comfort is suppressed or prevented by correcting the angle detection error Δθe using the method according to the first to third embodiments. Gearless hoisting machines, which have become mainstream in recent years, often have a multi-pole structure with 20 or more motor poles in order to obtain large torque with a small size. Therefore, using the methods according to the first to third embodiments is suitable for correcting sensor detection errors in position sensorless angle estimation.
 エレベーター装置300は、ビル330の任意の階床に複数設けられたエレベーター乗り場310にて、乗りかご303に乗客を乗せる。その後、エレベーター装置300は、エレベーター制御装置320が出力する速度指令に従ってモータ制御装置10がモータ40の回転速度を制御し、目的の階床のエレベーター乗り場310に乗りかご303を停止することで乗客を運搬する。この時、出発時の階床と目的の階床が十分に離れていれば、エレベーター制御装置320が出力する速度指令及びモータ40の回転速度が一定になる定速区間が存在する。 The elevator device 300 loads passengers into a car 303 at a plurality of elevator stops 310 provided on arbitrary floors of the building 330. Thereafter, in the elevator device 300, the motor control device 10 controls the rotational speed of the motor 40 according to the speed command output by the elevator control device 320, and the car 303 is stopped at the elevator landing 310 of the target floor, thereby transporting passengers. transport. At this time, if the departure floor and the destination floor are sufficiently far apart, there is a constant speed section in which the speed command output by the elevator control device 320 and the rotational speed of the motor 40 are constant.
 モータ制御装置10が巻上機301を異なる速度パターンで制御する際に、巻上機301で必要とされるトルクは、主に以下の三種類のトルクの合算値となる。
(1)乗りかご301、釣合い錘304、主ロープ306の質量、及び、巻上機301、方向転換プーリ305の回転イナーシャを加減速するためのトルク(「加減速トルク」と呼ぶ)
(2)乗りかご301と釣合い錘304、及び主ロープ306に加わる重力の差分に釣り合うためのトルク(「釣り合いトルク」と呼ぶ)
(3)乗りかご301や釣合い錘304とガイドレール間の摩擦、綱車307及び方向転換プーリ305の軸受損失や、主ロープ306が綱車307及び方向転換プーリ305で主ロープ306が変形することによる損失(「走行損失トルク」と呼ぶ)
When the motor control device 10 controls the hoisting machine 301 using different speed patterns, the torque required by the hoisting machine 301 is mainly the sum of the following three types of torque.
(1) Torque for accelerating and decelerating the mass of the car 301, counterweight 304, and main rope 306, and the rotational inertia of the hoist 301 and direction change pulley 305 (referred to as "acceleration/deceleration torque")
(2) Torque to balance the difference in gravity applied to the car 301, the counterweight 304, and the main rope 306 (referred to as "balance torque")
(3) Friction between the car 301 or counterweight 304 and the guide rail, bearing loss of the sheave 307 and direction change pulley 305, and deformation of the main rope 306 by the sheave 307 and direction change pulley 305. (referred to as “running loss torque”)
 定速区間においては、加減速トルクが0になるため、釣り合いトルクと走行損失トルクのみが巻上機301の出力トルクになる。また、乗りかご303に乗客を乗せた後、乗りかご303が走行している際には、乗りかご303の質量が一定であることから、釣り合いトルクもほぼ一定とみなすことができる。また、回転速度が一定であれば、走行損失トルクも、ほぼ一定とみなすことができる。 In the constant speed section, the acceleration/deceleration torque becomes 0, so only the balance torque and running loss torque become the output torque of the hoist 301. Further, when the car 303 is running after a passenger is loaded into the car 303, since the mass of the car 303 is constant, the balancing torque can also be considered to be approximately constant. Furthermore, if the rotational speed is constant, the running loss torque can also be considered to be approximately constant.
 したがって、定速区間においてはモータ40の回転速度及びトルクがほぼ一定となる。そこで、式(5)等を用いた位置センサレス角度検出誤差推定では、モータ40のd軸電流Id、q軸電流Iq、軸誤差推定値Δθeの微分値が0となる、定常状態を仮定して算出式が近似されている。このため、回転速度及びトルクが一定の条件下であれば、回転角度算出値θの推定精度が向上する。よって、回転角センサ50のセンサ検出誤差の同定を行うタイミングは、定速区間が好適である。 Therefore, in the constant speed section, the rotational speed and torque of the motor 40 are approximately constant. Therefore, in the position sensorless angle detection error estimation using equation (5) etc., a steady state is assumed in which the differential value of the d-axis current Id of the motor 40, the q-axis current Iq, and the estimated axis error value Δθe is 0. The calculation formula is approximated. Therefore, if the rotation speed and torque are constant, the accuracy of estimating the rotation angle calculation value θ is improved. Therefore, the timing for identifying the sensor detection error of the rotation angle sensor 50 is preferably during the constant speed section.
 エレベーター装置300を稼働し続ける中で、例えば定速区間が生じるたびにセンサ検出誤差の同定を行うことで、センサ特性や周囲環境の変化による角度検出誤差特性の変化に対し、メンテナンスフリー、かつ継続的に効果的な補正を行うことができる。 While the elevator device 300 continues to operate, for example, by identifying sensor detection errors every time a constant speed section occurs, maintenance-free and continuous operation can be performed against changes in angle detection error characteristics due to changes in sensor characteristics or surrounding environment. It is possible to perform effective correction.
[変形例]
 なお、図1に示したモータ40の種類は誘導モータであってもよい。また、インバータ30の代わりに、任意の電圧を出力できる交流電圧源を用いてもよい。また、第4の実施形態に係るエレベーター装置300は、巻上機やエレベーター制御装置が昇降路内に設置されるいわゆる機械室レスエレベーターでもよい。
[Modified example]
Note that the type of motor 40 shown in FIG. 1 may be an induction motor. Furthermore, instead of the inverter 30, an AC voltage source that can output any voltage may be used. Further, the elevator device 300 according to the fourth embodiment may be a so-called machine room-less elevator in which a hoisting machine and an elevator control device are installed in a hoistway.
 また、第1乃至第3の実施形態に係るモータ制御装置10及び速度・角度計算部20,20A,20Bは、エレベーター装置300以外にも、ベルトコンベヤ等の搬送装置に用いられてもよい。 Furthermore, the motor control device 10 and the speed/ angle calculating sections 20, 20A, and 20B according to the first to third embodiments may be used in a conveyance device such as a belt conveyor, in addition to the elevator device 300.
 本発明は上述した各実施形態に限られるものではなく、請求の範囲に記載した本発明の要旨を逸脱しない限りその他種々の応用例、変形例を取り得ることは勿論である。
 例えば、上述した各実施形態は本発明を分かりやすく説明するために装置及びシステムの構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、ここで説明した実施形態の構成の一部を他の実施形態の構成に置き換えることは可能であり、さらにはある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
The present invention is not limited to the embodiments described above, and it goes without saying that various other applications and modifications can be made without departing from the gist of the present invention as set forth in the claims.
For example, in each of the embodiments described above, the configurations of devices and systems are explained in detail and specifically in order to explain the present invention in an easy-to-understand manner, and the embodiments are not necessarily limited to having all the configurations described. Further, it is possible to replace a part of the configuration of the embodiment described here with the configuration of another embodiment, and furthermore, it is also possible to add the configuration of another embodiment to the configuration of a certain embodiment. Furthermore, it is also possible to add, delete, or replace some of the configurations of each embodiment with other configurations.
Further, the control lines and information lines are shown to be necessary for explanation purposes, and not all control lines and information lines are necessarily shown in the product. In reality, almost all components may be considered to be interconnected.
 1…モータ制御システム、10…モータ制御装置、20…速度・角度計算部、21…推定処理部、22…算出処理部、30…インバータ、31…電流検出部、40…モータ、50…回転角センサ、211…軸誤差推定部、212…軸誤差推定フィルタ、221…PI制御部、222…積分部、223…機械角換算部、223A…機械角推定積分部、224…角度検出誤差サンプリング部、225…検出誤差成分算出部、226…センサ検出誤差補正部、227…演算部、228…演算部、300…エレベーター装置 DESCRIPTION OF SYMBOLS 1... Motor control system, 10... Motor control device, 20... Speed/angle calculation part, 21... Estimation processing part, 22... Calculation processing part, 30... Inverter, 31... Current detection part, 40... Motor, 50... Rotation angle Sensor, 211... Axis error estimation section, 212... Axis error estimation filter, 221... PI control section, 222... Integration section, 223... Mechanical angle conversion section, 223A... Mechanical angle estimation integration section, 224... Angle detection error sampling section, 225...Detection error component calculation unit, 226...Sensor detection error correction unit, 227...Calculation unit, 228...Calculation unit, 300...Elevator device

Claims (13)

  1.  モータの回転速度及び回転角度に基づいて前記モータを制御するモータ制御装置であって、
     前記モータに加わる電圧及び電流と、前記モータの回転速度とを用いて、前記モータの軸誤差の軸誤差推定値を推定する軸誤差推定部を有する推定処理部と、
     前記軸誤差推定値に基づいて、前記モータの検出回転角度を補正する検出誤差補正部を有し、補正された前記検出回転角度に基づいて前記モータの前記回転速度及び前記回転角度を算出する算出処理部と、を備える
     モータ制御装置。
    A motor control device that controls the motor based on the rotation speed and rotation angle of the motor,
    an estimation processing unit including an axis error estimation unit that estimates an axis error estimated value of an axis error of the motor using the voltage and current applied to the motor and the rotational speed of the motor;
    a detection error correction unit that corrects the detected rotation angle of the motor based on the estimated axis error value, and calculates the rotation speed and the rotation angle of the motor based on the corrected detected rotation angle; A motor control device comprising a processing section.
  2.  前記算出処理部は、
     前記軸誤差推定値を機械角の検出誤差推定値に換算する換算部と、
     機械角の前記検出誤差推定値の波形をサンプリングして、角度検出誤差情報を出力するサンプリング部と、
     前記角度検出誤差情報に基づいて前記検出回転角度に含まれる検出誤差成分を算出する検出誤差成分算出部と、
     前記検出誤差補正部が前記検出誤差成分に基づいて補正した前記検出回転角度と、前記回転角度との差分に基づいて前記回転速度を算出する回転速度算出部と、
     前記回転速度に基づいて前記回転角度を算出する回転角度算出部と、を有する
     請求項1に記載のモータ制御装置。
    The calculation processing unit is
    a conversion unit that converts the estimated axis error value into an estimated mechanical angle detection error value;
    a sampling unit that samples a waveform of the estimated detection error value of the mechanical angle and outputs angle detection error information;
    a detection error component calculation unit that calculates a detection error component included in the detected rotation angle based on the angle detection error information;
    a rotation speed calculation unit that calculates the rotation speed based on a difference between the rotation angle and the detected rotation angle corrected by the detection error correction unit based on the detection error component;
    The motor control device according to claim 1, further comprising: a rotation angle calculation unit that calculates the rotation angle based on the rotation speed.
  3.  前記推定処理部は、
     前記軸誤差推定値に基づいて推定回転速度を推定する回転速度推定部と、
     前記推定回転速度に基づいて推定回転角度を推定する回転角度推定部と、を有する
     請求項1に記載のモータ制御装置。
    The estimation processing unit is
    a rotational speed estimation unit that estimates an estimated rotational speed based on the estimated axis error value;
    The motor control device according to claim 1, further comprising: a rotation angle estimator that estimates an estimated rotation angle based on the estimated rotation speed.
  4.  前記算出処理部は、
     積分した前記推定回転速度を機械角の推定回転角度に換算する換算部と、
     機械角の前記推定回転角度と、前記検出回転角度とを比較して、機械角の前記推定回転角度に対する前記検出回転角度の検出誤差差分を算出する検出誤差算出部と、
     前記検出誤差差分の波形をサンプリングして、角度検出誤差情報を出力するサンプリング部と、
     前記角度検出誤差情報に基づいて前記検出回転角度に含まれる検出誤差成分を算出する検出誤差成分算出部と、
     前記検出誤差補正部が前記検出誤差成分に基づいて補正した前記検出回転角度と、前記回転角度との差分に基づいて前記回転速度を算出する回転速度算出部と、
     前記回転速度に基づいて前記回転角度を算出する回転角度算出部と、を有する
     請求項3に記載のモータ制御装置。
    The calculation processing unit is
    a conversion unit that converts the integrated estimated rotation speed into an estimated rotation angle in mechanical angle;
    a detection error calculation unit that compares the estimated rotation angle of the mechanical angle and the detected rotation angle to calculate a detection error difference of the detected rotation angle with respect to the estimated rotation angle of the mechanical angle;
    a sampling unit that samples the waveform of the detection error difference and outputs angle detection error information;
    a detection error component calculation unit that calculates a detection error component included in the detected rotation angle based on the angle detection error information;
    a rotation speed calculation unit that calculates the rotation speed based on a difference between the rotation angle and the detected rotation angle corrected by the detection error correction unit based on the detection error component;
    The motor control device according to claim 3, further comprising: a rotation angle calculation unit that calculates the rotation angle based on the rotation speed.
  5.  前記算出処理部は、前記推定処理部によって推定された前記軸誤差推定値、又は前記検出誤差補正部が前記検出回転角度に基づいて算出した軸誤差算出値のいずれかに切り替える切替部を有し、前記切替部によって切り替えられた前記軸誤差推定値又は前記軸誤差算出値に基づいて前記回転速度及び前記回転角度を算出する
     請求項1に記載のモータ制御装置。
    The calculation processing unit includes a switching unit that switches to either the axis error estimated value estimated by the estimation processing unit or the axis error calculation value calculated by the detection error correction unit based on the detected rotation angle. The motor control device according to claim 1 , wherein the rotation speed and the rotation angle are calculated based on the estimated axis error value or the calculated axis error value switched by the switching unit.
  6.  前記算出処理部は、
     積分した前記回転速度を機械角の回転角度に換算する換算部と、
     機械角の前記回転角度と、前記検出回転角度とを比較して、機械角の前記回転角度に対する前記検出回転角度の検出誤差差分を算出する検出誤差算出部と、
     前記検出誤差差分の波形をサンプリングして、角度検出誤差情報を出力するサンプリング部と、
     前記角度検出誤差情報に基づいて前記検出回転角度に含まれる検出誤差成分を算出する検出誤差成分算出部と、
     前記切替部によって切り替えて入力される、前記軸誤差推定値、又は前記軸誤差算出値のいずれかに基づいて前記回転速度を算出する回転速度算出部と、
     前記回転速度に基づいて前記回転角度を算出する回転角度算出部と、を有する
     請求項5記載のモータ制御装置。
    The calculation processing unit is
    a conversion unit that converts the integrated rotational speed into a mechanical rotation angle;
    a detection error calculation unit that compares the rotation angle of the mechanical angle and the detected rotation angle to calculate a detection error difference of the detected rotation angle with respect to the rotation angle of the mechanical angle;
    a sampling unit that samples the waveform of the detection error difference and outputs angle detection error information;
    a detection error component calculation unit that calculates a detection error component included in the detected rotation angle based on the angle detection error information;
    a rotational speed calculation unit that calculates the rotational speed based on either the estimated axis error value or the calculated axis error value that is switched and input by the switching unit;
    The motor control device according to claim 5, further comprising: a rotation angle calculation unit that calculates the rotation angle based on the rotation speed.
  7.  前記検出誤差成分算出部は、前記角度検出誤差情報から求められる角度検出誤差波形の空間次数の振幅及び位相を前記検出誤差成分として算出し、
     前記検出誤差補正部は、前記空間次数の振幅及び位相に基づいて前記検出回転角度を補正する
     請求項2に記載のモータ制御装置。
    The detection error component calculation unit calculates the amplitude and phase of the spatial order of the angle detection error waveform obtained from the angle detection error information as the detection error component,
    The motor control device according to claim 2, wherein the detection error correction section corrects the detected rotation angle based on the amplitude and phase of the spatial order.
  8.  前記検出誤差成分算出部は、前記角度検出誤差情報に対して離散フーリエ変換を行って、前記角度検出誤差情報に含まれる、前記検出回転角度に生じる検出誤差脈動の空間次数の振幅及び位相を演算する
     請求項7に記載のモータ制御装置。
    The detection error component calculation unit performs a discrete Fourier transform on the angle detection error information to calculate the amplitude and phase of the spatial order of the detection error pulsation occurring in the detected rotation angle, which is included in the angle detection error information. The motor control device according to claim 7.
  9.  前記推定処理部は、前記軸誤差推定値から前記モータに通電される電流周波数の6次成分を選択的に低減するフィルタを有する
     請求項2に記載のモータ制御装置。
    The motor control device according to claim 2, wherein the estimation processing unit includes a filter that selectively reduces a sixth-order component of a frequency of a current applied to the motor from the estimated axis error value.
  10.  前記フィルタは、前記軸誤差推定値から前記モータの電流周波数以上の成分を低減する
     請求項9に記載のモータ制御装置。
    The motor control device according to claim 9, wherein the filter reduces a component higher than the current frequency of the motor from the estimated axis error value.
  11.  モータの回転速度及び回転角度に基づいて前記モータを制御するモータ制御装置で行われるモータ制御方法であって、
     前記モータに加わる電圧及び電流と、前記モータの回転速度とを用いて、前記モータの軸誤差の軸誤差推定値を推定する処理と、
     前記軸誤差推定値に基づいて、前記モータの検出回転角度を補正する処理と、
     補正された前記検出回転角度に基づいて前記モータの前記回転速度及び前記回転角度を算出する処理と、を含む
     モータ制御方法。
    A motor control method performed by a motor control device that controls the motor based on the rotation speed and rotation angle of the motor, the method comprising:
    a process of estimating an estimated axis error value of an axis error of the motor using the voltage and current applied to the motor and the rotational speed of the motor;
    a process of correcting a detected rotation angle of the motor based on the estimated axis error value;
    A motor control method, comprising: calculating the rotational speed and the rotational angle of the motor based on the corrected detected rotational angle.
  12.  昇降路を昇降する乗りかごと、前記乗りかごに接続される主ロープと、前記主ロープが巻き掛けられて前記乗りかごを昇降させる綱車と、前記綱車を駆動するモータと、前記モータの回転速度及び回転角度に基づいて前記モータを制御するモータ制御装置と、を備え、
     前記モータ制御装置は、
     前記モータに加わる電圧及び電流と、前記モータの回転速度とを用いて、前記モータの軸誤差の軸誤差推定値を推定する軸誤差推定部を有する推定処理部と、
     前記軸誤差推定値に基づいて、前記モータの検出回転角度を補正する検出誤差補正部を有し、補正された前記検出回転角度に基づいて前記モータの前記回転速度及び前記回転角度を算出する算出処理部と、を有する
     エレベーター装置。
    A car that moves up and down a hoistway, a main rope connected to the car, a sheave around which the main rope is wound to move the car up and down, a motor that drives the sheave, and a motor that drives the sheave. a motor control device that controls the motor based on a rotation speed and a rotation angle,
    The motor control device includes:
    an estimation processing unit including an axis error estimation unit that estimates an axis error estimated value of an axis error of the motor using the voltage and current applied to the motor and the rotational speed of the motor;
    a detection error correction unit that corrects the detected rotation angle of the motor based on the estimated axis error value, and calculates the rotation speed and the rotation angle of the motor based on the corrected detected rotation angle; An elevator device having a processing section.
  13.  前記乗りかごが昇降している運転状態中に、前記推定処理部及び前記算出処理部の処理が実行される
     請求項12に記載のエレベーター装置。
    The elevator apparatus according to claim 12, wherein the processing of the estimation processing section and the calculation processing section is executed during an operating state in which the car is ascending and descending.
PCT/JP2023/020284 2022-07-08 2023-05-31 Motor control device, motor control method, and elevator device WO2024009657A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-110454 2022-07-08
JP2022110454A JP2024008517A (en) 2022-07-08 2022-07-08 Motor control device, motor control method, and elevator device

Publications (1)

Publication Number Publication Date
WO2024009657A1 true WO2024009657A1 (en) 2024-01-11

Family

ID=89453143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020284 WO2024009657A1 (en) 2022-07-08 2023-05-31 Motor control device, motor control method, and elevator device

Country Status (2)

Country Link
JP (1) JP2024008517A (en)
WO (1) WO2024009657A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166677A (en) * 2004-12-10 2006-06-22 Hitachi Ltd Synchronous motor drive device and method therefor
JP2010154588A (en) * 2008-12-24 2010-07-08 Nippon Yusoki Co Ltd Motor controller with magnetic flux angle correcting function
WO2016174796A1 (en) * 2015-04-30 2016-11-03 三菱電機株式会社 Elevator control device, elevator device, and method for determining rotation angle error of rotation detection unit of electric motor for elevator
JP2017158415A (en) * 2016-03-04 2017-09-07 株式会社富士通ゼネラル Motor controller
JP2019193532A (en) * 2018-04-27 2019-10-31 ルネサスエレクトロニクス株式会社 Motor system, motor control device, and motor rotation speed detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166677A (en) * 2004-12-10 2006-06-22 Hitachi Ltd Synchronous motor drive device and method therefor
JP2010154588A (en) * 2008-12-24 2010-07-08 Nippon Yusoki Co Ltd Motor controller with magnetic flux angle correcting function
WO2016174796A1 (en) * 2015-04-30 2016-11-03 三菱電機株式会社 Elevator control device, elevator device, and method for determining rotation angle error of rotation detection unit of electric motor for elevator
JP2017158415A (en) * 2016-03-04 2017-09-07 株式会社富士通ゼネラル Motor controller
JP2019193532A (en) * 2018-04-27 2019-10-31 ルネサスエレクトロニクス株式会社 Motor system, motor control device, and motor rotation speed detection method

Also Published As

Publication number Publication date
JP2024008517A (en) 2024-01-19

Similar Documents

Publication Publication Date Title
JP5547866B2 (en) Induction motor drive device, motor drive system, and lifting system
US11001481B2 (en) Load detector, and winding apparatus for crane comprising said detector
WO2009043965A1 (en) Restriction of output of electrical drive and protection of an elevator
JP5328940B2 (en) Elevator control device
JP5473491B2 (en) Elevator control device
JP2003219504A (en) Electric vehicle driving and controlling method and control device
JP2010105763A (en) Power converter and elevator using the same
US10389290B2 (en) Motor control apparatus
KR102088183B1 (en) Motor control device and elevator using the same
WO2024009657A1 (en) Motor control device, motor control method, and elevator device
JP2012120320A (en) Rotational sensorless control device
JP6990118B2 (en) Motor control device
JP6351391B2 (en) Elevator control device and control method thereof
JP5083016B2 (en) Electric motor control device, control method, and elevator device
CN110114293B (en) Elevator with a movable elevator car
WO2017221682A1 (en) Load detector, and winding apparatus for crane comprising said detector
JP2011195286A (en) Control device of elevator
JP5659620B2 (en) Control device for power converter
JP2000134976A (en) Elevator device using permanent-magnet synchronous motor
JP2000191248A (en) Elevator control device
JP3653437B2 (en) Control system for permanent magnet synchronous motor
CN109476444B (en) Elevator system and control method thereof
JP2010035353A (en) Device for estimating rotor position of synchronous electric motor
KR20200031779A (en) Torque ripple reduction apparatus of electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835193

Country of ref document: EP

Kind code of ref document: A1