WO2016174796A1 - Elevator control device, elevator device, and method for determining rotation angle error of rotation detection unit of electric motor for elevator - Google Patents

Elevator control device, elevator device, and method for determining rotation angle error of rotation detection unit of electric motor for elevator Download PDF

Info

Publication number
WO2016174796A1
WO2016174796A1 PCT/JP2015/085540 JP2015085540W WO2016174796A1 WO 2016174796 A1 WO2016174796 A1 WO 2016174796A1 JP 2015085540 W JP2015085540 W JP 2015085540W WO 2016174796 A1 WO2016174796 A1 WO 2016174796A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle error
angle
error
phase
amplitude
Prior art date
Application number
PCT/JP2015/085540
Other languages
French (fr)
Japanese (ja)
Inventor
大塚 康司
酒井 雅也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to BR112016025232A priority Critical patent/BR112016025232A2/en
Priority to CN201580023650.0A priority patent/CN106464195B/en
Priority to JP2016549180A priority patent/JP6165352B2/en
Publication of WO2016174796A1 publication Critical patent/WO2016174796A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to an estimation of an angle error in an elevator control device, particularly a control device having a periodic torque pulsation and a speed pulsation due to a periodic angle error of a rotation sensor attached to an electric motor constituting a hoisting machine. It is.
  • the error waveform of the resolver is composed of frequency components specific to the resolver and is reproducible. Therefore, the position error is calculated with reference to the detected angle signal, and the position error is calculated.
  • the speed error signal is calculated by differentiating the error, and the magnitude of the detection error for each component obtained by dividing the speed error signal by Fourier transform is calculated.
  • an error waveform signal in which the detection errors included in the angle signal detected by the resolver are restored is generated.
  • the generated error waveform signal is used to correct the resolver angle detection signal including the detection error.
  • the position error is calculated by referring to the detected angle signal, the position error is differentiated to calculate the speed error signal, and the speed error signal is Fourier transformed to estimate the angle error. Yes.
  • the angle resolution estimation accuracy is determined by the angle detector or the velocity resolution of the velocity detector. For this reason, an angle detector or a velocity detector with a low velocity resolution has a problem that a quantization error occurs and the angle error estimation accuracy cannot be sufficiently obtained.
  • the present invention has been made in order to solve the above-described problems.
  • an elevator control apparatus having a motor rotation detection unit including a periodic angle error
  • the angle error and the mechanical system resonate. It is another object of the present invention to provide an elevator control device and the like that can obtain a highly reliable angle error estimation result without erroneously estimating the angle error.
  • the present invention relates to a current detector that detects a current flowing in an electric motor that generates power to raise and lower a car in a hoistway, a rotation detector that detects a rotation angle of the electric motor, and a current detected by the current detector
  • a frequency analysis unit that outputs a component of a specific frequency obtained by frequency analysis, and an amplitude of a cyclic angle error that is uniquely determined according to a rotation angle from the rotation detection unit using the component of the specific frequency.
  • An angle error estimator that estimates the phase and outputs an angle error estimated value, and the angle error estimator controls the car to perform a learning operation that operates the specific section, and during the learning operation
  • a plurality of the specific frequency components obtained by inputting the detected current to the frequency analysis unit are continuously acquired, and a set number of the specific frequency components that are consecutive among the acquired specific frequency components are obtained.
  • An evaluation value that is a geometric amount in a coordinate plane to be created is calculated, the angle error estimation value is calculated and the evaluation value is associated with the angle error estimation value, and the angle error estimation when the evaluation value is minimized
  • the value is in the elevator control unit etc.
  • an elevator control device or the like that can obtain a highly reliable angle error estimation result without erroneously estimating the angle error even if the angle error and the mechanical system resonate.
  • 3 is a flowchart showing an example of learning driving operation in the first embodiment by an angle error estimating unit in FIG. 1.
  • 6 is a flowchart illustrating an example of the learning driving operation in the second embodiment by the angle error estimating unit in FIG. 1.
  • 6 is a flowchart illustrating an example of learning driving operation in the third embodiment by an angle error estimating unit in FIG. 1.
  • 6 is a flowchart illustrating an example of the learning driving operation in the fourth embodiment by the angle error estimation unit in FIG. 1.
  • It is a block diagram which shows an example of a structure of the angle error estimation part of FIG.
  • It is a graph which shows an example of the line segment length between the coordinates of the Fourier coefficient which the angle error estimation part of FIG. 1 calculates.
  • the frequency analyzer calculates the amplitude and phase of the specific frequency component by performing frequency analysis on the current detected by the current detector
  • the angle error estimation unit estimates an angle error composed of a specific frequency component as an angle error estimated value using the amplitude and phase of the specific frequency component calculated by the frequency analysis unit, and when estimating the angle detection error, the car is specified in a specific section.
  • a learning operation is performed, and during the learning operation, the calculation results of the amplitude and phase of the specific frequency component are stored for a plurality of times, and the evaluation is a geometric quantity at coordinates created by the amplitude and phase of the specific frequency component stored for a plurality of times.
  • a value is calculated, and an estimated angle error value when the evaluation value is minimized is selected. Therefore, it is possible to obtain a highly reliable estimated value of the angle error without erroneously estimating the angle error due to the influence of resonance.
  • FIG. 1 is a block diagram showing an example of an elevator control apparatus according to the present invention.
  • an elevator car 4 and a counterweight 5 are connected to each other by a hoisting rope 6 and are suspended on a sheave 3 in a hangar manner.
  • the sheave 3 is connected to an electric motor 1 that is an electric motor for driving the car 4, and the car 4 is raised and lowered by the power of the electric motor 1.
  • the electric motor 1 that raises and lowers the car 4 is, for example, a permanent magnet synchronous motor.
  • Rotation detector 2 for detecting the rotation angle of motor 1 or sheave 3 is mounted on the same axis of motor 1 and sheave 3.
  • the angle information that is the rotation angle of the electric motor 1 that is output from the rotation detection unit 2 that includes a resolver, an encoder, a magnetic sensor, or the like includes a periodic error that is uniquely determined according to the rotation angle of the electric motor 1.
  • the periodic error uniquely determined according to the rotation angle of the electric motor 1 is, for example, a rotation angle such as a resolver detection error, a missing pulse due to a slit failure in an optical encoder, and an imbalance in the distance between pulses. Refers to errors that are reproducible depending on, i.e. occur at the same rotational angular position of each rotation
  • the frequency analysis unit 8, the angle error estimation unit 9, the speed calculation unit 10, the speed command calculation unit 11, and each subtractor SU1-SU3 are configured by a computer including a processor and a memory, for example. Each process is executed according to the program stored in the memory and various setting information necessary for the process.
  • the speed controller 12 and the current controller 13 may be configured by the computer.
  • the portions indicated by the functional blocks can also be configured by digital circuits that execute the respective functions. This also applies to FIG.
  • the speed command calculation unit 11 calculates and outputs a speed command value for the electric motor 1.
  • the speed command calculation unit 11 may include a position control system. The present invention can be applied even when the speed command calculation unit 11 includes a position control system.
  • the speed controller 12 inputs the difference between the speed command value from the speed command calculation unit 11 and the rotation speed of the motor 1 calculated by the speed calculation unit 10 from the subtractor SU1, and calculates the current command value for the motor 1 And output.
  • the speed controller 12 may be configured by any control method such as PI control or PD control.
  • the speed calculation unit 10 is an angular error estimation value of a periodic error that is uniquely determined according to the rotation angle of the motor 1 that is an output from the rotation detection unit 2 and the rotation angle of the motor 1 estimated by the angle error estimation unit 9.
  • the rotational speed of the electric motor 1 is calculated and output based on the corrected rotation angle corrected from the subtractor SU2, which is the difference between the motor and the motor.
  • the speed calculation unit 10 calculates the rotation speed by the time differentiation of the rotation angle most simply. Further, it may be configured to smooth by a low-pass filter (not shown) in order to remove noise due to time differentiation.
  • the speed calculation unit 10 may calculate the rotation speed of the electric motor 1 every predetermined time set in advance, or includes a configuration for measuring the time, for every predetermined fixed rotation angle. The rotational speed may be calculated.
  • the current controller 13 includes a current command value from the speed controller 12 and a phase current that is an output from the current detector 7 or a phase current of the motor 1 that is dq-axis converted by coordinate conversion (not shown).
  • the difference from the shaft current is input from the subtractor SU3, and the voltage command of the electric motor 1 is calculated and output.
  • the control method of the current controller 13 is not limited like the speed controller 12.
  • the current detector 7 detects the current of the electric motor 1. For example, when the motor 1 is a three-phase motor, a two-phase phase current is often measured, but a three-phase phase current may be measured. In FIG. 1, the current detector 7 measures the output current of the power converter 14. However, the current detector 7 calculates the bus current of the power converter 14 as in a current measurement method using a one-shunt resistor. Each phase current may be estimated by measurement. Even in this case, the present invention is not affected at all.
  • the power converter 14 converts a power supply voltage (not shown) into a preferable variable voltage variable frequency based on a voltage command from the current controller 13.
  • the power converter 14 of the present invention includes a power converter or a matrix that converts an AC voltage to a DC voltage by a converter and then converts the DC voltage to an AC voltage by an inverter, like an inverter device that is generally sold. It refers to a variable voltage variable frequency power converter including a power conversion device that directly converts AC voltage into AC variable voltage variable current, such as a converter.
  • the power converter 14 may include a coordinate conversion function in addition to the above-described inverter. That is, when the voltage command is a dq axis voltage command value, the dq axis voltage command value is converted into a phase voltage or a line voltage to a voltage according to the commanded voltage command value. It is expressed as a power converter 14 including a coordinate conversion function for conversion. Note that the present invention can be applied even if a device or a correction unit for correcting the dead time of the power converter 14 is provided.
  • the frequency analysis unit 8 performs frequency analysis on the current composed of the phase current or the shaft current detected by the current detector 7 and outputs the amplitude and phase of a specific frequency.
  • the frequency analysis unit 8 is preferably configured to obtain the amplitude and phase at a specific frequency of the input signal, such as Fourier transform, discrete Fourier transform, Fourier series expansion, and fast Fourier transform.
  • a specific frequency signal is extracted like a filter combining a notch filter and a bandpass filter, and an amplitude calculation is performed on the output current of the bandpass filter, for example, by an amplitude detection unit or a phase detection unit (not shown).
  • the configuration may be such that the amplitude and phase of a specific frequency of the input signal are calculated by performing phase calculation.
  • the filter used here may be an electrical one that combines a resistor, a capacitor, a coil, or the like, or may be a process that performs processing in a computer.
  • the frequency analysis unit 8 will be described as being configured to perform Fourier transform.
  • the angle error estimation unit 9 estimates a periodic angle error included in the rotation angle that is the output of the rotation detection unit 2 using the Fourier coefficient that is the output from the frequency analysis unit 8.
  • the angle error estimation unit 9 stores in advance a conversion equation for calculating an angle error using a Fourier coefficient obtained by performing a Fourier transform on the current of the current detector 7 using information on the rotation angle of the motor. Then, the estimated value of the angle error is calculated from the current using the conversion formula.
  • the angle error estimation unit 9 is based on a Fourier coefficient obtained by performing a Fourier transform on the current of the current detector 7 that is an output from the frequency analysis unit 8 using information on the rotation angle of the electric motor.
  • the area of the region surrounded by the coordinates is calculated as an evaluation value that is a geometric quantity on the coordinate plane.
  • a method for calculating the area surrounded by the coordinates of the Fourier coefficient and its meaning will be described later.
  • the angle error estimated by the angle error estimator 9 is composed of an error amplitude and an error phase described later.
  • the error error estimator 9 calculates the error amplitude and the error phase as an estimated value of the angle error, the error error and the error phase are used to reproduce a periodic angle error, and the sine wave or cosine wave correction signal is used. Is calculated and output.
  • FIG. 2 is a configuration diagram illustrating an example of the angle error estimation unit 9.
  • the learning speed calculation unit 91 calculates the rotation speed of the electric motor 1 based on the rotation angle of the electric motor 1 detected by the rotation detection unit 2.
  • the learning speed calculation unit 91 calculates the rotation speed by time differentiation of the rotation angle, most simply. Further, a configuration may be used in which smoothing is performed by a low-pass filter in order to remove noise due to time differentiation.
  • the learning speed calculation unit 91 may calculate the rotation speed of the electric motor 1 every predetermined time set in advance, or includes a configuration for measuring the time, for each fixed rotation angle set in advance. Alternatively, the rotation speed may be calculated.
  • the rotation speed of the electric motor 1 calculated by the learning speed calculation unit 91 includes a periodic speed pulsation.
  • the speed information necessary for the angle error estimation unit 9 determines whether or not the rotational speed of the electric motor 1 has reached a preset speed and has reached a constant speed traveling state at the set speed in an angle error learning operation to be described later. It is for use. Accordingly, even if pulsation is included in the speed information, there is no problem because it can be determined that the vehicle has reached a constant speed traveling state.
  • the car position calculation unit 92 calculates and outputs the position of the car 4 in the hoistway based on the rotation angle of the electric motor 1 that is an output from the rotation detection unit 2.
  • the reference position in the hoistway may be the lowermost floor or the uppermost floor, or an arbitrary floor may be used as a reference. Since the rotation angle of the electric motor 1 that is an output from the rotation detection unit 2 includes a cyclic angle error, the car position calculated by the car position calculation unit 92 also includes an error.
  • the position information of the car 4 required in the present invention is used to determine whether or not traveling in a specific section is completed in an angle error learning operation described later. Therefore, there is no problem because it can be determined that the vehicle has traveled in the specific section even if the position information of the car 4 includes an error.
  • the car position calculation part 92 does not calculate the position of the car 4 based on the rotation angle. For example, the car position calculation part 92 determines that the vehicle has traveled in a specific section by counting the number of times the door zone plate is detected. Also good. Further, it may be determined that the vehicle has traveled in a specific section by a position switch that informs a reference position such as the uppermost floor or the lowermost floor provided in the hoistway.
  • the learning determination unit 93 determines whether the car 4 is preliminarily determined based on whether or not the rotation speed of the electric motor 1 output from the learning speed calculation unit 91 has reached a constant speed running state and the position of the car 4 output from the car position calculation unit 92. It is determined whether the vehicle is traveling in the set specific section.
  • the learning determination unit 93 outputs a learning command while the rotational speed is in a constant speed traveling state and traveling in a specific section, and does not output a learning command otherwise. That is, the angle error estimator 9 estimates the angle error when the rotation speed of the electric motor 1 is constant and the frequency of the angle error is constant. Thereby, the frequency of the angle error can be treated as known.
  • the angle error calculation unit 94 When the angle error calculation unit 94 receives a learning command from the learning determination unit 93, the angle error calculation unit 94 performs Fourier transform on the current of the current detector 7, which is the output of the frequency analysis unit 8, using information on the rotation angle of the electric motor 1. An angle error is calculated using the obtained Fourier coefficient.
  • the angle error calculation unit 94 stores in advance a conversion formula for obtaining an angle error from a Fourier coefficient, which is a result of Fourier transforming the current using information on the rotation angle of the electric motor 1, and calculates the angle error from the Fourier coefficient. To do.
  • the angle error calculated by the angle error calculation unit 94 is an error amplitude and an error phase described later.
  • the area calculation unit 95 uses the Fourier coefficient coordinates based on the Fourier coefficient obtained by Fourier-transforming the current of the current detector 7 that is the output of the frequency analysis unit 8 using the rotation angle information of the electric motor 1. Calculate the area of the area to be created. The area of the region created by the coordinates of the Fourier coefficient is output to the output determination unit 96 for use in determining whether the angle error is estimated. The area formed by the coordinates of the Fourier coefficient and its meaning will be described later.
  • the output determination unit 96 selects and outputs an error amplitude and an error phase when the area created by the coordinates of the Fourier coefficient that is the output of the area calculation unit 95 is minimized.
  • the estimated value of the angle error when the influence of the resonance is small and equal when the influence of the resonance is the smallest can be selected.
  • the error signal calculation unit 97 calculates and outputs a correction signal (angle error estimated value) for correcting the periodic angle error of the rotation detection unit 2 using the error amplitude and error phase output from the output determination unit 96. To do.
  • the correction signal is a value obtained by multiplying the error angle by the sine value or cosine value of the rotation angle obtained by adding the error phase calculated by the angle error calculation unit 94 to the rotation angle of the electric motor 1 that is the output of the rotation detection unit 2 ( Equation (1) below.
  • the periodic angular error of the rotation detector 2 can be approximately expressed using a sine wave as shown in the following equation (1).
  • the present invention unifies the notation by the sine wave.
  • ⁇ e Periodic angle error of rotation detection unit 2
  • X Order of angle error of rotation detection unit 2 with respect to mechanical angle of electric motor 1 (known value)
  • ⁇ m rotation angle of motor 1
  • a 1 error amplitude of angle error of rotation detector 2
  • phase shift (error phase) of rotation detector 2 relative to mechanical angle of motor 1
  • X represents the order of the angle error of the rotation detection unit 2 with respect to the mechanical angle of the electric motor 1, and is a known value. Therefore, if the rotation angle ⁇ m of the electric motor 1, that is, the rotation speed of the electric motor 1 is known, the frequency of the cyclic angle error of the rotation detection unit 2 represented by the equation (1) can be known.
  • a 1 indicates the error amplitude of the angle error of the rotation detector 2
  • indicates the phase shift (error phase) of the rotation detector 2 with respect to the mechanical angle of the electric motor 1.
  • the angle error estimator 9 calculates the correction signal shown in the equation (1) using the estimation result of the error amplitude A 1 and the estimation result of the error phase ⁇ .
  • the periodic angle error shown in the equation (1) is converted into a periodic velocity error by the velocity calculation unit 10 as in the following equation (2).
  • ⁇ e Periodic speed error of rotation detector 2
  • a 2 Amplitude of speed error due to angle error in equation (1)
  • Motor rotation speed
  • the rotation speed of the electric motor 1 output from the speed calculation unit 10 includes the periodic speed error expressed by the equation (2).
  • the speed output from the speed calculation unit 10 is compared with the speed command value output from the speed command calculation unit 11 and input to the speed controller 12.
  • the speed controller 12 determines a current command from the difference between the speed command value and the detected speed, but the rotational speed output from the speed calculation unit 10 includes a periodic speed error as shown in Equation (2), so that the speed control is performed.
  • the current command calculated by the device 12 includes the pulsation caused by the equation (2), that is, the pulsation caused by the angle error of the rotation detector 2 of the equation (1).
  • the pulsation of the current command calculated by the speed controller 12 is expressed by equation (3) from equation (2).
  • I e A 3 cos (X ⁇ m + ⁇ + ⁇ c ) (3)
  • I e Current command pulsation
  • a 3 Current pulsation amplitude due to angle error
  • ⁇ c Phase delay by speed controller 12
  • I e A n cos (X ⁇ m ) + B n sin (X ⁇ m ) (4)
  • the current pulsation represented by the equation (4) is also included in the current detected by the current detector 7.
  • the current pulsation of equation (4) can be rewritten as follows.
  • G ⁇ (A n 2 + B n 2 ) indicates the amplitude of the current pulsation caused by the angle error of the rotation detector 2
  • G ⁇ (A n 2 + B n 2 ) is the amplitude of current pulsation
  • tan ⁇ 1 (A n / B n ) be called the current pulsation phase.
  • the error phase ⁇ of the angle error can be obtained as in the following equation (6).
  • the phase delay ⁇ c by the speed controller 12 is determined by the frequency characteristics of the speed controller 12. Since the frequency of the angle error is known, the frequency of the speed error is a known value. FIG. 3 shows the frequency characteristics of the gain and phase of the speed controller 12. For example, when the frequency of the angle error is A, the phase delay by the speed controller 12 is ⁇ 150 [deg]. When the frequency of the angle error is B, the phase lag by the speed controller 12 is ⁇ 170 [deg]. The phase lag of the speed controller 12 is uniquely determined by the speed controller 12. Therefore, the phase delay ⁇ c by the speed controller 12 can be obtained from the frequency characteristics of the speed controller 12, and the error phase ⁇ of the angle error can be obtained from the equation (6).
  • the amplitude can be obtained from the frequency characteristic of the speed controller 12.
  • the frequency of the angle error is known from the frequency characteristics of the speed controller 12
  • the gain C1 from the speed to the current command can be obtained. From the frequency characteristic of the speed controller 12 in FIG. 3, for example, when the frequency of the angle error is A, the gain by the speed controller 12 is ⁇ 10 [dB]. When the frequency of the angle error is B, the gain by the speed controller 12 is ⁇ 35 [dB]. Therefore, the error amplitude A 1 of the angle error can be calculated as in the following equation (7).
  • the angle error calculation unit 94 stores the equations (6) and (7) in the memory in advance, and calculates the error amplitude A 1 and the error phase ⁇ of the angle error from the Fourier coefficient obtained from the current frequency analysis result. To do.
  • the angle error calculation unit 94 may store the phase lag and gain due to the frequency characteristics of the speed controller 12 as table data for each of a plurality of frequencies, for example.
  • the frequency analysis unit 8 performs a Fourier transform on the current I detected by the current detector 7 using information on the rotation angle of the electric motor 1 and calculates a Fourier coefficient.
  • the Fourier coefficient is calculated by the following well-known formula (8).
  • the calculation of the Fourier coefficient of equation (8) is performed at regular intervals.
  • the fixed period corresponds to one rotation of the rotation angle ⁇ m of the electric motor 1 according to the equation (8).
  • the Fourier coefficient is calculated for each distance traveled by the car 4 for one rotation of the electric motor 1 and for each time required for one rotation of the electric motor 1.
  • the interval for calculating the Fourier coefficient may be two rotations or three rotations instead of one rotation of the electric motor 1. In this case, since an average value for several cycles is obtained, the influence of fluctuations in current pulsation and disturbance can be reduced.
  • the frequency analysis unit 8 is not configured to calculate the Fourier coefficient shown in Expression (8), but extracts a specific frequency signal like a filter combining a notch filter and a band pass filter, and an amplitude detection unit and a phase detection unit.
  • the unit may calculate the amplitude and phase of a specific frequency of the input signal.
  • the error phase ⁇ can be obtained by subtracting the phase delay ⁇ c by the speed controller 12. it can.
  • the angle error amplitude A 1 can be obtained by the same procedure as that in the equation (7).
  • FIG. 4 shows an example of the gain characteristic from the angle error included in the rotation angle of the electric motor 1 detected by the rotation detector 2 to the current detected by the current detector 7, and
  • FIG. 5 shows an example of the phase characteristic. 4 and 5, when the frequency of the angle error is A and C, the gain and phase are constant at any position of the car 4 in the hoistway. On the other hand, when the frequency of the angle error is B, the gain and phase do not change when the position of the car 4 is near the lowermost floor indicated by the broken line or the uppermost floor indicated by the solid line, but resonates near the intermediate floor indicated by the dotted line. The characteristics are shown. The characteristics shown in FIGS. 4 and 5 are an example.
  • the car 4 of the elevator when brought into a particular section traveling are those two Fourier coefficients A n calculated by the frequency analysis unit 8, the B n, the horizontal axis B n, the vertical axis is plotted as A n It is.
  • this plane is referred to as a Fourier coefficient coordinate plane.
  • the area surrounded by the coordinates of three or more Fourier coefficients can be calculated by the coordinate method.
  • the Fourier coefficients calculated by the frequency analysis unit 8 when traveling in a specific section of the elevator car 4 are calculated in the order of the calculation results (B n1 , A n1 ), (B n2 , A n2 ), (B n3 , A n3 ), the area S surrounded by the coordinates of these three sets of Fourier coefficients can be calculated by the following equation (9).
  • the distance ⁇ (A n1 2 + B n1 2 ) from the origin to the coordinates (B n1 , A n1 ) is represented by G 1
  • the distance ⁇ (A n2 2 + B n2 2 ) from the origin to the coordinates (B n2 , A n2 ) is G 2
  • the distance ⁇ (A n3 2 + B n3 2 ) from the origin to the coordinates (B n3 , A n3 ) is represented by G 3
  • the amplitude of the current pulsation at each coordinate is G 1 , G 2 , G 3
  • the gain characteristic and the phase characteristic from the angle error included in the rotation angle of the electric motor 1 detected by the rotation detector 2 to the current detected by the current detector 7 are the characteristics as shown in FIGS. because when the frequency is a or C of the gain and phase constant values at any position of the car 4 hoistway, i.e., the frequency of the angle error does not resonate with the elevator mechanical system if a and C, G 1 , G 2 , G 3 and ⁇ 1 , ⁇ 2 , ⁇ 3 are constant values, and the area calculated by equation (9) is zero.
  • the gain that is, the amplitude and the phase are constant when the car 4 is near the lowermost floor and the uppermost floor, but the gain and the phase change greatly as they approach the intermediate floor. That is, when the frequency of the angle error is B, resonance occurs near the middle floor and no resonance occurs in other places.
  • the area calculated by Expression (9) is 0 near the lowermost floor and the uppermost floor, but the area of Expression (9) increases as the intermediate floor is approached.
  • the gain and phase change at the same time. Therefore, by calculating the area of Equation (9), the change in the amplitude and phase of the current pulsation can be calculated.
  • the frequency analysis unit 8 is a filter that combines a notch filter and a bandpass filter, and extracts a specific frequency signal and calculates the amplitude and phase of the specific frequency of the input signal by the amplitude detection unit and the phase detection unit.
  • the area can be calculated in the same procedure. That is, the frequency analysis unit 8 is a filter that combines a notch filter and a bandpass filter, extracts a specific frequency signal, and calculates the amplitude and phase of the specific frequency of the input signal by the amplitude detection unit and the phase detection unit. Since the amplitude G of the current pulsation and the phase ⁇ of the current pulsation in Equation (10) are obtained, the area can be calculated by Equation (10).
  • the frequency analysis unit 8 is a filter that combines a notch filter and a band pass filter, and extracts a specific frequency signal, and the amplitude detection unit and the phase detection unit calculate the amplitude and phase of the specific frequency of the input signal.
  • the change in the amplitude and phase of the current pulsation can be calculated by calculating the area by the calculation according to the equation (9). That is, in correspondence with amplitude A n, the phase B n corresponding, or is associated with phase A n, it is sufficient to correspond to amplitude B n.
  • obtaining the area of equation (9) is equivalent to obtaining the amount of change in amplitude and phase of current pulsation, and that the area is large means that the amount of change in amplitude and phase of current pulsation is large.
  • the area surrounded by the coordinates of the Fourier coefficients of three points has been described as an example. However, since the area surrounded by the coordinates of the Fourier coefficients can be calculated if the number of points is three or more, it is not necessary to limit to three points.
  • step S71 it is determined whether or not the rotation speed of the electric motor 1 is constant according to the output (step S71). If the rotation speed of the electric motor 1 is not constant, step S71 is continued until the rotation speed becomes constant. This is because when the rotation speed of the electric motor 1 is constant, the frequency of the angle error of the rotation detector 2 is constant, and the angle detection error is easily estimated.
  • the angle error calculation unit 94 After the rotation speed of the electric motor 1 becomes constant, the angle error calculation unit 94 performs Fourier transform on the current of the current detector 7, which is an output from the frequency analysis unit 8, using information on the rotation angle of the electric motor 1. The obtained Fourier coefficient calculation result is stored in a memory (step S72).
  • the angle error calculation unit 94 determines whether the calculation result of the Fourier coefficient is stored three times or three times or more (hereinafter, described as three times or more) (step S73). If three or more Fourier coefficients have not been stored, the process returns to step S72, and the storage of the Fourier coefficient output from the frequency analysis unit 8 is repeated.
  • the area calculation unit 95 calculates the area created by the coordinates of the Fourier coefficients according to the equation (9). Further, the angle error calculation unit 94 uses the Fourier coefficient to calculate an estimated value of the angle error by using the stored Fourier coefficient and angle detection error conversion formula (step S74).
  • the estimated value of the angle error is an error amplitude and an error phase. Then, the output determination unit 96 associates the area and the estimated value of the angle error and stores them in the memory.
  • the output determination unit 96 compares the stored area, that is, the area calculated in the previous flow with the area calculated in step S74. (Step S75).
  • the initial value of the areas to be compared is the maximum value that can be stored so that the first calculation result is always saved.
  • the estimated value of the angle detection error may be an arbitrary value.
  • the output determination unit 96 compares the stored area with the calculated area in step S75 and determines that the area calculated in step S74 is smaller, the output determination unit 96 calculates the area and angle calculated in step S74. The estimated value of the detection error is stored together. At this time, the already stored area and angle detection error are deleted (step S76). On the other hand, as a result of comparing the area stored in step S75 with the calculated area, if it is determined that the area calculated in step S74 is greater than or equal to the stored area, no processing is performed. That is, the stored angular error estimation value and area are stored, and the process proceeds to the next step.
  • the learning determination unit 93 determines whether or not the car has traveled in a specific section from the output of the car position calculation unit 92 (step S77). If it is determined that the vehicle is not traveling in a specific section, the process returns to step S72 and the processes up to step S77 are repeated. If it is determined that the vehicle has traveled in a specific section, the learning operation is terminated.
  • the fact that the car 4 has traveled in a specific section is determined based on the car position calculated by the car position calculation unit 92. For example, by counting the number of times the door zone plate is detected, the specific section is It may be determined that the vehicle has traveled. Further, it may be determined that the vehicle has traveled in a specific section by a position switch that informs a reference position such as the uppermost floor or the lowermost floor provided in the hoistway.
  • the error signal calculation unit 97 calculates a periodic angle error of the rotation detection unit 2 using the estimation result of the error phase and the error amplitude, and outputs it as a correction signal. In SU2, the angle error of the rotation detector 2 is corrected.
  • the output of the learning speed calculation unit 91 is the rotational speed of the motor 1. Indicates that the vehicle is running at a constant speed, and when the output of the car position calculation unit 92 indicates that the car 4 is traveling in a preset specific section, the learning determination unit 93 outputs a learning command, and learning The operation may be started. In this case, step S77 is performed in parallel with step S71.
  • the area created by the coordinates of the Fourier coefficient obtained by Fourier transforming the current of the current detector 7 using the information of the rotation angle of the electric motor 1 when traveling in a specific section is obtained. It is possible to extract the angle detection error when it becomes the minimum.
  • the minimum area created by the Fourier coefficient coordinates when traveling in a specific section is the same when the amplitude and phase change of the current pulsation are small in the specific section. Specifically, the estimated value of the angle detection error with the smallest estimation error can be extracted.
  • FIG. 8 shows the relationship between the area calculated using the coordinates of three adjacent Fourier coefficients in the Fourier coefficient coordinate plane of FIG. 6 and the car position.
  • the area calculated by the area calculation unit 95 of the angle error estimation unit 9 is as shown in FIG. In section A, the area is small, and in section B, the area is larger than section A.
  • the estimated value of the angle error in the section A is extracted. Since a small area is equivalent to non-resonance, it is possible to obtain a highly reliable estimation value of the angle error.
  • the method of the first embodiment it is possible to simultaneously estimate the angle error and determine the success or failure of the estimation based on the amplitude and phase of the current pulsation, extract the estimated value of the angle error when the influence of resonance is the smallest, In addition, since it is not necessary to check information on resonance, the time required for learning the angle error can be shortened. Further, according to the method of the first embodiment, no matter what mechanical system is connected as the load of the electric motor 1 instead of the elevator, the influence of resonance is the most based on the amount of change in the amplitude and phase of the current pulsation. The estimated value when there are few can be extracted. Although FIG. 6 shows a method performed with four Fourier coefficients, it is sufficient if the area can be calculated at three or more points.
  • the frequency analysis unit 8 is not configured to calculate a Fourier coefficient, but a specific frequency signal is extracted like a filter combining a notch filter or a band pass filter, and the input signal is detected by an amplitude detection unit or a phase detection unit. Even with a configuration for calculating the amplitude and phase of a specific frequency, a highly reliable estimation error angle can be obtained by the same procedure.
  • Embodiment 2 the method of extracting the estimated value when the frequency of the angle error coincides with the frequency of the mechanical system and estimation is difficult and the estimated value when the influence of resonance is the smallest is shown.
  • the learning operation of the angle error shown in the first embodiment is performed a plurality of times while changing the speed during the learning operation, and by confirming the consistency of the results of the plurality of learnings, A method for obtaining an estimated value of the angle error with higher reliability than that of the first embodiment will be described.
  • the angle estimation error when the influence of resonance is small can be extracted by extracting the estimated value of the angle error when the area surrounded by the coordinates formed by the Fourier coefficients is minimized.
  • the angle error learning is performed a plurality of times while changing the speed during the learning operation, and the consistency of the results of the plurality of learning is confirmed.
  • FIG. 9 shows a flowchart of the learning operation in the second embodiment. Note that the configuration of the elevator control device and the circuit error estimation unit 9 are basically the same as those shown in FIGS.
  • step S901 it is determined whether or not the rotation speed of the electric motor 1 is constant according to the output (step S901). If the rotation speed of the electric motor 1 is not constant, step S901 is continued until the rotation speed becomes constant. This is because when the rotation speed of the electric motor 1 is constant, the frequency of the angle error of the rotation detector 2 is constant, so that it is easy to estimate the angle detection error.
  • the angle error calculation unit 94 After the rotation speed of the electric motor 1 becomes constant, the angle error calculation unit 94 performs Fourier transform on the current of the current detector 7, which is an output from the frequency analysis unit 8, using information on the rotation angle of the electric motor 1. The obtained Fourier coefficient calculation result is stored in a memory (step S902).
  • the angle error calculation unit 94 determines whether or not the calculation result of the Fourier coefficient is stored three times or more (step S903). If three or more Fourier coefficients have not been stored, the process returns to step S902, and the storage of the Fourier coefficient output from the frequency analysis unit 8 is repeated.
  • the area calculation unit 95 calculates the area created by the coordinates of the Fourier coefficients according to the equation (9).
  • the angle error calculation unit 94 uses the Fourier coefficient to calculate an estimated value of the angle error by using the stored Fourier coefficient and angle detection error conversion formula (step S904).
  • the estimated value of the angle error is an error amplitude and an error phase.
  • the output determination unit 96 associates the area and the estimated value of the angle error and stores them in the memory.
  • the output determination unit 96 compares the stored area, that is, the area calculated in the previous flow with the area calculated in step S904. (Step S905).
  • the initial value of the areas to be compared is the maximum value that can be stored so that the first calculation result is always saved.
  • the estimated value of the angle detection error may be an arbitrary value.
  • the output determination unit 96 compares the stored area with the calculated area in step S905 and determines that the area calculated in step S904 is smaller, the output determination unit 96 calculates the area and angle calculated in step S904. The estimated value of the detection error is stored together. At this time, the already stored area and angle detection error are erased (step S906). On the other hand, as a result of comparing the area stored in step S905 with the calculated area, if it is determined that the area calculated in step S904 is greater than or equal to the stored area, no processing is performed. That is, the stored angular error estimation value and area are stored, and the process proceeds to the next step.
  • the learning determination unit 93 determines from the output of the car position calculation unit 92 whether the car has traveled in a specific section (step S907). If it is determined that the vehicle is not traveling in a specific section, the process returns to step S902 and the processes up to step S907 are repeated. When it is determined that the vehicle has traveled in the specific section, the output determination unit 96 stores the number of learning times and the stored angle error estimated value together in the memory (step S908). The number of learnings can be calculated by counting the number of times of traveling in a specific section using the position of the car 4 calculated by the car position calculation unit 92. The fact that the car 4 has traveled in a specific section is determined based on the car position calculated by the car position calculation unit 92.
  • the specific section is It may be determined that the vehicle has traveled. Further, it may be determined that the vehicle has traveled in a specific section by a position switch that informs a reference position such as the uppermost floor or the lowermost floor provided in the hoistway.
  • the learning determination unit 93 determines whether or not the angle error has been learned twice or more, that is, a plurality of times, based on the stored number of learning (step S909). If it is determined in step S909 that the learning has not been performed twice or more, a learning operation command is sent from the learning determination unit 93 or the output determination unit 96 to the speed command calculation unit 11 in FIG. 1 to change the speed of the learning operation. Then, the learning operation is performed again (step S914). By changing the learning speed, the frequency of the periodic angular error changes. For example, in FIG. As a result, the tendency of current pulsation due to the cyclic angle error of the rotation detector 2 changes.
  • the angle error can be estimated under different conditions from the first learning.
  • the speed setting for learning driving there is no particular restriction on the speed setting for learning driving, but the tendency of current pulsation changes greatly if the speed is changed extremely, such as the slowest speed or the fastest speed at which the car can travel. The angle error can be learned.
  • the driving direction of the learning driving it returns to the same direction as the first learning, that is, when the first learning is finished, returns to the position where the learning is started, and performs again in the same driving direction, or continues from the position where the first learning is completed. You may drive in the same direction, and you may drive in the direction opposite to the driving direction of the first learning from the position where the first learning is completed.
  • the driving direction is not limited as long as the learning speed is changed.
  • the learning method when the learning driving speed is changed is the same as the first learning.
  • step S910 the consistency determination of the angle error estimation results is performed multiple times (step S910).
  • the estimated value of the angle error is composed of the error amplitude and error phase of equation (1).
  • the consistency of the error amplitude estimation result is confirmed. That is, the difference between the estimated values of the error amplitude obtained by a plurality of learning operations is calculated, and it is confirmed whether or not the difference is within a preset value. For example, when the learning operation is performed three times, the consistency check is performed by all combinations of the estimation results obtained as in the first time, the second time, the second time, the third time, the first time, and the third time.
  • the set value of the difference in error amplitude for determining consistency may be stored in advance in a memory or may be input from the outside.
  • the error phase consistency check is then performed.
  • the error phase consistency is also checked in the same manner as the error amplitude. That is, the difference of the estimated value of the error phase obtained by a plurality of learning operations is calculated, and it is confirmed whether or not the difference is within the set value.
  • the set value of the difference in error amplitude for determining consistency may be stored in advance in a memory or may be input from the outside.
  • step S911 if it is determined that either of the learning results does not match multiple times (step S911), whether or not the number of learning is within the maximum number of learning times. Is determined (step S912). If the number of times of learning is within the maximum number of times of learning, the learning operation is performed again by changing the learning speed (step S914). In the confirmation of the consistency of the estimation results, when the error amplitude is matched and the error phase is not matched, in the learning operation in which the speed is changed, only the error phase may be re-learned.
  • step S912 If it is determined in step S912 that the number of learnings exceeds the maximum number of learnings, the learning determining unit 93 outputs a learning impossibility notification to a host control device (not shown) (step S913).
  • the maximum number of learning times may be stored in advance in a memory or may be commanded from the outside.
  • the learning impossible notification output in step S913 be displayed on an elevator control panel (not shown) so as to notify the abnormality. Further, when a learning impossible notification is output, it is desirable to ensure safety by pausing the elevator.
  • step S911 When the consistency check in step S911 is completed or a learning impossible notification is output in step S913, the learning determination unit 93 completes the learning operation. If the consistency of the results of the plurality of learning operations can be confirmed in step S911, the error signal calculation unit 97 uses the error phase and error amplitude estimation results after completion of the learning operation. 1 is output as a correction signal, and the angle error of the rotation detector 2 is corrected by the subtractor SU2 in FIG.
  • Embodiment 3 when the area surrounded by the coordinates formed by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is larger than the reference value, the learning operation speed is changed to perform the learning.
  • a method for obtaining the estimated value of the angle error with higher reliability than that of the first embodiment will be described.
  • the angle estimation error when the influence of resonance is small can be extracted by extracting the estimated value of the angle error when the area surrounded by the coordinates formed by the Fourier coefficients is minimized.
  • an estimated value of the angle error when the amplitude and phase change of the current pulsation is the smallest among the resonances is extracted.
  • the consistency of the learning results is performed a plurality of times while changing the speed during the learning operation.
  • a reference value of the area enclosed by the coordinates formed by the Fourier coefficient is prepared in advance by storing it in a memory, for example, and the Fourier corresponding to the estimated value of the angle error obtained by the learning operation is prepared.
  • the angle error is learned by changing the speed during the learning operation.
  • FIG. 10 shows a flowchart of the learning operation in the third embodiment. Note that the configuration of the elevator control device and the circuit error estimation unit 9 are basically the same as those shown in FIGS.
  • step S101 it is determined whether or not the rotation speed of the electric motor 1 is constant according to the output (step S101). If the rotation speed of the electric motor 1 is not constant, step S101 is continued until the rotation speed becomes constant. This is because when the rotation speed of the electric motor 1 is constant, the frequency of the angle error of the rotation detector 2 is constant, so that it is easy to estimate the angle detection error.
  • the angle error calculation unit 94 After the rotation speed of the electric motor 1 becomes constant, the angle error calculation unit 94 performs Fourier transform on the current of the current detector 7, which is an output from the frequency analysis unit 8, using information on the rotation angle of the electric motor 1. The obtained Fourier coefficient calculation result is stored in a memory (step S102).
  • the angle error calculation unit 94 determines whether or not the calculation result of the Fourier coefficient is stored three times or three times or more (hereinafter described as three times or more) (step S103). If three or more Fourier coefficients have not been stored, the process returns to step S102, and the storage of the Fourier coefficient output from the frequency analysis unit 8 is repeated.
  • the area calculation unit 95 calculates the area created by the coordinates of the Fourier coefficients according to the equation (9). Further, the angle error calculation unit 94 uses the Fourier coefficient to calculate an estimated value of the angle error based on the stored Fourier coefficient and angle detection error conversion formula (step S104).
  • the estimated value of the angle error is an error amplitude and an error phase. Then, the output determination unit 96 associates the area and the estimated value of the angle error and stores them in the memory.
  • the output determination unit 96 compares the stored area, that is, the area calculated in the previous flow with the area calculated in step S104. (Step S105).
  • the initial value of the areas to be compared is the maximum value that can be stored so that the first calculation result is always saved.
  • the estimated value of the angle detection error may be an arbitrary value.
  • the output determination unit 96 compares the stored area with the calculated area in step S105 and determines that the area calculated in step S104 is smaller, the output determination unit 96 calculates the area and angle calculated in step S104. The estimated value of the detection error is stored together. At this time, the already stored area and angle detection error are deleted (step S106). On the other hand, as a result of comparing the area stored in step S105 with the calculated area, if it is determined that the area calculated in step S104 is greater than or equal to the stored area, no processing is performed. That is, the stored angular error estimation value and area are stored, and the process proceeds to the next step.
  • the learning determination unit 93 determines from the output of the car position calculation unit 92 whether the car has traveled in a specific section (step S107). If it is determined that the vehicle is not traveling in a specific section, the process returns to step S102 and the processes up to step S107 are repeated. If it is determined that the vehicle has traveled in a specific section, the learning operation is terminated.
  • the fact that the car 4 has traveled in a specific section is determined based on the car position calculated by the car position calculation unit 92. For example, by counting the number of times the door zone plate is detected, the specific section is It may be determined that the vehicle has traveled. Further, it may be determined that the vehicle has traveled in a specific section by a position switch that informs a reference position such as the uppermost floor or the lowermost floor provided in the hoistway.
  • the learning determination unit 93 determines that the area enclosed by the coordinates created by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is the reference value of the area enclosed by the coordinates created by the Fourier coefficient stored in advance. It is determined that the following is true (step S108). In step 108, it is determined that the area enclosed by the coordinates created by the Fourier coefficient corresponding to the estimated value of the angle error obtained in the learning operation is larger than the reference value of the area enclosed by the coordinates created by the Fourier coefficient stored in advance. In this case, a learning operation command is sent from the learning determination unit 93 or the output determination unit 96 to the speed command calculation unit 11 in FIG. 1, and the learning operation is performed again by changing the speed of the learning operation (step S109).
  • the frequency of the periodic angular error changes. For example, in FIG.
  • the tendency of current pulsation due to the cyclic angle error of the rotation detector 2 changes.
  • resonance occurs near the middle floor at frequency B, but resonance does not occur at any level in frequencies A and C.
  • the angle error can be estimated under different conditions from the first learning.
  • the speed setting for learning driving there is no particular restriction on the speed setting for learning driving, but the tendency of current pulsation changes greatly if the speed is changed extremely, such as the slowest speed or the fastest speed at which the car can travel.
  • the angle error can be learned.
  • step S108 the learning determination unit 93 completes the learning operation.
  • step S108 it is confirmed that the area enclosed by the coordinates created by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is equal to or less than the reference value of the area enclosed by the coordinates created by the Fourier coefficient stored in advance.
  • the error signal calculation unit 97 calculates the cyclic angle error of the rotation detection unit 2 using the estimation result of the error phase and the error amplitude, and outputs it as a correction signal.
  • the angle error of the rotation detector 2 is corrected by the subtractor SU2 in FIG.
  • Embodiment 4 a method of determining a resonance based on the length of a line segment between coordinates formed by a Fourier coefficient as an evaluation value that is a geometric amount on a coordinate plane and obtaining a highly reliable estimated value will be described.
  • the relationship between the length of the line segment between the coordinates formed by the Fourier coefficient, the current pulsation amplitude, and the current pulsation phase will be described.
  • the length of the line segment formed by the coordinates of the two Fourier coefficients can be calculated by equation (11).
  • the Fourier coefficients calculated by the frequency analysis unit 8 when traveling in a specific section of the elevator car 4 are (B n1 , A n1 ), (B n2 , A n2 ) in order of the calculation results, these 2
  • the length L of the line segment created by the coordinates of the set of Fourier coefficients is given by the following equation.
  • the distance ⁇ (A n1 2 + B n1 2 ) from the origin to the coordinates (B n1 , A n1 ) is represented by G 1
  • the distance ⁇ (A n2 2 + B n2 2 ) from the origin to the coordinates (B n2 , A n2 ) is G 2 , That is, the amplitude of the current pulsation at each coordinate is G 1 and G 2 , Coordinates from the origin (B n1, A n1) to the distance vector angle tan -1 (A n1 / B n1 ) the gamma 1, Coordinates from the origin (B n2, A n2) distance vector angle to tan -1 (A n2 / B n2 ) a gamma 2, In other words, if the phase of the current pulsation at each coordinate is ⁇ 1 and ⁇ 2 , the length of the line segment in the equation (11) can be rewritten as follows.
  • the gain characteristic and the phase characteristic from the angle error included in the rotation angle of the electric motor 1 detected by the rotation detector 2 to the current detected by the current detector 7 are the characteristics as shown in FIGS. because when the frequency is a or C of the gain and phase constant values at any position of the car 4 hoistway, i.e., the frequency of the angle error does not resonate with the elevator mechanical system if a and C, G 1 , G 2 , ⁇ 1 and ⁇ 2 are constant values, and the length of the line segment calculated by the equation (12) is zero.
  • the gain that is, the amplitude and the phase are constant when the car 4 is near the lowermost floor and the uppermost floor, but the gain and the phase change greatly as they approach the intermediate floor. That is, when the frequency of the angle error is B, resonance occurs near the middle floor and no resonance occurs in other places. In this case, the length of the line segment calculated by Expression (11) is 0 near the lowermost floor and the uppermost floor, but the length of the line segment of Expression (11) becomes longer as the intermediate floor is approached. . When resonance occurs, the gain and phase change at the same time. Therefore, by calculating the length of the line segment of Equation (11), the change in amplitude and phase of the current pulsation can be calculated.
  • the frequency analysis unit 8 is a filter that combines a notch filter and a bandpass filter, and extracts a specific frequency signal and calculates the amplitude and phase of the specific frequency of the input signal by the amplitude detection unit and the phase detection unit.
  • the length of the line segment can be calculated by the same procedure. That is, the frequency analysis unit 8 is a filter that combines a notch filter and a bandpass filter, extracts a specific frequency signal, and calculates the amplitude and phase of the specific frequency of the input signal by the amplitude detection unit and the phase detection unit. Since the amplitude G of the current pulsation and the phase ⁇ of the current pulsation in Equation (12) are obtained, the length of the line segment can be calculated from Equation (12).
  • the frequency analysis unit 8 is a filter that combines a notch filter and a band pass filter, and extracts a specific frequency signal, and the amplitude detection unit and the phase detection unit calculate the amplitude and phase of the specific frequency of the input signal.
  • the change in amplitude and phase of the current pulsation can be calculated by calculating the length of the line segment by the calculation according to the equation (11). That is, in correspondence with amplitude A n, B n corresponding to phase or is associated with phase A n, it is sufficient to correspond to amplitude B n.
  • obtaining the length of the line segment of the equation (11) is equivalent to obtaining the amount of change in the amplitude and phase of the current pulsation, and that the length of the line segment is a change in the amplitude and phase of the current pulsation. The amount will be great.
  • FIG. 12 is a diagram illustrating an example of the configuration of the angle error estimation unit 9 according to the fourth embodiment.
  • the basic configuration is the same as that in FIG. 2, and a line segment length calculation unit 98 is provided instead of the area calculation unit 95 in FIG. 2. Therefore, detailed description is omitted.
  • step S111 it is determined whether or not the rotation speed of the electric motor 1 is constant according to the output (step S111). If the rotation speed of the electric motor 1 is not constant, step S111 is continued until the rotation speed becomes constant. This is because when the rotation speed of the electric motor 1 is constant, the frequency of the angle error of the rotation detector 2 is constant, and the angle detection error is easily estimated.
  • the angle error calculation unit 94 After the rotation speed of the electric motor 1 becomes constant, the angle error calculation unit 94 performs Fourier transform on the current of the current detector 7, which is an output from the frequency analysis unit 8, using information on the rotation angle of the electric motor 1. The obtained Fourier coefficient calculation result is stored in a memory (step S112).
  • the angle error calculation unit 94 determines whether or not the calculation result of the Fourier coefficient is stored twice (step S113). If the Fourier coefficients for two times are not stored, the process returns to step S112, and the storage of the Fourier coefficient that is the output from the frequency analysis unit 8 is repeated.
  • the line segment length calculation unit 98 calculates the length of the line segment between the coordinates of the Fourier coefficient by Expression (11).
  • the angle error calculation unit 94 uses the Fourier coefficient to calculate an estimated value of the angle error using the stored Fourier coefficient and angle detection error conversion formula (step S114).
  • the estimated value of the angle error is an error amplitude and an error phase.
  • the output determination unit 96 associates the length of the line segment with the estimated value of the angle error and stores it in the memory.
  • the output determination unit 96 determines the length of the stored line segment, that is, the length of the line segment calculated in the previous flow. And the length of the line segment calculated in step S114 is compared (step S115). Note that the initial value of the length of the line segment to be compared is the maximum value that can be stored so that the first calculation result is always saved.
  • the estimated value of the angle detection error may be an arbitrary value.
  • the output determination unit 96 determines that the length of the line segment calculated in step S114 is shorter. In this case, the length of the line segment calculated in step S114 and the estimated value of the angle detection error are stored together. At this time, the length of the line segment and the angle detection error already stored are deleted (step S116). On the other hand, as a result of comparing the length of the line segment stored in step S115 with the calculated length of the line segment, it is determined that the length of the line segment calculated in step S114 is greater than or equal to the length of the stored line segment. If so, do nothing. That is, the stored angle error value and line segment length that have already been stored are stored, and the process proceeds to the next step.
  • the learning determination unit 93 determines whether or not the car has traveled in a specific section from the output of the car position calculation unit 92 (step S117). If it is determined that the vehicle is not traveling in a specific section, the process returns to step S112 and the processes up to step S117 are repeated. If it is determined that the vehicle has traveled in a specific section, the learning operation is terminated.
  • the fact that the car 4 has traveled in a specific section is determined based on the car position calculated by the car position calculation unit 92. For example, by counting the number of times the door zone plate is detected, the specific section is It may be determined that the vehicle has traveled. Further, it may be determined that the vehicle has traveled in a specific section by a position switch that informs a reference position such as the uppermost floor or the lowermost floor provided in the hoistway.
  • the error signal calculation unit 97 calculates a periodic angle error of the rotation detection unit 2 using the estimation result of the error phase and the error amplitude, and outputs it as a correction signal. In SU2, the angle error of the rotation detector 2 is corrected.
  • the output of the learning speed calculation unit 91 is the rotational speed of the motor 1. Indicates that the vehicle is running at a constant speed, and when the output of the car position calculation unit 92 indicates that the car 4 is traveling in a preset specific section, the learning determination unit 93 outputs a learning command, and learning The operation may be started. In this case, step S117 is performed in parallel with step 111.
  • the line segment between the coordinates of the Fourier coefficient obtained by performing Fourier transform on the current of the current detector 7 using information on the rotation angle of the electric motor 1 when traveling in a specific section It is possible to extract an angle detection error when the length of is minimum.
  • the minimum length of the line segment between the Fourier coefficients when traveling in a specific section is the same when the amplitude and phase change of the current pulsation are small in the specific section, so the influence of resonance with the mechanical system is the least.
  • an estimated value of the angle detection error with the smallest estimation error can be extracted.
  • FIG. 13 shows the relationship between the length of the line segment calculated using the coordinates of two adjacent Fourier coefficients on the Fourier coefficient coordinate plane of FIG. 6 and the car position.
  • the length of the line segment calculated by the line length calculation unit 98 of the angle error estimation unit 9 is as shown in FIG. It becomes like this.
  • the section A the length of the line segment is short, and in the section B, the length of the line segment is longer than that in the section A.
  • an estimated value of the angle error in the section A is extracted. Since a short line length is equivalent to not resonating, a highly reliable estimation value of the angle error can be obtained.
  • the method of the fourth embodiment it is possible to simultaneously estimate the angle error and determine the success or failure of the estimation based on the amplitude and phase of the current pulsation, extract the estimated value of the angle error when the influence of resonance is the smallest, In addition, since it is not necessary to check information on resonance, the time required for learning the angle error can be shortened. Further, according to the method of the fourth embodiment, no matter what mechanical system is connected as the load of the electric motor 1 instead of the elevator, the influence of resonance is the most based on the amount of change in the amplitude and phase of the current pulsation. The estimated value when there are few can be extracted.
  • the frequency analysis unit 8 is not configured to calculate a Fourier coefficient, but a specific frequency signal is extracted like a filter combining a notch filter or a band pass filter, and the input signal is detected by an amplitude detection unit or a phase detection unit. Even with a configuration for calculating the amplitude and phase of a specific frequency, a highly reliable estimation error angle can be obtained by the same procedure.
  • Embodiment 5 the length of the line segment formed by the coordinates of the Fourier coefficient can be used to eliminate the estimated value when the frequency of the angle error coincides with the frequency of the mechanical system and estimation becomes difficult, and the influence of resonance The method of extracting the estimated value when there is the least is shown.
  • the learning operation of the angle error shown in the fourth embodiment is performed a plurality of times while changing the speed during the learning operation, and the consistency check of the results of the plurality of learnings is performed.
  • a method for obtaining an estimated value of the angle error with higher reliability than that of the fourth embodiment will be described.
  • the angle estimation error when the influence of resonance is small can be extracted by extracting the estimated value of the angle error when the length of the line segment between the coordinates formed by the Fourier coefficient is minimum. It was. However, depending on the machine specifications of the elevator, there is a speed at which resonance occurs regardless of the position in the hoistway. In such a situation, an estimated value of the angle error when the amplitude and phase change of the current pulsation is the smallest among the resonances is extracted. In this case, since there is a possibility that a highly reliable estimated value of the angle error may not be obtained, it is desirable to change the speed of the learning operation. Therefore, in the fifth embodiment, the angle error learning is performed a plurality of times while changing the speed during the learning operation, and the consistency of the results of the plurality of learnings is confirmed.
  • FIG. 14 shows a flowchart of the learning operation in the fifth embodiment.
  • the configuration of the elevator control device and the angle error estimating unit 9 is basically the same as the original shown in FIGS. Further, the flowchart of FIG. 14 is basically the same as the flowchart of FIG. 9 shown in the second embodiment.
  • the resonance determination is based on the area, but in FIG. It has been judged.
  • the flow denoted by the same reference numerals as those in FIG. 9 is the same as the operation of the second embodiment, and the description thereof is omitted.
  • the operations from the process of storing the Fourier coefficient (step S1403) to the process of storing the length of the line segment and the estimated angle error (step S1406) are different.
  • step 1403 the angle error calculation unit 94 determines whether the calculation results of Fourier coefficients are stored twice. If the Fourier coefficients for two or more times are not stored, the process returns to step S902, and the storage of the Fourier coefficients output from the frequency analysis unit 8 is repeated.
  • the line segment length calculation unit 98 calculates the length of the line segment between the coordinates of the Fourier coefficient by Expression (11). Further, the angle error calculation unit 94 uses the Fourier coefficient to calculate an estimated value of the angle error by using the stored Fourier coefficient and angle detection error conversion formula (step S1404).
  • the estimated value of the angle error is an error amplitude and an error phase. Then, the output determination unit 96 associates the length of the line segment with the estimated value of the angle error and stores it in the memory.
  • the output determination unit 96 determines the length of the stored line segment, that is, the length of the line segment calculated in the previous flow. And the length of the line segment calculated in step S1404 is compared (step S1405). Note that the initial value of the length of the line segment to be compared is the maximum value that can be stored so that the first calculation result is always saved.
  • the estimated value of the angle detection error may be an arbitrary value.
  • the output determination unit 96 determines that the length of the line segment calculated in step S1404 is shorter. In this case, the length of the line segment calculated in step S1404 and the estimated value of the angle detection error are stored together. At this time, the lengths and angle detection errors that have already been stored are deleted (step S1406).
  • the length of the line segment stored in step S1405 with the calculated length of the line segment it is determined that the length of the line segment calculated in step S1404 is greater than or equal to the length of the stored line segment. If so, do nothing. That is, the stored angle error value and line segment length that have already been stored are stored, and the process proceeds to the next step.
  • the subsequent processing is the same as the flowchart shown in FIG.
  • the learning operation is performed by the above processing, it is possible to extract the angle detection error when the length of the line segment between the coordinates of the Fourier coefficient becomes the minimum when traveling in the specific section.
  • by limiting the number of learnings it becomes possible to ensure safety when angle error learning cannot be performed normally.
  • Embodiment 6 when the length of the line segment between the coordinates formed by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is longer than the reference value, the learning operation speed is changed and learning is performed. A method for obtaining an estimated value of the angle error with higher reliability than that of the fourth embodiment will be described.
  • the angle estimation error when the influence of resonance is small can be extracted by extracting the estimated value of the angle error when the length of the line segment between the coordinates formed by the Fourier coefficient is minimum. It was. However, depending on the machine specifications of the elevator, there is a speed at which resonance occurs regardless of the position in the hoistway. In such a situation, an estimated value of the angle error when the amplitude and phase change of the current pulsation is the smallest among the resonances is extracted. In this case, since there is a possibility that a highly reliable estimated value of the angle error may not be obtained, it is desirable to change the speed of the learning operation. In the fifth embodiment, the consistency check of the learning results is performed a plurality of times while changing the speed during the learning operation.
  • a reference value of the length of the line segment between coordinates formed by the Fourier coefficient is prepared in advance by storing it in a memory, for example, and an estimated value of the angle error obtained by the learning operation If the length of the line segment between the coordinates generated by the Fourier coefficient corresponding to is longer than the reference value, the angle error is learned by changing the speed during the learning operation.
  • FIG. 15 shows a flowchart of the learning operation in the sixth embodiment.
  • the configuration of the elevator control device and the angle error estimating unit 9 is basically the same as the original shown in FIGS. Further, the flowchart of FIG. 15 is basically the same as the flowchart of FIG. 10 shown in the third embodiment.
  • the resonance determination is based on the area, but in FIG. It has been judged.
  • the flow denoted by the same reference numerals as those in FIG. 10 is the same as the operation of the third embodiment, and thus the description thereof is omitted.
  • the operation from the process of storing the Fourier coefficient (step S1503) to the process of storing the length of the line segment and the estimated angle error (step S1506) and the determination based on the reference value of the length of the line segment (Step S1508) is different.
  • step 1503 the angle error calculation unit 94 determines whether or not the Fourier coefficient calculation results are stored twice. If two or more Fourier coefficients have not been stored, the process returns to step S102, and the storage of the Fourier coefficient output from the frequency analysis unit 8 is repeated.
  • the line segment length calculation unit 98 calculates the length of the line segment between the coordinates of the Fourier coefficient by Expression (11). Further, the angle error calculation unit 94 calculates an estimated value of the angle error by using the Fourier coefficient and the conversion formula between the stored Fourier coefficient and the angle detection error (Step S1504).
  • the estimated value of the angle error is an error amplitude and an error phase. Then, the output determination unit 96 associates the length of the line segment with the estimated value of the angle error and stores it in the memory.
  • the output determination unit 96 determines the length of the stored line segment, that is, the length of the line segment calculated in the previous flow. And the length of the line segment calculated in step S1504 is compared (step S1505). Note that the initial value of the length of the line segment to be compared is the maximum value that can be stored so that the first calculation result is always saved.
  • the estimated value of the angle detection error may be an arbitrary value.
  • the output determination unit 96 determines that the length of the line segment calculated in step S1504 is shorter. In this case, the length of the line segment calculated in step S1504 and the estimated value of the angle detection error are stored together. At this time, the lengths and angle detection errors that have already been stored are deleted (step S1506).
  • the length of the line segment stored in step S1505 with the calculated length of the line segment it is determined that the length of the line segment calculated in step S1504 is greater than or equal to the length of the stored line segment. If so, do nothing. That is, the stored angle error value and line segment length that have already been stored are stored, and the process proceeds to the next step.
  • the learning determination unit 93 determines from the output of the car position calculation unit 92 whether the car has traveled in a specific section (step S107). This operation is the same as in the third embodiment.
  • the learning determination unit 93 determines that the length of the line segment between the coordinates created by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is between the coordinates created by the Fourier coefficient stored in advance. It is determined that the length is equal to or less than the reference value of the length of the line segment (step S1508).
  • the length of the line segment between the coordinates created by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is the length of the line segment between the coordinates created by the Fourier coefficient stored in advance.
  • Step S109 By changing the learning speed, the frequency of the periodic angular error changes. For example, in FIG.
  • the tendency of current pulsation due to the cyclic angle error of the rotation detector 2 changes. For example, resonance occurs near the middle floor at frequency B, but resonance does not occur at any level in frequencies A and C. Thereby, the angle error can be estimated under different conditions from the first learning.
  • the speed setting for learning driving there is no particular restriction on the speed setting for learning driving, but the tendency of current pulsation changes greatly if the speed is changed extremely, such as the slowest speed or the fastest speed at which the car can travel. The angle error can be learned.
  • step S1508 the length of the line segment between the coordinates created by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is the length of the line segment between the coordinates created by the Fourier coefficient stored in advance.
  • the error signal calculation unit 97 uses the estimation result of the error phase and the error amplitude after the learning operation is completed, to calculate the periodic angle error of the rotation detection unit 2. The calculated value is output as a correction signal, and the angle error of the rotation detector 2 is corrected by the subtractor SU2 in FIG.
  • the layout and roping method of the entire elevator are not limited to the example in FIG.
  • the present invention can be applied to a 2: 1 roping elevator.
  • the position of the hoisting machine including the electric motor 1 is not limited to the example of FIG.
  • the present invention can be applied to various types of elevators such as machine room-less elevators, double deck elevators, one-shaft multi-car elevators, and skew elevators.

Abstract

An elevator control device provided with: a frequency analysis unit for outputting a specific frequency component which is obtained through frequency analysis of a current detected by a current detector for detecting a current of an electric motor used for moving a car up and down in a hoistway; and an angle error estimation unit for estimating, by using the specific frequency component, the amplitude and phase of a periodic angle error which is uniquely determined in accordance with a rotation angle from a rotation detection unit for detecting a rotation angle of the electric motor, and for outputting the results as angle error estimation values. The angle error estimation unit performs control so as to execute a learning operation for causing the car to operate over a specific range, continuously acquires a plurality of the specific frequency components which is obtained by inputting the current detected during the learning operation into the frequency analysis unit, calculates evaluation values each of which is a geometric quantity in a coordinate plane formed by a preset number of continuous specific frequency components out of the acquired specific frequency components, calculates the angle error estimation values, and selects an angle error estimation value at which the evaluation value is the smallest.

Description

エレベーターの制御装置、エレベーター装置、エレベーター用電動機の回転検出部の回転角度誤差を求める方法Method for obtaining rotation angle error of rotation control unit of elevator control device, elevator device, and elevator motor
 この発明は、エレベーターの制御装置、特に、巻上げ機を構成する電動機に取り付けられた回転センサの周期的な角度誤差により周期的なトルク脈動や速度脈動を有する制御装置における、角度誤差の推定に関するものである。 The present invention relates to an estimation of an angle error in an elevator control device, particularly a control device having a periodic torque pulsation and a speed pulsation due to a periodic angle error of a rotation sensor attached to an electric motor constituting a hoisting machine. It is.
 従来の回転センサとしてのレゾルバ装置においては、レゾルバの誤差波形がレゾルバ固有の周波数成分で構成されている、再現性があることから、検出された角度信号を参照して位置誤差を算出し、位置誤差を微分して速度誤差信号を算出し、速度誤差信号をフーリエ変換して複数に分割した成分ごとの検出誤差の大きさを計算する。算出した検出誤差を合成して、レゾルバで検出した角度信号に含まれる検出誤差を復元した誤差波形信号を生成する。生成した誤差波形信号を用いて検出誤差を含むレゾルバの角度検出信号を補正する。位置誤差から求めた速度誤差についてフーリエ変換を行うことにより、個々のレゾルバの検出信号を正確に計算でき、求めた検出誤差を用いて検出した角度信号を補正することにより、正確な角度信号を得ることができる。 In a resolver device as a conventional rotation sensor, the error waveform of the resolver is composed of frequency components specific to the resolver and is reproducible. Therefore, the position error is calculated with reference to the detected angle signal, and the position error is calculated. The speed error signal is calculated by differentiating the error, and the magnitude of the detection error for each component obtained by dividing the speed error signal by Fourier transform is calculated. By combining the calculated detection errors, an error waveform signal in which the detection errors included in the angle signal detected by the resolver are restored is generated. The generated error waveform signal is used to correct the resolver angle detection signal including the detection error. By performing Fourier transform on the velocity error obtained from the position error, the detection signal of each resolver can be accurately calculated, and by correcting the detected angle signal using the obtained detection error, an accurate angle signal is obtained. be able to.
特開2012-145371号公報JP 2012-145371 A
 従来、周期的な角度誤差に起因した脈動を含む信号を用いて角度誤差を推定する場合において、周期的な角度誤差の周波数と電動機の負荷として接続された機械系の固有振動数が一致すると、角度誤差と機械系とが共振を起こすことで角度誤差に起因する速度脈動の振幅と位相が一時的に変化し再現性を失うため、従来の装置の方法では、角度誤差を推定することが困難であり誤った推定結果を得る可能性がある。 Conventionally, when estimating an angle error using a signal including pulsation caused by a periodic angle error, if the frequency of the periodic angle error matches the natural frequency of the mechanical system connected as the load of the motor, Resonance between the angle error and the mechanical system temporarily changes the amplitude and phase of the velocity pulsation caused by the angle error and loses reproducibility. Therefore, it is difficult to estimate the angle error with the conventional device method. There is a possibility of obtaining an incorrect estimation result.
 特に、エレベーターのように、ロープの長さに応じて機械系の固有振動数が変化するような系においては、共振が発生する周波数が時々刻々と変動するため、どの場所において共振が発生するかが明確ではなく、角度誤差の推定を誤る可能性が高い。事前にエレベーターの機械系の詳細な仕様が分かれば、エレベーターの固有振動数やゲイン特性、位相特性を計算して、共振に当たらない速度とかご位置において角度誤差の推定を実施することが可能となるが、エレベーターの機械仕様は物件ごとに異なる場合が多く、事前情報に頼る方法では設計時間が膨大になる。したがって、電動機の負荷として共振を有する機械系が接続されている場合において、角度誤差に起因する脈動を含む信号により角度誤差を推定するときには、角度誤差の推定結果の成否判断が課題となる。 In particular, in systems such as elevators where the natural frequency of the mechanical system changes according to the length of the rope, the frequency at which the resonance occurs changes from moment to moment, so where does the resonance occur? Is not clear, and there is a high possibility that the angle error is estimated incorrectly. If the detailed specifications of the elevator mechanical system are known in advance, it is possible to calculate the natural frequency, gain characteristics, and phase characteristics of the elevator and estimate the angle error at a speed and car position that does not cause resonance. However, the machine specifications of the elevator are often different for each property, and a method that relies on prior information increases the design time. Therefore, when a mechanical system having resonance is connected as a load of the electric motor, when the angle error is estimated based on a signal including pulsation caused by the angle error, it is a problem to determine whether the angle error estimation result is successful.
 さらに、従来の装置においては、検出された角度信号を参照して位置誤差を算出し、位置誤差を微分して速度誤差信号を算出し、速度誤差信号をフーリエ変換して角度誤差を推定している。ここで、速度信号を用いて角度誤差を推定する場合には、角度検出器または速度検出器の速度分解能によって、角度分解能の推定精度が決定される。そのため、速度分解能の低い角度検出器または速度検出器では、量子化誤差が生じ、角度誤差の推定精度が十分に得られないという課題がある。 Further, in the conventional apparatus, the position error is calculated by referring to the detected angle signal, the position error is differentiated to calculate the speed error signal, and the speed error signal is Fourier transformed to estimate the angle error. Yes. Here, when the angle error is estimated using the velocity signal, the angle resolution estimation accuracy is determined by the angle detector or the velocity resolution of the velocity detector. For this reason, an angle detector or a velocity detector with a low velocity resolution has a problem that a quantization error occurs and the angle error estimation accuracy cannot be sufficiently obtained.
 この発明は、上記のような課題を解決するためになされたものであり、周期的な角度誤差を含む電動機の回転検出部を有するエレベーターの制御装置において、角度誤差と機械系とが共振しても角度誤差の推定を誤ることなく、信頼性の高い角度誤差の推定結果を得ることのできるエレベーターの制御装置等を提供することを目的とする。 The present invention has been made in order to solve the above-described problems. In an elevator control apparatus having a motor rotation detection unit including a periodic angle error, the angle error and the mechanical system resonate. It is another object of the present invention to provide an elevator control device and the like that can obtain a highly reliable angle error estimation result without erroneously estimating the angle error.
 この発明は、昇降路内にかごを昇降させる動力を発生する電動機に流れる電流を検出する電流検出器と、前記電動機の回転角を検出する回転検出部と、前記電流検出器で検出された電流を周波数解析して得られる特定周波数の成分を出力する周波数解析部と、前記特定周波数の成分を用いて、前記回転検出部からの回転角に応じて一意に決まる周期的な角度誤差の振幅と位相を推定して角度誤差推定値として出力する角度誤差推定部と、を備え、前記角度誤差推定部は、前記かごを特定区間運転させる学習運転を実施するように制御し、前記学習運転中に検出された前記電流を前記周波数解析部に入力して求まる前記特定周波数の成分を連続して複数取得し、取得された前記特定周波数の成分のうち連続する設定数の前記特定周波数の成分が作る座標平面における幾何学量である評価値を計算すると共に、前記角度誤差推定値を計算して前記評価値と前記角度誤差推定値を関連付け、前記評価値が最小となるときの前記角度誤差推定値を選択する、エレベーターの制御装置等にある。 The present invention relates to a current detector that detects a current flowing in an electric motor that generates power to raise and lower a car in a hoistway, a rotation detector that detects a rotation angle of the electric motor, and a current detected by the current detector A frequency analysis unit that outputs a component of a specific frequency obtained by frequency analysis, and an amplitude of a cyclic angle error that is uniquely determined according to a rotation angle from the rotation detection unit using the component of the specific frequency. An angle error estimator that estimates the phase and outputs an angle error estimated value, and the angle error estimator controls the car to perform a learning operation that operates the specific section, and during the learning operation A plurality of the specific frequency components obtained by inputting the detected current to the frequency analysis unit are continuously acquired, and a set number of the specific frequency components that are consecutive among the acquired specific frequency components are obtained. An evaluation value that is a geometric amount in a coordinate plane to be created is calculated, the angle error estimation value is calculated and the evaluation value is associated with the angle error estimation value, and the angle error estimation when the evaluation value is minimized The value is in the elevator control unit etc.
 この発明では、角度誤差と機械系とが共振しても角度誤差の推定を誤ることなく、信頼性の高い角度誤差の推定結果を得ることのできるエレベーターの制御装置等を提供できる。 According to the present invention, it is possible to provide an elevator control device or the like that can obtain a highly reliable angle error estimation result without erroneously estimating the angle error even if the angle error and the mechanical system resonate.
この発明によるエレベーターの制御装置の一例を示す構成図である。It is a block diagram which shows an example of the control apparatus of the elevator by this invention. 図1の角度誤差推定部の構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the angle error estimation part of FIG. 図1の速度制御器の周波数特性の一例を示す図である。It is a figure which shows an example of the frequency characteristic of the speed controller of FIG. エレベーターの機械系のゲイン特性の一例を示すグラフである。It is a graph which shows an example of the gain characteristic of the mechanical system of an elevator. エレベーターの機械系の位相特性の一例を示すグラフである。It is a graph which shows an example of the phase characteristic of the mechanical system of an elevator. 図1の周波数解析部が計算するフーリエ係数の座標平面の一例を示すグラフである。It is a graph which shows an example of the coordinate plane of the Fourier coefficient which the frequency analysis part of FIG. 1 calculates. 図1の角度誤差推定部による実施の形態1における学習運転の動作の一例を示すフローチャートである。3 is a flowchart showing an example of learning driving operation in the first embodiment by an angle error estimating unit in FIG. 1. 図1の角度誤差推定部の計算するフーリエ係数の座標で囲まれる面積の一例を示すグラフである。It is a graph which shows an example of the area enclosed by the coordinate of the Fourier coefficient which the angle error estimation part of FIG. 1 calculates. 図1の角度誤差推定部による実施の形態2における学習運転の動作の一例を示すフローチャートである。6 is a flowchart illustrating an example of the learning driving operation in the second embodiment by the angle error estimating unit in FIG. 1. 図1の角度誤差推定部による実施の形態3における学習運転の動作の一例を示すフローチャートである。6 is a flowchart illustrating an example of learning driving operation in the third embodiment by an angle error estimating unit in FIG. 1. 図1の角度誤差推定部による実施の形態4における学習運転の動作の一例を示すフローチャートである。6 is a flowchart illustrating an example of the learning driving operation in the fourth embodiment by the angle error estimation unit in FIG. 1. 図1の角度誤差推定部の構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the angle error estimation part of FIG. 図1の角度誤差推定部の計算するフーリエ係数の座標間の線分長さの一例を示すグラフである。It is a graph which shows an example of the line segment length between the coordinates of the Fourier coefficient which the angle error estimation part of FIG. 1 calculates. 図1の角度誤差推定部による実施の形態5における学習運転の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the learning driving | operation in Embodiment 5 by the angle error estimation part of FIG. 図1の角度誤差推定部による実施の形態6における学習運転の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the learning driving | operation in Embodiment 6 by the angle error estimation part of FIG.
 この発明に係るエレベーターの制御装置では、
 周波数解析部は、電流検出器により検出された電流を周波数解析して特定周波数成分の振幅および位相を算出し、
 角度誤差推定部は、周波数解析部で演算された特定周波数成分の振幅および位相を用いて特定周波数成分からなる角度誤差を角度誤差推定値として推定し、角度検出誤差を推定するときにはかごを特定区間運転させる学習運転を実施し、学習運転中は特定周波数成分の振幅および位相の演算結果を複数分記憶し、複数分記憶された特定周波数成分の振幅および位相が作る座標における幾何学量である評価値を計算し、評価値が最小となるときの角度誤差推定値を選択する。
 そのため、共振の影響により角度誤差の推定を誤ることなく、信頼性の高い角度誤差の推定値を得ることができる。
In the elevator control device according to the present invention,
The frequency analyzer calculates the amplitude and phase of the specific frequency component by performing frequency analysis on the current detected by the current detector,
The angle error estimation unit estimates an angle error composed of a specific frequency component as an angle error estimated value using the amplitude and phase of the specific frequency component calculated by the frequency analysis unit, and when estimating the angle detection error, the car is specified in a specific section. A learning operation is performed, and during the learning operation, the calculation results of the amplitude and phase of the specific frequency component are stored for a plurality of times, and the evaluation is a geometric quantity at coordinates created by the amplitude and phase of the specific frequency component stored for a plurality of times. A value is calculated, and an estimated angle error value when the evaluation value is minimized is selected.
Therefore, it is possible to obtain a highly reliable estimated value of the angle error without erroneously estimating the angle error due to the influence of resonance.
 以下、この発明によるエレベーターの制御装置等を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、重複する説明は省略する。 Hereinafter, an elevator control device and the like according to the present invention will be described with reference to the drawings according to each embodiment. In each embodiment, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
 実施の形態1.
 図1はこの発明によるエレベーターの制御装置の一例を示す構成図である。図1において、エレベーターのかご4とカウンターウェイト5は互いに巻上ロープ6で接続され綱車3につるべ式に吊られている。綱車3はかご4の駆動用電動機である電動機1に連結しており、かご4は電動機1の動力により昇降する。かご4を昇降させる電動機1は、例えば永久磁石同期モータである。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing an example of an elevator control apparatus according to the present invention. In FIG. 1, an elevator car 4 and a counterweight 5 are connected to each other by a hoisting rope 6 and are suspended on a sheave 3 in a hangar manner. The sheave 3 is connected to an electric motor 1 that is an electric motor for driving the car 4, and the car 4 is raised and lowered by the power of the electric motor 1. The electric motor 1 that raises and lowers the car 4 is, for example, a permanent magnet synchronous motor.
 電動機1と綱車3の同軸上には、電動機1又は綱車3の回転角を検出する回転検出部2が取り付けられている。例えばレゾルバ又はエンコーダ又は磁気センサ等からなる回転検出部2の出力する電動機1の回転角である角度情報には、電動機1の回転角に応じて一意に決まる周期的な誤差を含んでいる。ここで、電動機1の回転角に応じて一意に決まる周期的な誤差とは、例えばレゾルバの検出誤差や、光学式エンコーダにおけるスリット不良によるパルス抜けおよびパルス間距離の不均衡のように、回転角に応じて再現性のある、すなわち各回転の同じ回転角度位置で生じる、誤差を指す Rotation detector 2 for detecting the rotation angle of motor 1 or sheave 3 is mounted on the same axis of motor 1 and sheave 3. For example, the angle information that is the rotation angle of the electric motor 1 that is output from the rotation detection unit 2 that includes a resolver, an encoder, a magnetic sensor, or the like includes a periodic error that is uniquely determined according to the rotation angle of the electric motor 1. Here, the periodic error uniquely determined according to the rotation angle of the electric motor 1 is, for example, a rotation angle such as a resolver detection error, a missing pulse due to a slit failure in an optical encoder, and an imbalance in the distance between pulses. Refers to errors that are reproducible depending on, i.e. occur at the same rotational angular position of each rotation
 なお、以降で説明する機能ブロックで示された、周波数解析部8、角度誤差推定部9、速度演算部10、速度指令演算部11、速度制御器12、電流制御器13および各減算器SU1-SU3のうち、少なくとも、周波数解析部8、角度誤差推定部9、速度演算部10、速度指令演算部11、および各減算器SU1-SU3は、例えばプロセッサとメモリを含むコンピュータで構成され、それぞれがメモリに格納されたプログラムおよび処理に必要な種々の設定情報に従ってそれぞれの処理を実行する。また、速度制御器12、電流制御器13についても同様に上記コンピュータで構成してもよい。また各機能ブロックで示された部分は、それぞれの機能を実行するデジタル回路でも構成され得る。
 またこれは図2においても同様である。
Note that the frequency analysis unit 8, the angle error estimation unit 9, the speed calculation unit 10, the speed command calculation unit 11, the speed controller 12, the current controller 13, and each subtractor SU1- shown in the functional blocks described below. Among SU3, at least the frequency analysis unit 8, the angle error estimation unit 9, the speed calculation unit 10, the speed command calculation unit 11, and each subtractor SU1-SU3 are configured by a computer including a processor and a memory, for example. Each process is executed according to the program stored in the memory and various setting information necessary for the process. Similarly, the speed controller 12 and the current controller 13 may be configured by the computer. The portions indicated by the functional blocks can also be configured by digital circuits that execute the respective functions.
This also applies to FIG.
 速度指令演算部11は、電動機1に対する速度指令値を演算して出力する。なお、図示していないが、速度指令演算部11は、位置制御系を含んでいても良い。速度指令演算部11が位置制御系を含む場合であっても、この発明は適用することができる。 The speed command calculation unit 11 calculates and outputs a speed command value for the electric motor 1. Although not shown, the speed command calculation unit 11 may include a position control system. The present invention can be applied even when the speed command calculation unit 11 includes a position control system.
 速度制御器12は、速度指令演算部11からの速度指令値と、速度演算部10で演算された電動機1の回転速度との差分を減算器SU1から入力し、電動機1に対する電流指令値を演算して出力する。速度制御器12は、PI制御、PD制御など、どのような制御手法で構成されていてもよい。 The speed controller 12 inputs the difference between the speed command value from the speed command calculation unit 11 and the rotation speed of the motor 1 calculated by the speed calculation unit 10 from the subtractor SU1, and calculates the current command value for the motor 1 And output. The speed controller 12 may be configured by any control method such as PI control or PD control.
 速度演算部10は、回転検出部2からの出力である電動機1の回転角と、角度誤差推定部9で推定された電動機1の回転角に応じ一意に決まる周期的な誤差の角度誤差推定値との差分である、減算器SU2からの補正された補正済回転角に基づいて、電動機1の回転速度を演算して出力する。なお、速度演算部10は、最も簡単には、回転角の時間微分によって回転速度を演算する。また、時間微分によるノイズを除去するためにローパスフィルター(図示省略)により平滑化する構成でもよい。さらにまた、速度演算部10は、予め設定された一定時間ごとに電動機1の回転速度を演算してもよいし、時間を計測するための構成を含んで、予め設定された一定回転角ごとに回転速度を演算してもよい。 The speed calculation unit 10 is an angular error estimation value of a periodic error that is uniquely determined according to the rotation angle of the motor 1 that is an output from the rotation detection unit 2 and the rotation angle of the motor 1 estimated by the angle error estimation unit 9. The rotational speed of the electric motor 1 is calculated and output based on the corrected rotation angle corrected from the subtractor SU2, which is the difference between the motor and the motor. The speed calculation unit 10 calculates the rotation speed by the time differentiation of the rotation angle most simply. Further, it may be configured to smooth by a low-pass filter (not shown) in order to remove noise due to time differentiation. Furthermore, the speed calculation unit 10 may calculate the rotation speed of the electric motor 1 every predetermined time set in advance, or includes a configuration for measuring the time, for every predetermined fixed rotation angle. The rotational speed may be calculated.
 電流制御器13は、速度制御器12からの電流指令値と、電流検出器7からの出力である相電流、または相電流を座標変換(図示せず)によりd-q軸変換した電動機1の軸電流との差分を減算器SU3から入力し、電動機1の電圧指令を演算して出力する。電流制御器13も速度制御器12のように制御手法は限定されない。 The current controller 13 includes a current command value from the speed controller 12 and a phase current that is an output from the current detector 7 or a phase current of the motor 1 that is dq-axis converted by coordinate conversion (not shown). The difference from the shaft current is input from the subtractor SU3, and the voltage command of the electric motor 1 is calculated and output. The control method of the current controller 13 is not limited like the speed controller 12.
 電流検出器7は、電動機1の電流を検出する。例えば、電動機1が三相電動機である場合には、二相の相電流を測定することが多いが、三相の相電流を測定してもよい。なお、図1では、電流検出器7が電力変換器14の出力電流を測定しているが、電流検出器7は、ワンシャント抵抗による電流測定法のように、電力変換器14の母線電流を測定して、各相電流を推定してもよい。この場合であっても、この発明に何等影響を与えない。 The current detector 7 detects the current of the electric motor 1. For example, when the motor 1 is a three-phase motor, a two-phase phase current is often measured, but a three-phase phase current may be measured. In FIG. 1, the current detector 7 measures the output current of the power converter 14. However, the current detector 7 calculates the bus current of the power converter 14 as in a current measurement method using a one-shunt resistor. Each phase current may be estimated by measurement. Even in this case, the present invention is not affected at all.
 電力変換器14は、電流制御器13からの電圧指令に基づいて、電源電圧(図示せず)を、好ましい可変電圧可変周波数に変換する。この発明の電力変換器14は、一般的に販売されているインバータ装置のように、コンバータによって交流電圧を直流電圧に変換した後に、インバータによって直流電圧を交流電圧に変換する電力変換器や、マトリクスコンバータのように、交流電圧を直接交流の可変電圧可変電流に変換する電力変換装置を含む可変電圧可変周波数電力変換器を指す。 The power converter 14 converts a power supply voltage (not shown) into a preferable variable voltage variable frequency based on a voltage command from the current controller 13. The power converter 14 of the present invention includes a power converter or a matrix that converts an AC voltage to a DC voltage by a converter and then converts the DC voltage to an AC voltage by an inverter, like an inverter device that is generally sold. It refers to a variable voltage variable frequency power converter including a power conversion device that directly converts AC voltage into AC variable voltage variable current, such as a converter.
 また、この発明に係る電力変換器14は、上述のインバータに加えて、座標変換の機能を含んでいてもよい。すなわち、電圧指令がd-q軸の電圧指令値である場合には、d-q軸の電圧指令値を相電圧または線間電圧に変換して、指令された電圧指令値に従った電圧に変換する座標変換機能も含めて、電力変換器14と表現する。なお、電力変換器14のデッドタイムを補正する装置または補正部が設けられていても、この発明は適用することができる。 Further, the power converter 14 according to the present invention may include a coordinate conversion function in addition to the above-described inverter. That is, when the voltage command is a dq axis voltage command value, the dq axis voltage command value is converted into a phase voltage or a line voltage to a voltage according to the commanded voltage command value. It is expressed as a power converter 14 including a coordinate conversion function for conversion. Note that the present invention can be applied even if a device or a correction unit for correcting the dead time of the power converter 14 is provided.
 周波数解析部8は、電流検出器7で検出された相電流または軸電流からなる電流を周波数解析し、特定周波数の振幅、位相を出力する。ここで、周波数解析部8は、フーリエ変換、離散フーリエ変換、フーリエ級数展開や高速フーリエ変換のように、入力する信号の特定の周波数における振幅および位相が得られる構成が望ましい。しかしながら、ノッチフィルタやバンドパスフィルタを組み合わせたフィルタのように、特定の周波数信号を抽出し、振幅検出部や位相検出部(図示省略)によって、例えばバンドパスフィルタの出力電流に対して、振幅演算および位相演算を行う等して、入力信号の特定周波数の振幅や位相を演算する構成であってもよい。また、ここで用いるフィルタは、抵抗やコンデンサ、コイル等を組み合わせた電機的なものであっても、計算機内で処理を行う処理であってもよい。以降では、周波数解析部8は、フーリエ変換を行うように構成されるものとして説明をする。 The frequency analysis unit 8 performs frequency analysis on the current composed of the phase current or the shaft current detected by the current detector 7 and outputs the amplitude and phase of a specific frequency. Here, the frequency analysis unit 8 is preferably configured to obtain the amplitude and phase at a specific frequency of the input signal, such as Fourier transform, discrete Fourier transform, Fourier series expansion, and fast Fourier transform. However, a specific frequency signal is extracted like a filter combining a notch filter and a bandpass filter, and an amplitude calculation is performed on the output current of the bandpass filter, for example, by an amplitude detection unit or a phase detection unit (not shown). Further, the configuration may be such that the amplitude and phase of a specific frequency of the input signal are calculated by performing phase calculation. Further, the filter used here may be an electrical one that combines a resistor, a capacitor, a coil, or the like, or may be a process that performs processing in a computer. Hereinafter, the frequency analysis unit 8 will be described as being configured to perform Fourier transform.
 角度誤差推定部9は、周波数解析部8からの出力であるフーリエ係数を用いて、回転検出部2の出力である回転角に含まれる周期的な角度誤差を推定する。角度誤差推定部9は、電流検出器7の電流を電動機の回転角の情報を用いてフーリエ変換することにより得られたフーリエ係数を用いて角度誤差を計算する変換式を予めメモリに記憶しており、変換式を用いて電流から角度誤差の推定値を計算する。
 また、角度誤差推定部9は、周波数解析部8からの出力である電流検出器7の電流を電動機の回転角の情報を用いてフーリエ変換することにより得られたフーリエ係数に基づき、フーリエ係数の座標により囲まれる領域の面積を座標平面における幾何学量である評価値として計算する。なお、フーリエ係数の座標により囲まれる面積の計算方法とその意味については後述する。
 角度誤差推定部9が推定する角度誤差は、後述する誤差振幅と誤差位相の2つからなる。
 角度誤差推定部9は、誤差振幅と誤差位相を角度誤差の推定値として計算すると、周期的な角度誤差を再現するために、誤差振幅と誤差位相とを用いて正弦波又は余弦波の補正信号を演算して出力する。
The angle error estimation unit 9 estimates a periodic angle error included in the rotation angle that is the output of the rotation detection unit 2 using the Fourier coefficient that is the output from the frequency analysis unit 8. The angle error estimation unit 9 stores in advance a conversion equation for calculating an angle error using a Fourier coefficient obtained by performing a Fourier transform on the current of the current detector 7 using information on the rotation angle of the motor. Then, the estimated value of the angle error is calculated from the current using the conversion formula.
In addition, the angle error estimation unit 9 is based on a Fourier coefficient obtained by performing a Fourier transform on the current of the current detector 7 that is an output from the frequency analysis unit 8 using information on the rotation angle of the electric motor. The area of the region surrounded by the coordinates is calculated as an evaluation value that is a geometric quantity on the coordinate plane. A method for calculating the area surrounded by the coordinates of the Fourier coefficient and its meaning will be described later.
The angle error estimated by the angle error estimator 9 is composed of an error amplitude and an error phase described later.
When the error error estimator 9 calculates the error amplitude and the error phase as an estimated value of the angle error, the error error and the error phase are used to reproduce a periodic angle error, and the sine wave or cosine wave correction signal is used. Is calculated and output.
 図2は角度誤差推定部9の一例を示す構成図である。
 学習速度演算部91は、回転検出部2が検出する電動機1の回転角に基づき電動機1の回転速度を計算する。学習速度演算部91は、最も簡単には、回転角の時間微分によって回転速度を演算する。また、時間微分によるノイズを除去するためにローパスフィルターにより平滑化する構成でもよい。さらにまた、学習速度演算部91は、予め設定された一定時間ごとに電動機1の回転速度を演算してもよいし、時間を計測するための構成を含んで、予め設定された一定回転角ごとに回転速度を演算してもよい。
 回転検出部2の検出する回転角は周期的な角度誤差を含むため、学習速度演算部91の計算する電動機1の回転速度には周期的な速度脈動が含まれる。角度誤差推定部9で必要な速度情報は、後述する角度誤差の学習運転において、電動機1の回転速度が予め設定された速度に達し設定速度による一定速度走行状態に達したか否かを判断するために使うものである。従って、速度情報に脈動が含まれていても一定速度走行状態に達したことは判定できるため問題ない。
FIG. 2 is a configuration diagram illustrating an example of the angle error estimation unit 9.
The learning speed calculation unit 91 calculates the rotation speed of the electric motor 1 based on the rotation angle of the electric motor 1 detected by the rotation detection unit 2. The learning speed calculation unit 91 calculates the rotation speed by time differentiation of the rotation angle, most simply. Further, a configuration may be used in which smoothing is performed by a low-pass filter in order to remove noise due to time differentiation. Furthermore, the learning speed calculation unit 91 may calculate the rotation speed of the electric motor 1 every predetermined time set in advance, or includes a configuration for measuring the time, for each fixed rotation angle set in advance. Alternatively, the rotation speed may be calculated.
Since the rotation angle detected by the rotation detection unit 2 includes a periodic angle error, the rotation speed of the electric motor 1 calculated by the learning speed calculation unit 91 includes a periodic speed pulsation. The speed information necessary for the angle error estimation unit 9 determines whether or not the rotational speed of the electric motor 1 has reached a preset speed and has reached a constant speed traveling state at the set speed in an angle error learning operation to be described later. It is for use. Accordingly, even if pulsation is included in the speed information, there is no problem because it can be determined that the vehicle has reached a constant speed traveling state.
 かご位置演算部92は、回転検出部2からの出力である電動機1の回転角に基づいてかご4の昇降路内における位置を計算し出力する。昇降路内における基準位置は最下階でも最上階でもよいし、任意の階床を基準としてもよい。回転検出部2からの出力である電動機1の回転角には周期的な角度誤差が含まれているため、かご位置演算部92が計算するかご位置にも誤差が含まれる。この発明において必要なかご4の位置情報は、後述する角度誤差学習運転において、特定区間の走行を完了したか否かを判断するために使うものである。従って、かご4の位置情報に誤差が含まれていても特定区間を走行したことは判断できるため問題ない。また、かご位置演算分92は、回転角に基づいてかご4の位置を計算するものではなく、例えば、ドアゾーンプレートを検出した回数をカウントすることにより、特定区間を走行したことを判断してもよい。また、昇降路内に設けられた最上階や最下階等の基準位置を知らせる位置スイッチによって特定区間走行したことを判断してもよい。 The car position calculation unit 92 calculates and outputs the position of the car 4 in the hoistway based on the rotation angle of the electric motor 1 that is an output from the rotation detection unit 2. The reference position in the hoistway may be the lowermost floor or the uppermost floor, or an arbitrary floor may be used as a reference. Since the rotation angle of the electric motor 1 that is an output from the rotation detection unit 2 includes a cyclic angle error, the car position calculated by the car position calculation unit 92 also includes an error. The position information of the car 4 required in the present invention is used to determine whether or not traveling in a specific section is completed in an angle error learning operation described later. Therefore, there is no problem because it can be determined that the vehicle has traveled in the specific section even if the position information of the car 4 includes an error. The car position calculation part 92 does not calculate the position of the car 4 based on the rotation angle. For example, the car position calculation part 92 determines that the vehicle has traveled in a specific section by counting the number of times the door zone plate is detected. Also good. Further, it may be determined that the vehicle has traveled in a specific section by a position switch that informs a reference position such as the uppermost floor or the lowermost floor provided in the hoistway.
 学習判定部93は、学習速度演算部91の出力である電動機1の回転速度が一定速度走行状態に達しているか否かと、かご位置演算部92の出力であるかご4の位置によりかご4が予め設定された特定区間を走行しているか否かを判断する。学習判定部93は回転速度が一定速度走行状態且つ、特定区間走行中に学習指令を出力し、それ以外のときには学習指令を出力しない。すなわち、角度誤差推定部9は、電動機1の回転速度が一定のとき、角度誤差の周波数が一定となるときに角度誤差の推定を実施する。これにより、角度誤差の周波数を既知として扱うことができる。 The learning determination unit 93 determines whether the car 4 is preliminarily determined based on whether or not the rotation speed of the electric motor 1 output from the learning speed calculation unit 91 has reached a constant speed running state and the position of the car 4 output from the car position calculation unit 92. It is determined whether the vehicle is traveling in the set specific section. The learning determination unit 93 outputs a learning command while the rotational speed is in a constant speed traveling state and traveling in a specific section, and does not output a learning command otherwise. That is, the angle error estimator 9 estimates the angle error when the rotation speed of the electric motor 1 is constant and the frequency of the angle error is constant. Thereby, the frequency of the angle error can be treated as known.
 角度誤差演算部94は、学習判定部93から学習指令を受けとった時、周波数解析部8の出力である、電流検出器7の電流を電動機1の回転角の情報を用いてフーリエ変換することにより得られたフーリエ係数を用いて、角度誤差を演算する。角度誤差演算部94は、電流を電動機1の回転角の情報を用いてフーリエ変換した結果であるフーリエ係数から角度誤差を求める変換式を予めメモリに記憶しており、フーリエ係数から角度誤差を演算する。なお、角度誤差演算部94が計算する角度誤差とは、後述する誤差振幅と誤差位相である。 When the angle error calculation unit 94 receives a learning command from the learning determination unit 93, the angle error calculation unit 94 performs Fourier transform on the current of the current detector 7, which is the output of the frequency analysis unit 8, using information on the rotation angle of the electric motor 1. An angle error is calculated using the obtained Fourier coefficient. The angle error calculation unit 94 stores in advance a conversion formula for obtaining an angle error from a Fourier coefficient, which is a result of Fourier transforming the current using information on the rotation angle of the electric motor 1, and calculates the angle error from the Fourier coefficient. To do. The angle error calculated by the angle error calculation unit 94 is an error amplitude and an error phase described later.
 面積演算部95は、周波数解析部8の出力である電流検出器7の電流を電動機1の回転角の情報を用いてフーリエ変換することにより得られたフーリエ係数に基づいて、フーリエ係数の座標により作られる領域の面積を計算する。フーリエ係数の座標により作られる領域の面積は、角度誤差の推定の成否判断に使用するために、出力判定部96へ出力される。なお、フーリエ係数の座標により作られる面積とその意味については後述する。 The area calculation unit 95 uses the Fourier coefficient coordinates based on the Fourier coefficient obtained by Fourier-transforming the current of the current detector 7 that is the output of the frequency analysis unit 8 using the rotation angle information of the electric motor 1. Calculate the area of the area to be created. The area of the region created by the coordinates of the Fourier coefficient is output to the output determination unit 96 for use in determining whether the angle error is estimated. The area formed by the coordinates of the Fourier coefficient and its meaning will be described later.
 出力判定部96は、面積演算部95の出力であるフーリエ係数の座標により作られる面積が最小となるときの誤差振幅と誤差位相を選択して出力する。フーリエ係数の座標により作られる面積が最小となるときは、共振の影響が最も少ないときに等しく、共振の影響が少ないときの角度誤差の推定値を選択できる。 The output determination unit 96 selects and outputs an error amplitude and an error phase when the area created by the coordinates of the Fourier coefficient that is the output of the area calculation unit 95 is minimized. When the area created by the coordinates of the Fourier coefficient is minimized, the estimated value of the angle error when the influence of the resonance is small and equal when the influence of the resonance is the smallest can be selected.
 誤差信号演算部97は、出力判定部96の出力である誤差振幅と誤差位相を用いて、回転検出部2の周期的な角度誤差を補正する補正信号(角度誤差推定値)を計算して出力する。補正信号は、回転検出部2の出力である電動機1の回転角に角度誤差演算部94で計算された誤差位相を加算した回転角の正弦値又は余弦値に誤差振幅を乗じた値である(後述の式(1))。 The error signal calculation unit 97 calculates and outputs a correction signal (angle error estimated value) for correcting the periodic angle error of the rotation detection unit 2 using the error amplitude and error phase output from the output determination unit 96. To do. The correction signal is a value obtained by multiplying the error angle by the sine value or cosine value of the rotation angle obtained by adding the error phase calculated by the angle error calculation unit 94 to the rotation angle of the electric motor 1 that is the output of the rotation detection unit 2 ( Equation (1) below.
 次に、回転検出部2の出力する角度に含まれる周期的な角度誤差について説明する。回転検出部2の周期的な角度誤差は、次式(1)のように、正弦波を用いて近似的に表わすことができる。なお、正弦波による表記でも余弦波による表記でも本質的な違いはないため、この発明においては正弦波による表記に統一する。 Next, the cyclic angle error included in the angle output from the rotation detector 2 will be described. The periodic angular error of the rotation detector 2 can be approximately expressed using a sine wave as shown in the following equation (1). In addition, since there is no essential difference between the notation by the sine wave and the notation by the cosine wave, the present invention unifies the notation by the sine wave.
 θe=A1sin(Xθm+φ)     (1) θ e = A 1 sin (Xθ m + φ) (1)
 θe:回転検出部2の周期的な角度誤差
 X:電動機1の機械角に対する回転検出部2の角度誤差の次数(既知の値)
 θm:電動機1の回転角
 A1:回転検出部2の角度誤差の誤差振幅
 φ:電動機1の機械角に対する回転検出部2の位相ずれ(誤差位相)
θ e : Periodic angle error of rotation detection unit 2 X: Order of angle error of rotation detection unit 2 with respect to mechanical angle of electric motor 1 (known value)
θ m : rotation angle of motor 1 A 1 : error amplitude of angle error of rotation detector 2 φ: phase shift (error phase) of rotation detector 2 relative to mechanical angle of motor 1
 Xは電動機1の機械角に対する回転検出部2の角度誤差の次数を示しており既知の値である。よって、電動機1の回転角θm、すなわち、電動機1の回転速度が分かれば、式(1)で示される回転検出部2の周期的な角度誤差の周波数を知ることができる。A1は回転検出部2の角度誤差の誤差振幅を示し、φは電動機1の機械角に対する回転検出部2の位相ずれ(誤差位相)を示している。 X represents the order of the angle error of the rotation detection unit 2 with respect to the mechanical angle of the electric motor 1, and is a known value. Therefore, if the rotation angle θ m of the electric motor 1, that is, the rotation speed of the electric motor 1 is known, the frequency of the cyclic angle error of the rotation detection unit 2 represented by the equation (1) can be known. A 1 indicates the error amplitude of the angle error of the rotation detector 2, and φ indicates the phase shift (error phase) of the rotation detector 2 with respect to the mechanical angle of the electric motor 1.
 角度誤差推定部9においては、誤差振幅A1の推定結果と誤差位相φの推定結果を用いて式(1)に示される補正信号を計算する。 The angle error estimator 9 calculates the correction signal shown in the equation (1) using the estimation result of the error amplitude A 1 and the estimation result of the error phase φ.
 次に、式(1)に示される周期的な角度誤差は、次式(2)のように速度演算部10により周期的な速度誤差へ変換される。 Next, the periodic angle error shown in the equation (1) is converted into a periodic velocity error by the velocity calculation unit 10 as in the following equation (2).
 ωe=XA1ωcos(Xθm+φ)=A2cos(Xθm+φ)     (2)
 ωe:回転検出部2の周期的な速度誤差
 A2:式(1)の角度誤差による速度誤差の振幅
 ω:電動機の回転速度
ω e = XA 1 ωcos (Xθ m + φ) = A 2 cos (Xθ m + φ) (2)
ω e : Periodic speed error of rotation detector 2 A 2 : Amplitude of speed error due to angle error in equation (1) ω: Motor rotation speed
 よって、速度演算部10の出力する電動機1の回転速度は、式(2)に示された周期的な速度誤差を含むことになる。そして、速度演算部10の出力した速度は速度指令演算部11の出力する速度指令値と比較され、速度制御器12へ入力される。速度制御器12では、速度指令値と検出速度の差分から電流指令を決定するが、速度演算部10の出力した回転速度は式(2)のような周期的な速度誤差を含むため、速度制御器12の計算する電流指令には、式(2)に起因した脈動、すなわち式(1)の回転検出部2の角度誤差に起因した脈動を含む。速度制御器12の計算する電流指令の脈動は式(2)より、式(3)で表わされる。 Therefore, the rotation speed of the electric motor 1 output from the speed calculation unit 10 includes the periodic speed error expressed by the equation (2). The speed output from the speed calculation unit 10 is compared with the speed command value output from the speed command calculation unit 11 and input to the speed controller 12. The speed controller 12 determines a current command from the difference between the speed command value and the detected speed, but the rotational speed output from the speed calculation unit 10 includes a periodic speed error as shown in Equation (2), so that the speed control is performed. The current command calculated by the device 12 includes the pulsation caused by the equation (2), that is, the pulsation caused by the angle error of the rotation detector 2 of the equation (1). The pulsation of the current command calculated by the speed controller 12 is expressed by equation (3) from equation (2).
 Ie=A3cos(Xθm+φ+φc)     (3)
 Ie:電流指令の脈動
 A3:角度誤差による電流脈動の振幅
 φc:速度制御器12による位相遅れ
I e = A 3 cos (Xθ m + φ + φ c ) (3)
I e : Current command pulsation A 3 : Current pulsation amplitude due to angle error φ c : Phase delay by speed controller 12
 (3)式に示した電流脈動を、フーリエ級数展開により次式(4)のように表わす。 The current pulsation shown in equation (3) is expressed as the following equation (4) by Fourier series expansion.
 Ie=Ancos(Xθm)+Bnsin(Xθm)     (4) I e = A n cos (Xθ m ) + B n sin (Xθ m ) (4)
 速度制御器12の出力する電流指令には、式(4)に示す電流脈動が含まれるため、電流検出器7で検出する電流においても式(4)に示される電流脈動が含まれる。三角関数の合成により、式(4)の電流脈動は次のように書き改めることができる。 Since the current command output from the speed controller 12 includes the current pulsation represented by the equation (4), the current pulsation represented by the equation (4) is also included in the current detected by the current detector 7. By synthesizing the trigonometric function, the current pulsation of equation (4) can be rewritten as follows.
 Ie=√(An 2+Bn 2)・sin(Xθm+γ)     (5)
 G=√(An 2+Bn 2)
 γ=tan-1(An/Bn)
I e = √ (A n 2 + B n 2 ) · sin (Xθ m + γ) (5)
G = √ (A n 2 + B n 2 )
γ = tan −1 (A n / B n )
 式(5)において、
G=√(An 2+Bn 2)は、回転検出部2の角度誤差に起因する電流脈動の振幅を示し、
G=√(An 2+Bn 2)=A3である。
γ=tan-1(An/Bn)は、電流脈動の電動機1の機械角に対する位相差を示し、
γ=tan-1(An/Bn)=φ+φcである。
 以降の説明では、
G=√(An 2+Bn 2)を電流脈動の振幅、
γ=tan-1(An/Bn)を電流脈動の位相
と呼ぶことにする。
In equation (5),
G = √ (A n 2 + B n 2 ) indicates the amplitude of the current pulsation caused by the angle error of the rotation detector 2,
G = √ (A n 2 + B n 2 ) = A 3 .
γ = tan −1 (A n / B n ) represents a phase difference with respect to the mechanical angle of the electric motor 1 of the current pulsation,
γ = tan −1 (A n / B n ) = φ + φ c
In the following explanation,
G = √ (A n 2 + B n 2 ) is the amplitude of current pulsation,
Let γ = tan −1 (A n / B n ) be called the current pulsation phase.
 ここで、電流の周波数解析結果により得られたフーリエ係数An、Bnから角度誤差の誤差振幅A1および誤差位相φを求める方法を説明する。先ず、角度誤差の誤差位相φは次式(6)のように求めることができる。 Here, a method for obtaining the error amplitude A 1 and the error phase φ of the angle error from the Fourier coefficients A n and B n obtained from the frequency analysis result of the current will be described. First, the error phase φ of the angle error can be obtained as in the following equation (6).
 φ=tan-1(An/Bn)-φc     (6) φ = tan −1 (A n / B n ) −φ c (6)
 速度制御器12による位相遅れφcは、速度制御器12の周波数特性により決まる。角度誤差の周波数は既知であるから、速度誤差の周波数は既知の値である。図3は速度制御器12のゲインと位相の周波数特性を示している。例えば、角度誤差の周波数がAである場合には、速度制御器12による位相遅れは、-150[deg]となる。また、角度誤差の周波数がBである場合には、速度制御器12による位相遅れは、-170[deg]となる。速度制御器12の位相遅れは、速度制御器12により一意に決まる。よって、速度制御器12の周波数特性により、速度制御器12による位相遅れφcを求めることができ、式(6)により角度誤差の誤差位相φを求めることができる。 The phase delay φ c by the speed controller 12 is determined by the frequency characteristics of the speed controller 12. Since the frequency of the angle error is known, the frequency of the speed error is a known value. FIG. 3 shows the frequency characteristics of the gain and phase of the speed controller 12. For example, when the frequency of the angle error is A, the phase delay by the speed controller 12 is −150 [deg]. When the frequency of the angle error is B, the phase lag by the speed controller 12 is −170 [deg]. The phase lag of the speed controller 12 is uniquely determined by the speed controller 12. Therefore, the phase delay φ c by the speed controller 12 can be obtained from the frequency characteristics of the speed controller 12, and the error phase φ of the angle error can be obtained from the equation (6).
 振幅についても同様に、速度制御器12の周波数特性から求めることができる。速度制御器12の周波数特性により、角度誤差の周波数が既知であることを考慮すると、速度から電流指令までのゲインC1を求めることができる。図3の速度制御器12の周波数特性より、例えば、角度誤差の周波数がAである場合には、速度制御器12によるゲインは、-10[dB]となる。また、角度誤差の周波数がBである場合には、速度制御器12によるゲインは、-35[dB]となる。よって、次式(7)のように角度誤差の誤差振幅A1を計算することができる。 Similarly, the amplitude can be obtained from the frequency characteristic of the speed controller 12. Considering that the frequency of the angle error is known from the frequency characteristics of the speed controller 12, the gain C1 from the speed to the current command can be obtained. From the frequency characteristic of the speed controller 12 in FIG. 3, for example, when the frequency of the angle error is A, the gain by the speed controller 12 is −10 [dB]. When the frequency of the angle error is B, the gain by the speed controller 12 is −35 [dB]. Therefore, the error amplitude A 1 of the angle error can be calculated as in the following equation (7).
 A3/A2=C1→√(An 2+Bn 2)/XA1ω=C1
 A1=√(An 2+Bn 2)/XωC1           (7)
A 3 / A 2 = C 1 → √ (A n 2 + B n 2 ) / XA 1 ω = C 1
A 1 = √ (A n 2 + B n 2 ) / XωC1 (7)
 角度誤差演算部94は、式(6)と式(7)を予めメモリに記憶しており、電流の周波数解析結果により得られたフーリエ係数から角度誤差の誤差振幅A1と誤差位相φを計算する。なお、角度誤差演算部94は、速度制御器12の周波数特性による位相遅れとゲインは、例えば、複数の周波数毎にテーブルデータとして記憶しておけばよい。 The angle error calculation unit 94 stores the equations (6) and (7) in the memory in advance, and calculates the error amplitude A 1 and the error phase φ of the angle error from the Fourier coefficient obtained from the current frequency analysis result. To do. The angle error calculation unit 94 may store the phase lag and gain due to the frequency characteristics of the speed controller 12 as table data for each of a plurality of frequencies, for example.
 次に、上記式(4)、(5)におけるフーリエ係数An,Bnの計算について説明する。周波数解析部8は、電流検出器7で検出された電流Iを、電動機1の回転角の情報を用いてフーリエ変換し、フーリエ係数を計算する。フーリエ係数の計算は、一般的に良く知られた次式(8)により行う。 Next, calculation of Fourier coefficients A n and B n in the above equations (4) and (5) will be described. The frequency analysis unit 8 performs a Fourier transform on the current I detected by the current detector 7 using information on the rotation angle of the electric motor 1 and calculates a Fourier coefficient. The Fourier coefficient is calculated by the following well-known formula (8).
 An=(1/π)∫0 I・cos(Xθm)dθ
 Bn=(1/π)∫0 I・sin(Xθm)dθ     (8)
A n = (1 / π) ∫ 0 I · cos (Xθ m ) dθ
B n = (1 / π) ∫ 0 I · sin (Xθ m ) dθ (8)
 式(8)のフーリエ係数の演算は一定周期毎に実施される。例えば、一定周期は、式(8)によれば、電動機1の回転角θmの1回転分に相当する。言い換えれば、電動機1の1回転分にかご4が進む距離毎、電動機1の1回転分に必要な時間毎、にフーリエ係数は演算される。なお、フーリエ係数を演算する間隔は、電動機1の1回転分ではなく2回転分や3回転分などでもよい。この場合には、数周期分の平均値を求めていることになるため、電流脈動のばらつきや外乱の影響を軽減することができる。 The calculation of the Fourier coefficient of equation (8) is performed at regular intervals. For example, the fixed period corresponds to one rotation of the rotation angle θ m of the electric motor 1 according to the equation (8). In other words, the Fourier coefficient is calculated for each distance traveled by the car 4 for one rotation of the electric motor 1 and for each time required for one rotation of the electric motor 1. The interval for calculating the Fourier coefficient may be two rotations or three rotations instead of one rotation of the electric motor 1. In this case, since an average value for several cycles is obtained, the influence of fluctuations in current pulsation and disturbance can be reduced.
 周波数解析部8は、式(8)に示したフーリエ係数を演算する構成ではなく、ノッチフィルタやバンドパスフィルタを組み合わせたフィルタのように、特定の周波数信号を抽出し、振幅検出部や位相検出部によって、入力信号の特定周波数の振幅や位相を演算するものであってもよい。
 この場合、位相においては、式(6)におけるtan-1(An/Bn)が直接検出できるため、速度制御器12による位相遅れφcを減算することで、誤差位相φを求めることができる。振幅においては、式(7)における√(An 2+Bn 2)が直接検出できるため、式(7)と同様の手順で角度誤差の振幅A1を求めることができる。
The frequency analysis unit 8 is not configured to calculate the Fourier coefficient shown in Expression (8), but extracts a specific frequency signal like a filter combining a notch filter and a band pass filter, and an amplitude detection unit and a phase detection unit. The unit may calculate the amplitude and phase of a specific frequency of the input signal.
In this case, since tan −1 (A n / B n ) in the equation (6) can be directly detected in the phase, the error phase φ can be obtained by subtracting the phase delay φ c by the speed controller 12. it can. In the amplitude, since √ (A n 2 + B n 2 ) in the equation (7) can be directly detected, the angle error amplitude A 1 can be obtained by the same procedure as that in the equation (7).
 次に、本実施の形態による式(1)で示される角度誤差の推定において、電流脈動の振幅と位相の変化が少ないとき、すなわち回転検出部2の角度誤差の周波数と、エレベーターの機械系の共振周波数とが一致せず共振の影響が少ないときの推定値を選択する学習運転方法について説明する。 Next, in the estimation of the angle error represented by the equation (1) according to the present embodiment, when the change in the amplitude and phase of the current pulsation is small, that is, the frequency of the angle error of the rotation detector 2 and the mechanical system of the elevator. A learning operation method for selecting an estimated value when the resonance frequency does not match and the influence of resonance is small will be described.
 先ず、エレベーターの機械系の特性について説明をする。図4は、回転検出部2の検出する電動機1の回転角に含まれる角度誤差から電流検出器7の検出する電流までのゲイン特性の一例を、図5は位相特性の一例を示している。
 図4と5より、角度誤差の周波数がAとCのときには、かご4が昇降路内のどの位置でもゲインと位相が一定値である。
 一方で、角度誤差の周波数がBのときには、かご4の位置が破線で示す最下階付近や実線で示す最上階付近の場合、ゲインと位相は変化しないが、点線で示す中間階付近において共振の特性を示している。図4と5に示した特性は一つの例であるが、エレベーターは、物件ごとに機械仕様が異なるため、図4と5に示すゲイン特性、位相特性は、エレベーターの物件ごとに異なる。また、エレベーターの速度も物件ごとに異なるため、どの位置で、どの速度で角度誤差と機械系が共振するかを事前に知ることは困難となる。よって、事前情報により共振を避けることは難しく、角度誤差の学習と推定の成否判断を同時に行うことが望ましい。
First, the characteristics of the mechanical system of the elevator will be described. 4 shows an example of the gain characteristic from the angle error included in the rotation angle of the electric motor 1 detected by the rotation detector 2 to the current detected by the current detector 7, and FIG. 5 shows an example of the phase characteristic.
4 and 5, when the frequency of the angle error is A and C, the gain and phase are constant at any position of the car 4 in the hoistway.
On the other hand, when the frequency of the angle error is B, the gain and phase do not change when the position of the car 4 is near the lowermost floor indicated by the broken line or the uppermost floor indicated by the solid line, but resonates near the intermediate floor indicated by the dotted line. The characteristics are shown. The characteristics shown in FIGS. 4 and 5 are an example. However, since elevators have different machine specifications for each property, the gain characteristics and phase characteristics shown in FIGS. 4 and 5 differ for each elevator property. In addition, since the speed of the elevator is different for each property, it is difficult to know in advance at which position and at which speed the angular error and the mechanical system resonate. Therefore, it is difficult to avoid resonance based on prior information, and it is desirable to simultaneously perform learning of angle error and determination of success or failure of estimation.
 次に、角度誤差推定部9の推定の成否判断の方法について説明する。図6はエレベーターのかご4を特定区間走行させたときに、周波数解析部8で計算された2つのフーリエ係数An,Bnを、横軸をBn、縦軸をAnとしてプロットしたものである。以降では、この平面をフーリエ係数座標平面と呼ぶ。式(5)から分かるように、図6において原点からの距離G=√(An 2+Bn 2)は電流脈動の振幅に等しく、原点からの距離のベクトルがなす角度γ=tan-1(An/Bn)は電流脈動の位相に等しい。 Next, a method for determining the success or failure of the estimation by the angle error estimation unit 9 will be described. 6 the car 4 of the elevator when brought into a particular section traveling are those two Fourier coefficients A n calculated by the frequency analysis unit 8, the B n, the horizontal axis B n, the vertical axis is plotted as A n It is. Hereinafter, this plane is referred to as a Fourier coefficient coordinate plane. As can be seen from equation (5), in FIG. 6, the distance G from the origin G = √ (A n 2 + B n 2 ) is equal to the amplitude of the current pulsation, and the angle γ = tan −1 ( A n / B n ) is equal to the phase of the current pulsation.
 次に、フーリエ係数座標平面において、フーリエ係数の座標が囲む面積と、電流脈動の振幅、電流脈動の位相の関係について説明する。図6のフーリエ係数座標平面において、電流脈動の振幅G=√(An 2+Bn 2)と、電流脈動の位相γ=tan-1(An/Bn)の変化について考えると、電流脈動の振幅G=√(An 2+Bn 2)と電流脈動の位相γ=tan-1(An/Bn)の変化が小さいとき、3点以上のフーリエ係数の座標で囲まれる面積が小さくなる。図6の区間Aにおいては、フーリエ係数の座標の変化が小さいためフーリエ係数の座標で囲まれる面積が小さく、電流脈動の振幅G=√(An 2+Bn 2)と電流脈動の位相γ=tan-1(An/Bn)の変化が小さい。また、区間Bにおいては、区間Aに比べ、フーリエ係数の座標で囲まれる面積が大きく、電流脈動の振幅G=√(An 2+Bn 2)と電流脈動の位相γ=tan-1(An/Bn)の変化も大きい。よって、フーリエ係数座標平面におけるフーリエ係数の座標が囲む面積を計算することは、電流脈動の振幅と位相変化量を計算していることに等しくなる。 Next, the relationship between the area surrounded by the Fourier coefficient coordinates on the Fourier coefficient coordinate plane, the amplitude of the current pulsation, and the phase of the current pulsation will be described. In the Fourier coefficient coordinate plane of FIG. 6, when considering the change of the amplitude of current pulsation G = √ (A n 2 + B n 2 ) and the phase of current pulsation γ = tan −1 (A n / B n ), the current pulsation When the change in amplitude G = √ (A n 2 + B n 2 ) and current pulsation phase γ = tan −1 (A n / B n ) is small, the area enclosed by the coordinates of the Fourier coefficients of three or more points is small. Become. In the section A of FIG. 6, since the change in the coordinates of the Fourier coefficient is small, the area surrounded by the coordinates of the Fourier coefficient is small, the current pulsation amplitude G = √ (A n 2 + B n 2 ) and the current pulsation phase γ = The change of tan −1 (A n / B n ) is small. In section B, the area surrounded by the coordinates of the Fourier coefficient is larger than in section A, and the amplitude of current pulsation G = √ (A n 2 + B n 2 ) and the phase of current pulsation γ = tan −1 (A The change of n / Bn ) is also large. Therefore, calculating the area surrounded by the Fourier coefficient coordinates on the Fourier coefficient coordinate plane is equivalent to calculating the current pulsation amplitude and phase variation.
 フーリエ係数座標平面において、3点以上のフーリエ係数の座標が囲む面積は座標法より計算することができる。例えば、エレベーターのかご4を特定区間走行したときに周波数解析部8で計算されたフーリエ係数を計算結果の古い順に(Bn1,An1),(Bn2,An2),(Bn3,An3)としたとき、これら3組のフーリエ係数の座標によって囲まれる面積Sは、次式(9)で計算できる。 In the Fourier coefficient coordinate plane, the area surrounded by the coordinates of three or more Fourier coefficients can be calculated by the coordinate method. For example, the Fourier coefficients calculated by the frequency analysis unit 8 when traveling in a specific section of the elevator car 4 are calculated in the order of the calculation results (B n1 , A n1 ), (B n2 , A n2 ), (B n3 , A n3 ), the area S surrounded by the coordinates of these three sets of Fourier coefficients can be calculated by the following equation (9).
S=
(1/2)|(Bn1n2-Bn2n1)+(Bn2n3-Bn3n2)+(Bn3n1-Bn1n3)|
                              (9)
S =
(1/2) | (B n1 A n2 -B n2 A n1) + (B n2 A n3 -B n3 A n2) + (B n3 A n1 -B n1 A n3) |
(9)
 原点から座標(Bn1,An1)までの距離√(An1 2+Bn1 2)をG1
原点から座標(Bn2,An2)までの距離√(An2 2+Bn2 2)をG2
原点から座標(Bn3,An3)までの距離√(An3 2+Bn3 2)をG3
とする、すなわち、各座標における電流脈動の振幅をG1、G2、G3とし、
原点から座標(Bn1,An1)までの距離ベクトルがなす角tan-1(An1/Bn1)をγ1
原点から座標(Bn2,An2)までの距離ベクトルがなす角tan-1(An2/Bn2)をγ2
原点から座標(Bn3,An3)までの距離ベクトルがなす角tan-1(An3/Bn3)をγ3
とする、すなわち各座標における電流脈動の位相をγ1、γ2、γ3とすると、式(9)の面積は次のように書き換えることができる。
The distance √ (A n1 2 + B n1 2 ) from the origin to the coordinates (B n1 , A n1 ) is represented by G 1 ,
The distance √ (A n2 2 + B n2 2 ) from the origin to the coordinates (B n2 , A n2 ) is G 2 ,
The distance √ (A n3 2 + B n3 2 ) from the origin to the coordinates (B n3 , A n3 ) is represented by G 3 ,
In other words, the amplitude of the current pulsation at each coordinate is G 1 , G 2 , G 3 ,
Coordinates from the origin (B n1, A n1) to the distance vector angle tan -1 (A n1 / B n1 ) the gamma 1,
Coordinates from the origin (B n2, A n2) distance vector angle to tan -1 (A n2 / B n2 ) a gamma 2,
Coordinates from the origin (B n3, A n3) distance vector angle to tan -1 (A n3 / B n3 ) and gamma 3,
That is, if the phase of the current pulsation at each coordinate is γ 1 , γ 2 , γ 3 , the area of equation (9) can be rewritten as follows.
S=
 (1/2)|G12sin(γ2-γ1)+G23sin(γ3-γ2)+G13sin(γ1-γ3)|
                              (10)
S =
(1/2) | G 1 G 2 sin (γ 2 −γ 1 ) + G 2 G 3 sin (γ 3 −γ 2 ) + G 1 G 3 sin (γ 1 −γ 3 ) |
(10)
 回転検出部2の検出する電動機1の回転角に含まれる角度誤差から電流検出器7の検出する電流までのゲイン特性と位相特性は、図4と5のような特性であり、例えば、角度誤差の周波数がAやCのときには、かご4が昇降路内のどの位置でもゲインと位相は一定値、すなわち、角度誤差の周波数がAやCであればエレベーターの機械系と共振しないため、G1、G2、G3とγ1、γ2、γ3は一定値となり、式(9)で計算される面積は0となる。
 一方、角度誤差の周波数がBのときには、かご4が最下階と最上階付近においてはゲインすなわち振幅と位相は一定値であるが、中間階に近づくとゲインと位相は大きく変化する。すなわち、角度誤差の周波数がBのとき、中間階付近で共振が起こり、その他の場所では共振が起きない。この場合は、式(9)で計算される面積は、最下階と最上階付近で0となるが、中間階に近づくにつれて式(9)の面積は大きくなる。共振が発生すると、ゲインと位相は同時に変化するため、式(9)の面積を計算することで、電流脈動の振幅と位相の変化を計算することができる。
The gain characteristic and the phase characteristic from the angle error included in the rotation angle of the electric motor 1 detected by the rotation detector 2 to the current detected by the current detector 7 are the characteristics as shown in FIGS. because when the frequency is a or C of the gain and phase constant values at any position of the car 4 hoistway, i.e., the frequency of the angle error does not resonate with the elevator mechanical system if a and C, G 1 , G 2 , G 3 and γ 1 , γ 2 , γ 3 are constant values, and the area calculated by equation (9) is zero.
On the other hand, when the frequency of the angle error is B, the gain, that is, the amplitude and the phase are constant when the car 4 is near the lowermost floor and the uppermost floor, but the gain and the phase change greatly as they approach the intermediate floor. That is, when the frequency of the angle error is B, resonance occurs near the middle floor and no resonance occurs in other places. In this case, the area calculated by Expression (9) is 0 near the lowermost floor and the uppermost floor, but the area of Expression (9) increases as the intermediate floor is approached. When resonance occurs, the gain and phase change at the same time. Therefore, by calculating the area of Equation (9), the change in the amplitude and phase of the current pulsation can be calculated.
 また、周波数解析部8がノッチフィルタやバンドパスフィルタを組み合わせたフィルタであり、特定の周波数信号を抽出し、振幅検出部や位相検出部によって、入力信号の特定周波数の振幅や位相を演算する構成である場合にも、同様の手順で面積を計算することができる。即ち、周波数解析部8がノッチフィルタやバンドパスフィルタを組み合わせたフィルタであり、特定の周波数信号を抽出し、振幅検出部や位相検出部によって、入力信号の特定周波数の振幅や位相を演算すると、式(10)における電流脈動の振幅Gと電流脈動の位相γが得られるため、式(10)により面積が計算できる。さらに、電流脈動の振幅G、誤差位相φを用いれば、An=Gsin(φ)、Bn=Gcos(φ)であるから、電流脈動の振幅と位相を検出し、フーリエ係数へ換算することで、式(9)による演算方法でも面積を計算することができる。 The frequency analysis unit 8 is a filter that combines a notch filter and a bandpass filter, and extracts a specific frequency signal and calculates the amplitude and phase of the specific frequency of the input signal by the amplitude detection unit and the phase detection unit. In this case, the area can be calculated in the same procedure. That is, the frequency analysis unit 8 is a filter that combines a notch filter and a bandpass filter, extracts a specific frequency signal, and calculates the amplitude and phase of the specific frequency of the input signal by the amplitude detection unit and the phase detection unit. Since the amplitude G of the current pulsation and the phase γ of the current pulsation in Equation (10) are obtained, the area can be calculated by Equation (10). Furthermore, if the current pulsation amplitude G and error phase φ are used, since An = Gsin (φ) and B n = Gcos (φ), the amplitude and phase of the current pulsation are detected and converted into Fourier coefficients. Thus, the area can also be calculated by the calculation method according to equation (9).
 さらに、周波数解析部8がノッチフィルタやバンドパスフィルタを組み合わせたフィルタであり、特定の周波数信号を抽出し、振幅検出部や位相検出部によって、入力信号の特定周波数の振幅や位相を演算する構成であった場合に、図6のようにフーリエ係数AnとBnの作る座標平面ではなく、縦軸を振幅、横軸を位相とした座標平面又は、縦軸を位相、横軸を振幅とした座標平面でも式(9)による演算で面積を計算することで、電流脈動の振幅と位相の変化を計算することができる。即ち、Anに振幅を対応させ、Bnに位相を対応、又はAnに位相を対応させ、Bnに振幅を対応させればよい。 Further, the frequency analysis unit 8 is a filter that combines a notch filter and a band pass filter, and extracts a specific frequency signal, and the amplitude detection unit and the phase detection unit calculate the amplitude and phase of the specific frequency of the input signal. 6, instead of the coordinate plane formed by the Fourier coefficients An and B n as shown in FIG. 6, the coordinate plane with the vertical axis as amplitude and the horizontal axis as phase, or the vertical axis as phase and the horizontal axis as amplitude. Even in the coordinate plane, the change in the amplitude and phase of the current pulsation can be calculated by calculating the area by the calculation according to the equation (9). That is, in correspondence with amplitude A n, the phase B n corresponding, or is associated with phase A n, it is sufficient to correspond to amplitude B n.
 以上のことから式(9)の面積を求めることは、電流脈動の振幅と位相の変化量を求めていることに等しく、面積が大きいことは電流脈動の振幅と位相の変化量が大きいことになる。また、図6では3点のフーリエ係数の座標が囲む面積を例に説明したが、3点以上であればフーリエ係数の座標が囲む面積が計算できるため、3点に限定する必要はない。 From the above, obtaining the area of equation (9) is equivalent to obtaining the amount of change in amplitude and phase of current pulsation, and that the area is large means that the amount of change in amplitude and phase of current pulsation is large. Become. In FIG. 6, the area surrounded by the coordinates of the Fourier coefficients of three points has been described as an example. However, since the area surrounded by the coordinates of the Fourier coefficients can be calculated if the number of points is three or more, it is not necessary to limit to three points.
 次に、式(9)で示したフーリエ係数の座標によって囲まれる面積を用いて、角度誤差とエレベーターの機械系とが共振しておらず電流脈動の振幅と位相の変化量が小さいときの角度誤差の推定値を選択する学習運転の動作を図7のフローチャートを用いて説明する。 Next, using the area enclosed by the coordinates of the Fourier coefficient shown in equation (9), the angle when the angle error and the mechanical system of the elevator are not resonating and the amount of change in the amplitude and phase of the current pulsation is small. The learning operation for selecting the estimated error value will be described with reference to the flowchart of FIG.
 角度誤差推定部9は、例えば学習判定部93または出力判定部96から図1の速度指令演算部11へ学習運転指令を送り、学習運転を開始すると、学習判定部93は、学習速度演算部91の出力に従って電動機1の回転速度が一定となっているか否かを判定する(ステップS71)。電動機1の回転速度が一定となっていない場合には、回転速度が一定となるまでステップS71を継続する。これは、電動機1の回転速度が一定となるときには、回転検出部2の角度誤差の周波数が一定となり、角度検出誤差の推定が容易となるためである。
 電動機1の回転速度が一定となった後、角度誤差演算部94は、周波数解析部8からの出力である、電流検出器7の電流を電動機1の回転角の情報を用いてフーリエ変換して得られたフーリエ係数の計算結果、をメモリに保存する(ステップS72)。
When the angle error estimation unit 9 sends a learning operation command from the learning determination unit 93 or the output determination unit 96 to the speed command calculation unit 11 in FIG. 1 and starts the learning operation, for example, the learning determination unit 93 starts the learning speed calculation unit 91. It is determined whether or not the rotation speed of the electric motor 1 is constant according to the output (step S71). If the rotation speed of the electric motor 1 is not constant, step S71 is continued until the rotation speed becomes constant. This is because when the rotation speed of the electric motor 1 is constant, the frequency of the angle error of the rotation detector 2 is constant, and the angle detection error is easily estimated.
After the rotation speed of the electric motor 1 becomes constant, the angle error calculation unit 94 performs Fourier transform on the current of the current detector 7, which is an output from the frequency analysis unit 8, using information on the rotation angle of the electric motor 1. The obtained Fourier coefficient calculation result is stored in a memory (step S72).
 次に、角度誤差演算部94は、フーリエ係数の計算結果が3回分または3回分以上(以下では3回分以上として説明する)、記憶されているか否かを判断する(ステップS73)。3回分以上のフーリエ係数が保存されていない場合には、ステップS72に戻り、周波数解析部8からの出力であるフーリエ係数の保存を繰り返す。フーリエ係数が3回分以上保存されている場合には、面積演算部95は、式(9)によってフーリエ係数の座標が作る面積を計算する。また、角度誤差演算部94は、フーリエ係数を用いて、記憶しているフーリエ係数と角度検出誤差の変換式により角度誤差の推定値を計算する(ステップS74)。角度誤差の推定値は、誤差振幅と誤差位相である。そして、出力判定部96は、面積と角度誤差の推定値を関連付けてメモリに保存する。 Next, the angle error calculation unit 94 determines whether the calculation result of the Fourier coefficient is stored three times or three times or more (hereinafter, described as three times or more) (step S73). If three or more Fourier coefficients have not been stored, the process returns to step S72, and the storage of the Fourier coefficient output from the frequency analysis unit 8 is repeated. When the Fourier coefficients are stored three times or more, the area calculation unit 95 calculates the area created by the coordinates of the Fourier coefficients according to the equation (9). Further, the angle error calculation unit 94 uses the Fourier coefficient to calculate an estimated value of the angle error by using the stored Fourier coefficient and angle detection error conversion formula (step S74). The estimated value of the angle error is an error amplitude and an error phase. Then, the output determination unit 96 associates the area and the estimated value of the angle error and stores them in the memory.
 ステップS74の面積と角度検出誤差の推定値の計算が終わると、出力判定部96は、記憶している面積、すなわち1回前のフローで計算された面積と、ステップS74で計算した面積を比較する(ステップS75)。なお、比較する面積の初期値は、1回目の計算結果が必ず保存されるように、記憶できる最大の値とする。角度検出誤差の推定値は、任意の値でよい。 When the calculation of the estimated value of the area and angle detection error in step S74 ends, the output determination unit 96 compares the stored area, that is, the area calculated in the previous flow with the area calculated in step S74. (Step S75). The initial value of the areas to be compared is the maximum value that can be stored so that the first calculation result is always saved. The estimated value of the angle detection error may be an arbitrary value.
 出力判定部96は、ステップS75において、記憶されている面積と計算した面積を比較した結果、ステップS74において計算された面積の方が小さいと判断された場合、ステップS74で計算された面積と角度検出誤差の推定値を合わせて記憶する。このとき、既に記憶されている面積と角度検出誤差は消去する(ステップS76)。
 一方、ステップS75において記憶されている面積と計算した面積を比較した結果、ステップS74において計算された面積が記憶されている面積以上と判断された場合は、なにも処理しない。すなわち既に記憶されている角度誤差の推定値と面積を保存し続け、次のステップへ移行する。
If the output determination unit 96 compares the stored area with the calculated area in step S75 and determines that the area calculated in step S74 is smaller, the output determination unit 96 calculates the area and angle calculated in step S74. The estimated value of the detection error is stored together. At this time, the already stored area and angle detection error are deleted (step S76).
On the other hand, as a result of comparing the area stored in step S75 with the calculated area, if it is determined that the area calculated in step S74 is greater than or equal to the stored area, no processing is performed. That is, the stored angular error estimation value and area are stored, and the process proceeds to the next step.
 次に、学習判定部93が、かご位置演算部92の出力から、かごが特定区間を走行したか否かを判断する(ステップS77)。特定区間走行していないと判断した場合には、ステップS72に戻りステップS77までの処理を繰り返し行う。特定区間走行したと判断した場合には学習運転を終了する。
 なお、かご4が特定区間走行したことは、かご位置演算部92の計算するかご位置に基づいて判断するようにしたが、例えば、ドアゾーンプレートを検出した回数をカウントすることにより、特定区間を走行したことを判断してもよい。また、昇降路内に設けられた最上階や最下階等の基準位置を知らせる位置スイッチによって特定区間走行したことを判断してもよい。
Next, the learning determination unit 93 determines whether or not the car has traveled in a specific section from the output of the car position calculation unit 92 (step S77). If it is determined that the vehicle is not traveling in a specific section, the process returns to step S72 and the processes up to step S77 are repeated. If it is determined that the vehicle has traveled in a specific section, the learning operation is terminated.
The fact that the car 4 has traveled in a specific section is determined based on the car position calculated by the car position calculation unit 92. For example, by counting the number of times the door zone plate is detected, the specific section is It may be determined that the vehicle has traveled. Further, it may be determined that the vehicle has traveled in a specific section by a position switch that informs a reference position such as the uppermost floor or the lowermost floor provided in the hoistway.
 学習運転の完了後は、誤差信号演算部97が、誤差位相と誤差振幅の推定結果を用いて回転検出部2の周期的な角度誤差を計算し、補正信号として出力し、図1の減算器SU2で回転検出部2の角度誤差の補正を行わせる。 After completion of the learning operation, the error signal calculation unit 97 calculates a periodic angle error of the rotation detection unit 2 using the estimation result of the error phase and the error amplitude, and outputs it as a correction signal. In SU2, the angle error of the rotation detector 2 is corrected.
 なお、上記動作では、かごが特定区間を走行したか否かを最後に判断して学習運転したか否かを判断しているが、最初に学習速度演算部91の出力が電動機1の回転速度が一定速度走行状態にあることを示し、かご位置演算部92の出力がかご4が予め設定された特定区間を走行していることを示すと、学習判定部93が学習指令を出力し、学習運転が開始されるようにしてもよい。この場合にはステップS77はステップS71と並行して行われる。 In the above operation, it is determined whether or not the car has traveled in a specific section lastly to determine whether or not the learning operation has been performed. First, the output of the learning speed calculation unit 91 is the rotational speed of the motor 1. Indicates that the vehicle is running at a constant speed, and when the output of the car position calculation unit 92 indicates that the car 4 is traveling in a preset specific section, the learning determination unit 93 outputs a learning command, and learning The operation may be started. In this case, step S77 is performed in parallel with step S71.
 以上の処理により学習運転を実施すると、特定区間走行したときに、電流検出器7の電流を電動機1の回転角の情報を用いてフーリエ変換することにより得られたフーリエ係数の座標が作る面積が最小となるときの角度検出誤差を抽出することができる。特定区間走行したときにフーリエ係数の座標が作る面積が最小ということは、特定区間において電流脈動の振幅と位相の変化量が小さいときに等しいため、機械系との共振の影響が最も少なく、最終的には推定誤差が一番小さい角度検出誤差の推定値を抽出することができる。 When the learning operation is performed by the above processing, the area created by the coordinates of the Fourier coefficient obtained by Fourier transforming the current of the current detector 7 using the information of the rotation angle of the electric motor 1 when traveling in a specific section is obtained. It is possible to extract the angle detection error when it becomes the minimum. The minimum area created by the Fourier coefficient coordinates when traveling in a specific section is the same when the amplitude and phase change of the current pulsation are small in the specific section. Specifically, the estimated value of the angle detection error with the smallest estimation error can be extracted.
 図8は、図6のフーリエ係数座標平面における隣り合う3つのフーリエ係数の座標を用いて計算した面積とかご位置との関係を示している。例えば、角度誤差の学習運転において図6のようなフーリエ係数の座標が得られた時には、角度誤差推定部9の面積演算部95で計算する面積は、図8のようになる。区間Aにおいては面積が小さく、区間Bにおいては面積が区間Aに比べて大きくなる。図7の学習運転のフローによれば、区間Aのときの角度誤差の推定値が抽出される。面積が小さいことは共振していないことに等しいため、信頼性の高い角度誤差の推定値を得ることができる。 FIG. 8 shows the relationship between the area calculated using the coordinates of three adjacent Fourier coefficients in the Fourier coefficient coordinate plane of FIG. 6 and the car position. For example, when coordinates of Fourier coefficients as shown in FIG. 6 are obtained in the learning operation of the angle error, the area calculated by the area calculation unit 95 of the angle error estimation unit 9 is as shown in FIG. In section A, the area is small, and in section B, the area is larger than section A. According to the learning operation flow of FIG. 7, the estimated value of the angle error in the section A is extracted. Since a small area is equivalent to non-resonance, it is possible to obtain a highly reliable estimation value of the angle error.
 実施の形態1の方法によれば、角度誤差の推定と電流脈動の振幅と位相による推定の成否判断が同時に行え、共振の影響が最も少ないときの角度誤差の推定値を抽出でき、且つ、事前に共振に関する情報を調べなくてよいため、角度誤差の学習に要する時間を短縮できる。また、実施の形態1の方法によれば、エレベーターではなく、電動機1の負荷としていかなる機械系が接続されていたとしても、電流脈動の振幅と位相の変化量を基に、共振の影響が最も少ないときの推定値を抽出できる。図6では、フーリエ係数3点で行う方法を示したが、面積を計算できる3点以上であればよい。 According to the method of the first embodiment, it is possible to simultaneously estimate the angle error and determine the success or failure of the estimation based on the amplitude and phase of the current pulsation, extract the estimated value of the angle error when the influence of resonance is the smallest, In addition, since it is not necessary to check information on resonance, the time required for learning the angle error can be shortened. Further, according to the method of the first embodiment, no matter what mechanical system is connected as the load of the electric motor 1 instead of the elevator, the influence of resonance is the most based on the amount of change in the amplitude and phase of the current pulsation. The estimated value when there are few can be extracted. Although FIG. 6 shows a method performed with four Fourier coefficients, it is sufficient if the area can be calculated at three or more points.
 なお、周波数解析部8がフーリエ係数を演算する構成ではなく、ノッチフィルタやバンドパスフィルタを組み合わせたフィルタのように、特定の周波数信号を抽出し、振幅検出部や位相検出部によって、入力信号の特定周波数の振幅や位相を演算する構成であっても同様の手順により、信頼性の高い角度誤差の推定値を得ることができる。 The frequency analysis unit 8 is not configured to calculate a Fourier coefficient, but a specific frequency signal is extracted like a filter combining a notch filter or a band pass filter, and the input signal is detected by an amplitude detection unit or a phase detection unit. Even with a configuration for calculating the amplitude and phase of a specific frequency, a highly reliable estimation error angle can be obtained by the same procedure.
 実施の形態2.
 実施の形態1において、角度誤差の周波数と機械系の周波数が一致して推定が困難となるときの推定値を排除でき、共振の影響が最も少ないときの推定値を抽出する方法を示した。実施の形態2においては、実施の形態1で示した角度誤差の学習運転を、学習運転時の速度を変えて複数回実施して、複数回の学習の結果の整合性確認を行うことにより、実施の形態1よりも信頼性の高い角度誤差の推定値を得る方法について説明する。
Embodiment 2. FIG.
In the first embodiment, the method of extracting the estimated value when the frequency of the angle error coincides with the frequency of the mechanical system and estimation is difficult and the estimated value when the influence of resonance is the smallest is shown. In the second embodiment, the learning operation of the angle error shown in the first embodiment is performed a plurality of times while changing the speed during the learning operation, and by confirming the consistency of the results of the plurality of learnings, A method for obtaining an estimated value of the angle error with higher reliability than that of the first embodiment will be described.
 実施の形態1の方法では、フーリエ係数の作る座標が囲む面積が最小となるときの角度誤差の推定値を抽出することで、共振の影響が少ないときの角度推定誤差が抽出できた。しかし、エレベーターの機械仕様によっては、昇降路内のどの位置を走行しても共振に当たる速度が存在する。このような状況では、共振している中でも最も電流脈動の振幅と位相の変化が少ないときの角度誤差の推定値が抽出される。この場合は、信頼性の高い角度誤差の推定値が得られない可能性があるため、学習運転の速度を変えることが望ましい。よって、実施の形態2においては、学習運転時の速度を変えて角度誤差の学習を複数回実施して、複数回の学習の結果の整合性確認を行う。 In the method of the first embodiment, the angle estimation error when the influence of resonance is small can be extracted by extracting the estimated value of the angle error when the area surrounded by the coordinates formed by the Fourier coefficients is minimized. However, depending on the machine specifications of the elevator, there is a speed at which resonance occurs regardless of the position in the hoistway. In such a situation, an estimated value of the angle error when the amplitude and phase change of the current pulsation is the smallest among the resonances is extracted. In this case, since there is a possibility that a highly reliable estimated value of the angle error may not be obtained, it is desirable to change the speed of the learning operation. Therefore, in the second embodiment, the angle error learning is performed a plurality of times while changing the speed during the learning operation, and the consistency of the results of the plurality of learning is confirmed.
 図9は実施の形態2における学習運転のフローチャートを示している。なお、エレベーターの制御装置および回路誤差推定部9の構成は図1,2に示すもとのと基本的に同じである。 FIG. 9 shows a flowchart of the learning operation in the second embodiment. Note that the configuration of the elevator control device and the circuit error estimation unit 9 are basically the same as those shown in FIGS.
 角度誤差推定部9は、例えば学習判定部93または出力判定部96から図1の速度指令演算部11へ学習運転指令を送り、学習運転を開始すると、学習判定部93は、学習速度演算部91の出力に従って電動機1の回転速度が一定となっているか否かを判定する(ステップS901)。電動機1の回転速度が一定となっていない場合には、回転速度が一定となるまでステップS901を継続する。これは、電動機1の回転速度が一定となるときには、回転検出部2の角度誤差の周波数が一定となるため、角度検出誤差の推定が容易となるためである。
 電動機1の回転速度が一定となった後、角度誤差演算部94は、周波数解析部8からの出力である、電流検出器7の電流を電動機1の回転角の情報を用いてフーリエ変換して得られたフーリエ係数の計算結果、をメモリに保存する(ステップS902)。
When the angle error estimation unit 9 sends a learning operation command from the learning determination unit 93 or the output determination unit 96 to the speed command calculation unit 11 in FIG. 1 and starts the learning operation, for example, the learning determination unit 93 starts the learning speed calculation unit 91. It is determined whether or not the rotation speed of the electric motor 1 is constant according to the output (step S901). If the rotation speed of the electric motor 1 is not constant, step S901 is continued until the rotation speed becomes constant. This is because when the rotation speed of the electric motor 1 is constant, the frequency of the angle error of the rotation detector 2 is constant, so that it is easy to estimate the angle detection error.
After the rotation speed of the electric motor 1 becomes constant, the angle error calculation unit 94 performs Fourier transform on the current of the current detector 7, which is an output from the frequency analysis unit 8, using information on the rotation angle of the electric motor 1. The obtained Fourier coefficient calculation result is stored in a memory (step S902).
 次に、角度誤差演算部94は、フーリエ係数の計算結果が3回分以上記憶されているか否かを判断する(ステップS903)。3回分以上のフーリエ係数が保存されていない場合には、ステップS902に戻り、周波数解析部8からの出力であるフーリエ係数の保存を繰り返す。フーリエ係数が3回分以上保存されている場合には、面積演算部95は、式(9)によってフーリエ係数の座標が作る面積を計算する。また、角度誤差演算部94は、フーリエ係数を用いて、記憶しているフーリエ係数と角度検出誤差の変換式により角度誤差の推定値を計算する(ステップS904)。角度誤差の推定値は、誤差振幅と誤差位相である。そして、出力判定部96は、面積と角度誤差の推定値を関連付けてメモリに保存する。 Next, the angle error calculation unit 94 determines whether or not the calculation result of the Fourier coefficient is stored three times or more (step S903). If three or more Fourier coefficients have not been stored, the process returns to step S902, and the storage of the Fourier coefficient output from the frequency analysis unit 8 is repeated. When the Fourier coefficients are stored three times or more, the area calculation unit 95 calculates the area created by the coordinates of the Fourier coefficients according to the equation (9). In addition, the angle error calculation unit 94 uses the Fourier coefficient to calculate an estimated value of the angle error by using the stored Fourier coefficient and angle detection error conversion formula (step S904). The estimated value of the angle error is an error amplitude and an error phase. Then, the output determination unit 96 associates the area and the estimated value of the angle error and stores them in the memory.
 ステップS904の面積と角度検出誤差の推定値の計算が終わると、出力判定部96は、記憶している面積、すなわち1回前のフローで計算された面積と、ステップS904で計算した面積を比較する(ステップS905)。なお、比較する面積の初期値は、1回目の計算結果が必ず保存されるように、記憶できる最大の値とする。角度検出誤差の推定値は、任意の値でよい。 When the calculation of the estimated value of the area and the angle detection error in step S904 is finished, the output determination unit 96 compares the stored area, that is, the area calculated in the previous flow with the area calculated in step S904. (Step S905). The initial value of the areas to be compared is the maximum value that can be stored so that the first calculation result is always saved. The estimated value of the angle detection error may be an arbitrary value.
 出力判定部96は、ステップS905において、記憶されている面積と計算した面積を比較した結果、ステップS904において計算された面積の方が小さいと判断された場合、ステップS904において計算された面積と角度検出誤差の推定値を合わせて記憶する。このとき、既に記憶されている面積と角度検出誤差は消去する(ステップS906)。
 一方、ステップS905において記憶されている面積と計算した面積を比較した結果、ステップS904において計算された面積が記憶されている面積以上と判断された場合は、なにも処理しない。すなわち既に記憶されている角度誤差の推定値と面積を保存し続け、次のステップへ移行する。
When the output determination unit 96 compares the stored area with the calculated area in step S905 and determines that the area calculated in step S904 is smaller, the output determination unit 96 calculates the area and angle calculated in step S904. The estimated value of the detection error is stored together. At this time, the already stored area and angle detection error are erased (step S906).
On the other hand, as a result of comparing the area stored in step S905 with the calculated area, if it is determined that the area calculated in step S904 is greater than or equal to the stored area, no processing is performed. That is, the stored angular error estimation value and area are stored, and the process proceeds to the next step.
 次に、学習判定部93が、かご位置演算部92の出力から、かごが特定区間を走行したか否かを判断する(ステップS907)。特定区間走行していないと判断した場合には、ステップS902に戻りステップS907までの処理を繰り返し行う。特定区間走行したと判断した場合には、出力判定部96は、学習回数と保存している角度誤差推定値を合わせてメモリに記憶する(ステップS908)。学習回数は、かご位置演算部92の計算したかご4の位置を用いて、特定区間走行したときの回数をカウントすることで計算できる。
 なお、かご4が特定区間走行したことは、かご位置演算部92の計算するかご位置に基づいて判断するようにしたが、例えば、ドアゾーンプレートを検出した回数をカウントすることにより、特定区間を走行したことを判断してもよい。また、昇降路内に設けられた最上階や最下階等の基準位置を知らせる位置スイッチによって特定区間走行したことを判断してもよい。
Next, the learning determination unit 93 determines from the output of the car position calculation unit 92 whether the car has traveled in a specific section (step S907). If it is determined that the vehicle is not traveling in a specific section, the process returns to step S902 and the processes up to step S907 are repeated. When it is determined that the vehicle has traveled in the specific section, the output determination unit 96 stores the number of learning times and the stored angle error estimated value together in the memory (step S908). The number of learnings can be calculated by counting the number of times of traveling in a specific section using the position of the car 4 calculated by the car position calculation unit 92.
The fact that the car 4 has traveled in a specific section is determined based on the car position calculated by the car position calculation unit 92. For example, by counting the number of times the door zone plate is detected, the specific section is It may be determined that the vehicle has traveled. Further, it may be determined that the vehicle has traveled in a specific section by a position switch that informs a reference position such as the uppermost floor or the lowermost floor provided in the hoistway.
 次に、学習判定部93が、記憶した学習回数により2回以上すなわち複数回、角度誤差の学習を実施したか否かを判断する(ステップS909)。ステップS909において2回以上学習を実施していないと判断した場合には、学習判定部93または出力判定部96から図1の速度指令演算部11へ学習運転指令を送り、学習運転の速度を変えて再度学習運転を実施する(ステップS914)。学習速度を変えることで周期的な角度誤差の周波数が変化する。例えば、図4、5において周波数BからAへ移る。これにより、回転検出部2の周期的な角度誤差に起因した電流脈動の傾向が変わる。例えば、周波数Bでは中間階付近において共振に当たるが、周波数A,Cではどの階層においても共振に当たらない。これにより、1回目の学習とは異なった条件で角度誤差を推定することができる。また、学習運転の速度設定には特に制約はないが、かごが走行できる最遅の速度、最速の速度など、極端に速度を変えた方が電流脈動の傾向が大きく変わるため、異なった条件で角度誤差の学習を実施できる。 Next, the learning determination unit 93 determines whether or not the angle error has been learned twice or more, that is, a plurality of times, based on the stored number of learning (step S909). If it is determined in step S909 that the learning has not been performed twice or more, a learning operation command is sent from the learning determination unit 93 or the output determination unit 96 to the speed command calculation unit 11 in FIG. 1 to change the speed of the learning operation. Then, the learning operation is performed again (step S914). By changing the learning speed, the frequency of the periodic angular error changes. For example, in FIG. As a result, the tendency of current pulsation due to the cyclic angle error of the rotation detector 2 changes. For example, resonance occurs near the middle floor at frequency B, but resonance does not occur at any level in frequencies A and C. Thereby, the angle error can be estimated under different conditions from the first learning. In addition, there is no particular restriction on the speed setting for learning driving, but the tendency of current pulsation changes greatly if the speed is changed extremely, such as the slowest speed or the fastest speed at which the car can travel. The angle error can be learned.
 学習運転の走行方向に関しては1回目の学習と同じ方向、すなわち1回目の学習が終わると学習を開始した位置まで戻り再度同じ運転方向で実施する、もしくは、1回目の学習が完了した位置から続けて同じ方向に運転してもよいし、1回目の学習が完了した位置から1回目の学習の運転方向と逆方向に運転してもよい。学習速度を変えて運転すれば、運転方向は限定しない。なお、学習運転の速度を変えたときの学習方法については、1回目の学習と同じである。 As for the driving direction of the learning driving, it returns to the same direction as the first learning, that is, when the first learning is finished, returns to the position where the learning is started, and performs again in the same driving direction, or continues from the position where the first learning is completed. You may drive in the same direction, and you may drive in the direction opposite to the driving direction of the first learning from the position where the first learning is completed. The driving direction is not limited as long as the learning speed is changed. The learning method when the learning driving speed is changed is the same as the first learning.
 学習判定部93が、ステップS909において2回以上、角度誤差を学習したと判断した場合には、複数回の角度誤差の推定結果の整合性確認を行う(ステップS910)。角度誤差の推定値は、式(1)の誤差振幅と誤差位相からなるが、先ず、誤差振幅の推定結果の整合性確認を行う。すなわち、複数回の学習運転で得られた誤差振幅の推定値の差分を計算して、その差分が予め設定された値以内となっているか否かを確認する。例えば、3回学習運転を実施したときには、1回目と2回目、2回目と3回目、1回目と3回目のように得られた推定結果の全ての組み合わせにより整合性確認を行うものとする。整合性を判断する誤差振幅の差分の設定値は、予めメモリに記憶しておいてもよいし、外部から入力するようにしてもよい。
 誤差振幅の整合性確認が終わると、次に、誤差位相の整合性確認を実施する。誤差位相の整合性確認も誤差振幅のときと同様に行う。すなわち、複数回の学習運転で得られた誤差位相の推定値の差分を計算して、その差分が設定値以内となっているか否かを確認する。整合性を判断する誤差振幅の差分の設定値は、予めメモリに記憶しておいてもよいし、外部から入力するようにしてもよい。
If the learning determination unit 93 determines that the angle error has been learned twice or more in step S909, the consistency determination of the angle error estimation results is performed multiple times (step S910). The estimated value of the angle error is composed of the error amplitude and error phase of equation (1). First, the consistency of the error amplitude estimation result is confirmed. That is, the difference between the estimated values of the error amplitude obtained by a plurality of learning operations is calculated, and it is confirmed whether or not the difference is within a preset value. For example, when the learning operation is performed three times, the consistency check is performed by all combinations of the estimation results obtained as in the first time, the second time, the second time, the third time, the first time, and the third time. The set value of the difference in error amplitude for determining consistency may be stored in advance in a memory or may be input from the outside.
When the error amplitude consistency check is completed, the error phase consistency check is then performed. The error phase consistency is also checked in the same manner as the error amplitude. That is, the difference of the estimated value of the error phase obtained by a plurality of learning operations is calculated, and it is confirmed whether or not the difference is within the set value. The set value of the difference in error amplitude for determining consistency may be stored in advance in a memory or may be input from the outside.
 誤差振幅の整合性確認、誤差位相の整合性確認において、どちらか一方でも複数回の学習結果が整合していないと判断された場合には(ステップS911)、学習回数が最大学習回数以内か否かを判断する(ステップS912)。
 学習回数が最大学習回数以内であれば、学習速度を変えて再度学習運転を実施する(ステップS914)。
 推定結果の整合性確認において、誤差振幅は整合し、誤差位相が整合しなかった場合には、速度を変えた学習運転では、誤差位相のみの再学習を行うようにしてもよい。一方、推定結果の整合性確認において、誤差位相は整合し、誤差振幅が整合しなかった場合には、誤差振幅のみの再学習を行うようにしてもよい。また、誤差振幅、誤差位相ともに再学習するようにしてもよい。
In the error amplitude consistency check and error phase consistency check, if it is determined that either of the learning results does not match multiple times (step S911), whether or not the number of learning is within the maximum number of learning times. Is determined (step S912).
If the number of times of learning is within the maximum number of times of learning, the learning operation is performed again by changing the learning speed (step S914).
In the confirmation of the consistency of the estimation results, when the error amplitude is matched and the error phase is not matched, in the learning operation in which the speed is changed, only the error phase may be re-learned. On the other hand, in checking the consistency of the estimation result, if the error phase is matched and the error amplitude is not matched, only the error amplitude may be re-learned. Further, both the error amplitude and the error phase may be relearned.
 ステップS912において、学習回数が最大学習回数を超えていると判断された場合、学習判定部93が、学習不能通知を上位制御装置(図示省略)に出力する(ステップS913)。なお、最大学習回数は、予めメモリに記憶していてもよいし、外部から指令するようにしてもよい。また、ステップS913で出力された学習不能通知は、エレベーターの制御盤(図示省略)に表示できようにして異常を知らせるようにすることが望ましい。また、学習不能通知が出力されたときには、エレベーターを休止させることで安全を確保することが望ましい。 If it is determined in step S912 that the number of learnings exceeds the maximum number of learnings, the learning determining unit 93 outputs a learning impossibility notification to a host control device (not shown) (step S913). Note that the maximum number of learning times may be stored in advance in a memory or may be commanded from the outside. In addition, it is desirable that the learning impossible notification output in step S913 be displayed on an elevator control panel (not shown) so as to notify the abnormality. Further, when a learning impossible notification is output, it is desirable to ensure safety by pausing the elevator.
 ステップS911の整合性確認が完了する、又はステップS913で学習不能通知が出力されると、学習判定部93が、学習運転を完了する。ステップS911において複数回の学習運転の結果の整合性が確認できた場合には、学習運転の完了後は、誤差信号演算部97が、誤差位相と誤差振幅の推定結果を用いて回転検出部2の周期的な角度誤差を計算し、補正信号として出力し、図1の減算器SU2で回転検出部2の角度誤差の補正を行わせる。 When the consistency check in step S911 is completed or a learning impossible notification is output in step S913, the learning determination unit 93 completes the learning operation. If the consistency of the results of the plurality of learning operations can be confirmed in step S911, the error signal calculation unit 97 uses the error phase and error amplitude estimation results after completion of the learning operation. 1 is output as a correction signal, and the angle error of the rotation detector 2 is corrected by the subtractor SU2 in FIG.
 以上の処理により学習運転を実施すると、特定区間走行したときにフーリエ係数の座標が作る面積が最小となるときの角度検出誤差を抽出することができる。また、複数回の学習結果の整合性確認により、実施の形態1の方法よりも信頼性の高い角度誤差の推定値を得ることができる。さらに、学習回数を制限することで、角度誤差の学習が正常に行えないときの安全性を確保できるようになる。 When the learning operation is performed by the above processing, it is possible to extract an angle detection error when the area formed by the coordinates of the Fourier coefficient is minimized when traveling in a specific section. In addition, it is possible to obtain an estimated value of the angle error with higher reliability than the method of the first embodiment by confirming the consistency of the learning results a plurality of times. Furthermore, by limiting the number of learnings, it becomes possible to ensure safety when angle error learning cannot be performed normally.
 実施の形態3.
 実施の形態3においては、学習運転により得られた角度誤差の推定値に対応するフーリエ係数の作る座標が囲む面積が基準値より大きい場合には、学習運転の速度を変えて学習を実施することにより、実施の形態1よりも信頼性の高い角度誤差の推定値を得る方法について説明する。
Embodiment 3 FIG.
In the third embodiment, when the area surrounded by the coordinates formed by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is larger than the reference value, the learning operation speed is changed to perform the learning. Thus, a method for obtaining the estimated value of the angle error with higher reliability than that of the first embodiment will be described.
 実施の形態1の方法では、フーリエ係数の作る座標が囲む面積が最小となるときの角度誤差の推定値を抽出することで、共振の影響が少ないときの角度推定誤差が抽出できた。しかし、エレベーターの機械仕様によっては、昇降路内のどの位置を走行しても共振に当たる速度が存在する。このような状況では、共振している中でも最も電流脈動の振幅と位相の変化が少ないときの角度誤差の推定値が抽出される。この場合は、信頼性の高い角度誤差の推定値が得られない可能性があるため、学習運転の速度を変えることが望ましい。
 実施の形態2では、学習運転時の速度を変えた複数回の学習結果の整合性確認を実施した。実施の形態3においては、フーリエ係数の作る座標が囲む面積の基準値を例えば予めメモリに記憶しておく等して用意しておき、学習運転により得られた角度誤差の推定値に対応するフーリエ係数の作る座標が囲む面積が基準値よりも大きい場合には、学習運転時の速度を変えて角度誤差の学習を行う。
In the method of the first embodiment, the angle estimation error when the influence of resonance is small can be extracted by extracting the estimated value of the angle error when the area surrounded by the coordinates formed by the Fourier coefficients is minimized. However, depending on the machine specifications of the elevator, there is a speed at which resonance occurs regardless of the position in the hoistway. In such a situation, an estimated value of the angle error when the amplitude and phase change of the current pulsation is the smallest among the resonances is extracted. In this case, since there is a possibility that a highly reliable estimated value of the angle error may not be obtained, it is desirable to change the speed of the learning operation.
In the second embodiment, the consistency of the learning results is performed a plurality of times while changing the speed during the learning operation. In the third embodiment, a reference value of the area enclosed by the coordinates formed by the Fourier coefficient is prepared in advance by storing it in a memory, for example, and the Fourier corresponding to the estimated value of the angle error obtained by the learning operation is prepared. When the area surrounded by the coordinates formed by the coefficients is larger than the reference value, the angle error is learned by changing the speed during the learning operation.
 図10は実施の形態3における学習運転のフローチャートを示している。なお、エレベーターの制御装置および回路誤差推定部9の構成は図1,2に示すもとのと基本的に同じである。 FIG. 10 shows a flowchart of the learning operation in the third embodiment. Note that the configuration of the elevator control device and the circuit error estimation unit 9 are basically the same as those shown in FIGS.
 角度誤差推定部9は、例えば学習判定部93または出力判定部96から図1の速度指令演算部11へ学習運転指令を送り、学習運転を開始すると、学習判定部93は、学習速度演算部91の出力に従って電動機1の回転速度が一定となっているか否かを判定する(ステップS101)。電動機1の回転速度が一定となっていない場合には、回転速度が一定となるまでステップS101を継続する。これは、電動機1の回転速度が一定となるときには、回転検出部2の角度誤差の周波数が一定となるため、角度検出誤差の推定が容易となるためである。
 電動機1の回転速度が一定となった後、角度誤差演算部94は、周波数解析部8からの出力である、電流検出器7の電流を電動機1の回転角の情報を用いてフーリエ変換して得られたフーリエ係数の計算結果、をメモリに保存する(ステップS102)。
When the angle error estimation unit 9 sends a learning operation command from the learning determination unit 93 or the output determination unit 96 to the speed command calculation unit 11 in FIG. 1 and starts the learning operation, for example, the learning determination unit 93 starts the learning speed calculation unit 91. It is determined whether or not the rotation speed of the electric motor 1 is constant according to the output (step S101). If the rotation speed of the electric motor 1 is not constant, step S101 is continued until the rotation speed becomes constant. This is because when the rotation speed of the electric motor 1 is constant, the frequency of the angle error of the rotation detector 2 is constant, so that it is easy to estimate the angle detection error.
After the rotation speed of the electric motor 1 becomes constant, the angle error calculation unit 94 performs Fourier transform on the current of the current detector 7, which is an output from the frequency analysis unit 8, using information on the rotation angle of the electric motor 1. The obtained Fourier coefficient calculation result is stored in a memory (step S102).
 次に、角度誤差演算部94は、フーリエ係数の計算結果が3回分または3回分以上(以下では3回分以上として説明する)記憶されているか否かを判断する(ステップS103)。3回分以上のフーリエ係数が保存されていない場合には、ステップS102に戻り、周波数解析部8からの出力であるフーリエ係数の保存を繰り返す。フーリエ係数が3回分以上保存されている場合には、面積演算部95は、式(9)によってフーリエ係数の座標が作る面積を計算する。また、角度誤差演算部94は、フーリエ係数を用いて、記憶しているフーリエ係数と角度検出誤差の変換式により角度誤差の推定値を計算する(ステップS104)。角度誤差の推定値は、誤差振幅と誤差位相である。そして、出力判定部96は、面積と角度誤差の推定値を関連付けてメモリに保存する。 Next, the angle error calculation unit 94 determines whether or not the calculation result of the Fourier coefficient is stored three times or three times or more (hereinafter described as three times or more) (step S103). If three or more Fourier coefficients have not been stored, the process returns to step S102, and the storage of the Fourier coefficient output from the frequency analysis unit 8 is repeated. When the Fourier coefficients are stored three times or more, the area calculation unit 95 calculates the area created by the coordinates of the Fourier coefficients according to the equation (9). Further, the angle error calculation unit 94 uses the Fourier coefficient to calculate an estimated value of the angle error based on the stored Fourier coefficient and angle detection error conversion formula (step S104). The estimated value of the angle error is an error amplitude and an error phase. Then, the output determination unit 96 associates the area and the estimated value of the angle error and stores them in the memory.
 ステップS104の面積と角度検出誤差の推定値の計算が終わると、出力判定部96は、記憶している面積、すなわち1回前のフローで計算された面積と、ステップS104で計算した面積を比較する(ステップS105)。なお、比較する面積の初期値は、1回目の計算結果が必ず保存されるように、記憶できる最大の値とする。角度検出誤差の推定値は、任意の値でよい。 When the calculation of the estimated value of the area and the angle detection error in step S104 is completed, the output determination unit 96 compares the stored area, that is, the area calculated in the previous flow with the area calculated in step S104. (Step S105). The initial value of the areas to be compared is the maximum value that can be stored so that the first calculation result is always saved. The estimated value of the angle detection error may be an arbitrary value.
 出力判定部96は、ステップS105において、記憶されている面積と計算した面積を比較した結果、ステップS104において計算された面積の方が小さいと判断された場合、ステップS104で計算された面積と角度検出誤差の推定値を合わせて記憶する。このとき、既に記憶されている面積と角度検出誤差は消去する(ステップS106)。
 一方、ステップS105において記憶されている面積と計算した面積を比較した結果、ステップS104において計算された面積が記憶されている面積以上と判断された場合は、なにも処理しない。すなわち既に記憶されている角度誤差の推定値と面積を保存し続け、次のステップへ移行する。
When the output determination unit 96 compares the stored area with the calculated area in step S105 and determines that the area calculated in step S104 is smaller, the output determination unit 96 calculates the area and angle calculated in step S104. The estimated value of the detection error is stored together. At this time, the already stored area and angle detection error are deleted (step S106).
On the other hand, as a result of comparing the area stored in step S105 with the calculated area, if it is determined that the area calculated in step S104 is greater than or equal to the stored area, no processing is performed. That is, the stored angular error estimation value and area are stored, and the process proceeds to the next step.
 次に、学習判定部93が、かご位置演算部92の出力から、かごが特定区間を走行したか否かを判断する(ステップS107)。特定区間走行していないと判断した場合には、ステップS102に戻りステップS107までの処理を繰り返し行う。特定区間走行したと判断した場合には、学習運転を終了する。
 なお、かご4が特定区間走行したことは、かご位置演算部92の計算するかご位置に基づいて判断するようにしたが、例えば、ドアゾーンプレートを検出した回数をカウントすることにより、特定区間を走行したことを判断してもよい。また、昇降路内に設けられた最上階や最下階等の基準位置を知らせる位置スイッチによって特定区間走行したことを判断してもよい。
Next, the learning determination unit 93 determines from the output of the car position calculation unit 92 whether the car has traveled in a specific section (step S107). If it is determined that the vehicle is not traveling in a specific section, the process returns to step S102 and the processes up to step S107 are repeated. If it is determined that the vehicle has traveled in a specific section, the learning operation is terminated.
The fact that the car 4 has traveled in a specific section is determined based on the car position calculated by the car position calculation unit 92. For example, by counting the number of times the door zone plate is detected, the specific section is It may be determined that the vehicle has traveled. Further, it may be determined that the vehicle has traveled in a specific section by a position switch that informs a reference position such as the uppermost floor or the lowermost floor provided in the hoistway.
 次に、学習判定部93は、学習運転で得られた角度誤差の推定値に対応するフーリエ係数の作る座標が囲む面積が、予め記憶しておいたフーリエ係数の作る座標が囲む面積の基準値以下であることを判断する(ステップS108)。ステップ108において、学習運転で得られた角度誤差の推定値に対応するフーリエ係数の作る座標が囲む面積が、予め記憶しておいたフーリエ係数の作る座標が囲む面積の基準値より大きいと判断した場合には、学習判定部93または出力判定部96から図1の速度指令演算部11へ学習運転指令を送り、学習運転の速度を変えて再度学習運転を実施する(ステップS109)。
 学習速度を変えることで周期的な角度誤差の周波数が変化する。例えば、図4、5において周波数BからAへ移る。これにより、回転検出部2の周期的な角度誤差に起因した電流脈動の傾向が変わる。例えば、周波数Bでは中間階付近において共振に当たるが、周波数A,Cではどの階層においても共振に当たらない。これにより、1回目の学習とは異なった条件で角度誤差を推定することができる。また、学習運転の速度設定には特に制約はないが、かごが走行できる最遅の速度、最速の速度など、極端に速度を変えた方が電流脈動の傾向が大きく変わるため、異なった条件で角度誤差の学習を実施できる。
Next, the learning determination unit 93 determines that the area enclosed by the coordinates created by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is the reference value of the area enclosed by the coordinates created by the Fourier coefficient stored in advance. It is determined that the following is true (step S108). In step 108, it is determined that the area enclosed by the coordinates created by the Fourier coefficient corresponding to the estimated value of the angle error obtained in the learning operation is larger than the reference value of the area enclosed by the coordinates created by the Fourier coefficient stored in advance. In this case, a learning operation command is sent from the learning determination unit 93 or the output determination unit 96 to the speed command calculation unit 11 in FIG. 1, and the learning operation is performed again by changing the speed of the learning operation (step S109).
By changing the learning speed, the frequency of the periodic angular error changes. For example, in FIG. As a result, the tendency of current pulsation due to the cyclic angle error of the rotation detector 2 changes. For example, resonance occurs near the middle floor at frequency B, but resonance does not occur at any level in frequencies A and C. Thereby, the angle error can be estimated under different conditions from the first learning. In addition, there is no particular restriction on the speed setting for learning driving, but the tendency of current pulsation changes greatly if the speed is changed extremely, such as the slowest speed or the fastest speed at which the car can travel. The angle error can be learned.
 ステップS108の確認が完了すると、学習判定部93が、学習運転を完了する。ステップS108において学習運転で得られた角度誤差の推定値に対応するフーリエ係数の作る座標が囲む面積が、予め記憶しておいたフーリエ係数の作る座標が囲む面積の基準値以下であることが確認できた場合には、学習運転の完了後は、誤差信号演算部97が、誤差位相と誤差振幅の推定結果を用いて回転検出部2の周期的な角度誤差を計算し、補正信号として出力し、図1の減算器SU2で回転検出部2の角度誤差の補正を行わせる。 When the confirmation in step S108 is completed, the learning determination unit 93 completes the learning operation. In step S108, it is confirmed that the area enclosed by the coordinates created by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is equal to or less than the reference value of the area enclosed by the coordinates created by the Fourier coefficient stored in advance. In such a case, after completion of the learning operation, the error signal calculation unit 97 calculates the cyclic angle error of the rotation detection unit 2 using the estimation result of the error phase and the error amplitude, and outputs it as a correction signal. The angle error of the rotation detector 2 is corrected by the subtractor SU2 in FIG.
 以上の処理により学習運転を実施すると、特定区間走行したときにフーリエ係数の座標が作る面積が最小となるときの角度検出誤差を抽出することができる。また、フーリエ係数の作る座標が囲む面積を基準値と比較確認することにより、実施の形態1の方法よりも信頼性の高い角度誤差の推定値を得ることができる。 When the learning operation is performed by the above processing, it is possible to extract an angle detection error when the area formed by the coordinates of the Fourier coefficient is minimized when traveling in a specific section. Further, by comparing and confirming the area surrounded by the coordinates formed by the Fourier coefficients with the reference value, it is possible to obtain an estimated value of the angle error with higher reliability than the method of the first embodiment.
 実施の形態4.
 実施の形態4では、座標平面における幾何学量である評価値としてフーリエ係数の作る座標間の線分の長さにより共振を判定し、信頼性の高い推定値を得る方法を説明する。
 先ず、フーリエ係数座標平面において、フーリエ係数の作る座標間の線分の長さと、電流脈動の振幅、電流脈動の位相の関係について説明する。図6のフーリエ係数座標平面において、電流脈動の振幅G=√(An 2+Bn 2)と、電流脈動の位相γ=tan-1(An/Bn)の変化について考えると、電流脈動の振幅G=√(An 2+Bn 2)と電流脈動の位相γ=tan-1(An/Bn)の変化が小さいとき、2点のフーリエ係数の作る座標間の線分の長さが短くなる。図6の区間Aにおいては、フーリエ係数の座標の変化が小さいためフーリエ係数の作る座標間の線分の長さが短く、電流脈動の振幅G=√(An 2+Bn 2)と電流脈動の位相γ=tan-1(An/Bn)の変化が小さい。また、区間Bにおいては、区間Aに比べ、フーリエ係数の作る座標間の線分の長さが長く、電流脈動の振幅G=√(An 2+Bn 2)と電流脈動の位相γ=tan-1(An/Bn)の変化も大きい。よって、フーリエ係数座標平面におけるフーリエ係数が作る座標間の線分の長さを計算することは、電流脈動の振幅と位相変化量を計算していることに等しくなる。
Embodiment 4 FIG.
In the fourth embodiment, a method of determining a resonance based on the length of a line segment between coordinates formed by a Fourier coefficient as an evaluation value that is a geometric amount on a coordinate plane and obtaining a highly reliable estimated value will be described.
First, on the Fourier coefficient coordinate plane, the relationship between the length of the line segment between the coordinates formed by the Fourier coefficient, the current pulsation amplitude, and the current pulsation phase will be described. In the Fourier coefficient coordinate plane of FIG. 6, when considering the change of the amplitude of current pulsation G = √ (A n 2 + B n 2 ) and the phase of current pulsation γ = tan −1 (A n / B n ), the current pulsation When the change in amplitude G = √ (A n 2 + B n 2 ) and current pulsation phase γ = tan −1 (A n / B n ) is small, the length of the line segment between the coordinates formed by the two points of the Fourier coefficient Becomes shorter. In the section A of FIG. 6, since the change in the coordinates of the Fourier coefficient is small, the length of the line segment between the coordinates formed by the Fourier coefficient is short, the current pulsation amplitude G = √ (A n 2 + B n 2 ) and the current pulsation. The change in phase γ = tan −1 (A n / B n ) is small. In section B, the length of the line segment between the coordinates formed by the Fourier coefficient is longer than in section A, and the current pulsation amplitude G = √ (A n 2 + B n 2 ) and the current pulsation phase γ = tan The change of -1 (A n / B n ) is also large. Therefore, calculating the length of the line segment between coordinates created by the Fourier coefficient in the Fourier coefficient coordinate plane is equivalent to calculating the amplitude and phase change amount of the current pulsation.
 フーリエ係数座標平面において、2点のフーリエ係数の座標が作る線分の長さは式(11)で計算することができる。例えば、エレベーターのかご4を特定区間走行したときに周波数解析部8で計算されたフーリエ係数を計算結果の古い順に(Bn1,An1),(Bn2,An2)としたとき、これら2組のフーリエ係数の座標によって作られる線分の長さLは、次式となる。 In the Fourier coefficient coordinate plane, the length of the line segment formed by the coordinates of the two Fourier coefficients can be calculated by equation (11). For example, when the Fourier coefficients calculated by the frequency analysis unit 8 when traveling in a specific section of the elevator car 4 are (B n1 , A n1 ), (B n2 , A n2 ) in order of the calculation results, these 2 The length L of the line segment created by the coordinates of the set of Fourier coefficients is given by the following equation.
 L=√((An2-An1)2+(Bn2-Bn1)2)     (11) L = √ ((A n2 −A n1 ) 2 + (B n2 −B n1 ) 2 ) (11)
原点から座標(Bn1,An1)までの距離√(An1 2+Bn1 2)をG1
原点から座標(Bn2,An2)までの距離√(An2 2+Bn2 2)をG2
とする、すなわち、各座標における電流脈動の振幅をG1、G2とし、
原点から座標(Bn1,An1)までの距離ベクトルがなす角tan-1(An1/Bn1)をγ1
原点から座標(Bn2,An2)までの距離ベクトルがなす角tan-1(An2/Bn2)をγ2
とする、すなわち各座標における電流脈動の位相をγ1、γ2とすると、式(11)の線分の長さは次のように書き換えることができる。
The distance √ (A n1 2 + B n1 2 ) from the origin to the coordinates (B n1 , A n1 ) is represented by G 1 ,
The distance √ (A n2 2 + B n2 2 ) from the origin to the coordinates (B n2 , A n2 ) is G 2 ,
That is, the amplitude of the current pulsation at each coordinate is G 1 and G 2 ,
Coordinates from the origin (B n1, A n1) to the distance vector angle tan -1 (A n1 / B n1 ) the gamma 1,
Coordinates from the origin (B n2, A n2) distance vector angle to tan -1 (A n2 / B n2 ) a gamma 2,
In other words, if the phase of the current pulsation at each coordinate is γ 1 and γ 2 , the length of the line segment in the equation (11) can be rewritten as follows.
 L=√((G2sinγ2-G2sinγ1)2+(G2cosγ2-G2cosγ1)2)   (12) L = √ ((G 2 sinγ 2 -G 2 sinγ 1) 2 + (G 2 cosγ 2 -G 2 cosγ 1) 2) (12)
 回転検出部2の検出する電動機1の回転角に含まれる角度誤差から電流検出器7の検出する電流までのゲイン特性と位相特性は、図4と5のような特性であり、例えば、角度誤差の周波数がAやCのときには、かご4が昇降路内のどの位置でもゲインと位相は一定値、すなわち、角度誤差の周波数がAやCであればエレベーターの機械系と共振しないため、G1、G2とγ1、γ2は一定値となり、式(12)で計算される線分の長さは0となる。
 一方、角度誤差の周波数がBのときには、かご4が最下階と最上階付近においてはゲインすなわち振幅と位相は一定値であるが、中間階に近づくとゲインと位相は大きく変化する。すなわち、角度誤差の周波数がBのとき、中間階付近で共振が起こり、その他の場所では共振が起きない。この場合は、式(11)で計算される線分の長さは、最下階と最上階付近で0となるが、中間階に近づくにつれて式(11)の線分の長さは長くなる。共振が発生すると、ゲインと位相は同時に変化するため、式(11)の線分の長さを計算することで、電流脈動の振幅と位相の変化を計算することができる。
The gain characteristic and the phase characteristic from the angle error included in the rotation angle of the electric motor 1 detected by the rotation detector 2 to the current detected by the current detector 7 are the characteristics as shown in FIGS. because when the frequency is a or C of the gain and phase constant values at any position of the car 4 hoistway, i.e., the frequency of the angle error does not resonate with the elevator mechanical system if a and C, G 1 , G 2 , γ 1 and γ 2 are constant values, and the length of the line segment calculated by the equation (12) is zero.
On the other hand, when the frequency of the angle error is B, the gain, that is, the amplitude and the phase are constant when the car 4 is near the lowermost floor and the uppermost floor, but the gain and the phase change greatly as they approach the intermediate floor. That is, when the frequency of the angle error is B, resonance occurs near the middle floor and no resonance occurs in other places. In this case, the length of the line segment calculated by Expression (11) is 0 near the lowermost floor and the uppermost floor, but the length of the line segment of Expression (11) becomes longer as the intermediate floor is approached. . When resonance occurs, the gain and phase change at the same time. Therefore, by calculating the length of the line segment of Equation (11), the change in amplitude and phase of the current pulsation can be calculated.
 また、周波数解析部8がノッチフィルタやバンドパスフィルタを組み合わせたフィルタであり、特定の周波数信号を抽出し、振幅検出部や位相検出部によって、入力信号の特定周波数の振幅や位相を演算する構成である場合にも同様の手順で線分の長さを計算することができる。即ち、周波数解析部8がノッチフィルタやバンドパスフィルタを組み合わせたフィルタであり、特定の周波数信号を抽出し、振幅検出部や位相検出部によって、入力信号の特定周波数の振幅や位相を演算すると、式(12)における電流脈動の振幅Gと電流脈動の位相γが得られるため、式(12)により線分の長さが計算できる。さらに、電流脈動の振幅G、誤差位相φを用いれば、An=Gsin(φ)、Bn=Gcos(φ)であるから、電流脈動の振幅と位相を検出し、フーリエ係数へ換算することで、式(11)による演算方法でも線分の長さを計算することができる。 The frequency analysis unit 8 is a filter that combines a notch filter and a bandpass filter, and extracts a specific frequency signal and calculates the amplitude and phase of the specific frequency of the input signal by the amplitude detection unit and the phase detection unit. In this case, the length of the line segment can be calculated by the same procedure. That is, the frequency analysis unit 8 is a filter that combines a notch filter and a bandpass filter, extracts a specific frequency signal, and calculates the amplitude and phase of the specific frequency of the input signal by the amplitude detection unit and the phase detection unit. Since the amplitude G of the current pulsation and the phase γ of the current pulsation in Equation (12) are obtained, the length of the line segment can be calculated from Equation (12). Furthermore, if the current pulsation amplitude G and error phase φ are used, since An = Gsin (φ) and B n = Gcos (φ), the amplitude and phase of the current pulsation are detected and converted into Fourier coefficients. Thus, the length of the line segment can also be calculated by the calculation method according to equation (11).
 さらに、周波数解析部8がノッチフィルタやバンドパスフィルタを組み合わせたフィルタであり、特定の周波数信号を抽出し、振幅検出部や位相検出部によって、入力信号の特定周波数の振幅や位相を演算する構成であった場合に、図6のようにフーリエ係数AnとBnの作る座標平面ではなく、縦軸を振幅、横軸を位相とした座標平面又は、縦軸を位相、横軸を振幅とした座標平面でも式(11)による演算で線分の長さを計算することで、電流脈動の振幅と位相の変化を計算することができる。即ち、Anに振幅を対応させ、Bnに位相を対応、又はAnに位相を対応させ、Bnに振幅を対応させれば良い。 Further, the frequency analysis unit 8 is a filter that combines a notch filter and a band pass filter, and extracts a specific frequency signal, and the amplitude detection unit and the phase detection unit calculate the amplitude and phase of the specific frequency of the input signal. 6, instead of the coordinate plane formed by the Fourier coefficients An and B n as shown in FIG. 6, the coordinate plane with the vertical axis as amplitude and the horizontal axis as phase, or the vertical axis as phase and the horizontal axis as amplitude. Even in the coordinate plane, the change in amplitude and phase of the current pulsation can be calculated by calculating the length of the line segment by the calculation according to the equation (11). That is, in correspondence with amplitude A n, B n corresponding to phase or is associated with phase A n, it is sufficient to correspond to amplitude B n.
 以上のことから式(11)の線分の長さを求めることは、電流脈動の振幅と位相の変化量を求めていることに等しく、線分が長いことは電流脈動の振幅と位相の変化量が大きいことになる。 From the above, obtaining the length of the line segment of the equation (11) is equivalent to obtaining the amount of change in the amplitude and phase of the current pulsation, and that the length of the line segment is a change in the amplitude and phase of the current pulsation. The amount will be great.
 次に、式(11)で示したフーリエ係数の作る座標間の線分の長さを用いて、角度誤差とエレベーターの機械系とが共振しておらず電流脈動の振幅と位相の変化量が小さいときの角度誤差の推定値を選択する学習運転の動作を図11のフローチャートおよび図12の角度誤差推定部8の構成図を用いて説明する。 Next, using the length of the line segment between the coordinates created by the Fourier coefficient expressed by Equation (11), the angle error and the mechanical system of the elevator are not resonating, and the amount of change in the amplitude and phase of the current pulsation is The operation of the learning operation for selecting the estimated value of the angle error when it is small will be described with reference to the flowchart of FIG. 11 and the configuration diagram of the angle error estimating unit 8 of FIG.
 図12は実施の形態4による、角度誤差推定部9の構成の一例を示す図である。基本的な構成は図2と同様であり、図2における面積演算部95の代わりに線分の長さ演算部98を設けた。したがって、詳細な説明は省略する。 FIG. 12 is a diagram illustrating an example of the configuration of the angle error estimation unit 9 according to the fourth embodiment. The basic configuration is the same as that in FIG. 2, and a line segment length calculation unit 98 is provided instead of the area calculation unit 95 in FIG. 2. Therefore, detailed description is omitted.
 角度誤差推定部9は、例えば学習判定部93または出力判定部96から図1の速度指令演算部11へ学習運転指令を送り、学習運転を開始すると、学習判定部93は、学習速度演算部91の出力に従って電動機1の回転速度が一定となっているか否かを判定する(ステップS111)。電動機1の回転速度が一定となっていない場合には、回転速度が一定となるまでステップS111を継続する。これは、電動機1の回転速度が一定となるときには、回転検出部2の角度誤差の周波数が一定となり、角度検出誤差の推定が容易となるためである。
 電動機1の回転速度が一定となった後、角度誤差演算部94は、周波数解析部8からの出力である、電流検出器7の電流を電動機1の回転角の情報を用いてフーリエ変換して得られたフーリエ係数の計算結果、をメモリに保存する(ステップS112)。
When the angle error estimation unit 9 sends a learning operation command from the learning determination unit 93 or the output determination unit 96 to the speed command calculation unit 11 in FIG. 1 and starts the learning operation, for example, the learning determination unit 93 starts the learning speed calculation unit 91. It is determined whether or not the rotation speed of the electric motor 1 is constant according to the output (step S111). If the rotation speed of the electric motor 1 is not constant, step S111 is continued until the rotation speed becomes constant. This is because when the rotation speed of the electric motor 1 is constant, the frequency of the angle error of the rotation detector 2 is constant, and the angle detection error is easily estimated.
After the rotation speed of the electric motor 1 becomes constant, the angle error calculation unit 94 performs Fourier transform on the current of the current detector 7, which is an output from the frequency analysis unit 8, using information on the rotation angle of the electric motor 1. The obtained Fourier coefficient calculation result is stored in a memory (step S112).
 次に、角度誤差演算部94は、フーリエ係数の計算結果が2回分記憶されているか否かを判断する(ステップS113)。2回分のフーリエ係数が保存されていない場合には、ステップS112に戻り、周波数解析部8からの出力であるフーリエ係数の保存を繰り返す。フーリエ係数が2回分保存されている場合には、線分の長さ演算部98は、式(11)によってフーリエ係数の座標間の線分の長さを計算する。また、角度誤差演算部94は、フーリエ係数を用いて、記憶しているフーリエ係数と角度検出誤差の変換式により角度誤差の推定値を計算する(ステップS114)。角度誤差の推定値は、誤差振幅と誤差位相である。そして、出力判定部96は、線分の長さと角度誤差の推定値を関連付けてメモリに保存する。 Next, the angle error calculation unit 94 determines whether or not the calculation result of the Fourier coefficient is stored twice (step S113). If the Fourier coefficients for two times are not stored, the process returns to step S112, and the storage of the Fourier coefficient that is the output from the frequency analysis unit 8 is repeated. When the Fourier coefficients are stored twice, the line segment length calculation unit 98 calculates the length of the line segment between the coordinates of the Fourier coefficient by Expression (11). In addition, the angle error calculation unit 94 uses the Fourier coefficient to calculate an estimated value of the angle error using the stored Fourier coefficient and angle detection error conversion formula (step S114). The estimated value of the angle error is an error amplitude and an error phase. Then, the output determination unit 96 associates the length of the line segment with the estimated value of the angle error and stores it in the memory.
 ステップS114の線分の長さと角度検出誤差の推定値の計算が終わると、出力判定部96は、記憶している線分の長さ、すなわち1回前のフローで計算された線分の長さと、ステップS114で計算した線分の長さを比較する(ステップS115)。なお、比較する線分の長さの初期値は、1回目の計算結果が必ず保存されるように、記憶できる最大の値とする。角度検出誤差の推定値は、任意の値でよい。 When the calculation of the length of the line segment and the estimated value of the angle detection error in step S114 ends, the output determination unit 96 determines the length of the stored line segment, that is, the length of the line segment calculated in the previous flow. And the length of the line segment calculated in step S114 is compared (step S115). Note that the initial value of the length of the line segment to be compared is the maximum value that can be stored so that the first calculation result is always saved. The estimated value of the angle detection error may be an arbitrary value.
 出力判定部96は、ステップS115において、記憶されている線分の長さと計算した線分の長さを比較した結果、ステップS114において計算された線分の長さの方が短いと判断された場合、ステップS114で計算された線分の長さと角度検出誤差の推定値を合わせて記憶する。このとき、既に記憶されている線分の長さと角度検出誤差は消去する(ステップS116)。
 一方、ステップS115において記憶されている線分の長さと計算した線分の長さを比較した結果、ステップS114において計算された線分の長さが記憶されている線分の長さ以上と判断された場合は、なにも処理しない。すなわち既に記憶されている角度誤差の推定値と線分の長さを保存し続け、次のステップへ移行する。
As a result of comparing the length of the stored line segment with the calculated length of the line segment in step S115, the output determination unit 96 determines that the length of the line segment calculated in step S114 is shorter. In this case, the length of the line segment calculated in step S114 and the estimated value of the angle detection error are stored together. At this time, the length of the line segment and the angle detection error already stored are deleted (step S116).
On the other hand, as a result of comparing the length of the line segment stored in step S115 with the calculated length of the line segment, it is determined that the length of the line segment calculated in step S114 is greater than or equal to the length of the stored line segment. If so, do nothing. That is, the stored angle error value and line segment length that have already been stored are stored, and the process proceeds to the next step.
 次に、学習判定部93が、かご位置演算部92の出力から、かごが特定区間を走行したか否かを判断する(ステップS117)。特定区間走行していないと判断した場合には、ステップS112に戻りステップS117までの処理を繰り返し行う。特定区間走行したと判断した場合には学習運転を終了する。
 なお、かご4が特定区間走行したことは、かご位置演算部92の計算するかご位置に基づいて判断するようにしたが、例えば、ドアゾーンプレートを検出した回数をカウントすることにより、特定区間を走行したことを判断してもよい。また、昇降路内に設けられた最上階や最下階等の基準位置を知らせる位置スイッチによって特定区間走行したことを判断してもよい。
Next, the learning determination unit 93 determines whether or not the car has traveled in a specific section from the output of the car position calculation unit 92 (step S117). If it is determined that the vehicle is not traveling in a specific section, the process returns to step S112 and the processes up to step S117 are repeated. If it is determined that the vehicle has traveled in a specific section, the learning operation is terminated.
The fact that the car 4 has traveled in a specific section is determined based on the car position calculated by the car position calculation unit 92. For example, by counting the number of times the door zone plate is detected, the specific section is It may be determined that the vehicle has traveled. Further, it may be determined that the vehicle has traveled in a specific section by a position switch that informs a reference position such as the uppermost floor or the lowermost floor provided in the hoistway.
 学習運転の完了後は、誤差信号演算部97が、誤差位相と誤差振幅の推定結果を用いて回転検出部2の周期的な角度誤差を計算し、補正信号として出力し、図1の減算器SU2で回転検出部2の角度誤差の補正を行わせる。 After completion of the learning operation, the error signal calculation unit 97 calculates a periodic angle error of the rotation detection unit 2 using the estimation result of the error phase and the error amplitude, and outputs it as a correction signal. In SU2, the angle error of the rotation detector 2 is corrected.
 なお、上記動作では、かごが特定区間を走行したか否かを最後に判断して学習運転したか否かを判断しているが、最初に学習速度演算部91の出力が電動機1の回転速度が一定速度走行状態にあることを示し、かご位置演算部92の出力がかご4が予め設定された特定区間を走行していることを示すと、学習判定部93が学習指令を出力し、学習運転が開始されるようにしてもよい。この場合にはステップS117はステップ111と並行して行われる。 In the above operation, it is determined whether or not the car has traveled in a specific section lastly to determine whether or not the learning operation has been performed. First, the output of the learning speed calculation unit 91 is the rotational speed of the motor 1. Indicates that the vehicle is running at a constant speed, and when the output of the car position calculation unit 92 indicates that the car 4 is traveling in a preset specific section, the learning determination unit 93 outputs a learning command, and learning The operation may be started. In this case, step S117 is performed in parallel with step 111.
 以上の処理により学習運転を実施すると、特定区間走行したときに、電流検出器7の電流を電動機1の回転角の情報を用いてフーリエ変換することにより得られたフーリエ係数の座標間の線分の長さが最小となるときの角度検出誤差を抽出することができる。特定区間走行したときにフーリエ係数間の線分の長さが最小ということは、特定区間において電流脈動の振幅と位相の変化量が小さいときに等しいため、機械系との共振の影響が最も少なく、最終的には推定誤差が一番小さい角度検出誤差の推定値を抽出することができる。 When the learning operation is performed by the above processing, the line segment between the coordinates of the Fourier coefficient obtained by performing Fourier transform on the current of the current detector 7 using information on the rotation angle of the electric motor 1 when traveling in a specific section. It is possible to extract an angle detection error when the length of is minimum. The minimum length of the line segment between the Fourier coefficients when traveling in a specific section is the same when the amplitude and phase change of the current pulsation are small in the specific section, so the influence of resonance with the mechanical system is the least. Finally, an estimated value of the angle detection error with the smallest estimation error can be extracted.
 図13は、図6のフーリエ係数座標平面における隣り合う2つのフーリエ係数の座標を用いて計算した線分の長さとかご位置との関係を示している。例えば、角度誤差の学習運転において図6のようなフーリエ係数の座標が得られた時には、角度誤差推定部9の線分の長さ演算部98で計算する線分の長さは、図13のようになる。区間Aにおいては線分の長さが短く、区間Bにおいては線分の長さが区間Aに比べて長くなる。図11の学習運転のフローによれば、区間Aのときの角度誤差の推定値が抽出される。線分の長さが短いことは共振していないことに等しいため、信頼性の高い角度誤差の推定値を得ることができる。 FIG. 13 shows the relationship between the length of the line segment calculated using the coordinates of two adjacent Fourier coefficients on the Fourier coefficient coordinate plane of FIG. 6 and the car position. For example, when the coordinates of the Fourier coefficient as shown in FIG. 6 are obtained in the learning operation of the angle error, the length of the line segment calculated by the line length calculation unit 98 of the angle error estimation unit 9 is as shown in FIG. It becomes like this. In the section A, the length of the line segment is short, and in the section B, the length of the line segment is longer than that in the section A. According to the learning operation flow of FIG. 11, an estimated value of the angle error in the section A is extracted. Since a short line length is equivalent to not resonating, a highly reliable estimation value of the angle error can be obtained.
 実施の形態4の方法によれば、角度誤差の推定と電流脈動の振幅と位相による推定の成否判断が同時に行え、共振の影響が最も少ないときの角度誤差の推定値を抽出でき、且つ、事前に共振に関する情報を調べなくてよいため、角度誤差の学習に要する時間を短縮できる。また、実施の形態4の方法によれば、エレベーターではなく、電動機1の負荷としていかなる機械系が接続されていたとしても、電流脈動の振幅と位相の変化量を基に、共振の影響が最も少ないときの推定値を抽出できる。 According to the method of the fourth embodiment, it is possible to simultaneously estimate the angle error and determine the success or failure of the estimation based on the amplitude and phase of the current pulsation, extract the estimated value of the angle error when the influence of resonance is the smallest, In addition, since it is not necessary to check information on resonance, the time required for learning the angle error can be shortened. Further, according to the method of the fourth embodiment, no matter what mechanical system is connected as the load of the electric motor 1 instead of the elevator, the influence of resonance is the most based on the amount of change in the amplitude and phase of the current pulsation. The estimated value when there are few can be extracted.
 なお、周波数解析部8がフーリエ係数を演算する構成ではなく、ノッチフィルタやバンドパスフィルタを組み合わせたフィルタのように、特定の周波数信号を抽出し、振幅検出部や位相検出部によって、入力信号の特定周波数の振幅や位相を演算する構成であっても同様の手順により、信頼性の高い角度誤差の推定値を得ることができる。 The frequency analysis unit 8 is not configured to calculate a Fourier coefficient, but a specific frequency signal is extracted like a filter combining a notch filter or a band pass filter, and the input signal is detected by an amplitude detection unit or a phase detection unit. Even with a configuration for calculating the amplitude and phase of a specific frequency, a highly reliable estimation error angle can be obtained by the same procedure.
 実施の形態5.
 実施の形態4において、フーリエ係数の座標が作る線分の長さを用いて、角度誤差の周波数と機械系の周波数が一致して推定が困難となるときの推定値を排除でき、共振の影響が最も少ないときの推定値を抽出する方法を示した。
Embodiment 5 FIG.
In the fourth embodiment, the length of the line segment formed by the coordinates of the Fourier coefficient can be used to eliminate the estimated value when the frequency of the angle error coincides with the frequency of the mechanical system and estimation becomes difficult, and the influence of resonance The method of extracting the estimated value when there is the least is shown.
 実施の形態5においては、実施の形態4で示した角度誤差の学習運転を、学習運転時の速度を変えて複数回実施して、複数回の学習の結果の整合性確認を行うことにより、実施の形態4よりも信頼性の高い角度誤差の推定値を得る方法について説明する。 In the fifth embodiment, the learning operation of the angle error shown in the fourth embodiment is performed a plurality of times while changing the speed during the learning operation, and the consistency check of the results of the plurality of learnings is performed. A method for obtaining an estimated value of the angle error with higher reliability than that of the fourth embodiment will be described.
 実施の形態4の方法では、フーリエ係数の作る座標間の線分の長さが最小となるときの角度誤差の推定値を抽出することで、共振の影響が少ないときの角度推定誤差が抽出できた。しかし、エレベーターの機械仕様によっては、昇降路内のどの位置を走行しても共振に当たる速度が存在する。このような状況では、共振している中でも最も電流脈動の振幅と位相の変化が少ないときの角度誤差の推定値が抽出される。この場合は、信頼性の高い角度誤差の推定値が得られない可能性があるため、学習運転の速度を変えることが望ましい。よって、実施の形態5においては、学習運転時の速度を変えて角度誤差の学習を複数回実施して、複数回の学習の結果の整合性確認を行う。 In the method of the fourth embodiment, the angle estimation error when the influence of resonance is small can be extracted by extracting the estimated value of the angle error when the length of the line segment between the coordinates formed by the Fourier coefficient is minimum. It was. However, depending on the machine specifications of the elevator, there is a speed at which resonance occurs regardless of the position in the hoistway. In such a situation, an estimated value of the angle error when the amplitude and phase change of the current pulsation is the smallest among the resonances is extracted. In this case, since there is a possibility that a highly reliable estimated value of the angle error may not be obtained, it is desirable to change the speed of the learning operation. Therefore, in the fifth embodiment, the angle error learning is performed a plurality of times while changing the speed during the learning operation, and the consistency of the results of the plurality of learnings is confirmed.
 図14は実施の形態5における学習運転のフローチャートを示している。なお、エレベーターの制御装置および角度誤差推定部9の構成は図1,12に示すもとのと基本的に同じである。また、図14のフローチャートは、実施の形態2に示した図9のフローチャートと基本的に同じであり、図9においては面積による共振判定であったが、図14では線分の長さによる共振判定となっている。
 なお、図14において、図9と同じ符号を記したフローは、上記実施の形態2の動作と同じであるため、説明を省略する。実施の形態5では、フーリエ係数の保存する処理(ステップS1403)から、線分の長さと角度誤差推定値を保存する処理(ステップS1406)までの動作が異なる。
FIG. 14 shows a flowchart of the learning operation in the fifth embodiment. The configuration of the elevator control device and the angle error estimating unit 9 is basically the same as the original shown in FIGS. Further, the flowchart of FIG. 14 is basically the same as the flowchart of FIG. 9 shown in the second embodiment. In FIG. 9, the resonance determination is based on the area, but in FIG. It has been judged.
In FIG. 14, the flow denoted by the same reference numerals as those in FIG. 9 is the same as the operation of the second embodiment, and the description thereof is omitted. In the fifth embodiment, the operations from the process of storing the Fourier coefficient (step S1403) to the process of storing the length of the line segment and the estimated angle error (step S1406) are different.
 実施の形態5において、ステップ1403では、角度誤差演算部94は、フーリエ係数の計算結果が2回分記憶されているか否かを判断する。2回分以上のフーリエ係数が保存されていない場合には、ステップS902に戻り、周波数解析部8からの出力であるフーリエ係数の保存を繰り返す。フーリエ係数が2回分保存されている場合には、線分の長さ演算部98は、式(11)によってフーリエ係数の座標間の線分の長さを計算する。また、角度誤差演算部94は、フーリエ係数を用いて、記憶しているフーリエ係数と角度検出誤差の変換式により角度誤差の推定値を計算する(ステップS1404)。角度誤差の推定値は、誤差振幅と誤差位相である。そして、出力判定部96は、線分の長さと角度誤差の推定値を関連付けてメモリに保存する。 In the fifth embodiment, in step 1403, the angle error calculation unit 94 determines whether the calculation results of Fourier coefficients are stored twice. If the Fourier coefficients for two or more times are not stored, the process returns to step S902, and the storage of the Fourier coefficients output from the frequency analysis unit 8 is repeated. When the Fourier coefficients are stored twice, the line segment length calculation unit 98 calculates the length of the line segment between the coordinates of the Fourier coefficient by Expression (11). Further, the angle error calculation unit 94 uses the Fourier coefficient to calculate an estimated value of the angle error by using the stored Fourier coefficient and angle detection error conversion formula (step S1404). The estimated value of the angle error is an error amplitude and an error phase. Then, the output determination unit 96 associates the length of the line segment with the estimated value of the angle error and stores it in the memory.
 ステップS1404の線分の長さと角度検出誤差の推定値の計算が終わると、出力判定部96は、記憶している線分の長さ、すなわち1回前のフローで計算された線分の長さと、ステップS1404で計算した線分の長さを比較する(ステップS1405)。なお、比較する線分の長さの初期値は、1回目の計算結果が必ず保存されるように、記憶できる最大の値とする。角度検出誤差の推定値は、任意の値でよい。 When the calculation of the length of the line segment and the estimated value of the angle detection error in step S1404 ends, the output determination unit 96 determines the length of the stored line segment, that is, the length of the line segment calculated in the previous flow. And the length of the line segment calculated in step S1404 is compared (step S1405). Note that the initial value of the length of the line segment to be compared is the maximum value that can be stored so that the first calculation result is always saved. The estimated value of the angle detection error may be an arbitrary value.
 出力判定部96は、ステップS1405において、記憶されている線分の長さと計算した線分の長さを比較した結果、ステップS1404において計算された線分の長さの方が短いと判断された場合、ステップS1404において計算された線分の長さと角度検出誤差の推定値を合わせて記憶する。このとき、既に記憶されている線分の長さと角度検出誤差は消去する(ステップS1406)。
 一方、ステップS1405において記憶されている線分の長さと計算した線分の長さを比較した結果、ステップS1404において計算された線分の長さが記憶されている線分の長さ以上と判断された場合は、なにも処理しない。すなわち既に記憶されている角度誤差の推定値と線分の長さを保存し続け、次のステップへ移行する。
As a result of comparing the length of the stored line segment with the calculated line segment length in step S1405, the output determination unit 96 determines that the length of the line segment calculated in step S1404 is shorter. In this case, the length of the line segment calculated in step S1404 and the estimated value of the angle detection error are stored together. At this time, the lengths and angle detection errors that have already been stored are deleted (step S1406).
On the other hand, as a result of comparing the length of the line segment stored in step S1405 with the calculated length of the line segment, it is determined that the length of the line segment calculated in step S1404 is greater than or equal to the length of the stored line segment. If so, do nothing. That is, the stored angle error value and line segment length that have already been stored are stored, and the process proceeds to the next step.
 以降の処理に関しては、図9に示したフローチャートと同様である。以上の処理により学習運転を実施すると、特定区間走行したときにフーリエ係数の座標間の線分の長さが最小となるときの角度検出誤差を抽出することができる。また、複数回の学習結果の整合性確認により、実施の形態4の方法よりも信頼性の高い角度誤差の推定値を得ることができる。さらに、学習回数を制限することで、角度誤差の学習が正常に行えないときの安全性を確保できるようになる。 The subsequent processing is the same as the flowchart shown in FIG. When the learning operation is performed by the above processing, it is possible to extract the angle detection error when the length of the line segment between the coordinates of the Fourier coefficient becomes the minimum when traveling in the specific section. In addition, it is possible to obtain an estimated value of the angle error with higher reliability than the method of the fourth embodiment by confirming the consistency of the learning results a plurality of times. Furthermore, by limiting the number of learnings, it becomes possible to ensure safety when angle error learning cannot be performed normally.
 実施の形態6.
 実施の形態6においては、学習運転により得られた角度誤差の推定値に対応するフーリエ係数の作る座標間の線分の長さが基準値より長い場合には、学習運転の速度を変えて学習を実施することにより、実施の形態4よりも信頼性の高い角度誤差の推定値を得る方法について説明する。
Embodiment 6 FIG.
In the sixth embodiment, when the length of the line segment between the coordinates formed by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is longer than the reference value, the learning operation speed is changed and learning is performed. A method for obtaining an estimated value of the angle error with higher reliability than that of the fourth embodiment will be described.
 実施の形態4の方法では、フーリエ係数の作る座標間の線分の長さが最小となるときの角度誤差の推定値を抽出することで、共振の影響が少ないときの角度推定誤差が抽出できた。しかし、エレベーターの機械仕様によっては、昇降路内のどの位置を走行しても共振に当たる速度が存在する。このような状況では、共振している中でも最も電流脈動の振幅と位相の変化が少ないときの角度誤差の推定値が抽出される。この場合は、信頼性の高い角度誤差の推定値が得られない可能性があるため、学習運転の速度を変えることが望ましい。
 実施の形態5では、学習運転時の速度を変えた複数回の学習結果の整合性確認を実施した。実施の形態6においては、フーリエ係数の作る座標間の線分の長さの基準値を例えば予めメモリに記憶しておく等して用意しておき、学習運転により得られた角度誤差の推定値に対応するフーリエ係数の作る座標間の線分の長さが基準値よりも長い場合には、学習運転時の速度を変えて角度誤差の学習を行う。
In the method of the fourth embodiment, the angle estimation error when the influence of resonance is small can be extracted by extracting the estimated value of the angle error when the length of the line segment between the coordinates formed by the Fourier coefficient is minimum. It was. However, depending on the machine specifications of the elevator, there is a speed at which resonance occurs regardless of the position in the hoistway. In such a situation, an estimated value of the angle error when the amplitude and phase change of the current pulsation is the smallest among the resonances is extracted. In this case, since there is a possibility that a highly reliable estimated value of the angle error may not be obtained, it is desirable to change the speed of the learning operation.
In the fifth embodiment, the consistency check of the learning results is performed a plurality of times while changing the speed during the learning operation. In the sixth embodiment, a reference value of the length of the line segment between coordinates formed by the Fourier coefficient is prepared in advance by storing it in a memory, for example, and an estimated value of the angle error obtained by the learning operation If the length of the line segment between the coordinates generated by the Fourier coefficient corresponding to is longer than the reference value, the angle error is learned by changing the speed during the learning operation.
 図15は実施の形態6における学習運転のフローチャートを示している。なお、エレベーターの制御装置および角度誤差推定部9の構成は図1,12に示すもとのと基本的に同じである。また、図15のフローチャートは、実施の形態3に示した図10のフローチャートと基本的に同じであり、図10においては面積による共振判定であったが、図15では線分の長さによる共振判定となっている。
 なお、図15において、図10と同じ符号を記したフローは、上記実施の形態3の動作と同じであるため、説明を省略する。実施の形態6では、フーリエ係数の保存する処理(ステップS1503)から、線分の長さと角度誤差推定値を保存する処理(ステップS1506)までの動作、および線分の長さの基準値による判定(ステップS1508)が異なる。
FIG. 15 shows a flowchart of the learning operation in the sixth embodiment. The configuration of the elevator control device and the angle error estimating unit 9 is basically the same as the original shown in FIGS. Further, the flowchart of FIG. 15 is basically the same as the flowchart of FIG. 10 shown in the third embodiment. In FIG. 10, the resonance determination is based on the area, but in FIG. It has been judged.
In FIG. 15, the flow denoted by the same reference numerals as those in FIG. 10 is the same as the operation of the third embodiment, and thus the description thereof is omitted. In the sixth embodiment, the operation from the process of storing the Fourier coefficient (step S1503) to the process of storing the length of the line segment and the estimated angle error (step S1506) and the determination based on the reference value of the length of the line segment (Step S1508) is different.
 実施の形態6において、ステップ1503では、角度誤差演算部94は、フーリエ係数の計算結果が2回分記憶されているか否かを判断する。2回分以上のフーリエ係数が保存されていない場合には、ステップS102に戻り、周波数解析部8からの出力であるフーリエ係数の保存を繰り返す。フーリエ係数が2回分保存されている場合には、線分の長さ演算部98は、式(11)によってフーリエ係数の座標間の線分の長さを計算する。また、角度誤差演算部94は、フーリエ係数を用いて、記憶しているフーリエ係数と角度検出誤差の変換式により角度誤差の推定値を計算する(ステップS1504)。角度誤差の推定値は、誤差振幅と誤差位相である。そして、出力判定部96は、線分の長さと角度誤差の推定値を関連付けてメモリに保存する。 In the sixth embodiment, in step 1503, the angle error calculation unit 94 determines whether or not the Fourier coefficient calculation results are stored twice. If two or more Fourier coefficients have not been stored, the process returns to step S102, and the storage of the Fourier coefficient output from the frequency analysis unit 8 is repeated. When the Fourier coefficients are stored twice, the line segment length calculation unit 98 calculates the length of the line segment between the coordinates of the Fourier coefficient by Expression (11). Further, the angle error calculation unit 94 calculates an estimated value of the angle error by using the Fourier coefficient and the conversion formula between the stored Fourier coefficient and the angle detection error (Step S1504). The estimated value of the angle error is an error amplitude and an error phase. Then, the output determination unit 96 associates the length of the line segment with the estimated value of the angle error and stores it in the memory.
 ステップS1504の線分の長さと角度検出誤差の推定値の計算が終わると、出力判定部96は、記憶している線分の長さ、すなわち1回前のフローで計算された線分の長さと、ステップS1504で計算した線分の長さを比較する(ステップS1505)。なお、比較する線分の長さの初期値は、1回目の計算結果が必ず保存されるように、記憶できる最大の値とする。角度検出誤差の推定値は、任意の値でよい。 When the calculation of the length of the line segment and the estimated value of the angle detection error in step S1504 ends, the output determination unit 96 determines the length of the stored line segment, that is, the length of the line segment calculated in the previous flow. And the length of the line segment calculated in step S1504 is compared (step S1505). Note that the initial value of the length of the line segment to be compared is the maximum value that can be stored so that the first calculation result is always saved. The estimated value of the angle detection error may be an arbitrary value.
 出力判定部96は、ステップS1505において、記憶されている線分の長さと計算した線分の長さを比較した結果、ステップS1504において計算された線分の長さの方が短いと判断された場合、ステップS1504において計算された線分の長さと角度検出誤差の推定値を合わせて記憶する。このとき、既に記憶されている線分の長さと角度検出誤差は消去する(ステップS1506)。
 一方、ステップS1505において記憶されている線分の長さと計算した線分の長さを比較した結果、ステップS1504において計算された線分の長さが記憶されている線分の長さ以上と判断された場合は、なにも処理しない。すなわち既に記憶されている角度誤差の推定値と線分の長さを保存し続け、次のステップへ移行する。
As a result of comparing the length of the stored line segment with the calculated length of the line segment in step S1505, the output determination unit 96 determines that the length of the line segment calculated in step S1504 is shorter. In this case, the length of the line segment calculated in step S1504 and the estimated value of the angle detection error are stored together. At this time, the lengths and angle detection errors that have already been stored are deleted (step S1506).
On the other hand, as a result of comparing the length of the line segment stored in step S1505 with the calculated length of the line segment, it is determined that the length of the line segment calculated in step S1504 is greater than or equal to the length of the stored line segment. If so, do nothing. That is, the stored angle error value and line segment length that have already been stored are stored, and the process proceeds to the next step.
 次に、学習判定部93が、かご位置演算部92の出力から、かごが特定区間を走行したか否かを判断する(ステップS107)。この動作は実施の形態3と同様である。
 次に、学習判定部93は、学習運転で得られた角度誤差の推定値に対応するフーリエ係数の作る座標間の線分の長さが、予め記憶しておいたフーリエ係数の作る座標間の線分の長さの基準値以下であることを判断する(ステップS1508)。ステップS1508において、学習運転で得られた角度誤差の推定値に対応するフーリエ係数の作る座標間の線分の長さが、予め記憶しておいたフーリエ係数の作る座標間の線分の長さの基準値より長いと判断した場合には、学習判定部93または出力判定部96から図1の速度指令演算部11へ学習運転指令を送り、学習運転の速度を変えて再度学習運転を実施する(ステップS109)。
 学習速度を変えることで周期的な角度誤差の周波数が変化する。例えば、図4、5において周波数BからAへ移る。これにより、回転検出部2の周期的な角度誤差に起因した電流脈動の傾向が変わる。例えば、周波数Bでは中間階付近において共振に当たるが、周波数A,Cではどの階層においても共振に当たらない。これにより、1回目の学習とは異なった条件で角度誤差を推定することができる。また、学習運転の速度設定には特に制約はないが、かごが走行できる最遅の速度、最速の速度など、極端に速度を変えた方が電流脈動の傾向が大きく変わるため、異なった条件で角度誤差の学習を実施できる。
Next, the learning determination unit 93 determines from the output of the car position calculation unit 92 whether the car has traveled in a specific section (step S107). This operation is the same as in the third embodiment.
Next, the learning determination unit 93 determines that the length of the line segment between the coordinates created by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is between the coordinates created by the Fourier coefficient stored in advance. It is determined that the length is equal to or less than the reference value of the length of the line segment (step S1508). In step S1508, the length of the line segment between the coordinates created by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is the length of the line segment between the coordinates created by the Fourier coefficient stored in advance. 1 is sent from the learning determination unit 93 or the output determination unit 96 to the speed command calculation unit 11 in FIG. 1, and the learning operation is performed again by changing the speed of the learning operation. (Step S109).
By changing the learning speed, the frequency of the periodic angular error changes. For example, in FIG. As a result, the tendency of current pulsation due to the cyclic angle error of the rotation detector 2 changes. For example, resonance occurs near the middle floor at frequency B, but resonance does not occur at any level in frequencies A and C. Thereby, the angle error can be estimated under different conditions from the first learning. In addition, there is no particular restriction on the speed setting for learning driving, but the tendency of current pulsation changes greatly if the speed is changed extremely, such as the slowest speed or the fastest speed at which the car can travel. The angle error can be learned.
 ステップS1508の確認が完了すると、学習判定部93が、学習運転を完了する。ステップS1508において学習運転で得られた角度誤差の推定値に対応するフーリエ係数の作る座標間の線分の長さが、予め記憶しておいたフーリエ係数の作る座標間の線分の長さの基準値以下であることが確認できた場合には、学習運転の完了後は、誤差信号演算部97が、誤差位相と誤差振幅の推定結果を用いて回転検出部2の周期的な角度誤差を計算し、補正信号として出力し、図1の減算器SU2で回転検出部2の角度誤差の補正を行わせる。 When the confirmation in step S1508 is completed, the learning determination unit 93 completes the learning operation. In step S1508, the length of the line segment between the coordinates created by the Fourier coefficient corresponding to the estimated value of the angle error obtained by the learning operation is the length of the line segment between the coordinates created by the Fourier coefficient stored in advance. When it is confirmed that the value is equal to or less than the reference value, the error signal calculation unit 97 uses the estimation result of the error phase and the error amplitude after the learning operation is completed, to calculate the periodic angle error of the rotation detection unit 2. The calculated value is output as a correction signal, and the angle error of the rotation detector 2 is corrected by the subtractor SU2 in FIG.
 以上の処理により学習運転を実施すると、特定区間走行したときにフーリエ係数の座標間の線分の長さが最小となるときの角度検出誤差を抽出することができる。また、フーリエ係数の作る座標間の線分の長さを基準値と比較確認することにより、実施の形態4の方法よりも信頼性の高い角度誤差の推定値を得ることができる。 When the learning operation is performed by the above processing, it is possible to extract the angle detection error when the length of the line segment between the coordinates of the Fourier coefficient becomes the minimum when traveling in a specific section. Further, by comparing and confirming the length of the line segment between the coordinates formed by the Fourier coefficient with the reference value, it is possible to obtain an estimated value of the angle error with higher reliability than the method of the fourth embodiment.
 なお、エレベーターの全体の機器のレイアウト及びローピング方式等は、図1の例に限定されるものではない。例えば、この発明は、2:1ローピングのエレベーターにも適用できる。また、例えば電動機1からなる巻上機の位置も図1の例に限定されない。 Note that the layout and roping method of the entire elevator are not limited to the example in FIG. For example, the present invention can be applied to a 2: 1 roping elevator. Further, for example, the position of the hoisting machine including the electric motor 1 is not limited to the example of FIG.
 この発明は上記の各実施の形態に限定されるものではなく、これらの可能な組合せをすべて含むことは言うまでもない。 The present invention is not limited to the above-described embodiments, and it goes without saying that all of these possible combinations are included.
産業上の利用の可能性Industrial applicability
 この発明は、例えば機械室レスエレベータ、ダブルデッキエレベータ、ワンシャフトマルチカー方式のエレベーター、又は斜行エレベーターなど、種々のタイプのエレベーターに適用できる。 The present invention can be applied to various types of elevators such as machine room-less elevators, double deck elevators, one-shaft multi-car elevators, and skew elevators.

Claims (11)

  1.  昇降路内にかごを昇降させる動力を発生する電動機に流れる電流を検出する電流検出器と、
     前記電動機の回転角を検出する回転検出部と、
     前記電流検出器で検出された電流を周波数解析して得られる特定周波数の成分を出力する周波数解析部と、
     前記特定周波数の成分を用いて、前記回転検出部からの回転角に応じて一意に決まる周期的な角度誤差の振幅と位相を推定して角度誤差推定値として出力する角度誤差推定部と、
     を備え、
     前記角度誤差推定部は、前記かごを特定区間運転させる学習運転を実施するように制御し、前記学習運転中に検出された前記電流を前記周波数解析部に入力して求まる前記特定周波数の成分を連続して複数取得し、取得された前記特定周波数の成分のうち連続する設定数の前記特定周波数の成分が作る座標平面における幾何学量である評価値を計算すると共に、前記角度誤差推定値を計算して前記評価値と前記角度誤差推定値を関連付け、前記評価値が最小となるときの前記角度誤差推定値を選択する、
     エレベーターの制御装置。
    A current detector for detecting a current flowing in an electric motor that generates power to raise and lower the car in the hoistway;
    A rotation detector for detecting a rotation angle of the electric motor;
    A frequency analysis unit that outputs a component of a specific frequency obtained by frequency analysis of the current detected by the current detector;
    An angle error estimation unit that estimates the amplitude and phase of a cyclic angle error that is uniquely determined according to the rotation angle from the rotation detection unit using the specific frequency component, and outputs the angle error estimated value;
    With
    The angle error estimator controls the car to perform a learning operation that operates the specific section, and inputs the current detected during the learning operation to the frequency analysis unit to obtain the component of the specific frequency obtained. A plurality of consecutive acquisitions are performed, and an evaluation value, which is a geometric amount in a coordinate plane created by a set number of the specific frequency components that are consecutive among the acquired specific frequency components, is calculated, and the angular error estimation value is calculated. Calculating and associating the evaluation value with the angle error estimate, and selecting the angle error estimate when the evaluation value is minimized;
    Elevator control device.
  2.  前記設定数は2であって、前記幾何学量は、前記座標平面における前記特定周波数の成分の振幅および位相が作る座標間の線分の長さである、請求項1に記載のエレベーターの制御装置。 2. The elevator control according to claim 1, wherein the set number is 2 and the geometric amount is a length of a line segment between coordinates formed by an amplitude and a phase of the component of the specific frequency in the coordinate plane. apparatus.
  3.  前記設定数は3以上であって、前記幾何学量は、前記座標平面における前記特定周波数の成分の振幅および位相が作る座標によって囲まれる領域の面積である、請求項1に記載のエレベーターの制御装置。 2. The elevator control according to claim 1, wherein the set number is 3 or more, and the geometric amount is an area of a region surrounded by coordinates formed by an amplitude and a phase of the component of the specific frequency in the coordinate plane. apparatus.
  4.  前記角度誤差推定部は、前記評価値によって、前記電流検出器で検出された電流の前記角度誤差に対応した特定周波数の成分の変化量が最小になるときの前記角度誤差推定値を選択する、請求項1から3までのいずれか1項に記載のエレベーターの制御装置。 The angle error estimation unit selects the angle error estimated value when the amount of change in the component of the specific frequency corresponding to the angle error of the current detected by the current detector is minimized based on the evaluation value. The elevator control device according to any one of claims 1 to 3.
  5.  前記角度誤差推定部は、選択された前記角度誤差推定値に対応する前記評価値が基準値以上である場合に、前記学習運転の運転速度を変えて再度前記学習運転を実施して前記角度誤差推定値を推定する、請求項1から4までのいずれか1項に記載のエレベーターの制御装置。 When the evaluation value corresponding to the selected estimated angle error value is greater than or equal to a reference value, the angle error estimation unit changes the operation speed of the learning operation and performs the learning operation again to perform the angle error. The elevator control device according to any one of claims 1 to 4, which estimates an estimated value.
  6.  前記角度誤差推定部は、異なる運転速度で前記学習運転を複数回実施し、複数回の前記学習運転で得られた前記角度誤差推定値を比較確認することで整合性確認を行い、整合が取れない場合にはさらに運転速度を変えて前記学習運転を実施する、請求項1から5までのいずれか1項に記載のエレベーターの制御装置。 The angle error estimator performs the learning operation a plurality of times at different driving speeds, compares the angle error estimated values obtained in the learning operation a plurality of times, and confirms the consistency, thereby obtaining consistency. The elevator control device according to any one of claims 1 to 5, wherein when there is not, the operation speed is further changed to perform the learning operation.
  7.  前記周波数解析部は、周波数解析としてフーリエ変換行いフーリエ係数を演算する、請求項1から6までのいずれか1項に記載のエレベーターの制御装置。 The elevator control device according to any one of claims 1 to 6, wherein the frequency analysis unit performs a Fourier transform as a frequency analysis to calculate a Fourier coefficient.
  8.  前記周波数解析部は、前記特定周波数成分を通すバンドパスフィルタを含み、前記バンドパスフィルタの出力電流に対して、振幅演算および位相演算を行う、請求項1から6までのいずれか1項に記載のエレベーターの制御装置。 The frequency analysis unit includes a band-pass filter that passes the specific frequency component, and performs an amplitude calculation and a phase calculation on an output current of the band-pass filter. Elevator control device.
  9.  前記回転検出部は、レゾルバ又はエンコーダ又は磁気センサを含む、請求項1から8までのいずれか1項に記載のエレベーターの制御装置。 The elevator control device according to any one of claims 1 to 8, wherein the rotation detection unit includes a resolver, an encoder, or a magnetic sensor.
  10.  昇降路内にかごを昇降させる駆動用の電動機に流れる電流を周波数解析し、特定周波数の成分を演算する工程と、
     前記特定周波数の成分を用いて、前記電動機の回転角を検出する回転検出部に含まれる前記回転角に応じて一意に決まる周期的な角度誤差の振幅と位相を推定して角度誤差推定値として推定する工程と、
     を備え、
     前記角度誤差を角度誤差推定値として推定する工程において、
     前記かごを特定区間運転させる学習運転を実施するように制御し、
     前記学習運転中に検出された前記電動機に流れる電流の前記特定周波数の成分を演算する工程で求まる前記特定周波数の成分を連続して複数取得し、
     取得した前記特定周波数の成分のうち連続する設定数の前記特定周波数の成分が作る座標平面における幾何学量である評価値を計算すると共に、前記角度誤差推定値を計算して前記評価値と前記角度誤差推定値を関連付け、前記評価値が最小となるときの前記角度誤差推定値を選択する、
     エレベーターの駆動用の電動機のための回転検出部の回転角の角度誤差を求める方法。
    Analyzing the frequency of the current flowing in the drive motor that raises and lowers the car in the hoistway, and calculating a specific frequency component;
    By using the component of the specific frequency, the amplitude and phase of a cyclic angle error that is uniquely determined according to the rotation angle included in the rotation detection unit that detects the rotation angle of the electric motor is estimated as an angle error estimated value. Estimating process;
    With
    In the step of estimating the angle error as an angle error estimated value,
    Control the car to perform a learning operation that operates the specific section,
    Continuously acquiring a plurality of components of the specific frequency obtained in the step of calculating the component of the specific frequency of the current flowing through the electric motor detected during the learning operation,
    While calculating an evaluation value that is a geometric amount in a coordinate plane created by a specific number of components of the specific frequency among the acquired components of the specific frequency, the angle error estimate is calculated to calculate the evaluation value and the Associating an angle error estimate and selecting the angle error estimate when the evaluation value is minimal;
    A method for obtaining an angle error of a rotation angle of a rotation detection unit for an electric motor for driving an elevator.
  11.  昇降路内を昇降させるかごと、
     前記かごを昇降させる動力を発生する電動機と、
     前記電動機の回転角を検出する回転検出部と、
     前記電動機に流れる電流を検出する電流検出器と、
     前記電流検出器で検出された電流を周波数解析して得られる特定周波数の成分を出力する周波数解析部と、
     前記特定周波数の成分を用いて、前記回転検出部からの回転角に応じて一意に決まる周期的な角度誤差の振幅と位相を推定して角度誤差推定値として出力する角度誤差推定部と、
     を備え、
     前記角度誤差推定部は、前記かごを特定区間運転させる学習運転を実施するように制御し、前記学習運転中に検出された前記電流を前記周波数解析部に入力して求まる前記特定周波数の成分を連続して複数取得し、取得された前記特定周波数の成分のうち連続する設定数の前記特定周波数の成分が作る座標平面における幾何学量である評価値を計算すると共に、前記角度誤差推定値を計算して前記評価値と前記角度誤差推定値を関連付け、前記評価値が最小となるときの前記角度誤差推定値を選択する、
     エレベーター装置。
    Whether to go up and down in the hoistway,
    An electric motor that generates power to raise and lower the car;
    A rotation detector for detecting a rotation angle of the electric motor;
    A current detector for detecting a current flowing through the electric motor;
    A frequency analysis unit that outputs a component of a specific frequency obtained by frequency analysis of the current detected by the current detector;
    An angle error estimation unit that estimates the amplitude and phase of a cyclic angle error that is uniquely determined according to the rotation angle from the rotation detection unit using the specific frequency component, and outputs the angle error estimated value;
    With
    The angle error estimator controls the car to perform a learning operation that operates the specific section, and inputs the current detected during the learning operation to the frequency analysis unit to obtain the component of the specific frequency obtained. A plurality of consecutive acquisitions are performed, and an evaluation value, which is a geometric amount in a coordinate plane created by a set number of the specific frequency components that are consecutive among the acquired specific frequency components, is calculated, and the angular error estimation value is calculated. Calculating and associating the evaluation value with the angle error estimate, and selecting the angle error estimate when the evaluation value is minimized;
    Elevator device.
PCT/JP2015/085540 2015-04-30 2015-12-18 Elevator control device, elevator device, and method for determining rotation angle error of rotation detection unit of electric motor for elevator WO2016174796A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112016025232A BR112016025232A2 (en) 2015-04-30 2015-12-18 elevator control device, method for obtaining an angle error, and elevator device
CN201580023650.0A CN106464195B (en) 2015-04-30 2015-12-18 Control device, lift appliance and the method for finding out rotation angular error of elevator
JP2016549180A JP6165352B2 (en) 2015-04-30 2015-12-18 Method for obtaining rotation angle error of rotation control unit of elevator control device, elevator device, and elevator motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015092681 2015-04-30
JP2015-092681 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016174796A1 true WO2016174796A1 (en) 2016-11-03

Family

ID=57199050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085540 WO2016174796A1 (en) 2015-04-30 2015-12-18 Elevator control device, elevator device, and method for determining rotation angle error of rotation detection unit of electric motor for elevator

Country Status (4)

Country Link
JP (1) JP6165352B2 (en)
CN (1) CN106464195B (en)
BR (1) BR112016025232A2 (en)
WO (1) WO2016174796A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288510A1 (en) * 2014-10-20 2017-10-05 Mitsubishi Electric Corporation Rotation angle detector, rotary electrical machine and elevator hoisting machine
JP2018169765A (en) * 2017-03-29 2018-11-01 東芝機械株式会社 Industrial machine
WO2020208766A1 (en) * 2019-04-11 2020-10-15 三菱電機株式会社 Electric motor control device
WO2023203622A1 (en) * 2022-04-18 2023-10-26 三菱電機株式会社 Car position control device
WO2024009657A1 (en) * 2022-07-08 2024-01-11 株式会社日立製作所 Motor control device, motor control method, and elevator device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112165A (en) * 2017-12-21 2019-07-11 株式会社日立製作所 Control device and control method of elevator apparatus
WO2019186788A1 (en) * 2018-03-28 2019-10-03 三菱電機株式会社 Electric motor control device and elevator control device
DE112018007870T5 (en) * 2018-07-30 2021-06-17 Mitsubishi Electric Corporation Control device of a rotating electrical machine
JP6978452B2 (en) * 2019-02-12 2021-12-08 ファナック株式会社 How to set the machine learning device, control device, and machine learning search range
CN110426071A (en) * 2019-08-30 2019-11-08 新代科技(苏州)有限公司 Rotary encoder precision estimating apparatus and the estimating and measuring method for applying it
CN111703992A (en) * 2020-06-05 2020-09-25 猫岐智能科技(上海)有限公司 Set frequency band vibration detection method and system, elevator detection method and elevator fault identification method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024195A1 (en) * 2008-08-26 2010-03-04 株式会社明電舎 Electric motor disturbance suppression device and disturbance suppression method
WO2015029098A1 (en) * 2013-08-26 2015-03-05 三菱電機株式会社 Angle error correction device and angle error correction method for position detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105763A (en) * 2008-10-29 2010-05-13 Hitachi Ltd Power converter and elevator using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024195A1 (en) * 2008-08-26 2010-03-04 株式会社明電舎 Electric motor disturbance suppression device and disturbance suppression method
WO2015029098A1 (en) * 2013-08-26 2015-03-05 三菱電機株式会社 Angle error correction device and angle error correction method for position detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288510A1 (en) * 2014-10-20 2017-10-05 Mitsubishi Electric Corporation Rotation angle detector, rotary electrical machine and elevator hoisting machine
US10103607B2 (en) * 2014-10-20 2018-10-16 Mitsubishi Electric Corporation Rotation angle detector, rotary electrical machine and elevator hoisting machine
JP2018169765A (en) * 2017-03-29 2018-11-01 東芝機械株式会社 Industrial machine
WO2020208766A1 (en) * 2019-04-11 2020-10-15 三菱電機株式会社 Electric motor control device
WO2023203622A1 (en) * 2022-04-18 2023-10-26 三菱電機株式会社 Car position control device
WO2024009657A1 (en) * 2022-07-08 2024-01-11 株式会社日立製作所 Motor control device, motor control method, and elevator device

Also Published As

Publication number Publication date
CN106464195B (en) 2018-11-27
JP6165352B2 (en) 2017-07-19
BR112016025232A2 (en) 2017-08-15
CN106464195A (en) 2017-02-22
JPWO2016174796A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6165352B2 (en) Method for obtaining rotation angle error of rotation control unit of elevator control device, elevator device, and elevator motor
KR101885009B1 (en) Angle error correction device and angle error correction method for position detector
JP6272508B2 (en) Angular error correction device and angular error correction method for position detector
WO2016157643A1 (en) Angle error correction device for position detector, angle error correction method, elevator control device, and elevator system
JP2000270600A (en) Drive of induction motor, and estimating method of its parameters
JP6124112B2 (en) AC motor control device and control method
US20160252375A1 (en) Encoder signal processor having automatic adjustment function
CN107709932B (en) Method and circuit for detecting an open circuit of a sine/cosine receiving coil of a resolver
US10209310B2 (en) Rotary machine diagnostic system
US20100283500A1 (en) Method of error detection when controlling a rotating field motor
KR101218441B1 (en) Control System of Interior Permanent Magnet Synchronous Motor and Method to Detect Sensor Fault thereof
JP6636206B2 (en) Apparatus and method for correcting torque pulsation of electric motor, control device for elevator
US9024562B2 (en) Motor constant calculating method for PM motor, and motor constant calculating device
KR20190018844A (en) Apparatus and method for compensating position error of resolver
JP6139476B2 (en) Electric motor start discrimination device
CN107681942B (en) Reduction of motor torque ripple using DC bus harmonics
JP2008011622A (en) Inverter device, its alternating-current motor diagnosis, and method for representing diagnostic outcome
JP2008197061A (en) Failure detector for resolver
US20180231611A1 (en) Detection of current sensor malfunction
JP5440619B2 (en) Specimen parameter estimation apparatus and mechanical resonance frequency detection method
JP6673175B2 (en) Induction motor control system
KR20190100626A (en) Apparatus and method for detecting a position error of hall sensor of motor
JP2022147213A (en) Motor abnormality diagnosis device, abnormality diagnosis method, and abnormality diagnosis program
JP6223636B2 (en) Elevator moving distance measuring device and elevator moving distance measuring method
CN108736783A (en) The method and apparatus for measuring the stator winding resistance of permanent magnet synchronous motor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016549180

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890779

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016025232

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016025232

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161027

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890779

Country of ref document: EP

Kind code of ref document: A1