WO2023203622A1 - Car position control device - Google Patents

Car position control device Download PDF

Info

Publication number
WO2023203622A1
WO2023203622A1 PCT/JP2022/018085 JP2022018085W WO2023203622A1 WO 2023203622 A1 WO2023203622 A1 WO 2023203622A1 JP 2022018085 W JP2022018085 W JP 2022018085W WO 2023203622 A1 WO2023203622 A1 WO 2023203622A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
pattern
time
error
signal
Prior art date
Application number
PCT/JP2022/018085
Other languages
French (fr)
Japanese (ja)
Inventor
英二 横山
俊貴 金森
将史 松岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/018085 priority Critical patent/WO2023203622A1/en
Publication of WO2023203622A1 publication Critical patent/WO2023203622A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators

Definitions

  • the present disclosure relates to an elevator car position control device.
  • Patent Document 1 discloses an elevator system.
  • the elevator system includes an APS (Absolute Position Sensor) that is a position detector that constantly detects the absolute position of the car.
  • APS Absolute Position Sensor
  • car position control can be realized in which a target position of the car is generated and a measured position of the car, which is a detection result of the APS, is made to follow the target position.
  • An object of the present disclosure is to provide a car position correction device that can suppress errors caused by position patterns.
  • a car position control device is a car position control device that controls the car so that the position of the car output from a position detector that detects the position of the elevator car follows a target position, A position pattern that generates a position pattern in which the time transition of the position of the car from when the car starts moving up and down the distance until it stops when the car moves the up and down distance toward the next floor.
  • a generation unit an error calculation unit that calculates a discretization error between the distance indicated in the position pattern and the up/down distance, which is an error that occurs when the calculation for generating the position pattern is performed; a correction pattern generation unit that generates an error correction pattern indicating a time transition of the position of the car from when it starts moving to when it stops moving the distance of the discretized error calculated by the error calculation unit; By reflecting the position of the car output from the position detector when the car is stopped at the previous floor in the corrected position pattern in which the position pattern and the error correction pattern are superimposed. , and a target signal calculation unit that calculates the target position.
  • the target position is calculated based on the corrected position pattern in which the position pattern and the error correction pattern are superimposed. Therefore, errors due to positional patterns can be suppressed.
  • FIG. 1 is a diagram illustrating an overview of an elevator system to which a car position correction device according to a first embodiment is applied.
  • FIG. 2 is a block diagram showing a target signal generation section of the car position control device in Embodiment 1.
  • FIG. 3 is a diagram showing an example of a control mode, a position pattern, and an error correction pattern set by the car position control device in the first embodiment.
  • FIG. 3 is a diagram showing an example of an error correction pattern set by the car position control device in the first embodiment.
  • 3 is a bubble chart for explaining an overview of state transitions of control modes set by the car position control device in Embodiment 1.
  • FIG. 3 is a flowchart for explaining an overview of the operation of the car position control device in Embodiment 1.
  • FIG. 1 is a hardware configuration diagram of a car position control device in Embodiment 1.
  • FIG. 1 is a diagram showing an outline of an elevator system to which a car position correction device according to the first embodiment is applied.
  • the configuration surrounded by a broken line 1a is a mechanical configuration.
  • a hoistway 2 passes through each floor of a building (not shown).
  • a machine room (not shown) is provided directly above the hoistway 2.
  • the motor 3a is provided in the machine room.
  • the sheave 3b is connected to the rotating shaft of the motor 3a.
  • the main rope 4 is wound around the sheave 3b.
  • the car 5 is provided inside the hoistway 2.
  • the car 5 is suspended on one side of the main rope 4.
  • the counterweight 6 is provided inside the hoistway 2.
  • a counterweight 6 is suspended from the other side of the main rope 4.
  • the elevator system 1 further includes an angle detector 7, a position detector 8, and a control panel 9.
  • the angle detector 7 is attached to the motor 3a.
  • the angle detector 7 is an encoder (ENC).
  • EEC encoder
  • Angle detector 7 detects the rotation angle of the rotation shaft of motor 3a.
  • the angle detector 7 outputs a signal corresponding to the detected rotation angle.
  • the position detector 8 is provided in the car 5.
  • the position detector 8 can detect the absolute position of the car 5 in the hoistway 2 at all times.
  • the position detector 8 detects the absolute position of the car 5 by reading a detected object (not shown) provided from the upper end to the lower end of the hoistway 2 .
  • the absolute position of the car 5 is the height of the car 5 in the hoistway 2.
  • the position detector 8 is also called APS.
  • the position detector 8 outputs a signal indicating the detected absolute position of the car 5.
  • the control panel 9 is provided in the machine room.
  • the control panel 9 is electrically connected to the motor 3a.
  • the control panel 9 can control the elevator system 1 as a whole.
  • the control panel 9 supplies a drive current to the motor 3a.
  • the motor 3a rotates a rotating shaft according to the drive current.
  • the sheave 3b rotates in synchronization with the rotating shaft of the motor 3a.
  • the main rope 4 moves following the rotation of the sheave 3b.
  • the car 5 and the counterweight 6 follow the movement of the main rope 4 and move up and down in opposite directions.
  • the angle detector 7 inputs into the control panel 9 an angle signal ⁇ m indicating the rotation angle of the rotation shaft of the motor 3a.
  • the position detector 8 creates a car position signal x car indicating the absolute position of the car 5 and inputs it to the control panel 9 . At this time, for example, the position detector 8 creates a car position signal x car at a cycle shorter than the internal calculation cycle of the control panel 9 and inputs it to the control panel 9.
  • the control panel 9 controls the speed and position of the car 5 using at least one of the input angle signal ⁇ m and the car position signal x car .
  • the control panel 9 controls the speed of the car 5 based on a plurality of control modes when moving the car 5 from one floor to the next floor.
  • the speed of the car 5 is controlled by switching between modes such as a constant acceleration mode in which the acceleration is a constant value, a constant velocity mode in which the speed is a constant value, and the like.
  • the control panel 9 controls the car 5 to land at the landing position.
  • the control panel 9 includes a car position control device 10 as a device for controlling the position of the car 5.
  • the car position control device 10 is composed of elements provided within an electric board. Each element executes processing by a processor included in an arithmetic processing circuit. Note that each element may include a processing circuit that does not have an arithmetic function.
  • the car position control device 10 is electrically connected to the motor 3a.
  • the car position control device 10 generates a target position for the car 5.
  • a signal indicating the absolute position of the car 5 is inputted to the car position control device 10 from the position detector 8 .
  • the car position control device 10 controls the motor 3a so that the absolute position of the car 5 follows the target position.
  • the car position control device 10 generates the speed target signal v ref through position control processing of the car 5 .
  • the car position control device 10 generates a torque current target signal iq v_cont that follows the speed target signal v ref by performing speed control processing for the car 5 .
  • the car position control device 10 supplies a drive current to the motor 3a according to the torque current target signal iq v_cont .
  • the car position control device 10 includes a speed calculation section 11 , a first subtraction section 12 , a speed control section 13 , a current measurement section 14 , a current control section 15 , a target signal generation section 16 , a second subtraction section 17 , and a car position control section 18 Equipped with.
  • the speed control process is mainly performed by the speed calculation section 11, the first subtraction section 12, the speed control section 13, the current measurement section 14, and the current control section 15.
  • An angle signal ⁇ m from the position detector 8 is input to the speed calculation unit 11 .
  • the speed calculating section 11 calculates the angular speed of the motor 3a from the angle signal ⁇ m , and generates an angular speed signal.
  • the speed calculation unit 11 generates and outputs a speed signal v m of the car 5 indicating the speed of the car 5 from the angular velocity signal.
  • the first subtraction unit 12 is a subtracter that performs subtraction processing on an input signal.
  • the speed target signal v ref is input to the first subtractor 12 .
  • the speed signal v m is inputted to the first subtraction section 12 from the speed calculation section 11 .
  • the first subtractor 12 subtracts the speed signal v m from the speed target signal v ref and outputs a speed error signal v err .
  • the speed error signal v err indicates the difference between the target speed and the actual speed of the car 5.
  • a speed error signal v err is inputted to the speed control section 13 from the first subtraction section 12 .
  • the speed control unit 13 generates and outputs a speed control signal iq v_cont based on the speed error signal v err .
  • the speed control signal iq v_cont is a signal calculated so that the difference indicated by the speed error signal v err falls within a reference value.
  • the speed control signal iq v_cont is the same as the torque current target signal iq v_cont .
  • the speed control unit 13 controls the speed control signal iq v_cont by performing proportional calculation, integral calculation, and differential calculation so that the speed of the car 5 satisfies various operating conditions such as a stable value. generate.
  • the current measurement unit 14 is a current sensor.
  • the current measurement section 14 is electrically connected between the motor 3a and the current control section 15.
  • the current measurement section 14 measures the value of the current flowing between the motor 3a and the current control section 15, and outputs the measurement result.
  • the current measurement unit 14 outputs a drive current signal iq indicating a q-axis current value among the measured current values.
  • a torque current target signal iq v_cont which is a speed control signal iq v_cont , is input to the current control unit 15.
  • a drive current signal iq is input to the current control section 15 from the current measurement section 14 .
  • the current control unit 15 supplies a drive current to the motor 3a so that the drive current signal iq follows the speed control signal iq v_cont .
  • control is achieved such that the speed signal v m of the car 5 follows the speed target signal v ref while the speed error signal v err remains within the reference value.
  • the position control process is mainly performed by the target signal generation section 16, the second subtraction section 17, and the car position control section 18.
  • the functions of the target signal generation section 16 are realized by executing software for the functions through calculations by a processor.
  • a car position signal x car from the position detector 8 is input to the target signal generation section 16 .
  • the floor position signal x tgt is input to the target signal generation unit 16 .
  • the floor position signal xtgt is a signal indicating the position of the destination floor of the car 5.
  • the floor position signal x tgt is generated by a control system device higher than the car position control device 10 inside the control panel 9 . For example, when the car 5 is stopped at a certain floor, the next floor position signal x tgt of the car 5 is generated and input to the target signal generation section 16 .
  • the target signal generation unit 16 generates and outputs a car position target signal x ref using the car position signal x car and floor position signal x tgt . At this time, the target signal generation unit 16 corrects the discretization error caused by the arithmetic processing cycle on the software, and generates the car position target signal x ref in which the correction is reflected.
  • the second subtractor 17 is a subtracter that performs subtraction processing on the input signal.
  • the car position target signal x ref is input to the second subtractor 17 from the target signal generator 16 .
  • a car position signal x car from the position detector 8 is input to the second subtractor 17 .
  • the second subtraction unit 17 subtracts the car position signal x car from the car position target signal x ref and outputs a car position error signal x err .
  • the car position error signal x err indicates the difference between the target position and the actual absolute position of car 5.
  • the car position error signal x err is input to the car position control unit 18 from the second subtraction unit 17 .
  • the car position control unit 18 generates a car position control signal x cont based on the car position error signal x err .
  • the car position control signal x cont is a signal calculated so that the car position error signal x err converges to zero.
  • the car position control section 18 generates the car position control signal x cont as a speed target signal v ref and inputs it to the first subtraction section 12 . That is, the car position control section 18 generates the car position control signal x cont having signal characteristics similar to those of the speed target signal v ref .
  • control is achieved such that the car position error signal x err converges to zero, that is, the car position signal x car follows the car position target signal x ref .
  • the car position control signal x cont is input to the speed control process as the speed target signal v ref .
  • the car position control device 10 performs control so that the car position error signal x err converges to zero. Therefore, the car position signal x car follows the car position target signal x ref without error.
  • this control is a type 1 position control loop. Therefore, even if a delay in detecting the absolute position of the car 5 occurs, an increase in control deviation is suppressed.
  • FIG. 2 is a block diagram showing a target signal generation section of the car position control device in the first embodiment.
  • the target signal generation section 16 includes a signal holding section 161, a third subtraction section 162, a transition time calculation section 163, a position pattern generation section 164, an error calculation section 165, a correction pattern generation section 166, and a target A signal calculation section 167 is provided.
  • the signal holding section 161 has a sample and hold function.
  • a car position signal x car is input to the signal holding unit 161 .
  • the signal holding unit 161 holds the car position signal x car at the landing position.
  • the signal holding unit 161 holds the value of the car position signal x car at the previous landing position until the car 5 arrives at the next landing position.
  • the signal holding unit 161 outputs the held value as an initial car position signal x ini indicating the position of the car 5.
  • the third subtraction unit 162 is a subtracter that performs subtraction processing on the input signal.
  • the third subtraction unit 162 receives the initial car position signal x ini from the signal holding unit 161 .
  • the next floor position signal x tgt indicating the landing position on the next floor is input to the third subtractor 162.
  • the third subtraction unit 162 subtracts the initial car position signal x ini from the next floor position signal x tgt , and outputs the ascending/descending distance signal x dis .
  • the ascending/descending distance signal x dis indicates the distance that the car 5 moves when moving to the next floor.
  • the vertical distance signal x dis is input to the transition time calculation unit 163 from the third subtraction unit 162 .
  • the transition time calculation unit 163 determines the time of transition from one control mode A to the next control mode B for a plurality of control modes of the car 5 based on the ascending/descending distance signal x dis.
  • a transition time T AB is calculated.
  • the transition time calculation unit 163 calculates each transition time set including a plurality of transition times necessary for transitioning between a plurality of control modes.
  • the transition time calculation unit 163 outputs a signal indicating a set of transition times.
  • a signal indicating a set of transition times is input to the position pattern generation unit 164 from the transition time calculation unit 163.
  • the position pattern generation unit 164 generates and outputs a position pattern based on the set of transition times.
  • the position pattern is a change in the position of the car 5 over time from when the car 5 starts moving up and down the distance until it stops.
  • the position pattern is expressed by a numerical value corresponding to the position of car 5 at a certain time.
  • the position of the car 5 is a relative position with respect to the position of the departure floor.
  • the start time of the position pattern is set to the time when the car 5 starts moving.
  • the start time is the first transition time included in the transition times.
  • the end time of the position pattern is the expected time when the car 5 will arrive at the next floor position.
  • the end time is the last transition time included in the set of transition times.
  • a signal indicating a set of transition times is input to the error calculation unit 165 from the transition time calculation unit 163.
  • the error calculation unit 165 calculates the value of the discretization error.
  • the discretization error is a distance error that may occur when a position pattern is generated, depending on the calculation cycle of the processing circuit, the sampling cycle of each numerical value, the numerical processing method employed in the calculation, and the like.
  • the discretization error is an error caused by the discretization process executed during the calculation.
  • the distance indicated by the discretization error indicates the difference between the distance that the car 5 moves according to the position pattern generated by the position pattern generation unit 164 and the inter-floor distance indicated by x dis .
  • the error calculation unit 165 outputs a signal indicating the discretization error.
  • a signal indicating a set of transition times is input to the correction pattern generation unit 166 from the transition time calculation unit 163.
  • a signal indicating a discretization error is input to the correction pattern generation unit 166 from the error calculation unit 165.
  • the correction pattern generation unit 166 generates and outputs an error correction pattern based on the set of transition times and the discretization error. Similar to the position pattern, the error correction pattern is the time transition of the position of the car 5 from when the car 5 starts moving by the distance of the discretized error until it stops. For example, the error correction pattern is expressed by a numerical value corresponding to the position of the car 5 at a certain time. The position of the car 5 is a relative position with respect to 0.
  • the error correction pattern is a pattern for correcting discretization errors.
  • the initial car position signal x ini is input to the target signal calculation unit 167 from the signal holding unit 161 .
  • a signal indicating a position pattern is input to the target signal calculation unit 167 from the position pattern generation unit 164.
  • a signal indicating an error correction pattern is input to the target signal calculation section 167 from the correction pattern generation section 166. Note that a signal indicating the position of the car 5 shown in the position pattern and a signal indicating the position of the car 5 shown in the error correction pattern at a certain time may be input to the target signal calculation unit 167.
  • the target signal calculation unit 167 superimposes the position pattern and the error correction pattern to generate a corrected position pattern.
  • the corrected position pattern is a position pattern in which the position of the car 5 shown in the position pattern is corrected by the position of the car 5 shown in the error correction pattern.
  • the target signal calculation unit 167 adds the initial car position signal x ini to the position of the car 5 shown in the corrected position pattern.
  • the target signal calculation unit 167 generates and outputs a signal indicating the position where the initial car position signal x ini is added to the corrected position pattern as a car position target signal x ref every prescribed period.
  • the prescribed cycle is a calculation cycle of processing performed by the target signal generation unit 16.
  • the process of generating a position pattern is realized by a processor executing a program included in software.
  • the processor performs execution processing every specific calculation cycle.
  • the position pattern is a function of time, and the calculation period is considered a sampling period, so a sampling error with respect to an ideal value may occur in the calculation of the position pattern.
  • the numbers used in the calculation and the numbers indicating the result of the calculation are rounded off to the nearest whole number so that they become the specified significant figures.
  • the transition time value may be converted into an integer. Therefore, the generated position pattern may include quantization errors. Therefore, the position pattern may include discretization errors including such sampling errors and quantization errors.
  • the influence of the discretization error is most noticeable when the position pattern is calculated in the constant velocity mode i in which the velocity of the car 5 takes the maximum value.
  • the total moving distance x mode_i of the car 5 in the constant speed mode i is represented by (1) below.
  • v max is the maximum speed of car 5 in constant speed mode i.
  • T ij is the time of transition from constant velocity mode i to the next mode j.
  • T hi is the time at which the mode h before the constant velocity mode i transitions to the constant velocity mode i.
  • T ij and T hi are calculated as integer values.
  • the term (T ij ⁇ T hi ) in equation (1) may include a discretization time error. This is due to the difference between the true values of T ij and T hi and the integer values. If the discretized time error that is the difference is ⁇ t e_i , the calculation result of the total moving distance x mode_i in constant velocity mode i is the individual discretized error x e_i with respect to the true value that the car 5 should move in mode i. The value includes.
  • the individual discretization error x e_i is expressed by the following equation (2).
  • Such individual discretization errors may occur in each of a plurality of control modes in the position pattern.
  • the individual discretization error can be calculated from the time that the corresponding control mode lasts.
  • the discretization error x e is the sum of individual discretization errors occurring in a plurality of control modes. That is, the discretization error x e is a discretization error included in the entire position pattern.
  • the error calculation unit 165 calculates a discretization error corresponding to a certain position pattern from a set of transition times based on the above principle.
  • FIG. 3 is a diagram showing an example of a control mode, a position pattern, and an error correction pattern set by the car position control device in the first embodiment.
  • FIG. 3 represents the relationship between multiple control modes and transition times. That is, (a) of FIG. 3 shows the time transition of a plurality of control modes.
  • the vertical axis is the mode number of the control mode.
  • the horizontal axis is time.
  • the horizontal time axis includes both time T [s: seconds] corresponding to the position pattern and time T' [s: seconds] corresponding to the error correction pattern.
  • Time 0, which is the starting point of time T and time T', is the same timing.
  • FIG. 3(b) represents the relationship between the acceleration of the car 5 and time. That is, FIG. 3(b) shows an acceleration pattern that is a time course of the acceleration of the car 5. The vertical axis is the acceleration of the car 5. The horizontal axis is time T corresponding to the position pattern.
  • FIG. 3(c) of FIG. 3 represents the relationship between the speed of the car 5 and time. That is, FIG. 3(c) shows a speed pattern that is the time course of the speed of the car 5. The vertical axis is the speed of car 5. The horizontal axis is time T corresponding to the position pattern.
  • FIG. 3(d) is a position pattern.
  • the vertical axis is a numerical value indicating the position of the car 5.
  • the horizontal axis is time T corresponding to the position pattern.
  • FIG. 3(e) is an error correction pattern.
  • the vertical axis is a numerical value indicating the position of the car 5.
  • the horizontal axis is time T' corresponding to the error correction pattern.
  • the speed value at each time in the speed pattern corresponds to a value obtained by differentiating the position pattern at each time.
  • the acceleration value at each time in the acceleration pattern corresponds to a value obtained by differentiating the velocity pattern at each time.
  • Mode 0 is a mode in which the car 5 is stopped at a certain floor position. At time T 01 when car 5 departs from the floor, mode 0 transitions to mode 1.
  • Mode 1 is an acceleration jerk mode. Jerk is the amount of change in acceleration over time. Jerk is also expressed as jump or jerk. In mode 1, the jerk is a constant positive value. In mode 1, the acceleration of car 5 increases in proportion to time. Mode 1 continues until time T12 , when the specified maximum acceleration is reached.
  • Mode 1 transitions to mode 2.
  • Mode 2 is a constant acceleration mode. In mode 2, the jerk is zero. The acceleration takes a constant value at the maximum acceleration. The speed of car 5 increases proportionally with time.
  • Mode 3 is an accelerated rounding mode.
  • the jerk is a constant negative value.
  • the acceleration decreases from the maximum acceleration.
  • Mode 3 continues until time T34 when the acceleration becomes zero.
  • Mode 4 is a constant velocity mode. In mode 4, the velocity takes a constant value at the maximum velocity v max .
  • Mode 4 transitions to mode 5.
  • Mode 5 is a deceleration rounding mode.
  • the jerk is a constant negative value. Acceleration decreases from 0. The speed decreases from the maximum speed. Mode 5 continues until time T 56 , when the specified minimum acceleration is reached.
  • Mode 5 transitions to mode 6.
  • Mode 6 is a constant acceleration mode of deceleration. In mode 5, the jerk is zero. The acceleration takes a constant value at the minimum acceleration. The speed of car 5 decreases in proportion to time.
  • Mode 7 is the landing jerk mode.
  • the jerk is a constant positive value.
  • the acceleration increases from the minimum acceleration towards zero.
  • the speed of car 5 decreases slowly.
  • Mode 7 continues until time T70 when the speed of car 5 becomes zero. That is, at time T70 , the car 5 reaches the landing position of the next destination floor and stops.
  • the position pattern changes as shown in (d).
  • the acceleration, velocity, and position in each mode all change continuously.
  • the acceleration changes continuously. That is, the acceleration does not take discontinuous values at each transition time. Therefore, the waveforms indicated by the speed and position change continuously and smoothly without any step at any time.
  • a comfortable ride can be provided to the passengers of car 5.
  • the position pattern is generated based on a calculation rule in which acceleration, velocity, and position take into account the waveforms shown in FIG. 3.
  • the position pattern is a cubic function with time as a parameter.
  • the transition time calculation unit 163 calculates each transition time based on the vertical distance that the car 5 moves. At this time, the transition time calculation unit 163 calculates each transition time so that a position pattern can be generated based on the calculation rule.
  • mode 8 is a control mode that shows an error correction pattern.
  • Mode 8 is executed in parallel with Mode 1 to Mode 7, which are position pattern control modes.
  • Mode 8 begins at time T 08 between time T 34 and time T 45 .
  • Mode 8 continues until time T 80 , which is the same as time T 70 . That is, while mode 8 is being executed, modes 5 to 7 are executed.
  • the time period from mode 5 to mode 7 is a time period in which acceleration is negative as a deceleration range, and is a time period in which speed changes.
  • mode 8 is executed during a time period when the acceleration changes in the position pattern.
  • mode 8 may be executed during the time period of the acceleration range, which is the time period of mode 1 to mode 3.
  • mode 8 may be executed in any time period other than the time period of the acceleration/deceleration range indicating the deceleration range or the acceleration range.
  • Time T 08 is set to a time that is a correction time T cr back from time T 70 .
  • the correction time T cr is the total time for executing the error correction pattern.
  • the correction pattern generation unit 166 generates the correction time T cr at a time when time T 08 is immediately before time T 45 so that mode 8 is executed during the time period shown in FIG. 3 .
  • the target signal calculation unit 167 generates a corrected position pattern by superimposing the waveform of the position pattern and the waveform of the error correction pattern.
  • FIG. 4 is a diagram showing an example of an error correction pattern set by the car position control device in the first embodiment.
  • FIG. 4 shows the waveform of the time course of each numerical value in the error correction pattern.
  • FIG. 4(a) shows the relationship between the jerk of the car 5 and time in the error correction pattern. That is, (a) of FIG. 4 shows a jerk pattern that is a temporal change in jerk of car 5.
  • the vertical axis is the jerk of car 5 in the error correction pattern.
  • the horizontal axis is time T' corresponding to the error correction pattern.
  • FIG. 4(b) shows an acceleration pattern that is the time course of the acceleration of the car 5.
  • the vertical axis is the acceleration of the car 5 in the error correction pattern.
  • the horizontal axis is time T' corresponding to the error correction pattern.
  • FIG. 4(c) shows a speed pattern that is the time course of the speed of the car 5.
  • the vertical axis is the speed of the car 5 in the error correction pattern.
  • the horizontal axis is time T' corresponding to the error correction pattern.
  • FIG. 4(d) is an error correction pattern.
  • the vertical axis is a numerical value indicating the position of the car 5 in the error correction pattern.
  • the horizontal axis is time T' corresponding to the error correction pattern.
  • the correction pattern generation unit 166 calculates the jerk value J e of the error correction pattern from the discretization error x e and the correction time T cr . For example, the correction pattern generation unit 166 calculates the jerk value J e based on the following equation (3).
  • the correction pattern generation unit 166 generates a jerk waveform that causes the jerk value to transition only in a prescribed section.
  • the correction pattern generation unit 166 generates a waveform at the position of the error correction pattern by performing third-order time integration on the jerk waveform in each section. Note that with respect to time, acceleration and velocity are the first-order integral value of jerk and the second-order integral value of jerk, respectively.
  • the error correction pattern is calculated as the third-order integral value of the jerk waveform
  • the acceleration changes continuously. That is, the acceleration does not take discontinuous values between sections. Therefore, similarly to the position pattern, the waveforms indicated by the velocity and position change continuously and smoothly without any step at any time within the defined time range.
  • the function of the acceleration pattern which is a second-order differentiated function of the error correction pattern, is set so that the value becomes zero at both ends of the defined time range. That is, the integral constant when the jerk waveform is first-order integrated is set as zero, and the boundary condition of the acceleration pattern is set as zero. Therefore, the acceleration of the error correction pattern does not change discontinuously within the defined time range.
  • the jerk waveform changes in four steps in the form of a rectangular wave.
  • Mode 8 is divided into four sections from the first section to the fourth section.
  • the times of the four sections are each a quarter of the correction time T cr .
  • the first section is a time period from time T08 to time t1 .
  • the jerk becomes the maximum jerk value +J e .
  • the second section is a time period from time t1 to time t2 . In the second interval, the jerk becomes the minimum jerk value -J e .
  • the third section is a time period from time t2 to time t3 . In the third interval, the jerk becomes the minimum jerk value -J e .
  • the fourth section is a time period from time t3 to time T80 . In the fourth section, the jerk becomes the maximum jerk value +J e .
  • the fourth section ends at time T80 , and the jerk becomes 0.
  • an error correction pattern having a time-varying waveform as shown in FIG. 4 is generated.
  • FIG. 5 is a bubble chart for explaining an overview of state transitions of control modes set by the car position control device in the first embodiment.
  • the bubble chart shown in FIG. 5 corresponds to the example shown in FIGS. 3 and 4.
  • "Stand by" means mode 0, which is a standby state.
  • state transition of the control mode is set such that state transition A shown by the outer annular body in FIG. 5 and state transition B shown by the inner annular body coexist. State transition A and state transition B are independent of each other. State transition A is a bubble chart corresponding to a position pattern. State transition B is a bubble chart corresponding to the error correction pattern.
  • state transition A the number of modes, which is the number of states, is eight.
  • the control mode transitions from the standby state to mode 1.
  • time T 01 is the time when a command to generate a position pattern is issued to the car position control device 10 from a control command system higher than the car position control device 10 .
  • mode 1 the control modes sequentially transition to mode 7.
  • mode 7 the standby state at time T70 .
  • state transition B the number of modes, which is the number of states, is two.
  • the control mode of the error correction pattern transitions from the standby state to mode 8.
  • the control mode transitions from mode 8 to the standby state.
  • mode 8 transitions independently of state transition A.
  • time T 80 coincides with time T 70
  • mode 8 may transition from the standby state at any time period included in state transition A. This is because the error correction pattern realized in mode 8 is generated as a pattern that does not generate unnecessary vibrations of the car 5 by itself.
  • time T 08 may coincide with time T 01 . That is, the mode may be changed to mode 8 in a state where the car 5 is accelerating immediately after starting.
  • FIG. 6 is a flowchart for explaining an overview of the operation of the car position control device in the first embodiment.
  • the flowchart in FIG. 6 starts when a command to generate a position pattern is generated from a higher order command type.
  • a floor position signal x tgt indicating a target floor position is input to the target signal generation unit 16 of the car position control device 10.
  • the target signal generation unit 16 calculates the vertical distance.
  • the target signal generation unit 16 calculates a set of transition times.
  • step S2 the target signal generation unit 16 calculates a discretization error corresponding to the position pattern.
  • step S3 the process of step S3 is performed.
  • the target signal generation unit 16 initializes the processing time of the position pattern. Specifically, the target signal generation unit 16 sets the time T corresponding to the position pattern to 0.
  • step S4 the process of step S4 is performed.
  • the target signal generation unit 16 initializes the processing time of the error correction pattern. Specifically, the target signal generation unit 16 sets time T' corresponding to the error correction pattern to zero.
  • step S5 to S8 The process in which state transition B is performed corresponds to steps S9 to S11. Note that each process from step S5 to S11 is performed every calculation cycle of the processor of the car position control device 10.
  • step S5 After the process of step S4 is performed, the process of step S5 is performed.
  • a variable T which is the position pattern processing time, is counted up. Specifically, the time when 1 is added to T becomes the next variable T.
  • step S6 the target signal generation unit 16 generates a position pattern.
  • step S7 the target signal generation unit 16 generates and outputs a car position target signal x ref , which is obtained by adding the initial car position signal x ini to the superposition of the position pattern and the error correction pattern.
  • step S8 the target signal generation unit 16 determines whether the variable T is equal to or greater than the value of time T70 , which is the end time of the position pattern.
  • step S8 if the variable T is smaller than the value at time T70 , the processes from step S5 onwards are performed. That is, the processing from steps S5 to S8 is looped.
  • step S8 if the variable T is equal to or greater than the value at time T70 , the target signal generation unit 16 ends the process in which state transition A is performed.
  • steps S5 to S8 a position pattern waveform is generated. Further, in steps S5 to S8, a waveform indicating the time course of the car position target signal x ref is generated.
  • step S9 a variable T', which is the processing time of the error correction pattern, is counted up. Specifically, the time when 1 is added to T' becomes the next variable T'.
  • step S10 After that, the process of step S10 is performed. Note that the process in step S10 is started and completed before the process in step S7.
  • the target signal generation unit 16 generates an error correction pattern.
  • the error correction pattern is used in the process of step S7.
  • step S11 the target signal generation unit 16 determines whether the variable T' is equal to or greater than the value of time T80 , which is the end time of the error correction pattern.
  • step S11 if the variable T' is smaller than the value at time T80 , the processes from step S9 onwards are performed. That is, the processing from steps S9 to S11 is looped.
  • step S11 if the variable T' is equal to or greater than the value at time T80 , the target signal generation unit 16 ends the process in which state transition B is performed.
  • the car position control device 10 performs control to cause the position of the car 5 detected by the APS, which is the position detector 8, to follow the target position.
  • the car position control device 10 includes a position pattern generation section 164, an error calculation section 165, a correction pattern generation section 166, and a target signal calculation section 167.
  • the car position control device 10 calculates a discretization error that occurs when generating a position pattern before a target position is generated.
  • the car position control device 10 reflects the discretization error when generating the target position from the position pattern.
  • the car position control device 10 generates an error correction pattern based on the discretization error and superimposes it on the position pattern.
  • the car position control device 10 generates a target position by reflecting the position of the car 5 on the previous floor in the corrected position pattern that is the superimposed result. Therefore, errors due to positional patterns can be suppressed. In particular, when applied to a car position control device in which arithmetic processing is performed in integer type rather than floating point type due to processor performance, the error can be effectively suppressed. As a result, the accuracy of position control of the car 5 can be improved. Furthermore, the error correction pattern is not executed temporally before or after the position pattern, but is superimposed on the position pattern. Therefore, it is possible to suppress an increase in the travel time of the car 5 due to the correction of the discretization error. As a result, passenger convenience is improved.
  • the error correction pattern is a function of time.
  • the acceleration pattern obtained by second-order differentiation of the function of the error correction pattern is continuous at any time in the defined time range.
  • the acceleration pattern has a value of zero at both ends of the defined time range. That is, in the error correction pattern, the time transition of acceleration becomes a smooth waveform that does not change discontinuously.
  • the time course of acceleration changes discontinuously, dominant car vibrations that can be felt by passengers occur in the car 5, and the ride comfort of the car 5 deteriorates. In this case, passengers feel anxious.
  • the error correction pattern according to the present disclosure can suppress the occurrence of such deterioration of ride comfort.
  • the position pattern and error correction pattern are functions of time.
  • the position pattern has an acceleration range that is a time period in which the acceleration value is not zero, and an acceleration/deceleration range that is a deceleration range.
  • the time range of the error correction pattern is defined to include the time period of the acceleration range or deceleration range. That is, the movement for correcting the discretization error is executed in parallel while the car 5 is accelerating or decelerating. Therefore, compared to the case where the movement for correcting the discretization error is executed separately from the position pattern, the moving time of the car 5 can be shortened. Furthermore, the car 5 needs to be accelerated and decelerated in the error correction pattern for correcting the discretization error.
  • the acceleration and deceleration in the error correction pattern are masked by the acceleration and deceleration in the position pattern. That is, it is possible to prevent passengers from feeling acceleration and deceleration in the error correction pattern. As a result, deterioration in the ride comfort of the car 5 due to the error correction pattern can be suppressed.
  • the waveform of the error correction pattern does not have to be the waveform shown in FIG. 4 as long as it does not induce vibrations of a specified level or higher in the car 5.
  • FIG. 7 is a hardware configuration diagram of the car position control device in the first embodiment.
  • Each function of the car position control device 10 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 100a and at least one memory 100b.
  • the processing circuitry includes at least one dedicated hardware 200.
  • each function of the car position control device 10 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of software and firmware is stored in at least one memory 100b. At least one processor 100a realizes each function of the car position control device 10 by reading and executing a program stored in at least one memory 100b. At least one processor 100a is also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP.
  • the at least one memory 100b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, etc., a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, etc.
  • the processing circuitry comprises at least one dedicated hardware 200
  • the processing circuitry may be implemented, for example, in a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. Ru.
  • each function of the car position control device 10 is realized by a processing circuit.
  • each function of the car position control device 10 is realized by a processing circuit.
  • a part of each function of the car position control device 10 may be realized by dedicated hardware 200, and other parts may be realized by software or firmware.
  • the functions of the current control section 15 are realized by a processing circuit as dedicated hardware 200, and functions other than the functions of the current control section 15 are realized by at least one processor 100a using a program stored in at least one memory 100b. It may also be realized by reading and executing.
  • the processing circuit realizes each function of the car position control device 10 using the hardware 200, software, firmware, or a combination thereof.
  • the car position control device according to the present disclosure can be used in an elevator system.
  • Elevator system 1a Mechanical configuration, 2 Hoistway, 3a Motor, 3b Sheave, 4 Main rope, 5 Car, 6 Counterweight, 7 Angle detector, 8 Position detector, 9 Control panel, 1 0 Car position control Device, 11 speed calculation unit, 12 first subtraction unit, 13 speed control unit, 14 current measurement unit, 15 current control unit, 16 target signal generation unit, 17 second subtraction unit, 18 car position control unit, 161 signal holding unit , 162 Third subtraction unit, 163 Transition time calculation unit, 164 Position pattern generation unit, 165 Error calculation unit, 166 Correction pattern generation unit, 167 Target signal calculation unit, 100a Processor, 100b Memory, 200 Hardware

Abstract

Provided is a car position control device which can suppress an error caused by a position pattern. The car position control device controls the position of a car to follow a target position and comprises: a position pattern generation unit which generates a position pattern that represents a temporal transition of the position of the car from after the car starts to move a lifting/lowering distance until the car stops when the car moves the lifting/lowering distance towards a next floor; an error calculation unit which calculates a discretization error generated when the position pattern generating calculation is performed; a correction pattern generation unit which generates an error correction pattern that represents the temporal transition of the car position after the car starts to move the distance of the discretization error calculated by the error calculation unit until the car stops; and a target signal calculation unit which calculates the target position by reflecting the car position output from the position detector when the car stops at the floor prior to the corrected position pattern in which the position pattern overlaps the error correction pattern.

Description

かご位置制御装置Car position control device
 本開示は、エレベーターのかご位置制御装置に関する。 The present disclosure relates to an elevator car position control device.
 特許文献1は、エレベーターシステムを開示する。当該エレベーターシステムは、かごの絶対位置を常時検出する位置検出器であるAPS(Absolute Position Sensor)を備える。当該エレベーターシステムでは、かごの目標位置を生成し、APSの検出結果であるかごの測定位置を当該目標位置に追従させるかご位置制御が実現され得る。 Patent Document 1 discloses an elevator system. The elevator system includes an APS (Absolute Position Sensor) that is a position detector that constantly detects the absolute position of the car. In this elevator system, car position control can be realized in which a target position of the car is generated and a measured position of the car, which is a detection result of the APS, is made to follow the target position.
日本特許第6797742号公報Japanese Patent No. 6797742
 特許文献1に記載のエレベーターシステムによって実現されるかご位置制御において、かごの目標位置を生成するために、かごが移動を開始してから停止するまでの位置の時間推移である位置パターンが生成される必要がある。位置パターンは、演算用のプロセッサがソフトウェアに基づいて演算することで生成される。しかしながら、位置パターンが時間の関数であるため、当該位置パターンが生成される際、プロセッサの演算周期に基づく離散化誤差が発生し得る。このため、位置パターンによる移動距離と実際の昇降距離との間に誤差が発生し得る。 In the car position control realized by the elevator system described in Patent Document 1, in order to generate the target position of the car, a position pattern that is a time transition of the position from when the car starts moving until it stops is generated. It is necessary to The position pattern is generated by a calculation processor based on software. However, since the position pattern is a function of time, when the position pattern is generated, a discretization error based on the calculation cycle of the processor may occur. For this reason, an error may occur between the moving distance according to the position pattern and the actual lifting distance.
 本開示は、上述の課題を解決するためになされた。本開示の目的は、位置パターンによる誤差を抑制することができるかご位置補正装置を提供することである。 The present disclosure has been made to solve the above problems. An object of the present disclosure is to provide a car position correction device that can suppress errors caused by position patterns.
 本開示に係るかご位置制御装置は、エレベーターのかごの位置を検出する位置検出器から出力される前記かごの位置を目標位置に追従させるように前記かごを制御するかご位置制御装置であって、前記かごが次の階床に向かって昇降距離を移動する際に、前記昇降距離の移動を開始してから停止するまでの前記かごの位置の時間推移が示された位置パターンを生成する位置パターン生成部と、前記位置パターンが生成される演算が行われる際に発生する誤差であって、前記位置パターンに示される距離と前記昇降距離との離散化誤差を演算する誤差演算部と、前記かごが前記誤差演算部によって演算された前記離散化誤差の距離の移動を開始してから停止するまでの前記かごの位置の時間推移が示された誤差補正パターンを生成する補正パターン生成部と、前記位置パターンと前記誤差補正パターンとが重畳された補正後の位置パターンに、前記かごが前の階床に停車している際に前記位置検出器から出力された前記かごの位置を反映することで、前記目標位置を演算する目標信号演算部と、を備えた。 A car position control device according to the present disclosure is a car position control device that controls the car so that the position of the car output from a position detector that detects the position of the elevator car follows a target position, A position pattern that generates a position pattern in which the time transition of the position of the car from when the car starts moving up and down the distance until it stops when the car moves the up and down distance toward the next floor. a generation unit; an error calculation unit that calculates a discretization error between the distance indicated in the position pattern and the up/down distance, which is an error that occurs when the calculation for generating the position pattern is performed; a correction pattern generation unit that generates an error correction pattern indicating a time transition of the position of the car from when it starts moving to when it stops moving the distance of the discretized error calculated by the error calculation unit; By reflecting the position of the car output from the position detector when the car is stopped at the previous floor in the corrected position pattern in which the position pattern and the error correction pattern are superimposed. , and a target signal calculation unit that calculates the target position.
 本開示によれば、位置パターンと誤差補正パターンとが重畳された補正後の位置パターンに基づいて目標位置が演算される。このため、位置パターンによる誤差を抑制することができる。 According to the present disclosure, the target position is calculated based on the corrected position pattern in which the position pattern and the error correction pattern are superimposed. Therefore, errors due to positional patterns can be suppressed.
実施の形態1におけるかご位置補正装置が適用されるエレベーターシステムの概要を示す図である。1 is a diagram illustrating an overview of an elevator system to which a car position correction device according to a first embodiment is applied. 実施の形態1におけるかご位置制御装置の目標信号生成部を示すブロック図である。FIG. 2 is a block diagram showing a target signal generation section of the car position control device in Embodiment 1. FIG. 実施の形態1におけるかご位置制御装置が設定する制御モードと位置パターンと誤差補正パターンとの例を示す図である。FIG. 3 is a diagram showing an example of a control mode, a position pattern, and an error correction pattern set by the car position control device in the first embodiment. 実施の形態1におけるかご位置制御装置が設定する誤差補正パターンの例を示す図である。FIG. 3 is a diagram showing an example of an error correction pattern set by the car position control device in the first embodiment. 実施の形態1におけるかご位置制御装置が設定する制御モードの状態遷移の概要を説明するためのバブルチャートである。3 is a bubble chart for explaining an overview of state transitions of control modes set by the car position control device in Embodiment 1. FIG. 実施の形態1におけるかご位置制御装置の動作の概要を説明するためのフローチャートである。3 is a flowchart for explaining an overview of the operation of the car position control device in Embodiment 1. FIG. 実施の形態1におけるかご位置制御装置のハードウェア構成図である。1 is a hardware configuration diagram of a car position control device in Embodiment 1. FIG.
 本開示を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略される。 Embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings. In each figure, the same or corresponding parts are given the same reference numerals. Duplicate explanations of the relevant parts will be simplified or omitted as appropriate.
実施の形態1.
 図1は実施の形態1におけるかご位置補正装置が適用されるエレベーターシステムの概要を示す図である。
Embodiment 1.
FIG. 1 is a diagram showing an outline of an elevator system to which a car position correction device according to the first embodiment is applied.
 図1のエレベーターシステム1において、破線1aで囲まれた構成は、機械的な構成である。エレベーターシステム1において、昇降路2は、図示されない建築物の各階を貫く。図示されない機械室は、昇降路2の直上に設けられる。モータ3aは、機械室に設けられる。シーブ3bは、モータ3aの回転軸に連結される。 In the elevator system 1 in FIG. 1, the configuration surrounded by a broken line 1a is a mechanical configuration. In the elevator system 1, a hoistway 2 passes through each floor of a building (not shown). A machine room (not shown) is provided directly above the hoistway 2. The motor 3a is provided in the machine room. The sheave 3b is connected to the rotating shaft of the motor 3a.
 主ロープ4は、シーブ3bに巻き掛けられる。かご5は、昇降路2の内部に設けられる。かご5は、主ロープ4の一側に吊るされる。釣合おもり6は、昇降路2の内部に設けられる。釣合おもり6は、主ロープ4の他側に吊るされる。 The main rope 4 is wound around the sheave 3b. The car 5 is provided inside the hoistway 2. The car 5 is suspended on one side of the main rope 4. The counterweight 6 is provided inside the hoistway 2. A counterweight 6 is suspended from the other side of the main rope 4.
 エレベーターシステム1は、角度検出器7と位置検出器8と制御盤9とを更に備える。 The elevator system 1 further includes an angle detector 7, a position detector 8, and a control panel 9.
 角度検出器7は、モータ3aに取り付けられる。例えば、角度検出器7は、エンコーダ(ENC)である。角度検出器7は、モータ3aの回転軸の回転角度を検出する。角度検出器7は、検出した回転角度に対応する信号を出力する。 The angle detector 7 is attached to the motor 3a. For example, the angle detector 7 is an encoder (ENC). Angle detector 7 detects the rotation angle of the rotation shaft of motor 3a. The angle detector 7 outputs a signal corresponding to the detected rotation angle.
 例えば、位置検出器8は、かご5に設けられる。位置検出器8は、昇降路2におけるかご5の絶対位置を常時検出し得る。例えば、位置検出器8は、昇降路2の上端から下端にわたって設けられた図示されない被検出体を読み取ることで、かご5の絶対位置を検出する。かご5の絶対位置は、昇降路2におけるかご5の高さの値である。なお、かご5の絶対位置は、かご5の建物に対する相対位置とも表現し得る。位置検出器8は、APSとも呼称される。位置検出器8は、検出したかご5の絶対位置を示す信号を出力する。 For example, the position detector 8 is provided in the car 5. The position detector 8 can detect the absolute position of the car 5 in the hoistway 2 at all times. For example, the position detector 8 detects the absolute position of the car 5 by reading a detected object (not shown) provided from the upper end to the lower end of the hoistway 2 . The absolute position of the car 5 is the height of the car 5 in the hoistway 2. Note that the absolute position of the car 5 can also be expressed as the relative position of the car 5 with respect to the building. The position detector 8 is also called APS. The position detector 8 outputs a signal indicating the detected absolute position of the car 5.
 制御盤9は、機械室に設けられる。制御盤9は、モータ3aと電気的に接続される。制御盤9は、エレベーターシステム1を全体的に制御し得る。 The control panel 9 is provided in the machine room. The control panel 9 is electrically connected to the motor 3a. The control panel 9 can control the elevator system 1 as a whole.
 かご5が通常運行する場合、制御盤9は、モータ3aに駆動電流を供給する。モータ3aは、駆動電流に応じて回転軸を回転させる。シーブ3bは、モータ3aの回転軸と同期して回転する。主ロープ4は、シーブ3bの回転に追従して移動する。かご5および釣合おもり6は、主ロープ4の移動に追従して、互いに反対方向に昇降する。角度検出器7は、モータ3aの回転軸の回転角度を示す角度信号θを制御盤9に入力する。位置検出器8は、かご5の絶対位置を示すかご位置信号xcarを作成し、制御盤9に入力する。この際、例えば、位置検出器8は、制御盤9の内部の演算周期よりも短い周期でかご位置信号xcarを作成し、制御盤9に入力する。 When the car 5 normally operates, the control panel 9 supplies a drive current to the motor 3a. The motor 3a rotates a rotating shaft according to the drive current. The sheave 3b rotates in synchronization with the rotating shaft of the motor 3a. The main rope 4 moves following the rotation of the sheave 3b. The car 5 and the counterweight 6 follow the movement of the main rope 4 and move up and down in opposite directions. The angle detector 7 inputs into the control panel 9 an angle signal θm indicating the rotation angle of the rotation shaft of the motor 3a. The position detector 8 creates a car position signal x car indicating the absolute position of the car 5 and inputs it to the control panel 9 . At this time, for example, the position detector 8 creates a car position signal x car at a cycle shorter than the internal calculation cycle of the control panel 9 and inputs it to the control panel 9.
 制御盤9は、入力された角度信号θおよびかご位置信号xcarの少なくとも一方を用いて、かご5の速度および位置を制御する。制御盤9は、ある階床から次の階床へかご5を移動させる場合、かご5の速度を複数の制御モードに基づいて制御する。例えば、かご5の速度は、加速度が一定値をとる定加速度モード、速度が一定値をとる等速モード、等のモードが切り替えられながら制御される。例えば、かご5が図示されない乗場の着床位置に着床する際に、制御盤9は、当該着床位置への着床制御を行う。 The control panel 9 controls the speed and position of the car 5 using at least one of the input angle signal θ m and the car position signal x car . The control panel 9 controls the speed of the car 5 based on a plurality of control modes when moving the car 5 from one floor to the next floor. For example, the speed of the car 5 is controlled by switching between modes such as a constant acceleration mode in which the acceleration is a constant value, a constant velocity mode in which the speed is a constant value, and the like. For example, when the car 5 lands at a landing position in a landing (not shown), the control panel 9 controls the car 5 to land at the landing position.
 制御盤9は、かご5の位置を制御する装置として、かご位置制御装置10を備える。 The control panel 9 includes a car position control device 10 as a device for controlling the position of the car 5.
 例えば、かご位置制御装置10は、電気基板内に設けられた各要素によって構成される。各要素は、演算用の処理回路に含まれるプロセッサよって、処理を実行する。なお、各要素には、演算機能を有さない処理回路が含まれてもよい。かご位置制御装置10は、モータ3aと電気的に接続される。 For example, the car position control device 10 is composed of elements provided within an electric board. Each element executes processing by a processor included in an arithmetic processing circuit. Note that each element may include a processing circuit that does not have an arithmetic function. The car position control device 10 is electrically connected to the motor 3a.
 かご位置制御装置10は、かご5の目標位置を生成する。かご位置制御装置10には、位置検出器8からかご5の絶対位置を示す信号が入力される。かご位置制御装置10は、かご5の絶対位置を目標位置に追従させるよう、モータ3aの制御を行う。具体的には、かご位置制御装置10は、かご5の位置制御処理によって、速度目標信号vrefを生成する。かご位置制御装置10は、かご5の速度制御処理によって、速度目標信号vrefに追従するようなトルク電流目標信号iqv_contを生成する。かご位置制御装置10は、トルク電流目標信号iqv_contに応じてモータ3aに駆動電流を供給する。 The car position control device 10 generates a target position for the car 5. A signal indicating the absolute position of the car 5 is inputted to the car position control device 10 from the position detector 8 . The car position control device 10 controls the motor 3a so that the absolute position of the car 5 follows the target position. Specifically, the car position control device 10 generates the speed target signal v ref through position control processing of the car 5 . The car position control device 10 generates a torque current target signal iq v_cont that follows the speed target signal v ref by performing speed control processing for the car 5 . The car position control device 10 supplies a drive current to the motor 3a according to the torque current target signal iq v_cont .
 かご位置制御装置10は、速度演算部11と第1減算部12と速度制御部13と電流測定部14と電流制御部15と目標信号生成部16と第2減算部17とかご位置制御部18とを備える。 The car position control device 10 includes a speed calculation section 11 , a first subtraction section 12 , a speed control section 13 , a current measurement section 14 , a current control section 15 , a target signal generation section 16 , a second subtraction section 17 , and a car position control section 18 Equipped with.
 速度制御処理は、主に速度演算部11と第1減算部12と速度制御部13と電流測定部14と電流制御部15とによって行われる。 The speed control process is mainly performed by the speed calculation section 11, the first subtraction section 12, the speed control section 13, the current measurement section 14, and the current control section 15.
 速度演算部11には、位置検出器8からの角度信号θが入力される。速度演算部11は、角度信号θからモータ3aの角速度を演算し、角速度信号を生成する。速度演算部11は、角速度信号からかご5の速度を示すかご5の速度信号vを生成し、出力する。 An angle signal θ m from the position detector 8 is input to the speed calculation unit 11 . The speed calculating section 11 calculates the angular speed of the motor 3a from the angle signal θm , and generates an angular speed signal. The speed calculation unit 11 generates and outputs a speed signal v m of the car 5 indicating the speed of the car 5 from the angular velocity signal.
 例えば、第1減算部12は、入力された信号の減算処理を行う減算器である。第1減算部12には、速度目標信号vrefが入力される。第1減算部12には、速度演算部11から速度信号vが入力される。第1減算部12は、速度目標信号vrefから速度信号vを減算し、速度エラー信号verrを出力する。速度エラー信号verrは、かご5の目標速度と実際の速度との差を示す。 For example, the first subtraction unit 12 is a subtracter that performs subtraction processing on an input signal. The speed target signal v ref is input to the first subtractor 12 . The speed signal v m is inputted to the first subtraction section 12 from the speed calculation section 11 . The first subtractor 12 subtracts the speed signal v m from the speed target signal v ref and outputs a speed error signal v err . The speed error signal v err indicates the difference between the target speed and the actual speed of the car 5.
 速度制御部13には、第1減算部12から速度エラー信号verrが入力される。速度制御部13は、速度エラー信号verrに基づいて、速度制御信号iqv_contを生成し、出力する。速度制御信号iqv_contは、速度エラー信号verrが示す差が基準値に収まるように演算された信号である。速度制御信号iqv_contは、トルク電流目標信号iqv_contと同じである。この際、速度制御部13は、かご5の速度が安定している値である等の各種の運行条件を満たすよう、比例演算、積分演算、微分演算を行うことで、速度制御信号iqv_contを生成する。 A speed error signal v err is inputted to the speed control section 13 from the first subtraction section 12 . The speed control unit 13 generates and outputs a speed control signal iq v_cont based on the speed error signal v err . The speed control signal iq v_cont is a signal calculated so that the difference indicated by the speed error signal v err falls within a reference value. The speed control signal iq v_cont is the same as the torque current target signal iq v_cont . At this time, the speed control unit 13 controls the speed control signal iq v_cont by performing proportional calculation, integral calculation, and differential calculation so that the speed of the car 5 satisfies various operating conditions such as a stable value. generate.
 電流測定部14は、電流センサである。電流測定部14は、モータ3aと電流制御部15との間に電気的に接続される。電流測定部14は、モータ3aと電流制御部15との間を流れる電流値を測定し、測定結果を出力する。例えば、電流測定部14は、測定した電流値のうちのq軸電流値を示す駆動電流信号iqを出力する。 The current measurement unit 14 is a current sensor. The current measurement section 14 is electrically connected between the motor 3a and the current control section 15. The current measurement section 14 measures the value of the current flowing between the motor 3a and the current control section 15, and outputs the measurement result. For example, the current measurement unit 14 outputs a drive current signal iq indicating a q-axis current value among the measured current values.
 電流制御部15には、速度制御信号iqv_contであるトルク電流目標信号iqv_contが入力される。電流制御部15には、電流測定部14から駆動電流信号iqが入力される。電流制御部15は、駆動電流信号iqが速度制御信号iqv_contに追従するよう、モータ3aに駆動電流を供給する。 A torque current target signal iq v_cont , which is a speed control signal iq v_cont , is input to the current control unit 15. A drive current signal iq is input to the current control section 15 from the current measurement section 14 . The current control unit 15 supplies a drive current to the motor 3a so that the drive current signal iq follows the speed control signal iq v_cont .
 このように、速度制御処理において、速度エラー信号verrが基準値以内に収まりながらかご5の速度信号vが速度目標信号vrefに追従するような制御が実現される。 In this manner, in the speed control process, control is achieved such that the speed signal v m of the car 5 follows the speed target signal v ref while the speed error signal v err remains within the reference value.
 位置制御処理は、主に目標信号生成部16と第2減算部17とかご位置制御部18とによって行われる。 The position control process is mainly performed by the target signal generation section 16, the second subtraction section 17, and the car position control section 18.
 目標信号生成部16の機能は、プロセッサの演算によって当該機能についてのソフトウェアが実行されることで実現される。目標信号生成部16には、位置検出器8からのかご位置信号xcarが入力される。目標信号生成部16には、階床位置信号xtgtが入力される。階床位置信号xtgtは、かご5の目的階床の位置を示す信号である。階床位置信号xtgtは、制御盤9の内部におけるかご位置制御装置10より上位の制御系機器で生成される。例えば、かご5がある階床に停車している時に、かご5の次の階床位置信号xtgtが生成され、目標信号生成部16に入力される。目標信号生成部16は、かご位置信号xcarと階床位置信号xtgtとを用いてかご位置目標信号xrefを生成し、出力する。この際、目標信号生成部16は、ソフトウェア上の演算処理周期に起因する離散化誤差を補正し、当該補正が反映されたかご位置目標信号xrefを生成する。 The functions of the target signal generation section 16 are realized by executing software for the functions through calculations by a processor. A car position signal x car from the position detector 8 is input to the target signal generation section 16 . The floor position signal x tgt is input to the target signal generation unit 16 . The floor position signal xtgt is a signal indicating the position of the destination floor of the car 5. The floor position signal x tgt is generated by a control system device higher than the car position control device 10 inside the control panel 9 . For example, when the car 5 is stopped at a certain floor, the next floor position signal x tgt of the car 5 is generated and input to the target signal generation section 16 . The target signal generation unit 16 generates and outputs a car position target signal x ref using the car position signal x car and floor position signal x tgt . At this time, the target signal generation unit 16 corrects the discretization error caused by the arithmetic processing cycle on the software, and generates the car position target signal x ref in which the correction is reflected.
 第2減算部17は、入力された信号の減算処理を行う減算器である。第2減算部17には、目標信号生成部16からかご位置目標信号xrefが入力される。第2減算部17には、位置検出器8からのかご位置信号xcarが入力される。第2減算部17は、かご位置目標信号xrefからかご位置信号xcarを減算し、かご位置エラー信号xerrを出力する。かご位置エラー信号xerrは、かご5の目標位置と実際の絶対位置との差を示す。 The second subtractor 17 is a subtracter that performs subtraction processing on the input signal. The car position target signal x ref is input to the second subtractor 17 from the target signal generator 16 . A car position signal x car from the position detector 8 is input to the second subtractor 17 . The second subtraction unit 17 subtracts the car position signal x car from the car position target signal x ref and outputs a car position error signal x err . The car position error signal x err indicates the difference between the target position and the actual absolute position of car 5.
 かご位置制御部18には、第2減算部17からかご位置エラー信号xerrが入力される。かご位置制御部18は、かご位置エラー信号xerrに基づいて、かご位置制御信号xcontを生成する。かご位置制御信号xcontは、かご位置エラー信号xerrが零に収束するように演算された信号である。なお、かご位置制御部18は、かご位置制御信号xcontを速度目標信号vrefとして生成し、第1減算部12に入力する。即ち、かご位置制御部18は、速度目標信号vrefと同様の信号特性を有するかご位置制御信号xcontを生成する。 The car position error signal x err is input to the car position control unit 18 from the second subtraction unit 17 . The car position control unit 18 generates a car position control signal x cont based on the car position error signal x err . The car position control signal x cont is a signal calculated so that the car position error signal x err converges to zero. Note that the car position control section 18 generates the car position control signal x cont as a speed target signal v ref and inputs it to the first subtraction section 12 . That is, the car position control section 18 generates the car position control signal x cont having signal characteristics similar to those of the speed target signal v ref .
 このように、位置制御処理において、かご位置エラー信号xerrが零に収束するように、即ちかご位置信号xcarがかご位置目標信号xrefに追従するような制御が実現される。この際、速度制御処理には速度目標信号vrefとしてかご位置制御信号xcontが入力される。この場合、かご位置制御装置10は、かご位置エラー信号xerrが零に収束するよう機能する制御を実行する。そのため、かご位置信号xcarは、かご位置目標信号xrefに対して誤差なく追従する。例えば、エレベーターシステム1において、かご5に作用する摩擦、ロープの伸縮、等の外乱によって発生する着床位置の誤差が抑制される。なお、当該制御は、1型の位置制御ループとなる。そのため、かご5の絶対位置の検出遅れが発生したとしても、制御偏差の増加が抑制される。 In this way, in the position control process, control is achieved such that the car position error signal x err converges to zero, that is, the car position signal x car follows the car position target signal x ref . At this time, the car position control signal x cont is input to the speed control process as the speed target signal v ref . In this case, the car position control device 10 performs control so that the car position error signal x err converges to zero. Therefore, the car position signal x car follows the car position target signal x ref without error. For example, in the elevator system 1, errors in the landing position caused by disturbances such as friction acting on the car 5, expansion and contraction of the rope, etc. are suppressed. Note that this control is a type 1 position control loop. Therefore, even if a delay in detecting the absolute position of the car 5 occurs, an increase in control deviation is suppressed.
 次に、図2を用いて、目標信号生成部16を説明する。
 図2は実施の形態1におけるかご位置制御装置の目標信号生成部を示すブロック図である。
Next, the target signal generation section 16 will be explained using FIG. 2.
FIG. 2 is a block diagram showing a target signal generation section of the car position control device in the first embodiment.
 図2に示されるように、目標信号生成部16は、信号保持部161と第3減算部162と遷移時刻演算部163と位置パターン生成部164と誤差演算部165と補正パターン生成部166と目標信号演算部167とを備える。 As shown in FIG. 2, the target signal generation section 16 includes a signal holding section 161, a third subtraction section 162, a transition time calculation section 163, a position pattern generation section 164, an error calculation section 165, a correction pattern generation section 166, and a target A signal calculation section 167 is provided.
 信号保持部161は、サンプル・ホールドの機能を有する。信号保持部161には、かご位置信号xcarが入力される。図2には図示されないかご5が着床位置で停止している時に、信号保持部161は、着床位置におけるかご位置信号xcarの保持を実行する。信号保持部161は、かご5が次の着床位置に到着するまで、前の着床位置におけるかご位置信号xcarの値を保持する。信号保持部161は、保持する値をかご5の位置を示す初期かご位置信号xiniとして出力する。 The signal holding section 161 has a sample and hold function. A car position signal x car is input to the signal holding unit 161 . When the car 5 (not shown in FIG. 2) is stopped at the landing position, the signal holding unit 161 holds the car position signal x car at the landing position. The signal holding unit 161 holds the value of the car position signal x car at the previous landing position until the car 5 arrives at the next landing position. The signal holding unit 161 outputs the held value as an initial car position signal x ini indicating the position of the car 5.
 例えば、第3減算部162は、入力された信号の減算処理を行う減算器である。第3減算部162には、信号保持部161から初期かご位置信号xiniが入力される。かご5が次の階床への移動を開始する前に、第3減算部162には、次の階床の着床位置を示す次の階床位置信号xtgtが入力される。次の階床位置信号xtgtが入力された場合、第3減算部162は、次の階床位置信号xtgtから初期かご位置信号xiniを減算し、昇降距離信号xdisを出力する。昇降距離信号xdisは、次の階床へ移動する際にかご5が移動する距離を示す。 For example, the third subtraction unit 162 is a subtracter that performs subtraction processing on the input signal. The third subtraction unit 162 receives the initial car position signal x ini from the signal holding unit 161 . Before the car 5 starts moving to the next floor, the next floor position signal x tgt indicating the landing position on the next floor is input to the third subtractor 162. When the next floor position signal x tgt is input, the third subtraction unit 162 subtracts the initial car position signal x ini from the next floor position signal x tgt , and outputs the ascending/descending distance signal x dis . The ascending/descending distance signal x dis indicates the distance that the car 5 moves when moving to the next floor.
 遷移時刻演算部163には、第3減算部162から昇降距離信号xdisが入力される。昇降距離信号xdisが入力された場合、遷移時刻演算部163は、昇降距離信号xdisに基づいて、かご5の複数の制御モードについて、ある制御モードAから次の制御モードBへ遷移する時刻である遷移時刻TABを演算する。この際、遷移時刻演算部163は、複数の制御モードを遷移させるために必要な複数の遷移時刻が含まれる遷移時刻の組をそれぞれ演算する。遷移時刻演算部163は、遷移時刻の組を示す信号を出力する。 The vertical distance signal x dis is input to the transition time calculation unit 163 from the third subtraction unit 162 . When the ascending/descending distance signal x dis is input, the transition time calculation unit 163 determines the time of transition from one control mode A to the next control mode B for a plurality of control modes of the car 5 based on the ascending/descending distance signal x dis. A transition time T AB is calculated. At this time, the transition time calculation unit 163 calculates each transition time set including a plurality of transition times necessary for transitioning between a plurality of control modes. The transition time calculation unit 163 outputs a signal indicating a set of transition times.
 位置パターン生成部164には、遷移時刻演算部163から遷移時刻の組を示す信号が入力される。当該信号が入力された場合、位置パターン生成部164は、遷移時刻の組に基づいて、位置パターンを生成し、出力する。位置パターンは、かご5が昇降距離の移動を開始してから停止するまでのかご5の位置の時間推移である。例えば、位置パターンは、ある時刻におけるかご5の位置に対応する数値によって表現される。当該かご5の位置は、出発階の位置を基準とする相対位置である。位置パターンの開始時刻には、かご5が移動を開始する時刻が設定される。当該開始時刻は、遷移時刻に含まれる最初の遷移時刻である。位置パターンの終了時刻は、かご5が次の階床位置へ到着する予想時刻である。当該終了時刻は、遷移時刻の組に含まれる最後の遷移時刻である。 A signal indicating a set of transition times is input to the position pattern generation unit 164 from the transition time calculation unit 163. When the signal is input, the position pattern generation unit 164 generates and outputs a position pattern based on the set of transition times. The position pattern is a change in the position of the car 5 over time from when the car 5 starts moving up and down the distance until it stops. For example, the position pattern is expressed by a numerical value corresponding to the position of car 5 at a certain time. The position of the car 5 is a relative position with respect to the position of the departure floor. The start time of the position pattern is set to the time when the car 5 starts moving. The start time is the first transition time included in the transition times. The end time of the position pattern is the expected time when the car 5 will arrive at the next floor position. The end time is the last transition time included in the set of transition times.
 誤差演算部165には、遷移時刻演算部163から遷移時刻の組を示す信号が入力される。当該信号が入力された場合、誤差演算部165は、離散化誤差の値を演算する。離散化誤差は、位置パターンが生成される際に、処理回路の演算周期、各数値のサンプリング周期、演算に採用される数値の処理方法、等によって発生し得る距離の誤差である。離散化誤差は、当該演算時に実行される離散化処理に起因する誤差である。離散化誤差が示す距離は、位置パターン生成部164が生成する位置パターンによってかご5が移動する距離とxdisに示される階床間距離との差を示す。誤差演算部165は、離散化誤差を示す信号を出力する。 A signal indicating a set of transition times is input to the error calculation unit 165 from the transition time calculation unit 163. When the signal is input, the error calculation unit 165 calculates the value of the discretization error. The discretization error is a distance error that may occur when a position pattern is generated, depending on the calculation cycle of the processing circuit, the sampling cycle of each numerical value, the numerical processing method employed in the calculation, and the like. The discretization error is an error caused by the discretization process executed during the calculation. The distance indicated by the discretization error indicates the difference between the distance that the car 5 moves according to the position pattern generated by the position pattern generation unit 164 and the inter-floor distance indicated by x dis . The error calculation unit 165 outputs a signal indicating the discretization error.
 補正パターン生成部166には、遷移時刻演算部163から遷移時刻の組を示す信号が入力される。補正パターン生成部166には、誤差演算部165から離散化誤差を示す信号が入力される。補正パターン生成部166は、遷移時刻の組と離散化誤差とに基づいて、誤差補正パターンを生成し、出力する。誤差補正パターンは、位置パターンと同様に、かご5が離散化誤差の距離の移動を開始してから停止するまでのかご5の位置の時間推移である。例えば、誤差補正パターンは、ある時刻におけるかご5の位置に対応する数値によって表現される。当該かご5の位置は、0を基準とする相対位置である。誤差補正パターンは、離散化誤差を補正するためのパターンである。 A signal indicating a set of transition times is input to the correction pattern generation unit 166 from the transition time calculation unit 163. A signal indicating a discretization error is input to the correction pattern generation unit 166 from the error calculation unit 165. The correction pattern generation unit 166 generates and outputs an error correction pattern based on the set of transition times and the discretization error. Similar to the position pattern, the error correction pattern is the time transition of the position of the car 5 from when the car 5 starts moving by the distance of the discretized error until it stops. For example, the error correction pattern is expressed by a numerical value corresponding to the position of the car 5 at a certain time. The position of the car 5 is a relative position with respect to 0. The error correction pattern is a pattern for correcting discretization errors.
 目標信号演算部167には、信号保持部161から初期かご位置信号xiniが入力される。目標信号演算部167には、位置パターン生成部164から位置パターンを示す信号が入力される。目標信号演算部167には、補正パターン生成部166から誤差補正パターンを示す信号が入力される。なお、目標信号演算部167には、ある時刻において位置パターンに示されるかご5の位置を示す信号と誤差補正パターンに示されるかご5の位置を示す信号とが入力されてもよい。 The initial car position signal x ini is input to the target signal calculation unit 167 from the signal holding unit 161 . A signal indicating a position pattern is input to the target signal calculation unit 167 from the position pattern generation unit 164. A signal indicating an error correction pattern is input to the target signal calculation section 167 from the correction pattern generation section 166. Note that a signal indicating the position of the car 5 shown in the position pattern and a signal indicating the position of the car 5 shown in the error correction pattern at a certain time may be input to the target signal calculation unit 167.
 目標信号演算部167は、位置パターンと誤差補正パターンとを重畳し、補正後の位置パターンを生成する。補正後の位置パターンは、位置パターンに示されるかご5の位置が誤差補正パターンに示されるかご5の位置の分だけ補正された位置パターンである。目標信号演算部167は、補正後の位置パターンに示されるかご5の位置に初期かご位置信号xiniを加算する。目標信号演算部167は、規定の周期ごとに補正後の位置パターンに初期かご位置信号xiniが加算された位置を示す信号をかご位置目標信号xrefとして生成し、出力する。例えば、規定の周期は、目標信号生成部16で行われる処理の演算周期である。 The target signal calculation unit 167 superimposes the position pattern and the error correction pattern to generate a corrected position pattern. The corrected position pattern is a position pattern in which the position of the car 5 shown in the position pattern is corrected by the position of the car 5 shown in the error correction pattern. The target signal calculation unit 167 adds the initial car position signal x ini to the position of the car 5 shown in the corrected position pattern. The target signal calculation unit 167 generates and outputs a signal indicating the position where the initial car position signal x ini is added to the corrected position pattern as a car position target signal x ref every prescribed period. For example, the prescribed cycle is a calculation cycle of processing performed by the target signal generation unit 16.
 次に、誤差演算部165が演算する離散化誤差の原理を説明する。 Next, the principle of the discretization error calculated by the error calculation unit 165 will be explained.
 位置パターンが生成される処理は、ソフトウェアに含まれるプログラムがプロセッサによって実行されることで実現される。プロセッサは、固有の演算周期ごとに実行処理を行う。位置パターンは時間の関数であり、当該演算周期がサンプリング周期とみなされるため、位置パターンの演算には理想的な値に対する標本化誤差が発生し得る。また、当該演算の際に用いられる数字、当該演算の結果を示す数字は、規定の有効数字となるよう四捨五入等の丸め処理が施される。特に、遷移時刻の値は、整数化される場合がある。そのため、生成された位置パターンには、量子化誤差が含まれ得る。従って、位置パターンには、このような標本化誤差および量子化誤差を含む離散化誤差が含まれ得る。 The process of generating a position pattern is realized by a processor executing a program included in software. The processor performs execution processing every specific calculation cycle. The position pattern is a function of time, and the calculation period is considered a sampling period, so a sampling error with respect to an ideal value may occur in the calculation of the position pattern. In addition, the numbers used in the calculation and the numbers indicating the result of the calculation are rounded off to the nearest whole number so that they become the specified significant figures. In particular, the transition time value may be converted into an integer. Therefore, the generated position pattern may include quantization errors. Therefore, the position pattern may include discretization errors including such sampling errors and quantization errors.
 例えば、離散化誤差の影響は、かご5の速度が最大値を取る等速モードiにおいて、位置パターンが演算される際に最も顕著に表れる。等速モードiにおけるかご5の総移動距離xmode_iは、以下の(1)で示される。 For example, the influence of the discretization error is most noticeable when the position pattern is calculated in the constant velocity mode i in which the velocity of the car 5 takes the maximum value. The total moving distance x mode_i of the car 5 in the constant speed mode i is represented by (1) below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (1)式において、vmaxは、等速モードiにおけるかご5の最大速度である。Tijは、等速モードiから次のモードjに遷移した時刻である。Thiは、等速モードiの前のモードhから等速モードiに遷移した時刻である。 In equation (1), v max is the maximum speed of car 5 in constant speed mode i. T ij is the time of transition from constant velocity mode i to the next mode j. T hi is the time at which the mode h before the constant velocity mode i transitions to the constant velocity mode i.
 例えば、ソフトウェアにおいて浮動小数点型でなく整数型の演算が行われる場合、TijとThiとが整数値として演算される。この場合、(1)式における項(Tij-Thi)には、離散化時間誤差が含まれ得る。これは、TijおよびThiの真値と整数値化された値との差に起因する。当該差である離散化時間誤差をΔte_iとした場合、等速モードiにおける総移動距離xmode_iの演算結果は、モードiでかご5が移動するべき真値に対して個別離散化誤差xe_iを含む値となる。個別離散化誤差xe_iは、以下の(2)式で示される。 For example, when software performs an integer type operation instead of a floating point type, T ij and T hi are calculated as integer values. In this case, the term (T ij −T hi ) in equation (1) may include a discretization time error. This is due to the difference between the true values of T ij and T hi and the integer values. If the discretized time error that is the difference is Δt e_i , the calculation result of the total moving distance x mode_i in constant velocity mode i is the individual discretized error x e_i with respect to the true value that the car 5 should move in mode i. The value includes. The individual discretization error x e_i is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 このような個別離散化誤差は、位置パターンにおける複数の制御モードでそれぞれ発生し得る。個別離散化誤差は、対応する制御モードが継続する時間から演算され得る。離散化誤差xは、複数の制御モードで発生する個別離散化誤差の和である。即ち、離散化誤差xは、ある位置パターン全体に含まれる離散化誤差である。 Such individual discretization errors may occur in each of a plurality of control modes in the position pattern. The individual discretization error can be calculated from the time that the corresponding control mode lasts. The discretization error x e is the sum of individual discretization errors occurring in a plurality of control modes. That is, the discretization error x e is a discretization error included in the entire position pattern.
 誤差演算部165は、上記の原理に基づいて、遷移時刻の組からある位置パターンに対応する離散化誤差を演算する。 The error calculation unit 165 calculates a discretization error corresponding to a certain position pattern from a set of transition times based on the above principle.
 次に、図3を用いて、複数の制御モード、位置パターンおよび誤差補正パターンの関係を説明する。
 図3は実施の形態1におけるかご位置制御装置が設定する制御モードと位置パターンと誤差補正パターンとの例を示す図である。
Next, the relationship among the plurality of control modes, position patterns, and error correction patterns will be explained using FIG. 3.
FIG. 3 is a diagram showing an example of a control mode, a position pattern, and an error correction pattern set by the car position control device in the first embodiment.
 図3の(a)は、複数の制御モードと遷移時刻との関係を表す。即ち、図3の(a)は、複数の制御モードの時間推移を示す。縦軸は、制御モードのモード番号である。横軸は、時刻である。ここで、横軸の時間軸は、位置パターンに対応する時刻T[s:秒]と誤差補正パターンに対応する時刻T´[s:秒]との両方が含まれる。時刻Tおよび時刻T´の起点となる時刻0は、同じタイミングである。 (a) in FIG. 3 represents the relationship between multiple control modes and transition times. That is, (a) of FIG. 3 shows the time transition of a plurality of control modes. The vertical axis is the mode number of the control mode. The horizontal axis is time. Here, the horizontal time axis includes both time T [s: seconds] corresponding to the position pattern and time T' [s: seconds] corresponding to the error correction pattern. Time 0, which is the starting point of time T and time T', is the same timing.
 図3の(b)は、かご5の加速度と時刻との関係を表す。即ち、図3の(b)は、かご5の加速度の時間推移である加速度パターンを示す。縦軸は、かご5の加速度である。横軸は、位置パターンに対応する時刻Tである。 FIG. 3(b) represents the relationship between the acceleration of the car 5 and time. That is, FIG. 3(b) shows an acceleration pattern that is a time course of the acceleration of the car 5. The vertical axis is the acceleration of the car 5. The horizontal axis is time T corresponding to the position pattern.
 図3の(c)は、かご5の速度と時刻との関係を表す。即ち、図3の(c)は、かご5の速度の時間推移である速度パターンを示す。縦軸は、かご5の速度である。横軸は、位置パターンに対応する時刻Tである。 (c) of FIG. 3 represents the relationship between the speed of the car 5 and time. That is, FIG. 3(c) shows a speed pattern that is the time course of the speed of the car 5. The vertical axis is the speed of car 5. The horizontal axis is time T corresponding to the position pattern.
 図3の(d)は、位置パターンである。縦軸は、かご5の位置を示す数値である。横軸は、位置パターンに対応する時刻Tである。 FIG. 3(d) is a position pattern. The vertical axis is a numerical value indicating the position of the car 5. The horizontal axis is time T corresponding to the position pattern.
 図3の(e)は、誤差補正パターンである。縦軸は、かご5の位置を示す数値である。横軸は、誤差補正パターンに対応する時刻T´である。 FIG. 3(e) is an error correction pattern. The vertical axis is a numerical value indicating the position of the car 5. The horizontal axis is time T' corresponding to the error correction pattern.
 例えば、速度パターンにおける各時刻の速度値は、位置パターンを各時刻において微分した値に相当する。加速度パターンにおける各時刻の加速度値は、速度パターンを各時刻において微分した値に相当する。 For example, the speed value at each time in the speed pattern corresponds to a value obtained by differentiating the position pattern at each time. The acceleration value at each time in the acceleration pattern corresponds to a value obtained by differentiating the velocity pattern at each time.
 次に、複数の制御モードの各々を説明する。 Next, each of the plurality of control modes will be explained.
 モード0は、かご5がある階床位置に停止しているモードである。かご5が当該階床から出発する時刻T01に、モード0からモード1に遷移する。 Mode 0 is a mode in which the car 5 is stopped at a certain floor position. At time T 01 when car 5 departs from the floor, mode 0 transitions to mode 1.
 モード1は、加速ジャークモードである。ジャークは、加速度の時間変化量である。ジャークは、跳度、加加速度とも表現される。モード1において、ジャークは、正の値で一定値となる。モード1において、かご5の加速度は、時間に比例して増加する。モード1は、規定の最大加速度に到達する時刻T12まで継続する。 Mode 1 is an acceleration jerk mode. Jerk is the amount of change in acceleration over time. Jerk is also expressed as jump or jerk. In mode 1, the jerk is a constant positive value. In mode 1, the acceleration of car 5 increases in proportion to time. Mode 1 continues until time T12 , when the specified maximum acceleration is reached.
 時刻T12において、モード1からモード2に遷移する。モード2は、定加速度モードである。モード2において、ジャークは、0となる。加速度は、最大加速度で一定値をとる。かご5の速度は、時間に比例して増加する。 At time T12 , mode 1 transitions to mode 2. Mode 2 is a constant acceleration mode. In mode 2, the jerk is zero. The acceleration takes a constant value at the maximum acceleration. The speed of car 5 increases proportionally with time.
 時刻T23において、モード2からモード3に遷移する。モード3は、加速丸めモードである。モード3において、ジャークは、負の値で一定値となる。加速度は、最大加速度から減少する。モード3は、加速度が0になる時刻T34まで継続する。 At time T23 , mode 2 transitions to mode 3. Mode 3 is an accelerated rounding mode. In mode 3, the jerk is a constant negative value. The acceleration decreases from the maximum acceleration. Mode 3 continues until time T34 when the acceleration becomes zero.
 時刻T34において、モード3からモード4に遷移する。モード4は、等速モードである。モード4において、速度は、最大速度vmaxで一定値をとる。 At time T34 , mode 3 transitions to mode 4. Mode 4 is a constant velocity mode. In mode 4, the velocity takes a constant value at the maximum velocity v max .
 時刻T45において、モード4からモード5に遷移する。モード5は、減速丸めモードである。モード5において、ジャークは、負の値で一定値となる。加速度は、0から減少する。速度は、最大速度から減少する。モード5は、規定の最小加速度に到達する時刻T56まで継続する。 At time T45 , mode 4 transitions to mode 5. Mode 5 is a deceleration rounding mode. In mode 5, the jerk is a constant negative value. Acceleration decreases from 0. The speed decreases from the maximum speed. Mode 5 continues until time T 56 , when the specified minimum acceleration is reached.
 時刻T56において、モード5からモード6に遷移する。モード6は、減速の定加速モードである。モード5において、ジャークは、0となる。加速度は、最小加速度で一定値をとる。かご5の速度は、時間に比例して減少する。 At time T56 , mode 5 transitions to mode 6. Mode 6 is a constant acceleration mode of deceleration. In mode 5, the jerk is zero. The acceleration takes a constant value at the minimum acceleration. The speed of car 5 decreases in proportion to time.
 時刻T67において、モード6からモード7に遷移する。モード7は、着床ジャークモードである。モード7において、ジャークは、正の値で一定値とある。加速度は、最小加速度から0に向かって増加する。かご5の速度は緩やかに減少する。モード7は、かご5の速度が0になる時刻T70まで継続する。即ち、時刻T70において、かご5は、次の目的階床の着床位置に到着し、停止する。 At time T67 , mode 6 transitions to mode 7. Mode 7 is the landing jerk mode. In mode 7, the jerk is a constant positive value. The acceleration increases from the minimum acceleration towards zero. The speed of car 5 decreases slowly. Mode 7 continues until time T70 when the speed of car 5 becomes zero. That is, at time T70 , the car 5 reaches the landing position of the next destination floor and stops.
 モード1からモード7が終了するまでの間に、位置パターンは、(d)に示されるように推移する。図3から示されるように、各モードにおける加速度、速度、および位置は、いずれも連続して変化する。特に、加速度は、連続して変化する。即ち、加速度は、各遷移時刻において不連続な値をとらない。そのため、速度および位置が示す波形は、いずれの時刻においても段差がなく、連続的になめらかに変化する。かご5の乗客に対して、快適な乗り心地が提供され得る。位置パターンは、加速度、速度、および位置が図3に示される波形となるように考慮された演算則に基づいて生成される。例えば、位置パターンは、時間をパラメータとする3次関数である。 From mode 1 until mode 7 ends, the position pattern changes as shown in (d). As shown in FIG. 3, the acceleration, velocity, and position in each mode all change continuously. In particular, the acceleration changes continuously. That is, the acceleration does not take discontinuous values at each transition time. Therefore, the waveforms indicated by the speed and position change continuously and smoothly without any step at any time. A comfortable ride can be provided to the passengers of car 5. The position pattern is generated based on a calculation rule in which acceleration, velocity, and position take into account the waveforms shown in FIG. 3. For example, the position pattern is a cubic function with time as a parameter.
 遷移時刻演算部163は、かご5が移動する昇降距離に基づいて、各遷移時刻を演算する。この際、遷移時刻演算部163は、位置パターンが当該演算則に基づいて生成され得るように、各遷移時刻を演算する。 The transition time calculation unit 163 calculates each transition time based on the vertical distance that the car 5 moves. At this time, the transition time calculation unit 163 calculates each transition time so that a position pattern can be generated based on the calculation rule.
 図3に示される例において、モード8は、誤差補正パターンを示す制御モードである。モード8は、位置パターンの制御モードであるモード1からモード7に並行して実行される。モード8は、時刻T34と時刻T45との間の時刻T08に開始する。モード8は、時刻T70と同じ時刻T80まで継続する。即ち、モード8が実行されている間に、モード5からモード7が実行される。モード5からモード7の時間帯は、減速範囲として加速度が負の時間帯であり、速度が変化する時間帯である。例えば、モード8は、位置パターンにおいて加速度が変化する時間帯に実行される。なお、モード8は、モード1からモード3の時間帯である、加速範囲の時間帯に実行されてもよい。また、モード8は、減速範囲または加速範囲を示す加減速範囲の時間帯でない任意の時間帯に実行されてもよい。 In the example shown in FIG. 3, mode 8 is a control mode that shows an error correction pattern. Mode 8 is executed in parallel with Mode 1 to Mode 7, which are position pattern control modes. Mode 8 begins at time T 08 between time T 34 and time T 45 . Mode 8 continues until time T 80 , which is the same as time T 70 . That is, while mode 8 is being executed, modes 5 to 7 are executed. The time period from mode 5 to mode 7 is a time period in which acceleration is negative as a deceleration range, and is a time period in which speed changes. For example, mode 8 is executed during a time period when the acceleration changes in the position pattern. Note that mode 8 may be executed during the time period of the acceleration range, which is the time period of mode 1 to mode 3. Moreover, mode 8 may be executed in any time period other than the time period of the acceleration/deceleration range indicating the deceleration range or the acceleration range.
 時刻T08は、時刻T70から補正時間Tcrだけ遡った時刻に設定される。補正時間Tcrは、誤差補正パターンを実行する合計時間である。図3の時間帯にモード8が実行されるように、補正パターン生成部166は、時刻T08が時刻T45の直前の時刻に補正時間Tcrを生成する。 Time T 08 is set to a time that is a correction time T cr back from time T 70 . The correction time T cr is the total time for executing the error correction pattern. The correction pattern generation unit 166 generates the correction time T cr at a time when time T 08 is immediately before time T 45 so that mode 8 is executed during the time period shown in FIG. 3 .
 目標信号演算部167は、位置パターンの波形と誤差補正パターンの波形とを重畳した補正後の位置パターンを生成する。 The target signal calculation unit 167 generates a corrected position pattern by superimposing the waveform of the position pattern and the waveform of the error correction pattern.
 次に、図4を用いて、誤差補正パターンを説明する。
 図4は実施の形態1におけるかご位置制御装置が設定する誤差補正パターンの例を示す図である。
Next, the error correction pattern will be explained using FIG. 4.
FIG. 4 is a diagram showing an example of an error correction pattern set by the car position control device in the first embodiment.
 図4は、誤差補正パターンにおける各数値の時間推移の波形を示す。 FIG. 4 shows the waveform of the time course of each numerical value in the error correction pattern.
 図4の(a)は、誤差補正パターンにおけるかご5のジャークと時刻との関係を表す。即ち、図4の(a)は、かご5のジャークの時間推移であるジャークパターンを示す。縦軸は、誤差補正パターンにおけるかご5のジャークである。横軸は、誤差補正パターンに対応する時刻T´である。 FIG. 4(a) shows the relationship between the jerk of the car 5 and time in the error correction pattern. That is, (a) of FIG. 4 shows a jerk pattern that is a temporal change in jerk of car 5. The vertical axis is the jerk of car 5 in the error correction pattern. The horizontal axis is time T' corresponding to the error correction pattern.
 図4の(b)は、かご5の加速度の時間推移である加速度パターンを示す。縦軸は、誤差補正パターンにおけるかご5の加速度である。横軸は、誤差補正パターンに対応する時刻T´である。 FIG. 4(b) shows an acceleration pattern that is the time course of the acceleration of the car 5. The vertical axis is the acceleration of the car 5 in the error correction pattern. The horizontal axis is time T' corresponding to the error correction pattern.
 図4の(c)は、かご5の速度の時間推移である速度パターンを示す。縦軸は、誤差補正パターンにおけるかご5の速度である。横軸は、誤差補正パターンに対応する時刻T´である。 FIG. 4(c) shows a speed pattern that is the time course of the speed of the car 5. The vertical axis is the speed of the car 5 in the error correction pattern. The horizontal axis is time T' corresponding to the error correction pattern.
 図4の(d)は、誤差補正パターンである。縦軸は、誤差補正パターンにおけるかご5の位置を示す数値である。横軸は、誤差補正パターンに対応する時刻T´である。 FIG. 4(d) is an error correction pattern. The vertical axis is a numerical value indicating the position of the car 5 in the error correction pattern. The horizontal axis is time T' corresponding to the error correction pattern.
 補正パターン生成部166は、離散化誤差xと補正時間Tcrとから、誤差補正パターンのジャーク値Jを演算する。例えば、補正パターン生成部166は、以下の(3)式に基づいて、ジャーク値Jを演算する。 The correction pattern generation unit 166 calculates the jerk value J e of the error correction pattern from the discretization error x e and the correction time T cr . For example, the correction pattern generation unit 166 calculates the jerk value J e based on the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、ジャーク値Jは、時間積分が可能であれば、(3)式で示される値でなくてもよい。 Note that the jerk value J e does not have to be the value shown by equation (3) as long as time integration is possible.
 補正パターン生成部166は、ジャーク値を規定の区間だけ遷移させるジャーク波形を生成する。補正パターン生成部166は、各区間におけるジャーク波形に対して3階の時間積分を実行することで、誤差補正パターンの位置の波形を生成する。なお、時間に対して、加速度および速度は、それぞれジャークの1階積分値およびジャークの2階積分値である。 The correction pattern generation unit 166 generates a jerk waveform that causes the jerk value to transition only in a prescribed section. The correction pattern generation unit 166 generates a waveform at the position of the error correction pattern by performing third-order time integration on the jerk waveform in each section. Note that with respect to time, acceleration and velocity are the first-order integral value of jerk and the second-order integral value of jerk, respectively.
 誤差補正パターンがジャーク波形の3階積分値として演算されるため、各モードにおける加速度、速度、および位置は、いずれも連続して変化する。特に、加速度は、連続して変化する。即ち、加速度は、区間と区間との間において不連続な値をとらない。そのため、速度および位置が示す波形は、位置パターンと同様に、定義された時間範囲において、いずれの時刻においても段差がなく、連続的になめらかに変化する。 Since the error correction pattern is calculated as the third-order integral value of the jerk waveform, the acceleration, velocity, and position in each mode all change continuously. In particular, the acceleration changes continuously. That is, the acceleration does not take discontinuous values between sections. Therefore, similarly to the position pattern, the waveforms indicated by the velocity and position change continuously and smoothly without any step at any time within the defined time range.
 また、誤差補正パターンが2階微分された関数である加速度パターンの関数は、定義された時間範囲の両端において値が零になるよう設定される。即ち、ジャーク波形を1階積分した際の積分定数が零として設定され、加速度パターンの境界条件を零として設定される。そのため、定義された時間範囲において、誤差補正パターンの加速度は、不連続的に変化しない。 Further, the function of the acceleration pattern, which is a second-order differentiated function of the error correction pattern, is set so that the value becomes zero at both ends of the defined time range. That is, the integral constant when the jerk waveform is first-order integrated is set as zero, and the boundary condition of the acceleration pattern is set as zero. Therefore, the acceleration of the error correction pattern does not change discontinuously within the defined time range.
 本例においては、ジャーク波形が矩形波的に4段階で変化する。モード8は、第1区間から第4区間の4つの区間に分割される。4つの区間の時間は、それぞれ補正時間Tcrを4分の1にした時間である。 In this example, the jerk waveform changes in four steps in the form of a rectangular wave. Mode 8 is divided into four sections from the first section to the fourth section. The times of the four sections are each a quarter of the correction time T cr .
 第1区間は、時刻T08から時刻tの時間帯である。第1区間において、ジャークは、最大のジャーク値+Jとなる。第2区間は、時刻tから時刻tの時間帯である。第2区間において、ジャークは、最小のジャーク値-Jとなる。第3区間は、時刻tから時刻tの時間帯である。第3区間において、ジャークは、最小のジャーク値-Jとなる。第4区間は、時刻tから時刻T80の時間帯である。第4区間において、ジャークは、最大のジャーク値+Jとなる。時刻T80で第4区間は終了し、ジャークは0となる。 The first section is a time period from time T08 to time t1 . In the first section, the jerk becomes the maximum jerk value +J e . The second section is a time period from time t1 to time t2 . In the second interval, the jerk becomes the minimum jerk value -J e . The third section is a time period from time t2 to time t3 . In the third interval, the jerk becomes the minimum jerk value -J e . The fourth section is a time period from time t3 to time T80 . In the fourth section, the jerk becomes the maximum jerk value +J e . The fourth section ends at time T80 , and the jerk becomes 0.
 上記のように設定されたジャーク波形に基づいて、図4に示されるような時間推移の波形を有する誤差補正パターンが生成される。 Based on the jerk waveform set as described above, an error correction pattern having a time-varying waveform as shown in FIG. 4 is generated.
 次に、図5を用いて、制御モードの状態遷移の例を説明する。
 図5は実施の形態1におけるかご位置制御装置が設定する制御モードの状態遷移の概要を説明するためのバブルチャートである。
Next, an example of state transition of the control mode will be explained using FIG. 5.
FIG. 5 is a bubble chart for explaining an overview of state transitions of control modes set by the car position control device in the first embodiment.
 図5に示されるバブルチャートは、図3および図4に示される例に対応する。「Stand by」は、スタンバイ状態であるモード0を意味する。 The bubble chart shown in FIG. 5 corresponds to the example shown in FIGS. 3 and 4. "Stand by" means mode 0, which is a standby state.
 本例において、制御モードの状態遷移は、図5の外側の環状体で示される状態遷移Aと内側の環状体で示される状態遷移Bとが混在するように設定される。状態遷移Aと状態遷移Bとは、互いに独立する。状態遷移Aは、位置パターンに対応するバブルチャートである。状態遷移Bは、誤差補正パターンに対応するバブルチャートである。 In this example, the state transition of the control mode is set such that state transition A shown by the outer annular body in FIG. 5 and state transition B shown by the inner annular body coexist. State transition A and state transition B are independent of each other. State transition A is a bubble chart corresponding to a position pattern. State transition B is a bubble chart corresponding to the error correction pattern.
 状態遷移Aにおいて、状態数であるモードの数は8つである。時刻T01において、制御モードは、スタンバイ状態からモード1に遷移する。例えば、時刻T01は、かご位置制御装置10よりも上位の制御命令系からかご位置制御装置10に対して位置パターンを生成する指令が発生した時刻である。モード1の後、制御モードは、モード7まで順番に遷移する。その後、制御モードは、時刻T70においてモード7からスタンバイ状態へ遷移する。 In state transition A, the number of modes, which is the number of states, is eight. At time T01 , the control mode transitions from the standby state to mode 1. For example, time T 01 is the time when a command to generate a position pattern is issued to the car position control device 10 from a control command system higher than the car position control device 10 . After mode 1, the control modes sequentially transition to mode 7. Thereafter, the control mode transitions from mode 7 to the standby state at time T70 .
 状態遷移Bにおいて、状態数であるモードの数は2つである。時間軸T´における時刻T08で、誤差補正パターンの制御モードは、スタンバイ状態からモード8に遷移する。その後、時刻T80で、制御モードは、モード8からスタンバイ状態に遷移する。この際、モード8は、状態遷移Aとは独立に遷移する。 In state transition B, the number of modes, which is the number of states, is two. At time T08 on the time axis T', the control mode of the error correction pattern transitions from the standby state to mode 8. Thereafter, at time T80 , the control mode transitions from mode 8 to the standby state. At this time, mode 8 transitions independently of state transition A.
 なお、図3から図5に示された例では時刻T80が時刻T70に一致するが、モード8は、状態遷移Aに包含される任意の時間帯でスタンバイ状態から遷移してもよい。これは、モード8で実現される誤差補正パターンが、それ自体で不要なかご5の振動が発生しないパターンとして生成されるからである。例えば、時刻T08は、時刻T01と一致していてもよい。即ち、かご5が発車した直後に加速している状態において、モード8に遷移してもよい。 Note that in the examples shown in FIGS. 3 to 5, time T 80 coincides with time T 70 , but mode 8 may transition from the standby state at any time period included in state transition A. This is because the error correction pattern realized in mode 8 is generated as a pattern that does not generate unnecessary vibrations of the car 5 by itself. For example, time T 08 may coincide with time T 01 . That is, the mode may be changed to mode 8 in a state where the car 5 is accelerating immediately after starting.
 次に、図6を用いて、かご位置目標信号xrefが生成される処理動作を説明する。
 図6は実施の形態1におけるかご位置制御装置の動作の概要を説明するためのフローチャートである。
Next, the processing operation for generating the car position target signal x ref will be explained using FIG. 6.
FIG. 6 is a flowchart for explaining an overview of the operation of the car position control device in the first embodiment.
 例えば、図6のフローチャートは、上位の命令形から位置パターンを生成する指令が発生した場合に開始する。 For example, the flowchart in FIG. 6 starts when a command to generate a position pattern is generated from a higher order command type.
 ステップS1の処理において、かご位置制御装置10の目標信号生成部16には、目的とする階床位置を示す階床位置信号xtgtが入力される。目標信号生成部16は、昇降距離を演算する。目標信号生成部16は、遷移時刻の組を演算する。 In the process of step S1, a floor position signal x tgt indicating a target floor position is input to the target signal generation unit 16 of the car position control device 10. The target signal generation unit 16 calculates the vertical distance. The target signal generation unit 16 calculates a set of transition times.
 その後、ステップS2の処理が行われる。ステップS2において、目標信号生成部16は、位置パターンに対応する離散化誤差を演算する。 After that, the process of step S2 is performed. In step S2, the target signal generation unit 16 calculates a discretization error corresponding to the position pattern.
 その後、ステップS3の処理が行われる。目標信号生成部16は、位置パターンの処理時刻を初期化する。具体的には、目標信号生成部16は、位置パターンに対応する時刻Tを0に設定する。 After that, the process of step S3 is performed. The target signal generation unit 16 initializes the processing time of the position pattern. Specifically, the target signal generation unit 16 sets the time T corresponding to the position pattern to 0.
 その後、ステップS4の処理が行われる。目標信号生成部16は、誤差補正パターンの処理時刻を初期化する。具体的には、目標信号生成部16は、誤差補正パターンに対応する時刻T´を0に設定する。 After that, the process of step S4 is performed. The target signal generation unit 16 initializes the processing time of the error correction pattern. Specifically, the target signal generation unit 16 sets time T' corresponding to the error correction pattern to zero.
 その後、位置パターンについての状態遷移Aが行われる処理と誤差補正パターンについての状態遷移Bが行われる処理とが分岐する。状態遷移Aが行われる処理は、ステップS5からS8に対応する。状態遷移Bが行われる処理は、ステップS9からS11に対応する。なお、ステップS5からS11までの各処理は、かご位置制御装置10のプロセッサの演算周期ごとに行われる。 Thereafter, the processing in which state transition A for the position pattern is performed and the processing in which state transition B is performed for the error correction pattern diverge. The process in which state transition A is performed corresponds to steps S5 to S8. The process in which state transition B is performed corresponds to steps S9 to S11. Note that each process from step S5 to S11 is performed every calculation cycle of the processor of the car position control device 10.
 ステップS4の処理が行われた後、ステップS5の処理が行われる。ステップS5において、位置パターン処理時刻である変数Tがカウントアップされる。具体的には、Tに1を加えた時刻が、次の変数Tとなる。 After the process of step S4 is performed, the process of step S5 is performed. In step S5, a variable T, which is the position pattern processing time, is counted up. Specifically, the time when 1 is added to T becomes the next variable T.
 その後、ステップS6の処理が行われる。ステップS6において、目標信号生成部16は、位置パターンを生成する。 After that, the process of step S6 is performed. In step S6, the target signal generation unit 16 generates a position pattern.
 その後、ステップS7の処理が行われる。ステップS7において、目標信号生成部16は、位置パターンと誤差補正パターンとを重畳したものに初期かご位置信号xiniを加算したかご位置目標信号xrefを生成し、出力する。 Thereafter, the process of step S7 is performed. In step S7, the target signal generation unit 16 generates and outputs a car position target signal x ref , which is obtained by adding the initial car position signal x ini to the superposition of the position pattern and the error correction pattern.
 その後、ステップS8の処理が行われる。ステップS8のにおいて、目標信号生成部16は、変数Tが位置パターンの終了時刻である時刻T70の値以上であるか否かを判定する。 After that, the process of step S8 is performed. In step S8, the target signal generation unit 16 determines whether the variable T is equal to or greater than the value of time T70 , which is the end time of the position pattern.
 ステップS8で、変数Tが時刻T70の値よりも小さい場合、ステップS5以降の処理が行われる。即ち、ステップS5からS8の処理がループされる。 In step S8, if the variable T is smaller than the value at time T70 , the processes from step S5 onwards are performed. That is, the processing from steps S5 to S8 is looped.
 ステップS8で、変数Tが時刻T70の値以上である場合、目標信号生成部16は、状態遷移Aが行われる処理を終了する。 In step S8, if the variable T is equal to or greater than the value at time T70 , the target signal generation unit 16 ends the process in which state transition A is performed.
 このように、ステップS5からS8では、位置パターンの波形が生成される。また、ステップS5からS8では、かご位置目標信号xrefの時間推移を示す波形が生成される。 In this way, in steps S5 to S8, a position pattern waveform is generated. Further, in steps S5 to S8, a waveform indicating the time course of the car position target signal x ref is generated.
 また、ステップS4の処理が行われた後、ステップS9の処理が行われる。ステップS9において、誤差補正パターンの処理時刻である変数T´がカウントアップされる。具体的には、T´に1を加えた時刻が、次の変数T´となる。 Furthermore, after the process in step S4 is performed, the process in step S9 is performed. In step S9, a variable T', which is the processing time of the error correction pattern, is counted up. Specifically, the time when 1 is added to T' becomes the next variable T'.
 その後、ステップS10の処理が行われる。なお、ステップS10の処理は、ステップS7の処理よりも前に開始され、完了される。ステップS10において、目標信号生成部16は、誤差補正パターンを生成する。当該誤差補正パターンは、ステップS7の処理に利用される。 After that, the process of step S10 is performed. Note that the process in step S10 is started and completed before the process in step S7. In step S10, the target signal generation unit 16 generates an error correction pattern. The error correction pattern is used in the process of step S7.
 その後、ステップS11の処理が行われる。ステップS11において、目標信号生成部16は、変数T´が誤差補正パターンの終了時刻である時刻T80の値以上であるか否かを判定する。 After that, the process of step S11 is performed. In step S11, the target signal generation unit 16 determines whether the variable T' is equal to or greater than the value of time T80 , which is the end time of the error correction pattern.
 ステップS11で、変数T´が時刻T80の値よりも小さい場合、ステップS9以降の処理が行われる。即ち、ステップS9からS11の処理がループされる。 In step S11, if the variable T' is smaller than the value at time T80 , the processes from step S9 onwards are performed. That is, the processing from steps S9 to S11 is looped.
 ステップS11で、変数T´が時刻T80の値以上である場合、目標信号生成部16は、状態遷移Bが行われる処理を終了する。 In step S11, if the variable T' is equal to or greater than the value at time T80 , the target signal generation unit 16 ends the process in which state transition B is performed.
 以上で説明した実施の形態1によれば、かご位置制御装置10は、位置検出器8であるAPSが検出したかご5の位置を目標位置に追従させる制御を行う。かご位置制御装置10は、位置パターン生成部164と誤差演算部165と補正パターン生成部166と目標信号演算部167とを備える。かご位置制御装置10は、位置パターンを生成する際に発生する離散化誤差を目標位置が生成される前に演算する。かご位置制御装置10は、位置パターンから目標位置を生成する際に当該離散化誤差を反映する。この際、かご位置制御装置10は、離散化誤差に基づいて、誤差補正パターンを生成し、位置パターンに重畳する。かご位置制御装置10は、重畳した結果である補正後の位置パターンに前の階床におけるかご5の位置を反映させ、目標位置を生成する。このため、位置パターンによる誤差を抑制することができる。特に、プロセッサの性能の都合上、演算処理が浮動小数点型ではなく整数型で実行されるようなかご位置制御装置に適用された場合、当該誤差が有効に抑制される。その結果、かご5の位置制御の精度を向上させることができる。さらに、誤差補正パターンは、位置パターンの時間的な前後で実行されるのではなく、位置パターンに重畳される。このため、離散化誤差の補正を行うためにかご5の移動時間が増加することを抑制することができる。その結果、乗客の利便性が向上する。 According to the first embodiment described above, the car position control device 10 performs control to cause the position of the car 5 detected by the APS, which is the position detector 8, to follow the target position. The car position control device 10 includes a position pattern generation section 164, an error calculation section 165, a correction pattern generation section 166, and a target signal calculation section 167. The car position control device 10 calculates a discretization error that occurs when generating a position pattern before a target position is generated. The car position control device 10 reflects the discretization error when generating the target position from the position pattern. At this time, the car position control device 10 generates an error correction pattern based on the discretization error and superimposes it on the position pattern. The car position control device 10 generates a target position by reflecting the position of the car 5 on the previous floor in the corrected position pattern that is the superimposed result. Therefore, errors due to positional patterns can be suppressed. In particular, when applied to a car position control device in which arithmetic processing is performed in integer type rather than floating point type due to processor performance, the error can be effectively suppressed. As a result, the accuracy of position control of the car 5 can be improved. Furthermore, the error correction pattern is not executed temporally before or after the position pattern, but is superimposed on the position pattern. Therefore, it is possible to suppress an increase in the travel time of the car 5 due to the correction of the discretization error. As a result, passenger convenience is improved.
 また、誤差補正パターンは、時間の関数である。誤差補正パターンの関数が2階微分された加速度パターンは、定義された時間範囲におけるいずれの時間においても連続となる。当該加速度パターンは、定義された時間範囲の両端において値が零となる。即ち、誤差補正パターンにおいて、加速度の時間推移は、不連続的には変化しないなめらかな波形となる。加速度の時間推移が不連続的に変化すると、かご5には乗客が感じ得る優位なかご振動が発生し、かご5の乗り心地が悪化する。この場合、乗客は不安を感じる。本開示における誤差補正パターンは、当該乗り心地の悪化などが発生することを抑制することができる。 Additionally, the error correction pattern is a function of time. The acceleration pattern obtained by second-order differentiation of the function of the error correction pattern is continuous at any time in the defined time range. The acceleration pattern has a value of zero at both ends of the defined time range. That is, in the error correction pattern, the time transition of acceleration becomes a smooth waveform that does not change discontinuously. When the time course of acceleration changes discontinuously, dominant car vibrations that can be felt by passengers occur in the car 5, and the ride comfort of the car 5 deteriorates. In this case, passengers feel anxious. The error correction pattern according to the present disclosure can suppress the occurrence of such deterioration of ride comfort.
 また、位置パターンおよび誤差補正パターンは、時間の関数である。位置パターンは、加速度の値が零でない時間帯である加速範囲および減速範囲である加減速範囲を有する。誤差補正パターンの時間範囲は、当該加速範囲または減速範囲の時間帯を含むように定義される。即ち、離散化誤差を補正するための移動は、かご5が加速または減速している間に並行して実行される。このため、離散化誤差を補正するための移動が位置パターンとは別に実行される場合と比較して、かご5の移動時間を短くすることができる。また、離散化誤差を補正するための誤差補正パターンにおいて、かご5の加速および減速が行われる必要がある。誤差補正パターンにおける加速および減速を、加速範囲または減速範囲で行うことで、誤差補正パターンにおける加速および減速が位置パターンにおける加速および減速にマスクされる。即ち、乗客が誤差補正パターンにおける加速および減速を感じることを抑制することができる。その結果、誤差補正パターンによるかご5の乗り心地の悪化を抑制することができる。 Additionally, the position pattern and error correction pattern are functions of time. The position pattern has an acceleration range that is a time period in which the acceleration value is not zero, and an acceleration/deceleration range that is a deceleration range. The time range of the error correction pattern is defined to include the time period of the acceleration range or deceleration range. That is, the movement for correcting the discretization error is executed in parallel while the car 5 is accelerating or decelerating. Therefore, compared to the case where the movement for correcting the discretization error is executed separately from the position pattern, the moving time of the car 5 can be shortened. Furthermore, the car 5 needs to be accelerated and decelerated in the error correction pattern for correcting the discretization error. By performing acceleration and deceleration in the error correction pattern in the acceleration range or deceleration range, the acceleration and deceleration in the error correction pattern are masked by the acceleration and deceleration in the position pattern. That is, it is possible to prevent passengers from feeling acceleration and deceleration in the error correction pattern. As a result, deterioration in the ride comfort of the car 5 due to the error correction pattern can be suppressed.
 なお、誤差補正パターンの波形は、かご5に規定水準以上の振動が誘発されない波形であれば、図4に示される波形でなくてもよい。 Note that the waveform of the error correction pattern does not have to be the waveform shown in FIG. 4 as long as it does not induce vibrations of a specified level or higher in the car 5.
 次に、図7を用いて、かご位置制御装置10を構成するハードウェアの例を説明する。
 図7は実施の形態1におけるかご位置制御装置のハードウェア構成図である。
Next, an example of hardware constituting the car position control device 10 will be explained using FIG. 7.
FIG. 7 is a hardware configuration diagram of the car position control device in the first embodiment.
 かご位置制御装置10の各機能は、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。例えば、処理回路は、少なくとも1つの専用のハードウェア200を備える。 Each function of the car position control device 10 can be realized by a processing circuit. For example, the processing circuit includes at least one processor 100a and at least one memory 100b. For example, the processing circuitry includes at least one dedicated hardware 200.
 処理回路が少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える場合、かご位置制御装置10の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ100bに格納される。少なくとも1つのプロセッサ100aは、少なくとも1つのメモリ100bに記憶されたプログラムを読み出して実行することにより、かご位置制御装置10の各機能を実現する。少なくとも1つのプロセッサ100aは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ100bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。 When the processing circuit includes at least one processor 100a and at least one memory 100b, each function of the car position control device 10 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of software and firmware is stored in at least one memory 100b. At least one processor 100a realizes each function of the car position control device 10 by reading and executing a program stored in at least one memory 100b. At least one processor 100a is also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP. For example, the at least one memory 100b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, etc., a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, etc.
 処理回路が少なくとも1つの専用のハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。例えば、かご位置制御装置10の各機能は、それぞれ処理回路で実現される。例えば、かご位置制御装置10の各機能は、まとめて処理回路で実現される。 If the processing circuitry comprises at least one dedicated hardware 200, the processing circuitry may be implemented, for example, in a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. Ru. For example, each function of the car position control device 10 is realized by a processing circuit. For example, each function of the car position control device 10 is realized by a processing circuit.
 かご位置制御装置10の各機能について、一部を専用のハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。例えば、電流制御部15の機能については専用のハードウェア200としての処理回路で実現し、電流制御部15の機能以外の機能については少なくとも1つのプロセッサ100aが少なくとも1つのメモリ100bに格納されたプログラムを読み出して実行することにより実現してもよい。 A part of each function of the car position control device 10 may be realized by dedicated hardware 200, and other parts may be realized by software or firmware. For example, the functions of the current control section 15 are realized by a processing circuit as dedicated hardware 200, and functions other than the functions of the current control section 15 are realized by at least one processor 100a using a program stored in at least one memory 100b. It may also be realized by reading and executing.
 このように、処理回路は、ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせでかご位置制御装置10の各機能を実現する。 In this way, the processing circuit realizes each function of the car position control device 10 using the hardware 200, software, firmware, or a combination thereof.
 以上のように、本開示に係るかご位置制御装置は、エレベーターシステムに利用できる。 As described above, the car position control device according to the present disclosure can be used in an elevator system.
 1 エレベーターシステム、 1a 機械的な構成、 2 昇降路、 3a モータ、 3b シーブ、 4 主ロープ、 5 かご、 6 釣合おもり、 7 角度検出器、 8 位置検出器、 9 制御盤、 10 かご位置制御装置、 11 速度演算部、 12 第1減算部、 13 速度制御部、 14 電流測定部、 15 電流制御部、 16 目標信号生成部、 17 第2減算部、 18 かご位置制御部、 161 信号保持部、 162 第3減算部、 163 遷移時刻演算部、 164 位置パターン生成部、 165 誤差演算部、 166 補正パターン生成部、 167 目標信号演算部、 100a プロセッサ、 100b メモリ、 200 ハードウェア 1 Elevator system, 1a Mechanical configuration, 2 Hoistway, 3a Motor, 3b Sheave, 4 Main rope, 5 Car, 6 Counterweight, 7 Angle detector, 8 Position detector, 9 Control panel, 1 0 Car position control Device, 11 speed calculation unit, 12 first subtraction unit, 13 speed control unit, 14 current measurement unit, 15 current control unit, 16 target signal generation unit, 17 second subtraction unit, 18 car position control unit, 161 signal holding unit , 162 Third subtraction unit, 163 Transition time calculation unit, 164 Position pattern generation unit, 165 Error calculation unit, 166 Correction pattern generation unit, 167 Target signal calculation unit, 100a Processor, 100b Memory, 200 Hardware

Claims (3)

  1.  エレベーターのかごの位置を検出する位置検出器から出力される前記かごの位置を目標位置に追従させるように前記かごを制御するかご位置制御装置であって、
     前記かごが次の階床に向かって昇降距離を移動する際に、前記昇降距離の移動を開始してから停止するまでの前記かごの位置の時間推移が示された位置パターンを生成する位置パターン生成部と、
     前記位置パターンが生成される演算が行われる際に発生する誤差であって、前記位置パターンに示される距離と前記昇降距離との離散化誤差を演算する誤差演算部と、
     前記かごが前記誤差演算部によって演算された前記離散化誤差の距離の移動を開始してから停止するまでの前記かごの位置の時間推移が示された誤差補正パターンを生成する補正パターン生成部と、
     前記位置パターンと前記誤差補正パターンとが重畳された補正後の位置パターンに、前記かごが前の階床に停車している際に前記位置検出器から出力された前記かごの位置を反映することで、前記目標位置を演算する目標信号演算部と、
    を備えたかご位置制御装置。
    A car position control device that controls the elevator car so that the position of the car output from a position detector that detects the position of the elevator car follows a target position,
    A position pattern that generates a position pattern in which the time transition of the position of the car from when the car starts moving up and down the distance until it stops when the car moves the up and down distance toward the next floor. A generation section,
    an error calculation unit that calculates a discretization error between the distance indicated in the position pattern and the vertical distance, which is an error that occurs when the calculation for generating the position pattern is performed;
    a correction pattern generation unit that generates an error correction pattern indicating a time transition of the position of the car from when the car starts moving by the distance of the discretized error calculated by the error calculation unit until it stops; ,
    reflecting the position of the car output from the position detector when the car is stopped at a previous floor in a corrected position pattern in which the position pattern and the error correction pattern are superimposed; a target signal calculation unit that calculates the target position;
    A car position control device equipped with
  2.  前記誤差補正パターンは、時間の関数であって、定義された時間範囲におけるいずれの時間においても2階微分された関数が連続かつ前記定義された時間範囲の両端において2階微分された値が零となる関数である請求項1に記載のかご位置制御装置。 The error correction pattern is a function of time, and the second-order differentiated function is continuous at any time in the defined time range, and the second-order differentiated value is zero at both ends of the defined time range. The car position control device according to claim 1, wherein the function is:
  3.  前記位置パターンは、時間の関数であって、2階微分された加速度の関数の値が零でない時間帯である加減速範囲を有する関数であり、
     前記誤差補正パターンは、時間の関数であって、前記加減速範囲を含むように時間範囲が定義された関数である請求項1または請求項2に記載のかご位置制御装置。
    The position pattern is a function of time and has an acceleration/deceleration range in which the value of the second-order differentiated acceleration function is not zero,
    3. The car position control device according to claim 1, wherein the error correction pattern is a function of time, and a time range is defined to include the acceleration/deceleration range.
PCT/JP2022/018085 2022-04-18 2022-04-18 Car position control device WO2023203622A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018085 WO2023203622A1 (en) 2022-04-18 2022-04-18 Car position control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018085 WO2023203622A1 (en) 2022-04-18 2022-04-18 Car position control device

Publications (1)

Publication Number Publication Date
WO2023203622A1 true WO2023203622A1 (en) 2023-10-26

Family

ID=88419410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018085 WO2023203622A1 (en) 2022-04-18 2022-04-18 Car position control device

Country Status (1)

Country Link
WO (1) WO2023203622A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11212650A (en) * 1998-01-29 1999-08-06 Mitsubishi Electric Corp Mechanical operation controller and stopping command generator
JP2008199760A (en) * 2007-02-13 2008-08-28 Meidensha Corp Variable speed controller for motor
WO2016174796A1 (en) * 2015-04-30 2016-11-03 三菱電機株式会社 Elevator control device, elevator device, and method for determining rotation angle error of rotation detection unit of electric motor for elevator
WO2021240593A1 (en) * 2020-05-25 2021-12-02 三菱電機株式会社 Elevator landing control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11212650A (en) * 1998-01-29 1999-08-06 Mitsubishi Electric Corp Mechanical operation controller and stopping command generator
JP2008199760A (en) * 2007-02-13 2008-08-28 Meidensha Corp Variable speed controller for motor
WO2016174796A1 (en) * 2015-04-30 2016-11-03 三菱電機株式会社 Elevator control device, elevator device, and method for determining rotation angle error of rotation detection unit of electric motor for elevator
WO2021240593A1 (en) * 2020-05-25 2021-12-02 三菱電機株式会社 Elevator landing control system

Similar Documents

Publication Publication Date Title
US4387436A (en) Method and apparatus for detecting elevator car position
US6026935A (en) Cage stop height readjusting apparatus for elevator system and method thereof
JP2008044680A (en) Control device of elevator
JP3170151B2 (en) Elevator control device
JP2011057320A (en) Elevator
WO2023203622A1 (en) Car position control device
JP2006290500A (en) Method and device for controlling elevator
JPH022786B2 (en)
JP5850801B2 (en) Elevator and speed control method thereof
WO2018016033A1 (en) Elevator control device and control method
JPH0912245A (en) Elevator position detection device
JP2005289627A (en) Elevator
WO2021240593A1 (en) Elevator landing control system
JP5029799B2 (en) Elevator landing control device
JP5177850B2 (en) Elevator landing control device
JP2007076824A (en) Elevator control system
US20240116736A1 (en) Elevator control system and method for controlling elevator
JPH08245096A (en) Elevator control device
JP2609695B2 (en) Elevator landing control method
JP7332058B2 (en) multi car elevator
CN110402229B (en) Elevator control device and method for estimating expansion/contraction amount of hoisting rope
JP2004168531A (en) Position detection factor automatic control device and method for elevator
JP2005126185A (en) Landing control device for elevator
JP3681788B2 (en) Elevator control device
JPH05270750A (en) Elevator speed control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938425

Country of ref document: EP

Kind code of ref document: A1