WO2024009513A1 - Control device for injection molding machine and control method for injection molding machine - Google Patents

Control device for injection molding machine and control method for injection molding machine Download PDF

Info

Publication number
WO2024009513A1
WO2024009513A1 PCT/JP2022/027151 JP2022027151W WO2024009513A1 WO 2024009513 A1 WO2024009513 A1 WO 2024009513A1 JP 2022027151 W JP2022027151 W JP 2022027151W WO 2024009513 A1 WO2024009513 A1 WO 2024009513A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
control
torque
motor
injection member
Prior art date
Application number
PCT/JP2022/027151
Other languages
French (fr)
Japanese (ja)
Inventor
市原稔章
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/027151 priority Critical patent/WO2024009513A1/en
Publication of WO2024009513A1 publication Critical patent/WO2024009513A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/20Injection nozzles
    • B29C45/24Cleaning equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material

Definitions

  • the present disclosure relates to an injection molding machine control device and an injection molding machine control method.
  • the injection molding machine includes an injection cylinder, a screw, and a pressure sensor. Resin is supplied to the injection cylinder. The screw is inserted into the injection cylinder. The pressure sensor is used to detect the pressure that the screw applies to the resin in the injection cylinder.
  • a first aspect of the present disclosure includes an injection member that is inserted into an injection cylinder and movable within the injection cylinder, an injection motor that moves the injection member, and a resin pressure inside the injection cylinder.
  • a control device for an injection molding machine comprising: a pressure sensor for detecting a pressure sensor; and controlling the injection motor so that the torque gradually decreases from the first predetermined torque when the movement of the injection member is stopped in the first control, so that the injection motor is controlled in the first direction.
  • a first motor control unit that performs a second control to move the injection member in an opposite second direction; a torque of the injection motor when the injection member stops in the first control; and a torque of the injection motor when the injection member is stopped in the first control; a torque setting unit that sets the smaller of the torque of the injection motor when the injection member stops as a second predetermined torque;
  • a third control is performed in which the injection member is controlled to move in one of the first direction and the second direction, and the movement of the injection member is stopped in the third control.
  • the injection motor is controlled so that the torque becomes the second predetermined torque, and the injection member is moved in the other direction of the first direction and the second direction;
  • a second motor control unit that performs control, and a zero point of the pressure sensor based on a detection value output by the pressure sensor during the third control and a detection value output by the pressure sensor during the fourth control.
  • This is a control device for an injection molding machine, including a zero point correction section that corrects the.
  • a second aspect of the present disclosure includes an injection member inserted into an injection cylinder and movable within the injection cylinder, an injection motor that moves the injection member, and a pressure of resin within the injection cylinder.
  • a method for controlling an injection molding machine comprising: a pressure sensor for detecting a pressure sensor; and controlling the injection motor so that the torque gradually decreases from a first predetermined torque to move the injection member in a first direction and a second control that controls the injection motor so that the torque gradually decreases from the first predetermined torque and moves the injection member in a second direction opposite to the first direction.
  • a third control that controls the injection member to move in one direction; and a third control that controls the injection motor so that the torque becomes the second predetermined torque to move the injection member in the first direction and the second direction.
  • the method of controlling an injection molding machine includes a zero point correction step of correcting the zero point of the pressure sensor based on a detected value outputted during the injection molding machine.
  • FIG. 1 is an overall configuration diagram of an injection molding system according to an embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of the injection device.
  • FIG. 3 is a block diagram of the control device.
  • FIG. 4A is a graph illustrating the time course of the torque of the injection motor during the first control.
  • FIG. 4B is a graph illustrating the time course of the torque of the injection motor during the second control.
  • FIG. 5 is a flowchart illustrating a method for controlling an injection molding machine.
  • the zero point of the pressure sensor that detects the resin pressure is off, it will adversely affect the quality of the molded products produced by the injection molding machine. Therefore, it is preferable that the shift in the zero point of the pressure sensor is corrected. Further, it is preferable that the time required to correct the zero point of the pressure sensor be as short as possible.
  • FIG. 1 is an overall configuration diagram of an injection molding system SYS according to this embodiment.
  • the direction from the right side of the paper in FIG. 1 to the left side of the paper in FIG. 1 is defined as a first direction D1.
  • the direction from the left side of the paper in FIG. 1 to the right side of the paper in FIG. 1 is defined as a second direction D2.
  • the left side in FIG. 1 may be referred to as the front side
  • the right side in FIG. 1 may be referred to as the rear side.
  • injection member referred to in this application is inserted into the injection cylinder 22 (see FIG. 2) of the injection molding machine 10, and is inserted into the injection cylinder 22 in order to inject resin into the cavity 20c of the mold 20.
  • the injection member 24 is configured by the screw 24A, but the invention is not limited to this.
  • the injection member 24 may be configured by a plunger (not shown).
  • automated purge refers to a predetermined operation automatically performed by the injection molding machine 10 to discharge resin from within the injection cylinder 22.
  • the predetermined motion is, for example, one or more reciprocating motions of the injection member 24 along the axis LA of the injection cylinder 22 (see FIG. 2).
  • the injection molding system SYS includes an injection molding machine 10 and a control device 12.
  • the injection molding machine 10 includes a mold clamping device 14, an injection device 16, and a machine stand 18.
  • the mold clamping device 14 is a device that applies mold clamping force to the mold 20.
  • the mold clamping device 14 is supported by a machine stand 18.
  • the mold clamping device 14 opens and closes the mold 20.
  • the mold clamping device 14 applies clamping force to the mold 20 so that the mold 20 does not open.
  • the mold 20 forms a cavity 20c in the closed state.
  • FIG. 1 shows the mold 20 in a closed state. A more detailed explanation of the mold clamping device 14 will be omitted.
  • the injection device 16 is a device that plasticizes the resin and injects the plasticized resin into the cavity 20c of the mold 20.
  • the injection device 16 is supported by a machine stand 18.
  • the injection molding machine 10 produces a molded product by solidifying the resin filled into the cavity 20c by the injection device 16.
  • FIG. 2 is a schematic diagram showing the configuration of the injection device 16.
  • the injection device 16 includes an injection cylinder 22, an injection member 24, a front plate 26, a rear plate 28, a pusher plate 30, and a slide mechanism 32.
  • the injection cylinder 22 is a cylindrical member.
  • the axis LA of the injection cylinder 22 is parallel to the first direction D1 and the second direction D2.
  • a nozzle 34 is provided at the front end (tip part) of the injection cylinder 22.
  • the nozzle 34 has an injection port 34p.
  • the injection port 34p is an opening for injecting the resin in the injection cylinder 22 into the cavity 20c.
  • a hopper 36 is provided at the rear end of the injection cylinder 22. Hopper 36 stores resin. Further, the hopper 36 supplies the stored resin into the injection cylinder 22.
  • the injection member 24 is constituted by the screw 24A.
  • the screw 24A has a screw head 24a, a flight portion 24b, and a base end portion 24c.
  • the screw head 24a is located at the front end (tip part) of the screw 24A.
  • the flight portion 24b is a spiral portion formed in the body of the screw 24A.
  • the flight portion 24b shears the resin within the injection cylinder 22 in response to the rotation of the screw 24A by a first drive device 50, which will be described later.
  • the base end portion 24c is located at the rear end of the screw 24A.
  • the axis LA of the injection cylinder 22 coincides with the axis of the injection member 24.
  • the front plate 26 is located on the rear side of the injection cylinder 22.
  • the front plate 26 supports the injection cylinder 22.
  • the injection member 24 passes through the front plate 26.
  • the base end portion 24c of the injection member 24 is located further back than the front plate 26.
  • the rear plate 28 is located behind the front plate 26. A predetermined space is left between the rear plate 28 and the front plate 26.
  • the pusher plate 30 is provided between the front plate 26 and the rear plate 28.
  • the slide mechanism 32 includes a rail 38 and a slider 40.
  • the rail 38 extends in the direction along the axis LA.
  • Slider 40 is movable along rail 38.
  • Slider 40 supports pusher plate 30. Therefore, the pusher plate 30 is movable along the rail 38.
  • the front plate 26, the rear plate 28, and the slide mechanism 32 are provided on a flat base 42.
  • the front plate 26, the rear plate 28, and the base 42 may be integrally molded.
  • the injection device 16 includes a spline bush 44, a screw sleeve 46, a pressure sensor 48, a first drive device 50, and a second drive device 52.
  • the spline bush 44 supports the base end 24c of the injection member 24.
  • the base end 24c of the injection member 24 has a male spline (not shown).
  • the spline bushing 44 has a female spline (not shown). The male spline of the base end 24c and the female spline of the spline bush 44 fit together, so that the spline bush 44 supports the base end 24c of the injection member 24.
  • a screw sleeve 46 is provided between the pusher plate 30 and the spline bushing 44.
  • the screw sleeve 46 rotatably supports the spline bushing 44. Further, the screw sleeve 46 restricts relative movement of the spline bushing 44 with respect to the screw sleeve 46 in the direction along the axis LA.
  • the screw sleeve 46 includes, for example, a bearing member (not shown). The bearing member rotatably supports the screw sleeve 46 while restricting relative movement of the spline bushing 44 in the direction along the axis LA.
  • the pressure sensor 48 detects the pressure inside the injection cylinder 22.
  • the pressure sensor 48 is, for example, a load cell.
  • the pressure sensor 48 is provided inside the screw sleeve 46, for example. However, the installation location of the pressure sensor 48 may be changed as appropriate.
  • the first drive device 50 is a device that rotates the injection member 24 around the axis LA.
  • the first drive device 50 includes a rotation motor 54, a first drive pulley 56, a first belt 58, and a first driven pulley 60.
  • the rotation motor 54 is, for example, a servo motor.
  • the rotation motor 54 includes a shaft 54a.
  • the shaft 54a rotates when current is supplied to the rotation motor 54.
  • the shaft 54a is connected to a first drive pulley 56.
  • the first drive pulley 56 rotates in accordance with the rotation of the shaft 54a.
  • the first belt 58 spans the first driving pulley 56 and the first driven pulley 60.
  • the first belt 58 transmits the rotation of the first drive pulley 56 to the first driven pulley 60.
  • the first driven pulley 60 rotates as a result of the rotation of the first driving pulley 56 transmitted via the first belt 58. That is, the first driven pulley 60 rotates in accordance with the rotation of the shaft 54a.
  • the first driven pulley 60 is provided inside the pusher plate 30, for example.
  • the first driven pulley 60 is connected to the spline bushing 44 .
  • the first driven pulley 60 and the spline bushing 44 rotate integrally.
  • the rotation of the shaft 54a causes the spline bushing 44 to rotate.
  • the rotation of the spline bushing 44 causes the injection member 24 to rotate.
  • the first drive device 50 can rotate the injection member 24 about the axis LA.
  • the second drive device 52 is a device that moves the injection member 24 along the axis LA.
  • the second drive device 52 includes an injection motor 62, a second drive pulley 64, a second belt 66, a second driven pulley 68, a ball screw 70, and a nut 72.
  • the injection motor 62 is, for example, a servo motor.
  • the injection motor 62 includes a shaft 62a and a rotational position sensor 62b.
  • the shaft 62a rotates when current is supplied to the injection motor 62.
  • the shaft 62a is connected to a second drive pulley 64.
  • the rotational position sensor 62b detects the rotational position of the shaft 62a.
  • the second drive pulley 64 rotates in accordance with the rotation of the shaft 62a.
  • the second belt 66 spans the second drive pulley 64 and the second driven pulley 68.
  • the second belt 66 transmits the rotation of the second drive pulley 64 to the second driven pulley 68.
  • the second driven pulley 68 rotates as a result of the rotation of the second driving pulley 64 transmitted via the second belt 66. That is, the second driven pulley 68 rotates in accordance with the rotation of the shaft 62a.
  • the direction of the axis of the ball screw 70 is parallel to the direction of the axis LA of the injection cylinder 22.
  • the ball screw 70 passes through the rear plate 28.
  • the rear plate 28 rotatably supports the ball screw 70 while restricting movement of the ball screw 70 in the direction along the axis LA.
  • the rear plate 28 has a bearing member 74.
  • the bearing member 74 rotatably supports the ball screw 70 and restricts movement of the ball screw 70 in the direction along the axis LA.
  • the ball screw 70 is connected to the second driven pulley 68.
  • the ball screw 70 rotates together with the second driven pulley 68. Therefore, the ball screw 70 rotates in accordance with the rotation of the shaft 62a.
  • the nut 72 is provided on the rear side of the pusher plate 30.
  • Pusher plate 30 rotatably supports nut 72. More specifically, the pusher plate 30 rotatably supports the nut 72 using a bearing member (not shown) provided on the pusher plate 30 .
  • the nut 72 is screwed onto the ball screw 70.
  • the nut 72 moves in the direction of the axis of the ball screw 70 as the ball screw 70 rotates. That is, the nut 72 moves in the first direction D1 or the second direction D2 according to the rotation of the shaft 62a.
  • the pusher plate 30 moves in the first direction D1 together with the nut 72.
  • the pusher plate 30 moves in the second direction D2 together with the nut 72. Since the slide mechanism 32 supports the pusher plate 30, the pusher plate 30 can move smoothly in the first direction D1 or the second direction D2.
  • the pusher plate 30 When the pusher plate 30 moves in the first direction D1, the pusher plate 30 pushes the injection member 24 in the first direction D1 via the screw sleeve 46 and the spline bushing 44. When the pusher plate 30 moves in the second direction D2, the pusher plate 30 pulls the injection member 24 in the second direction D2 via the screw sleeve 46 and the spline bushing 44.
  • the injection member 24 moves within the injection cylinder 22 in the first direction D1 or the second direction D2 depending on the force received from the pusher plate 30. That is, the injection member 24 can move along the axis LA of the injection cylinder 22.
  • the position of a predetermined portion of the injection member 24 is defined as the position of the injection member 24.
  • the position of the tip of the screw head 24a can be the position of the injection member 24.
  • the movable range of the tip of the screw head 24a is the movable range of the injection member 24.
  • the position of the front end of the movable range of the injection member 24 may be referred to as a first end position PE1.
  • the position of the rear end of the movable range of the injection member 24 may be referred to as a second end position PE2.
  • the first end position PE1 is the frontmost position that can be reached by the tip of the screw head 24a.
  • the second end position PE2 is the rearmost position that can be reached by the tip of the screw head 24a.
  • the rotation direction of the shaft 62a when the injection member 24 is moved in the first direction D1 and the rotation direction of the shaft 62a when the injection member 24 is moved in the second direction D2 are opposite to each other.
  • the rotational direction of the shaft 62a when the injection member 24 is moved in the first direction D1 is also referred to as a first rotational direction in the following description.
  • the rotational direction of the shaft 62a when the injection member 24 is moved in the second direction D2 is also referred to as a second rotational direction in the following description.
  • the amount of movement of the injection member 24 correlates with the amount of rotation of the shaft 62a.
  • the amount of movement of the injection member 24 in the first direction D1 correlates with the amount of rotation of the shaft 62a in the first rotation direction.
  • the amount of movement of the injection member 24 in the second direction D2 correlates with the amount of rotation of the shaft 62a in the second rotational direction. Since the amount of movement of the injection member 24 is correlated to the amount of rotation of the shaft 62a, the rotational position of the shaft 62a detected by the rotational position sensor 62b substantially indicates the position of the injection member 24 in the direction along the axis LA.
  • FIG. 3 is a block diagram of the control device 12.
  • the control device 12 is an electronic device (computer) that controls the injection molding machine 10.
  • the control device 12 is, for example, a numerical control device.
  • the control device 12 includes a display section 76, an operation section 78, a storage section 80, and a calculation section 82.
  • the display unit 76 is a display device including a display screen 76d.
  • the display unit 76 is, for example, a liquid crystal display or an OEL (Organic Electro-Luminescence) display.
  • the operation unit 78 is an input device that accepts information input to the control device 12.
  • the operation unit 78 includes, for example, an operation panel 78a and a touch panel 78b.
  • the touch panel 78b is provided on the display screen 76d.
  • the operation panel 78a may include a keyboard, a mouse, and the like. The operator can use the operation unit 78 to instruct the control device 12 to execute automatic purge, for example.
  • the storage unit 80 may include a volatile memory (not shown) and a nonvolatile memory (not shown). Examples of volatile memory include RAM (Random Access Memory). Examples of nonvolatile memory include ROM (Read Only Memory), flash memory, and the like. Data etc. are stored in volatile memory, for example. Programs, data tables, maps, etc. are stored in, for example, non-volatile memory. At least a portion of the storage unit 80 may be included in a processor, an integrated circuit, or the like, which will be described later.
  • the storage unit 80 stores a control program 84, first torque information 86, and second torque information 88.
  • the control program 84 is a program for causing the control device 12 to execute the control method of this embodiment. A more detailed explanation of the control method will be given later.
  • the first torque information 86 is information indicating the magnitude of the first predetermined torque TC.
  • the first predetermined torque TC is an initial target torque value of the injection motor 62 when the first motor control unit 90, which will be described later, controls the injection motor 62.
  • the first torque information 86 is provided to the user, for example, by the manufacturer of the injection molding system SYS. More specifically, the manufacturer of the injection molding system SYS provides the user with the first predetermined torque TC, which is determined based on, for example, an experiment. The user can input the first predetermined torque TC using the operating section 78.
  • the second torque information 88 is information indicating the magnitude of the second predetermined torque.
  • the second predetermined torque is a target torque value of the injection motor 62 when the second motor control section 92, which will be described later, controls the injection motor 62.
  • the second torque information 88 is set by a torque setting section 91, which will be described later.
  • the calculation unit 82 is configured by, for example, a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit). That is, the calculation unit 82 may be configured by a processing circuit.
  • the calculation section 82 includes a first motor control section 90 , a torque setting section 91 , a second motor control section 92 , and a zero point correction section 94 .
  • the first motor control section 90, the torque setting section 91, the second motor control section 92, and the zero point correction section 94 are realized by the calculation section 82 executing the control program 84.
  • the first motor control section 90, torque setting section 91, second motor control section 92, and zero point correction section 94 is implemented using an ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), etc. It may also be realized by an integrated circuit.
  • at least a portion of the first motor control section 90, the torque setting section 91, the second motor control section 92, and the zero point correction section 94 may be configured by an electronic circuit including a discrete device.
  • the first motor control section 90 performs first control described below.
  • the first motor control section 90 controls the injection motor 62 so that the magnitude of the torque in the first rotational direction gradually decreases from the first predetermined torque TC, and moves the injection member 24 in the first direction. Move to D1.
  • the first rotation direction is the rotation direction of the shaft 62a when the injection member 24 is moved in the first direction D1.
  • the torque of the injection motor 62 correlates with the amount of current supplied to the injection motor 62. Therefore, the first motor control unit 90 can gradually lower the torque of the injection motor 62 by controlling the injection motor 62 so that the amount of current supplied to the injection motor 62 gradually decreases.
  • the injection member 24 presses the resin within the injection cylinder 22 in the first direction D1 by moving in the first direction D1.
  • the force with which the pusher plate 30 pushes the injection member 24 is relatively large. That is, the force that moves the injection member 24 in the first direction D1 is relatively large. Therefore, the injection member 24 can move in the first direction D1. That is, although a resistance force that inhibits the movement of the injection member 24 in the first direction D1 is generated by the resin, the force that moves the injection member 24 in the first direction D1 is sufficiently large, so that the injection member 24 moves in the first direction D1. It can move in one direction D1.
  • the force with which the pusher plate 30 presses the injection member 24 gradually decreases. That is, the force that moves the injection member 24 in the first direction D1 gradually decreases. Therefore, when the torque of the injection motor 62 decreases to a certain level, the injection member 24 cannot be moved in the first direction D1. That is, movement of the injection member 24 in the first direction D1 is stopped by the resin. In this case, even before the injection member 24 reaches the first end position PE1 and the torque of the injection motor 62 in the first rotational direction is greater than zero, the movement of the injection member 24 in the first direction D1 stops.
  • the first motor control unit 90 causes the storage unit 80 to store information indicating the torque of the injection motor 62 when the movement of the injection member 24 is stopped in the first control. For example, the first motor control unit 90 causes the storage unit 80 to store information indicating the amount of current that was being supplied to the injection motor 62 when the movement of the injection member 24 stopped in the first control. Note that the first motor control unit 90 determines whether the injection member 24 has stopped based on the rotational position of the shaft 62a detected by the rotational position sensor 62b.
  • FIG. 4A is a graph illustrating the time course of the torque of the injection motor 62 during the first control.
  • the vertical axis in FIG. 4A indicates the torque of the injection motor 62 in the first rotational direction.
  • the horizontal axis in FIG. 4A indicates time.
  • Time t1 in FIG. 4A is the time when the injection member 24 stops moving in the first direction D1.
  • Torque TA in FIG. 4A is the torque in the first rotational direction of the injection motor 62 at time t1.
  • the first motor control section 90 causes the storage section 80 to store information indicating the torque TA.
  • the torque TA is also referred to as the first acquired torque TA.
  • the first motor control section 90 When the movement of the injection member 24 is stopped in the first control, the first motor control section 90 further performs the second control described below.
  • the first motor control section 90 controls the injection motor 62 so that the magnitude of the torque in the second rotational direction gradually decreases from the first predetermined torque TC, and moves the injection member 24 in the second direction. Move to D2.
  • the second rotation direction is the rotation direction of the shaft 62a when the injection member 24 is moved in the second direction D2.
  • the force with which the pusher plate 30 pulls the injection member 24 is relatively large. That is, the force that moves the injection member 24 in the second direction D2 is relatively large. Therefore, the injection member 24 can move in the second direction D2. That is, although a resistance force that inhibits movement of the injection member 24 in the second direction D2 is generated by the resin, the force that moves the injection member 24 in the second direction D2 is sufficiently large, so that the injection member 24 moves in the second direction D2. It can move in two directions D2.
  • the force with which the pusher plate 30 pulls the injection member 24 gradually becomes smaller. That is, the force that moves the injection member 24 in the second direction D2 gradually decreases. Therefore, when the torque of the injection motor 62 decreases to a certain level, the injection member 24 cannot be moved in the second direction D2. That is, movement of the injection member 24 in the second direction D2 is stopped by the resin. In this case, even before the injection member 24 reaches the second end position PE2 and the torque of the injection motor 62 in the second rotational direction is greater than zero, the injection member 24 cannot be moved in the second direction D2. stops.
  • the first motor control unit 90 causes the storage unit 80 to store information indicating the torque of the injection motor 62 when the movement of the injection member 24 is stopped in the second control.
  • the first motor control unit 90 causes the storage unit 80 to store information indicating the amount of current that was being supplied to the injection motor 62 when the movement of the injection member 24 stopped in the second control.
  • FIG. 4B is a graph illustrating the time course of the torque of the injection motor 62 during the second control.
  • the format of the graph in FIG. 4B is similar to the format of the graph in FIG. 4A.
  • Time t2 in FIG. 4B is the time when the injection member 24 stops moving in the second direction D2.
  • Torque TB in FIG. 4B is the torque in the second rotational direction of the injection motor 62 at time t2.
  • the first motor control section 90 causes the storage section 80 to store information indicating the torque TB.
  • the torque TB is also referred to as the second acquired torque TB.
  • the torque setting unit 91 determines the magnitude of the second predetermined torque described above using information indicating the first acquired torque TA and information indicating the second acquired torque TB. That is, the torque setting unit 91 creates the second torque information 88 using the information indicating the first acquired torque TA and the information indicating the second acquired torque TB.
  • the torque setting unit 91 compares the magnitude of the first acquired torque TA and the magnitude of the second acquired torque TB.
  • the torque setting unit 91 sets the smaller of the first acquired torque TA and the second acquired torque TB as the second predetermined torque.
  • the torque setting unit 91 sets the second predetermined torque based on the magnitude.
  • the second motor control unit 92 performs the third control described below based on the second predetermined torque.
  • the second motor control section 92 controls the injection motor 62 so that the magnitude of the torque in the first rotational direction becomes the second predetermined torque.
  • the injection member 24 is controlled to move in the first direction D1.
  • the second motor control unit 92 appropriately adjusts the amount of current supplied to the injection motor 62 to maintain the torque of the injection motor 62 at a second predetermined torque.
  • the second predetermined torque is the torque TA when the injection member 24 stops moving in the first direction D1, and the torque TB when the injection member 24 stops moving in the second direction D2. This is the smaller one. Therefore, when the second motor control section 92 controls the injection motor 62 so that the magnitude of the torque in the first rotational direction becomes the second predetermined torque, the injection member 24 also rotates in the first direction D1. It does not move in the second direction D2 either.
  • the injection member 24 does not move, but an axial force in a direction parallel to the axis LA acts on the injection member 24.
  • the detection value of the pressure sensor 48 when the axial force acts on the injection member 24 is acquired by the calculation unit 82.
  • the calculation unit 82 acquires the detection value of the pressure sensor 48 when the axial force acts on the injection member 24, the second motor control unit 92 ends the third control.
  • the second motor control section 92 further performs the fourth control described below.
  • the second motor control section 92 controls the injection motor 62 so that the magnitude of the torque in the second rotational direction becomes the second predetermined torque. Thereby, the injection member 24 is controlled to move in the second direction D2.
  • the second predetermined torque is the torque TA when the injection member 24 stops moving in the first direction D1, and the torque TB when the injection member 24 stops moving in the second direction D2. This is the smaller one. Therefore, when the second motor control section 92 controls the injection motor 62 so that the magnitude of the torque in the second rotational direction becomes the second predetermined torque, the injection member 24 does not move.
  • the injection member 24 does not move, but an axial force in a direction parallel to the axis LA acts on the injection member 24.
  • the detection value of the pressure sensor 48 when the axial force acts on the injection member 24 is acquired by the calculation unit 82.
  • the calculation unit 82 acquires the detected value of the pressure sensor 48 when the axial force acts on the injection member 24, the second motor control unit 92 ends the fourth control.
  • the magnitude of the axial force acting on the injection member 24 in the third control is correlated to the second predetermined torque.
  • the magnitude of the axial force acting on the injection member 24 in the fourth control also correlates with the second predetermined torque. Therefore, the magnitude of the axial force acting on the injection member 24 in the third control is equal to the magnitude of the axial force acting on the injection member 24 in the fourth control. Therefore, the magnitude of the detection value output by the pressure sensor 48 in the third control should be equal to the magnitude of the detection value output by the pressure sensor 48 in the fourth control. However, if the zero point of the pressure sensor 48 is not set correctly, the magnitude of the detection value output by the pressure sensor 48 in the third control and the magnitude of the detection value output by the pressure sensor 48 in the fourth control may differ. not equal.
  • the zero point correction unit 94 can correct the zero point P0 of the pressure sensor 48. That is, the zero point correction unit 94 corrects the zero point of the pressure sensor 48 based on the detection value output by the pressure sensor 48 during the third control and the detection value output by the pressure sensor 48 during the fourth control. . More specifically, the zero point correction unit 94 determines that the absolute value of the detection value output by the pressure sensor 48 during the third control is equal to the absolute value of the detection value output by the pressure sensor 48 during the fourth control.
  • the zero point of the pressure sensor 48 is corrected so that That is, the zero point correction unit 94 calculates the difference value between the detected value outputted by the pressure sensor 48 during the third control and the corrected zero point, and the detected value outputted by the pressure sensor 48 during the fourth control and the corrected zero point.
  • the zero point of the pressure sensor 48 is corrected so that the difference value from the zero point of the pressure sensor 48 is equal to the difference value. Thereby, an error in the zero point of the pressure sensor 48 can be corrected.
  • FIG. 5 is a flowchart illustrating a method of controlling the injection molding machine 10.
  • the control device 12 can execute the control method shown in FIG. 5, for example.
  • This control method includes a first motor control step S1, a torque setting step S2, a second motor control step S3, and a zero point correction step S4.
  • the first motor control step S1 includes a first control step S11 and a second control step S12.
  • the first motor control section 90 executes the first control. More specifically, in the first control step S11, the injection motor 62 is controlled so that the torque in the first rotational direction gradually decreases from the first predetermined torque TC. As a result, the injection member 24 moves in the first direction D1, but when the torque decreases to a certain level, the movement of the injection member 24 in the first direction D1 is stopped due to inhibition by the resin.
  • the first motor control unit 90 causes the storage unit 80 to store the first acquired torque TA when the injection member 24 stops in the first control. This ends the first control step S11.
  • the injection member 24 may be at the first end position PE1 at the start of the first motor control step S1. In that case, the first motor control unit 90 cannot move the injection member 24 in the first direction D1.
  • the injection member 24 may be moved in the second direction D2 before starting the first motor control step S1. good.
  • the first motor control section 90 executes the second control. More specifically, in the second control step S12, the injection motor 62 is controlled so that the torque in the second rotational direction gradually decreases from the first predetermined torque TC. As a result, the injection member 24 moves in the second direction D2, but when the torque decreases to a certain level, the movement of the injection member 24 in the second direction D2 is stopped by the resin.
  • the first motor control unit 90 causes the storage unit 80 to store the second acquired torque TB when the injection member 24 stops in the second control. This ends the second control step S12.
  • the control device 12 starts the torque setting step S2.
  • the torque setting section 91 sets a second predetermined torque.
  • the torque setting unit 91 sets the smaller of the first acquired torque TA and the second acquired torque TB as the second predetermined torque.
  • the torque setting section 91 causes the storage section 80 to store second torque information 88 indicating the second predetermined torque. This completes the torque setting step S2.
  • the control device 12 starts the second motor control step S3.
  • the second motor control step S3 includes a third control step S31 and a fourth control step S32.
  • the second motor control section 92 executes the third control. More specifically, in the third control step S31, the second motor control unit 92 controls the injection motor 62 so that the torque in the first rotational direction becomes the second predetermined torque. As described above, the second predetermined torque is the smaller of the first acquired torque TA and the second acquired torque TB. Therefore, the injection member 24 does not move in the first direction D1.
  • the control device 12 ends the third control step S31.
  • the second motor control section 92 executes the fourth control. More specifically, in the fourth control step S32, the second motor control unit 92 controls the injection motor 62 so that the torque in the second rotational direction becomes the second predetermined torque. As described above, the second predetermined torque is the smaller of the first acquired torque TA and the second acquired torque TB. Therefore, the injection member 24 does not move in the second direction D2.
  • the control device 12 ends the fourth control step S32.
  • the zero point correction section 94 corrects the zero point of the pressure sensor 48.
  • the zero point correction unit 94 adjusts the zero point of the pressure sensor 48 based on the detection value output by the pressure sensor 48 during the third control step S31 and the detection value output by the pressure sensor 48 during the fourth control step S32. Correct.
  • the control method of FIG. 5 ends when the zero point correction section 94 corrects the zero point of the pressure sensor 48.
  • the zero point error of the pressure sensor 48 is corrected.
  • the number of times the injection member 24 moves in order to correct the zero point of the pressure sensor 48 is the number of times the injection member 24 moves in the first direction D1 when the first control is executed and the number of times the injection member 24 moves in the first direction D1 when the second control is executed. It may be necessary to move at least twice in two directions D2. In other words, the control device 12 can correct the zero point of the pressure sensor 48 while suppressing the number of times the injection member 24 moves.
  • the risk of air being drawn into the injection cylinder 22 from the injection port 34p due to the injection member 24 moving many times is reduced.
  • the risk of the air drawn into the injection cylinder 22 causing resin burn on the resin within the injection cylinder 22 is also reduced.
  • the time required to execute the control method of FIG. 5 can also be reduced.
  • the time required to correct the zero point of the pressure sensor 48 can also be suppressed.
  • the timing at which the control device 12 executes the control method of FIG. 5 is not particularly limited as long as it is within the period when the resin that imparts viscous resistance to the injection member 24 remains in the injection cylinder 22.
  • the control device 12 performs the first motor control step S1 and the second motor control step S3 during automatic purge.
  • the control device 12 also automatically starts the control method of FIG. 5 when starting automatic purge. This eliminates the need to delay the start of the molding cycle just to correct the zero point of the pressure sensor 48. Furthermore, there is no need to interrupt the molding cycle just to correct the zero point of the pressure sensor 48.
  • the control device 12 appropriately controls the rotation motor 54 and the injection motor 62 to execute automatic purging.
  • the control device 12 may be applied to a pre-plastic injection molding machine.
  • the injection member 24 is configured by a plunger (not shown).
  • the plunger is inserted into the injection cylinder 22.
  • the plunger moves in the first direction D1 and the second direction D2 according to the drive of the injection motor 62.
  • the first motor control section 90 can perform the first control and the second control similarly to the above embodiment.
  • the first acquired torque TA when the plunger stops moving in the first direction D1 and the second acquired torque TB when the plunger stops moving in the second direction D2 are acquired. Therefore, the torque setting unit 91 can set the second predetermined torque based on the first acquired torque TA and the second acquired torque TB, similarly to the above embodiment.
  • the second motor control section 92 can perform the third control and the fourth control similarly to the above embodiment.
  • the zero point correction unit 94 detects the pressure sensor based on the detected value outputted by the pressure sensor 48 during the third control and the detected value outputted by the pressure sensor 48 during the fourth control. 48 zero points can be corrected. Furthermore, the zero point correction section 94 can correct the zero point P0 of the pressure sensor 48 while minimizing the number of times the plunger moves.
  • the control device (12) of the injection molding machine (10) which includes a pressure sensor (48) for detecting to perform first control to move the injection member in a first direction, and control the injection control so that the torque gradually decreases from the first predetermined torque when the movement of the injection member is stopped in the first control.
  • a first motor control unit (90) that performs second control to control a motor to move the injection member in a second direction opposite to the first direction, and when the injection member stops in the first control; and a torque of the injection motor when the injection member stops in the second control, the smaller of which is set as a second predetermined torque.
  • a third control for controlling the injection motor so that the torque becomes the second predetermined torque, and controlling the injection member to move in one of the first direction and the second direction; At the same time, when the movement of the injection member is stopped in the third control, the injection motor is controlled so that the torque becomes the second predetermined torque.
  • a second motor control unit (92) that performs fourth control to control the injection member to move in the other direction; a detected value that the pressure sensor outputs during the third control; and a detection value that the pressure sensor outputs during the third control; and a zero point correction section (94) that corrects the zero point of the pressure sensor based on the detected value output during the fourth control.
  • the zero point of the pressure sensor can be corrected while suppressing the number of times the injection member is moved.
  • the control device for an injection molding machine according to Supplementary Note 1, wherein the zero point correction unit is configured to output an absolute value of a detection value outputted by the pressure sensor during the third control, and an absolute value of the detected value outputted by the pressure sensor during the fourth control.
  • the control device for the injection molding machine may correct the zero point so that the absolute value of the detected value outputted to the zero point becomes equal to the absolute value of the detected value. Thereby, the zero point of the pressure sensor can be corrected while suppressing the number of times the injection member is moved.
  • the control device for an injection molding machine according to Supplementary Note 1 or 2, wherein the first motor control section and the second motor control section are configured to control the injection molding machine while the injection molding machine executes automatic purge. It may also be a control device for an injection molding machine that controls a motor. This eliminates the need to delay the start of the molding cycle just to correct the zero point of the pressure sensor. Furthermore, there is no need to interrupt the molding cycle just to correct the zero point of the pressure sensor.
  • a first motor control step (S1) that performs a second control for moving the member, a torque of the injection motor when the injection member stops in the first control, and a torque of the injection motor when the injection member stops in the second control; a torque setting step (S2) of setting the smaller of the torque of the injection motor when stopped as a second predetermined torque; and controlling the injection motor so that the torque becomes the second predetermined torque.
  • a third control for controlling the injection member to move in one of the first direction and the second direction; and controlling the injection motor so that the torque becomes the second predetermined torque.
  • the zero point of the pressure sensor can be corrected while suppressing the number of times the injection member is moved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A control device (12) for an injection molding machine (10) is provided with: a first motor control unit (90) that moves an injection member (24) in each of a first direction and a second direction while reducing a torque of an injection motor (62); a torque setting unit (91) that sets a second prescribed torque on the basis of a control result of the first motor control unit (90); a second motor control unit (92) that controls the injection motor (62) on the basis of a second prescribed torque; and a zero-point correction unit (94) that corrects zero point on the basis of a detection value output by a pressure sensor (48) during control of the second motor control unit (92).

Description

射出成形機の制御装置および射出成形機の制御方法Injection molding machine control device and injection molding machine control method
 本開示は、射出成形機の制御装置および射出成形機の制御方法に関する。 The present disclosure relates to an injection molding machine control device and an injection molding machine control method.
 射出成形機は、射出用シリンダと、スクリュと、圧力センサとを備える。射出用シリンダには樹脂が供給される。スクリュは射出用シリンダ内に挿入される。圧力センサは、スクリュが射出用シリンダ内の樹脂に付与する圧力を検出するために用いられる。 The injection molding machine includes an injection cylinder, a screw, and a pressure sensor. Resin is supplied to the injection cylinder. The screw is inserted into the injection cylinder. The pressure sensor is used to detect the pressure that the screw applies to the resin in the injection cylinder.
 圧力センサのゼロ点を補正する方法が提案されている(特開平9-117946号公報)。 A method of correcting the zero point of a pressure sensor has been proposed (Japanese Patent Application Laid-Open No. 9-117946).
 近時では、圧力センサのゼロ点をより効率よく補正し得る技術が待望されている。 Recently, there has been a long-awaited technology that can more efficiently correct the zero point of a pressure sensor.
 本開示の第1の態様は、射出用シリンダ内に挿入され、前記射出用シリンダ内を移動可能な射出部材と、前記射出部材を移動させる射出用モータと、前記射出用シリンダ内の樹脂の圧力を検出するための圧力センサと、を備える射出成形機の制御装置であって、トルクが第1所定トルクから徐々に下がるように前記射出用モータを制御して前記射出部材を第1方向に移動させる第1制御を行うと共に、前記第1制御において前記射出部材の移動が停止した場合に、トルクが前記第1所定トルクから徐々に下がるように前記射出用モータを制御して前記第1方向とは反対の第2方向に前記射出部材を移動させる第2制御を行う第1モータ制御部と、前記第1制御において前記射出部材が停止したときの前記射出用モータのトルクと、前記第2制御において前記射出部材が停止したときの前記射出用モータのトルクと、のうちの小さい方を第2所定トルクとして設定するトルク設定部と、トルクが前記第2所定トルクとなるように前記射出用モータを制御して前記第1方向と前記第2方向とのうちの一方向に前記射出部材が移動するように制御する第3制御を行うと共に、前記第3制御において前記射出部材の移動が停止した場合に、トルクが前記第2所定トルクとなるように前記射出用モータを制御して前記第1方向と前記第2方向とのうちの他方向に前記射出部材が移動するように制御する第4制御を行う第2モータ制御部と、前記圧力センサが前記第3制御中に出力する検出値と、前記圧力センサが前記第4制御中に出力する検出値とに基づいて前記圧力センサのゼロ点を補正するゼロ点補正部と、備える、射出成形機の制御装置である。 A first aspect of the present disclosure includes an injection member that is inserted into an injection cylinder and movable within the injection cylinder, an injection motor that moves the injection member, and a resin pressure inside the injection cylinder. A control device for an injection molding machine, comprising: a pressure sensor for detecting a pressure sensor; and controlling the injection motor so that the torque gradually decreases from the first predetermined torque when the movement of the injection member is stopped in the first control, so that the injection motor is controlled in the first direction. a first motor control unit that performs a second control to move the injection member in an opposite second direction; a torque of the injection motor when the injection member stops in the first control; and a torque of the injection motor when the injection member is stopped in the first control; a torque setting unit that sets the smaller of the torque of the injection motor when the injection member stops as a second predetermined torque; A third control is performed in which the injection member is controlled to move in one of the first direction and the second direction, and the movement of the injection member is stopped in the third control. a fourth direction, the injection motor is controlled so that the torque becomes the second predetermined torque, and the injection member is moved in the other direction of the first direction and the second direction; A second motor control unit that performs control, and a zero point of the pressure sensor based on a detection value output by the pressure sensor during the third control and a detection value output by the pressure sensor during the fourth control. This is a control device for an injection molding machine, including a zero point correction section that corrects the.
 本開示の第2の態様は、射出用シリンダ内に挿入され、前記射出用シリンダ内を移動可能な射出部材と、前記射出部材を移動させる射出用モータと、前記射出用シリンダ内の樹脂の圧力を検出するための圧力センサと、を備える射出成形機の制御方法であって、トルクが第1所定トルクから徐々に下がるように前記射出用モータを制御して前記射出部材を第1方向に移動させる第1制御と、トルクが前記第1所定トルクから徐々に下がるように前記射出用モータを制御して前記第1方向とは反対の第2方向に前記射出部材を移動させる第2制御とを行う第1モータ制御ステップと、前記第1制御において前記射出部材が停止したときの前記射出用モータのトルクと、前記第2制御において前記射出部材が停止したときの前記射出用モータのトルクと、のうちの小さい方を第2所定トルクとして設定するトルク設定ステップと、トルクが前記第2所定トルクとなるように前記射出用モータを制御して前記第1方向と前記第2方向とのうちの一方向に前記射出部材が移動するように制御する第3制御と、トルクが前記第2所定トルクとなるように前記射出用モータを制御して前記第1方向と前記第2方向とのうちの他方向に前記射出部材が移動するように制御する第4制御とを行う第2モータ制御ステップと、前記圧力センサが前記第3制御中に出力する検出値と、前記圧力センサが前記第4制御中に出力する検出値とに基づいて前記圧力センサのゼロ点を補正するゼロ点補正ステップと、を含む、射出成形機の制御方法である。 A second aspect of the present disclosure includes an injection member inserted into an injection cylinder and movable within the injection cylinder, an injection motor that moves the injection member, and a pressure of resin within the injection cylinder. A method for controlling an injection molding machine, comprising: a pressure sensor for detecting a pressure sensor; and controlling the injection motor so that the torque gradually decreases from a first predetermined torque to move the injection member in a first direction and a second control that controls the injection motor so that the torque gradually decreases from the first predetermined torque and moves the injection member in a second direction opposite to the first direction. a first motor control step to be performed; a torque of the injection motor when the injection member stops in the first control; and a torque of the injection motor when the injection member stops in the second control; a torque setting step of setting the smaller of the two as a second predetermined torque; and controlling the injection motor so that the torque becomes the second predetermined torque, the smaller one of the first direction and the second direction. a third control that controls the injection member to move in one direction; and a third control that controls the injection motor so that the torque becomes the second predetermined torque to move the injection member in the first direction and the second direction. a second motor control step of performing a fourth control to control the injection member to move in the other direction; a detection value output by the pressure sensor during the third control; The method of controlling an injection molding machine includes a zero point correction step of correcting the zero point of the pressure sensor based on a detected value outputted during the injection molding machine.
図1は、一実施形態に係る射出成形システムの全体構成図である。FIG. 1 is an overall configuration diagram of an injection molding system according to an embodiment. 図2は、射出装置の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of the injection device. 図3は、制御装置のブロック図である。FIG. 3 is a block diagram of the control device. 図4Aは、第1制御中における射出用モータのトルクの時間推移を例示するグラフである。図4Bは、第2制御中における射出用モータのトルクの時間推移を例示するグラフである。FIG. 4A is a graph illustrating the time course of the torque of the injection motor during the first control. FIG. 4B is a graph illustrating the time course of the torque of the injection motor during the second control. 図5は、射出成形機の制御方法を例示するフローチャートである。FIG. 5 is a flowchart illustrating a method for controlling an injection molding machine.
 樹脂の圧力を検出する圧力センサのゼロ点がずれていると、射出成形機が生産する成形品の品質に悪影響を与える。したがって、圧力センサのゼロ点のずれは補正されることが好ましい。また、圧力センサのゼロ点を補正するために要する時間は、短時間であるほど好ましい。 If the zero point of the pressure sensor that detects the resin pressure is off, it will adversely affect the quality of the molded products produced by the injection molding machine. Therefore, it is preferable that the shift in the zero point of the pressure sensor is corrected. Further, it is preferable that the time required to correct the zero point of the pressure sensor be as short as possible.
 [一実施形態]
 一実施形態に係る射出成形機の制御装置および射出成形機の制御方法を、図面を参照して説明する。なお、以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は、省略する場合がある。
[One embodiment]
An injection molding machine control device and an injection molding machine control method according to one embodiment will be described with reference to the drawings. In addition, in the following description, the same code|symbol is attached to the structure which has the same or similar function. Redundant explanations of these configurations may be omitted.
 図1は、本実施形態に係る射出成形システムSYSの全体構成図である。図1の紙面右側から図1の紙面左側に向かう方向を第1方向D1とする。図1の紙面左側から図1の紙面右側に向かう方向を第2方向D2とする。説明の便宜上、図1における左側を前側と称し、図1における右側を後ろ側と称することもある。 FIG. 1 is an overall configuration diagram of an injection molding system SYS according to this embodiment. The direction from the right side of the paper in FIG. 1 to the left side of the paper in FIG. 1 is defined as a first direction D1. The direction from the left side of the paper in FIG. 1 to the right side of the paper in FIG. 1 is defined as a second direction D2. For convenience of explanation, the left side in FIG. 1 may be referred to as the front side, and the right side in FIG. 1 may be referred to as the rear side.
 本願で言う「射出部材」とは、射出成形機10の射出用シリンダ22(図2参照)内に挿入されると共に、金型20のキャビティ20cに樹脂を射出するために射出用シリンダ22内を移動する部材を意味する。本実施形態では、スクリュ24Aによって射出部材24が構成される場合を例に説明するが、これに限定されない。例えば、不図示のプランジャによって射出部材24が構成されてもよい。 The "injection member" referred to in this application is inserted into the injection cylinder 22 (see FIG. 2) of the injection molding machine 10, and is inserted into the injection cylinder 22 in order to inject resin into the cavity 20c of the mold 20. means a moving member. In this embodiment, an example will be described in which the injection member 24 is configured by the screw 24A, but the invention is not limited to this. For example, the injection member 24 may be configured by a plunger (not shown).
 本願で言う「自動パージ」とは、射出用シリンダ22内から樹脂を排出するために射出成形機10が自動で行う所定の動作を意味する。その所定の動作は、例えば、射出用シリンダ22の軸線LA(図2参照)に沿って行われる射出部材24の1回以上の往復動作である。 In the present application, "automatic purge" refers to a predetermined operation automatically performed by the injection molding machine 10 to discharge resin from within the injection cylinder 22. The predetermined motion is, for example, one or more reciprocating motions of the injection member 24 along the axis LA of the injection cylinder 22 (see FIG. 2).
 射出成形システムSYSは、射出成形機10と制御装置12とを備える。 The injection molding system SYS includes an injection molding machine 10 and a control device 12.
 射出成形機10は、型締装置14と射出装置16と機台18とを備える。 The injection molding machine 10 includes a mold clamping device 14, an injection device 16, and a machine stand 18.
 型締装置14は、金型20に型締力を付与する装置である。型締装置14は、機台18によって支持されている。型締装置14は、金型20を開閉させる。型締装置14は、金型20が開かないように、金型20に型締力を付与する。金型20は、閉状態においてキャビティ20cを形成する。図1には、閉状態の金型20が図示されている。型締装置14のより詳しい説明は割愛する。 The mold clamping device 14 is a device that applies mold clamping force to the mold 20. The mold clamping device 14 is supported by a machine stand 18. The mold clamping device 14 opens and closes the mold 20. The mold clamping device 14 applies clamping force to the mold 20 so that the mold 20 does not open. The mold 20 forms a cavity 20c in the closed state. FIG. 1 shows the mold 20 in a closed state. A more detailed explanation of the mold clamping device 14 will be omitted.
 射出装置16は、樹脂を可塑化すると共に、可塑化した樹脂を金型20のキャビティ20cに射出する装置である。射出装置16は、機台18によって支持されている。射出成形機10は、射出装置16によってキャビティ20cに充填された樹脂を固化することで、成形品を生産する。 The injection device 16 is a device that plasticizes the resin and injects the plasticized resin into the cavity 20c of the mold 20. The injection device 16 is supported by a machine stand 18. The injection molding machine 10 produces a molded product by solidifying the resin filled into the cavity 20c by the injection device 16.
 図2は、射出装置16の構成を示す模式図である。 FIG. 2 is a schematic diagram showing the configuration of the injection device 16.
 射出装置16は、射出用シリンダ22と、射出部材24と、フロントプレート26と、リアプレート28と、プッシャプレート30と、スライド機構32とを備える。 The injection device 16 includes an injection cylinder 22, an injection member 24, a front plate 26, a rear plate 28, a pusher plate 30, and a slide mechanism 32.
 射出用シリンダ22は、筒状の部材である。射出用シリンダ22の軸線LAは、第1方向D1および第2方向D2に平行である。 The injection cylinder 22 is a cylindrical member. The axis LA of the injection cylinder 22 is parallel to the first direction D1 and the second direction D2.
 射出用シリンダ22の前端(先端部)には、ノズル34が備えられる。ノズル34は射出口34pを有する。射出口34pは、射出用シリンダ22内の樹脂をキャビティ20cに射出するための開口部である。 A nozzle 34 is provided at the front end (tip part) of the injection cylinder 22. The nozzle 34 has an injection port 34p. The injection port 34p is an opening for injecting the resin in the injection cylinder 22 into the cavity 20c.
 射出用シリンダ22の後端には、ホッパ36が備えられる。ホッパ36は、樹脂を貯留する。また、ホッパ36は、貯留した樹脂を射出用シリンダ22内に供給する。 A hopper 36 is provided at the rear end of the injection cylinder 22. Hopper 36 stores resin. Further, the hopper 36 supplies the stored resin into the injection cylinder 22.
 本実施形態では、スクリュ24Aによって射出部材24が構成されている。スクリュ24Aは、スクリュヘッド24aとフライト部24bと基端部24cとを有する。スクリュヘッド24aは、スクリュ24Aの前端(先端部)に位置する。フライト部24bは、スクリュ24Aの胴体に形成される螺旋状の部位である。フライト部24bは、後述する第1駆動装置50によってスクリュ24Aが回転することに応じて、射出用シリンダ22内の樹脂を剪断する。基端部24cは、スクリュ24Aの後端に位置する。射出用シリンダ22の軸線LAは、射出部材24の軸線と一致する。 In this embodiment, the injection member 24 is constituted by the screw 24A. The screw 24A has a screw head 24a, a flight portion 24b, and a base end portion 24c. The screw head 24a is located at the front end (tip part) of the screw 24A. The flight portion 24b is a spiral portion formed in the body of the screw 24A. The flight portion 24b shears the resin within the injection cylinder 22 in response to the rotation of the screw 24A by a first drive device 50, which will be described later. The base end portion 24c is located at the rear end of the screw 24A. The axis LA of the injection cylinder 22 coincides with the axis of the injection member 24.
 フロントプレート26は、射出用シリンダ22の後ろ側に位置する。フロントプレート26は、射出用シリンダ22を支持する。射出部材24は、フロントプレート26を貫通する。射出部材24の基端部24cは、フロントプレート26よりも後方に位置している。 The front plate 26 is located on the rear side of the injection cylinder 22. The front plate 26 supports the injection cylinder 22. The injection member 24 passes through the front plate 26. The base end portion 24c of the injection member 24 is located further back than the front plate 26.
 リアプレート28は、フロントプレート26の後方に位置する。リアプレート28とフロントプレート26との間には所定の間隔が空けられる。 The rear plate 28 is located behind the front plate 26. A predetermined space is left between the rear plate 28 and the front plate 26.
 プッシャプレート30は、フロントプレート26とリアプレート28との間に備えられる。 The pusher plate 30 is provided between the front plate 26 and the rear plate 28.
 スライド機構32は、レール38とスライダ40とを備える。レール38は、軸線LAに沿った方向に延びる。スライダ40は、レール38に沿って移動可能である。スライダ40は、プッシャプレート30を支持する。したがって、プッシャプレート30は、レール38に沿って移動可能である。 The slide mechanism 32 includes a rail 38 and a slider 40. The rail 38 extends in the direction along the axis LA. Slider 40 is movable along rail 38. Slider 40 supports pusher plate 30. Therefore, the pusher plate 30 is movable along the rail 38.
 フロントプレート26と、リアプレート28と、スライド機構32とは、平板状のベース42上に備えられている。フロントプレート26とリアプレート28とベース42とは、一体成形されていてもよい。 The front plate 26, the rear plate 28, and the slide mechanism 32 are provided on a flat base 42. The front plate 26, the rear plate 28, and the base 42 may be integrally molded.
 射出装置16は、スプラインブッシュ44と、スクリュスリーブ46と、圧力センサ48と、第1駆動装置50と、第2駆動装置52とを備える。 The injection device 16 includes a spline bush 44, a screw sleeve 46, a pressure sensor 48, a first drive device 50, and a second drive device 52.
 スプラインブッシュ44は、射出部材24の基端部24cを支持する。例えば、射出部材24の基端部24cは、不図示のオススプラインを有する。これに対し、スプラインブッシュ44は、不図示のメススプラインを有する。基端部24cのオススプラインと、スプラインブッシュ44のメススプラインとが嵌合することで、スプラインブッシュ44が射出部材24の基端部24cを支持する。 The spline bush 44 supports the base end 24c of the injection member 24. For example, the base end 24c of the injection member 24 has a male spline (not shown). On the other hand, the spline bushing 44 has a female spline (not shown). The male spline of the base end 24c and the female spline of the spline bush 44 fit together, so that the spline bush 44 supports the base end 24c of the injection member 24.
 スクリュスリーブ46は、プッシャプレート30とスプラインブッシュ44との間に備えられる。スクリュスリーブ46は、スプラインブッシュ44を回転可能に支持する。また、スクリュスリーブ46は、スプラインブッシュ44がスクリュスリーブ46に対して、軸線LAに沿った方向に相対移動することを制限する。スクリュスリーブ46は、例えば不図示の軸受部材を有する。当該軸受部材は、スクリュスリーブ46を回転可能に支持しつつ、軸線LAに沿った方向にスプラインブッシュ44が相対移動することを制限する。 A screw sleeve 46 is provided between the pusher plate 30 and the spline bushing 44. The screw sleeve 46 rotatably supports the spline bushing 44. Further, the screw sleeve 46 restricts relative movement of the spline bushing 44 with respect to the screw sleeve 46 in the direction along the axis LA. The screw sleeve 46 includes, for example, a bearing member (not shown). The bearing member rotatably supports the screw sleeve 46 while restricting relative movement of the spline bushing 44 in the direction along the axis LA.
 圧力センサ48は、射出用シリンダ22内の圧力を検出する。圧力センサ48は、例えばロードセルである。圧力センサ48は、例えばスクリュスリーブ46の内部に備えられる。ただし、圧力センサ48の設置箇所は、適宜変更されてもよい。 The pressure sensor 48 detects the pressure inside the injection cylinder 22. The pressure sensor 48 is, for example, a load cell. The pressure sensor 48 is provided inside the screw sleeve 46, for example. However, the installation location of the pressure sensor 48 may be changed as appropriate.
 第1駆動装置50は、軸線LAを中心として射出部材24を回転させる装置である。第1駆動装置50は、回転用モータ54と、第1駆動プーリ56と、第1ベルト58と、第1従動プーリ60とを備える。 The first drive device 50 is a device that rotates the injection member 24 around the axis LA. The first drive device 50 includes a rotation motor 54, a first drive pulley 56, a first belt 58, and a first driven pulley 60.
 回転用モータ54は、例えばサーボモータである。回転用モータ54は、シャフト54aを備える。シャフト54aは、回転用モータ54に電流が供給されることで、回転する。シャフト54aは、第1駆動プーリ56に接続される。 The rotation motor 54 is, for example, a servo motor. The rotation motor 54 includes a shaft 54a. The shaft 54a rotates when current is supplied to the rotation motor 54. The shaft 54a is connected to a first drive pulley 56.
 第1駆動プーリ56は、シャフト54aの回転に応じて回転する。第1ベルト58は、第1駆動プーリ56と第1従動プーリ60とに架け渡される。第1ベルト58は、第1駆動プーリ56の回転を第1従動プーリ60に伝達する。 The first drive pulley 56 rotates in accordance with the rotation of the shaft 54a. The first belt 58 spans the first driving pulley 56 and the first driven pulley 60. The first belt 58 transmits the rotation of the first drive pulley 56 to the first driven pulley 60.
 第1従動プーリ60は、第1ベルト58を介して伝達される第1駆動プーリ56の回転に従動して、回転する。つまり、第1従動プーリ60は、シャフト54aの回転に応じて回転する。第1従動プーリ60は、例えばプッシャプレート30の内部に備えられる。第1従動プーリ60は、スプラインブッシュ44に接続される。第1従動プーリ60とスプラインブッシュ44とは一体的に回転する。 The first driven pulley 60 rotates as a result of the rotation of the first driving pulley 56 transmitted via the first belt 58. That is, the first driven pulley 60 rotates in accordance with the rotation of the shaft 54a. The first driven pulley 60 is provided inside the pusher plate 30, for example. The first driven pulley 60 is connected to the spline bushing 44 . The first driven pulley 60 and the spline bushing 44 rotate integrally.
 上述したように、シャフト54aが回転することで、スプラインブッシュ44が回転する。スプラインブッシュ44が回転することで、射出部材24が回転する。このように、第1駆動装置50は、軸線LAを中心として射出部材24を回転させ得る。 As described above, the rotation of the shaft 54a causes the spline bushing 44 to rotate. The rotation of the spline bushing 44 causes the injection member 24 to rotate. In this way, the first drive device 50 can rotate the injection member 24 about the axis LA.
 第2駆動装置52は、射出部材24を軸線LAに沿って移動させる装置である。第2駆動装置52は、射出用モータ62と、第2駆動プーリ64と、第2ベルト66と、第2従動プーリ68と、ボールネジ70と、ナット72とを備える。 The second drive device 52 is a device that moves the injection member 24 along the axis LA. The second drive device 52 includes an injection motor 62, a second drive pulley 64, a second belt 66, a second driven pulley 68, a ball screw 70, and a nut 72.
 射出用モータ62は、例えばサーボモータである。射出用モータ62は、シャフト62aと回転位置センサ62bとを備える。シャフト62aは、射出用モータ62に電流が供給されることで、回転する。シャフト62aは、第2駆動プーリ64に接続される。回転位置センサ62bは、シャフト62aの回転位置を検出する。 The injection motor 62 is, for example, a servo motor. The injection motor 62 includes a shaft 62a and a rotational position sensor 62b. The shaft 62a rotates when current is supplied to the injection motor 62. The shaft 62a is connected to a second drive pulley 64. The rotational position sensor 62b detects the rotational position of the shaft 62a.
 第2駆動プーリ64は、シャフト62aの回転に応じて回転する。第2ベルト66は、第2駆動プーリ64と第2従動プーリ68とに架け渡される。第2ベルト66は、第2駆動プーリ64の回転を第2従動プーリ68に伝達する。 The second drive pulley 64 rotates in accordance with the rotation of the shaft 62a. The second belt 66 spans the second drive pulley 64 and the second driven pulley 68. The second belt 66 transmits the rotation of the second drive pulley 64 to the second driven pulley 68.
 第2従動プーリ68は、第2ベルト66を介して伝達される第2駆動プーリ64の回転に従動して、回転する。つまり、第2従動プーリ68は、シャフト62aの回転に応じて回転する。 The second driven pulley 68 rotates as a result of the rotation of the second driving pulley 64 transmitted via the second belt 66. That is, the second driven pulley 68 rotates in accordance with the rotation of the shaft 62a.
 ボールネジ70の軸線の方向は、射出用シリンダ22の軸線LAの方向と平行である。ボールネジ70は、リアプレート28を貫通する。リアプレート28は、ボールネジ70を回転可能に支持しつつ、軸線LAに沿った方向にボールネジ70が移動することを制限する。例えば、リアプレート28は、軸受部材74を有する。軸受部材74は、ボールネジ70を回転可能に支持すると共に、軸線LAに沿った方向にボールネジ70が移動することを制限する。 The direction of the axis of the ball screw 70 is parallel to the direction of the axis LA of the injection cylinder 22. The ball screw 70 passes through the rear plate 28. The rear plate 28 rotatably supports the ball screw 70 while restricting movement of the ball screw 70 in the direction along the axis LA. For example, the rear plate 28 has a bearing member 74. The bearing member 74 rotatably supports the ball screw 70 and restricts movement of the ball screw 70 in the direction along the axis LA.
 ボールネジ70は、第2従動プーリ68に接続される。ボールネジ70は、第2従動プーリ68と一体的に回転する。したがって、ボールネジ70は、シャフト62aの回転に応じて回転する。 The ball screw 70 is connected to the second driven pulley 68. The ball screw 70 rotates together with the second driven pulley 68. Therefore, the ball screw 70 rotates in accordance with the rotation of the shaft 62a.
 ナット72は、プッシャプレート30の後ろ側に備えられる。プッシャプレート30は、ナット72を回転可能に支持する。より具体的には、プッシャプレート30は、当該プッシャプレート30に備えられた不図示の軸受部材を用いて、ナット72を回転可能に支持する。 The nut 72 is provided on the rear side of the pusher plate 30. Pusher plate 30 rotatably supports nut 72. More specifically, the pusher plate 30 rotatably supports the nut 72 using a bearing member (not shown) provided on the pusher plate 30 .
 ナット72は、ボールネジ70に螺合する。ナット72は、ボールネジ70の回転に応じて、ボールネジ70の軸線の方向に移動する。つまり、ナット72は、シャフト62aの回転に応じて、第1方向D1または第2方向D2に移動する。ナット72が第1方向D1に移動する場合、プッシャプレート30は、ナット72と一緒に、第1方向D1に移動する。ナット72が第2方向D2に移動する場合、プッシャプレート30は、ナット72と一緒に、第2方向D2に移動する。スライド機構32がプッシャプレート30を支持しているので、プッシャプレート30は、第1方向D1または第2方向D2にスムーズに移動できる。 The nut 72 is screwed onto the ball screw 70. The nut 72 moves in the direction of the axis of the ball screw 70 as the ball screw 70 rotates. That is, the nut 72 moves in the first direction D1 or the second direction D2 according to the rotation of the shaft 62a. When the nut 72 moves in the first direction D1, the pusher plate 30 moves in the first direction D1 together with the nut 72. When the nut 72 moves in the second direction D2, the pusher plate 30 moves in the second direction D2 together with the nut 72. Since the slide mechanism 32 supports the pusher plate 30, the pusher plate 30 can move smoothly in the first direction D1 or the second direction D2.
 プッシャプレート30が第1方向D1に移動する場合、プッシャプレート30は、スクリュスリーブ46とスプラインブッシュ44とを介して、射出部材24を第1方向D1に押す。プッシャプレート30が第2方向D2に移動する場合、プッシャプレート30は、スクリュスリーブ46とスプラインブッシュ44とを介して、射出部材24を第2方向D2に引っ張る。 When the pusher plate 30 moves in the first direction D1, the pusher plate 30 pushes the injection member 24 in the first direction D1 via the screw sleeve 46 and the spline bushing 44. When the pusher plate 30 moves in the second direction D2, the pusher plate 30 pulls the injection member 24 in the second direction D2 via the screw sleeve 46 and the spline bushing 44.
 射出部材24は、プッシャプレート30から受ける力に応じて、射出用シリンダ22内を第1方向D1または第2方向D2へと移動する。すなわち、射出部材24は、射出用シリンダ22の軸線LAに沿って可動し得る。 The injection member 24 moves within the injection cylinder 22 in the first direction D1 or the second direction D2 depending on the force received from the pusher plate 30. That is, the injection member 24 can move along the axis LA of the injection cylinder 22.
 射出部材24のうちの予め決められた部位の位置が、射出部材24の位置とされる。例えば、スクリュヘッド24aの先端の位置を、射出部材24の位置とすることができる。この場合、スクリュヘッド24aの先端の可動範囲が、射出部材24の可動範囲とされる。射出部材24の可動範囲の前端の位置は、第1端位置PE1と称され得る。射出部材24の可動範囲の後端の位置は、第2端位置PE2と称され得る。第1端位置PE1は、スクリュヘッド24aの先端が到達可能な最前端の位置である。第2端位置PE2は、スクリュヘッド24aの先端が到達可能な最後端の位置である。 The position of a predetermined portion of the injection member 24 is defined as the position of the injection member 24. For example, the position of the tip of the screw head 24a can be the position of the injection member 24. In this case, the movable range of the tip of the screw head 24a is the movable range of the injection member 24. The position of the front end of the movable range of the injection member 24 may be referred to as a first end position PE1. The position of the rear end of the movable range of the injection member 24 may be referred to as a second end position PE2. The first end position PE1 is the frontmost position that can be reached by the tip of the screw head 24a. The second end position PE2 is the rearmost position that can be reached by the tip of the screw head 24a.
 射出部材24を第1方向D1に移動させる場合のシャフト62aの回転方向と、射出部材24を第2方向D2に移動させる場合のシャフト62aの回転方向とは、互いに反対方向である。射出部材24を第1方向D1に移動させる場合のシャフト62aの回転方向は、以下の説明において第1の回転方向とも称される。射出部材24を第2方向D2に移動させる場合のシャフト62aの回転方向は、以下の説明において第2の回転方向とも称される。 The rotation direction of the shaft 62a when the injection member 24 is moved in the first direction D1 and the rotation direction of the shaft 62a when the injection member 24 is moved in the second direction D2 are opposite to each other. The rotational direction of the shaft 62a when the injection member 24 is moved in the first direction D1 is also referred to as a first rotational direction in the following description. The rotational direction of the shaft 62a when the injection member 24 is moved in the second direction D2 is also referred to as a second rotational direction in the following description.
 射出部材24の移動量は、シャフト62aの回転量に相関する。例えば、第1方向D1への射出部材24の移動量は、第1の回転方向におけるシャフト62aの回転量に相関する。同様に、第2方向D2への射出部材24の移動量は、第2の回転方向におけるシャフト62aの回転量に相関する。射出部材24の移動量がシャフト62aの回転量に相関するので、回転位置センサ62bによって検出されるシャフト62aの回転位置は、軸線LAに沿った方向における射出部材24の位置を実質的に示す。 The amount of movement of the injection member 24 correlates with the amount of rotation of the shaft 62a. For example, the amount of movement of the injection member 24 in the first direction D1 correlates with the amount of rotation of the shaft 62a in the first rotation direction. Similarly, the amount of movement of the injection member 24 in the second direction D2 correlates with the amount of rotation of the shaft 62a in the second rotational direction. Since the amount of movement of the injection member 24 is correlated to the amount of rotation of the shaft 62a, the rotational position of the shaft 62a detected by the rotational position sensor 62b substantially indicates the position of the injection member 24 in the direction along the axis LA.
 図3は、制御装置12のブロック図である。 FIG. 3 is a block diagram of the control device 12.
 制御装置12は、射出成形機10を制御する電子装置(コンピュータ)である。制御装置12は、例えば数値制御装置である。制御装置12は、表示部76と、操作部78と、記憶部80と、演算部82とを備える。 The control device 12 is an electronic device (computer) that controls the injection molding machine 10. The control device 12 is, for example, a numerical control device. The control device 12 includes a display section 76, an operation section 78, a storage section 80, and a calculation section 82.
 表示部76は、表示画面76dを備える表示装置である。表示部76は、例えば液晶表示器、またはOEL(Organic Electro-Luminescence)表示器である。 The display unit 76 is a display device including a display screen 76d. The display unit 76 is, for example, a liquid crystal display or an OEL (Organic Electro-Luminescence) display.
 操作部78は、制御装置12への情報入力を受け付ける入力装置である。操作部78は、例えば操作盤78aとタッチパネル78bとを含む。タッチパネル78bは表示画面76dに備えられる。操作盤78aは、キーボード、マウス等を含んでもよい。オペレータは、操作部78を用いて、例えば自動パージの実行を制御装置12に指示することができる。 The operation unit 78 is an input device that accepts information input to the control device 12. The operation unit 78 includes, for example, an operation panel 78a and a touch panel 78b. The touch panel 78b is provided on the display screen 76d. The operation panel 78a may include a keyboard, a mouse, and the like. The operator can use the operation unit 78 to instruct the control device 12 to execute automatic purge, for example.
 記憶部80は、不図示の揮発性メモリと、不図示の不揮発性メモリとによって構成され得る。揮発性メモリとしては、例えばRAM(Random Access Memory)等が挙げられる。不揮発性メモリとしては、例えばROM(Read Only Memory)、フラッシュメモリ等が挙げられる。データ等が、例えば揮発性メモリに記憶される。プログラム、データテーブル、マップ等が、例えば不揮発性メモリに記憶される。記憶部80の少なくとも一部が、後述するようなプロセッサ、集積回路等に備えられていてもよい。記憶部80は、制御プログラム84と第1トルク情報86と第2トルク情報88とを記憶する。 The storage unit 80 may include a volatile memory (not shown) and a nonvolatile memory (not shown). Examples of volatile memory include RAM (Random Access Memory). Examples of nonvolatile memory include ROM (Read Only Memory), flash memory, and the like. Data etc. are stored in volatile memory, for example. Programs, data tables, maps, etc. are stored in, for example, non-volatile memory. At least a portion of the storage unit 80 may be included in a processor, an integrated circuit, or the like, which will be described later. The storage unit 80 stores a control program 84, first torque information 86, and second torque information 88.
 制御プログラム84は、本実施形態の制御方法を制御装置12に実行させるためのプログラムである。制御方法のより詳しい説明は後述する。 The control program 84 is a program for causing the control device 12 to execute the control method of this embodiment. A more detailed explanation of the control method will be given later.
 第1トルク情報86は、第1所定トルクTCの大きさを示す情報である。第1所定トルクTCは、後述する第1モータ制御部90が射出用モータ62を制御する場合における、射出用モータ62の初期の目標トルク値である。 The first torque information 86 is information indicating the magnitude of the first predetermined torque TC. The first predetermined torque TC is an initial target torque value of the injection motor 62 when the first motor control unit 90, which will be described later, controls the injection motor 62.
 第1トルク情報86は、例えば射出成形システムSYSのメーカによって、ユーザに提供される。より具体的には、射出成形システムSYSのメーカは、例えば実験に基づいて決定された第1所定トルクTCをユーザに提供する。ユーザは、第1所定トルクTCを、操作部78を用いて入力し得る。 The first torque information 86 is provided to the user, for example, by the manufacturer of the injection molding system SYS. More specifically, the manufacturer of the injection molding system SYS provides the user with the first predetermined torque TC, which is determined based on, for example, an experiment. The user can input the first predetermined torque TC using the operating section 78.
 第2トルク情報88は、第2所定トルクの大きさを示す情報である。第2所定トルクは、後述する第2モータ制御部92が射出用モータ62を制御する場合における、射出用モータ62の目標トルク値である。第2トルク情報88は、後述するトルク設定部91によって設定される。 The second torque information 88 is information indicating the magnitude of the second predetermined torque. The second predetermined torque is a target torque value of the injection motor 62 when the second motor control section 92, which will be described later, controls the injection motor 62. The second torque information 88 is set by a torque setting section 91, which will be described later.
 演算部82は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等のプロセッサによって構成される。すなわち、演算部82は、処理回路(Processing Circuitry)によって構成され得る。演算部82は、第1モータ制御部90とトルク設定部91と第2モータ制御部92とゼロ点補正部94とを備える。 The calculation unit 82 is configured by, for example, a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit). That is, the calculation unit 82 may be configured by a processing circuit. The calculation section 82 includes a first motor control section 90 , a torque setting section 91 , a second motor control section 92 , and a zero point correction section 94 .
 第1モータ制御部90とトルク設定部91と第2モータ制御部92とゼロ点補正部94とは、演算部82が制御プログラム84を実行することで実現される。なお、第1モータ制御部90とトルク設定部91と第2モータ制御部92とゼロ点補正部94との少なくとも一部がASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等の集積回路によって実現されるようにしてもよい。また、第1モータ制御部90とトルク設定部91と第2モータ制御部92とゼロ点補正部94との少なくとも一部が、ディスクリートデバイスを含む電子回路によって構成されるようにしてもよい。 The first motor control section 90, the torque setting section 91, the second motor control section 92, and the zero point correction section 94 are realized by the calculation section 82 executing the control program 84. Note that at least a part of the first motor control section 90, torque setting section 91, second motor control section 92, and zero point correction section 94 is implemented using an ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), etc. It may also be realized by an integrated circuit. Further, at least a portion of the first motor control section 90, the torque setting section 91, the second motor control section 92, and the zero point correction section 94 may be configured by an electronic circuit including a discrete device.
 第1モータ制御部90は、以下に説明される第1制御を行う。第1制御では、第1の回転方向のトルクの大きさが第1所定トルクTCから徐々に下がるように第1モータ制御部90が射出用モータ62を制御して、射出部材24を第1方向D1に移動させる。第1の回転方向は、上述したように、射出部材24を第1方向D1に移動させる場合におけるシャフト62aの回転方向である。なお、射出用モータ62のトルクは、射出用モータ62に供給される電流の量に相関する。したがって、第1モータ制御部90は、射出用モータ62に供給する電流の量が徐々に下がるように射出用モータ62を制御することで、射出用モータ62のトルクを徐々に下げることができる。 The first motor control section 90 performs first control described below. In the first control, the first motor control section 90 controls the injection motor 62 so that the magnitude of the torque in the first rotational direction gradually decreases from the first predetermined torque TC, and moves the injection member 24 in the first direction. Move to D1. As described above, the first rotation direction is the rotation direction of the shaft 62a when the injection member 24 is moved in the first direction D1. Note that the torque of the injection motor 62 correlates with the amount of current supplied to the injection motor 62. Therefore, the first motor control unit 90 can gradually lower the torque of the injection motor 62 by controlling the injection motor 62 so that the amount of current supplied to the injection motor 62 gradually decreases.
 射出部材24は、第1方向D1へと移動することで、射出用シリンダ22内の樹脂を第1方向D1に圧す。トルクが比較的大きい状態においては、プッシャプレート30が射出部材24を押す力は比較的大きい。すなわち、射出部材24を第1方向D1へと移動させる力は比較的大きい。そのため、射出部材24は、第1方向D1へと移動し得る。すなわち、射出部材24の第1方向D1への移動を阻害するような抵抗力が樹脂によって生ずるが、射出部材24を第1方向D1へと移動させる力が充分に大きいため、射出部材24は第1方向D1に移動し得る。 The injection member 24 presses the resin within the injection cylinder 22 in the first direction D1 by moving in the first direction D1. When the torque is relatively large, the force with which the pusher plate 30 pushes the injection member 24 is relatively large. That is, the force that moves the injection member 24 in the first direction D1 is relatively large. Therefore, the injection member 24 can move in the first direction D1. That is, although a resistance force that inhibits the movement of the injection member 24 in the first direction D1 is generated by the resin, the force that moves the injection member 24 in the first direction D1 is sufficiently large, so that the injection member 24 moves in the first direction D1. It can move in one direction D1.
 射出用モータ62のトルクを徐々に下げていくと、プッシャプレート30が射出部材24を押す力は徐々に小さくなる。すなわち、射出部材24を第1方向D1へと移動させる力は徐々に小さくなる。そのため、射出用モータ62のトルクがある程度まで下がると、射出部材24を第1方向D1へと移動させ得なくなる。すなわち、射出部材24の第1方向D1への移動が、樹脂による阻害によって停止される。この場合、射出部材24が第1端位置PE1に到達する前であり、且つ射出用モータ62の第1の回転方向のトルクがゼロより大きくても、射出部材24の第1方向D1への移動が停止する。 As the torque of the injection motor 62 is gradually lowered, the force with which the pusher plate 30 presses the injection member 24 gradually decreases. That is, the force that moves the injection member 24 in the first direction D1 gradually decreases. Therefore, when the torque of the injection motor 62 decreases to a certain level, the injection member 24 cannot be moved in the first direction D1. That is, movement of the injection member 24 in the first direction D1 is stopped by the resin. In this case, even before the injection member 24 reaches the first end position PE1 and the torque of the injection motor 62 in the first rotational direction is greater than zero, the movement of the injection member 24 in the first direction D1 stops.
 第1モータ制御部90は、第1制御において射出部材24の移動が停止したときの射出用モータ62のトルクを示す情報を、記憶部80に記憶させる。例えば第1モータ制御部90は、第1制御において射出部材24の移動が停止したときに射出用モータ62に供給されていた電流の量を示す情報を記憶部80に記憶させる。なお、第1モータ制御部90は、回転位置センサ62bが検出したシャフト62aの回転位置に基づいて、射出部材24が停止したか否かを把握する。 The first motor control unit 90 causes the storage unit 80 to store information indicating the torque of the injection motor 62 when the movement of the injection member 24 is stopped in the first control. For example, the first motor control unit 90 causes the storage unit 80 to store information indicating the amount of current that was being supplied to the injection motor 62 when the movement of the injection member 24 stopped in the first control. Note that the first motor control unit 90 determines whether the injection member 24 has stopped based on the rotational position of the shaft 62a detected by the rotational position sensor 62b.
 図4Aは、第1制御中における射出用モータ62のトルクの時間推移を例示するグラフである。図4Aの縦軸は、射出用モータ62の第1の回転方向のトルクを示す。図4Aの横軸は、時間を示す。 FIG. 4A is a graph illustrating the time course of the torque of the injection motor 62 during the first control. The vertical axis in FIG. 4A indicates the torque of the injection motor 62 in the first rotational direction. The horizontal axis in FIG. 4A indicates time.
 図4Aの時点t1は、射出部材24の第1方向D1への移動が停止した時点である。図4AのトルクTAは、時点t1における射出用モータ62の第1の回転方向のトルクである。この場合、第1モータ制御部90は、トルクTAを示す情報を記憶部80に記憶させる。以下の説明において、トルクTAは第1取得トルクTAとも称される。 Time t1 in FIG. 4A is the time when the injection member 24 stops moving in the first direction D1. Torque TA in FIG. 4A is the torque in the first rotational direction of the injection motor 62 at time t1. In this case, the first motor control section 90 causes the storage section 80 to store information indicating the torque TA. In the following description, the torque TA is also referred to as the first acquired torque TA.
 第1制御において射出部材24の移動が停止した場合、第1モータ制御部90は、以下に説明される第2制御をさらに行う。第2制御では、第2の回転方向のトルクの大きさが第1所定トルクTCから徐々に下がるように第1モータ制御部90が射出用モータ62を制御して、射出部材24を第2方向D2に移動させる。第2の回転方向は、上述したように、射出部材24を第2方向D2に移動させる場合におけるシャフト62aの回転方向である。 When the movement of the injection member 24 is stopped in the first control, the first motor control section 90 further performs the second control described below. In the second control, the first motor control section 90 controls the injection motor 62 so that the magnitude of the torque in the second rotational direction gradually decreases from the first predetermined torque TC, and moves the injection member 24 in the second direction. Move to D2. As described above, the second rotation direction is the rotation direction of the shaft 62a when the injection member 24 is moved in the second direction D2.
 トルクが比較的大きい状態においては、プッシャプレート30が射出部材24を引っ張る力は比較的大きい。すなわち、射出部材24を第2方向D2へと移動させる力は比較的大きい。そのため、射出部材24は、第2方向D2へと移動し得る。すなわち、射出部材24の第2方向D2への移動を阻害するような抵抗力が樹脂によって生ずるが、射出部材24を第2方向D2へと移動させる力が充分に大きいため、射出部材24は第2方向D2に移動し得る。 When the torque is relatively large, the force with which the pusher plate 30 pulls the injection member 24 is relatively large. That is, the force that moves the injection member 24 in the second direction D2 is relatively large. Therefore, the injection member 24 can move in the second direction D2. That is, although a resistance force that inhibits movement of the injection member 24 in the second direction D2 is generated by the resin, the force that moves the injection member 24 in the second direction D2 is sufficiently large, so that the injection member 24 moves in the second direction D2. It can move in two directions D2.
 射出用モータ62のトルクを徐々に下げていくと、プッシャプレート30が射出部材24を引っ張る力は徐々に小さくなる。すなわち、射出部材24を第2方向D2へと移動させる力は徐々に小さくなる。そのため、射出用モータ62のトルクがある程度まで下がると、射出部材24を第2方向D2へと移動させ得なくなる。すなわち、射出部材24の第2方向D2への移動が、樹脂による阻害によって停止される。この場合、射出部材24が第2端位置PE2に到達する前であり、且つ射出用モータ62の第2の回転方向のトルクがゼロより大きくても、射出部材24の第2方向D2への移動が停止する。 As the torque of the injection motor 62 is gradually lowered, the force with which the pusher plate 30 pulls the injection member 24 gradually becomes smaller. That is, the force that moves the injection member 24 in the second direction D2 gradually decreases. Therefore, when the torque of the injection motor 62 decreases to a certain level, the injection member 24 cannot be moved in the second direction D2. That is, movement of the injection member 24 in the second direction D2 is stopped by the resin. In this case, even before the injection member 24 reaches the second end position PE2 and the torque of the injection motor 62 in the second rotational direction is greater than zero, the injection member 24 cannot be moved in the second direction D2. stops.
 第1モータ制御部90は、第2制御において射出部材24の移動が停止したときの射出用モータ62のトルクを示す情報を、記憶部80に記憶させる。例えば第1モータ制御部90は、第2制御において射出部材24の移動が停止したときに射出用モータ62に供給されていた電流の量を示す情報を記憶部80に記憶させる。 The first motor control unit 90 causes the storage unit 80 to store information indicating the torque of the injection motor 62 when the movement of the injection member 24 is stopped in the second control. For example, the first motor control unit 90 causes the storage unit 80 to store information indicating the amount of current that was being supplied to the injection motor 62 when the movement of the injection member 24 stopped in the second control.
 図4Bは、第2制御中における射出用モータ62のトルクの時間推移を例示するグラフである。図4Bのグラフの形式は、図4Aのグラフの形式に準ずる。 FIG. 4B is a graph illustrating the time course of the torque of the injection motor 62 during the second control. The format of the graph in FIG. 4B is similar to the format of the graph in FIG. 4A.
 図4Bの時点t2は、射出部材24の第2方向D2への移動が停止した時点である。図4BのトルクTBは、時点t2における射出用モータ62の第2の回転方向のトルクである。この場合、第1モータ制御部90は、トルクTBを示す情報を記憶部80に記憶させる。以下の説明において、トルクTBは第2取得トルクTBとも称される。 Time t2 in FIG. 4B is the time when the injection member 24 stops moving in the second direction D2. Torque TB in FIG. 4B is the torque in the second rotational direction of the injection motor 62 at time t2. In this case, the first motor control section 90 causes the storage section 80 to store information indicating the torque TB. In the following description, the torque TB is also referred to as the second acquired torque TB.
 トルク設定部91は、第1取得トルクTAを示す情報と、第2取得トルクTBを示す情報とを用いて、上記した第2所定トルクの大きさを決定する。すなわち、トルク設定部91は、第1取得トルクTAを示す情報と、第2取得トルクTBを示す情報とを用いて、第2トルク情報88を作成する。 The torque setting unit 91 determines the magnitude of the second predetermined torque described above using information indicating the first acquired torque TA and information indicating the second acquired torque TB. That is, the torque setting unit 91 creates the second torque information 88 using the information indicating the first acquired torque TA and the information indicating the second acquired torque TB.
 より具体的には、トルク設定部91は、第1取得トルクTAの大きさと、第2取得トルクTBの大きさとを比較する。トルク設定部91は、第1取得トルクTAと第2取得トルクTBとのうちの小さい方を第2所定トルクとして設定する。第1取得トルクTAの大きさと第2取得トルクTBの大きさとが等しい場合、トルク設定部91は、当該大きさに基づいて第2所定トルクを設定する。 More specifically, the torque setting unit 91 compares the magnitude of the first acquired torque TA and the magnitude of the second acquired torque TB. The torque setting unit 91 sets the smaller of the first acquired torque TA and the second acquired torque TB as the second predetermined torque. When the magnitude of the first acquired torque TA and the magnitude of the second acquired torque TB are equal, the torque setting unit 91 sets the second predetermined torque based on the magnitude.
 第2モータ制御部92は、第2所定トルクに基づいて、以下に説明される第3制御を行う。第3制御では、第1の回転方向のトルクの大きさが第2所定トルクとなるように第2モータ制御部92が射出用モータ62を制御する。これにより、射出部材24は、第1方向D1へと移動するように制御される。第2モータ制御部92は、射出用モータ62に供給する電流の量を適宜調整して、射出用モータ62のトルクの大きさを第2所定トルクに維持する。 The second motor control unit 92 performs the third control described below based on the second predetermined torque. In the third control, the second motor control section 92 controls the injection motor 62 so that the magnitude of the torque in the first rotational direction becomes the second predetermined torque. Thereby, the injection member 24 is controlled to move in the first direction D1. The second motor control unit 92 appropriately adjusts the amount of current supplied to the injection motor 62 to maintain the torque of the injection motor 62 at a second predetermined torque.
 上述したように、第2所定トルクは、射出部材24が第1方向D1への移動を停止したときのトルクTAと、射出部材24が第2方向D2への移動を停止したときのトルクTBとのうちの小さい方である。そのため、第1の回転方向のトルクの大きさが第2所定トルクとなるように第2モータ制御部92が射出用モータ62を制御した場合には、射出部材24は第1方向D1にも第2方向D2にも移動しない。 As described above, the second predetermined torque is the torque TA when the injection member 24 stops moving in the first direction D1, and the torque TB when the injection member 24 stops moving in the second direction D2. This is the smaller one. Therefore, when the second motor control section 92 controls the injection motor 62 so that the magnitude of the torque in the first rotational direction becomes the second predetermined torque, the injection member 24 also rotates in the first direction D1. It does not move in the second direction D2 either.
 第3制御では、射出部材24は移動しないが、軸線LAに平行な方向の軸力が射出部材24に作用する。当該軸力が射出部材24に作用したときの圧力センサ48の検出値が、演算部82によって取得される。当該軸力が射出部材24に作用したときの圧力センサ48の検出値が演算部82によって取得されると、第2モータ制御部92は第3制御を終了する。 In the third control, the injection member 24 does not move, but an axial force in a direction parallel to the axis LA acts on the injection member 24. The detection value of the pressure sensor 48 when the axial force acts on the injection member 24 is acquired by the calculation unit 82. When the calculation unit 82 acquires the detection value of the pressure sensor 48 when the axial force acts on the injection member 24, the second motor control unit 92 ends the third control.
 第3制御が終了した後、第2モータ制御部92は以下に説明される第4制御をさらに行う。第4制御では、第2の回転方向のトルクの大きさが第2所定トルクとなるように第2モータ制御部92が射出用モータ62を制御する。これにより、射出部材24は、第2方向D2へと移動するように制御される。 After the third control is completed, the second motor control section 92 further performs the fourth control described below. In the fourth control, the second motor control section 92 controls the injection motor 62 so that the magnitude of the torque in the second rotational direction becomes the second predetermined torque. Thereby, the injection member 24 is controlled to move in the second direction D2.
 上述したように、第2所定トルクは、射出部材24が第1方向D1への移動を停止したときのトルクTAと、射出部材24が第2方向D2への移動を停止したときのトルクTBとのうちの小さい方である。そのため、第2の回転方向のトルクの大きさが第2所定トルクとなるように第2モータ制御部92が射出用モータ62を制御した場合には、射出部材24は移動しない。 As described above, the second predetermined torque is the torque TA when the injection member 24 stops moving in the first direction D1, and the torque TB when the injection member 24 stops moving in the second direction D2. This is the smaller one. Therefore, when the second motor control section 92 controls the injection motor 62 so that the magnitude of the torque in the second rotational direction becomes the second predetermined torque, the injection member 24 does not move.
 第4制御においても射出部材24は移動しないが、軸線LAに平行な方向の軸力が射出部材24に作用する。当該軸力が射出部材24に作用したときの圧力センサ48の検出値が、演算部82によって取得される。当該軸力が射出部材24に作用したときの圧力センサ48の検出値が演算部82によって取得されると、第2モータ制御部92は第4制御を終了する。 Even in the fourth control, the injection member 24 does not move, but an axial force in a direction parallel to the axis LA acts on the injection member 24. The detection value of the pressure sensor 48 when the axial force acts on the injection member 24 is acquired by the calculation unit 82. When the calculation unit 82 acquires the detected value of the pressure sensor 48 when the axial force acts on the injection member 24, the second motor control unit 92 ends the fourth control.
 第3制御において射出部材24に作用する軸力の大きさは、第2所定トルクに相関する。第4制御において射出部材24に作用する軸力の大きさも、第2所定トルクに相関する。したがって、第3制御において射出部材24に作用する軸力の大きさと、第4制御において射出部材24に作用する軸力の大きさとは、等しい。そのため、第3制御において圧力センサ48が出力する検出値の大きさと、第4制御において圧力センサ48が出力する検出値の大きさとは等しくなるはずである。しかしながら、圧力センサ48のゼロ点が正しく設定されていない場合には、第3制御において圧力センサ48が出力する検出値の大きさと、第4制御において圧力センサ48が出力する検出値の大きさとが等しくならない。 The magnitude of the axial force acting on the injection member 24 in the third control is correlated to the second predetermined torque. The magnitude of the axial force acting on the injection member 24 in the fourth control also correlates with the second predetermined torque. Therefore, the magnitude of the axial force acting on the injection member 24 in the third control is equal to the magnitude of the axial force acting on the injection member 24 in the fourth control. Therefore, the magnitude of the detection value output by the pressure sensor 48 in the third control should be equal to the magnitude of the detection value output by the pressure sensor 48 in the fourth control. However, if the zero point of the pressure sensor 48 is not set correctly, the magnitude of the detection value output by the pressure sensor 48 in the third control and the magnitude of the detection value output by the pressure sensor 48 in the fourth control may differ. not equal.
 ゼロ点補正部94は、圧力センサ48のゼロ点P0の補正を行い得る。すなわち、ゼロ点補正部94は、第3制御中に圧力センサ48が出力した検出値と、第4制御中に圧力センサ48が出力した検出値とに基づいて圧力センサ48のゼロ点を補正する。より具体的には、ゼロ点補正部94は、第3制御中に圧力センサ48が出力した検出値の絶対値と、第4制御中に圧力センサ48が出力した検出値の絶対値とが等しくなるように、圧力センサ48のゼロ点を補正する。すなわち、ゼロ点補正部94は、第3制御中に圧力センサ48が出力した検出値と補正後のゼロ点との差分値と、第4制御中に圧力センサ48が出力した検出値と補正後のゼロ点との差分値とが等しくなるように、圧力センサ48のゼロ点を補正する。これにより、圧力センサ48のゼロ点の誤差を是正することができる。 The zero point correction unit 94 can correct the zero point P0 of the pressure sensor 48. That is, the zero point correction unit 94 corrects the zero point of the pressure sensor 48 based on the detection value output by the pressure sensor 48 during the third control and the detection value output by the pressure sensor 48 during the fourth control. . More specifically, the zero point correction unit 94 determines that the absolute value of the detection value output by the pressure sensor 48 during the third control is equal to the absolute value of the detection value output by the pressure sensor 48 during the fourth control. The zero point of the pressure sensor 48 is corrected so that That is, the zero point correction unit 94 calculates the difference value between the detected value outputted by the pressure sensor 48 during the third control and the corrected zero point, and the detected value outputted by the pressure sensor 48 during the fourth control and the corrected zero point. The zero point of the pressure sensor 48 is corrected so that the difference value from the zero point of the pressure sensor 48 is equal to the difference value. Thereby, an error in the zero point of the pressure sensor 48 can be corrected.
 図5は、射出成形機10の制御方法を例示するフローチャートである。 FIG. 5 is a flowchart illustrating a method of controlling the injection molding machine 10.
 制御装置12は、例えば図5に示す制御方法を実行することができる。この制御方法は、第1モータ制御ステップS1とトルク設定ステップS2と第2モータ制御ステップS3とゼロ点補正ステップS4とを含む。 The control device 12 can execute the control method shown in FIG. 5, for example. This control method includes a first motor control step S1, a torque setting step S2, a second motor control step S3, and a zero point correction step S4.
 第1モータ制御ステップS1は、第1制御ステップS11と第2制御ステップS12とを含む。 The first motor control step S1 includes a first control step S11 and a second control step S12.
 第1制御ステップS11では、第1モータ制御部90が第1制御を実行する。より具体的には、第1制御ステップS11では、第1の回転方向のトルクが第1所定トルクTCから徐々に下がるように射出用モータ62を制御する。これにより、射出部材24が第1方向D1に移動するが、トルクがある程度まで下がると、射出部材24の第1方向D1への移動が樹脂による阻害によって停止される。 In the first control step S11, the first motor control section 90 executes the first control. More specifically, in the first control step S11, the injection motor 62 is controlled so that the torque in the first rotational direction gradually decreases from the first predetermined torque TC. As a result, the injection member 24 moves in the first direction D1, but when the torque decreases to a certain level, the movement of the injection member 24 in the first direction D1 is stopped due to inhibition by the resin.
 第1モータ制御部90は、第1制御において射出部材24が停止したときの第1取得トルクTAを記憶部80に記憶させる。これにより、第1制御ステップS11が終了する。 The first motor control unit 90 causes the storage unit 80 to store the first acquired torque TA when the injection member 24 stops in the first control. This ends the first control step S11.
 なお、第1モータ制御ステップS1の開始時点において、射出部材24が第1端位置PE1にある場合があり得る。その場合、第1モータ制御部90は、射出部材24を第1方向D1へと移動させることができない。 Note that the injection member 24 may be at the first end position PE1 at the start of the first motor control step S1. In that case, the first motor control unit 90 cannot move the injection member 24 in the first direction D1.
 射出部材24が第1端位置PE1に到達する前に射出部材24が停止するようにすべく、第1モータ制御ステップS1を開始する前に、射出部材24を第2方向D2へ移動させてもよい。 In order to cause the injection member 24 to stop before the injection member 24 reaches the first end position PE1, the injection member 24 may be moved in the second direction D2 before starting the first motor control step S1. good.
 第2制御ステップS12では、第1モータ制御部90が第2制御を実行する。より具体的には、第2制御ステップS12では、第2の回転方向のトルクが第1所定トルクTCから徐々に下がるように射出用モータ62を制御する。これにより、射出部材24が第2方向D2に移動するが、トルクがある程度まで下がると、射出部材24の第2方向D2への移動が樹脂による阻害によって停止される。 In the second control step S12, the first motor control section 90 executes the second control. More specifically, in the second control step S12, the injection motor 62 is controlled so that the torque in the second rotational direction gradually decreases from the first predetermined torque TC. As a result, the injection member 24 moves in the second direction D2, but when the torque decreases to a certain level, the movement of the injection member 24 in the second direction D2 is stopped by the resin.
 第1モータ制御部90は、第2制御において射出部材24が停止したときの第2取得トルクTBを記憶部80に記憶させる。これにより、第2制御ステップS12が終了する。第2制御ステップS12が終了した場合に、制御装置12はトルク設定ステップS2を開始する。 The first motor control unit 90 causes the storage unit 80 to store the second acquired torque TB when the injection member 24 stops in the second control. This ends the second control step S12. When the second control step S12 is completed, the control device 12 starts the torque setting step S2.
 トルク設定ステップS2では、トルク設定部91が第2所定トルクを設定する。トルク設定部91は、第1取得トルクTAと第2取得トルクTBとのうちの小さい方を第2所定トルクとして設定する。 In the torque setting step S2, the torque setting section 91 sets a second predetermined torque. The torque setting unit 91 sets the smaller of the first acquired torque TA and the second acquired torque TB as the second predetermined torque.
 トルク設定部91は、第2所定トルクを示す第2トルク情報88を記憶部80に記憶させる。これにより、トルク設定ステップS2が終了する。トルク設定ステップS2が終了した場合に、制御装置12は第2モータ制御ステップS3を開始する。 The torque setting section 91 causes the storage section 80 to store second torque information 88 indicating the second predetermined torque. This completes the torque setting step S2. When the torque setting step S2 is completed, the control device 12 starts the second motor control step S3.
 第2モータ制御ステップS3は、第3制御ステップS31と第4制御ステップS32とを含む。 The second motor control step S3 includes a third control step S31 and a fourth control step S32.
 第3制御ステップS31では、第2モータ制御部92が第3制御を実行する。より具体的には、第3制御ステップS31では、第1の回転方向のトルクが第2所定トルクとなるように第2モータ制御部92が射出用モータ62を制御する。第2所定トルクは、上述したように、第1取得トルクTAと第2取得トルクTBとのうちの小さい方である。したがって、射出部材24は、第1方向D1に移動しない。圧力センサ48の検出値が取得された場合、制御装置12は第3制御ステップS31を終了する。 In the third control step S31, the second motor control section 92 executes the third control. More specifically, in the third control step S31, the second motor control unit 92 controls the injection motor 62 so that the torque in the first rotational direction becomes the second predetermined torque. As described above, the second predetermined torque is the smaller of the first acquired torque TA and the second acquired torque TB. Therefore, the injection member 24 does not move in the first direction D1. When the detected value of the pressure sensor 48 is acquired, the control device 12 ends the third control step S31.
 第4制御ステップS32では、第2モータ制御部92が第4制御を実行する。より具体的には、第4制御ステップS32では、第2の回転方向のトルクが第2所定トルクとなるように第2モータ制御部92が射出用モータ62を制御する。第2所定トルクは、上述したように、第1取得トルクTAと第2取得トルクTBとのうちの小さい方である。したがって、射出部材24は、第2方向D2に移動しない。圧力センサ48の検出値が取得された場合、制御装置12は第4制御ステップS32を終了する。 In the fourth control step S32, the second motor control section 92 executes the fourth control. More specifically, in the fourth control step S32, the second motor control unit 92 controls the injection motor 62 so that the torque in the second rotational direction becomes the second predetermined torque. As described above, the second predetermined torque is the smaller of the first acquired torque TA and the second acquired torque TB. Therefore, the injection member 24 does not move in the second direction D2. When the detected value of the pressure sensor 48 is acquired, the control device 12 ends the fourth control step S32.
 ゼロ点補正ステップS4では、ゼロ点補正部94が圧力センサ48のゼロ点を補正する。ゼロ点補正部94は、第3制御ステップS31中に圧力センサ48が出力した検出値と、第4制御ステップS32中に圧力センサ48が出力した検出値とに基づいて、圧力センサ48のゼロ点を補正する。ゼロ点補正部94が圧力センサ48のゼロ点を補正することで、図5の制御方法が終了する。 In the zero point correction step S4, the zero point correction section 94 corrects the zero point of the pressure sensor 48. The zero point correction unit 94 adjusts the zero point of the pressure sensor 48 based on the detection value output by the pressure sensor 48 during the third control step S31 and the detection value output by the pressure sensor 48 during the fourth control step S32. Correct. The control method of FIG. 5 ends when the zero point correction section 94 corrects the zero point of the pressure sensor 48.
 制御装置12によれば、圧力センサ48のゼロ点の誤差が是正される。しかも、圧力センサ48のゼロ点を補正するために射出部材24が移動する回数は、第1制御が実行された際の第1方向D1への移動と、第2制御が実行された際の第2方向D2への移動との最低2回で済み得る。換言すれば、制御装置12は、射出部材24の移動回数を抑えつつ、圧力センサ48のゼロ点を補正し得る。 According to the control device 12, the zero point error of the pressure sensor 48 is corrected. Moreover, the number of times the injection member 24 moves in order to correct the zero point of the pressure sensor 48 is the number of times the injection member 24 moves in the first direction D1 when the first control is executed and the number of times the injection member 24 moves in the first direction D1 when the second control is executed. It may be necessary to move at least twice in two directions D2. In other words, the control device 12 can correct the zero point of the pressure sensor 48 while suppressing the number of times the injection member 24 moves.
 射出部材24の移動回数が抑えられることで、例えば、射出部材24が何度も移動することに起因して、射出口34pから射出用シリンダ22内に空気が引き込まれるリスクが低減される。射出用シリンダ22内に空気が引き込まれるリスクが低減されることで、射出用シリンダ22内に引き込まれた空気が射出用シリンダ22内の樹脂に樹脂焼けを発生させるリスクも低減される。 By suppressing the number of times the injection member 24 moves, for example, the risk of air being drawn into the injection cylinder 22 from the injection port 34p due to the injection member 24 moving many times is reduced. By reducing the risk of air being drawn into the injection cylinder 22, the risk of the air drawn into the injection cylinder 22 causing resin burn on the resin within the injection cylinder 22 is also reduced.
 制御装置12によれば、図5の制御方法の実行に要する時間も抑えられる。換言すれば、制御装置12によれば、圧力センサ48のゼロ点を補正するために要する時間も抑えられる。 According to the control device 12, the time required to execute the control method of FIG. 5 can also be reduced. In other words, according to the control device 12, the time required to correct the zero point of the pressure sensor 48 can also be suppressed.
 制御装置12が図5の制御方法を実行するタイミングは、射出部材24に粘性抵抗を付与する樹脂が射出用シリンダ22内に残留している期間内であれば、特に限定されない。ただし、制御装置12は、自動パージ中に第1モータ制御ステップS1と第2モータ制御ステップS3とを行うことが好ましい。換言すれば、制御装置12は、自動パージを開始する場合に図5の制御方法をも自動で開始することが好ましい。これにより、圧力センサ48のゼロ点を補正するためだけに成形サイクルの開始を遅らせる必要がなくなる。また、圧力センサ48のゼロ点を補正するためだけに成形サイクルを中断させる必要もなくなる。なお、制御装置12は、回転用モータ54、射出用モータ62を適宜制御して、自動パージを実行する。 The timing at which the control device 12 executes the control method of FIG. 5 is not particularly limited as long as it is within the period when the resin that imparts viscous resistance to the injection member 24 remains in the injection cylinder 22. However, it is preferable that the control device 12 performs the first motor control step S1 and the second motor control step S3 during automatic purge. In other words, it is preferable that the control device 12 also automatically starts the control method of FIG. 5 when starting automatic purge. This eliminates the need to delay the start of the molding cycle just to correct the zero point of the pressure sensor 48. Furthermore, there is no need to interrupt the molding cycle just to correct the zero point of the pressure sensor 48. Note that the control device 12 appropriately controls the rotation motor 54 and the injection motor 62 to execute automatic purging.
 [変形例]
 制御装置12は、プリプラ方式の射出成形機に適用されてもよい。
[Modified example]
The control device 12 may be applied to a pre-plastic injection molding machine.
 プリプラ方式の射出成形機においては、不図示のプランジャによって射出部材24が構成される。プランジャは、射出用シリンダ22内に挿入される。プランジャは、射出用モータ62の駆動に応じて第1方向D1および第2方向D2に移動する。 In a pre-plastic injection molding machine, the injection member 24 is configured by a plunger (not shown). The plunger is inserted into the injection cylinder 22. The plunger moves in the first direction D1 and the second direction D2 according to the drive of the injection motor 62.
 本変形例においても、第1モータ制御部90は、上記実施形態と同様に第1制御と第2制御とを実行し得る。これにより、プランジャが第1方向D1への移動を停止したときの第1取得トルクTAと、プランジャが第2方向D2への移動を停止したときの第2取得トルクTBとが取得される。したがって、トルク設定部91は、上記実施形態と同様に、第1取得トルクTAと第2取得トルクTBとに基づいて第2所定トルクを設定し得る。 Also in this modification, the first motor control section 90 can perform the first control and the second control similarly to the above embodiment. Thereby, the first acquired torque TA when the plunger stops moving in the first direction D1 and the second acquired torque TB when the plunger stops moving in the second direction D2 are acquired. Therefore, the torque setting unit 91 can set the second predetermined torque based on the first acquired torque TA and the second acquired torque TB, similarly to the above embodiment.
 また、本変形例においても、第2モータ制御部92は、上記実施形態と同様に、第3制御と第4制御とを実行し得る。また、ゼロ点補正部94は、上記実施形態と同様に、第3制御中に圧力センサ48が出力した検出値と、第4制御中に圧力センサ48が出力した検出値とに基づいて圧力センサ48のゼロ点を補正し得る。しかも、ゼロ点補正部94は、プランジャの移動回数を最低限に抑えつつ、圧力センサ48のゼロ点P0を補正することができる。 Also in this modification, the second motor control section 92 can perform the third control and the fourth control similarly to the above embodiment. Further, similarly to the above embodiment, the zero point correction unit 94 detects the pressure sensor based on the detected value outputted by the pressure sensor 48 during the third control and the detected value outputted by the pressure sensor 48 during the fourth control. 48 zero points can be corrected. Furthermore, the zero point correction section 94 can correct the zero point P0 of the pressure sensor 48 while minimizing the number of times the plunger moves.
 [付記]
 上記実施形態および変形例に関し、以下の付記を開示する。
[Additional notes]
Regarding the above embodiments and modifications, the following additional notes are disclosed.
 (付記1)
 射出用シリンダ(22)内に挿入され、前記射出用シリンダ内を移動可能な射出部材(24)と、前記射出部材を移動させる射出用モータ(62)と、前記射出用シリンダ内の樹脂の圧力を検出するための圧力センサ(48)と、を備える射出成形機(10)の制御装置(12)は、トルクが第1所定トルク(TC)から徐々に下がるように前記射出用モータを制御して前記射出部材を第1方向に移動させる第1制御を行うと共に、前記第1制御において前記射出部材の移動が停止した場合に、トルクが前記第1所定トルクから徐々に下がるように前記射出用モータを制御して前記第1方向とは反対の第2方向に前記射出部材を移動させる第2制御を行う第1モータ制御部(90)と、前記第1制御において前記射出部材が停止したときの前記射出用モータのトルクと、前記第2制御において前記射出部材が停止したときの前記射出用モータのトルクと、のうちの小さい方を第2所定トルクとして設定するトルク設定部(91)と、トルクが前記第2所定トルクとなるように前記射出用モータを制御して前記第1方向と前記第2方向とのうちの一方向に前記射出部材が移動するように制御する第3制御を行うと共に、前記第3制御において前記射出部材の移動が停止した場合に、トルクが前記第2所定トルクとなるように前記射出用モータを制御して前記第1方向と前記第2方向とのうちの他方向に前記射出部材が移動するように制御する第4制御を行う第2モータ制御部(92)と、前記圧力センサが前記第3制御中に出力する検出値と、前記圧力センサが前記第4制御中に出力する検出値とに基づいて前記圧力センサのゼロ点を補正するゼロ点補正部(94)と、を備える。これにより、射出部材の移動回数を抑えつつ、圧力センサのゼロ点を補正することができる。
(Additional note 1)
An injection member (24) inserted into the injection cylinder (22) and movable within the injection cylinder, an injection motor (62) that moves the injection member, and the pressure of the resin within the injection cylinder. The control device (12) of the injection molding machine (10), which includes a pressure sensor (48) for detecting to perform first control to move the injection member in a first direction, and control the injection control so that the torque gradually decreases from the first predetermined torque when the movement of the injection member is stopped in the first control. a first motor control unit (90) that performs second control to control a motor to move the injection member in a second direction opposite to the first direction, and when the injection member stops in the first control; and a torque of the injection motor when the injection member stops in the second control, the smaller of which is set as a second predetermined torque. , a third control for controlling the injection motor so that the torque becomes the second predetermined torque, and controlling the injection member to move in one of the first direction and the second direction; At the same time, when the movement of the injection member is stopped in the third control, the injection motor is controlled so that the torque becomes the second predetermined torque. a second motor control unit (92) that performs fourth control to control the injection member to move in the other direction; a detected value that the pressure sensor outputs during the third control; and a detection value that the pressure sensor outputs during the third control; and a zero point correction section (94) that corrects the zero point of the pressure sensor based on the detected value output during the fourth control. Thereby, the zero point of the pressure sensor can be corrected while suppressing the number of times the injection member is moved.
 (付記2)
 付記1に記載の射出成形機の制御装置であって、前記ゼロ点補正部は、前記圧力センサが前記第3制御中に出力する検出値の絶対値と、前記圧力センサが前記第4制御中に出力する検出値の絶対値とが等しくなるように前記ゼロ点を補正する、射出成形機の制御装置でもよい。これにより、射出部材の移動回数を抑えつつ、圧力センサのゼロ点を補正することができる。
(Additional note 2)
The control device for an injection molding machine according to Supplementary Note 1, wherein the zero point correction unit is configured to output an absolute value of a detection value outputted by the pressure sensor during the third control, and an absolute value of the detected value outputted by the pressure sensor during the fourth control. The control device for the injection molding machine may correct the zero point so that the absolute value of the detected value outputted to the zero point becomes equal to the absolute value of the detected value. Thereby, the zero point of the pressure sensor can be corrected while suppressing the number of times the injection member is moved.
 (付記3)
 付記1または2に記載の射出成形機の制御装置であって、前記第1モータ制御部と前記第2モータ制御部とは、前記射出成形機が自動パージを実行している間に前記射出用モータを制御する、射出成形機の制御装置でもよい。これにより、圧力センサのゼロ点を補正するためだけに成形サイクルの開始を遅らせる必要がなくなる。また、圧力センサのゼロ点を補正するためだけに成形サイクルを中断させる必要もなくなる。
(Additional note 3)
The control device for an injection molding machine according to Supplementary Note 1 or 2, wherein the first motor control section and the second motor control section are configured to control the injection molding machine while the injection molding machine executes automatic purge. It may also be a control device for an injection molding machine that controls a motor. This eliminates the need to delay the start of the molding cycle just to correct the zero point of the pressure sensor. Furthermore, there is no need to interrupt the molding cycle just to correct the zero point of the pressure sensor.
 (付記4)
 射出用シリンダ(22)内に挿入され、前記射出用シリンダ内を移動可能な射出部材(24)と、前記射出部材を移動させる射出用モータ(62)と、前記射出用シリンダ内の樹脂の圧力を検出するための圧力センサ(48)と、を備える射出成形機(10)の制御方法であって、トルクが第1所定トルク(TC)から徐々に下がるように前記射出用モータを制御して前記射出部材を第1方向に移動させる第1制御と、トルクが前記第1所定トルクから徐々に下がるように前記射出用モータを制御して前記第1方向とは反対の第2方向に前記射出部材を移動させる第2制御とを行う第1モータ制御ステップ(S1)と、前記第1制御において前記射出部材が停止したときの前記射出用モータのトルクと、前記第2制御において前記射出部材が停止したときの前記射出用モータのトルクと、のうちの小さい方を第2所定トルクとして設定するトルク設定ステップ(S2)と、トルクが前記第2所定トルクとなるように前記射出用モータを制御して前記第1方向と前記第2方向とのうちの一方向に前記射出部材が移動するように制御する第3制御と、トルクが前記第2所定トルクとなるように前記射出用モータを制御して前記第1方向と前記第2方向とのうちの他方向に前記射出部材が移動するように制御する第4制御とを行う第2モータ制御ステップ(S3)と、前記圧力センサが前記第3制御中に出力する検出値と、前記圧力センサが前記第4制御中に出力する検出値とに基づいて前記圧力センサのゼロ点を補正するゼロ点補正ステップ(S4)と、を含む。これにより、射出部材の移動回数を抑えつつ、圧力センサのゼロ点を補正することができる。
(Additional note 4)
An injection member (24) inserted into the injection cylinder (22) and movable within the injection cylinder, an injection motor (62) that moves the injection member, and the pressure of the resin within the injection cylinder. A method for controlling an injection molding machine (10), comprising: a pressure sensor (48) for detecting a pressure sensor (48); a first control for moving the injection member in a first direction; and controlling the injection motor so that the torque gradually decreases from the first predetermined torque to inject the injection in a second direction opposite to the first direction. a first motor control step (S1) that performs a second control for moving the member, a torque of the injection motor when the injection member stops in the first control, and a torque of the injection motor when the injection member stops in the second control; a torque setting step (S2) of setting the smaller of the torque of the injection motor when stopped as a second predetermined torque; and controlling the injection motor so that the torque becomes the second predetermined torque. a third control for controlling the injection member to move in one of the first direction and the second direction; and controlling the injection motor so that the torque becomes the second predetermined torque. a second motor control step (S3) for controlling the injection member to move in the other direction of the first direction and the second direction; and a zero point correction step (S4) of correcting the zero point of the pressure sensor based on the detected value output during the third control and the detected value output by the pressure sensor during the fourth control. Thereby, the zero point of the pressure sensor can be corrected while suppressing the number of times the injection member is moved.
 本開示の実施形態について詳述したが、本開示は上記した個々の実施形態に限定されるものではない。これらの実施形態は、発明の要旨を逸脱しない範囲で、または、請求の範囲に記載された内容とその均等物から導き出される思想および趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。例えば、上記した実施形態において、各動作の順序または各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上記した実施形態の説明に数値または数式が用いられている場合も同様である。 Although the embodiments of the present disclosure have been described in detail, the present disclosure is not limited to the individual embodiments described above. These embodiments may include various additions, substitutions, changes, and parts without departing from the gist of the invention or the spirit and spirit derived from the content stated in the claims and equivalents thereof. It is possible to delete etc. For example, in the embodiments described above, the order of each operation or the order of each process is shown as an example, and the order is not limited thereto. Further, the same applies when numerical values or formulas are used in the description of the above-described embodiments.
10…射出成形機            12…制御装置
22…射出用シリンダ          24…射出部材
48…圧力センサ            62…射出用モータ
90…第1モータ制御部         91…トルク設定部
92…第2モータ制御部         94…ゼロ点補正部
DESCRIPTION OF SYMBOLS 10... Injection molding machine 12... Control device 22... Injection cylinder 24... Injection member 48... Pressure sensor 62... Injection motor 90... First motor control section 91... Torque setting section 92... Second motor control section 94... Zero point Correction section

Claims (4)

  1.  射出用シリンダ(22)内に挿入され、前記射出用シリンダ内を移動可能な射出部材(24)と、前記射出部材を移動させる射出用モータ(62)と、前記射出用シリンダ内の樹脂の圧力を検出するための圧力センサ(48)と、を備える射出成形機(10)の制御装置(12)であって、
     トルクが第1所定トルク(TC)から徐々に下がるように前記射出用モータを制御して前記射出部材を第1方向に移動させる第1制御を行うと共に、前記第1制御において前記射出部材の移動が停止した場合に、トルクが前記第1所定トルクから徐々に下がるように前記射出用モータを制御して前記第1方向とは反対の第2方向に前記射出部材を移動させる第2制御を行う第1モータ制御部(90)と、
     前記第1制御において前記射出部材が停止したときの前記射出用モータのトルクと、前記第2制御において前記射出部材が停止したときの前記射出用モータのトルクと、のうちの小さい方を第2所定トルクとして設定するトルク設定部(91)と、
     トルクが前記第2所定トルクとなるように前記射出用モータを制御して前記第1方向と前記第2方向とのうちの一方向に前記射出部材が移動するように制御する第3制御を行うと共に、前記第3制御において前記射出部材の移動が停止した場合に、トルクが前記第2所定トルクとなるように前記射出用モータを制御して前記第1方向と前記第2方向とのうちの他方向に前記射出部材が移動するように制御する第4制御を行う第2モータ制御部(92)と、
     前記圧力センサが前記第3制御中に出力する検出値と、前記圧力センサが前記第4制御中に出力する検出値とに基づいて前記圧力センサのゼロ点を補正するゼロ点補正部(94)と、
     を備える、射出成形機の制御装置。
    An injection member (24) that is inserted into an injection cylinder (22) and movable within the injection cylinder, an injection motor (62) that moves the injection member, and a resin pressure inside the injection cylinder. A control device (12) for an injection molding machine (10), comprising a pressure sensor (48) for detecting the
    Performing first control to move the injection member in a first direction by controlling the injection motor so that the torque gradually decreases from a first predetermined torque (TC), and moving the injection member in the first control. When the injection motor stops, a second control is performed to move the injection member in a second direction opposite to the first direction by controlling the injection motor so that the torque gradually decreases from the first predetermined torque. a first motor control section (90);
    The smaller of the torque of the injection motor when the injection member stops in the first control and the torque of the injection motor when the injection member stops in the second control is determined as the second control. a torque setting section (91) that sets a predetermined torque;
    performing a third control of controlling the injection motor so that the torque becomes the second predetermined torque, and controlling the injection member to move in one of the first direction and the second direction; At the same time, when the movement of the injection member is stopped in the third control, the injection motor is controlled so that the torque becomes the second predetermined torque, and the injection motor is controlled in the first direction and the second direction. a second motor control unit (92) that performs fourth control to control the injection member to move in the other direction;
    a zero point correction unit (94) that corrects the zero point of the pressure sensor based on a detection value output by the pressure sensor during the third control and a detection value output by the pressure sensor during the fourth control; and,
    A control device for an injection molding machine.
  2.  請求項1に記載の射出成形機の制御装置であって、
     前記ゼロ点補正部は、前記圧力センサが前記第3制御中に出力する検出値の絶対値と、前記圧力センサが前記第4制御中に出力する検出値の絶対値とが等しくなるように前記ゼロ点を補正する、射出成形機の制御装置。
    A control device for an injection molding machine according to claim 1,
    The zero point correction unit adjusts the zero point correction unit so that the absolute value of the detected value outputted by the pressure sensor during the third control is equal to the absolute value of the detected value outputted by the pressure sensor during the fourth control. An injection molding machine control device that corrects the zero point.
  3.  請求項1または2に記載の射出成形機の制御装置であって、
     前記第1モータ制御部と前記第2モータ制御部とは、前記射出成形機が自動パージを実行している間に前記射出用モータを制御する、射出成形機の制御装置。
    A control device for an injection molding machine according to claim 1 or 2,
    The first motor control unit and the second motor control unit are control devices for an injection molding machine that control the injection motor while the injection molding machine is performing automatic purge.
  4.  射出用シリンダ(22)内に挿入され、前記射出用シリンダ内を移動可能な射出部材(24)と、前記射出部材を移動させる射出用モータ(62)と、前記射出用シリンダ内の樹脂の圧力を検出するための圧力センサ(48)と、を備える射出成形機(10)の制御方法であって、
     トルクが第1所定トルク(TC)から徐々に下がるように前記射出用モータを制御して前記射出部材を第1方向に移動させる第1制御と、トルクが前記第1所定トルクから徐々に下がるように前記射出用モータを制御して前記第1方向とは反対の第2方向に前記射出部材を移動させる第2制御とを行う第1モータ制御ステップ(S1)と、
     前記第1制御において前記射出部材が停止したときの前記射出用モータのトルクと、前記第2制御において前記射出部材が停止したときの前記射出用モータのトルクと、のうちの小さい方を第2所定トルクとして設定するトルク設定ステップ(S2)と、
     トルクが前記第2所定トルクとなるように前記射出用モータを制御して前記第1方向と前記第2方向とのうちの一方向に前記射出部材が移動するように制御する第3制御と、トルクが前記第2所定トルクとなるように前記射出用モータを制御して前記第1方向と前記第2方向とのうちの他方向に前記射出部材が移動するように制御する第4制御とを行う第2モータ制御ステップ(S3)と、
     前記圧力センサが前記第3制御中に出力する検出値と、前記圧力センサが前記第4制御中に出力する検出値とに基づいて前記圧力センサのゼロ点を補正するゼロ点補正ステップ(S4)と、
     を含む、射出成形機の制御方法。
    An injection member (24) inserted into the injection cylinder (22) and movable within the injection cylinder, an injection motor (62) that moves the injection member, and the pressure of the resin within the injection cylinder. A method for controlling an injection molding machine (10), comprising: a pressure sensor (48) for detecting
    a first control for moving the injection member in a first direction by controlling the injection motor so that the torque gradually decreases from a first predetermined torque (TC); and a first control for moving the injection member in a first direction so that the torque gradually decreases from the first predetermined torque a first motor control step (S1) of controlling the injection motor to move the injection member in a second direction opposite to the first direction;
    The smaller of the torque of the injection motor when the injection member stops in the first control and the torque of the injection motor when the injection member stops in the second control is determined as the second control. a torque setting step (S2) of setting a predetermined torque;
    a third control that controls the injection motor so that the torque becomes the second predetermined torque, and controls the injection member to move in one of the first direction and the second direction; a fourth control that controls the injection motor so that the torque becomes the second predetermined torque, and controls the injection member to move in the other direction of the first direction and the second direction; a second motor control step (S3) to perform;
    a zero point correction step (S4) of correcting the zero point of the pressure sensor based on the detection value output by the pressure sensor during the third control and the detection value output by the pressure sensor during the fourth control; and,
    A method of controlling an injection molding machine, including:
PCT/JP2022/027151 2022-07-08 2022-07-08 Control device for injection molding machine and control method for injection molding machine WO2024009513A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027151 WO2024009513A1 (en) 2022-07-08 2022-07-08 Control device for injection molding machine and control method for injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027151 WO2024009513A1 (en) 2022-07-08 2022-07-08 Control device for injection molding machine and control method for injection molding machine

Publications (1)

Publication Number Publication Date
WO2024009513A1 true WO2024009513A1 (en) 2024-01-11

Family

ID=89453216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027151 WO2024009513A1 (en) 2022-07-08 2022-07-08 Control device for injection molding machine and control method for injection molding machine

Country Status (1)

Country Link
WO (1) WO2024009513A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205229A (en) * 1994-01-21 1995-08-08 Fanuc Ltd Zero point correcting method for pressure detector of injection molding machine
JPH09117946A (en) * 1995-10-25 1997-05-06 Fanuc Ltd Zero point adjusting method of pressure detector in injection molding machine
JP2000233433A (en) * 1999-02-16 2000-08-29 Toyo Mach & Metal Co Ltd Method and apparatus for offset adjustment for injection molding machine
JP2002103409A (en) * 2000-09-29 2002-04-09 Sanyo Denki Co Ltd Method for controlling injection molding machine, and injection molding machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205229A (en) * 1994-01-21 1995-08-08 Fanuc Ltd Zero point correcting method for pressure detector of injection molding machine
JPH09117946A (en) * 1995-10-25 1997-05-06 Fanuc Ltd Zero point adjusting method of pressure detector in injection molding machine
JP2000233433A (en) * 1999-02-16 2000-08-29 Toyo Mach & Metal Co Ltd Method and apparatus for offset adjustment for injection molding machine
JP2002103409A (en) * 2000-09-29 2002-04-09 Sanyo Denki Co Ltd Method for controlling injection molding machine, and injection molding machine

Similar Documents

Publication Publication Date Title
US20130147078A1 (en) Molding machine controlling apparatus and method of controlling molding machine
JP4410816B2 (en) Control device for injection molding machine
EP1935608B1 (en) Injection molding machine
US7074028B2 (en) Injection molding machine having a freely rotatable screw
JP2004154994A (en) Controller for injection molding machine
WO2024009513A1 (en) Control device for injection molding machine and control method for injection molding machine
WO2024009511A1 (en) Control device for injection molding machine and control method for injection molding machine
WO2024009512A1 (en) Control device for injection molding machine and control method for injection molding machine
US11701809B2 (en) Control device and control method for injection molding machine
JP2009166317A (en) Screw revolution control method in injection molding machine and screw revolution control unit
JP7277327B2 (en) CONTROL DEVICE AND CONTROL METHOD FOR INJECTION MOLDING MACHINE
US11554525B2 (en) Injection molding machine
US20230415394A1 (en) Control device and control method
JP4889574B2 (en) Control method of injection molding machine
JP7108157B1 (en) Control device and control method
JP4156654B1 (en) Injection molding machine
WO2011103676A1 (en) A method for controlling a screw position in an injection unit
JP3535106B2 (en) Zero adjustment method of load cell in electric injection molding machine
JP3648083B2 (en) Control method of injection molding machine
US11724428B2 (en) Control device and control method for injection molding machine
JP7421964B2 (en) Injection molding machine and its control method
JP4107309B2 (en) Hydraulic unit for injection molding machine
JP7311376B2 (en) Reverse rotation condition estimation device, reverse rotation condition estimation method, and injection molding machine
WO2023203716A1 (en) Control device and control method
WO2023203715A1 (en) Control device and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950307

Country of ref document: EP

Kind code of ref document: A1