WO2024009348A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2024009348A1
WO2024009348A1 PCT/JP2022/026585 JP2022026585W WO2024009348A1 WO 2024009348 A1 WO2024009348 A1 WO 2024009348A1 JP 2022026585 W JP2022026585 W JP 2022026585W WO 2024009348 A1 WO2024009348 A1 WO 2024009348A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
chemical formula
group
hydrogen atom
Prior art date
Application number
PCT/JP2022/026585
Other languages
English (en)
French (fr)
Inventor
健嗣 小島
研吾 平塚
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/026585 priority Critical patent/WO2024009348A1/ja
Publication of WO2024009348A1 publication Critical patent/WO2024009348A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a refrigeration cycle device.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2018-109185 describes a mixed refrigerant containing a halogenated hydrocarbon having a C-I bond such as trifluoroiodomethane, which has a low GWP and is nonflammable. Disclosed.
  • trifluoroiodomethane is more easily decomposed than saturated fluorohydrocarbon compounds (Hydro-Fluoro-Carbon: HFC), and decomposition produces degraded products such as hydrogen fluoride and hydrogen iodide. It is known that the deterioration products accelerate the deterioration of the refrigerating machine oil that circulates in the refrigerant circuit together with the refrigerant, and that they corrode copper if the parts that come into contact with the refrigerant that circulates in the refrigerant circuit contain copper.
  • Patent Document 2 Japanese Patent No. 6924888 recommends that in refrigerant piping where trifluoroiodomethane easily decomposes, stainless steel pipes or aluminum alloy pipes with a low copper content are used only at high temperature points. It has been disclosed that by using this, the amount of copper iodide generated and the deterioration of the refrigerant itself can be suppressed, and malfunctions of equipment such as valves and pumps can be reduced.
  • the present inventors used a refrigerant containing trifluoroiodomethane and unsaturated fluoro-olefin (HFO) as a refrigerant, and a refrigerating machine oil containing polyol ester oil (POE) as a refrigerating machine oil.
  • HFO trifluoroiodomethane and unsaturated fluoro-olefin
  • POE polyol ester oil
  • the present disclosure has been made to solve the above problems, and uses a refrigerant containing trifluoroiodomethane and an unsaturated fluorohydrocarbon compound as a refrigerant, and a refrigerating machine oil containing polyol ester oil as a refrigerating machine oil.
  • a refrigerating machine oil containing polyol ester oil as a refrigerating machine oil.
  • the refrigeration cycle device includes: Equipped with a refrigerant circuit including a compressor and a heat exchanger, A refrigerant is sealed in the refrigerant circuit, The refrigerant includes trifluoroiodomethane and an unsaturated fluorohydrocarbon compound, Refrigerating machine oil is filled in the compressor, At least a portion of the refrigerating machine oil circulates within the refrigerant circuit together with the refrigerant during operation; The refrigeration oil includes polyol ester oil, The refrigerant circuit has parts that come into contact with the refrigerant, The component includes a first component group made of a metal containing aluminum and a second component group made of a metal containing zinc, The ratio of the total amount of zinc contained in the second component group to the total amount of aluminum contained in the first component group is 2.5 or less.
  • a refrigerant containing trifluoroiodomethane and an unsaturated fluorohydrocarbon compound is used as the refrigerant
  • a refrigerating machine oil containing polyol ester oil is used as the refrigerating machine oil
  • parts that come into contact with the refrigerant in the refrigerant circuit are coated with zinc.
  • FIG. 1 is a schematic configuration diagram showing an example of a refrigeration cycle device according to a first embodiment.
  • FIG. 1 is a schematic configuration diagram showing a refrigeration cycle device according to a first embodiment.
  • the refrigeration cycle device includes a refrigerant circuit including a compressor 1, a flow path switching valve 2 that switches the flow direction during cooling and heating, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5. Be prepared. Note that in a refrigeration cycle device that does not require switching between cooling and heating, the flow path switching valve 2 is not necessary.
  • the high-temperature, high-pressure gaseous refrigerant compressed by the compressor 1 flows into the outdoor heat exchanger 3 via the flow path switching valve 2 (flow path indicated by a solid line) and is condensed there.
  • the liquid refrigerant condensed in the outdoor heat exchanger 3 flows into the indoor heat exchanger 5 via the expansion valve 4, where it evaporates (vaporizes).
  • the gaseous refrigerant evaporated in the indoor heat exchanger 5 returns to the compressor 1 via the flow path switching valve 2 (flow path indicated by a solid line). In this way, during cooling, the refrigerant circulates in the refrigerant circuit of the refrigeration cycle device in the direction of the solid arrow shown in FIG.
  • the high-temperature, high-pressure gaseous refrigerant compressed by the compressor 1 flows into the indoor heat exchanger 5 via the flow path switching valve 2 (flow path indicated by the dotted line), where it is condensed. do.
  • the liquid refrigerant condensed in the indoor heat exchanger 5 flows into the outdoor heat exchanger 3 via the expansion valve 4, where it evaporates (vaporizes).
  • the refrigerant evaporated in the outdoor heat exchanger 3 returns to the compressor 1 via the flow path switching valve 2 (the flow path indicated by the dotted line). In this way, during heating, the refrigerant circulates in the refrigerant circuit of the refrigeration cycle device in the direction of the dashed arrow shown in FIG.
  • the refrigeration cycle device of the present embodiment may further include other equipment such as a gas-liquid splitter, a receiver, an accumulator, and a high-low pressure heat exchanger.
  • the refrigerant includes trifluoroiodomethane and HFO.
  • the contents of trifluoroiodomethane and HFO are not particularly limited.
  • the content of trifluoroiodomethane may be 1 to 70% by weight.
  • the content of HFO may be 1 to 95% by weight.
  • the refrigerant used in this embodiment may be only trifluoroiodomethane and HFO, or may further contain other components.
  • other components include natural refrigerants containing chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), hydrofluorocarbons (HFC), hydrofluoroolefins, and hydrocarbons (HC).
  • CFC chlorofluorocarbons
  • HCFC hydrochlorofluorocarbons
  • HFC hydrofluorocarbons
  • HC hydrofluoroolefins
  • HC hydrocarbons
  • the refrigerating machine oil filled to lubricate the inside of the compressor contains POE. At least a portion of the refrigerating machine oil filled in the compressor circulates in the refrigerant circuit together with the refrigerant during operation.
  • the refrigerating machine oil used in this embodiment may be only POE, or may further contain other components.
  • other components include commonly used refrigeration oils (ester lubricating oils, ether lubricating oils, fluorine lubricating oils, mineral lubricating oils, hydrocarbon lubricating oils, etc.).
  • Specific refrigerating machine oils include, but are not limited to, polyvinyl ether oil, polyalkylene glycol oil, alkylbenzene oil, mineral oil, poly ⁇ -olefin, or mixtures thereof. The types and contents of other components are set within a range that does not impair the purpose of this embodiment.
  • the refrigerating machine oil is selected from extreme pressure agents, oily agents, antioxidants, acid scavengers, metal deactivators, and antifoaming agents to the extent that the purpose of this embodiment is not impaired. It may contain at least one selected additive.
  • extreme pressure agents include phosphorus-based extreme pressure agents such as phosphoric acid esters, thiophosphoric acid esters, acidic phosphoric acid esters, phosphite esters, acidic phosphite esters, and amine salts thereof.
  • oily agents examples include aliphatic saturated monocarboxylic acids and aliphatic unsaturated monocarboxylic acids such as stearic acid and oleic acid, polymerized fatty acids such as dimer acid and hydrogenated dimer acid, and hydroxyl acids such as ricinoleic acid and 12-hydroxystearic acid.
  • Fatty acids such as lauryl alcohol and oleyl alcohol, aliphatic saturated monoamines and aliphatic unsaturated monoamines such as stearylamine and oleylamine, aliphatic compounds such as lauric acid amide and oleic acid amide
  • Examples include saturated monocarboxylic acid amides and aliphatic unsaturated monocarboxylic acid amides, partial esters of polyhydric alcohols such as glycerin and sorbitol, and aliphatic saturated monocarboxylic acids or aliphatic unsaturated monocarboxylic acids.
  • antioxidants examples include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and 2,2'-methylenebis(4-methyl-6-tert).
  • -butylphenol examples include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and 2,2'-methylenebis(4-methyl-6-tert).
  • amines such as phenyl- ⁇ -naphthylamine and N,N'-di-phenyl-p-phenylenediamine.
  • the acid scavenger examples include epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ester, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil.
  • epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ester, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil.
  • metal deactivator examples include benzotriazole compounds such as 1,2,3-benzotriazole and N,N-bis(2-ethylhexyl)-4-methyl-1H-benzotriazole-1-methanamine.
  • antifoaming agents examples include silicone, polyether, mineral oil, and the like.
  • the refrigerant circuit has parts that come into contact with the refrigerant.
  • these parts include, for example, parts (first parts group) made of metal containing Al, such as the outdoor heat exchanger 3, the indoor heat exchanger 5, the oscillating scroll, and the piping, the flow path switching valve 2, and the expansion valve.
  • the piping is a tubular member forming a refrigerant circuit, and the brazing material is a member used for joining parts together.
  • the brazing material is a member used for joining parts together.
  • the ratio of the total amount of Zn contained in the second parts group to the total amount of Al contained in the first parts group (hereinafter also simply referred to as "Zn/Al ratio") is 2.5 or less It is. When the Zn/Al ratio is 2.5 or less, occurrence of corrosion in the first component group can be suppressed.
  • the Zn/Al ratio is preferably 2.0 or less.
  • the total amount of Al contained in the first parts group means that the amount of Al in each first part is calculated by the product of the Al content of each first part and the surface area of each first part, The value is the sum of all of them.
  • the “total amount of Zn contained in the second parts group” means that the amount of Zn in each second part is calculated by the product of the Zn content of each second part and the surface area of each second part, The value is the sum of all of them.
  • the refrigeration cycle device is not particularly limited, but may be used in a commercial or home air conditioner (air conditioner), a car air conditioner, a heat pump for a vending machine, a refrigerator, a container for marine transportation, or a refrigerator.
  • air conditioner air conditioner
  • car air conditioner heat pump for a vending machine
  • refrigerator a container for marine transportation
  • refrigerator a refrigerator
  • Examples include cooling refrigerators, chiller units, turbo refrigerators, and the like.
  • the refrigeration cycle device of this embodiment can also be used for dedicated heating cycle devices such as floor heating devices and snow melting devices. It is particularly useful as a commercial or home air conditioner (air conditioner), which requires miniaturization of the device.
  • air conditioner air conditioner
  • the explanation is given for the case where the outdoor unit and the indoor unit are connected one-to-one, but it is also possible that there are multiple indoor units for one outdoor unit. Alternatively, there may be a plurality of indoor units for a plurality of outdoor units.
  • the refrigeration cycle device of this embodiment may be a room air conditioner or a package air conditioner that can switch between cooling and heating, or may be a refrigeration cycle device for low-temperature equipment such as a refrigerator.
  • the refrigeration cycle device of this embodiment is preferably a refrigeration cycle device (air conditioner) for air conditioning.
  • refrigeration cycle devices for air conditioning include room air conditioners, package air conditioners, building multi-air conditioners, window air conditioners, and mobile air conditioners.
  • Embodiment 2 The refrigeration cycle device according to the present embodiment is the first embodiment in that it contains at least one of the first compound shown in the following chemical formula 1 and the second compound shown in the following chemical formula 2 as a stabilizer added to the refrigeration oil. It is different from. Other points are the same as those in Embodiment 1, so duplicate explanation will be omitted.
  • the basic skeleton of the compound having the effect of suppressing the decomposition of trifluoroiodomethane is either the first compound represented by Chemical Formula 1 or the second compound represented by Chemical Formula 2.
  • R 1 to R 5 are each independently a substituent composed of at least one of a carbon atom, a hydrogen atom, and an oxygen atom, preferably a hydrogen atom, a methoxy group, an ethoxy group, and an alkyl group. At least one type of R 1 to R 5 may be the same or different. Furthermore, at least one substituent of R 6 to R 8 is a hydrogen atom. The others are each independently a substituent composed of at least one of a carbon atom, a hydrogen atom, and an oxygen atom, preferably at least one of a hydrogen atom, a methoxy group, an ethoxy group, and an alkyl group. R 6 to R 8 may be the same or different.
  • R 3 is -O-R 9
  • R 9 is a hydrocarbon group having 1 to 10 carbon atoms
  • R 7 is -COO-R 10
  • R 10 is , is a hydrocarbon group having 1 to 10 carbon atoms
  • R 1 to R 2 , R 4 to R 6 and R 8 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms; Good too.
  • the above ranges of carbon numbers of R 1 to R 2 , R 4 to R 6 and R 8 to R 10 are illustrative, and the present disclosure is not limited to the above ranges.
  • Examples of the first compound include ethylhexyl methoxycinnamate, anethole, and cinnamyl acetate, with ethylhexyl methoxycinnamate and anethole being preferred.
  • the content of the first compound in the refrigeration oil is preferably 5% by mass or more and 20% by mass or less, more preferably 10% by mass or more and 15% by mass or less, based on the total amount of the refrigeration oil.
  • the content of the first compound in the refrigerating machine oil is less than 5% by mass based on the total amount of the refrigerating machine oil, the effect of suppressing the decomposition of trifluoroiodomethane by the first compound is insufficient, and the Zn/Al ratio described below Even if it is in the range of 4.5 or less, there is a risk that corrosion will occur in the first parts group.
  • the content of the first compound in the refrigerating machine oil exceeds 20% by mass based on the total amount of the refrigerating machine oil, there is a possibility that the first compound may unintentionally precipitate from the refrigerating machine oil.
  • R 2 to R 5 are each independently a substituent composed of at least one of a carbon atom, a hydrogen atom, and an oxygen atom, preferably a hydrogen atom, a methoxy group, an ethoxy group, and an alkyl group. At least one type of R 2 to R 5 may be the same or different. Furthermore, at least one substituent among R 6 to R 7 is a hydrogen atom. The others are each independently a substituent composed of at least one of a carbon atom, a hydrogen atom, and an oxygen atom, preferably at least one of a hydrogen atom, a methoxy group, an ethoxy group, and an alkyl group. R 6 to R 7 may be the same or different.
  • R 1 forms a ring structure together with two adjacent carbon atoms of the benzene ring to which R 1 is bonded.
  • the ring structure forms a 5- to 8-membered carbocycle or a heterocycle, preferably a 6-membered heterocycle.
  • R 2 to R 6 may each independently be a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. Note that the above range of carbon numbers of R 2 to R 6 is an example, and the present disclosure is not limited to the above range.
  • Examples of the second compound include coumarin, coumaron, and alkylnaphthalene (AN) (see Chemical Formula 4 below), with coumarin and AN being preferred.
  • R 1 to R 8 are each independently an alkyl group or a hydrogen atom. R 1 to R 8 may be the same or different.
  • the content of the second compound in the refrigeration oil is preferably 1% by mass or more and 15% by mass or less, more preferably 2% by mass or more and 10% by mass or less, based on the total amount of the refrigeration oil.
  • the content of the second compound in the refrigerating machine oil is less than 1% by mass based on the total amount of the refrigerating machine oil, the effect of suppressing the decomposition of trifluoroiodomethane by the second compound is insufficient, and the Zn/Al ratio described below Even if it is in the range of 4.5 or less, there is a risk that corrosion will occur in the first parts group.
  • the content of the second compound in the refrigerating machine oil exceeds 15% by mass based on the total amount of the refrigerating machine oil, there is a possibility that the second compound may unintentionally precipitate from the refrigerating machine oil.
  • the Zn/Al ratio is 4.5 or less.
  • the first compound and the second compound having the basic skeleton that enables the radical scavenging reaction of chemical formula 3 are highly effective in capturing radicals generated when trifluoroiodomethane is decomposed, and undecomposed trifluoroiodomethane is It suppresses chain decomposition by the above radicals. Therefore, by containing at least one of the first compound and the second compound, the decomposition of trifluoroiodomethane can be further suppressed. It is possible to suppress the occurrence of corrosion in one group of parts.
  • the Zn/Al ratio is preferably 4.0 or less.
  • the Zn/Al ratio is preferably 4.0 or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷媒回路を備え、前記冷媒回路内に冷媒が封入されており、前記冷媒は、トリフルオロヨードメタンおよび不飽和フッ化炭化水素化合物を含み、前記圧縮機内に冷凍機油が充填されており、前記冷凍機油の少なくとも一部は、運転時に前記冷媒回路内を循環し、前記冷凍機油は、ポリオールエステル油であり、前記冷媒回路は、前記冷媒に触れる部品を有し、前記部品は、アルミニウムを含む金属で構成される第1部品群および亜鉛を含む金属で構成される第2部品群を有し、前記第1部品群に含まれるアルミニウムの総量に対する、前記第2部品群に含まれる亜鉛の総量の比は、2.5以下である、冷凍サイクル装置。

Description

冷凍サイクル装置
 本開示は、冷凍サイクル装置に関する。
 現在、冷凍サイクル装置に使用する冷媒は、例えば、フロン排出抑制法(平成27年4月施行)によって規制されている。具体的には、使用する冷媒の地球温暖化係数(Global Warming Potential:GWP)値の上限が設定されている。
 このため、GWPを考慮した冷媒を用いるようになっている。このような冷媒として、特許文献1(特開2018-109185号公報)には、GWPが低く不燃性であるトリフルオロヨードメタン等のC-I結合を有するハロゲン化炭化水素を含んだ混合冷媒が開示されている。
 しかし、トリフルオロヨードメタンは飽和フッ化炭化水素化合物(Hydro-Fluoro-Carbon:HFC)に比べて分解しやすく、分解によりフッ化水素やヨウ化水素等の劣化生成物が生じる。劣化生成物は冷媒と共に冷媒回路内を循環する冷凍機油の劣化を促進させることや、冷媒回路内を循環する冷媒が接触する部品が銅を含む場合、銅を腐食させることが知られている。
 このような課題に対して、特許文献2(特許第6924888号公報)には、トリフルオロヨードメタンが分解しやすい冷媒配管で、高温になる箇所のみ銅の含有率が低いステンレス管やアルミニウム合金管を用いることで、ヨウ化銅の発生量や冷媒自体の劣化を抑制し、弁、ポンプ等の機器の動作不良を低減することが開示されている。
特開2018-109185号公報 特許第6924888号公報
 しかし、本願発明者らは、冷媒としてトリフルオロヨードメタンおよび不飽和フッ化炭化水素化合物(Hydro-Fluoro-Olefin:HFO)を含む冷媒を用い、冷凍機油としてポリオールエステル油(POE)を含む冷凍機油を用い、冷媒回路内で冷媒が接触する部品に亜鉛(Zn)およびアルミニウム(Al)が含まれている場合、トリフルオロヨードメタンの分解が促進され、Alが腐食するという新たな課題を見出した。
 また、本願発明者らがさらに検討した結果、冷媒回路内で冷媒が接触する部品にZnが多く含まれている場合に、Alの腐食が促進されることが判明した。
 本開示は、上記のような課題を解決するためになされたものであり、冷媒としてトリフルオロヨードメタンおよび不飽和フッ化炭化水素化合物を含む冷媒を用い、冷凍機油としてポリオールエステル油を含む冷凍機油を用い、冷媒回路内で冷媒が接触する部品に亜鉛およびアルミニウムが含まれている場合に、アルミニウムを含む部品の腐食の発生を抑制し、長期間信頼性を維持する冷凍サイクル装置を提供することを目的とする。
 本開示に係る冷凍サイクル装置は、
 圧縮機および熱交換器を含む冷媒回路を備え、
 前記冷媒回路内に冷媒が封入されており、
 前記冷媒は、トリフルオロヨードメタンおよび不飽和フッ化炭化水素化合物を含み、
 前記圧縮機内に冷凍機油が充填されており、
 前記冷凍機油の少なくとも一部は、運転時に前記冷媒と共に前記冷媒回路内を循環し、
 前記冷凍機油は、ポリオールエステル油を含み、
 前記冷媒回路は、前記冷媒に触れる部品を有し、
 前記部品は、アルミニウムを含む金属で構成される第1部品群および亜鉛を含む金属で構成される第2部品群を有し、
 前記第1部品群に含まれるアルミニウムの総量に対する、前記第2部品群に含まれる亜鉛の総量の比は、2.5以下である。
 本開示によれば、冷媒としてトリフルオロヨードメタンおよび不飽和フッ化炭化水素化合物を含む冷媒を用い、冷凍機油としてポリオールエステル油を含む冷凍機油を用い、冷媒回路内で冷媒が接触する部品に亜鉛およびアルミニウムが含まれている場合に、アルミニウムを含む部品の腐食の発生を抑制し、長期間信頼性を維持する冷凍サイクル装置を提供することができる。
図1は、実施の形態1に係る冷凍サイクル装置の一例を示す概略構成図である。
 以下、本開示の実施の形態を図面に基づいて説明する。
 実施の形態1.
 まず、本実施の形態の冷凍サイクル装置の概要について簡単に説明する。図1は、実施の形態1に係る冷凍サイクル装置を示す概略構成図である。冷凍サイクル装置は、圧縮機1と、冷房時と暖房時の流れ方向を切替える流路切替弁2と、室外熱交換器3と、膨張弁4と、室内熱交換器5とを含む冷媒回路を備える。なお、冷房と暖房を切替える必要のない冷凍サイクル装置においては、流路切替弁2は必要ない。
 冷房時において、圧縮機1で圧縮された高温高圧のガス状冷媒は、流路切替弁2(実線で示す流路)を経由して室外熱交換器3へと流入し、そこで凝縮する。室外熱交換器3で凝縮した液状冷媒は、膨張弁4を経由して室内熱交換器5に流入し、そこで蒸発(気化)する。最後に、室内熱交換器5にて蒸発したガス状冷媒は、流路切替弁2(実線で示す流路)を経由して圧縮機1へ戻る。このように、冷房時において、冷媒は、冷凍サイクル装置の冷媒回路内を図1に示す実線矢印の方向に循環する。
 一方、暖房時においては、圧縮機1で圧縮された高温高圧のガス状冷媒は、流路切替弁2(点線で示す流路)を経由して室内熱交換器5へと流入し、そこで凝縮する。室内熱交換器5で凝縮した液状冷媒は、膨張弁4を経由して室外熱交換器3へと流入し、そこで蒸発(気化)する。室外熱交換器3で蒸発した冷媒は、流路切替弁2(点線で示す流路)を経由して圧縮機1へ戻る。このように、暖房時において、冷媒は、冷凍サイクル装置の冷媒回路内を図1に示す破線矢印の方向に循環する。
 なお、上記構成は、冷房および暖房運転を実施可能な冷凍サイクル装置の最小構成要素である。本実施の形態の冷凍サイクル装置は、さらに、気液分岐器、レシーバー、アキュームレータ、高低圧熱交換器等の他の機器を備えていてもよい。
 次に、本実施の形態において、冷媒回路内に封入される冷媒について説明する。該冷媒は、トリフルオロヨードメタンおよびHFOを含んでいる。トリフルオロヨードメタンおよびHFOの含有率は、特に制限はない。例えば、トリフルオロヨードメタンの含有率は、1~70質量%であってもよい。例えば、HFOの含有率は、1~95質量%であってもよい。
 また、本実施の形態において用いられる冷媒は、トリフルオロヨードメタンおよびHFOのみであってもよく、さらに他の成分を含んでいてもよい。他の成分としては、例えば、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)、ハイドロフルオロカーボン(HFC)、ハイドロフルオロオレフィン、ハイドロカーボン(HC)を含む自然冷媒等が挙げられる。他の成分の種類および含有率は、本実施の形態の目的が損なわれない範囲で設定される。
 (冷凍機油)
 本実施の形態において、圧縮機内を潤滑するために充填される冷凍機油は、POEを含んでいる。圧縮機内に充填された冷凍機油の少なくとも一部は、運転時に冷媒と共に冷媒回路内を循環する。
 また、本実施の形態において用いられる冷凍機油は、POEのみであってもよく、さらに他の成分を含んでいてもよい。他の成分としては、例えば、一般に用いられる冷凍機油(エステル系潤滑油、エーテル系潤滑油、フッ素系潤滑油、鉱物系潤滑油、炭化水素系潤滑油等)が挙げられる。具体的な冷凍機油としては、例えば、ポリビニルエーテル油、ポリアルキレングリコール油、アルキルベンゼン油、鉱物油、ポリα―オレフィンまたはそれらの混合物等が挙げられるが、これらに限定されない。他の成分の種類および含有率は、本実施の形態の目的が損なわれない範囲で設定される。
 本実施の形態において、冷凍機油は、本実施の形態の目的が損なわれない範囲で、極圧剤、油性剤、酸化防止剤、酸捕捉剤、金属不活性化剤および消泡剤の中から選ばれる少なくとも1種の添加剤を含有してもよい。
 極圧剤(摩耗防止剤)としては、リン酸エステル、チオリン酸エステル、酸性リン酸エステル、亜リン酸エステル、酸性亜リン酸エステルおよびこれらのアミン塩等のリン系極圧剤が挙げられる。
 油性剤としては、ステアリン酸、オレイン酸等の脂肪族飽和モノカルボン酸および脂肪族不飽和モノカルボン酸、ダイマー酸、水添ダイマー酸等の重合脂肪酸、リシノレイン酸、12-ヒドロキシステアリン酸等のヒドロキシ脂肪酸、ラウリルアルコール、オレイルアルコール等の脂肪族飽和モノアルコールおよび脂肪族不飽和モノアルコール、ステアリルアミン、オレイルアミン等の脂肪族飽和モノアミンおよび脂肪族不飽和モノアミン、ラウリン酸アミド、オレイン酸アミド等の脂肪族飽和モノカルボン酸アミドおよび脂肪族不飽和モノカルボン酸アミド、グリセリン、ソルビトール等の多価アルコールと、脂肪族飽和モノカルボン酸または脂肪族不飽和モノカルボン酸との部分エステル等が挙げられる。
 酸化防止剤としては、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)等のフェノール系、フェニル-α-ナフチルアミン、N,N’-ジ-フェニル-p-フェニレンジアミン等のアミン系が挙げられる。
 酸捕捉剤としては、フェニルグリシジルエーテル、アルキルグリシジルエステル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシド、エポキシ化大豆油等のエポキシ化合物が挙げられる。
 金属不活性化剤としては、1,2,3-ベンゾトリアゾール、N,N-ビス(2-エチルヘキシル)-4-メチル-1H-ベンゾトリアゾール-1-メタンアミン等のベンゾトリアゾール系化合物が挙げられる。
 消泡剤としては、シリコーン、ポリエーテル、鉱物油等が挙げられる。
 (部品)
 本実施の形態において、冷媒回路は、冷媒に触れる部品を有する。該部品としては、例えば、室外熱交換器3、室内熱交換器5、揺動スクロール、配管等のAlを含む金属で構成される部品(第1部品群)や、流路切替弁2、膨張弁4、ロウ材、ストレーナー、バランスウェイト等のZnを含む金属または合金(真鍮、黄銅等)で構成される部品(第2部品群)等が挙げられる。上記配管は、冷媒回路を形成する管状部材であり、上記ロウ材は、部品同士の接合に用いられる部材である。上記の部品は一例であり、これらに限定されるものではない。なお、AlおよびZnの双方を含む金属で構成される部品は、第1部品群および第2部品群のいずれにも属する。
 (第1部品群に含まれるAlの総量と第2部品群に含まれるZnの総量との比)
 第1部品群に含まれるAlの総量に対する、第2部品群に含まれるZnの総量の比(Zn/Al比)(以下、単に「Zn/Al比」とも称する。)は、2.5以下である。Zn/Al比が2.5以下である場合、第1部品群の腐食の発生を抑制することができる。Zn/Al比は2.0以下であることが好ましい。
 ここで、「第1部品群に含まれるAlの総量」とは、各第1部品のAlの含有率と各第1部品の表面積との積により各第1部品のAlの量を算出し、それらを全て足した値のことをいう。同様に、「第2部品群に含まれるZnの総量」とは、各第2部品のZnの含有率と各第2部品の表面積との積により各第2部品のZnの量を算出し、それらを全て足した値のことをいう。
 (用途)
 本実施の形態において、冷凍サイクル装置としては、特に限定されないが、業務用または家庭用の空気調和機(エアコン)、カーエアコン、自動販売機用ヒートポンプ、冷蔵庫、海上輸送等のコンテナ内や冷蔵庫を冷却する冷凍機、チラーユニット、ターボ冷凍機等が挙げられる。
 また、本実施の形態の冷凍サイクル装置は、床暖房装置、融雪装置等の暖房サイクル専用機にも使用できる。特に、機器の小型化が要求される業務用または家庭用の空気調和機(エアコン)として有用である。
 なお、本実施の形態の冷凍サイクル装置では、室外機と室内機とが一対一で接続される場合で説明を記載しているが、1つの室外機に対して室内機が複数台であってもよく、複数台の室外機に対して室内機が複数台であってもよい。
 また、本実施の形態の冷凍サイクル装置は、冷房と暖房を切替え可能なルームエアコンやパッケージエアコン等であってもよく、冷凍機等の低温機器向けの冷凍サイクル装置であってもよい。
 本実施の形態の冷凍サイクル装置は、空気調和用の冷凍サイクル装置(空気調和機)であることが好ましい。
 空気調和用の冷凍サイクル装置(空気調和機)としては、例えば、ルームエアコン、パッケージエアコン、ビル用マルチエアコン、ウィンドウ型エアコンおよびモバイルエアコン等が挙げられる。
 実施の形態2.
 本実施の形態に係る冷凍サイクル装置は、冷凍機油に添加する安定剤として、下記化学式1に示す第一化合物および下記化学式2に示す第二化合物のうち少なくとも一種を含有する点で実施の形態1とは異なる。それ以外の点は、実施の形態1と同様であるため、重複する説明は省略する。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 トリフルオロヨードメタンの分解反応および分解により生じるラジカルが化合物に捕捉される反応は、下記化学式3の通りである。
Figure JPOXMLDOC01-appb-C000005
 上記化学式3より、トリフルオロヨードメタンの分解を抑制する効果を有する化合物の基本骨格は、化学式1で表される第一化合物および化学式2で表される第二化合物のいずれかである。
 上記化学式1において、R1~R5は、それぞれ独立に、炭素原子、水素原子および酸素原子の少なくとも1種で構成される置換基であり、好ましくは水素原子、メトキシ基、エトキシ基およびアルキル基の少なくとも1種である。R1~R5は、同一でもよく、異なっていてもよい。また、R6~R8は、少なくともいずれか一つの置換基は水素原子である。その他は、それぞれ独立に、炭素原子、水素原子および酸素原子の少なくとも1種で構成される置換基であり、好ましくは水素原子、メトキシ基、エトキシ基およびアルキル基の少なくとも1種である。R6~R8は、同一でもよく、異なっていてもよい。
 また、化学式1中、R3は、-O-R9であり、R9は、炭素数が1~10の炭化水素基であり、R7は、-COO-R10であり、R10は、炭素数が1~10の炭化水素基であり、R1~R2、R4~R6およびR8は、それぞれ独立に、水素原子または炭素数が1~10の炭化水素基であってもよい。なお、上記R1~R2、R4~R6およびR8~R10の炭素数の範囲は例示であって、本開示は、上述の範囲に限定されない。
 第一化合物としては、例えば、メトキシケイヒ酸エチルヘキシル、アネトールおよび酢酸シンナミル等が挙げられ、メトキシケイヒ酸エチルヘキシルおよびアネトールが好ましい。
 冷凍機油中の第一化合物の含有率は、冷凍機油の総量に対して、5質量%以上20質量%以下であることが好ましく、10質量%以上15質量%以下であることがより好ましい。冷凍機油中の第一化合物の含有率が、冷凍機油の総量に対して5質量%未満の場合、第一化合物によるトリフルオロヨードメタンの分解を抑制する効果が不足し、後述するZn/Al比が4.5以下の範囲であっても、第1部品群に腐食が生じるおそれがある。冷凍機油中の第一化合物の含有率が、冷凍機油の総量に対して20質量%を超える場合、冷凍機油から第一化合物が意図せず析出するおそれがある。
 上記化学式2において、R2~R5は、それぞれ独立に、炭素原子、水素原子および酸素原子の少なくとも1種で構成される置換基であり、好ましくは水素原子、メトキシ基、エトキシ基およびアルキル基の少なくとも1種である。R2~R5は、同一でもよく、異なっていてもよい。また、R6~R7のうち少なくともいずれか一つの置換基は水素原子である。その他は、それぞれ独立に、炭素原子、水素原子および酸素原子の少なくとも1種で構成される置換基であり、好ましくは水素原子、メトキシ基、エトキシ基およびアルキル基の少なくとも1種である。R6~R7は、同一でもよく、異なっていてもよい。
 さらに、R1は、R1が結合するベンゼン環の隣接する2つの炭素原子とともに環構造を形成する。環構造は5員環から8員環の炭素環またはヘテロ環を形成し、好ましくは6員環の複素環である。また、化学式2中、R2~R6は、それぞれ独立に、水素原子または炭素数が1~10の炭化水素基であってもよい。なお、上記R2~R6の炭素数の範囲は例示であって、本開示は、上述の範囲に限定されない。
 第二化合物としては、例えば、クマリン、クマロン、アルキルナフタレン(AN)(下記化学式4参照)等が挙げられ、クマリン、ANが好ましい。
Figure JPOXMLDOC01-appb-C000006
 上記化学式4中、RからRは、それぞれ独立に、アルキル基または水素原子である。RからRは、同一でもよく、異なっていてもよい。
 冷凍機油中の第二化合物の含有率は、冷凍機油の総量に対して、1質量%以上15質量%以下であることが好ましく、2質量%以上10質量%以下であることがより好ましい。冷凍機油中の第二化合物の含有率が、冷凍機油の総量に対して1質量%未満の場合、第二化合物によるトリフルオロヨードメタンの分解を抑制する効果が不足し、後述するZn/Al比が4.5以下の範囲であっても、第1部品群に腐食が生じるおそれがある。冷凍機油中の第二化合物の含有率が、冷凍機油の総量に対して15質量%を超える場合、冷凍機油から第二化合物が意図せず析出するおそれがある。
 本実施の形態において、Zn/Al比は、4.5以下である。化学式3のラジカル捕捉反応を可能とする基本骨格を持つ第一化合物および第二化合物は、トリフルオロヨードメタンが分解した際に発生するラジカルを捕捉する効果が高く、未分解のトリフルオロヨードメタンが上記ラジカルにより連鎖的に分解されることを抑制する。そのため、第一化合物および第二化合物のうち少なくとも一種を含有することで、トリフルオロヨードメタンの分解をより抑制できるため、実施の形態1よりもZn/Al比が大きくなった場合においても、第1部品群の腐食の発生を抑制することができる。Zn/Al比は、4.0以下であることが好ましい。
 以下、実施例を挙げて本開示を詳細に説明するが、本開示はこれらに限定されるものではない。
 <評価試験1>
 冷媒、冷凍機油、Alを含む金属触媒およびZnを含む金属触媒(真鍮)を混合した試料(試料1~5)について、JIS K2211:2009(附属書B シールドチューブテスト)に準拠した実験方法で、トリフルオロヨードメタンの化学的安定性を確認した。HFOとしてはR-1234yfを、真鍮AとしてはC2801(Zn比率:40%)を、真鍮BとしてはC2700(Zn比率:35%)を、それぞれ用いた。下記表1に試験条件、下記表2に真鍮の仕様、および、評価結果として冷凍機油中のヨウ素イオン(トリフルオロヨードメタンの分解生成物)の濃度をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 上記表2に示す試料1~3の評価結果から、冷媒が接触する、Znを含む金属触媒の表面積が大きくなるほど、トリフルオロヨードメタンの分解が促進されることが確認された。また、試料2および3と、試料4および5との比較から、冷媒が接触する、Znを含む金属触媒中のZnの比率が大きいほど、トリフルオロヨードメタンの分解が促進されることが確認された。
 <評価試験2>
 冷媒、冷凍機油、Alを含む金属触媒およびZnを含む金属触媒(真鍮)を混合した試料(試料6~10)について、JIS K2211:2009(附属書B シールドチューブテスト)に準拠した実験方法で、Alを含む金属触媒の腐食の発生の有無を確認した。HFOとしてはR-1234yfを、真鍮としてはC2801(Zn比率:40%)を、AlとしてはA1070(Al比率:99.7%)を、それぞれ用いた。下記表3に試験条件、下記表4に真鍮の本数、および、評価結果をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 上記表4の評価結果から、Zn/Al比が2.0以下の場合、Alを含む金属触媒の腐食の発生が確認されなかった。一方、Zn/Al比が2.8の場合、Alを含む金属触媒の腐食の発生が確認された。これらの結果から、部品中のZn/Al比を調整することによって、Alを含む金属触媒の腐食の発生を抑制することができる。また、Zn/Al比は、2.0以下であることが好ましいと考えられる。
 <評価試験3>
 冷媒、冷凍機油、冷凍機油の安定剤、Alを含む金属触媒およびZnを含む金属触媒(真鍮)を混合した試料(試料11~14)について、JIS K2211:2009(附属書B シールドチューブテスト)に準拠した実験方法で、Alを含む金属触媒の腐食の発生の有無を確認した。HFOとしてはR-1234yfを、真鍮としてはC2801(Zn比率:40%)を、AlとしてはA1070(Al比率:99.7%)を、安定剤としてはAN(King Industries Inc.製、KR―007A)を、それぞれ用いた。下記表5に試験条件、下記表6に真鍮の本数、および、評価結果をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 上記表6の評価結果から、冷凍機油の安定剤を配合することで、Znの総量が増加しても、Alを含む金属触媒の腐食の発生を抑制することが確認された。また、Zn/Al比は、4.0以下であることが好ましいと考えられる。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 圧縮機、2 流路切替弁、3 室外熱交換器、4 膨張弁、5 室内熱交換器。

Claims (8)

  1.  圧縮機および熱交換器を含む冷媒回路を備え、
     前記冷媒回路内に冷媒が封入されており、
     前記冷媒は、トリフルオロヨードメタンおよび不飽和フッ化炭化水素化合物を含み、
     前記圧縮機内に冷凍機油が充填されており、
     前記冷凍機油の少なくとも一部は、運転時に前記冷媒と共に前記冷媒回路内を循環し、
     前記冷凍機油は、ポリオールエステル油を含み、
     前記冷媒回路は、前記冷媒に触れる部品を有し、
     前記部品は、アルミニウムを含む金属で構成される第1部品群および亜鉛を含む金属で構成される第2部品群を有し、
     前記第1部品群に含まれるアルミニウムの総量に対する、前記第2部品群に含まれる亜鉛の総量の比は、2.5以下である、冷凍サイクル装置。
  2.  前記第1部品群は、室外熱交換器、室内熱交換器、揺動スクロールおよび配管からなる群より選択される少なくとも一種であり、
     前記第2部品群は、流路切替弁、膨張弁、ロウ材、ストレーナー、バランスウェイトからなる群より選択される少なくとも一種である、請求項1に記載の冷凍サイクル装置。
  3.  前記冷凍機油は、下記化学式1で表される第一化合物および下記化学式2で表される第二化合物のうち少なくとも一種を含有し、
     前記第1部品群に含まれるアルミニウムの総量に対する、前記第2部品群に含まれる亜鉛の総量の比は、4.5以下である、請求項1または2に記載の冷凍サイクル装置。
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

     前記化学式1中、
     R1~R5は、それぞれ独立に、炭素原子、水素原子および酸素原子の少なくとも1種で構成される置換基であり、
     R6~R8は、少なくとも一つが水素原子であり、その他はそれぞれ独立に、炭素原子、水素原子および酸素原子の少なくとも1種で構成される置換基であり、
     前記化学式2中、
     R1は、隣接する炭素原子と環構造を形成する置換基であり、
     前記環構造は5員環から8員環の炭素環またはヘテロ環であり、
     R2~R5は、それぞれ独立に、炭素原子、水素原子および酸素原子の少なくとも1種で構成される置換基であり、
     R6~R7は、少なくとも一つが水素原子であり、その他はそれぞれ独立に、炭素原子、水素原子および酸素原子の少なくとも1種で構成される置換基である。
  4.  前記化学式1中、
     前記R7は、-COO-R10であり、
     前記R10は、炭素数が1~10の炭化水素基である、請求項3に記載の冷凍サイクル装置。
  5.  前記化学式1中、
     前記R3は、-O-R9であり、
     前記R9は、炭素数が1~10の炭化水素基である、請求項3または4に記載の冷凍サイクル装置。
  6.  前記化学式1中、
     前記R1~R2、R4~R6およびR8は、それぞれ独立に、水素原子または炭素数が1~10の炭化水素基である、請求項3から5のいずれか1項に記載の冷凍サイクル装置。
  7.  前記化学式2中、
     前記R2~R6は、それぞれ独立に、水素原子または炭素数が1~10の炭化水素基である、請求項3に記載の冷凍サイクル装置。
  8.  前記第二化合物は、クマリンおよびアルキルナフタレンのうち少なくとも一種である、請求項3に記載の冷凍サイクル装置。
PCT/JP2022/026585 2022-07-04 2022-07-04 冷凍サイクル装置 WO2024009348A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026585 WO2024009348A1 (ja) 2022-07-04 2022-07-04 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026585 WO2024009348A1 (ja) 2022-07-04 2022-07-04 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2024009348A1 true WO2024009348A1 (ja) 2024-01-11

Family

ID=89452910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026585 WO2024009348A1 (ja) 2022-07-04 2022-07-04 冷凍サイクル装置

Country Status (1)

Country Link
WO (1) WO2024009348A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115774A (ja) * 2017-01-16 2018-07-26 日立ジョンソンコントロールズ空調株式会社 熱交換器の接続配管構造、及び、空気調和機
JP2021025670A (ja) * 2019-07-31 2021-02-22 ダイキン工業株式会社 冷媒サイクル装置
WO2022018821A1 (ja) * 2020-07-21 2022-01-27 三菱電機株式会社 冷凍サイクル装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115774A (ja) * 2017-01-16 2018-07-26 日立ジョンソンコントロールズ空調株式会社 熱交換器の接続配管構造、及び、空気調和機
JP2021025670A (ja) * 2019-07-31 2021-02-22 ダイキン工業株式会社 冷媒サイクル装置
WO2022018821A1 (ja) * 2020-07-21 2022-01-27 三菱電機株式会社 冷凍サイクル装置

Similar Documents

Publication Publication Date Title
KR102137609B1 (ko) 냉동 장치
US8992793B2 (en) Refrigeration apparatus
JP6545338B1 (ja) 冷凍サイクル装置
CN106010454B (zh) 基于1,3,3,3-四氟丙烯的组合物
JP2020034260A (ja) 冷凍サイクル装置
JP2011052032A (ja) 2,3,3,3−テトラフルオロプロペンを用いた冷凍空調装置
JP6924888B1 (ja) 冷凍サイクル装置
US20160032209A1 (en) Lubricant defoaming additives and compositions
JP2001294886A (ja) 炭酸ガス冷媒を用いる冷凍装置用潤滑油組成物、作動流体、冷凍サイクルまたはヒートポンプサイクル及び冷凍装置
WO2024009348A1 (ja) 冷凍サイクル装置
EP2433061A2 (en) Refrigeration apparatus
JP2015014395A (ja) 空気調和機
KR102103225B1 (ko) 냉동 장치
JP6840303B1 (ja) 冷凍サイクル装置
JP5577831B2 (ja) 冷凍機用潤滑油組成物
JPH08120288A (ja) 冷凍機用作動媒体及びそれを用いた冷凍装置
KR20230097172A (ko) 작동 유체, 냉동기 및 냉동기유
WO2022102026A1 (ja) 冷凍サイクル装置
US20220243108A1 (en) Composition containing fluorohydrocarbons and preparation method thereof
EP2531785B1 (en) Refrigeration apparatus
JP2507160B2 (ja) 冷凍装置
JP2021191808A (ja) 電動圧縮機及びこれを用いた冷凍空調装置
KR20060094081A (ko) 냉매 조성물
WO2022271925A1 (en) Stabilizer compositions and stabilized heat transfer compositions, methods and systems
JP2005283106A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950143

Country of ref document: EP

Kind code of ref document: A1