WO2024007930A1 - 一种通信方法、设备和系统 - Google Patents

一种通信方法、设备和系统 Download PDF

Info

Publication number
WO2024007930A1
WO2024007930A1 PCT/CN2023/103600 CN2023103600W WO2024007930A1 WO 2024007930 A1 WO2024007930 A1 WO 2024007930A1 CN 2023103600 W CN2023103600 W CN 2023103600W WO 2024007930 A1 WO2024007930 A1 WO 2024007930A1
Authority
WO
WIPO (PCT)
Prior art keywords
rule
submission
false
interface identifier
message
Prior art date
Application number
PCT/CN2023/103600
Other languages
English (en)
French (fr)
Inventor
邓瑞楠
阮卫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024007930A1 publication Critical patent/WO2024007930A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of wireless communications, and more specifically, to a communication method, device and system.
  • the current wireless networking solution of the WiFi system is a repeater mode and adopts a dual-entity solution of virtual access point (soft access point, SoftAP).
  • SoftAP virtual access point
  • a relay has two physical entities, namely the terminal (station, STA) role and the SoftAP role.
  • the STA's media access control (MAC) address is different from the SoftAP's MAC address.
  • Such a networking structure requires the air interface to be occupied twice, reducing the capacity of the entire network.
  • the relay requires opening up two physical entities, which is not very friendly to the chip area and power consumption.
  • This application provides a communication method, device and system.
  • the communication method, equipment and system of the present application can significantly improve the network capacity and transmission efficiency of WiFi networking, while reducing the chip area and power consumption during small networking, and simplifying the network structure.
  • embodiments of the present application provide a communication method, which can be executed by a sending device or by a component of the sending device (such as a chip or chip system, etc.), which is not limited by this application.
  • the method includes: a sending device and N receiving devices, where the sending device and the N receiving devices have communication connections, and the N receiving devices do not have communication connections.
  • the sending device sends M first identifiers to the M receiving devices among the N receiving devices.
  • the M first identifiers correspond to the M receiving devices one-to-one.
  • the M first identifiers are To identify the M receiving devices, where the N receiving devices include the M receiving devices, N is an integer greater than or equal to 1, and M is a positive integer less than or equal to N.
  • the sending device transmits data through a data frame to the M receiving devices corresponding to the M first identifiers.
  • the communication connection between the sending device and the N receiving devices may be that the sending device and the N receiving devices may perform data transmission through wireless or other communication methods, that is, the sending device and the N receiving devices may transmit data via wireless or other communication methods.
  • the lack of communication connection between the N receiving devices may mean that the N receiving devices cannot perform data transmission through wireless or other communication methods, that is, there is no communication link between the N receiving devices. This application does not limit the communication method between the sending device and the N receiving devices.
  • the communication method provided by the embodiment of the present application uses the first identifier sent by the sending device for the receiving device, so that when the sending device communicates with the receiving device, they can perform two-way communication through data frames based on the first identifier. Network capacity can be increased through two-way communication.
  • the first identifier is a connection identification AID code.
  • the device that receives the AID code Based on the first identification of the AID code, the device that receives the AID code avoids physical layer data analysis, thereby achieving the purpose of improving data transmission efficiency.
  • the data frame is a frequency division multiplexing data frame.
  • the frame format of the data frame includes an orthogonal frequency division multiple access OFDMA frame format and a frame format combining OFDMA with multi-user multiple input multiple output MUMIMO.
  • the method further includes: the sending device assigns the first receiving device corresponding to the receiving device to each of the M receiving devices. logo.
  • the sending device is a routing device or an access point AP device.
  • the router or AP allocates the first identifier to the next-layer receiving device connected to it, which can achieve the effect of layer-by-layer distribution, thereby achieving the purpose of improving transmission efficiency. Furthermore, through layer-by-layer distribution, the first identifier can be The distribution of identification is distributed to each layer to improve the reliability of system transmission.
  • the method further includes: the sending device sending a second identifier to the M receiving devices, where the second identifier is a corresponding number of the sending device. logo.
  • the receiving device can send uplink data to the sending device according to the second identification, thereby improving the transmission performance of the system.
  • embodiments of the present application provide a communication method, which can be executed by a receiving device or by a component of the receiving device (such as a chip or chip system, etc.), which is not limited by this application.
  • the method includes: a receiving device receives a first identifier from a sending device, the first identifier corresponds to the receiving device, and the first identifier is used to identify the receiving device.
  • the receiving device transmits data with the sending device through data frames.
  • the first identifier is a connection identification AID code.
  • the data frame is a frequency division multiplexing data frame.
  • the frame format of the data frame includes an Orthogonal Frequency Division Multiple Access OFDMA frame format and a frame format combining OFDMA with multi-user multiple input multiple output MUMIMO.
  • the first identification is assigned by the sending device to the receiving device.
  • the receiving device is an access point AP device or a terminal STA device.
  • the method further includes: the receiving device receiving a second identification from the sending device, where the second identification is an identification corresponding to the sending device. .
  • inventions of the present application provide a communication system.
  • the communication system includes: multiple receiving devices, with communication connections between the multiple receiving devices and the sending device, without communication connections between the multiple receiving devices, and the multiple receiving devices are used to perform the above-mentioned second step. aspect and the methods provided by any implementation of the second aspect.
  • embodiments of the present application provide a communication device.
  • the device is used to perform the method provided in the first aspect.
  • the communication device may include units and/or modules for executing the method provided by the first aspect or any one of the above implementations of the first aspect, such as a processing unit and an acquisition unit.
  • the communication device is a sending device.
  • the acquisition unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip, chip system or circuit in the sending device.
  • the acquisition unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit, etc.;
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • embodiments of the present application provide a communication device, which is used to execute the method provided in the second aspect.
  • the communication device may include units and/or modules for executing the method provided by the second aspect or any one of the above implementations of the second aspect, such as a processing unit and an acquisition unit.
  • the communication device is a receiving device.
  • the acquisition unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip, chip system or circuit in the receiving device.
  • the acquisition unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit; processing
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • embodiments of the present application provide a processor for executing the methods provided in the above aspects.
  • processor output, reception, input and other operations can be understood as processor output, reception, input and other operations.
  • transmitting and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores program code for device execution, and the program code includes a method for executing the above-mentioned first aspect or second aspect and any implementation manner of the first aspect or second aspect.
  • embodiments of the present application provide a computer program product including instructions.
  • the computer program product When the computer program product is run on the computer, the computer is caused to execute the method provided by the first aspect or the second aspect and any implementation of the first aspect or the second aspect.
  • inventions of the present application provide a chip.
  • the chip includes a processor and a communication interface.
  • the processor reads instructions stored in the memory through the communication interface, and executes the above first or second aspect and the first or third aspect. Methods provided by any of the two implementation methods.
  • the chip also includes a memory, in which computer programs or instructions are stored.
  • the processor is used to execute the computer programs or instructions stored in the memory.
  • the processor is used to execute The method provided by the first aspect or the second aspect and any implementation of the first aspect or the second aspect.
  • embodiments of the present application provide a communication system, including the communication device described in the fourth aspect and the data transmission device described in the fifth aspect.
  • embodiments of the present application provide a communication method.
  • the method may be performed by a first device, where the first device is a sending device.
  • the method may also be executed by a chip or circuit configured in the first device, which is not limited in this application.
  • the method includes: a first device sending at least one first identification to at least one second device, each of the at least one first identification being used to identify the first device and the at least one second device. Connection, the at least one first identifier corresponds to the at least one second device one-to-one, the first device is connected to the at least one second device, and there is no connection relationship between the at least one second device.
  • the first device sends data to the second device corresponding to the first identification according to the first identification.
  • the first identifier is a connection identification AID code.
  • the method further includes: the first device assigns a corresponding value to each second device in the at least one second device. The first identification of the device.
  • the first device is a routing device or an access point AP device.
  • the method further includes: the first device sending a second identification to the at least one second device, the second identification being the The unique identifier when the first device is connected to the at least one second device.
  • an embodiment of the present application provides a communication device.
  • the device includes: a transceiver module.
  • the transceiver module is used to send at least one first identification to at least one second device, and each first identification in the at least one first identification is used to identify that the device is connected to the at least one second device.
  • the at least one first identifier has a one-to-one correspondence with the at least one second device, the device is connected to the at least one second device, and there is no connection relationship between the at least one second device.
  • the transceiver module is further configured to send data to the second device corresponding to the first identifier according to the first identifier.
  • the first identifier is a connection identification AID code.
  • the device further includes: a processing module.
  • the processing module is configured to assign to each second device in the at least one second device the first identification corresponding to the second device.
  • the device is a routing device or an access point AP device.
  • the transceiver module is further configured to send a second identification to the at least one second device, where the second identification is between the device and the The unique identifier of at least one second device when connected.
  • Figure 1 is a schematic diagram of a network structure provided by an embodiment of the present application.
  • Figure 2 is a schematic flow interaction diagram of the communication method 200 provided by the embodiment of the present application.
  • Figure 3 is a schematic diagram of the first network association provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of a second network association provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the first data communication structure provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of the second data communication structure provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of the third data communication structure provided by the embodiment of the present application.
  • FIG. 8 is a schematic block diagram of the communication device 1000 provided by this application.
  • Figure 9 is a schematic structural diagram of the communication device 10 provided by this application.
  • WLAN wireless local area network
  • IEEE Institute of Electrical and Electronics Engineers 802.11 series.
  • WLAN can include multiple basic service sets (BSS), network nodes STA and AP in the BSS.
  • BSS basic service sets
  • Each BSS may contain one AP and multiple STAs associated with the AP.
  • the AP in the embodiment of this application may also be called a wireless access point or hotspot, etc.
  • AP is the access point for mobile users to enter the wired network. It is mainly deployed inside homes, buildings and campuses. The typical coverage radius is tens to hundreds of meters. Of course, it can also be deployed outdoors.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP can be a terminal device or network device with a wireless fidelity (WiFi) chip.
  • the AP can be a device that supports multiple WLAN standards such as 802.11a/b/g, 802.11n, 802.11ac, 802.11ax, and the 802.11be or subsequent versions currently under discussion.
  • the access point in this application can be a highly efficient (HE) STA or an extremely high throughput (EHT) STA, or it can be a STA that is suitable for a certain future generation of Wi-Fi standards.
  • HE highly efficient
  • EHT extremely high throughput
  • access points and sites can be devices used in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT), smart cameras, smart remote controls, smart water meters and electricity meters in smart homes, and sensors in smart cities, etc.
  • IoT Internet of Things
  • smart cameras smart remote controls
  • smart water meters and electricity meters in smart homes and sensors in smart cities, etc.
  • the STA in the embodiment of this application may be a wireless communication chip, a wireless sensor or a wireless communication terminal.
  • mobile phones supporting WiFi communication function for example: mobile phones supporting WiFi communication function, tablet computers supporting WiFi communication function, set-top boxes supporting WiFi communication function, smart TVs supporting WiFi communication function, smart wearable devices supporting WiFi communication function, in-vehicle communication supporting WiFi communication function devices and computers that support WiFi communication functions.
  • the STA can support the 802.11ax standard. Further optionally, the STA can support multiple WLAN standards such as 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a or subsequent versions.
  • the STA or AP includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • This application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide according to the embodiment of the present application. It suffices to communicate by a method.
  • the execution subject of the method provided by the embodiment of the present application can be an STA or an AP, or a functional module in the STA or AP that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as methods, apparatus, or articles of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, tapes, etc.), optical disks (e.g., compact discs (CD), digital versatile discs (DVD)) etc.), smart cards and flash memory devices (e.g. erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the embodiments of this application can also be applied to the Internet of things (IoT) network or the Internet of Vehicles (Vehicle to X, V2X) Waiting for wireless LAN system.
  • IoT Internet of things
  • Vehicle to X, V2X Internet of Vehicles
  • the embodiments of the present application can also be applied to other possible communication systems, such as long term evolution (LTE) systems, LTE frequency division duplex (FDD) systems, LTE time division duplex (FDD) systems, duplex (TDD), universal mobile telecommunication system (UMTS), global interoperability for microwave access (WiMAX) communication system, fifth generation (5th generation, 5G) communication system, and future Sixth generation (6th generation, 6G) communication system, etc.
  • LTE long term evolution
  • FDD frequency division duplex
  • FDD time division duplex
  • TDD duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interoperability for microwave access
  • 5G fifth generation
  • the current wireless networking solution of the WiFi system is the relay mode, and uses the SoftAP dual-entity solution.
  • a relay has two physical entities, namely the STA role and the SoftAP role.
  • the MAC address of the STA is different from the MAC address of the SoftAP.
  • Such a networking structure requires the air interface to be occupied twice, reducing the capacity of the entire network.
  • the relay requires opening up two physical entities, which is not very friendly to the chip area and power consumption.
  • This application proposes a brand new single-entity networking solution to address the shortcomings of the existing dual-entity networking solution.
  • Each entity of this solution only needs one MAC address, and the role of the entity can be switched freely.
  • Association identifier (AID) codes are assigned to child nodes through the parent node to ensure that AID does not conflict.
  • a single-entity AP can receive orthogonal frequency division multiple access (OFDMA) frames or a hybrid of OFDMA and multi-user multiple-input multiple-output (MUMIMO) frames. , thereby improving the network throughput and forwarding efficiency, thereby increasing system capacity.
  • OFDMA orthogonal frequency division multiple access
  • MUMIMO multi-user multiple-input multiple-output
  • FIG 1 is a schematic diagram of a network structure provided by an embodiment of the present application.
  • the router may include a router (router), one or more SoftAPs associated with the router (which may also be called APs, and the AP will be used as an example for explanation below), and One or more STAs and/or one or more APs associated with the AP.
  • the router located at layer 1 is associated with AP1 and AP4 at layer 2.
  • AP1 it is associated with STA1 and STA2
  • AP3 is associated with STA3 and STA4.
  • the AP mentioned in Figure 1 can play the role of either AP or STA.
  • APs at the same level cannot be connected to each other for networking. Only APs at different levels can be connected to each other.
  • an AP can only be connected to one upper-level AP. That is, AP1 and AP4 located at layer 2 are not connected to each other, and AP2 and AP3 located at layer 3 are not connected to each other.
  • AP2 and AP1 are already connected to each other, AP2 is not connected to AP4.
  • AP3 is not connected to AP4.
  • STA it can only connect to one AP and cannot connect to multiple APs at the same time.
  • STA1 After STA1 connects to AP1, it cannot connect to other APs. Similarly, STA2 can only connect to AP1, STA5 and STA6 can only connect to AP2, and STA3 and STA4 can only connect to AP3. Then, through this restriction, the entire wireless mesh (Mesh) network forms a tree-structured network.
  • the relay has only one entity, which can play the role of AP or STA, and can realize flexible switching between different roles.
  • the router belongs to level 1
  • AP1 belongs to level 2
  • AP2 and AP3 belong to level 3.
  • Figure 1 is only exemplary and should not limit the network architecture of the wireless LAN to which this application is applicable.
  • the network architecture can also include more routers, and each router is associated with more SoftAPs.
  • each router SoftAP is associated with more STAs, or some network architectures may not include STAs, etc. This is not limited in the embodiments of this application.
  • words such as “exemplary” or “for example” are used to express examples, illustrations or illustrations, and embodiments or designs described as “exemplary” or “for example” should not are to be construed as preferred or advantageous over other embodiments or designs.
  • the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • the device may also be called a node or node device, and the sending device may be called a sending node, sending end, source node or parent node.
  • the same receiving device may be called a receiving device, receiving end, sink node or child node.
  • Orthogonal Frequency Division Multiple Access It is a multiple access technology. Users share frequency band resources and access the system through OFDMA.
  • MUMIMO Multi-User Multiple Input Multiple Output: refers to a wireless communication system in which one base station serves multiple mobile terminals at the same time, and the base stations make full use of the airspace resources of the antenna to communicate with multiple users at the same time.
  • MAC address An address used to confirm the location of a network device.
  • OSI open system interconnection
  • IP Internet Protocol
  • the communication method provided by this application is first described in detail with reference to the accompanying drawings.
  • the data transmission between the sending device and the receiving device may include the sending device sending downlink data to the receiving device (downlink communication), and the receiving device sending uplink data to the sending device (uplink communication). That is, the communication method provided by this application is suitable for uplink and Downstream data transmission.
  • the communication method provided by the embodiment of the present application will be described in detail by taking the interaction process between a sending device and N receiving devices as an example.
  • Figure 2 is a schematic flow interaction diagram of a communication method 200 provided by an embodiment of the present application. This method can be applied in the scenario described in Figure 1.
  • the sending device in Figure 2 can be a router, and the corresponding receiving device can be an AP.
  • the sending device can also be an AP, and the corresponding receiving device can be an AP or STA.
  • the method includes the following multiple steps.
  • the sending device sends M first identifiers to M receiving devices among the N receiving devices.
  • the sending device is connected to N receiving devices, and there is no connection relationship between the N receiving devices.
  • the sending device sends first identifiers corresponding to the M receiving devices to the M receiving devices.
  • M is an integer less than or equal to N.
  • the first identification is a unique identification during data transmission between the sending device and the receiving device.
  • the first identifier is an association identifier (AID) code.
  • AID association identifier
  • the sending device transmits data with M receiving devices through data frames.
  • the sending device when the sending device performs downlink data transmission with M receiving devices, the sending device sends downlink data to the M receiving devices through data frames.
  • the sending device receives the uplink data sent from the M receiving devices through data frames.
  • the data frame is a frequency division multiplexing data frame.
  • the frame format of the data frame in the embodiment of the present application includes but is not limited to Orthogonal Frequency Division Multiple Access OFDMA frame format and a frame format combining OFDMA with multi-user multiple input multiple output MUMIMO.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • MUMIMO multi-user multiple input multiple output MUMIMO
  • the sending device by assigning the first identifier to the receiving device by the sending device, it can be ensured that the first identifiers of all devices in the system do not conflict.
  • the Mesh network of this application it is a single entity node, and each device only corresponds to one identifier for data transmission. There is no need for multiple sets of MAC addresses and transmitters and receivers, thereby achieving the purpose of improving forwarding efficiency.
  • two-way data transmission from the sending device to the receiving device can be realized based on the data frame, thus improving the network throughput and system capacity.
  • the method also includes an access process and an identity authentication process for M receiving devices. Specifically, it includes the following steps.
  • the sending device sends the second identifier to M receiving devices.
  • the second identification is an identification corresponding to the sending device, that is, when M receiving devices send uplink data to the receiving device, the sending device is determined through the second identification. After the M receiving devices receive the second identifier corresponding to the sending device, the connected sending device can be determined through the second identifier.
  • the second identifier is sent by the sending device sending a beacon broadcast management frame, that is, the beacon broadcast management frame sent by the sending device includes the second identifier.
  • M receiving devices send probe request frames to the sending device for sending access requests.
  • S205 The sending device sends access responses to M receiving devices.
  • the sending device sends access responses to M receiving devices and responds to the access requests of the M receiving devices.
  • S206 The sending device sends authentication requests to M receiving devices.
  • the sending device requests M receiving devices for identity authentication (Authentication).
  • identity authentication Authentication
  • M receiving devices respond to the identity authentication request of the sending device.
  • S208 M receiving devices send first identity allocation requests to the sending device.
  • the M receiving devices when M receiving devices complete access through S203-S207, the M receiving devices respectively send first identity allocation requests to the sending device, and the M first identity allocation requests are used to respectively request the sending device corresponding to the receiving device. first identification.
  • S209 The sending device allocates M first identifiers to the M receiving devices.
  • the sending device may randomly generate M different first identities, such as AID codes, and send the M AID codes to each receiving device.
  • the sending device sends the correspondence between the M receiving devices and the M identifiers to each of the M receiving devices.
  • the corresponding relationship may be in the form of a table, for example, which is not limited in this application.
  • the sending device sends M identifiers to each receiving device, and sends the corresponding relationship between the receiving device and its corresponding first identifier.
  • S210 M receiving devices report M MAC addresses to the sending device.
  • FIG 3 is a schematic diagram of the first network association provided by the embodiment of the present application.
  • the router and AP1 transmit data
  • the router needs to assign an AID to AP1.
  • the AID is used for user matching. That is to say, in the network association diagram shown in Figure 3, the sending device is the router and the receiving device is AP1.
  • FIG. 4 is a schematic diagram of a second network association provided by an embodiment of the present application.
  • AP1 is associated with AP2 and AP3, as well as with STA1 and STA2.
  • AP1 may send its own AID to at least one of AP2, AP3, Sta1 and Sta2 through a beacon management frame. And allocate AID to at least one of AP2, AP3, Sta1 and Sta2.
  • AP2, AP3, Sta1 and Sta2 obtains the AID, it can communicate with AP1 through the obtained corresponding AID code.
  • the AID codes of AP2, AP3, Sta1 and Sta2 are allocated through AP1, so there will be no conflict between the AIDs of Sta1, Sta2, AP2 and AP3.
  • Figure 5 is a schematic diagram of the first data communication structure provided by the embodiment of the present application.
  • the AP in the Mesh network can either send Orthogonal Frequency Division Multiple Access frames or receive OFDMA frames.
  • the router when the router needs to send data to AP1 and AP4, it can send data to AP1 and AP4 simultaneously through OFDMA frames.
  • Figure 6 is a schematic diagram of the second data communication structure provided by the embodiment of the present application.
  • AP1 when AP1 has cached data that needs to be transmitted back, it can use OFDMA frames to simultaneously send the data to the upper-level AP (i.e. router) and associate it with Sta (including at least one of Sta1 and Sta2) of its own AP. ) and the lower-level AP (ie, at least one of AP2 and AP3) send data simultaneously.
  • AP1 can use OFDMA frames to return cached data to be sent to the router at the same time, and can forward the data to Sta1 and/or Sta2 from the router to Sta1 and/or Sta2 at the same time. Forward the data that the router wants to send to AP2 and/or AP3 to AP2 and/or AP3.
  • Figure 7 is a schematic diagram of the third data communication structure provided by the embodiment of the present application.
  • AP1 when AP1 has buffered data that needs to be transmitted back, it is not limited to the use of a single transmission frequency as shown in Figure 6.
  • Multi-connection technology can be used, such as in 2.4GHz band and 5GHz band. Data is sent simultaneously using OFDMA frames on both frequencies. The data on the two frequencies can be related or independent. If it is independent data, data cascading can be implemented at a higher level through the receiving end to implement multi-connection technology and increase data reliability and throughput.
  • FIG. 8 is a schematic block diagram of the communication device 1000 provided by this application.
  • the communication device 1000 includes a receiving unit 1100 , a processing unit 1200 and a sending unit 1300 .
  • the receiving unit 1100, the processing unit 1200 and the sending unit 1300 may also be referred to as the receiving module 1100, the processing module 1200 and the sending module 1300 respectively.
  • Each unit/module in the communication device is used to execute corresponding steps in the method embodiments of this application.
  • the functions of the processing unit 1200 can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the processing unit may include a memory and a processor, where the memory is used to store a computer program, and the processor reads and executes the computer program stored in the memory, so that the communication device 1000 performs operations performed by the sending device in each method embodiment and /or processing.
  • the processing means may comprise only the processor, with the memory for storing the computer program being external to the processing means.
  • the processor is connected to the memory through circuits/wires to read and execute the computer program stored in the memory.
  • the processing device may be a chip or an integrated circuit.
  • the sending unit 1300 and the receiving unit 1100 may be a communication interface or an interface circuit.
  • the sending unit 1300 may be an output interface or an interface circuit.
  • Output circuit the receiving unit 1100 is an input interface or input circuit.
  • the processing unit 1200 may be a processor or microprocessor integrated on the chip or integrated circuit. No limitation is made here.
  • the device 1000 can be used to perform the actions performed by the sending device or the receiving device in each of the above method embodiments.
  • the device 1000 can be a component of the sending device or the receiving device, and the receiving unit 1100 is used to perform the above.
  • the processing unit 1200 is configured to perform operations related to the reception of the sending device or the receiving device in the method embodiment.
  • the sending unit 1300 is configured to perform the processing related operations of the sending device or the receiving device in the method embodiment. Transmission-related operations of the sending device or receiving device.
  • the device 1000 is used to perform actions performed by any device in each of the above method embodiments.
  • the communication device may be used to perform the above-mentioned operations of the sending device in FIG. 2 .
  • the sending device may be used to perform the above-mentioned operations of the sending device in FIG. 2 .
  • the sending unit 1300 is configured to send M first identifiers to M receiving devices among the N receiving devices.
  • the M first identifiers correspond to the M receiving devices one-to-one, and the M first identifiers are used to identify the M receiving devices.
  • N receiving devices include M receiving devices, N is an integer greater than or equal to 1, and M is a positive integer less than or equal to N. It is also used to send downlink data to M receiving devices when the device 1000 transmits downlink data with M receiving devices.
  • the receiving unit 1100 is configured to receive the uplink data sent from the M receiving devices when the device 1000 transmits uplink data with the M receiving devices.
  • the processing module 1200 is configured to assign the first identification corresponding to the receiving device to each of the M receiving devices.
  • the receiving unit 1100, the processing unit 1200 and the sending unit 1300 in the communication device 1000 can also implement other operations or functions of the sending device in the above method, which will not be described again here.
  • the communication apparatus 1000 may be used to perform the above-mentioned operations of the receiving device in FIG. 2 .
  • the communication apparatus 1000 may be used to perform the above-mentioned operations of the receiving device in FIG. 2 .
  • the communication apparatus 1000 may be used to perform the above-mentioned operations of the receiving device in FIG. 2 .
  • the communication apparatus 1000 may be used to perform the above-mentioned operations of the receiving device in FIG. 2 .
  • the receiving module 1100 is used to receive a first identifier from the sending device, where the first identifier corresponds to the communicating device 1000, and the first identifier is used to identify the communicating device 1000. It is also used to receive downlink data sent from the sending device when the device 1000 transmits downlink data with the sending device.
  • the sending unit 1300 is also configured to send uplink data to the sending device when the device 1000 transmits uplink data to the sending device.
  • the receiving unit 1100, the processing unit 1200 and the sending unit 1300 in the device for transmitting data can also implement other operations or functions of the network device in the above method, which will not be described again here.
  • FIG 9 is a schematic structural diagram of the communication device 10 provided by this application.
  • the device 10 includes a processor 11 coupled to a memory 12 for storing computer programs or instructions and/or data.
  • the processor 11 is used for executing computer programs or instructions stored in the memory 12 or reading the memory 12
  • the stored data is used to execute the methods in the above method embodiments.
  • processors 11 there are one or more processors 11 .
  • the memory 12 is integrated with the processor 11 or is provided separately.
  • the device 10 also includes a transceiver 13, which is used for receiving and/or transmitting signals.
  • the processor 11 is used to control the transceiver 13 to receive and/or transmit signals.
  • this application also provides a computer-readable storage medium.
  • Computer instructions are stored in the computer-readable storage medium. When the computer instructions are run on the computer, the methods in each method embodiment of the application are executed.
  • the application also provides a computer program product.
  • the computer program product includes computer program code or instructions. When the computer program code or instructions are run on a computer, the methods in each method embodiment of the application are executed.
  • this application also provides a chip, which includes a processor.
  • the memory used to store the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory, so that the methods in each method embodiment of the present application are executed.
  • the chip may also include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit, etc.
  • the chip may also include a memory.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has the ability to process signals. During the implementation process, each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the processor can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), or field programmable Gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable Gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the methods disclosed in the embodiments of the present application can be directly implemented by a hardware encoding processor, or executed by a combination of hardware and software modules in the encoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信的方法、设备和系统。通过本申请的通信方法、设备和系统能够提高WiFi组网的网络容量和传输效率,同时减小组网时芯片的面积和功耗,并简化网络结构。该方法包括:发送设备向N个接收设备中的M个接收设备发送M个第一标识,并通过数据帧与M个第一标识对应的M个接收设备传输数据。其中,发送设备与N个接收设备之间具备通信连接,N个接收设备之间不具备通信连接。M个第一标识与M个接收设备一一对应,M个第一标识用于标识M个接收设备,N个接收设备包括M个接收设备。N为大于或者等于1的整数,M为小于或者等于N的正整数。

Description

一种通信方法、设备和系统
本申请要求于2022年7月8日提交中国国家知识产权局、申请号202210799533.5、申请名称为“一种通信的方法、设备和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中,以及本申请要求于2022年9月27日提交中国国家知识产权局、申请号202211186639.4、申请名称为“一种通信的方法、设备和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,并且更具体地,涉及一种通信的方法、设备和系统。
背景技术
当前WiFi系统的无线组网方案,是中继(repeater)模式,并且采用了虚拟接入点(soft access point,SoftAP)的双实体方案。一个中继有两个物理实体,分别是终端(station,STA)角色和SoftAP角色。STA的媒体存取控制(media access control,MAC)地址和SoftAP的MAC地址不同。
当作为STA角色时,只能接收上一级路由的数据,回传时采用的是单用户(singleuser,SU)帧类型或者基于触发的(triggerbased,TB)帧。当作为AP的角色时,只能与下一级的STA或SoftAP传输数据。两个实体在同频同信道情况下,不能同时工作。
这样的组网结构,需要占用两次空口的时间,降低了整个网络的容量。而且中继需要开辟两个物理实体,对于芯片的面积和功耗都不是很友好。
发明内容
本申请提供一种通信的方法、设备和系统。通过本申请的通信方法、设备和系统能够明显提高WiFi组网的网络容量和传输效率,同时减小组网时芯片的面积和功耗,并简化网络结构。
第一方面,本申请实施例提供了一种通信的方法,该方法可以由发送设备或者由发送设备的部件(如芯片或芯片系统等)执行,本申请对此不作限定。该方法包括:发送设备和N个接收设备,所述发送设备与N个接收设备之间具备通信连接,所述N个接收设备之间不具备通信连接。所述发送设备向所述N个接收设备中的M个接收设备发送M个第一标识,所述M个第一标识与所述M个接收设备一一对应,所述M个第一标识用于标识所述M个接收设备,其中,所述N个接收设备包括所述M个接收设备,N为大于或者等于1的整数,M为小于或者等于N的正整数。所述发送设备通过数据帧与所述M个第一标识对应的所述M个接收设备传输数据。
示例性的,在本申请实施例中,发送设备与N个接收设备之间具备通信连接可以是发送设备与N个接收设备之间可以通过无线或其他等通信方式进行数据传输,即发送设备与N个接收设备之间具有通信链路。N个接收设备之间不具备通信连接可以是N个接收设备之间无法通过无线或者其他等通信方式进行数据传输等,即N个接收设备之间不具有通信链路。本申请对发送设备与N个接收设备之间的通信方式不作限定。
基于该方案,本申请实施例提供的通信方法,通过发送设备为接收设备发送的第一标识,使得发送设备与结接收设备通信时,可依据该第一标识通过数据帧进行双向通信。通过双向通信能够提升网络的容量。
结合第一方面,在第一方面的某些实现方式中,所述第一标识为连接识别AID码。
基于AID码的第一标识,使接收到AID码的设备避免进行物理层数据解析,从而达到提升数据传输效率的目的。
结合第一方面,在第一方面的某些实现方式中,所述数据帧为频分复用数据帧。
结合第一方面,在第一方面的某些实现方式中,所述数据帧的帧格式包括正交频分多址接入OFDMA帧格式和OFDMA与多用户多输入多输出MUMIMO结合的帧格式。
基于频分复用数据帧,在实现接收设备和发送设备的双向通信的同时,进一步减小组网时芯片的面积和功耗,并简化网络结构。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述发送设备为所述M个接收设备中的每一个接收设备分配对应所述接收设备的所述第一标识。
基于该方案,通过发送设备为接收设备分配第一标识,可以避免多个接收设备通过自主随机生成第一标识而带来的标识重复所引起的冲突情况,可以实现提升系统性能的目的。
结合第一方面,在第一方面的某些实现方式中,所述发送设备为路由设备或者接入点AP设备。
基于该方案,通过路由器或者AP向其连接的下一层接收设备分配第一标识,可以实现层层分配的效果,从而实现提升传输效率的目的,进一步地,通过层层分配,可以将第一标识的分配分散到各层实现,提升系统传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述发送设备向所述M个接收设备发送第二标识,所述第二标识为所述发送设备对应的标识。
基于该方案,通过发送设备将自身的标识发送给接收设备,可以使得接收设备根据该第二标识向发送设备发送上行数据,从而提升了系统的传输性能。
第二方面,本申请实施例提供了一种通信的方法,该方法可以由接收设备或者由接收设备的部件(如芯片或芯片系统等)执行,本申请对此不作限定。该方法包括:接收设备接收来自发送设备的第一标识,所述第一标识与所述接收设备对应,所述第一标识用于标识所述接收设备。所述接收设备通过数据帧与所述发送设备传输数据。
结合第二方面,在第二方面的某些实现方式中,所述第一标识为连接识别AID码。
结合第二方面,在第二方面的某些实现方式中,所述数据帧为频分复用数据帧。
结合第二方面,在第二方面的某些实现方式中,所述数据帧的帧格式包括正交频分多址接入OFDMA帧格式和OFDMA与多用户多输入多输出MUMIMO结合的帧格式。
结合第二方面,在第二方面的某些实现方式中,所述第一标识为所述发送设备为所述接收设备分配的。
结合第二方面,在第二方面的某些实现方式中,所述接收设备为接入点AP设备或终端STA设备。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述接收设备接收来自所述发送设备的第二标识,所述第二标识为所述发送设备对应的标识。
第三方面,本申请实施例提供了一种通信系统。该通信系统包括:多个接收设备,所述多个接收设备与发送设备之间具备通信连接,所述多个接收设备之间不具备通信连接,所述多个接收设备用于执行上述第二方面以及第二方面任意一种实现方式提供的方法。
第四方面,本申请实施例提供了一种通信的装置。该装置用于执行上述第一方面提供的方法。具体地,该通信的装置可以包括用于执行第一方面或第一方面的上述任意一种实现方式提供的方法的单元和/或模块,如处理单元和获取单元。
在一种实现方式中,该通信的装置为发送设备。获取单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信的装置为发送设备中的芯片、芯片系统或电路。获取单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第五方面,本申请实施例提供了一种通信的装置,该装置用于执行上述第二方面提供的方法。具体地,该通信的装置可以包括用于执行第二方面或第二方面的上述任意一种实现方式提供的方法的单元和/或模块,如处理单元和获取单元。
在一种实现方式中,该通信的装置为接收设备。获取单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信的装置为接收设备中的芯片、芯片系统或电路。获取单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处 理单元可以是至少一个处理器、处理电路或逻辑电路等。
第六方面,本申请实施例提供了一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第七方面,本申请实施例提供了一种计算机可读存储介质。该计算机可读存储介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面或第二方面以及第一方面或第二方面任意一种实现方式提供的方法。
第八方面,本申请实施例提供了一种包含指令的计算机程序产品。当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面任意一种实现方式提供的方法。
第九方面,本申请实施例提供了一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面或第二方面以及第一方面或第二方面任意一种实现方式提供的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面或第二方面以及第一方面或第二方面任意一种实现方式提供的方法。
第十方面,本申请实施例提供了一种通信的系统,包括第四方面所述的通信的装置和第五方面所述的传输数据的装置。
第十一方面,本申请实施例提供了一种通信的方法。该方法可以由第一设备执行,其中该第一设备为发送设备。或者,该方法也可以由配置于第一设备中的芯片或电路执行,本申请对此不作限定。该方法包括:第一设备向至少一个第二设备发送至少一个第一标识,所述至少一个第一标识中的每一个第一标识用于标识所述第一设备与所述至少一个第二设备连接,所述至少一个第一标识与所述至少一个第二设备一一对应,所述第一设备与所述至少一个第二设备相连,所述至少一个第二设备之间不存在连接关系。所述第一设备根据所述第一标识向所述第一标识对应的所述第二设备发送数据。
结合第十一方面,在第十一方面的某些实现方式中,所述第一标识为连接识别AID码。
结合第十一方面,在第十一方面的某些实现方式中,所述方法还包括:所述第一设备为所述至少一个第二设备中的每一个第二设备分配对应所述第二设备的所述第一标识。
结合第十一方面,在第十一方面的某些实现方式中,所述第一设备为路由设备或者接入点AP设备。
结合第十一方面,在第十一方面的某些实现方式中,所述方法还包括:所述第一设备向所述至少一个第二设备发送第二标识,所述第二标识为所述第一设备与所述至少一个第二设备连接时的唯一标识。
第十二方面,本申请实施例提供一种通信的设备。所述设备包括:收发模块。其中,所述收发模块用于向至少一个第二设备发送至少一个第一标识,所述至少一个第一标识中的每一个第一标识用于标识所述设备与所述至少一个第二设备连接,所述至少一个第一标识与所述至少一个第二设备一一对应,所述设备与所述至少一个第二设备相连,所述至少一个第二设备之间不存在连接关系。所述收发模块,还用于根据所述第一标识向所述第一标识对应的所述第二设备发送数据。
结合第十二方面,在第十二方面的某些实现方式中,所述第一标识为连接识别AID码。
结合第十二方面,在第十二方面的某些实现方式中,所述设备还包括:处理模块。其中,所述处理模块,用于为所述至少一个第二设备中的每一个第二设备分配对应所述第二设备的所述第一标识。
结合第十二方面,在第十二方面的某些实现方式中,所述设备为路由设备或者接入点AP设备。
结合第十二方面,在第十二方面的某些实现方式中,所述收发模块,还用于向所述至少一个第二设备发送第二标识,所述第二标识为所述设备与所述至少一个第二设备连接时的唯一标识。
附图说明
图1为本申请实施例提供的一种网络结构的示意图。
图2为本申请实施例提供的通信方法200的示意性流程交互图。
图3为本申请实施例提供的第一种网络关联示意图。
图4为本申请实施例提供的第二种网络关联示意图。
图5为本申请实施例提供的第一种数据通信结构示意图。
图6为本申请实施例提供的第二种数据通信结构示意图。
图7为本申请实施例提供的第三种数据通信结构示意图。
图8为本申请提供的通信装置1000的示意性框图。
图9为本申请提供的通信装置10的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例可以应用于无线局域网(wireless local area network,WLAN),目前WLAN采用的标准为电气和电子工程协会(institute of electrical and electronics engineer,IEEE)802.11系列。WLAN可以包括多个基本服务集(basic service set,BSS),BSS中的网络节点STA和AP。每个BSS可以包含一个AP和多个关联于该AP的STA。
本申请实施例中的AP也可以称之为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有无线保真(wireless fidelity,WiFi)芯片的终端设备或者网络设备。可选地,AP可以为支持802.11a/b/g、802.11n、802.11ac、802.11ax以及现在正在讨论中的802.11be或后续版本等多种WLAN制式的设备。
本申请中的接入点可以是高效(high efficient,HE)STA或极高吞吐量(extremely high throughput,EHT)STA,还可以是适用未来某代Wi-Fi标准的STA。
例如,接入点和站点可以是应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。
本申请实施例中的STA可以是无线通讯芯片、无线传感器或无线通信终端。例如:支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备、支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的计算机。可选地,STA可以支持802.11ax制式,进一步可选地,STA可以支持802.11ac、802.11n、802.11g、802.11b及802.11a或后续版本等多种WLAN制式。
在本申请实施例中,STA或AP包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是STA或AP,或者,是STA或AP中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本申请实施例还可以适用于物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X) 等无线局域网系统中。当然,本申请实施例还可以适用于其他可能的通信系统,例如,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)通信系统,以及未来的第六代(6th generation,6G)通信系统等。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
当前WiFi系统的无线组网方案,是中继模式,并且采用了SoftAP的双实体方案。一个中继有两个物理实体,分别是STA角色和SoftAP角色。STA的MAC地址和SoftAP的MAC地址不同。
当作为STA角色时,只能接收上一级路由的数据,回传时只能使用单用户(single user,SU)帧类型或者基于触发的(trigger based,TB)帧。当作为AP的角色时,只能与下一级的STA或SoftAP传输数据。两个实体在同频同信道情况下,不能同时工作。
这样的组网结构,需要占用两次空口的时间,降低了整个网络的容量。而且中继需要开辟两个物理实体,对于芯片的面积和功耗都不是很友好。
本申请针对现有的双实体组网方案的缺点,提出了一种全新的单实体组网方案。该方案的每个实体只需要一个MAC地址,且实体的角色可以自由切换,通过父节点给与子节点分配连接识别(association identifier,AID)码,保证AID不冲突。同时单实体的AP可以接收正交频分多址接入(orthogonal frequency division multiple access,OFDMA)帧或者OFDMA和多用户多输入多输出(multi-user multiple-input multiple-output,MUMIMO)的混合帧,从而提高了网络的吞吐量和转发效率,进而提升系统容量。
图1为本申请实施例提供的一种网络结构的示意图。在图1所示的树状结构的无线局域网中,可以包括一个路由器(router)、与该路由器关联的一个或者多个SoftAP(也可以称为AP,以下以AP为例进行说明),以及与该AP关联的一个或多个STA和/或一个或者多个AP。具体地,如图1所示,位于层1的路由器下关联位于层2的AP1和AP4,对于AP1来说,其下关联STA1和STA2,同时关联位于层3的AP2和AP3。AP2下关联STA5和STA6,AP3下关联STA3和STA4。图1所提及的AP,既可以充当AP的角色,也可以充当STA的角色。相同级别的AP不能相互连接组网,只有不同级别的AP才可以相互连接,同时,对于AP,只能与一个上一级的AP连接。即位于层2的AP1和AP4之间不相互连接,位于层3的AP2和AP3之间不相互连接,同时由于AP2与AP1已经相互连接,因此AP2不与AP4连接。同样的,AP3不与AP4连接。对于STA,只能与一个AP连接,不能同时连接多个AP。即STA1连接AP1之后,不可以与其他AP再连接。类似的,对于STA2只能连接AP1,STA5和STA6只能连接AP2,STA3和STA4只能连接AP3。那么,通过该限制,整个无线网格(Mesh)网络就组成可一个树状结构的网络。
应理解,在本申请的网络架构中,中继只有一个实体,即可以充当AP角色,也可以充当STA角色,并在不同角色之间可以实现灵活切换。
从图1中可以看出,路由器属于层1(level 1),AP1属于层2(level 2),AP2和AP3属于层3(level 3)。
应理解,图1只是示例性的,不应该对本申请适用的无线局域网的网络架构产生限制,例如,该网络架构还可以包括更多的路由器,每个路由器下关联更多的SoftAP,同时每个SoftAP下关联更多的STA,或者,部分网络架构还可以不包括STA等,本申请实施例对此不做限定。
为了便于理解本申请实施例,作出以下几点说明。
第一、在下文示出的本申请实施例中的文字说明或者附图中的术语,“第一”、“第二”等以及各种数字编号仅为描述方便进行的区分,而不必用于描述特定的顺序或者先后次序,并不用来限制本申请实施例的范围。例如,区分不同的标识等。
第二、下文示出的本申请实施例中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其他步骤或者单元。
第三、在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
第四、在本申请实施例中,设备也可以称为节点或者节点设备,发送设备可以称为发送节点、发送端、源节点或者父节点。同样的接收设备可以称为接收端设备、接收端、宿节点或者子节点。
为便于理解本申请实施例,下面先对本申请涉及到的几个名词或术语进行介绍。
1、正交频分多址接入(OFDMA):是一种多址接入技术,用户通过OFDMA共享频带资源,接入系统。
2、多用户多输入多输出(MUMIMO):是指在无线通信系统里,一个基站同时服务于多个移动终端,基站之间充分利用天线的空域资源与多个用户同时进行通信。
3、媒体存取控制位址(media access control address,MAC address):用来确认网络设备位置的位址。在开放式系统互联通信(open system interconnection,OSI)参考模型中,第三层网络层负责互联网协议(internet protocol,IP)地址,第二层数据链路层则负责MAC位址。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
可以理解,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
为便于理解本申请所提供的通信的方法,首先结合附图详细说明本申请所提供的通信方法。其中,发送设备与接收设备进行数据传输可以包括发送设备为接收设备发送下行数据(下行通信),以及接收设备向发送设备发送上行数据(上行通信),即本申请提供的通信方法适用于上行和下行的数据传输。以下,以一个发送设备与N个接收设备之间的交互过程为例详细说明本申请实施例提供的通信方法。
下面将结合附图详细说明本申请提供的技术方案。
图2为本申请实施例提供的一种通信方法200的示意性流程交互图。该方法可以应用在图1所述的场景中。作为示例,图2中的发送设备可以为路由器,对应的接收设备为AP。或者,发送设备也可以为AP,对应的接收设备为AP或者STA。具体地,该方法包括以下多个步骤。
S201,发送设备向N个接收设备中的M个接收设备发送M个第一标识。
具体地,在本实施例中,发送设备与N个接收设备相连,N个接收设备之间不存在连接关系。当N个接收设备中的M个接收设备需要与发送设备进行通信时,发送设备向M个接收设备发送对应于M个接收设备的第一标识。其中,M为小于或者等于N的整数。
应理解,该第一标识为发送设备与接收设备进行数据传输时的唯一标识。
在一种可实现的方式中,该第一标识为连接识别(association identifier,AID)码。通过AID码,可以使得物理层不需要解调,实现数据的传输效率。
S202,发送设备通过数据帧与M个接收设备传输数据。
具体地,当发送设备与M个接收设备进行下行数据传输时,发送设备通过数据帧向M个接收设备发送下行数据。当发送设备与M个接收设备进行上行数据传输时,发送设备通过数据帧接收来自M个接收设备发送的上行数据。
可选地,该数据帧为频分复用数据帧。
在一种可实现的方式中,本申请实施例中的数据帧的帧格式包括但不限于正交频分多址接入OFDMA帧格式和OFDMA与多用户多输入多输出MUMIMO结合的帧格式。通过频分复用帧格式的数据帧,能够提升网络的吞吐量。
基于本申请实施例提供的通信方法,通过发送设备给接收设备分配第一标识,可以保证系统中所有设备的第一标识不冲突。同时在本申请的Mesh网络中,为单实体节点,每个设备只对应于一个标识,用于数据传输,无需多套MAC地址和发射接收机,从而实现提升转发效率的目的。同时基于数据帧可以实现发送设备到接收设备的双向数据传输,因此能够达到提升网络的吞吐量和提升系统容量的效果。
可选地,在S202之前,该方法还包括M个接收设备的接入过程和身份认证过程,具体地,包括如下多个步骤。
S203,发送设备向M个接收设备发送第二标识。
具体地,该第二标识为发送设备对应的标识,即当M个接收设备向接收设备发送上行数据时,是通过该第二标识确定发送设备的。当M个接收设备接收到发送设备对应的第二标识后,可通过该第二标识确定连接的发送设备。
在一种可实现的方式中,该第二标识是通过发送设备发送信标(beacon)广播管理帧发送的,即发送设备发送的信标广播管理帧中包括该第二标识。
S204,M个接收设备向发送设备发送接入请求。
具体地,M个接收设备向发送设备发送探测请求帧,用于发送接入请求。
S205,发送设备向M个接收设备发送接入响应。
具体地,发送设备向M个接收设备发送接入响应,对M个接收设备的接入请求进行应答。
S206,发送设备向M个接收设备发送鉴权请求。
具体地,发送设备对M个接收设备请求进行身份认证(Authentication)。
S207,M个接收设备向发送设备发送鉴权确认。
具体地,M个接收设备对发送设备的身份认证请求作出回应。
S208,M个接收设备向发送设备发送第一标识分配请求。
具体地,当M个接收设备通过S203-S207完成接入后,M个接收设备分别向发送设备发送第一标识分配请求,M个第一标识分配请求用于向发送设备分别请求对应于接收设备的第一标识。
S209,发送设备为M个接收设备分配M个第一标识。
具体地,发送设备接收到M个接收设备的第一标识分配请求后,可随机生成M个不同的第一标识,例如AID码,并将该M个AID码发送给每个接收设备。
在一种可实现的方式中,发送设备将M个接收设备与M个标识的对应关系发送给M个接收设备中的每一个接收设备。其中,该对应关系可以是例如表格等的形式,本申请不作限定。
在另一种可实现的方式中,发送设备将M个标识发送给每一个接收设备,并发送接收设备与其对应的第一标识的对应关系。
需要说明的是,上述S203-S207仅作为可能方式进行简单说明,具体地详细说明可参考相关协议中的WIFI认证过程,此处不再赘述。
S210,M个接收设备将M个MAC地址上报给发送设备。
接下来,结合图3至图7具体说明本申请提供的通信方法。
图3为本申请实施例提供的第一种网络关联示意图。在图3所示的Mesh网络中,路由器和AP1进行数据传输时,需要路由器为AP1的分配一个AID,当有数据发送时,使用该AID进行用户匹配。也就是说,在图3所示的网络关联示意图中,发送设备为路由器,接收设备为AP1。
图4为本申请实施例提供的第二种网络关联示意图。如图4所示,AP1与AP2和AP3关联,同时与STA1和STA2关联。具体地,AP1可以通过信标管理帧向AP2、AP3、Sta1和Sta2中的至少一个来发送自己的AID。并为AP2、AP3、Sta1和Sta2中的至少一个分配AID,当AP2、AP3、Sta1和Sta2中的至少一个获取的AID的时,可通过获取到的对应的AID码与AP1进行通信。应理解,AP2、AP3、Sta1和Sta2的AID码是通过AP1分配的,因此,不会出现Sta1、Sta2、AP2和AP3的AID相互冲突的情况。
图5为本申请实施例提供的第一种数据通信结构示意图。
应理解,在本申请提供的Mesh网络中的AP,既可以发送正交频分多址接入帧,也可以接收OFDMA帧。即入图5所示,当路由器需要向AP1和AP4发送数据时,可以通过OFDMA帧同时给AP1和AP4发送数据。
图6为本申请实施例提供的第二种数据通信结构示意图。具体地,如图6所示,当AP1有缓存的数据需要回传时,可以利用OFDMA帧同时给上一级AP(即路由器),关联在自身AP的Sta(包括Sta1和Sta2中的至少一个)和下一级AP(即AP2和AP3中的至少一个)同时发送数据。也就是说,AP1可以利用OFDMA帧,在同一时间,回传要发送给路由器的缓存数据,同时可以把路由器要发送给Sta1和/或Sta2数据转发给Sta1和/或Sta2,同样可以在同一时间将路由器要发送给AP2和/或AP3的数据转发给AP2和/或AP3。
图7为本申请实施例提供的第三种数据通信结构示意图。具体地,如图7所示,当AP1有缓存的数据需要回传时,可以不限于图6中所示的使用单个传输频率的情况,可以使用多连接技术,例如在2.4GHz band和5GHz band两个频率上同时使用OFDMA帧发送数据。两个频率上的数据可以存在关联,也可以是独立数据。如果是独立数据,可以通过接收端在更高层实现数据级联,从而实现多连接技术,增加数据的可靠性和吞吐量。
图8为本申请提供的通信装置1000的示意性框图。如图8,通信装置1000包括接收单元1100、处理单元1200和发送单元1300。其中,接收单元1100、处理单元1200和发送单元1300还可以分别称为接收模块1100、处理模块1200和发送模块1300。该通信装置中各单元/模块用于执行本申请各方法实施例方法中对应的步骤。
其中,处理单元1200的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理单元可以包括存储器和处理器,其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,使得通信装置1000执行各方法实施例中由发送设备执行的操作和/或处理。可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。又例如,处理装置可以芯片或集成电路。
可选地,在通信装置1000可以为安装在发送设备中的芯片或集成电路这种实现方式中,发送单元1300和接收单元1100可以为通信接口或者接口电路,例如,发送单元1300为输出接口或输出电路,接收单元1100为输入接口或输入电路。处理单元1200可以为该芯片或集成电路上集成的处理器或者微处理器。在此不做限定。
该装置1000可以用于执行上文各个方法实施例中的发送设备或接收设备所执行的动作,这时,该装置1000可以为发送设备或接收设备的组成部件,接收单元1100用于执行上文方法实施例中发送设备或接收设备的接收相关的操作,处理单元1200用于执行上文方法实施例中发送设备或接收设备的处理相关的操作,发送单元1300用于执行上文方法实施例中发送设备或接收设备的发送相关的操作。
作为一种设计,该装置1000用于执行上文各个方法实施例中的任意设备所执行的动作。在一个实施例中,该通信的装置可用于执行上述图2中发送设备的操作。例如:
发送单元1300,用于向N个接收设备中的M个接收设备发送M个第一标识,M个第一标识与M个接收设备一一对应,M个第一标识用于标识M个接收设备。其中,N个接收设备包括M个接收设备,N为大于或者等于1的整数,M为小于或者等于N的正整数。还用于当该装置1000与M个接收设备传输下行数据时,向M个接收设备发送下行数据。
接收单元1100,用于当该装置1000与M个接收设备传输上行数据时,接收来自M个接收设备发送的上行数据。
处理模块1200,用于为所述M个接收设备中的每一个接收设备分配对应所述接收设备的所述第一标识。
应理解,各模块执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
此外,该通信的装置1000中的接收单元1100、处理单元1200和发送单元1300还可实现上述方法中发送设备的其他操作或功能,此处不再赘述。
在另一个实施例中,该通信的装置1000可用于执行上述图2中接收设备的操作。例如:
接收模块1100,用于来自发送设备的第一标识,第一标识与该通信的装置1000对应,第一标识用于标识该通信的装置1000。还用于当该装置1000与发送设备传输下行数据时,接收来自发送设备发送的下行数据。
发送单元1300,还用于当该装置1000与发送设备传输上行数据时,向发送设备发送上行数据。
此外,该传输数据的装置中的接收单元1100、处理单元1200和发送单元1300还可实现上述方法中网络设备的其他操作或功能,此处不再赘述。
应理解,各模块执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
图9为本申请提供的通信装置10的示意性结构图。该装置10包括处理器11,处理器11与存储器12耦合,存储器12用于存储计算机程序或指令和/或数据,处理器11用于执行存储器12存储的计算机程序或指令,或读取存储器12存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器11为一个或多个。
可选地,存储器12为一个或多个。
可选地,该存储器12与该处理器11集成在一起,或者分离设置。
可选地,如图9所示,该装置10还包括收发器13,收发器13用于信号的接收和/或发送。例如,处理器11用于控制收发器13进行信号的接收和/或发送。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中的方法被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中的方法被执行。
此外,本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得本申请各方法实施例中的方法被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括存储器。
应理解,本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (51)

  1. [援引加入(细则20.6)03.08.2023]
    一种通信的方法,其特征在于,包括:发送设备和N个接收设备,所述发送设备与N个接收设备之间具备通信连接,所述N个接收设备之间不具备通信相连,
    所述发送设备向所述N个接收设备中的M个接收设备发送M个第一标识,所述M个第一标识与所述M个接收设备一一对应,所述M个第一标识用于标识所述M个接收设备,其中,所述N个接收设备包括所述M个接收设备,N为大于或者等于1的整数,M为小于或者等于N的正整数;
    所述发送设备通过数据帧与所述M个第一标识对应的所述M个接收设备传输数据。
  2. [援引加入(细则20.6)03.08.2023]
    根据权利要求1所述的方法,其特征在于,所述第一标识为连接识别AID码。
  3. [援引加入(细则20.6)03.08.2023]
    根据权利要求1或2所述的方法,其特征在于,所述数据帧为频分复用数据帧。
  4. [援引加入(细则20.6)03.08.2023]
    根据权利要求1至3中任一项所述的方法,其特征在于,
    所述数据帧的帧格式包括正交频分多址接入OFDMA帧格式和OFDMA与多用户多输入多输出MUMIMO结合的帧格式。
  5. [援引加入(细则20.6)03.08.2023]
    根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述发送设备为所述M个接收设备中的每一个接收设备分配对应所述接收设备的所述第一标识。
  6. [援引加入(细则20.6)03.08.2023]
    根据权利要求1至5中任一项所述的方法,其特征在于,
    所述发送设备为路由设备或者接入点AP设备。
  7. [援引加入(细则20.6)03.08.2023]
    根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述发送设备向所述M个接收设备发送第二标识,所述第二标识为所述发送设备对应的标识。
  8. [援引加入(细则20.6)03.08.2023]
    一种通信的方法,其特征在于,包括:
    接收设备接收来自发送设备的第一标识,所述第一标识与所述接收设备对应,所述第一标识用于标识所述接收设备;
    所述接收设备通过数据帧与所述发送设备传输数据。
  9. [援引加入(细则20.6)03.08.2023]
    根据权利要求8所述的方法,其特征在于,所述第一标识为连接识别AID码。
  10. [援引加入(细则20.6)03.08.2023]
    根据权利要求8或9所述的方法,其特征在于,所述数据帧为频分复用数据帧。
  11. [援引加入(细则20.6)03.08.2023]
    根据权利要求8至10中任一项所述的方法,其特征在于,
    所述数据帧的帧格式包括正交频分多址接入OFDMA帧格式和OFDMA与多用户多输入多输出MUMIMO结合的帧格式。
  12. [援引加入(细则20.6)03.08.2023]
    根据权利要求8至11中任一项所述的方法,其特征在于,所述第一标识为所述发送设备为所述接收设备分配的。
  13. [援引加入(细则20.6)03.08.2023]
    根据权利要求8至12中任一项所述的方法,其特征在于,
    所述接收设备为接入点AP设备或终端STA设备。
  14. [援引加入(细则20.6)03.08.2023]
    根据权利要求8至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述接收设备接收来自所述发送设备的第二标识,所述第二标识为所述发送设备对应的标识。
  15. [援引加入(细则20.6)03.08.2023]
    一种通信系统,其特征在于,包括:多个接收设备,
    所述多个接收设备与发送设备之间具备通信连接,所述多个接收设备之间不具备通信连接,所述多个接收设备用于执行如权利要求8至14中任一项所述的方法。
  16. [援引加入(细则20.6)03.08.2023]
    一种传输数据的装置,其特征在于,包括用于执行权利要求1至14中任一项所述的方法的模块或单元。
  17. [援引加入(细则20.6)03.08.2023]
    一种传输数据的装置,其特征在于,所述装置包括处理器,所述处理器与存储器耦合,所述存储器存储有指令,所述指令被所述处理器运行时,
    使得所述处理器执行如权利要求1至7中任意一项所述的方法,或者,
    使得所述处理器执行如权利要求8至14中任意一项所述的方法。
  18. [援引加入(细则20.6)03.08.2023]
    一种传输数据的装置,其特征在于,所述装置包括逻辑电路和输入输出接口,所述逻辑电路用于与输入/输出接口耦合,通过所述输入/输出接口传输数据,以执行如权利要求1至7中任一项所述的方法,或者,以执行如权利要求8至14中任一项所述的方法。
  19. [援引加入(细则20.6)03.08.2023]
    一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至7中任一项所述的方法,或使得所述计算机执行如权利要求8至14中任一项所述的方法。
  20. [援引加入(细则20.6)03.08.2023]
    一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至7中任一项所述的方法,或实现如权利要求中8至14任一项所述的方法。
  21. [援引加入(细则20.6)03.08.2023]
    一种芯片,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求1至7中任一项所述的方法,或实现如权利要求中8至14中任一项所述的方法。
  22. [错误提交(细则20.5之二)]
    一种通信方法,其特征在于,所述方法应用于分布式单元DU,所述方法包括:
    接收来自终端设备的上行数据;
    为所述终端设备分配第一小区无线网络临时标识C-RNTI和第一DU接口标识;
    向集中式单元CU发送第一消息,所述第一消息包括所述第一C-RNTI和所述第一DU接口标识;
    接收来自所述CU的第二消息,所述第二消息包括所述第一C-RNTI或所述第一DU接口标识。
  23. [错误提交(细则20.5之二)]
    根据权利要求1所述的方法,其特征在于,所述终端设备处于无线资源控制RRC空闲态或RRC非激活态。
  24. [错误提交(细则20.5之二)]
    根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    在接收所述上行数据之前,所述DU存储有所述终端设备的上下文信息,所述上下文信息包括第二C-RNTI;
    在接收到所述第二消息之后,将所述第二C-RNTI更新为所述第一C-RNTI。
  25. [错误提交(细则20.5之二)]
    根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    在接收到所述第二消息之后,删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识。
  26. [错误提交(细则20.5之二)]
    根据权利要求3所述的方法,其特征在于,当所述第二消息包括所述第一DU接口标识时,所述将所述第二C-RNTI更新为所述第一C-RNTI,具体包括:
    根据所述第一DU接口标识确定所述第一C-RNTI;
    将所述第二C-RNTI更新为所述第一C-RNTI。
  27. [错误提交(细则20.5之二)]
    根据权利要求4所述的方法,其特征在于,当所述第二消息包括所述第一C-RNTI时,所述删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识,具体包括:
    根据所述第一C-RNTI确定所述第一DU接口标识;
    删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识。
  28. [错误提交(细则20.5之二)]
    根据权利要求3至6中任一项所述的方法,其特征在于,所述上下文信息还包括第二DU接口标识。
  29. [错误提交(细则20.5之二)]
    根据权利要求1至7中任一项所述的方法,其特征在于,所述接收来自终端设备的上行数据,具体包括:
    在随机接入过程中接收来自所述终端设备的上行数据。
  30. [错误提交(细则20.5之二)]
    根据权利要求1至8中任一项所述的方法,其特征在于,所述第一消息还包括RRC恢复请求消息,所述上行数据包括所述RRC恢复请求消息。
  31. [错误提交(细则20.5之二)]
    根据权利要求7至9中任一项所述的方法,其特征在于,所述第二消息还包括所述第二DU接口标识和第二CU接口标识,所述第二CU接口标识存储在所述上下文信息中。
  32. [错误提交(细则20.5之二)]
    根据权利要求7至9中任一项所述的方法,其特征在于,所述第二消息为上下文修改请求消息。
  33. [错误提交(细则20.5之二)]
    根据权利要求11所述的方法,其特征在于,所述方法还包括,向所述CU发送上下文修改响应消息。
  34. [错误提交(细则20.5之二)]
    根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括,在接收所述上行数据之前,接收来自所述CU的RRC释放消息和指示信息,所述指示信息指示所述DU保存所述终端设备的上下文信息;
    向所述终端设备发送所述RRC释放消息。
  35. [错误提交(细则20.5之二)]
    一种通信方法,其特征在于,包括:
    分布式DU接收来自终端设备的上行数据;
    所述DU为所述终端设备分配第一小区无线网络临时标识C-RNTI和第一DU接口标识;
    所述DU向集中式单元CU发送第一消息,所述第一消息包括所述第一C-RNTI和所述第一DU接口标识;
    所述CU向所述DU发送第二消息,所述第二消息包括所述第一C-RNTI或所述第一DU接口标识。
  36. [错误提交(细则20.5之二)]
    根据权利要求14所述的方法,其特征在于,所述终端设备处于无线资源控制RRC空闲态或RRC非激活态。
  37. [错误提交(细则20.5之二)]
    根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    在接收所述上行数据之前,所述DU存储有所述终端设备的上下文信息,所述上下文信息包括第二C-RNTI;
    所述DU在接收到所述第二消息之后,将所述第二C-RNTI更新为所述第一C-RNTI。
  38. [错误提交(细则20.5之二)]
    根据权利要求14至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述DU在接收到所述第二消息之后,删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识。
  39. [错误提交(细则20.5之二)]
    根据权利要求16所述的方法,其特征在于,当所述第二消息包括所述第一DU接口标识时,所述将所述第二C-RNTI更新为所述第一C-RNTI,具体包括:
    所述DU根据所述第一DU接口标识确定所述第一C-RNTI;
    所述DU将所述第二C-RNTI更新为所述第一C-RNTI。
  40. [错误提交(细则20.5之二)]
    根据权利要求17所述的方法,其特征在于,当所述第二消息包括所述第一C-RNTI时,所述删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识,具体包括:
    所述DU根据所述第一C-RNTI确定所述第一DU接口标识;
    所述DU删除所述第一DU接口标识,或将所述第二DU接口标识更新为所述第一DU接口标识。
  41. [错误提交(细则20.5之二)]
    根据权利要求16至19中任一项所述的方法,其特征在于,所述上下文信息还包括第二DU接口标识。
  42. [错误提交(细则20.5之二)]
    根据权利要求14至20中任一项所述的方法,其特征在于,所述DU接收来自终端设备的上行数据,具体包括:
    所述DU在随机接入过程中接收来自所述终端设备的上行数据。
  43. [错误提交(细则20.5之二)]
    根据权利要求14至21中任一项所述的方法,其特征在于,所述第一消息还包括RRC恢复请求消息,所述上行数据包括所述RRC恢复请求消息。
  44. [错误提交(细则20.5之二)]
    根据权利要求20至22中任一项所述的方法,其特征在于,所述第二消息还包括所述第二DU接口标识和第二CU接口标识,所述第二CU接口标识存储在所述上下文信息中。
  45. [错误提交(细则20.5之二)]
    根据权利要求20至22中任一项所述的方法,其特征在于,所述第二消息为上下文修改请求消息。
  46. [错误提交(细则20.5之二)]
    根据权利要求24所述的方法,其特征在于,所述方法还包括,
    所述DU向所述CU发送上下文修改响应消息。
  47. [错误提交(细则20.5之二)]
    根据权利要求14至25中任一项所述的方法,其特征在于,所述方法还包括,
    在所述DU接收所述上行数据之前,所述CU向所述DU发送RRC释放消息和指示信息,所述指示信息指示所述DU保存所述终端设备的上下文信息;
    所述DU向所述终端设备发送所述RRC释放消息。
  48. [错误提交(细则20.5之二)]
    一种通信装置,其特征在于,包括用于执行如权利要求1至13中任一项所述方法的模块或用于执行如权利要求14至26中任一项所述方法的模块。
  49. [错误提交(细则20.5之二)]
    一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求1至13中任一项所述的方法或控制所述装置实现如权利要求14至26中任一项所述的方法。
  50. [错误提交(细则20.5之二)]
    一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至13中任一项所述的方法或实现如权利要求14至26中任一项所述的方法。
  51. [错误提交(细则20.5之二)]
    一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至13中任一项所述的方法或实现如权利要求14至26中任一项所述的方法。
PCT/CN2023/103600 2022-07-08 2023-06-29 一种通信方法、设备和系统 WO2024007930A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210799533 2022-07-08
CN202210799533.5 2022-07-08
CN202211186639.4 2022-09-27
CN202211186639.4A CN117376845A (zh) 2022-07-08 2022-09-27 一种通信的方法、设备和系统

Publications (1)

Publication Number Publication Date
WO2024007930A1 true WO2024007930A1 (zh) 2024-01-11

Family

ID=89389879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103600 WO2024007930A1 (zh) 2022-07-08 2023-06-29 一种通信方法、设备和系统

Country Status (2)

Country Link
CN (1) CN117376845A (zh)
WO (1) WO2024007930A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170303245A1 (en) * 2016-04-14 2017-10-19 Qualcomm Incorporated Random access resource unit allocation for a multiple bssid network
CN107637005A (zh) * 2015-05-15 2018-01-26 韦勒斯标准与技术协会公司 用于多用户上行链路传输的无线通信终端和无线通信方法
GB2561616A (en) * 2017-04-21 2018-10-24 Canon Kk Resource units for non-associated stations in a multi-user downlink transmission of a 802.11AX network
CN110536469A (zh) * 2018-05-23 2019-12-03 华为技术有限公司 基于多接入点ap协作的空间复用的方法和装置
DE102020134928A1 (de) * 2020-03-05 2021-09-09 Danny Alexander Kompatibilität der blockquittierung von multistations-geräten
US20220322076A1 (en) * 2020-08-03 2022-10-06 Chengdu Xgimi Technology Co., Ltd. Multi-link terminal, method for allocating an address for a multi-link terminal, network access device and medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107637005A (zh) * 2015-05-15 2018-01-26 韦勒斯标准与技术协会公司 用于多用户上行链路传输的无线通信终端和无线通信方法
US20170303245A1 (en) * 2016-04-14 2017-10-19 Qualcomm Incorporated Random access resource unit allocation for a multiple bssid network
GB2561616A (en) * 2017-04-21 2018-10-24 Canon Kk Resource units for non-associated stations in a multi-user downlink transmission of a 802.11AX network
CN110536469A (zh) * 2018-05-23 2019-12-03 华为技术有限公司 基于多接入点ap协作的空间复用的方法和装置
DE102020134928A1 (de) * 2020-03-05 2021-09-09 Danny Alexander Kompatibilität der blockquittierung von multistations-geräten
US20220322076A1 (en) * 2020-08-03 2022-10-06 Chengdu Xgimi Technology Co., Ltd. Multi-link terminal, method for allocating an address for a multi-link terminal, network access device and medium

Also Published As

Publication number Publication date
CN117376845A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
US11510264B2 (en) System and method for network access using a relay
WO2020248202A1 (zh) 直连链路资源配置方法、装置、系统及可读存储介质
CN113508639B (zh) 一种用于中继通信的方法和装置
TWI757390B (zh) 波束選擇方法、裝置及系統
CN109716700A (zh) 一种指示方法及相关设备
CN111213430B (zh) 基站设备以及用于发送数据和信号的方法
WO2023090820A1 (en) Method and apparatus for ue authentication for remote provisioning
WO2022002192A1 (zh) 多链路设备的aid分配方法及相关装置
WO2023202534A1 (zh) 多跳传输方法及通信装置
EP4224900A1 (en) Routing method and apparatus
WO2021036910A1 (zh) 数据传输方法及装置
WO2024032287A1 (zh) 寻呼方法和通信装置
CN115136651A (zh) 切换方法和通信装置
WO2024007930A1 (zh) 一种通信方法、设备和系统
US20220182910A1 (en) Data Processing Method, Apparatus, And System
CN113747367B (zh) 一种通信方法及通信装置
WO2023185956A1 (zh) 基于侧行链路的通信方法、装置、存储介质和芯片系统
WO2024071857A1 (ko) 무선 통신 시스템에서 신호를 처리하기 위한 방법 및 장치
RU2809236C1 (ru) Способ назначения идентификатора ассоциирования для многоканального устройства и соответствующая аппаратура
US20230171567A1 (en) Communication method, communication apparatus, and computer-readable storage medium
WO2022104689A1 (zh) 一种小区频域带宽切换的方法、相关装置以及设备
WO2023185992A1 (zh) 中继通信方法与装置
WO2023051711A1 (zh) 一种随机接入前导的发送方法、接收方法及通信装置
WO2022257949A1 (zh) 通信方法和装置
WO2023205959A1 (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834698

Country of ref document: EP

Kind code of ref document: A1