WO2024007624A1 - 光学波导及增强现实显示设备 - Google Patents

光学波导及增强现实显示设备 Download PDF

Info

Publication number
WO2024007624A1
WO2024007624A1 PCT/CN2023/082728 CN2023082728W WO2024007624A1 WO 2024007624 A1 WO2024007624 A1 WO 2024007624A1 CN 2023082728 W CN2023082728 W CN 2023082728W WO 2024007624 A1 WO2024007624 A1 WO 2024007624A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
grating
region
sub
optical waveguide
Prior art date
Application number
PCT/CN2023/082728
Other languages
English (en)
French (fr)
Inventor
罗明辉
乔文
朱平
李瑞彬
杨明
陈林森
Original Assignee
苏州苏大维格科技集团股份有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司, 苏州大学 filed Critical 苏州苏大维格科技集团股份有限公司
Publication of WO2024007624A1 publication Critical patent/WO2024007624A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present invention relates to the technical field of augmented reality display, and in particular, to an optical waveguide and an augmented reality display device.
  • Augmented Reality (AR) technology is a new technology that "seamlessly" integrates real world information and virtual world information. It not only displays real world information, but also displays virtual information at the same time. Both kinds of information Complement and superimpose each other.
  • AR Augmented Reality
  • users use a helmet-mounted display to overlap the real world with computer graphics, and then they can see the real world surrounding it.
  • Optical waveguides have a wide range of applications in the field of augmented reality due to their total reflection optical properties, ultra-thin, and surface-processable structures.
  • Augmented reality display based on optical waveguides has become the mainstream display technology in the industry.
  • the HoloLens developed by Microsoft is based on a butterfly-shaped dilated pupil conduction to form a display window, and has a large field of view for augmented reality display;
  • the augmented reality glasses developed by the American Magic Leap company are based on a secondary unidirectional conduction optical waveguide design and are realized by combining multiple pieces. Color display.
  • augmented reality displays based on optical waveguides can also be used in vehicle head-up displays.
  • the mainstream heads-up display is based on the principle of geometric optical space reflection, and has shortcomings such as large front-mounted volume, short virtual image viewing distance, and narrow eye movement range.
  • the augmented reality heads-up display based on optical waveguides can achieve the advantages of small front-mounted volume, far virtual image viewing distance, large eye movement range, and large field of view by increasing the surface area of the optical waveguide. It is an ideal solution for intelligent driving and human-vehicle interaction. Key display technologies.
  • a grating waveguide structure commonly used in the prior art is a coupling-turning-coupling-out structure.
  • the grating waveguide structure includes a waveguide substrate 1, a coupling region 2, a turning region 3 and a The coupling-out area 4, the coupling-in area 2, the turning area 3 and the out-coupling area 40 are all provided with gratings.
  • the image light is incident from the coupling area 2 and diffracted in the coupling area 2.
  • the light that satisfies the total reflection condition is transmitted to the turning area 3 through total reflection in the waveguide substrate 1.
  • the light interacts with the grating in the turning area 3 and realizes the optical path.
  • the bent light After bending, the bent light continues to be transmitted to the outcoupling area 4 in a total reflection transmission manner, and is finally coupled out to the human eye by the outcoupling area 4 to achieve virtual imaging.
  • the light is transmitted from the coupling area 2 to the turning area 3 to achieve stretching and expansion in the x-axis direction, and the light is transmitted from the turning area 3 to the outcoupling area 4 to achieve stretching and expansion in the y-axis direction. , thus achieving pupil expansion in two-dimensional space.
  • the coupling-in area 2, the turning area 3 and the out-coupling area 4 used for transmitting light have island designs for pupil expansion and coupling, which results in a lot of waste in the light transmission process, resulting in low overall coupling efficiency. , and the exit pupil range is very limited.
  • the object of the present invention is to provide an optical waveguide that can not only improve the overall utilization efficiency, but also maximize the exit pupil range.
  • the invention provides an optical waveguide, which includes a waveguide substrate.
  • a coupling-in region and a coupling-out region are provided on the waveguide substrate.
  • the coupling-in region is provided with a coupling grating.
  • the coupling-out region includes a first coupling-out region and a coupling-out region. a second coupling-out area, a first coupling-out grating is provided in the first coupling-out area, a second coupling-out grating is provided in the second coupling-out area; the coupling-in grating and the second coupling-out grating are
  • the grating is a one-dimensional grating
  • the first coupling grating is a two-dimensional grating.
  • the second coupling-out area includes a first sub-region and a second sub-region
  • the second coupling-out grating includes a first sub-grating and a second sub-grating
  • the first sub-grating is disposed on the first sub-region.
  • a sub-region, the second sub-grating is arranged in the second sub-region.
  • first sub-region and the second sub-region are symmetrically arranged on both sides of the first coupling-out region.
  • the grating orientation of the coupling grating is consistent with the width direction of the waveguide substrate;
  • the first coupling grating has a first grating orientation M and a second grating orientation N arranged in a cross;
  • the first sub-grating has The grating orientation is the same as the first grating orientation M, and the grating orientation of the second sub-grating is the same as the second grating orientation N.
  • the angle between the first grating orientation M and the second grating orientation N is 90o to 160o.
  • the coupling-in region, the first coupling-out region, the first sub-region, and the second sub-region are all rectangular; the coupling-in region and the first coupling-out region have the same width. and are located at the same position in the width direction of the waveguide substrate; the widths of the first sub-region and the second sub-region are less than or equal to the width of the first coupling-out region, and the first sub-region and the second sub-region are The lengths of the second sub-region and the first coupling-out region are equal.
  • the first coupling-out area is divided into multiple areas from close to the coupling-in area to away from the coupling-in area, and the gratings in the multiple areas have different depths and duty cycles;
  • the third A sub-region is divided into a plurality of regions from close to the first coupling region to a direction away from the first coupling region, and gratings in the plurality of regions have different depths and duty cycles;
  • the second sub-region It is divided into a plurality of regions from close to the first coupling-out region to a direction away from the first coupling-out region, and the gratings in the plurality of regions have different depths and duty cycles.
  • the coupling grating, the first coupling grating and the second coupling grating are located on the same side surface of the waveguide substrate.
  • the first coupling grating is a nanolattice structure
  • the coupling grating and the second coupling grating are nanowire structures.
  • the present invention also provides an augmented reality display device, including the above-mentioned optical waveguide.
  • a one-dimensional coupling grating is provided in the coupling region of the waveguide substrate.
  • the coupling region includes a first coupling region and a second coupling region, and a two-dimensional first coupling grating is provided in the first coupling region.
  • Coupling grating, a one-dimensional second coupling grating is set in the second coupling area; the optical waveguide uses a one-dimensional grating to couple in and a hybrid grating to couple out.
  • the optical waveguide of the present invention does not need to be equipped with a turning grating, has the characteristics of high bandwidth, high interconnectivity, inherent parallel processing, etc., and forms a neural network-like interconnection conduction for continuous input light.
  • the point and surface expand the pupil while coupling it out, thereby improving the overall utilization efficiency and maximizing the exit pupil range.
  • Figure 1 is a schematic diagram of a grating waveguide structure commonly used in the prior art that adopts coupling-turn-coupling
  • Figure 2 is a schematic structural diagram of an optical waveguide according to a preferred embodiment of the present invention.
  • Figure 3 is a schematic diagram of light transmission of an optical waveguide according to a preferred embodiment of the present invention.
  • Figure 4 is another light transmission schematic diagram of the optical waveguide according to the preferred embodiment of the present invention.
  • 5a to 5d are schematic diagrams of the combination of image light source incident and human eye observation of the optical waveguide according to the preferred embodiment of the present invention.
  • Figure 6 is a simulation diagram of coupling when incident light is incident on the coupling region of the optical waveguide according to the preferred embodiment of the present invention.
  • Figure 7 is a schematic diagram of the diffracted light generated in Figure 6 propagating in the optical waveguide
  • Figure 8 is the diffraction simulation diagram of Figure 7;
  • Figure 9 further shows a schematic diagram of light transmission in the first coupling-out area
  • Figure 10 is a scanning electron microscope image of the first coupling-out area
  • Figure 11 is a trend chart of the azimuth angle 270 diffracted light marked by the black box B in Figure 8 in the range of duty cycle 0.1-1.1 and depth 50nm-600nm;
  • Figure 12 is a schematic structural diagram of an optical waveguide according to another embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an optical waveguide according to a preferred embodiment of the present invention.
  • the optical waveguide provided in this embodiment includes a waveguide substrate 10.
  • the waveguide substrate 10 is provided with a coupling region 20 and a coupling region 30.
  • the in-coupling area 20 is provided with a coupling grating 21, and the out-coupling area 30 is provided with an out-coupling grating.
  • the out-coupling area 30 includes a first out-coupling area 31 and a second out-coupling area 32, and the first out-coupling area 31 is provided with a first out-coupling area.
  • the coupling grating 41 and the second coupling grating 42 are disposed in the second coupling region 32 .
  • the waveguide substrate 10 has high transmittance in the visible light wavelength range, and can be made of glass, resin, or other materials.
  • the second coupling area 32 includes a first sub-region 321 and a second sub-region 322
  • the second coupling grating 42 includes a first sub-grating 421 and a second sub-grating 422, and the first sub-grating 421 is disposed on the first sub-region 321, and the second sub-grating 422 is disposed in the second sub-region 322.
  • first sub-region 321 and the second sub-region 322 are symmetrically arranged on both sides of the first coupling-out region 31 .
  • the first coupling grating 41 is a two-dimensional grating
  • the coupling grating 21 and the second coupling grating 42 are one-dimensional gratings. That is, the grating in the coupling area 30 is a hybrid grating, the center one is a two-dimensional grating, and the left and right gratings are one-dimensional gratings.
  • One-dimensional gratings are composed of multiple one-dimensional grating units.
  • One-dimensional gratings have grating orientations in one direction.
  • Two-dimensional array gratings are composed of multiple two-dimensional grating units. The multiple two-dimensional grating units have grating orientations in two directions. Arranged in an array.
  • the first coupling grating 41 is a nanolattice structure, and the individual units of the nanolattice structure can be any regular or irregular shape such as cylinders, square columns, trapezoidal columns, etc., arranged in a periodic manner.
  • the coupling grating 21 and the second coupling grating 42 have a nanowire structure, and the nanowire structure is a line-like structure, which can be a regular rectangle or an irregular shape, and is also periodically arranged. It can be prepared using holographic interference technology, photolithography technology or nanoimprint technology.
  • the x direction is defined as the width direction of the waveguide substrate 10 in the figure
  • the y direction is defined as the length direction of the waveguide substrate 10 in the figure
  • the z direction is defined as the thickness direction of the waveguide substrate 10 .
  • the coupling grating 21 has a grating orientation (ie, the channel direction of the grating). In this embodiment, the grating orientation of the coupling grating 21 is consistent with the x direction, that is, consistent with the width direction of the waveguide substrate 10 .
  • the first decoupling grating 41 has two grating orientations arranged crosswise, including a first grating orientation M and a second grating orientation N.
  • the grating orientation of the first sub-grating 421 is the same as the first grating orientation M
  • the second grating orientation M is the same as the second grating orientation N.
  • the orientation angle of the first coupling grating 41 (ie, the angle between the first grating orientation M and the second grating orientation N) is 90o to 160o.
  • the x direction of the first grating orientation M forms an included angle of 150°
  • the second grating orientation N forms an included angle of 30° with the x direction.
  • the coupling-in region 20, the first coupling-out region 31, the first sub-region 321, and the second sub-region 322 are all rectangular.
  • the coupling region 20 and the first coupling region 31 have the same width and are located at the same position in the width direction (x direction) of the waveguide substrate 10 , but the first coupling region 31 is located below the coupling region 20 in the y direction. .
  • the width of the first sub-region 321 and the second sub-region 322 in the x-direction is less than or equal to the width of the first out-coupling region 31 in the x-direction.
  • 31 have equal heights in the y direction and are at the same location.
  • Figure 3 is a schematic diagram of light transmission of the optical waveguide according to the preferred embodiment of the present invention.
  • Figure 4 is another schematic diagram of light transmission of the optical waveguide according to the preferred embodiment of the present invention. Please refer to Figures 3 and 4 together.
  • the coupling-in region 20 couples and conducts toward the coupling-out region 30 . It first enters the first coupling-out region 31 in the middle of the coupling-out region 30 .
  • the first coupling-out grating 41 of the first coupling-out region 31 is a nanolattice structure. The light transmitted into the first coupling grating 41 obliquely enters the first coupling grating 41 at a certain angle.
  • the first coupling grating 41 has multi-directional light diffusion in the optical waveguide, including coupling out to the left, coupling out to the right and coupling out in the center.
  • the light continuously diffuses in multiple directions in specific directions, thereby realizing the function of pupil expansion and conduction at the same time.
  • the conductive light coupled out from the left and right sides is conducted along the original direction and coupled out at the same time. Therefore, the optical waveguide of the present invention has a central coupling-out and a coupling-out on the left and right sides.
  • the coupling grating 21 , the first coupling grating 41 and the second coupling grating 42 are located on the same side surface of the waveguide substrate 10 , but this is not a limitation.
  • the optical waveguide can be such that the image light source 40 is incident from the structural surface (the side where the coupling grating 21 and the coupling out grating are provided), and the human eye 50 is incident from the non-structural surface on the other side (no grating is provided).
  • the image light source 40 is incident from the non-structural surface, and the human eye 50 is on the same side as the image light source 40; or the image light source 40 is incident from the structural surface, and the human eye 50 is on the same side as the image light source 40; or the image light source is 40 is incident from the non-structural surface, and the human eye 50 is observed from the structural surface.
  • Figure 6 is a simulation diagram of the coupling when incident light is incident on the coupling area of the optical waveguide according to the preferred embodiment of the present invention.
  • Figure 7 is a schematic diagram of the diffracted light generated in Figure 6 propagating in the optical waveguide. Please refer to Figure 6 as well.
  • the coupling grating 21 in the coupling region 20 is a one-dimensional nanowire structure with positive and negative first-order diffraction.
  • the diffracted rays oriented perpendicular to the grating orientation of the coupling grating 21 are conducted to the coupling out region 30 .
  • Figure 8 is the diffraction simulation diagram of Figure 7. As shown in Figure 8, the light from the in-coupling diffraction in Figure 7 will be incident and coupled out. At this time, the light rays with azimuth angles of 210, 270 and 330 will be mainly generated. Among them, the azimuth angle of 210 The light will continue to be coupled out from the left, the light from the 270 azimuth angle will continue to be coupled out from the middle, and the light from the azimuth angle of 330 will be coupled out from the right.
  • Figure 9 further shows the schematic diagram of light transmission in the first coupling area. Please refer to Figure 9.
  • the light passing through the A1 point will generate A2, A6, and A4 light.
  • the A2 light will continue to be transmitted and touch the next nanopoint.
  • the array generates A12, A3, and A7 rays;
  • A6 light transmission generates A7, A9, and A8 rays.
  • large-scale diffraction clusters can be formed in the 210 direction, 270 direction, and 330 direction.
  • the 210 direction and the 330 direction correspond to Left coupling out and right coupling out areas.
  • a scanning electron microscope image of the first decoupling region 31 is shown in FIG. 10 .
  • Figure 11 is a trend chart of the azimuth angle 270 diffracted light marked by the black box B in Figure 8 in the range of duty cycle 0.1-1.1 and depth 50nm-600nm.
  • the purpose of Figure 11 is to analyze the top-down diffraction characteristics of the first decoupling region 31. It can be seen that as the depth increases and the duty cycle decreases, the 270 azimuth angle efficiency can change from small to large.
  • Figure 12 is a schematic structural diagram of an optical waveguide according to another embodiment of the present invention. Please refer to Figure 12.
  • the optical waveguide can plan the structure of the entire outcoupling region 30 according to the conduction efficiency of different duty cycles and different depths. For example, depth and shape modulation can be performed by region to improve the uniformity of light coupling intensity in each region.
  • the first coupling-out region 31 is divided into multiple regions from close to the coupling-in region 20 to away from the coupling-in region 20 (y-direction from top to bottom), and the gratings in the plurality of regions have different depths and occupancies.
  • the duty ratio for example, divides the first decoupling area 31 into areas C1, C2, C3, C4, and C5, where the depth from C1 to C5 gradually increases and/or the duty cycle gradually decreases.
  • the first sub-region 321 is divided into multiple regions from close to the first coupling-out region 31 to away from the first coupling-out region 31 (from right to left in the x-direction), and the gratings in the plurality of regions have different depths and occupancies. empty ratio.
  • the first sub-region 321 is divided into D1, D2, and D3 regions, where the depth from D1 to D3 gradually increases and/or the duty cycle gradually decreases.
  • the second sub-region 322 is divided into multiple regions from close to the first coupling-out region 31 to away from the first coupling-out region 31 (from left to right in the x-direction), and the gratings in the plurality of regions have different depths and occupancies. empty ratio.
  • the second sub-region 322 is divided into regions E1, E2, and E3, where the depth from E1 to E3 gradually increases and/or the duty cycle gradually decreases.
  • the present invention relates to an augmented reality display device, including the above-mentioned optical waveguide.
  • Other structures of the augmented reality display device are well known to those skilled in the art and will not be described again here.
  • the optical waveguide proposed by the present invention uses a one-dimensional grating to couple in and a hybrid grating to couple out.
  • the light is conducted through point expansion and pupil expansion.
  • the present invention Optical waveguides do not need to be equipped with turning gratings. They have the characteristics of high bandwidth, high interconnectivity, and inherent parallel processing. They form neural network-like interconnection conduction for continuous input light, which is coupled out by points and surfaces while expanding the pupil, thereby improving the overall Utilize efficiency while maximizing the exit pupil range.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, or it can be an internal connection between two components.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, or it can be an internal connection between two components.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光学波导,包括波导基底(10),波导基底(10)上设有耦入区域(20)和耦出区域(30),耦入区域(20)设有耦入光栅(21),耦出区域(30)包括第一耦出区域(31)和第二耦出区域(32),第一耦出区域(31)内设有第一耦出光栅(41),第二耦出区域(32)内设有第二耦出光栅(42),耦入光栅(21)与第二耦出光栅(42)为一维光栅,第一耦出光栅(41)为二维光栅。

Description

光学波导及增强现实显示设备 技术领域
本发明涉及增强现实显示技术领域,特别是涉及一种光学波导及增强现实显示设备。
背景技术
增强现实(Augmented Reality,AR)技术,是一种将真实世界信息和虚拟世界信息“无缝”集成的新技术,不仅展现了真实世界的信息,而且将虚拟的信息同时显示出来,两种信息相互补充、叠加。在视觉化的增强现实中,用户利用头盔显示器,把真实世界与电脑图形重合成在一起,便可以看到真实的世界围绕着它。
光学波导因其全反射光学特性、超薄、表面可加工结构,在增强现实领域具备广泛的应用。基于光学波导的增强现实显示已成为目前行业的主流显示技术。例如,微软开发的HoloLens,基于蝴蝶型扩瞳传导组成显示窗口,具备大视场的增强现实显示;美国Magic Leap公司开发的增强现实眼镜,基于二次单向传导光学波导设计,多片组合实现彩色显示。
基于光学波导的增强现实显示除了应用在近眼显示领域以外,还可以应用在车载抬头显示。目前,主流的抬头显示基于几何光学空间反射的原理,具有大的前装体积、虚像视距短、眼动范围窄等缺点。基于光学波导的增强现实抬头显示,通过增大光学波导的表面积,从而可以实现小前装体积、远虚像视距、眼动范围大、视场角大等优点,是智能驾驶、人车交互的关键显示技术。
技术问题
现有技术中常用的采用耦入-转折-耦出的光栅波导结构,如图1所示,光栅波导结构包括波导基底1,设置在该波导基底1上的耦入区域2、转折区域3及耦出区域4,耦入区域2、转折区域3及耦出区域40内均设置有光栅。图像光从耦入区域2入射并在耦入区域2内发生衍射,满足全反射条件的光线经在波导基底1内经全反射传导至转折区域3,光线与转折区域3内的光栅交互并实现光路弯折,弯折后的光线继续以全反射传导的方式传导至耦出区域4,并最终被耦出区域4耦出至人眼以实现虚拟成像。上述过程中,光线从耦入区域2传导至转折区域3实现了在x轴方向的拉伸、扩展,光线从转折区域3传导至耦出区域4则实现了在y轴方向的拉伸、扩展,从而实现了二维空间的扩瞳。但现有技术中用于传导光线的耦入区域2、转折区域3及耦出区域4在设计上扩瞳与耦出存在孤岛设计,光线传导过程中浪费较多,导致整体耦出效率偏低,且出瞳范围局限性大。
技术解决方案
本发明的目的在于提供一种既能提高整体利用效率,同时最大化扩大出瞳范围的光学波导。
本发明提供一种光学波导,包括波导基底,所述波导基底上设有耦入区域和耦出区域,所述耦入区域设有耦入光栅,所述耦出区域包括第一耦出区域和第二耦出区域,所述第一耦出区域内设有第一耦出光栅,所述第二耦出区域内设有第二耦出光栅;所述耦入光栅与所述第二耦出光栅为一维光栅,所述第一耦出光栅为二维光栅。
进一步地,所述第二耦出区域包括第一子区域和第二子区域,所述第二耦出光栅包括第一子光栅和第二子光栅,所述第一子光栅设置在所述第一子区域,所述第二子光栅设置在所述第二子区域。
进一步地,所述第一子区域和所述第二子区域对称设置在所述第一耦出区域的两侧。
进一步地,所述耦入光栅光栅取向与所述波导基底的宽度方向一致;所述第一耦出光栅具有交叉设置的第一光栅取向M和第二光栅取向N;所述第一子光栅的光栅取向与所述第一光栅取向M相同,所述第二子光栅的光栅取向与所述第二光栅取向N相同。
进一步地,所述第一光栅取向M与所述第二光栅取向N之间的夹角为90º至160º。
进一步地,所述耦入区域、所述第一耦出区域、所述第一子区域、所述第二子区域均为矩形;所述耦入区域与所述第一耦出区域的宽度相等并且在所述波导基底的宽度方向上位于同一位置;所述第一子区域、所述第二子区域的宽度小于或等于所述第一耦出区域的宽度,所述第一子区域、所述第二子区域、所述第一耦出区域的长度相等。
进一步地,所述第一耦出区域从靠近所述耦入区域向远离所述耦入区域方向分成多个区域并且所述多个区域内的光栅具有不同的深度和占空比;所述第一子区域从靠近所述第一耦出区域向远离所述第一耦出区域方向分成多个区域并且所述多个区域内的光栅具有不同的深度和占空比;所述第二子区域从靠近所述第一耦出区域向远离所述第一耦出区域方向分成多个区域并且所述多个区域内的光栅具有不同的深度和占空比。
进一步地,所述耦入光栅、所述第一耦出光栅和所述第二耦出光栅位于所述波导基底的同一侧表面。
进一步地,所述第一耦出光栅为纳米点阵结构,所述耦入光栅与所述第二耦出光栅为纳米线结构。
本发明还提供一种增强现实显示设备,包括上述的光学波导。
有益效果
本发明提供的光学波导,在波导基底的耦入区域设置一维的耦入光栅,耦出区域包括第一耦出区域和第二耦出区域,第一耦出区域内设置二维的第一耦出光栅,第二耦出区域内设置一维的第二耦出光栅;光学波导以一维光栅耦入、混合光栅耦出,光线在光学波导中,以点扩面进行扩瞳传导,相比于现有的光学波导增强现实显示的方案,本发明的光学波导无需设置转折光栅,具备高带宽、高互联性、内在的并行处理等特点,对连续输入光线形成类神经网络互联的传导,由点及面边扩瞳边耦出,从而既提高了整体利用效率,同时最大化扩大出瞳范围。
附图说明
图1为现有技术中常用的采用耦入-转折-耦出的光栅波导结构示意图;
图2为本发明较佳实施例的光学波导的结构示意图;
图3为本发明较佳实施例的光学波导的光线传导示意图;
图4为本发明较佳实施例的光学波导的另一光线传导示意图;
图5a至图5d是本发明较佳实施例的光学波导的图像光源入射与人眼观察的组合方式示意图;
图6为针对本发明较佳实施例的光学波导的耦入区域经入射光线入射时耦合的模拟图;
图7为图6产生的衍射光在光学波导内传导的示意图;
图8为图7的衍射模拟图;
图9进一步示出了在第一耦出区域的光线传导示意图;
图10为第一耦出区域的扫描电子显微镜图;
图11为图8中的黑框B标记的方位角270衍射光在占空比0.1-1.1、深度50nm-600nm范围内的趋势图;
图12是本发明另一实施例的光学波导的结构示意图。
本发明的实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
图2为本发明较佳实施例的光学波导的结构示意图,请参阅图2,本实施例提供的光学波导包括波导基底10,波导基底10上设有耦入区域20和耦出区域30,耦入区域20设有耦入光栅21,耦出区域30设有耦出光栅,耦出区域30包括第一耦出区域31和第二耦出区域32,第一耦出区域31内设有第一耦出光栅41,第二耦出区域32内设有第二耦出光栅42。
波导基底10具备在可见光波长范围内高的透过率,可以是玻璃、树脂等材料。
具体地,第二耦出区域32包括第一子区域321和第二子区域322,第二耦出光栅42包括第一子光栅421和第二子光栅422,第一子光栅421设置在第一子区域321,第二子光栅422设置在第二子区域322。
进一步地,第一子区域321和第二子区域322对称设置在第一耦出区域31的两侧。
本实施例中,第一耦出光栅41为二维光栅,耦入光栅21与第二耦出光栅42为一维光栅。即耦出区域30的光栅为混合光栅,居中的是二维光栅,左右两边的是一维光栅。一维光栅由多个一维光栅单元组成,一维光栅具有一个方向的光栅取向,二维阵列光栅由多个二维光栅单元组成,该多个二维光栅单元具有两个方向的光栅取向,按阵列的方式排布。
进一步地,第一耦出光栅41为纳米点阵结构,纳米点阵结构的单个单元可以为圆柱、方柱、梯形柱等任何规则或不规则形状,呈周期排布。耦入光栅21与第二耦出光栅42为纳米线结构,纳米线结构为线条状结构,可以为规则的矩形,也可为不规则的形状,同样呈周期排布。可以采用全息干涉技术、光刻技术或纳米压印技术制备而成。
进一步地,定义x方向为图中波导基底10的宽度方向,定义y方向为图中波导基底10的长度方向,定义z方向为波导基底10的厚度方向。其中,耦入光栅21具有一个光栅取向(即光栅的沟道方向),本实施例中,耦入光栅21的光栅取向与x方向一致,即与波导基底10的宽度方向一致。
第一耦出光栅41具有交叉设置两个光栅取向,包括第一光栅取向M和第二光栅取向N,本实施例中,第一子光栅421的光栅取向与第一光栅取向M相同,第二子光栅422的光栅取向与第二光栅取向N相同。
进一步的,第一耦出光栅41的取向夹角(即第一光栅取向M与第二光栅取向N之间的夹角)为90º至160º。具体例如,第一光栅取向M的x方向呈150º夹角,第二光栅取向N与x方向呈30º夹角。
进一步地,耦入区域20、第一耦出区域31、第一子区域321、第二子区域322均为矩形。耦入区域20与第一耦出区域31的宽度相等并且在波导基底10的宽度方向(x方向)上位于位于同一位置,但在y方向上第一耦出区域31位于耦入区域20的下方。第一子区域321、第二子区域322在x方向上的宽度小于或等于第一耦出区域31在x方向上的宽度,第一子区域321、第二子区域322、第一耦出区域31在y方向上的高度相等且位于同一位置。
图3为本发明较佳实施例的光学波导的光线传导示意图,图4为本发明较佳实施例的光学波导的另一光线传导示意图,请一并参阅图3和图4,当图像光线经耦入区域20耦合,并朝耦出区域30传导,首先进入耦出区域30中间的第一耦出区域31,第一耦出区域31的第一耦出光栅41为纳米点阵结构,经耦入传导的光以一定角度斜入第一耦出光栅41,第一耦出光栅41具备在光学波导内多向扩散的光线,包括往左边的耦出、右边的耦出和居中的耦出,光线在第一耦出区域31的耦出传导过程中,不停的进行特定方向的多向扩散,实现边扩瞳边传导的功能。另外,经过左右耦出的传导光,一边沿原方向传导,一边耦出。因此,本发明的光学波导具备居中的耦出和左右两边的耦出。
进一步地,耦入光栅21、第一耦出光栅41和第二耦出光栅42位于波导基底10的同一侧表面,但并不以此为限。如图5a至图5d所示,光学波导可以是图像光源40从结构面(设有耦入光栅21和耦出光栅的一面)入射,人眼50从另一侧的非结构面(未设置光栅的一面)观察;或者是图像光源40从非结构面入射,人眼50与图像光源40同侧;或者是图像光源40从结构面入射,人眼50与图像光源40同侧;或者是图像光源40从非结构面入射,人眼50从结构面观察。
图6为针对本发明较佳实施例的光学波导的耦入区域经入射光线入射时耦合的模拟图,图7为图6产生的衍射光在光学波导内传导的示意图,请一并参阅图6和图7,当光线从空气入射耦入区域20的时候,耦入区域20的耦入光栅21为一维纳米线结构,具备正负一级的衍射情况,当入射波从520nm的光线以正入射,即垂直入射耦入区域20时,产生的衍射光线中,与耦入光栅21的光栅取向垂直方向的衍射光线,传导至耦出区域30。
图8为图7的衍射模拟图,如图8所示,图7中来自耦入衍射的光线会入射耦出,此时会主要产生方位角210、270、330的光线,其中,210方位角光线会继续传导左耦出,270方位角光线会继续传导中间耦出,330方位角光线会继续传导右耦出。
图9进一步示出了在第一耦出区域的光线传导示意图,请参阅图9,经由A1点的光会产生A2、A6、A4光线,A2光线又会继续传导,触碰到下一个纳米点阵,产生A12、A3、A7光线;A6光线传导产生A7、A9、A8光线,如此周而复始,可以在210方向、270方向和330方向形成规模化的衍射集群,同时210方向和330方向即对应于左耦出和右耦出区域。第一耦出区域31的扫描电子显微镜图如图10所示。
图11为图8中的黑框B标记的方位角270衍射光在占空比0.1-1.1、深度50nm-600nm范围内的趋势图。图11的目的在于分析第一耦出区域31自上而下的衍射特性,可以看出,随着深度的增加,占空比的减小,270方位角效率可以自小到大变化。
为了保证整个耦出区域30的耦出光线均匀性,需要对耦出区域30的结构进行控制。图12是本发明另一实施例的光学波导的结构示意图,请参阅图12,光学波导可以根据不同占空比、不同深度的传导效率去规划整个耦出区域30的结构。例如按区域进行深度、形状的调制,提高每个区域内光线耦出强度的均匀性。
具体地,将第一耦出区域31从靠近耦入区域20向远离耦入区域20方向(y方向从上至下)分成多个区域并且所述多个区域内的光栅具有不同的深度和占空比,例如将第一耦出区域31分C1、C2、C3、C4、C5个区域,其中,从C1至C5的深度逐渐增加、和/或占空比逐渐减小。
将第一子区域321从靠近第一耦出区域31向远离第一耦出区域31方向(x方向从右到左)分成多个区域并且所述多个区域内的光栅具有不同的深度和占空比。例如将第一子区域321分成D1、D2、D3个区域,其中,从D1至D3的深度逐渐增加、和/或占空比逐渐减小。
将第二子区域322从靠近第一耦出区域31向远离第一耦出区域31方向(x方向从左到右)分成多个区域并且所述多个区域内的光栅具有不同的深度和占空比。例如将第二子区域322分成E1、E2、E3个区域,其中,从E1至E3的深度逐渐增加、和/或占空比逐渐减小。
本发明涉及一种增强现实显示设备,包括上述的光学波导。 增强现实显示设备的其它结构为本领域技术人员所熟知,在此不再赘述。
本发明提出的光学波导以一维光栅耦入、混合光栅耦出,光线在光学波导中,以点扩面进行扩瞳传导,相比于现有的光学波导增强现实显示的方案,本发明的光学波导无需设置转折光栅,具备高带宽、高互联性、内在的并行处理等特点,对连续输入光线形成类神经网络互联的传导,由点及面边扩瞳边耦出,从而既提高了整体利用效率,同时最大化扩大出瞳范围。
在附图中,为了清晰起见,会夸大层和区域的尺寸和相对尺寸。应当理解的是,当元件例如层、区域或基板被称作“形成在”、“设置在”或“位于”另一元件上时,该元件可以直接设置在所述另一元件上,或者也可以存在中间元件。相反,当元件被称作“直接形成在”或“直接设置在”另一元件上时,不存在中间元件。
在本文中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语的具体含义。
在本文中,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”、“竖直”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了表达技术方案的清楚及描述方便,因此不能理解为对本发明的限制。
在本文中,用于描述元件的序列形容词“第一”、“第二”等仅仅是为了区别属性类似的元件,并不意味着这样描述的元件必须依照给定的顺序,或者时间、空间、等级或其它的限制。
在本文中,除非另有说明,“多个”、“若干”的含义是两个或两个以上。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,除了包含所列的那些要素,而且还可包含没有明确列出的其他要素。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种光学波导,包括波导基底(10),其特征在于,所述波导基底(10)上设有耦入区域(20)和耦出区域(30),所述耦入区域(20)设有耦入光栅(21),所述耦出区域(30)包括第一耦出区域(31)和第二耦出区域(32),所述第一耦出区域(31)内设有第一耦出光栅(41),所述第二耦出区域(32)内设有第二耦出光栅(42);所述耦入光栅(21)与所述第二耦出光栅(42)为一维光栅,所述第一耦出光栅(41)为二维光栅。
  2. 如权利要求1所述的光学波导,其特征在于,所述第二耦出区域(32)包括第一子区域(321)和第二子区域(322),所述第二耦出光栅(42)包括第一子光栅(421)和第二子光栅(422),所述第一子光栅(421)设置在所述第一子区域(321),所述第二子光栅(422)设置在所述第二子区域(322)。
  3. 如权利要求2所述的光学波导,其特征在于,所述第一子区域(321)和所述第二子区域(322)对称设置在所述第一耦出区域(31)的两侧。
  4. 如权利要求2所述的光学波导,其特征在于,所述耦入光栅(21)光栅取向与所述波导基底(10)的宽度方向一致;所述第一耦出光栅(41)具有交叉设置的第一光栅取向M和第二光栅取向N;所述第一子光栅(421)的光栅取向与所述第一光栅取向M相同,所述第二子光栅(422)的光栅取向与所述第二光栅取向N相同。
  5. 如权利要求4所述的光学波导,其特征在于,所述第一光栅取向M与所述第二光栅取向N之间的夹角为90º至160º。
  6. 如权利要求2所述的光学波导,其特征在于,所述耦入区域(20)、所述第一耦出区域(31)、所述第一子区域(321)、所述第二子区域(322)均为矩形;所述耦入区域(20)与所述第一耦出区域(31)的宽度相等并且在所述波导基底(10)的宽度方向上位于同一位置;所述第一子区域(321)、所述第二子区域(322)的宽度小于或等于所述第一耦出区域(31)的宽度,所述第一子区域(321)、所述第二子区域(322)、所述第一耦出区域(31)的长度相等。
  7. 如权利要求2所述的光学波导,其特征在于,所述第一耦出区域(31)从靠近所述耦入区域(20)向远离所述耦入区域(20)方向分成多个区域并且所述多个区域内的光栅具有不同的深度和占空比;所述第一子区域(321)从靠近所述第一耦出区域(31)向远离所述第一耦出区域(31)方向分成多个区域并且所述多个区域内的光栅具有不同的深度和占空比;所述第二子区域(322)从靠近所述第一耦出区域(31)向远离所述第一耦出区域(31)方向分成多个区域并且所述多个区域内的光栅具有不同的深度和占空比。
  8. 如权利要求1所述的光学波导,其特征在于,所述耦入光栅(21)、所述第一耦出光栅(41)和所述第二耦出光栅(42)位于所述波导基底(10)的同一侧表面。
  9. 如权利要求1所述的光学波导,其特征在于,所述第一耦出光栅(41)为纳米点阵结构,所述耦入光栅(21)与所述第二耦出光栅(42)为纳米线结构。
  10. 一种增强现实显示设备,其特征在于,包括如权利要求1至9任一项所述的光学波导。
PCT/CN2023/082728 2022-07-07 2023-03-21 光学波导及增强现实显示设备 WO2024007624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210796277.4A CN117406329A (zh) 2022-07-07 2022-07-07 光学波导及增强现实显示设备
CN202210796277.4 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024007624A1 true WO2024007624A1 (zh) 2024-01-11

Family

ID=89454092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082728 WO2024007624A1 (zh) 2022-07-07 2023-03-21 光学波导及增强现实显示设备

Country Status (2)

Country Link
CN (1) CN117406329A (zh)
WO (1) WO2024007624A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202041919A (zh) * 2019-03-13 2020-11-16 南韓商Lg化學股份有限公司 繞射光導板以及眼用佩戴品
CN113495319A (zh) * 2021-07-30 2021-10-12 Oppo广东移动通信有限公司 光学结构和光学装置
CN113777707A (zh) * 2021-09-16 2021-12-10 Oppo广东移动通信有限公司 光学结构和光学装置
CN215641931U (zh) * 2021-07-30 2022-01-25 Oppo广东移动通信有限公司 光学结构和光学装置
CN114545549A (zh) * 2022-01-13 2022-05-27 嘉兴驭光光电科技有限公司 用于衍射显示的光学波导装置及显示设备
WO2022115580A1 (en) * 2020-11-25 2022-06-02 Vuzix Corporation Image light guide with zoned diffractive optic
CN114637067A (zh) * 2022-03-15 2022-06-17 北京驭光科技发展有限公司 衍射光波导及显示设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202041919A (zh) * 2019-03-13 2020-11-16 南韓商Lg化學股份有限公司 繞射光導板以及眼用佩戴品
WO2022115580A1 (en) * 2020-11-25 2022-06-02 Vuzix Corporation Image light guide with zoned diffractive optic
CN113495319A (zh) * 2021-07-30 2021-10-12 Oppo广东移动通信有限公司 光学结构和光学装置
CN215641931U (zh) * 2021-07-30 2022-01-25 Oppo广东移动通信有限公司 光学结构和光学装置
CN113777707A (zh) * 2021-09-16 2021-12-10 Oppo广东移动通信有限公司 光学结构和光学装置
CN114545549A (zh) * 2022-01-13 2022-05-27 嘉兴驭光光电科技有限公司 用于衍射显示的光学波导装置及显示设备
CN114637067A (zh) * 2022-03-15 2022-06-17 北京驭光科技发展有限公司 衍射光波导及显示设备

Also Published As

Publication number Publication date
CN117406329A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US20240094545A1 (en) Diffractive waveguide apparatus, near-eye display device, and manufacturing method for diffractive waveguide apparatus
CN110651204B (zh) 具有可变衍射效率的衍射光栅和用于显示图像的方法
CN112601990B (zh) 包括双材料结构的衍射光栅
WO2023040491A1 (zh) 光学结构和光学装置
CN113167943A (zh) 各向异性地形成的衍射光栅设备
CN114859555B (zh) 光栅、用于近眼显示的光波导及近眼显示设备
CN112817153A (zh) 一种大视场角的光学扩瞳装置、显示装置及方法
KR20070057241A (ko) 랜덤화 방법 및 장치
CN111474711B (zh) 全息波导显示装置和增强现实显示设备
WO2020255482A1 (ja) 導光板、その製造方法、導光板モジュール、および画像表示装置
TWI449973B (zh) 線柵偏光板及使用其之背光單元
TWI744878B (zh) 製造繞射背光件的方法
CN219162419U (zh) 耦出光栅结构及衍射光波导、增强现实设备
WO2020008949A1 (ja) 導光板、導光板モジュール、画像表示装置および導光板の製造方法
CN212515221U (zh) 呈现增强现实图像的装置和实现增强现实显示的系统
Zhang et al. Directional backlight module based on pixelated nano-gratings
JP3702445B2 (ja) 光学素子及びその光学素子を用いた装置
CN113325579A (zh) 用于呈现增强现实图像的装置和包含该装置的系统
JP2013003266A (ja) 光拡散部材、偏光板、及び液晶表示装置
WO2024007624A1 (zh) 光学波导及增强现实显示设备
CN218728137U (zh) 光学波导及增强现实显示设备
CN114280791B (zh) 一种衍射光波导器件及其制备方法
CN218728144U (zh) 超构形态拓扑光波导及增强现实显示设备
WO2024108829A1 (zh) 超构形态拓扑光波导及增强现实显示设备
CN114846387A (zh) 图像显示元件、图像显示装置以及图像显示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834408

Country of ref document: EP

Kind code of ref document: A1