WO2024007490A1 - 心脏减容植入体 - Google Patents

心脏减容植入体 Download PDF

Info

Publication number
WO2024007490A1
WO2024007490A1 PCT/CN2022/128131 CN2022128131W WO2024007490A1 WO 2024007490 A1 WO2024007490 A1 WO 2024007490A1 CN 2022128131 W CN2022128131 W CN 2022128131W WO 2024007490 A1 WO2024007490 A1 WO 2024007490A1
Authority
WO
WIPO (PCT)
Prior art keywords
isolation body
arc
segment
arc segment
apex
Prior art date
Application number
PCT/CN2022/128131
Other languages
English (en)
French (fr)
Inventor
阮成民
王焱
凌友
姜亚伦
郝振华
梁玉麟
郑宇铎
Original Assignee
广东脉搏医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东脉搏医疗科技有限公司 filed Critical 广东脉搏医疗科技有限公司
Publication of WO2024007490A1 publication Critical patent/WO2024007490A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2478Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
    • A61F2/2487Devices within the heart chamber, e.g. splints

Definitions

  • the present disclosure relates to the technical field of medical devices, and in particular, to a cardiac volume reduction implant.
  • Heart failure is the final outcome of most cardiovascular diseases and can lead to death.
  • the patient's heart cannot provide sufficient blood flow to meet the body's needs.
  • Symptoms of heart failure can have a negative impact on quality of life and include shortness of breath, persistent coughing or wheezing, excessive fluid accumulation in body tissues (edema), fatigue, loss of appetite or nausea, slowed thinking, and rapid heart rate.
  • the prevalence of heart failure has increased year by year and has become a serious public health problem; after a heart attack, many patients develop left ventricular enlargement, resulting in reduced cardiac output, which in turn causes heart failure symptoms such as shortness of breath.
  • the device is a minimally invasive catheter-based treatment technology used to isolate damaged myocardium, isolating the non-functioning portion of the heart from the healthy, functioning portion, thereby reducing the total volume of the left ventricle and restoring its shape and function .
  • the left ventricular volume reduction device in the prior art has the following defects: since it uses an elastic nickel-titanium support skeleton for support, balloon expansion is required during implantation to fully expand the umbrella body, which increases a certain amount of surgical operation time and risk. ; After implantation, with the movement of the ventricle, the stress on the device skeleton structure is relatively concentrated and it is easy to break; the coating on the skeleton structure is prone to shrink and fold with the movement of the ventricle, resulting in poor sealing, unsatisfactory volume reduction effect, and prone to long-term Tear; after implantation, the support base needs to be in constant contact with the inner wall of the apex. During the continuous beating of the heart, the inner wall of the apex will inevitably be rubbed by the support base, causing damage to the patient's apex.
  • the present disclosure provides a cardiac volume reduction implant, including: an isolation body;
  • the isolation body is formed by integrated weaving, the isolation body can be implanted into the ventricle, and the isolation body fits the ventricular wall to isolate the inactive cardiac chamber;
  • the isolation body has a hollow cavity, and a first concave structure is provided on the isolation body.
  • the isolation body is close to the apex of the ventricle through the first concave structure, and the isolation body can pass through the third concave structure.
  • a concave structure contracts with the position from the apex of the heart to the ventricle.
  • the present disclosure also provides a cardiac volume reduction implant, including: an isolation body;
  • the isolation body can be implanted into the ventricle, and the isolation body fits the ventricular wall to isolate the ineffective cardiac chamber;
  • the isolation body has a hollow cavity, and a first concave structure is provided on the isolation body.
  • the isolation body is close to the apex of the ventricle through the first concave structure, and the isolation body can pass through the third concave structure.
  • a concave structure contracts with the position from the apex of the heart to the ventricle.
  • the isolation body is formed by braiding elastic wire.
  • the isolation body is made of elastic wire.
  • the isolation body is a cutting piece.
  • the cardiac volume reduction implant further includes a fixation member
  • One end of the elastic wire of the isolation body close to the apex is arcuately gathered into the fixing member, so that the first concave structure is formed between the fixing member and the isolation body.
  • the isolation body includes a first arc segment and a second arc segment
  • the first arc-shaped segment is woven along the first direction with the fixing piece as the center to form an integrated network structure
  • the second arc-shaped segment is woven along the second direction with the first arc-shaped segment extending.
  • Integrated mesh structure one end of the second arc segment close to the first arc segment fits the ventricular wall at the apex of the heart, and the second arc segment fits and extends along the ventricular wall;
  • first direction and the second direction are two opposite directions.
  • the isolation body includes a first arc segment and a second arc segment
  • the first arc-shaped segment extends along the first direction with the fixing piece as the center to form a network structure
  • the second arc-shaped segment extends along the second direction with the first arc-shaped segment to form a network structure.
  • Structure, one end of the second arc-shaped segment close to the first arc-shaped segment is fit to the ventricular wall at the apex of the heart, and the second arc-shaped segment fits and extends along the ventricular wall;
  • first direction and the second direction are two opposite directions.
  • the cardiac volume reduction implant further includes a connecting piece
  • the elastic wire of the isolation body is arcuately gathered at one end away from the apex into the connecting piece, so that a second concave structure is formed between the connecting piece and the isolation body, and the connecting piece is configured to be connected to an external delivery system to shrink the isolation body in the external delivery system.
  • the isolation body further includes a third arc segment
  • the third arc-shaped section is woven along the second direction with the connecting piece as the center to form an integrated network structure, and the first arc-shaped section, the second arc-shaped section and the third arc-shaped section are woven A hollow cavity is formed in the isolation body.
  • the isolation body further includes a third arc segment
  • the third arc-shaped segment extends along the second direction with the connecting piece as the center to form a network structure, and the first arc-shaped segment, the second arc-shaped segment and the third arc-shaped segment are fixedly connected to form The hollow cavity of the isolation body.
  • At least one arc segment among the first arc segment, the second arc segment and the third arc segment is provided with a reinforcing segment, and the reinforcing segment is distributed in an arc along the arc segment.
  • the cardiac volume reduction implant further includes a fixed anchor
  • the fixed anchor spine is connected to a side of the second arc-shaped segment away from the hollow cavity, and the fixed anchor spine extends into the ventricular wall along the braided mesh structure of the second arc-shaped segment.
  • the cardiac volume reduction implant further includes a fixed anchor
  • the fixed anchor spine is connected to a side of the second arc-shaped segment away from the hollow cavity, and the fixed anchor spine extends into the ventricular wall along the mesh structure of the second arc-shaped segment.
  • each of the fixed anchor spines is arranged at an angle with the surface of the second arc segment, and each of the fixed anchor spines extends along the inner wall of the myocardium of the heart. .
  • the cardiac volume reduction implant further includes a flow-blocking membrane
  • the flow-blocking film is fixedly connected to the inner wall of the hollow cavity of the isolation body;
  • the flow-blocking film includes at least one of a polymer film, a fabric film or a biological tissue film.
  • the flow blocking film is fixedly connected to the outer wall of the hollow cavity of the isolation body.
  • the shape of the isolation body includes a circular sphere, a cylindrical sphere or an elliptical sphere structure.
  • Figure 1 is a schematic diagram of the overall structure of a cardiac volume reduction implant provided by some embodiments of the present disclosure
  • Figure 2 is a schematic diagram of the overall structure of a cardiac volume reduction implant provided by some embodiments of the present disclosure
  • FIG. 3 is a partially enlarged structural schematic diagram of a cardiac volume reduction implant provided by an embodiment of the present disclosure
  • Figure 4 is a schematic diagram of the overall structure of a cardiac volume reduction implant provided by some embodiments of the present disclosure.
  • Figure 5 is a schematic diagram of the overall structure of a cardiac volume reduction implant provided by some embodiments of the present disclosure.
  • Figure 6 is a schematic diagram of the process of releasing the cardiac volume reduction implant into the left ventricle according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of the process of complete release of the cardiac volume reduction implant provided by the embodiment of the present disclosure into the left ventricle;
  • FIG. 8 is a schematic diagram of the cardiac volume reduction implant provided in an embodiment of the present disclosure in a state of being located in the heart.
  • Icon 100-Isolation body; 101-First arc segment; 102-Second arc segment; 103-Third arc segment; 1031-Reinforcement segment; 200-Fixer; 300-Connector; 400-Fixed anchor Thorn; 500-delivery system.
  • the present disclosure provides a cardiac volume reduction implant, including: an isolation body 100;
  • the isolation body 100 can be implanted into the ventricle, and the isolation body 100 fits the ventricular wall to isolate the ineffective cardiac chamber;
  • the isolation body 100 has a hollow cavity, and a first concave structure is provided on the isolation body 100.
  • the isolation body 100 is close to the apex of the ventricle through the first concave structure, and the isolation body 100 can follow the apex of the ventricle through the first concave structure. The position of the ventricles contracts accordingly.
  • the isolation body 100 is integrally formed, or fixedly connected through gluing, nailing, or welding.
  • integrated molding includes, but is not limited to, integrated weaving molding, integrated cutting molding, integrated molding molding, integrated printing (such as 3D printing) molding, and the like.
  • the isolation body 100 can be a cutting piece, which is directly obtained by cutting; or it can be formed by two or more cutting pieces fixedly connected by gluing, nailing, or welding.
  • integration refers to an integrated combination structure composed of one or more structures. Multiple structures can be selected from the same material or a combination of multiple materials of the same type of material, or each of them can be selected from the same material. Different substances or combinations of substances of a class of materials, such as in this disclosure,
  • braiding refers to organizing or combining thread-like bodies or filament-like bodies (such as wires, wires) by interlacing or hooking each other.
  • the present disclosure also provides a cardiac volume reduction implant, including: an isolation body 100;
  • the isolation body 100 is formed by integrated weaving.
  • the isolation body 100 can be implanted into the ventricle, and the isolation body 100 fits the ventricular wall to isolate the ineffective cardiac chamber;
  • the isolation body 100 has a hollow cavity, and a first concave structure is provided on the isolation body 100.
  • the isolation body 100 is close to the apex of the ventricle through the first concave structure, and the isolation body 100 can follow the apex of the ventricle through the first concave structure. The position of the ventricles contracts accordingly.
  • the cardiac volume reduction implant provided by the present disclosure is used to alleviate the existing support skeleton in the prior art to support the ventricular wall. Balloon expansion is required to increase the operation time and risk. The stress concentration on the device skeleton structure is easy to break, which reduces the risk. The content effect is not ideal, and the support base will cause damage to the inner wall of the apex due to technical problems.
  • the isolation body 100 is formed by braiding elastic filaments.
  • the isolation body 100 is formed from an elastic material.
  • the elastic material includes a polymer compound (such as resin, elastic polyurethane), metal (such as platinum, palladium, cobalt alloy, nickel titanium alloy or cobalt chromium alloy), etc.
  • the elastic material may include wire or molten material.
  • the isolation body 100 can also be made of elastic materials other than elastic wire.
  • the cardiac volume reduction implant further includes a fixation member 200;
  • the elastic material (such as elastic wire) of the isolation body 100 is arc-shaped and gathered into the fixing member 200 at one end near the apex of the heart, so that a first concave structure is formed between the fixing member 200 and the isolation body 100 .
  • the isolation body 100 includes a first arcuate segment 101 and a second arcuate segment 102;
  • the first arc-shaped segment 101 extends along the first direction (or the direction near the apex) with the fixing member 200 as the center to form a network structure
  • the second arc-shaped segment 102 extends with the first arc-shaped segment 101 along the second direction ( or extending away from the apex) to form a network structure, one end of the second arc segment 102 close to the first arc segment 101 is in contact with the ventricular wall at the apex, and the second arc segment 102 extends along the ventricular wall.
  • first direction and the second direction are two opposite directions.
  • the isolation body 100 includes a first arcuate segment 101 and a second arcuate segment 102;
  • the first arc-shaped segment 101 is woven along the first direction (or the direction near the apex) with the fixing member 200 as the center to form an integrated network structure.
  • the second arc-shaped segment 102 extends along the second arc-shaped segment 101 with the first arc-shaped segment 101 as the center. direction (or direction away from the apex) to form an integrated network structure, one end of the second arc segment 102 close to the first arc segment 101 is in contact with the ventricular wall at the apex, and the second arc segment 102 is along the ventricle. wall fit extension;
  • first direction and the second direction are two opposite directions.
  • the cardiac volume reduction implant further includes a connector 300;
  • the elastic material (such as elastic wire) of the isolation body 100 is arc-shaped and gathered into the connector 300 at one end away from the apex, so that a second concave structure is formed between the connector 300 and the isolation body 100, and the connector 300 is configured to be connected with the external transport system 500 to shrink the isolation body 100 in the external transport system 500 .
  • the isolation body 100 further includes a third arc segment 103;
  • the third arc segment 103 extends along the second direction with the connector 300 as the center to form a network structure, and the first arc segment 101 , the second arc segment 102 and the third arc segment 103 are fixedly connected to form the isolation body 100 of hollow cavity.
  • the fixed connection methods of the first arc segment 101, the second arc segment 102 and the third arc segment 103 include but are not limited to integrated molding, gluing, nailing, welding, etc.
  • integrated molding includes, but is not limited to, integrated cutting molding, integrated braiding molding, integrated molding molding, integrated printing (such as 3D printing) molding, and the like.
  • the isolation body 100 is a cutting piece (such as obtained directly by cutting) having a first arcuate segment 101 , a second arcuate segment 102 and a third arcuate segment 103 .
  • the first arc section 101 , the second arc section 102 and the third arc section 103 are cutting pieces with different structures, and can be fixedly connected and formed through gluing, nailing or welding.
  • the isolation body 100 further includes a third arc segment 103; the third arc segment 103 is woven along the second direction with the connector 300 as the center to form an integrated network structure, and the first arc segment 101 , the second arc segment 102 and the third arc segment 103 are woven to form a hollow cavity of the isolation body 100 .
  • the cardiac volume reduction implant includes:
  • the isolation body 100 includes a proximal end and a distal end;
  • the fixing part 200 is located at the distal end of the isolation body 100;
  • the elastic material (such as elastic wire) of the isolation body 100 is arc-shaped and gathered into the fixing member 200 at the distal end of the isolation body 100, so that a first concave structure is formed between the fixing member 200 and the isolation body 100.
  • the isolation body 100 is formed by braiding elastic wire.
  • the cardiac volume reduction implant further includes:
  • the first arc segment 101 forms a mesh structure (such as braiding to form an integrated mesh structure) along the distal end direction (the first direction or the direction near the apex) of the isolation body 100 with the fixing member 200 as the center; the second arc segment
  • the shaped segment 102 extends with the first arc-shaped segment 101 along the proximal end direction (the second direction or the direction away from the apex) of the isolation body 100 to form a mesh structure (such as weaving to form an integrated mesh structure), and the second arc-shaped segment 102
  • One end of the segment 102 close to the first arc-shaped segment 101 is in contact with the ventricular wall at the apex of the heart, and the second arc-shaped segment 102 is in contact with and extends along the ventricular wall.
  • the cardiac volume reduction implant further includes a connector 300;
  • the connector 300 is located at the proximal end of the isolation body 100;
  • the second arc-shaped segment 102 extends from the first arc-shaped segment 101 along the proximal end direction (the second direction or the direction away from the apex) of the isolation body 100 to form a mesh structure (such as knitting to form an integrated mesh structure) and arcs The shape is gathered into the connecting piece 300.
  • a second concave structure is formed between the connecting piece 300 and the isolation body 100 , and the connecting piece 300 is configured to be connected to the external delivery system 500 to contract the isolation body 100 to the external delivery system 500 middle.
  • the isolation body 100 further includes a third arc segment 103;
  • the third arc segment 103 forms a mesh structure (such as weaving to form an integrated mesh structure) along the proximal end direction (second direction) of the isolation body 100 with the connector 300 as the center, and the first arc segment 101, The second arcuate segment 102 and the third arcuate segment 103 form (such as by braiding) a hollow cavity of the isolation body 100 .
  • At least one of the first arc segment 101 , the second arc segment 102 and the third arc segment 103 is provided with a reinforcing segment, and the reinforcing segment is arcuately distributed along the arc segment.
  • the third arc-shaped segment 103 may be provided with a reinforcing segment 1031, and the reinforcing segment 1031 is disposed in a direction perpendicular to the third arc-shaped segment 103 and the ventricular wall.
  • the reinforcing section is additionally provided with a reinforcing section elastic material, which has higher rigidity and/or higher support strength than the elastic material.
  • the diameter of the elastic material of the reinforcing section is larger than the diameter of the elastic material.
  • the cardiac volume reduction implant further includes a fixed anchor spur 400;
  • the fixed anchor spine 400 is connected to the side of the second arc-shaped section 102 away from the hollow cavity, and the fixed anchor spine 400 extends into the ventricular wall along the braided mesh structure of the second arc-shaped section 102 .
  • each fixed anchor spine 400 is arranged at an angle with the surface of the second arc segment 102 , and each fixed anchor spine 400 extends along the inner wall of the myocardium of the heart.
  • the cardiac volume reduction implant further includes a flow barrier membrane.
  • the flow blocking film is fixedly connected to the inner wall of the hollow cavity of the isolation body 100 .
  • the flow blocking film is fixedly connected to the outer wall of the hollow cavity of the isolation body 100 .
  • the flow-blocking film includes at least one of a polymer film, a fabric film, or a biological tissue film.
  • the shape of the isolation body 100 includes a circular sphere, a cylindrical sphere, or an elliptical sphere structure.
  • the elastic wire of the isolation body is at least one of metal wire, polymer wire, or ceramic wire.
  • the metal wire includes, but is not limited to, at least one of elastic platinum wire, elastic palladium wire, cobalt alloy, nickel titanium alloy or cobalt chromium alloy.
  • the first arc segment 101, the second arc segment 102 and the third arc segment 103 are all selected from nickel titanium alloy (elastic wire material).
  • the first arc segment 101 is selected from nickel titanium alloy
  • the second arc segment 102 is selected from elastic palladium wire
  • the third arc segment 103 is selected from cobalt alloy.
  • the first arcuate segment 101 and the second arcuate segment 102 are selected from nickel titanium alloy
  • the third arcuate segment 103 is selected from a combined elastic wire material of elastic cobalt alloy and elastic platinum wire (such as via hybrid braiding).
  • the isolation body can be expanded without fixed anchors by contacting the deployed isolation body with the ventricular wall.
  • the height of the isolation body ranges from 1 mm to 100 mm.
  • the elastic wire of the isolation body is at least one of metal wire, polymer wire, or ceramic wire.
  • the connector may be riveted or flat-ended without rivets.
  • the isolation body adopts an integral braided structure, and the size of the required delivery sheath is small, which is beneficial to reducing damage to blood vessels and complications.
  • the cardiac volume reduction implant includes: an isolation body; (for example, the isolation body is integrally knitted and molded).
  • the isolation body can be implanted into the ventricle, and the isolation body fits the ventricular wall to close the ineffective cardiac cavity. Isolation; the isolation body of a mesh structure (such as a braided structure) is self-expanding (self-expandable due to the choice of elastic material), so balloon expansion is no longer required during implantation, and the isolation body of a mesh structure (such as a braided structure)
  • the isolation body moves with the ventricle, and the stress on the isolation body is dispersed, thereby improving the mechanical performance of the isolation body and making it less likely to break; the isolation body has a hollow cavity, and a first concave structure is provided on the isolation body to isolate the body.
  • the body is close to the apex of the ventricle through the first concave structure, and the isolation body can shrink with the position from the apex to the ventricle through the first concave structure; it is close to the apex through the first concave structure, that is, the isolation body can be at the apex of the heart.
  • Conformable contraction is completed in a narrow space, and because there is a gap between the first concave structure and the apex of the heart, there will be no direct contact, and the inner wall of the apex will not be damaged.
  • the isolation of the ventricle is completed through the main body.
  • Ineffective cardiac chamber isolation relieves the existing technology of supporting the ventricular wall with a support skeleton, which requires balloon dilation to increase surgical operation time and risk.
  • the stress concentration on the device skeleton structure is prone to fracture, and the volume reduction effect is not ideal, and
  • the technical problem is that the support base can cause damage to the inner wall of the apex.
  • the integrated molding of the cardiac volume reduction implant can further improve the stability of the implant in the heart and its lifespan and durability during use.
  • the cardiac volume reduction implant provided in this embodiment includes: an isolation body 100; the isolation body 100 is formed by integrated weaving, the isolation body 100 can be implanted into the ventricle, and the isolation body 100 Fitted with the ventricular wall to isolate the ineffective cardiac chamber; the isolation body 100 has a hollow cavity, and a first concave structure is provided on the isolation body 100.
  • the isolation body 100 is close to the apex of the ventricle through the first concave structure, isolating The body 100 can contract with the position from the apex to the ventricle through the first concave structure.
  • the cardiac volume reduction implant provided in this embodiment can be implanted into the left ventricle to isolate the left ventricle to form a static chamber and a dynamic chamber, thereby isolating ventricular aneurysms, reducing ventricular volume, and improving Therapeutic purposes of the ventricles' ability to pump blood.
  • the isolation body 100 is formed by integrated weaving, and the isolation body 100 has a hollow cavity. When the isolation body 100 expands and unfolds in the ventricle, the outside of the isolation body 100 fits the ventricular wall, and the isolation body 100 forms a static heart for the ventricle.
  • the static cavity is the distance from the height position of the isolation body 100 to the apex of the heart
  • the dynamic cavity is the position in the ventricle that is far away from the isolation body 100 .
  • the isolation body 100 is close to the apex position through the first concave structure. That is, when the isolation body 100 is close to the apex position, the first concave structure will form a suspended distance from the apex position, and due to the first concave structure existence, when the isolation body 100 extends into the apex position of the heart, the isolation body 100 is squeezed by the myocardium at the apex position.
  • the isolation body 100 will contract toward the first concave structure (away from the first concave structure) along with the extrusion of the myocardium. direction of the cardiac apex), so that the isolation body 100 can ensure the protection of the apical position on the basis of expanding the isolation ventricle.
  • Figure 6 which is a schematic diagram of the process of releasing the cardiac volume reduction implant into the left ventricle
  • Figure 7 which is a schematic diagram of the process of completely releasing the cardiac volume reduction implant into the left ventricle
  • Figure 8 which is a process diagram of the cardiac volume reduction implant Schematic diagram of the state of the heart.
  • the shape of the isolation body 100 includes a circular sphere, a cylindrical sphere or an elliptical sphere structure; the arc-shaped outer wall of the isolation body 100 can fit with the ventricular wall, and the entire arc surface can fit with the ventricular wall. , increasing the contact area between the isolation body 100 and the ventricular wall, which is beneficial to improving the sealing and volume reduction effect between the isolation body 100 and the ventricular wall.
  • the cardiac volume reduction implant provided in this embodiment includes: an isolation body 100; the isolation body 100 is integrally knitted and formed, the isolation body 100 can be implanted into the ventricle, and the isolation body 100 fits the ventricular wall to prevent ineffective treatment.
  • Heart chamber isolation; the isolation body 100 of the braided structure has self-expanding properties (that is, the self-expanding properties of the elastic material can be further improved through braiding, thereby further improving the stability of the implant fixed to the heart and the stability of the implant during use). lifespan and durability.), so balloon expansion is no longer required during implantation, and the isolation body 100 of the braided structure follows the movement of the ventricle, and the force on the isolation body 100 is dispersed, thereby improving the mechanical properties of the isolation body 100.
  • the isolation body 100 has a hollow cavity, and a first concave structure is provided on the isolation body 100.
  • the isolation body 100 is close to the apex of the ventricle through the first concave structure, and the isolation body 100 can pass through the first inner concave structure.
  • the concave structure shrinks along with the position from the apex to the ventricle; because the first concave structure is close to the apex, that is, the isolation body 100 can complete the contraction in a narrow space at the apex, and because the first concave structure is in contact with the apex There is a gap at all places, which will not form direct contact and thus will not damage the inner wall of the apex.
  • the isolation body 100 completes the ineffective isolation of the ventricular chambers, which alleviates the impact of the support skeleton on the ventricular wall in the existing technology.
  • balloon expansion is required, which increases the operation time and risks.
  • the stress concentration on the device skeleton structure is prone to fracture, the volume reduction effect is not ideal, and the support base will cause damage to the inner wall of the apex.
  • the isolation body 100 is formed by braiding elastic wire.
  • the isolation body 100 is formed by braiding elastic wires. Based on the characteristics of the elastic wires and the spherical structure formed by the isolation body 100, it has good self-expansion properties. When the isolation body 100 is implanted, a balloon is not required for expansion. The isolation body 100 can completely fit with the surface of the ventricular wall along with the ventricular movement, and the braided overall structure makes the stress on the isolation body 100 along with the ventricular movement relatively dispersed, avoiding the concentration of stress on the strut skeleton structure, and improving the overall isolation. The mechanical properties of the body 100 make it difficult to break, which improves the stability of the isolation body 100, that is, the service life and durability of the isolation body 100; and the stability in the ventricle.
  • the elastic wire material of the isolation body is at least one of metal wire, polymer wire or ceramic wire.
  • a fixing member 200 is also included; the elastic wire of the isolation body 100 is arc-shaped and gathered into the fixing member 200 at one end near the apex, so that a space between the fixing member 200 and the isolation body 100 is formed.
  • the first concave structure is also included.
  • the fixing piece 200 can be used as a starting point for weaving one end of the isolation body 100.
  • the isolation body 100 extends in an arc through the fixing piece 200, and the isolation body 100 can form a first concave structure at the position of the fixing piece 200.
  • the third An inner concave structure corresponds to the position of the apex of the heart, and at the same time, the myocardium at the apex can squeeze the isolation body 100 toward the position of the fixing member 200, and the isolation body 100 is gathered and woven into an integrated mesh structure through the fixing member 200, and the desired structure is formed through the shaping process. .
  • the isolation body 100 includes a first arc segment 101 and a second arc segment 102; the first arc segment 101 is centered on the fixing member 200 along the first direction (ie, close to the apex of the heart). direction or the direction of the distal end of the isolation body 100) to form an integrated mesh structure, and the second arc segment 102 extends from the first arc segment 101 along the second direction (ie, the direction away from the apex or the proximal direction of the isolation body 100). direction) to form an integrated mesh structure, one end of the second arc segment 102 close to the first arc segment 101 is in contact with the ventricular wall at the apex, and the second arc segment 102 extends along the ventricular wall.
  • the first direction and the second direction are two opposite directions.
  • the bending directions of the first arc-shaped segment 101 and the second arc-shaped segment 102 are opposite.
  • the first arc segment 101 has a circular expansion structure, that is, the first arc segment 101 is woven in an arc shape with the fixing member 200 as the center, where the fixing member 200 is the center of the first arc segment 101 (such as the lowest point of the center) , using the first arc segment 101 facing the first direction (ie, the direction close to the apex or the distal end direction of the isolation body 100) and the second arc segment 102 facing the second direction (ie, the direction away from the apex or the direction of the distal end of the isolation body 100).
  • the first direction is the extending direction along the center (such as the lowest point of the center) of the first arc segment 101 to the second arc segment 102
  • the second direction is the second arc segment 102.
  • the position of the arc segment 102 close to the first arc segment 101 is along the direction opposite to the first direction.
  • the second arc segment 102 can fit with the ventricular wall, and the second arc segment 102 can move toward the third arc segment under the action of the myocardium.
  • the direction of an arc segment 101 is contracted.
  • the first direction is the downward direction (ie, the direction near the apex of the heart or the distal end direction of the isolation body 100)
  • the second direction is the upward direction (ie, the direction near the apex of the heart or the distal end direction of the isolation body 100). That is, the direction away from the apex of the heart or the direction of the proximal end of the isolation body 100), the first arc-shaped segment 101 can extend and expand downward (the direction close to the apex of the heart), and an undercut is formed by the first arc-shaped segment 101 and the fixing member 200.
  • the second arc-shaped segment 102 extends upward from the end of the first arc-shaped segment 101 away from the fixing member 200 (ie, away from the apex of the heart), that is, the second arc-shaped segment 102 is located at the first arc-shaped segment 101
  • the first arc segment 101 has a first concave structure relative to the second arc segment 102, that is, after the isolation body 100 expands in the ventricle, the second arc segment 102 is close to the first arc segment 101
  • the position of the first arc segment 101 and the second arc segment 102 is in contact with the apex position of the heart.
  • connection position of the first arc segment 101 and the second arc segment 102 is set up at the myocardium at the apex position.
  • the second arc segment 102 When the second arc segment 102 is fully expanded, under the action of the myocardium at the apex position, , the second arc-shaped segment 102 can be gathered toward the position of the first arc-shaped segment 101, thereby achieving expansion of the apex position without causing damage to the apex position.
  • the second arc-shaped segment 102 may be arranged in a tapered shape from one end close to the first arc-shaped segment 101 to the other end (the distal end of the isolation body 100) (the proximal end of the isolation body 100), that is, the The two arc-shaped segments 102 can conform to the shape of the ventricle.
  • the tapered arrangement of the second arc-shaped segment 102 can make a smooth transition from the cardiac apex to the ventricular extension position, thereby ensuring that the isolation body 100 is in contact with the ventricular wall.
  • first arc segment 101 and the second arc segment 102 are made of an elastic wire integrated braided mesh structure, that is, the stress on the first arc segment 101 and the second arc segment 102 is In the dispersed state, the expansion and contraction properties are better, which improves the mechanical properties of the isolation body 100 .
  • the fixing part 200 can be a metal fixing part 200, that is, the fixing part 200 is provided with a circular connection cavity, and the elastic wire can be woven into an arc shape at the port of the circular connection cavity.
  • the fixing part 200 can be used as an isolation body 100.
  • the fixing piece 200 can be used to ensure that the elastic wire material of the isolation body 100 is gathered to the fixing piece 200 to play a fixing role.
  • a connector 300 is also included; the elastic wire of the isolation body 100 is arc-shaped and gathered into the connector 300 at one end away from the apex.
  • a second concave structure is formed between the connecting piece 300 and the isolation body 100 , and the connecting piece 300 is configured to be connected to the external delivery system 500 to contract the isolation body 100 into the external delivery system 500 .
  • the isolation body 100 includes a proximal end and a distal end, the fixing member 200 is located at the distal end of the isolation body 100, and the connecting member 300 is located at the proximal end of the isolation body 100.
  • the connecting piece 300 is fixedly connected to an end of the isolating body 100 away from the fixing piece 200.
  • the connection between the connecting piece 300 and the fixing piece 200 can be the central axis of the isolating body 100.
  • the The isolating body 100 is delivered into an external delivery system 500 (such as within a sheath of the external delivery system 50 ) via the pull connector 300 , such as using a delivery sheath, wherein the connector 300 forms a connection with the external delivery system 500 , using The connector 300 can realize the connection and transportation between the external delivery system 500 and the implant as a whole.
  • the isolation body 100 can expand based on the self-expanding properties of the elastic wire.
  • a balloon is no longer needed for expansion;
  • the connector 300 can be a riveted type or a flat-end non-riveted type, where the connector 300 only needs to be able to ensure that the implant is connected to the external delivery system 500, where The structure of the connector 300 is not limited.
  • the cooperation between the second concave structure and the first concave structure can more easily adapt to the hemodynamic requirements of the left ventricle to restore the left ventricular shape, ejection fraction, and hemodynamic functions.
  • the isolation body 100 further includes a third arc segment 103; the third arc segment 103 is centered on the connector 300 and along the second direction (ie, the direction away from the apex or the isolation body 100 (direction of the proximal end) to form an integrated mesh structure, and the first arc segment 101 , the second arc segment 102 and the third arc segment 103 are braided to form a hollow cavity that isolates the body 100 .
  • the third arc-shaped segment 103 has a circular expansion structure, that is, the connecting member 300 is the center of the arc-shaped expansion braid, and the connecting member 300 is the center of the third arc-shaped segment 103.
  • 103 faces the second direction (ie, the direction away from the apex or the proximal end direction of the isolation body 100) and the second arc-shaped segment 102 faces the second direction to form an integrated network structure, that is, the second arc-shaped segment 102 can be located at the second direction.
  • Three arc-shaped segments 103 are arranged on the periphery.
  • the first direction ie, the direction close to the apex or the distal end direction of the isolation body 100
  • the second direction ie, away from the apex
  • the third arc segment 103 can extend and expand upward, and form a bowl-shaped structure through the third arc segment 103 and the connector 300
  • the second arc segment 103 can extend upward.
  • One end of the arc-shaped segment 102 away from the first arc-shaped segment 101 extends and expands with the third arc-shaped segment 103, that is, the second arc-shaped segment 102 is located at the periphery of the third arc-shaped segment 103.
  • the third arc-shaped segment 103 is relative to
  • the second arc-shaped segment 102 has a second concave structure.
  • the second arc-shaped segment 102 can complete the squeezing effect on the third arc-shaped segment 103 under the action of the myocardium of the ventricular wall.
  • the arc-shaped segment 103 completes the isolation of the ventricular wall, and the second concave structure achieves the isolation of the functional and ineffective ventricular chambers.
  • the second arc-shaped segment 102 contacts the myocardial wall with a large contact area, which is conducive to improving the equipment and the The fit, sealing and stability of the ventricular wall; wherein, the connection positions of the third arc segment 103 and the second arc segment 102 are the separation points of the static cardiac chamber and the dynamic cardiac chamber respectively.
  • the connector 300 can be used as the terminal knitting port of the isolation body 100, and the connector 300 can be used to complete the gathering and knitting of the elastic wire. That is, the fixing member 200 and the connector 300 serve as the knitting ports at both ends of the elastic wire, ensuring that The braided mesh structure of elastic wire can also ensure the overall self-expanding characteristics of the isolation body 100; wherein, the connection port of the connector 300 faces the end away from the fixing member 200, and the fixing member 200 is located inside the hollow cavity of the isolation body 100; using The connecting piece 300 enables the isolation body 100 to be recovered and repositioned.
  • first arc segment 101, the second arc segment 102 and the third arc segment 103 are made of the same elastic wire to form a braided mesh structure.
  • the first arc segment 101 and the third arc segment are used to form a braided mesh structure.
  • the arc-shaped braided shape of the segment 103 can realize the self-expanding characteristics of the elastic wire, thereby enabling the second arc-shaped segment 102 to completely fit with the ventricular wall, so as to complete the expansion and isolation in the ventricle; because the isolation body adopts the overall braided structure,
  • the required size of the delivery sheath is small, which is beneficial to reducing damage to blood vessels and complications.
  • a reinforcing section 1031 can be provided on the third arc-shaped section 103, that is, a reinforcing section 1031 is provided on the third arc-shaped section 103 in a direction perpendicular to the ventricular wall.
  • the reinforcing section 1031 can enhance the stability of fixation with the myocardium, and the reinforced section 1031 can better limit the inner diameter of the ventricular wall expansion, ensuring the stability of the isolation body 100 in the expanded state.
  • the reinforcing section 1031 and the third arc section 103 are integrally formed.
  • the height range of the isolation body 100 is 1 mm-100 mm; that is, the height range of the second arc segment 102 from one end close to the first arc segment 101 to the third arc segment 103 is 1 mm-100 mm; wherein , the distance between the fixing part 200 and the connecting part 300 is less than the height of the isolation body 100 .
  • a fixed anchor spur 400 is also included; the fixed anchor spur 400 is connected to the side of the second arc segment 102 away from the hollow cavity, and the fixed anchor spur 400 is along the second arc.
  • the braided mesh structure of segment 102 extends into the ventricular wall.
  • the fixed anchor spurs 400 are located on the side of the second arc segment 102 away from the hollow cavity.
  • the fixed anchor spurs 400 can ensure the overall anchoring of the isolation body 100 and improve the stability of the overall placement of the isolation body 100 .
  • each fixed anchor spine 400 is arranged at an angle with the surface of the second arc segment 102 , and each fixed anchor spine 400 extends along the inner wall of the myocardium of the heart.
  • the design is multi-directional, which can improve the stability of device implantation.
  • multiple fixed anchors 400 are anchored to the myocardium of the ventricular wall, they can penetrate into the ventricular wall along with the movement direction of the heart, thereby better improving the stability of the implantation.
  • the anchoring stability improves the anchoring stability of the isolation body 100.
  • the isolation body 100 may be provided with fixed anchors 400 or without fixed anchors 400.
  • the isolation body 100 may be provided without fixed anchors 400, and the deployed isolation body 100 contacts the ventricular wall. Just expand.
  • a flow-blocking film is also included; the flow-blocking film is fixedly connected to the inner wall of the hollow cavity of the isolation body 100; the flow-blocking film includes at least one of a polymer film, a fabric film, or a biological tissue film.
  • a flow-blocking membrane is fixed on the inner wall of the hollow cavity, that is, on the basis that the isolation body 100 is attached to the heart wall, immediate ventricular isolation can be achieved through the flow-blocking membrane.
  • the flow-blocking film can be fixed to the inner wall of the hollow cavity of the isolation body 100 by sewing.
  • the flow-blocking film can be fixed to the inner wall of the hollow cavity of the isolation body 100 in an adhesive manner.
  • the present disclosure provides a cardiac volume reduction implant, which no longer requires balloon expansion during implantation, and its force is dispersed, which improves the mechanical properties of the cardiac volume reduction implant, and at the same time, the implant can Complying with the contraction in the narrow space at the apex will not only not damage the inner wall of the apex, but also effectively isolate the inactive ventricular chamber, reducing the increased surgical operation time and risk due to the expansion of the ventricular wall in the existing technology. In addition, damage to the inner wall of the apex is avoided. Therefore, the cardiac volume reduction implant disclosed in the present disclosure has excellent industrial practical performance and broad market application prospects.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • External Artificial Organs (AREA)

Abstract

本公开提供了一种心脏减容植入体,涉及医疗器械的技术领域,包括隔离本体;隔离本体呈一体化编织成型,隔离本体能够对无效心腔隔离;编织结构的隔离本体植入时不再需要球囊扩张,隔离本体的受力呈分散状,提高了隔离本体的机械性能,第一内凹结构靠近心尖位置,隔离本体能够在心尖位置较窄的空间内完成随形收缩,由于第一内凹结构与心尖处具有间隙,不会形成直接接触,不会损伤心尖内壁,当心尖至心室逐渐扩张,通过隔离本体完成对心室无效心腔隔离,缓解了现有技术中存在的支撑骨架对心室壁进行支撑,需要采用球囊扩张增加手术操作时间和风险,器械骨架结构所受应力集中易断裂,减容效果不理想,以及支撑底座会对心尖内壁造成损伤的技术问题。

Description

心脏减容植入体
相关申请的交叉引用
本公开要求于2022年07月08日提交中国专利局的申请号为CN202210805356.7、名称为“心脏减容植入体”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及医疗器械技术领域,尤其是涉及一种心脏减容植入体。
背景技术
心力衰竭是大多数心血管疾病的最终归宿,并可能致死亡,患者的心脏无法提供足够的血流来满足机体的需求。心力衰竭的症状对生活质量有负面影响,包括呼吸短促、持续咳嗽或喘息、机体组织中过度积液(水肿)、疲乏、食欲减退或恶心、思维迟钝、心率加快。近年来心力衰竭的患病率逐年增高,成为严重的公共卫生问题;心脏病发作后,许多患者出现左心室扩大,导致心排量降低,继而引起呼吸急促等心力衰竭症状,左心室减容装置器械是一项用于隔离受损心肌的基于导管的微创治疗技术,将无功能的心脏部分与健康的、有功能的部分隔离开来,从而缩小左心室的总容积,恢复其形态和功能。
现有技术中的左心室减容装置存在下列缺陷:由于是利用弹性的镍钛支撑骨架进行支撑,因此植入时需要采用球囊扩张,使伞体充分展开,增加一定的手术操作时间和风险;植入后,随心室运动,器械骨架结构所受应力比较集中,易断裂;骨架结构上的覆膜随心室运动易发生收缩折叠、密封性不好,减容效果不理想,且长期易发生撕裂;植入后,支撑底座需要一直接触着心尖内壁,在心脏不停地搏动过程中,心尖内壁不可避免地会受到支撑底座的摩擦,以致造成对患者心尖的损伤。
发明内容
本公开提供一种心脏减容植入体,包括:隔离本体;
所述隔离本体通过一体化编织成型,所述隔离本体能够植入至心室中,且所述隔离本体与心室壁贴合,以对无效心腔隔离;
所述隔离本体具有中空腔,且所述隔离本体上设置有第一内凹结构,所述隔离本体通过所述第一内凹结构与心室的心尖位置靠近,所述隔离本体能够通过所述第一内凹结构随着心尖至心室的位置随形收缩。
本公开还提供一种心脏减容植入体,包括:隔离本体;
所述隔离本体能够植入至心室中,且所述隔离本体与心室壁贴合,以对无效心腔隔离;
所述隔离本体具有中空腔,且所述隔离本体上设置有第一内凹结构,所述隔离本体通过所述第一内凹结构与心室的心尖位置靠近,所述隔离本体能够通过所述第一内凹结构随着心尖至心室的位置随形收缩。
可选地,所述隔离本体通过弹性丝材编织成型。
可选地,所述隔离本体经由弹性丝材制备成型。
可选地,所述隔离本体为切割件。
可选地,所述心脏减容植入体还包括固定件;
所述隔离本体的弹性丝材在靠近心尖处的一端弧形收拢至所述固定件中,以使所述固定件和所述隔离本体之间形成所述第一内凹结构。
可选地,所述隔离本体包括第一弧形段和第二弧形段;
所述第一弧形段以所述固定件为中心沿着第一方向编织形成一体化网状结构,所述第二弧形段以所述第一弧形段延伸沿着第二方向编织形成一体化网状结构,所述第二弧形段靠近所述第一弧形段的一端与心尖处的心室壁贴合,且所述第二弧形段沿着心室壁贴合延伸;
其中,第一方向和第二方向为相反的两个方向。
可选地,所述隔离本体包括第一弧形段和第二弧形段;
所述第一弧形段以所述固定件为中心沿着第一方向延伸形成网状结构,所述第二弧形段以所述第一弧形段延伸沿着第二方向延伸形成网状结构,所述第二弧形段靠近所述第一弧形段的一端与心尖处的心室壁贴合,且所述第二弧形段沿着心室壁贴合延伸;
其中,第一方向和第二方向为相反的两个方向。
可选地,所述心脏减容植入体还包括连接件;
所述隔离本体的弹性丝材在远离心尖处的一端弧形收拢至所述连接件中,以使所述连接件和所述隔离本体之间形成第二内凹结构,所述连接件被配置成与外部输送系统连接,以将所述隔离本体收缩于外部输送系统中。
可选地,所述隔离本体还包括第三弧形段;
所述第三弧形段以所述连接件为中心沿着第二方向编织形成一体化网状结构,且所述第一弧形段、第二弧形段和所述第三弧形段编织形成所述隔离本体的中空腔。
可选地,所述隔离本体还包括第三弧形段;
所述第三弧形段以所述连接件为中心沿着第二方向延伸形成网状结构,且所述第一弧形段、第二弧形段和所述第三弧形段固定连接形成所述隔离本体的中空腔。
可选地,所述第一弧形段、第二弧形段和所述第三弧形段中的至少一个弧形段设置有加强段,所述加强段沿所述弧形段弧形分布。
可选地,所述心脏减容植入体还包括固定锚刺;
所述固定锚刺与所述第二弧形段背离所述中空腔的一侧连接,所述固定锚刺沿着所述第二弧形段的编织网状结构延伸至心室壁中。
可选地,所述心脏减容植入体还包括固定锚刺;
所述固定锚刺与所述第二弧形段背离所述中空腔的一侧连接,所述固定锚刺沿着所述第二弧形段的网状结构延伸至心室壁中。
可选地,所述固定锚刺设置有多个,每个所述固定锚刺与所述第二弧形段的表面呈夹角布置,每个所述固定锚刺分别沿着心脏心肌内壁延伸。
可选地,所述心脏减容植入体还包括阻流膜;
所述阻流膜与所述隔离本体的中空腔内壁固定连接;
所述阻流膜包括高分子膜、织物膜或生物组织膜中的至少一种。
可选地,所述阻流膜与所述隔离本体的中空腔外壁固定连接。
可选地,所述隔离本体的形状包括圆形球体、圆柱形球体或者椭圆形球体结构。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一些实施方式提供的心脏减容植入体的整体结构示意图;
图2为本公开一些实施方式提供的心脏减容植入体的整体结构示意图;
图3为本公开实施方式提供的心脏减容植入体的局部放大结构示意图;
图4为本公开一些实施方式提供的心脏减容植入体的整体结构示意图;
图5为本公开一些实施方式提供的心脏减容植入体的整体结构示意图;
图6为本公开实施方式提供的心脏减容植入体的释放到左心室的过程示意图;
图7为本公开实施方式提供的心脏减容植入体的完全释放到左心室的过程示意图;
图8为本公开实施方式提供的心脏减容植入体的位于心脏内的状态示意图。
图标:100-隔离本体;101-第一弧形段;102-第二弧形段;103-第三弧形段;1031-加强段;200-固定件;300-连接件;400-固定锚刺;500-输送系统。
具体实施方式
下面将结合实施方式对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本公开一部分实施方式,而不是全部的实施方式。基于本公开中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。此外,若出现术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”等应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
需要说明的是,在不冲突的情况下,本公开的实施方式中的特征可以相互结合。
本公开提供一种心脏减容植入体,包括:隔离本体100;
隔离本体100能够植入至心室中,且隔离本体100与心室壁贴合,以对无效心腔隔离;
隔离本体100具有中空腔,且隔离本体100上设置有第一内凹结构,隔离本体100通过第一内凹结构与心室的心尖位置靠近,隔离本体100能够通过第一内凹结构随着心尖至心室的位置随形收缩。
在一些实施方式中,隔离本体100通过一体化成型、或经由胶接、钉接、焊接固定连接成型。在一些实施方式中,一体化成型包括但不限于一体化编织成型、一体化切割成型、一体化模塑成型、一体化打印(诸如3D打印)成型等。在一些实施方式中,隔离本体100可以为切割件,经由切割直接获得;或者由两个或更多个切割件经由胶接、钉接、焊接固定连接成型。
不受理论的约束,本文所用术语“一体化”是指由一个或多个结构组成的一体化组合结构,多个结构可以选自同一类别材料的相同物质或多种物质组合或者各自选自同一类别材料的不同物质或多种物质的组合,例如在本公开中,
不受理论的约束,本文所用术语“编织”是指将线状体或丝状体等(诸如丝材、线材)互相交错或钩连而组织或组合起来。
本公开还提供一种心脏减容植入体,包括:隔离本体100;
隔离本体100通过一体化编织成型,隔离本体100能够植入至心室中,且隔离本体100与心室壁贴合,以对无效心腔隔离;
隔离本体100具有中空腔,且隔离本体100上设置有第一内凹结构,隔离本体100通过第一内凹结构与心室的心尖位置靠近,隔离本体100能够通过第一内凹结构随着心尖至心室的位置随形收缩。
本公开提供的心脏减容植入体,以缓解现有技术中存在的支撑骨架对心室壁进行支撑,需要采用球囊扩张增加手术操作时间和风险,器械骨架结构所受应力集中易断裂,减容效果不理想,以及支撑底座会对心尖内壁造成损伤的技术问题。
在一些实施方式中,隔离本体100通过弹性丝材编织成型。
在一些实施方式中,隔离本体100经由弹性材料制备成型。
可选地,弹性材料包括高分子化合物(诸如树脂、弹性聚氨酯)、金属(诸如铂、钯、钴合金、镍钛合金或钴铬合金)等。可选地,弹性材料可以包括丝材或熔融态材料等。
可选地,隔离本体100还可以由除弹性丝材以外的弹性材料制备成型。
在一些实施方式中,心脏减容植入体还包括固定件200;
隔离本体100的弹性材料(诸如弹性丝材)在靠近心尖处的一端弧形收拢至固定件200中,以使固定件200和隔离本体100之间形成第一内凹结构。
在一些实施方式中,隔离本体100包括第一弧形段101和第二弧形段102;
第一弧形段101以固定件200为中心沿着第一方向(或靠近心尖处方向)延伸形成网状结构,第二弧形段102以第一弧形段101延伸沿着第二方向(或远离心尖处方向)延伸形成网状结构,第二弧形段102靠近第一弧形段101的一端与心尖处的心室壁贴合,且第二弧形段102沿着心室壁贴合延伸;
其中,第一方向和第二方向为相反的两个方向。
在一些实施方式中,隔离本体100包括第一弧形段101和第二弧形段102;
第一弧形段101以固定件200为中心沿着第一方向(或靠近心尖处方向)编织形成一体化网状结构,第二弧形段102以第一弧形段101延伸沿着第二方向(或远离心尖处方向)编织形成一体化网状结构,第二弧形段102靠近第一弧形段101的一端与心尖处的心室壁贴合,且第二弧形段102沿着心室壁贴合延伸;
其中,第一方向和第二方向为相反的两个方向。
在一些实施方式中,心脏减容植入体还包括连接件300;
隔离本体100的弹性材料(诸如弹性丝材)在远离心尖处的一端弧形收拢至连接件300中,以使连接件300和隔离本体100之间形成第二内凹结构,连接件300被配置成与外部输送系统500连接,以将隔离本体100收缩于外部输送系统500中。
在一些实施方式中,隔离本体100还包括第三弧形段103;
第三弧形段103以连接件300为中心沿着第二方向延伸形成网状结构,且第一弧形段101、第二弧形段102和第三弧形段103固定连接形成隔离本体100的中空腔。
第一弧形段101、第二弧形段102和第三弧形段103的固定连接方式包括但不限于一体化成型、胶接、钉接、焊接等。在一些实施方式中,一体化成型包括但不限于一体化切割成型、一体化编织成型、一体化模塑成型、一体化打印(诸如3D打印)成型等。在一些实施方式中,隔离本体100为切割件(诸如通过切割直接获得),该切割件具有第一弧形段101、第二弧形段102和第三弧形段103。在一些实施方式中,第一弧形段101、第二弧形段102和第三弧形段103为具有不同结构切割件,可以经由胶接、钉接或焊接固定连接成型。
在一些实施方式中,隔离本体100还包括第三弧形段103;第三弧形段103以连接件300为中心沿着第二方向编织形成一体化网状结构,且第一弧形段101、第二弧形段102和第三弧形段103编织形成隔离本体100的中空腔。
在本公开可选的实施方式中,心脏减容植入体包括:
隔离本体100,隔离本体100包括近侧端和远侧端;
固定件200,固定件200位于隔离本体100的远侧端;
隔离本体100的弹性材料(诸如弹性丝材)在隔离本体100的远侧端弧形收拢至固定件200中,以使固定件200和隔离本体100之间形成第一内凹结构。
可选地,隔离本体100通过弹性丝材编织成型。
在本公开可选的实施方式中,心脏减容植入体还包括:
第一弧形段101和第二弧形段102;
第一弧形段101以固定件200为中心沿着隔离本体100的远侧端方向(第一方向或靠近心尖处方向)形成网状结构(诸如编织形成一体化网状结构);第二弧形段102以第一弧形段101延伸沿着隔离本体100的近侧端方向(第二方向或远离心尖处方向)形成网状结构(诸如编织形成一体化网状结构),第二弧形段102靠近第一弧形段101的一端与心尖处的心室壁贴合,且第二弧形段102沿着心室壁贴合延伸。
在本公开可选的实施方式中,心脏减容植入体还包括连接件300;
连接件300位于隔离本体100的近侧端;
第二弧形段102以第一弧形段101延伸沿着隔离本体100的近侧端方向(第二方向或远离心尖处方向)形成网状结构(诸如编织形成一体化网状结构)并弧形收拢至连接件300中。
在本公开可选的实施方式中,连接件300和隔离本体100之间形成第二内凹结构,连接件300被配置成与外部输送系统500连接,以将隔离本体100收缩于外部输送系统500中。
在本公开可选的实施方式中,隔离本体100还包括第三弧形段103;
第三弧形段103以连接件300为中心沿着隔离本体100的近侧端方向(第二方向)形成网状结构(诸如编织形成一体化网状结构),且第一弧形段101、第二弧形段102和第三弧形段103形成(诸如编织形成)隔离本体100的中空腔。
在一些实施方式中,第一弧形段101、第二弧形段102和第三弧形段103中的至少一个弧形段设置有加强段,该加强段沿弧形段弧形分布。
在一些实施方式中,第三弧形段103上可以设置有加强段1031,加强段1031设置在第三弧形段103与心室壁垂直的方向上。
可选地,加强段额外地设置有加强段弹性材料,该加强段弹性材料比弹性材料具有更高的刚性和/或更高的支撑强度。可选地,加强段弹性材料的直径大于弹性材料的直径。
在一些实施方式中,心脏减容植入体还包括固定锚刺400;
固定锚刺400与第二弧形段102背离中空腔的一侧连接,固定锚刺400沿着第二弧形段102的编织网状结构延伸至心室壁中。
在一些实施方式中,固定锚刺400设置有多个,每个固定锚刺400与第二弧形段102的表面呈夹角布置,每个固定锚刺400分别沿着心脏心肌内壁延伸。
在一些实施方式中,心脏减容植入体还包括阻流膜。
可选地,阻流膜与隔离本体100的中空腔内壁固定连接。可选地,阻流膜与隔离本体100的中空腔外壁固定连接。
可选地,阻流膜包括高分子膜、织物膜或生物组织膜中的至少一种。
在一些实施方式中,隔离本体100的形状包括圆形球体、圆柱形球体或者椭圆形球体结构。
在一些实施方式中,隔离本体的弹性丝材为金属丝、高分子丝材或陶瓷丝材中的至少一种。
可选地,金属丝包括但不限于弹性铂丝、弹性钯丝、钴合金、镍钛合金或钴铬合金中的至少一种。
可选地,第一弧形段101、第二弧形段102和第三弧形段103均选自镍钛合金(弹性丝材)。可选地,第一弧形段101选自镍钛合金,第二弧形段102选自弹性钯丝,第三弧形段103选自钴合金。可选地,第一弧形段101和第二弧形段102选自镍钛合金,第三弧形段103选自弹性钴合金和弹性铂丝(诸如经由混合编织)的组合弹性丝材。
在一些实施方式中,隔离本体可以无固定锚刺,通过展开后的隔离本体与心室壁接触扩张。
在一些实施方式中,隔离本体的高度范围为1mm-100mm。
在一些实施方式中,隔离本体的弹性丝材为金属丝、高分子丝材或陶瓷丝材中的至少一种。
在一些实施方式中,连接件可为有铆式或平端无铆式。
在一些实施方式中,隔离本体通过整体编织结构,所需输送鞘管尺寸小,有利于降低对血管的损伤及并发症。
本公开提供的心脏减容植入体,包括:隔离本体;(诸如隔离本体呈一体化编织成型),隔离本体能够植入至心室中,且隔离本体与心室壁贴合,以对无效心腔隔离;网状结构(诸如编织结构)的隔离本体具有自膨性(由于选择弹性材料而具有自膨性),因此植入时不再需要球囊扩张,而且网状结构(诸如编织结构)的隔离本体随着心室运动,隔离本体的受力呈分散状,进而提高了隔离本体的机械性能,不易发生断裂的情况;隔离本体具有中空腔,且隔离本体上设置有第一内凹结构,隔离本体通过第一内凹结构与心室的心尖位置靠近,隔离本体能够通过第一内凹结构随着心尖至心室的位置随形收缩;通过第一内凹结构靠近心尖位置,即隔离本体能够在心尖位置较窄的空间内完成随形收缩,并且由于第一内凹结构与心尖处具有间隙,不会形成直接接触,进而不会损伤心尖内壁,当心尖至心室逐渐扩张,通过隔离本体完成对心室无效心腔隔离,缓解了现有技术中存在的支撑骨架对心室壁进行支撑,需要采用球囊扩张增加手术操作时间和风险,器械骨架结构所受应力集中易断裂,减容效果不理想,以及支撑底座会对心尖内壁造成损伤的技术问题。
此外,心脏减容植入体的一体化成型可以进一步提高植入体的固定于心脏的稳固性和使用过程中的寿命和耐久性。
如图1-图8所示,本实施方式提供的心脏减容植入体,包括:隔离本体100;隔离本体100通过一体化编织成型,隔离本体100能够植入至心室中,且隔离本体100与心室壁贴合,以对无效心腔隔离;隔离本体100具有中空腔,且隔离本体100上设置有第一内凹结构, 隔离本体100通过第一内凹结构与心室的心尖位置靠近,隔离本体100能够通过第一内凹结构随着心尖至心室的位置随形收缩。
需要说明的是,本实施方式提供的心脏减容植入体能够对左心室植入,以对左心室隔离形成静止心腔和动态心腔,从而达到隔绝室壁瘤,减小心室容积,提升心室泵血能力的治疗目的。可选地,隔离本体100通过一体化编织成型,利用隔离本体100具有中空腔,当隔离本体100在心室内扩张展开后,隔离本体100外部与心室壁贴合,利用隔离本体100对心室形成静止心腔和动态心腔,其中静止心腔为隔离本体100的高度位置至心尖的间距,动态心腔为心室内远离隔离本体100的位置。可选地,隔离本体100通过第一内凹结构靠近心尖位置,即当隔离本体100靠近心尖位置时,此时第一内凹结构会与心尖位置形成悬空的间距,并且由于第一内凹结构的存在,当隔离本体100伸入至心尖位置后,此时隔离本体100受心尖位置的心肌挤压,此时隔离本体100会随着心肌的挤压向第一内凹结构处进行收缩(远离心尖的方向),使得隔离本体100能够在扩张隔离心室的基础上,保证了对心尖位置处的保护。参照图6,为心脏减容植入体的释放到左心室的过程示意图;参照图7为心脏减容植入体的完全释放到左心室的过程示意图;参照图8为心脏减容植入体的位于心脏内的状态示意图。
可选地,隔离本体100的形状包括圆形球体、圆柱形球体或者椭圆形球体结构;隔离本体100弧形的外侧壁可以与心室壁进行贴合,整个弧形表面均能够与心室壁贴合,提高了隔离本体100与心室壁之间的接触面积,有利于提高隔离本体100与心室壁的密封性和减容效果。
本实施方式提供的心脏减容植入体,包括:隔离本体100;隔离本体100呈一体化编织成型,隔离本体100能够植入至心室中,且隔离本体100与心室壁贴合,以对无效心腔隔离;编织结构的隔离本体100具有自膨性(即经由编织可以进一步提高弹性材料自膨特性,从而更进一步提高植入体的固定于心脏的稳固性和植入体在使用过程中的寿命和耐久性。),因此植入时不再需要球囊扩张,而且编织结构的隔离本体100随着心室运动,隔离本体100的受力呈分散状,进而提高了隔离本体100的机械性能,不易发生断裂的情况;隔离本体100具有中空腔,且隔离本体100上设置有第一内凹结构,隔离本体100通过第一内凹结构与心室的心尖位置靠近,隔离本体100能够通过第一内凹结构随着心尖至心室的位置随形收缩;通过第一内凹结构靠近心尖位置,即隔离本体100能够在心尖位置较窄的空间内完成随形收缩,并且由于第一内凹结构与心尖处具有间隙,不会形成直接接触,进而不会损伤心尖内壁,当心尖至心室逐渐扩张,通过隔离本体100完成对心室无效心腔隔离,缓解了现有技术中存在的支撑骨架对心室壁进行支撑,需要采用球囊扩张增加手术操作时间和风险,器械骨架结构所受应力集中易断裂,减容效果不理想,以及支撑底座会对心尖内壁造成损伤的技术问题。
在上述实施方式的基础上,在本公开可选的实施方式中,隔离本体100通过弹性丝材编织成型。
本实施方式中,利用弹性丝材编织形成隔离本体100,基于弹性丝材的特性以及隔离本体100形成的球体结构,具有良好的自膨特性,当隔离本体100植入时无需球囊进行扩张,隔离本体100能够随着心室运动与心室壁的表面完全贴合,并且编织型的整体结构,使得隔离本体100随心室运动所受应力比较分散,避免了支杆骨架结构应力集中,提高了整体隔离本体100的机械性能,不易发生断裂的情况,提高了隔离本体100的稳定性,即隔离本体100的使用寿命和耐久性;以及在心室内的稳固性。
可选地,隔离本体的弹性丝材为金属丝、高分子丝材或陶瓷丝材中的至少一种。在本公开可选的实施方式中,还包括固定件200;隔离本体100的弹性丝材在靠近心尖处的一端弧形收拢至固定件200中,以使固定件200和隔离本体100之间形成第一内凹结构。
本实施方式中,固定件200可以作为隔离本体100一端的编织起点,隔离本体100通过固定件200进行弧形延伸,并且隔离本体100能够在固定件200的位置形成第一内凹结构,利用第一内凹结构对应心尖位置,同时心尖位置的心肌能够挤压隔离本体100朝向固定件200位置进行收拢,其中,隔离本体100通过固定件200收拢编织为一体网状结构,经过定型工艺形成预期结构。
在本公开可选的实施方式中,隔离本体100包括第一弧形段101和第二弧形段102;第一弧形段101以固定件200为中心沿着第一方向(即靠近心尖处方向或隔离本体100的远侧端方向)编织形成一体化网状结构,第二弧形段102以第一弧形段101延伸沿着第二方向(即远离心尖处方向或隔离本体100的近侧端方向)编织形成一体化网状结构,第二弧形段102靠近第一弧形段101的一端与心尖处的心室壁贴合,且第二弧形段102沿着心室壁贴合延伸;其中,第一方向和第二方向为相反的两个方向。换句话说,第一弧形段101和第二弧形段102两者的弯折方向相反。本实施方式中,第一弧形段101为圆形扩张结构,即以固定件200为中心呈弧形扩张编织,其中固定件200为第一弧形段101的中心(诸如中心的最低点),利用第一弧形段101朝向第一方向(即靠近心尖处方向或隔离本体100的远侧端方向)与第二弧形段102朝向第二方向(即远离心尖处方向或隔离本体100的近侧端方向)形成一体化网状结构,即第一方向为沿着第一弧形段101的中心(诸如中心最低点)向第二弧形段102的延伸方向,第二方向为第二弧形段102靠近第一弧形段101的位置沿着与第一方向相反的方向,通过第二弧形段102能够与心室壁贴合,第二弧形段102能够在心肌作用下朝向第一弧形段101的方向进行收缩。
举例说明,如图1所示,以固定件200为中心,第一方向为朝向下方的方向(即靠近心尖处方向或隔离本体100的远侧端方向),第二方向为朝向上方的方向(即远离心尖处的方向或隔离本体100的近侧端方向),第一弧形段101能够朝向下方(靠近心尖处方向)延伸扩张,通过第一弧形段101和固定件200形成倒扣的类似碗状结构,第二弧形段102以第一弧形段101远离固定件200的一端朝向上方(即远离心尖处方向)延伸扩张,即第二弧形段102位于第一弧形段101的外围布置,此时第一弧形段101相对于第二弧形段102呈第一内凹结构,即当隔离本体100在心室内扩张后,第二弧形段102靠近第一弧形段101的位置与心尖位置进行接触,第一弧形段101和第二弧形段102的连接位置架设在心尖位置的心肌处,当第二弧形段102完全展开后,在心尖位置的心肌作用下,第二弧形段102能够朝向第一弧形段101的位置进行收拢,进而实现对心尖位置的扩展的基础上,还不会造成心尖位置的损伤。
可选地,第二弧形段102沿着靠近第一弧形段101的一端至(隔离本体100的远侧端)另一端(隔离本体100的近侧端)可以呈锥形布置,即第二弧形段102能够随着心室的形状进行随形贴合,同时第二弧形段102的锥形布置能够使得心尖至心室延伸位置进行顺滑过渡,进而能够保证隔离本体100与心室壁贴合的稳定性;并且,由于第一弧形段101和第二弧形段102是通过弹性丝材一体编织网结构,即第一弧形段101和第二弧形段102受到的应力是呈分散状态的,膨胀收缩性能更好,提高了隔离本体100的机械性能。
可选地,固定件200可以采用金属固定件200,即固定件200设置有圆形连接腔,弹性丝材能够以圆形连接腔的端口弧形编织成型,固定件200可以作为隔离本体100的起点编织口,利用固定件200能够保证隔离本体100的弹性丝材收束至固定件200,起到固定作用。
举例说明,如图2和3所示,在本公开可选的实施方式中,还包括连接件300;隔离本体100的弹性丝材在远离心尖处的一端弧形收拢至连接件300中,以使连接件300和隔离本体100之间形成第二内凹结构,连接件300被配置成与外部输送系统500连接,以将隔离本体100收缩于外部输送系统500中。在一些实施方式中,隔离本体100包括近侧端和远侧端,固定件200位于隔离本体100的远侧端,连接件300位于隔离本体100的近侧端。本实施方式中,连接件300与隔离本体100远离固定件200的一端固定连接,其中连接件300和固定件200的连线可以为隔离本体100的中轴线,当隔离本体100需要输送时,通过将隔离本体100经由提拉连接件300来输送至外部输送系统500中(诸如外部输送系统50的鞘管内),诸如利用输送鞘管进行输送,其中连接件300与外部输送系统500形成连接,利用连接件300能够实现外部输送系统500与植入体整体的连接输送,当输送鞘管输送至心室内后,利用输送鞘管的释放,隔离本体100能够在弹性丝材的自膨特性的基础上进行扩展,不再需要球囊进行扩张;可选地,连接件300可以为有铆式或平端无铆式,其中连接件300只要能够保证植入体与外部输送系统500连接即可,此处对连接件300的结构不作限定。
可选地,利用第二内凹结构和第一内凹结构的配合,能够更加容易适应左心室内血流动力学的需求,以恢复左心室形态,射血分数,血流动力学的功能。
在本公开可选的实施方式中,隔离本体100还包括第三弧形段103;第三弧形段103以连接件300为中心沿着第二方向(即远离心尖处的方向或隔离本体100的近侧端方向)编织形成一体化网状结构,且第一弧形段101、第二弧形段102和第三弧形段103编织形成隔离本体100的中空腔。
本实施方式中,第三弧形段103为圆形扩张结构,即以连接件300为中心呈弧形扩张编织,其中连接件300为第三弧形段103的中心,利用第三弧形段103朝向第二方向(即远离心尖处的方向或隔离本体100的近侧端方向)与第二弧形段102朝向第二方向形成一体化网状结构,即第二弧形段102能够位于第三弧形段103的外围布置。
举例说明,如图2和3所示,以连接件300为中心,第一方向(即靠近心尖处方向或隔离本体100的远侧端方向)为朝向下方的方向,第二方向(即远离心尖处的方向或隔离本体100的近侧端方向)为朝向上方的方向,第三弧形段103能够朝向上方延伸扩张,通过第三弧形段103和连接件300形成碗状结构,第二弧形段102远离第一弧形段101的一端与第三弧形段103延伸扩张,即第二弧形段102位于第三弧形段103的外围布置,此时第三弧形段103相对于第二弧形段102呈第二内凹结构,第二弧形段102能够在心室壁的心肌作用下完成对第三弧形段103的挤压作用,利用第二弧形段102和第三弧形段103完成对心室壁的隔离,第二内凹结构实现对心室功能心腔和无效心腔的隔离,第二弧形段102与心肌壁接触,接触面积较大,有利于提升器械与心室壁的贴合性、密封性和稳固性;其中,第三弧形段103和第二弧形段102的连接位置分别为静止心腔和动态心腔的分隔点。
可选地,连接件300可以作为隔离本体100的终点编织口,利用连接件300能够完成对弹性丝材的收拢编织,即固定件200和连接件300作为弹性丝材两端的编织口,保证了弹性丝材的编织网结构,同时还能够保证隔离本体100的整体自膨特性;其中,连接件300 的连接口朝向背离固定件200的一端,固定件200位于隔离本体100的中空腔内部;利用连接件300能够实现对隔离本体100进行回收和重复定位。
需要说明的是,第一弧形段101、第二弧形段102和第三弧形段103为同一根弹性丝材形成编织网结构,其中,利用第一弧形段101和第三弧形段103的弧形编织成型,能够实现弹性丝材的自膨特性,进而能够使得第二弧形段102与心室壁完全贴合,以使心室内完成扩张隔离;由于隔离本体通过整体编织结构,所需输送鞘管尺寸小,有利于降低对血管的损伤及并发症。
举例说明,如图5所示,可选地,第三弧形段103上可以设置有加强段1031,即在第三弧形段103与心室壁垂直的方向上设置有加强段1031,加强段1031能够增强与心肌固定的稳固性,利用加强段1031能够更好的限定心室壁扩张的内径,保证了隔离本体100扩张状态下的稳定性。可选地,加强段1031与第三弧形段103一体成型。
可选地,隔离本体100的高度范围为1mm-100mm;即第二弧形段102沿着靠近第一弧形段101的一端至靠近第三弧形段103的高度范围为1mm-100mm;其中,固定件200和连接件300的间距小于隔离本体100的高度。
举例说明,如图4所示,在一些实施方式中,还包括固定锚刺400;固定锚刺400与第二弧形段102背离中空腔的一侧连接,固定锚刺400沿着第二弧形段102的编织网状结构延伸至心室壁中。
本实施方式中,固定锚刺400位于第二弧形段102背离中空腔的一侧,利用固定锚刺400能够保证隔离本体100的整体锚定,提高了隔离本体100的整体放置的稳定性。
在一些实施方式中,固定锚刺400设置有多个,每个固定锚刺400与第二弧形段102的表面呈夹角布置,每个固定锚刺400分别沿着心脏心肌内壁延伸。
本实施方式中,心肌收缩/舒张过程中除了心室的扩大缩小,同时伴随着心肌螺旋运动;每个固定锚刺400的固定位点的心肌运动幅度,方向存在一定差异,通过固定锚刺400方向设计为多方向,能够提高器械植入的稳定性,当多个固定锚刺400与心室壁的心肌锚定后,可以随着心脏的运动方向刺入至心室壁,进而能够更好的提高了锚定的稳定性,提高了隔离本体100锚定的稳定状态。
可选地,隔离本体100可以设置有固定锚刺400,也可以无固定锚刺400,在一些实施方式中,隔离本体100可以无固定锚刺400,通过展开后的隔离本体100与心室壁接触扩张即可。
在一些实施方式中,还包括阻流膜;阻流膜与隔离本体100的中空腔内壁固定连接;阻流膜包括高分子膜、织物膜或生物组织膜中的至少一种。
本实施方式中,通过在中空腔的内壁固定有阻流膜,即在隔离本体100与心脏壁贴合的基础上,可以通过阻流膜实现心室即刻隔离。可选地,阻流膜可以通过缝合的方式固定于隔离本体100的中空腔的内壁。可选地,阻流膜可以通过胶黏的方式固定于隔离本体100的中空腔的内壁。
最后应说明的是:以上各实施方式仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施方式对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施方式技术方案的范围。
工业实用性
本公开提供了一种心脏减容植入体,其在植入时不再需要球囊扩张,其受力呈分散状,提高了心脏减容植入体的机械性能,同时该植入体能够在心尖位置较窄的空间内完成随形收缩,不仅不会损伤心尖内壁,而且可以有效对心室无效心腔进行隔离,降低了现有技术中因扩张心室壁而增加的手术操作时间、风险,并且避免了对心尖内壁造成损伤,因此本公开的心脏减容植入体具有优异的工业实用性能和广阔的市场应用前景。

Claims (15)

  1. 一种心脏减容植入体,其特征在于,包括:隔离本体(100);
    所述隔离本体(100)通过一体化编织成型,所述隔离本体(100)能够植入至心室中,且所述隔离本体(100)与心室壁贴合,以对无效心腔隔离;
    所述隔离本体(100)具有中空腔,且所述隔离本体(100)上设置有第一内凹结构,所述隔离本体(100)通过所述第一内凹结构与心室的心尖位置靠近,所述隔离本体(100)能够通过所述第一内凹结构随着心尖至心室的位置随形收缩。
  2. 一种心脏减容植入体,其特征在于,包括:隔离本体(100);
    所述隔离本体(100)能够植入至心室中,且所述隔离本体(100)与心室壁贴合,以对无效心腔隔离;
    所述隔离本体(100)具有中空腔,且所述隔离本体(100)上设置有第一内凹结构,所述隔离本体(100)通过所述第一内凹结构与心室的心尖位置靠近,所述隔离本体(100)能够通过所述第一内凹结构随着心尖至心室的位置随形收缩。
  3. 根据权利要求1所述的心脏减容植入体,其特征在于,所述隔离本体(100)通过弹性丝材编织成型。
  4. 根据权利要求2所述的心脏减容植入体,其特征在于,所述隔离本体(100)经由弹性丝材制备成型;
    可选地,所述隔离本体(100)为切割件。
  5. 根据权利要求3或4所述的心脏减容植入体,其特征在于,还包括固定件(200);
    所述隔离本体(100)的弹性丝材在靠近心尖处的一端弧形收拢至所述固定件(200)中,以使所述固定件(200)和所述隔离本体(100)之间形成所述第一内凹结构。
  6. 根据权利要求5所述的心脏减容植入体,其特征在于,所述隔离本体(100)包括第一弧形段(101)和第二弧形段(102);
    所述第一弧形段(101)以所述固定件(200)为中心沿着第一方向编织形成一体化网状结构,所述第二弧形段(102)以所述第一弧形段(101)延伸沿着第二方向编织形成一体化网状结构,所述第二弧形段(102)靠近所述第一弧形段(101)的一端与心尖处的心室壁贴合,且所述第二弧形段(102)沿着心室壁贴合延伸;
    其中,第一方向和第二方向为相反的两个方向。
  7. 根据权利要求5所述的心脏减容植入体,其特征在于,所述隔离本体(100)包括第一弧形段(101)和第二弧形段(102);
    所述第一弧形段(101)以所述固定件(200)为中心沿着第一方向延伸形成网状结构,所述第二弧形段(102)以所述第一弧形段(101)延伸沿着第二方向延伸形成网状结构,所述第二弧形段(102)靠近所述第一弧形段(101)的一端与心尖处的心室壁贴合,且所述第二弧形段(102)沿着心室壁贴合延伸;
    其中,第一方向和第二方向为相反的两个方向。
  8. 根据权利要求6或7所述的心脏减容植入体,其特征在于,还包括连接件(300);
    所述隔离本体(100)的弹性丝材在远离心尖处的一端弧形收拢至所述连接件(300)中,以使所述连接件(300)和所述隔离本体(100)之间形成第二内凹结构,所述连接件(300)用于与外部输送系统(500)连接,以将所述隔离本体(100)收缩于外部输送系统(500)中。
  9. 根据权利要求8所述的心脏减容植入体,其特征在于,所述隔离本体(100)还包括第三弧形段(103);
    所述第三弧形段(103)以所述连接件(300)为中心沿着第二方向编织形成一体化网状结构,且所述第一弧形段(101)、第二弧形段(102)和所述第三弧形段(103)编织形成所述隔离本体(100)的中空腔;
    可选地,所述第一弧形段(101)、第二弧形段(102)和所述第三弧形段(103)中的至少一个弧形段设置有加强段,所述加强段沿所述弧形段弧形分布。
  10. 根据权利要求8所述的心脏减容植入体,其特征在于,所述隔离本体(100)还包括第三弧形段(103);
    所述第三弧形段(103)以所述连接件(300)为中心沿着第二方向延伸形成网状结构,且所述第一弧形段(101)、第二弧形段(102)和所述第三弧形段(103)固定连接形成所述隔离本体(100)的中空腔;
    可选地,所述第一弧形段(101)、第二弧形段(102)和所述第三弧形段(103)中的至少一个弧形段设置有加强段,所述加强段沿所述弧形段弧形分布。
  11. 根据权利要求6所述的心脏减容植入体,其特征在于,还包括固定锚刺(400);
    所述固定锚刺(400)与所述第二弧形段(102)背离所述中空腔的一侧连接,所述固定锚刺(400)沿着所述第二弧形段(102)的编织网状结构延伸至心室壁中。
  12. 根据权利要求7所述的心脏减容植入体,其特征在于,还包括固定锚刺(400);
    所述固定锚刺(400)与所述第二弧形段(102)背离所述中空腔的一侧连接,所述固定锚刺(400)沿着所述第二弧形段(102)的网状结构延伸至心室壁中。
  13. 根据权利要求11或12所述的心脏减容植入体,其特征在于,所述固定锚刺(400)设置有多个,每个所述固定锚刺(400)与所述第二弧形段(102)的表面呈夹角布置,每个所述固定锚刺(400)分别沿着心脏心肌内壁延伸。
  14. 根据权利要求1-13中任一项所述的心脏减容植入体,其特征在于,还包括阻流膜;
    所述阻流膜与所述隔离本体(100)的中空腔内壁固定连接;
    所述阻流膜包括高分子膜、织物膜或生物组织膜中的至少一种;
    可选地,所述阻流膜与所述隔离本体(100)的中空腔外壁固定连接。
  15. 根据权利要求1-14中任一项所述的心脏减容植入体,其特征在于,所述隔离本体(100)的形状包括圆形球体、圆柱形球体或者椭圆形球体结构。
PCT/CN2022/128131 2022-07-08 2022-10-28 心脏减容植入体 WO2024007490A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210805356.7A CN115120390B (zh) 2022-07-08 2022-07-08 心脏减容植入体
CN202210805356.7 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024007490A1 true WO2024007490A1 (zh) 2024-01-11

Family

ID=83381571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128131 WO2024007490A1 (zh) 2022-07-08 2022-10-28 心脏减容植入体

Country Status (2)

Country Link
CN (1) CN115120390B (zh)
WO (1) WO2024007490A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115120390B (zh) * 2022-07-08 2023-11-07 广东脉搏医疗科技有限公司 心脏减容植入体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039246A (zh) * 2012-01-06 2014-09-10 因赛普特斯医学有限责任公司 可膨胀的闭塞装置及使用方法
CN205198210U (zh) * 2015-11-18 2016-05-04 上海形状记忆合金材料有限公司 一种编织型左心室减容器械
CN205569121U (zh) * 2015-12-11 2016-09-14 上海形状记忆合金材料有限公司 编织型左心室减容器械
US20200054882A1 (en) * 2016-11-03 2020-02-20 St. Jude Medical, Cardiology Division, Inc. Leadless pacemaker with collapsible anchoring device
CN112022246A (zh) * 2020-11-06 2020-12-04 上海介入医疗器械有限公司 一种左心耳封堵器及其使用方法
CN115120390A (zh) * 2022-07-08 2022-09-30 广东脉搏医疗科技有限公司 心脏减容植入体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8529430B2 (en) * 2002-08-01 2013-09-10 Cardiokinetix, Inc. Therapeutic methods and devices following myocardial infarction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039246A (zh) * 2012-01-06 2014-09-10 因赛普特斯医学有限责任公司 可膨胀的闭塞装置及使用方法
CN205198210U (zh) * 2015-11-18 2016-05-04 上海形状记忆合金材料有限公司 一种编织型左心室减容器械
CN205569121U (zh) * 2015-12-11 2016-09-14 上海形状记忆合金材料有限公司 编织型左心室减容器械
US20200054882A1 (en) * 2016-11-03 2020-02-20 St. Jude Medical, Cardiology Division, Inc. Leadless pacemaker with collapsible anchoring device
CN112022246A (zh) * 2020-11-06 2020-12-04 上海介入医疗器械有限公司 一种左心耳封堵器及其使用方法
CN115120390A (zh) * 2022-07-08 2022-09-30 广东脉搏医疗科技有限公司 心脏减容植入体

Also Published As

Publication number Publication date
CN115120390B (zh) 2023-11-07
CN115120390A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
CN107260366B (zh) 一种人工瓣膜假体
US20220280288A1 (en) Heart valve prosthesis anchored to interventricular septum and conveying and releasing method thereof
EP1893127B1 (en) Multiple partitioning devices for heart treatment
JP4964235B2 (ja) 心室区画装置用の周辺シール
WO2018145365A1 (zh) 治疗瓣膜反流的装置
CN205198210U (zh) 一种编织型左心室减容器械
WO2024007490A1 (zh) 心脏减容植入体
CN102961200B (zh) 带锚定机构的肺动脉瓣膜支架
CN112754733B (zh) 心脏瓣膜
CN109966023A (zh) 心脏瓣膜假体及其支架
WO2019052305A1 (zh) 一种瓣膜支架和瓣膜假体
WO2022193766A1 (zh) 一种带微针的心肌补片
CN114533347A (zh) 人工心脏瓣膜的锚固装置及人工心脏瓣膜系统
WO2024007491A1 (zh) 心脏重建植入体
CN102961199B (zh) 防止移位的肺动脉瓣膜支架
CN208851718U (zh) 心脏瓣膜假体及其支架
CN215384892U (zh) 一种带微针的心肌补片
CN212879683U (zh) 一种心房间的压力调节装置
CN214549745U (zh) 用于植入心脏的瓣膜假体装置
CN215384308U (zh) 左心室减容装置和左心室减容系统
CN214549500U (zh) 管腔内可植入医疗器械
CN213156729U (zh) 一种具备可调固定端的新型瓣膜假体
WO2022105054A1 (zh) 一种经房间隔植入的二尖瓣瓣膜装置及植入方法
CN113827373A (zh) 一种心房间的压力调节装置
CN209611210U (zh) 可植入左心室室壁瘤螺旋形封堵器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950049

Country of ref document: EP

Kind code of ref document: A1