WO2024007439A1 - 一种基于光纤传输的多机相位同步系统及方法 - Google Patents

一种基于光纤传输的多机相位同步系统及方法 Download PDF

Info

Publication number
WO2024007439A1
WO2024007439A1 PCT/CN2022/116424 CN2022116424W WO2024007439A1 WO 2024007439 A1 WO2024007439 A1 WO 2024007439A1 CN 2022116424 W CN2022116424 W CN 2022116424W WO 2024007439 A1 WO2024007439 A1 WO 2024007439A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
self
phase
slave device
synchronization
Prior art date
Application number
PCT/CN2022/116424
Other languages
English (en)
French (fr)
Inventor
马海波
张顺龙
Original Assignee
艾乐德电子(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾乐德电子(南京)有限公司 filed Critical 艾乐德电子(南京)有限公司
Priority to EP22908804.2A priority Critical patent/EP4333327A1/en
Publication of WO2024007439A1 publication Critical patent/WO2024007439A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the invention relates to the technical field of multi-machine systems, and in particular to a multi-machine phase synchronization system and method based on optical fiber transmission.
  • Multi-machine phase synchronization is widely used in power supply systems.
  • the slave device synchronizes the phase of the master device to realize the phase difference to the master device; the multi-machine power supply equipment also synchronizes the phase, adds a 180-degree phase difference to reverse the phase, and then connects in series to achieve voltage boost.
  • Real-time and accuracy of multi-camera phase synchronization are two important points in application.
  • the master device sends a synchronous zero-crossing signal to the slave device.
  • the slave device receives the synchronous zero-crossing signal and communicates with the master device at the zero phase point.
  • Phase synchronization has strong real-time performance, but the accuracy is not high. It is synchronized once per cycle. Especially when the frequency changes, the phase changes cannot be accurately tracked and phase mutations will occur.
  • the other type is the reference source phase locking technology, which locks the main device
  • the analog reference source is sent to the slave device, and the slave device identifies its frequency, locks the phase, and obtains the phase information. It has high accuracy and can track phase changes, but the implementation circuit is relatively complex, and the real-time performance cannot meet the requirements, and there is a certain delay effect.
  • the object of the present invention is to overcome the shortcomings of the existing technology and provide a multi-machine phase synchronization system and method based on optical fiber transmission, which can transmit synchronization phase code values in real time in high-speed optical fiber communication, with high accuracy and real-time tracking. Phase changes have good synchronization performance and scalability in multi-machine power systems.
  • the invention discloses a multi-machine phase synchronization system based on optical fiber transmission, which includes a master device and several slave devices.
  • the master device and the slave devices are both equipped with an optical fiber transmitting interface and an optical fiber receiving interface.
  • the optical fiber of the master device The transmitting interface is connected to the optical fiber receiving interface of a slave device through an optical fiber.
  • the slave device connected to the host and other slave devices are connected in series.
  • the optical fiber receiving interface of the slave device is connected to the optical fiber transmitting port of the previous slave device through an optical fiber.
  • the optical fiber transmitting port of the slave device is connected to the optical fiber receiving interface of the next slave device connected to it through the optical fiber; the master device generates a new local digital reference source every T time interval, and sets the digital reference source of the local device
  • the phase information is transmitted to the slave device connected to the master device via optical fiber as the system synchronization phase signal.
  • the optical fiber receiving interface of the slave device receives the system synchronization phase signal and uses the received system synchronization phase signal as the digital reference source of the machine.
  • the master device and the slave device form a closed-loop communication test, and the test includes a self-test mode and a self-correction mode.
  • the master device when generating a local digital reference source, the master device encodes the phase information of the digital reference source and generates a synchronization phase code value as a system synchronization phase signal.
  • the time for the optical fiber to propagate information is T optical fiber , T optical fiber ⁇ T, and T is the processing cycle of the digital reference source of the main device.
  • the self-test determines that the real-time transmission is successful; when tr is greater than T, the self-test determines that the real-time transmission fails.
  • T is the processing cycle of the digital reference source of the main device.
  • the master device obtains the information bit setting value of the current synchronization phase signal and enters the self-test mode.
  • the self-test determines that the real-time transmission is successful
  • the correction is completed.
  • the self-test determines that the real-time transmission fails, Adjust the number of information bits of the system synchronization phase signal and enter the self-correction mode again until the self-test determines that the real-time transmission is successful.
  • the self-calibration fails.
  • the invention discloses a multi-machine phase synchronization method based on optical fiber transmission. Based on the above-mentioned multi-machine phase synchronization system based on optical fiber transmission, it includes the following steps:
  • Step 1 The master device generates a new local digital reference source every T time interval, encodes the phase information of the digital reference source, and generates a synchronization phase code value, that is, a system synchronization phase signal;
  • Step 2 The master device transmits the system synchronization phase signal via the optical fiber to the optical fiber receiving interface of the slave device connected to the master device through the optical fiber transmitting port;
  • Step 3 The slave device connected to the master device will receive the system synchronization phase signal as the digital reference source phase of the machine, and send the system synchronization phase signal through the optical fiber to the slave device connected to the optical fiber transmitting interface of the slave device.
  • Optical fiber receiving interface
  • Step 4 The slave device that receives the system synchronization phase signal from the optical fiber transmitting port of the slave device will receive the system synchronization phase signal as the digital reference source phase of the machine, and send the system synchronization phase signal to the optical fiber transmitting interface of the slave device.
  • the fiber receiving interface of the next connected slave device
  • Step 5 Repeat step 4 until all slave devices receive the system synchronization phase signal, and use the system synchronization phase signal as the digital reference source phase of the local machine to achieve multi-machine phase synchronization.
  • the time for the optical fiber to propagate information is T optical fiber , T optical fiber ⁇ T.
  • the master device sends the system synchronization phase signal at time t1
  • the Nth slave device receives the system synchronization phase signal at time tn.
  • Signal, tn-t1 ⁇ T when the Nth slave device receives the first frame system synchronization phase signal of the master device, the second frame system synchronization phase signal of the master device has not yet been generated.
  • the time required for the optical fiber to transmit one frame of system synchronization phase signal is ⁇ t.
  • the Nth slave device receives the first frame of system synchronization phase signal from the master device, it needs to satisfy N* ⁇ t ⁇ T.
  • N the number of synchronous phase code value transmitted by the optical fiber
  • the number of devices N becomes larger. Small.
  • the master device and the slave device form a closed-loop communication test, they first enter the self-test mode.
  • the self-test determines the real-time transmission. Successfully, when tr is greater than T, the self-test determines that the real-time transmission failed and the system enters self-correction mode.
  • the main device obtains the information bit setting value and the minimum precision setting number of the current synchronization phase signal, and enters the self-test mode.
  • the self-test determines that the real-time transmission is successful, the correction is completed.
  • the test determines that the real-time transmission failed, adjust the number of information bits of the system synchronization phase signal, and enter the self-correction mode again until the self-test determines that the real-time transmission is successful.
  • the self-calibration fails.
  • the invention is based on a high-speed optical fiber communication link to realize multi-machine phase synchronization function.
  • the master device When the master device generates a local digital reference source, it encodes the source phase information, generates a synchronous phase code value, and sends it out through the optical fiber.
  • the slave device obtains the synchronization phase code value from the optical fiber and uses it as the digital reference source phase information of the local machine, so that the local machine and the master device work in the same phase.
  • the slave device again passes the synchronization phase information to the next slave device, so that all devices
  • the digital reference sources all work in the same phase to complete phase synchronization.
  • the number of synchronous phase information bits transmitted in the system can be adjusted according to the needs of the system.
  • the synchronization phase accuracy is high, and the number of multiple machines in the system becomes smaller; with fewer digits, the synchronization phase accuracy decreases, and the number of multiple machines in the system can be increased. It transmits synchronous phase code values in real time in high-speed optical fiber communication with high accuracy and can track phase changes in real time. It has good synchronization performance and scalability in multi-machine power supply systems.
  • the invention also provides a multi-machine system self-test mode to detect whether the system satisfies real-time synchronous phase transmission; and provides a multi-machine system self-correction mode that simultaneously satisfies real-time synchronous phase transmission and the minimum accuracy of the phase information set by the system to obtain the best
  • the excellent number of synchronization phase information bits enables multi-machine systems to achieve real-time and accurate synchronization functions.
  • Figure 1 is a schematic structural diagram of the system of the present invention.
  • Figure 2 is a schematic diagram of digital reference source phase generation.
  • Figure 3 is a schematic diagram of the optical fiber transmitting and receiving phase time points in a multi-machine system.
  • Figure 4 is a schematic structural diagram of the system of the present invention forming a closed communication loop test.
  • Figure 5 is a flow chart of the self-test mode of the system of the present invention.
  • Figure 6 is a flow chart of the self-correction mode of the system of the present invention.
  • the invention discloses a multi-machine phase synchronization system based on optical fiber transmission. As shown in Figure 1, it includes several (at least two) devices to form a multi-machine system. Each device has an optical fiber transmitting interface (TX). and an optical fiber receiving interface (RX), in which the receiving port of the N-1 device is connected to the transmit port of the N-2 device, and the transmit port of the N-1 device is connected to the receiving port of the N device.
  • N is the number of devices.
  • One device in the system is the master device, and the others are slave devices, namely master device No. 1, slave device No. 2, slave device No. 3... and slave device No. N.
  • the optical fiber transmitting interface of master device No. 1 communicates with slave device 2 through optical fiber.
  • Master device No. 1 uses the phase information of the digital reference source of this device as the synchronization phase signal of the system, and transmits it to slave device No. 2 via optical fiber.
  • Slave device No. 2 receives the system synchronization phase signal from the optical fiber. On the one hand, it uses it as the local device The digital reference source phase is synchronized with the master device in real time. On the other hand, the system synchronization phase signal is sent to the slave device No. 3, and so on, until all slave devices receive the phase information sent by the master device, and the local device The digital reference source is synchronized with it to achieve multi-machine phase synchronization.
  • master device No. 1 When master device No. 1 generates the local digital reference source, it encodes the source phase information, generates a synchronous phase code value, and sends it out through optical fiber communication.
  • the number of synchronization phase information code values affects the accuracy of the phase, and the number of bits should be selected according to the needs of the system and hardware requirements. In this design, the synchronization phase uses a 30-bit code value, and the phase accuracy reaches 0.00000033 degrees.
  • the processing cycle of the master device's digital reference source is T, that is, the master device generates a new phase information every T moment interval.
  • the AC source signal in the power system mostly has a rate of several K, and the phase generation period T corresponds to
  • the frequency is several Mbps, and optical fiber propagation can reach Gbps, that is, the time for optical fiber to propagate information is T fiber ⁇ T.
  • the second frame system synchronization phase signal of the master device When the last slave device receives the first frame system synchronization phase signal of the master device, the second frame system synchronization phase signal of the master device has not yet been generated. At this time, the digital reference sources of all devices in the system work in the same phase, and the multi-machine system completes phase synchronization. As shown in Figure 3, in this system, the time required for the optical fiber to transmit a frame of system synchronization phase signal is ⁇ t. At the same optical fiber rate, the more digits of the synchronization phase code value transmitted by the optical fiber, the higher the phase accuracy, and the longer the transmission time ⁇ t. long.
  • N When ⁇ t becomes longer as the number of system synchronization phase signal bits increases, N will become smaller.
  • this system also includes a test mode.
  • the optical fiber transmitting port of the last slave device is connected to the optical fiber receiving interface of the master device to form a closed-loop communication test, that is, the last slave device is No. N is connected end-to-end with master device No. 1 to form a closed-loop communication test.
  • the system will automatically detect whether the current multi-machine system meets the real-time synchronization phase. If not, the self-correction mode can automatically adjust to the optimal setting of the real-time synchronization phase. After the calibration is completed, you can disconnect this connection and enter the normal mode.
  • the test mode includes a self-test mode and a self-correction mode.
  • the self-test mode is a multi-machine system that automatically performs real-time synchronization phase detection. As shown in Figure 4, the multi-machine system enters the self-test mode.
  • the master device No. 1 receives the phase information returned from the slave device No. N.
  • the phase information is the system synchronization phase signal sent by the master device No. 1 at time t1 through the closed-loop optical fiber.
  • the communication link returns to main device No. 1 at time t1+tr. where tr is the duration of one closed-loop optical fiber transmission in the multi-machine system,
  • the master device No. 1 generates a new system synchronization phase signal every T time interval.
  • tr ⁇ T the self-test determines that the real-time transmission is successful.
  • tr > T the self-test determines that the real-time transmission fails.
  • master device No. 1 can enter the self-calibration mode.
  • the self-correction mode requires the user to set the minimum number of synchronization phase information bits, that is, the minimum accuracy of the same phase information that the multi-machine system can accept.
  • the self-correction mode shortens the time required for the optical fiber to transmit one frame of information by adjusting the number of bits of synchronization phase information to ⁇ t, thereby achieving the purpose of shortening the time tr of one closed-loop optical fiber transmission in a multi-machine system.
  • the number of digits of the synchronization phase information will be gradually reduced. Each time a bit is reduced, a self-test is repeated. If the self-test is successful, the correction is completed.
  • the test is unsuccessful, continue to reduce one bit, and repeat the process until the self-test is successful, the self-correction is completed, and the optimal synchronization phase information number is given.
  • the number of synchronization phase information bits is the minimum number of precision bits set by the user and the self-test still fails, the self-calibration fails.
  • the present invention also discloses a multi-machine phase synchronization method based on optical fiber transmission, which includes the following steps:
  • Step 1 Master device No. 1 generates a new local digital reference source every T time interval, encodes the phase information of the digital reference source, and generates a synchronization phase code value, which is the system synchronization phase signal;
  • Step 2 Master device No. 1 transmits the system synchronization phase signal through the optical fiber transmitting port to the optical fiber receiving interface of slave device No. 2.
  • the transmission time is t1;
  • Step 3 Slave device No. 2 will receive the system synchronization phase signal as the digital reference source phase of the local machine, and send the system synchronization phase signal through the optical fiber to the optical fiber receiving interface of slave device No. 3. Slave device No. 2 will receive the phase signal.
  • the time of information is t2;
  • Step 4 Slave device No. 3 will receive the system synchronization phase signal as the digital reference source phase of the local machine, and send the system synchronization phase signal through the optical fiber to the optical fiber receiving interface of the next slave device. Slave device No. 3 will receive the phase signal.
  • the time of information is t3;
  • Step 5 Repeat step 4 until all slave devices receive the system synchronization phase signal, that is, slave device No. N receives the system synchronization phase signal, and uses the system synchronization phase signal as the digital reference source phase of the machine.
  • Slave device No. N receives The time of phase information is tn.
  • slave device No. N receives the first frame phase information of master device No. 1, the second frame phase information of master device No. 1 has not yet been generated, that is, tn-t1 ⁇ T is satisfied.
  • the digital reference sources of all devices in the multi-machine system work in the same phase, and the multi-machine system completes phase synchronization.
  • ⁇ t t2-t1.
  • the more digits of the synchronization phase code value transmitted by the optical fiber the higher the phase accuracy and the longer the transmission time ⁇ t. Therefore, the number of multiple machines and phase accuracy required by the system can be achieved by adjusting the number of bits of synchronized phase information. With more digits, the synchronization phase accuracy is high, and the number of multiple machines in the system becomes smaller; with fewer digits, the synchronization phase accuracy decreases, and the number of multiple machines in the system can be increased.
  • the invention discloses a multi-machine phase synchronization method based on optical fiber transmission, which also includes a self-test mode and a self-correction mode.
  • the self-test mode can detect whether the system meets the real-time synchronous phase transmission; the self-correction mode can simultaneously meet the real-time synchronous phase transmission. and the minimum accuracy of the phase information set by the system to obtain the optimal number of synchronization phase information bits, so that the multi-machine system can realize the synchronization function in real time and accurately.
  • slave device No. N As shown in Figure 5, connect the last slave device No. N of the system to the master device No. 1 end-to-end to form a closed-loop communication test and start the self-test mode.
  • Master device No. 1 sends synchronous test phase information and starts the counter to start timing.
  • master device No. 1 receives the synchronous test phase information sent from slave device N, it analyzes and determines that the closed-loop transmission is completed and stops the counter to obtain the closed-loop transmission duration tr. Repeat Carry out K tests and count K test data to obtain the self-test results.
  • Master device No. 1 sends synchronous test phase information every T time interval.
  • the self-test determines that the real-time transmission is successful.
  • the self-test determines that the real-time transmission fails.
  • the self-test determines that the real-time transmission failed, and the system enters self-correction mode.
  • the user sets the minimum number of system synchronization phase information bits, obtains the minimum precision setting number M, obtains the current system synchronization phase information number R, and determines whether R is less than M. If R ⁇ M, Then the self-calibration fails. If R ⁇ M, start the self-test mode, complete a system self-test, and return the test results to determine whether the self-test results are successful. If successful, the calibration is successful and the R value is returned.
  • the R value is the optimal system.
  • the R value is returned, which is the optimal system synchronization phase information bit number. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明公开了一种基于光纤传输的多机相位同步系统及方法,系统包括主设备和若干从设备,主设备的光纤发射接口与一个从设备的光纤接收接口相连,与主机相连的从设备和其他从设备之间依次串联,主设备将本设备数字参考源的相位信息作为系统同步相位信号传输给与主设备相连的从设备,从设备将接收到系统同步相位信号作为本机的数字参考源相位,并将系统同步相位信号通过光纤发射口发送给与该从设备光纤发射接口相连的从设备,当最后一个从设备与主设备相连,主设备和从设备形成闭环通信测试。本发明在高速率光纤通讯中实时传递同步相位码值,准确性较高,能实时地跟踪相位的变化,在多机电源系统具有很好的同步性能和扩展性。

Description

一种基于光纤传输的多机相位同步系统及方法 技术领域
本发明涉及多机系统技术领域,具体涉及一种基于光纤传输的多机相位同步系统及方法。
背景技术
多机相位同步在电源系统中应用极为广泛。多相系统中,从设备在同步主设备相位的基础上,进行实现对主设备的相位差;多机电源设备也是通过同步相位后,加入180度的相差进行反相,进而串联实现升压。多机相位同步的实时性和准确性是应用中两大要点。目前多机系统中相位同步相主要采用两种方式,一类是传递过零信号,主设备向从设备发送同步过零信号,从设备接收到同步过零信号,在零相位点处与主设备进行相位同步,实时性较强,但准确度不高,一个周期同步一次,尤其是频率变化时,无法准确追踪相位变化,会产生相位突变;另一类是基准源锁相技术,将主设备的模拟基准源发送给从设备,从设备将其鉴频,锁相,获得相位信息。准确性较高,能跟踪相位的变化,但实现电路较为复杂,且实时性无法满足要求,有一定的延时效应。
技术问题
本发明的目的在于:克服现有技术的缺陷,提供一种基于光纤传输的多机相位同步系统及方法,在高速率光纤通讯中实时传递同步相位码值,准确性较高,能实时地跟踪相位的变化,在多机电源系统具有很好的同步性能和扩展性。
技术解决方案
本发明公开了一种基于光纤传输的多机相位同步系统,包括主设备和若干从设备,所述主设备和所述从设备均设有光纤发射接口和光纤接收接口,所述主设备的光纤发射接口通过光纤与一个从设备的光纤接收接口相连,与主机相连的从设备和其他从设备之间依次串联,所述从设备的光纤接收接口通过光纤与其相连的上一个从设备的光纤发射口相连,所述从设备的光纤发射口通过光纤与其相连的下一个从设备的光纤接收接口相连;所述主设备每间隔T时刻产生一个新的本机数字参考源,并将本设备数字参考源的相位信息作为系统同步相位信号经由光纤传输给与所述主设备相连的从设备,所述从设备的光纤接收接口接收系统同步相位信号,将接收到系统同步相位信号作为本机的数字参考源相位,并将系统同步相位信号通过光纤发射口发送给与该从设备的光纤发射接口相连的从设备的光纤接收接口;当最后一个所述从设备的光纤发射口与所述主设备的光纤接收接口相连,所述主设备和所述从设备形成闭环通信测试,测试包括自测试模式和自校正模式。
进一步地,所述主设备在产生本机数字参考源时,将数字参考源的相位信息进行编码,生成同步相位码值为系统同步相位信号。
进一步地,所述光纤传播信息的时间为T 光纤,T 光纤<<T,T为主设备数字参考源的处理周期。
进一步地,系统进入自测试模式时,当主设备接收到最后一个从设备返回的系统同步相位信号的时间tr小于T时,自测试判定实时传输成功;当tr大于T时,自测试判定实时传输失败,T为主设备数字参考源的处理周期。
进一步地,系统进入自校正模式时,主设备获取当前同步相位信号的信息位数设置值,并进入自测试模式,当自测试判定实时传输成功,则完成校正,当自测试判定实时传输失败,调整系统同步相位信号的信息位数,再次进入自校正模式,直至自测试判定实时传输成功。
进一步地,当系统同步相位信号的信息位数为最小精度位数,自测试判定实时传输失败,则自校正失败。
本发明公开了一种基于光纤传输的多机相位同步方法,基于上述的一种基于光纤传输的多机相位同步系统,包括以下步骤:
步骤一:所述主设备每间隔T时刻,产生一个新的本机数字参考源,将数字参考源的相位信息进行编码,生成同步相位码值,即系统同步相位信号;
步骤二:所述主设备通过光纤发射口将系统同步相位信号经由光纤传输给与所述主设备相连的从设备的光纤接收接口;
步骤三:与所述主设备相连的从设备的将接收到系统同步相位信号作为本机的数字参考源相位,并将系统同步相位信号通过光纤发送给与该从设备光纤发射接口相连从设备的光纤接收接口;
步骤四:从设备光纤发射口的接收到系统同步相位信号的从设备将接收到系统同步相位信号为本机的数字参考源相位,并将系统同步相位信号通过发送给与该从设备光纤发射接口相连的下一个从设备的光纤接收接口;
步骤五:重复步骤四直至所有从设备接收到系统同步相位信号,并将系统同步相位信号作为本机的数字参考源相位,实现多机相位同步。
进一步地,所述光纤传播信息的时间为T 光纤,T 光纤<<T,当有N台设备,所述主设备t1时刻发送系统同步相位信号,第N台从设备tn时刻接收到系统同步相位信号,tn-t1<T,第N台从设备收到主设备的第一帧系统同步相位信号时,主设备的第二帧系统同步相位信号还未生成。
进一步地,所述光纤传递一帧系统同步相位信号所需时长为Δt,当第N台从设备收到主设备的第一帧系统同步相位信号时,需要满足N*Δt<T,在同一光纤速率下,光纤传递同步相位码值位数越多,相位精度越高,传递时间Δt越长,当Δt随着同步相位码值位数变长后,N <T/Δt,设备的数量N越小。
进一步地,当所述主设备和所述从设备形成闭环通信测试,首先进入自测试模式,当主设备接收到最后一个从设备返回的系统同步相位信号的时间tr小于T时,自测试判定实时传输成功,当tr大于T时,自测试判定实时传输失败,系统进入自校正模式。
进一步地,系统进入自校正模式时,主设备获取当前同步相位信号的信息位数设置值及最小精度设置位数,并进入自测试模式,当自测试判定实时传输成功,则完成校正,当自测试判定实时传输失败,调整系统同步相位信号的信息位数,再次进入自校正模式,直至自测试判定实时传输成功。
进一步地,当系统同步相位信号的信息位数为最小精度设置位数,自测试判定实时传输失败,则自校正失败。
有益效果
本发明基于高速光纤通信链路,实现多机相位同步功能。主设备在产生本机数字参考源时,将源相位信息进行编码,生成同步相位码值,通过光纤发送出去。从设备从光纤获取同步相位码值,作为本机的数字参考源相位信息,使得本机同主设备工作在同一相位,同时从设备再次将同步相位信息传递给下一个从设备,使得所有的设备的数字参考源都工作在同一相位,完成相位同步。系统中传输的同步相位信息位数可以依据系统的需求进行调整。位数多,同步相位精度高,系统多机数量变小;位数少,同步相位精度降低,系统多机数量可增加。在高速率光纤通讯中实时传递同步相位码值,准确性较高,能实时地跟踪相位的变化,在多机电源系统具有很好的同步性能和扩展性。
本发明还提供一种多机系统自测试模式,检测该系统是否满足实时同步相位传输;提供一种多机系统自校正模式,同时满足实时同步相位传输和系统设置的相位信息最小精度,获得最优的同步相位信息位数,使得多机系统实时,准确的实现同步功能。
附图说明
图1是本发明系统结构示意图。
图2是数字参考源相位生成示意图。
图3是多机系统光纤收发相位时间点示意图。
图4是本发明系统形成闭通信环测试的结构示意图。
图5是本发明系统自测试模式的流程图。
图6是本发明系统自校正模式的流程图。
本发明的实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
本发明公开了一种基于光纤传输的多机相位同步系统,如图1所示,包括若干个(至少两个)设备形成一个多机系统,每一个设备的都有一个光纤发射接口(TX)和一个光纤接收接口(RX),其中第N-1号设备的接收口和第N-2号设备的发射口相连,第N-1号设备的发送口和第N号设备的接收口相连,N为设备的台数。系统中一台设备为主设备,其它为从设备,即主设备1号、从设备2号、从设备3号…和从设备N号,主设备1号的光纤发射接口通过光纤与从设备2号的光纤接收接口相连,从设备2号的光纤发射接口通过光纤与从设备3号的光纤接收接口相连,以此类推,直至第N号设备的发射接口通过光纤与从设备N-1号的光纤接收接口相连。主设备1号将本设备数字参考源的相位信息作为系统的同步相位信号,经由光纤传输给从设备2号,从设备2号从光纤中接收到系统同步相位信号,一方面将其作为本机的数字参考源相位,使其与主设备实时同步,另一方面将系统同步相位信号发送给3号从设备,以此类推,直至所有从设备接收到主设备发出的相位信息,并将本机的数字参考源与之同步,实现多机相位同步。
主设备1号在产生本机数字参考源时,将源相位信息进行编码,生成同步相位码值,通过光纤通信发送出去。同步相位信息码值个数影响相位的精度,应根据系统的需求和硬件要求选择位数。本设计中同步相位采用30位码值,相位精度达到0.00000033度。
如图2所示,主设备数字参考源的处理周期为T,即主设备每间隔T时刻,产生一个新的相位信息,电源系统中交流源信号多为几K速率,相位生成周期T对应的频率是几M速率,光纤传播能达Gbps,即光纤传播信息的时间T 光纤<<T。
当最后一台从设备收到主设备的第一帧系统同步相位信号时,主设备的第二帧系统同步相位信号还未生成。此时,系统中所有的设备的数字参考源都工作在同一相位,多机系统完成相位同步。如图3所示,本系统中,光纤传递一帧系统同步相位信号所需时长为Δt,在同一光纤速率下,光纤传递同步相位码值位数越多,相位精度越高,传递时间Δt越长。
N*Δt<T
N <T/Δt
当Δt随着系统同步相位信号位数变长后,N会变小。
如图4所示,本系统还包括测试模式,测试模式下最后一个所述从设备的光纤发射口与所述主设备的光纤接收接口相连,形成闭环通信测试,也就是将最后一台从设备N号与主设备1号首尾相连,形成闭环通信测试,系统会自动检测当前多机系统是否满足实时同步相位,如果不满足,自校正模式可自动调整为实时同步相位的最优设置。待校正完成后,可断开此项连接,进入常规模式。
具体的,测试模式包括自测试模式和自校正模式。自测试模式是多机系统自动进行实时同步相位的检测。如图4所示,多机系统进入自测试模式,主设备1号接收从设备N号返回的相位信息,该相位信息为主设备1号在t1时刻发送出去的系统同步相位信号,通过闭环光纤通信链路在t1+tr时刻回到主设备1号。其中tr为多机系统闭环光纤传输一次的时长,
tr=N*Δt
由主设备1号每间隔T时刻,产生一个新的系统同步相位信号,则有tr<T时,自测试判定实时传输成功,同理,tr>T时,自测试判定实时传输失败。
当自测试未通过,主设备1号可进入自校正模式。自校正模式需用户设置最小同步相位信息位数,即多机系统可接受同相位信息的最小精度。自校正模式是通过调整同步相位信息的位数来缩短光纤传递一帧信息所需时长为Δt,进而达到缩短多机系统闭环光纤传输一次的时长tr的目的。校正中会逐步减少同步相位信息的位数,每减少一位,重复进行一次自测试,自测试成功,则完成校正。测试不成功,继续减少一位,重复该过程,直至自测试成功,自校正完成,同时给出最优同步相位信息位数。当同步相位信息位数为用户设置的最小精度位数,自测试仍不成功,则自校正失败。
基于上述系统,本发明还公开了一种基于光纤传输的多机相位同步方法,包括以下步骤:
步骤一:主设备1号每间隔T时刻,产生一个新的本机数字参考源,将数字参考源的相位信息进行编码,生成同步相位码值,即系统同步相位信号;
步骤二:主设备1号通过光纤发射口将系统同步相位信号经由光纤传输给从设备2号的光纤接收接口,发送时间为t1;
步骤三:从设备2号的将接收到系统同步相位信号作为本机的数字参考源相位,并将系统同步相位信号通过光纤发送给从设备3号的光纤接收接口,从设备2号接收到相位信息的时间为t2;
步骤四:从设备3号的将接收到系统同步相位信号作为本机的数字参考源相位,并将系统同步相位信号通过光纤发送给下一个从设备的光纤接收接口,从设备3号接收到相位信息的时间为t3;
步骤五:重复步骤四直至所有从设备接收到系统同步相位信号,即从设备N号接收到系统同步相位信号,并将系统同步相位信号作为本机的数字参考源相位,从设备N号接收到相位信息的时间为tn。从设备N号设备收到主设备1号的第一帧相位信息时,主设备1号的第二帧相位信息还未生成,即满足 tn-t1<T。此时,多机系统中所有的设备的数字参考源都工作在同一相位,多机系统完成相位同步。
如图3中,Δt= t2-t1。在同一光纤速率下,光纤传递同步相位码值位数越多,相位精度越高,传递时间Δt越长。因此,可以通过调整同步相位信息的位数来达到系统所需的多机数量和相位精度。位数多,同步相位精度高,系统多机数量变小;位数少,同步相位精度降低,系统多机数量可增加。
本发明公开的一种基于光纤传输的多机相位同步方法,还包括自测试模式和自校正模式,自测试模式可检测该系统是否满足实时同步相位传输;自校正模式可同时满足实时同步相位传输和系统设置的相位信息最小精度,获得最优的同步相位信息位数,使得多机系统实时,准确的实现同步功能。
如图5所示,将系统的最后一台从设备N号与主设备1号首尾相连,形成闭环通信测试,启动自测试模式。主设备1号发送同步测试相位信息,同时启动计数器开始计时,当主设备1号接收到从设备N发送来的同步测试相位信息时,解析判断闭环传输完成并停止计数器,获得闭环传输时长tr,重复进行K次测试,统计K次测试数据得到自测试结果。
主设备1号每间隔T时刻发送同步测试相位信息,则有tr<T时,自测试判定实时传输成功,同理,tr>T时,自测试判定实时传输失败。
自测试判定实时传输失败,系统进入自校正模式。如图6所示,启动自校正模式,用户设置最小系统同步相位信息位数,获得最小精度设置位数M,获得当前系统同步相位信息位数R,判断R是否小于M,如果R<M, 则自校正失败,如果R≥M,启动自测试模式,完成一次系统自测试,并返回测试结果,判断自测试结果是否成功,如果成功,则校正成功,返回R值,R值即最优系统同步相位信息位数,如果不成功,则减少一位同步相位位数(R=R-1),重复该过程,直至自测试成功,成功校正,返回R值即最优系统同步相位信息位数。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种基于光纤传输的多机相位同步系统,包括主设备和若干从设备,所述主设备和所述从设备均设有光纤发射接口和光纤接收接口,其特征在于,所述主设备的光纤发射接口通过光纤与一个从设备的光纤接收接口相连,与主机相连的从设备和其他从设备之间依次串联,所述从设备的光纤接收接口通过光纤与其相连的上一个从设备的光纤发射口相连,所述从设备的光纤发射口通过光纤与其相连的下一个从设备的光纤接收接口相连;所述主设备每间隔T时刻产生一个新的本机数字参考源,并将本设备数字参考源的相位信息作为系统同步相位信号经由光纤传输给与所述主设备相连的从设备,所述从设备的光纤接收接口接收系统同步相位信号,将接收到系统同步相位信号作为本机的数字参考源相位,并将系统同步相位信号通过光纤发射口发送给与该从设备的光纤发射接口相连的从设备的光纤接收接口;当最后一个所述从设备的光纤发射口与所述主设备的光纤接收接口相连,所述主设备和所述从设备形成闭环通信测试,测试包括自测试模式和自校正模式。
  2. 根据权利要求1所述的基于光纤传输的多机相位同步系统,其特征在于,所述主设备在产生本机数字参考源时,将数字参考源的相位信息进行编码,生成同步相位码值为系统同步相位信号。
  3. 根据权利要求1所述的基于光纤传输的多机相位同步系统,其特征在于,所述光纤传播信息的时间为T 光纤,T 光纤<<T,T为主设备数字参考源的处理周期。
  4. 根据权利要求1所述的基于光纤传输的多机相位同步系统,其特征在于,系统进入自测试模式时,当主设备接收到最后一个从设备返回的系统同步相位信号的时间tr小于T时,自测试判定实时传输成功;当tr大于T时,自测试判定实时传输失败,T为主设备数字参考源的处理周期。
  5. 根据权利要求1所述的基于光纤传输的多机相位同步系统,其特征在于,系统进入自校正模式时,主设备获取当前同步相位信号的信息位数设置值,并进入自测试模式,当自测试判定实时传输成功,则完成校正,当自测试判定实时传输失败,调整系统同步相位信号的信息位数,再次进入自校正模式,直至自测试判定实时传输成功。
  6. 根据权利要求5所述的基于光纤传输的多机相位同步系统,其特征在于,当系统同步相位信号的信息位数为最小精度位数,自测试判定实时传输失败,则自校正失败。
  7. 一种基于光纤传输的多机相位同步方法,基于权利要求1所述的基于光纤传输的多机相位同步系统,其特征在于,包括以下步骤:
    步骤一:所述主设备每间隔T时刻,产生一个新的本机数字参考源,将数字参考源的相位信息进行编码,生成同步相位码值,即系统同步相位信号;
    步骤二:所述主设备通过光纤发射口将系统同步相位信号经由光纤传输给与所述主设备相连的从设备的光纤接收接口;
    步骤三:与所述主设备相连的从设备的将接收到系统同步相位信号作为本机的数字参考源相位,并将系统同步相位信号通过光纤发送给与该从设备光纤发射接口相连从设备的光纤接收接口;
    步骤四:从设备光纤发射口的接收到系统同步相位信号的从设备将接收到系统同步相位信号为本机的数字参考源相位,并将系统同步相位信号通过发送给与该从设备光纤发射接口相连的下一个从设备的光纤接收接口;
    步骤五:重复步骤四直至所有从设备接收到系统同步相位信号,并将系统同步相位信号作为本机的数字参考源相位,实现多机相位同步。
  8. 根据权利要求7所述的基于光纤传输的多机相位同步方法,其特征在于,所述光纤传播信息的时间为T 光纤,T 光纤<<T,当有N台设备,所述主设备t1时刻发送系统同步相位信号,第N台从设备tn时刻接收到系统同步相位信号,tn-t1<T,第N台从设备收到主设备的第一帧系统同步相位信号时,主设备的第二帧系统同步相位信号还未生成。
  9. 根据权利要求8所述的基于光纤传输的多机相位同步方法,其特征在于,所述光纤传递一帧系统同步相位信号所需时长为Δt,当第N台从设备收到主设备的第一帧系统同步相位信号时,需要满足N*Δt<T,在同一光纤速率下,光纤传递同步相位码值位数越多,相位精度越高,传递时间Δt越长,当Δt随着同步相位码值位数变长后,N <T/Δt,设备的数量N越小。
  10. 根据权利要求7所述的基于光纤传输的多机相位同步方法,其特征在于,当所述主设备和所述从设备形成闭环通信测试,首先进入自测试模式,当主设备接收到最后一个从设备返回的系统同步相位信号的时间tr小于T时,自测试判定实时传输成功,当tr大于T时,自测试判定实时传输失败,系统进入自校正模式。
  11. 根据权利要求10所述的基于光纤传输的多机相位同步方法,其特征在于,系统进入自校正模式时,主设备获取当前同步相位信号的信息位数设置值及最小精度设置位数,并进入自测试模式,当自测试判定实时传输成功,则完成校正,当自测试判定实时传输失败,调整系统同步相位信号的信息位数,再次进入自校正模式,直至自测试判定实时传输成功。
  12. 根据权利要求11所述的基于光纤传输的多机相位同步方法,其特征在于,当系统同步相位信号的信息位数为最小精度设置位数,自测试判定实时传输失败,则自校正失败。
PCT/CN2022/116424 2022-07-07 2022-09-01 一种基于光纤传输的多机相位同步系统及方法 WO2024007439A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22908804.2A EP4333327A1 (en) 2022-07-07 2022-09-01 Multi-machine phase synchronization system and method based on optical fiber transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210792612.3A CN114866148B (zh) 2022-07-07 2022-07-07 一种基于光纤传输的多机相位同步系统及方法
CN202210792612.3 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024007439A1 true WO2024007439A1 (zh) 2024-01-11

Family

ID=82625838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116424 WO2024007439A1 (zh) 2022-07-07 2022-09-01 一种基于光纤传输的多机相位同步系统及方法

Country Status (4)

Country Link
EP (1) EP4333327A1 (zh)
CN (1) CN114866148B (zh)
TW (1) TWI828477B (zh)
WO (1) WO2024007439A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2297713A1 (en) * 2000-02-02 2001-08-02 David Victor Plant Method and apparatus for distributed synchronous clocking
US20060245454A1 (en) * 2005-04-27 2006-11-02 Rockwell Automation Technologies, Inc. Time synchronization, deterministic data delivery and redundancy for cascaded nodes on full duplex ethernet networks
CN103368803A (zh) * 2012-03-29 2013-10-23 罗伯特·博世有限公司 调试或编程通信装置一或多个用户装置的方法和通信装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917582B (zh) * 2015-06-30 2018-05-01 中国科学技术大学 高精度时钟分发和相位自动补偿系统及其相位调节方法
CN105281367B (zh) * 2015-11-09 2018-01-30 国网上海市电力公司 一种多机并联的并离网无缝切换系统
CN109039517B (zh) * 2018-08-10 2019-12-24 电信科学技术第五研究所有限公司 基于光纤网络的多节点高精度频率同步方法及系统
CN111884493B (zh) * 2020-08-14 2021-06-15 四川英杰电气股份有限公司 一种多电源的主从式多机通信方法及多电源系统
CN113078978A (zh) * 2021-03-26 2021-07-06 杭州加速科技有限公司 远距离多ate半导体测试设备同步方法、系统及测试方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2297713A1 (en) * 2000-02-02 2001-08-02 David Victor Plant Method and apparatus for distributed synchronous clocking
US20060245454A1 (en) * 2005-04-27 2006-11-02 Rockwell Automation Technologies, Inc. Time synchronization, deterministic data delivery and redundancy for cascaded nodes on full duplex ethernet networks
CN103368803A (zh) * 2012-03-29 2013-10-23 罗伯特·博世有限公司 调试或编程通信装置一或多个用户装置的方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YI WANG, JIANG HAN-HONG; ZHENG YU-FENG; LI CHAO: "Synchronization control strategy of pulse power based on Manchester coding", JOURNAL OF NAVAL UNIVERSITY OF ENGINEERING, vol. 27, no. 6, 15 December 2015 (2015-12-15), pages 11 - 15, XP093126657 *

Also Published As

Publication number Publication date
CN114866148B (zh) 2022-09-20
TWI828477B (zh) 2024-01-01
EP4333327A1 (en) 2024-03-06
TW202404302A (zh) 2024-01-16
CN114866148A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US7245684B2 (en) System and method for compensating for skew between a first clock signal and a second clock signal
US4596025A (en) Timing synchronization circuit
CN106301378B (zh) 一种高速dac同步方法及电路
CN101021727A (zh) 控制系统
CN105634641B (zh) 基于交换架构可级联网络通信的精确校时系统及方法
CN215420318U (zh) 一种用于量子密钥分发的时间同步系统
JP2001519114A (ja) データ伝送システムのための閉ループ同期装置
CN108880721B (zh) 以太网络物理层电路与其时钟恢复方法
CN116155430A (zh) 一种光纤双向信号传输时延误差消除方法及时频系统
CN109120367A (zh) 基于对流层散射信道的时间同步方法
CN106301655A (zh) 主端设备、从端设备以及主端延时调整同步定时系统
JPH0738631B2 (ja) フレーム同期確立方法
TWI828477B (zh) 基於光纖傳輸的多機相位同步系統及方法
CN102201906A (zh) 一种时钟信号处理方法及其设备
CN101119157B (zh) 一种光纤延时的测量方法及系统
RU2441320C1 (ru) Система связи сверхширокополосными сигналами с повышенной точностью и стабильностью синхронизации
CN115361064B (zh) 一种多路光纤数据传输的同步信号自动对准方法
Deev et al. Subnanosecond synchronization method based on the synchronous Ethernet network
US7222042B2 (en) System and method of measuring turn-on and turn-off times of an optoelectronic device
CN107911207A (zh) 一种基于时间校正的周期信号同步方法
US20230026148A1 (en) System and method for sparse data synchronization and communication
CN113726408B (zh) 一种卫星载荷系统协同同步和自同步的自适应同步方法
JP2871364B2 (ja) モデムの送信同期装置及び方法
CN116112011B (zh) 一种用于软件可定义soc芯片的无sysref分布式时钟架构
CN114282677A (zh) 一种主控制设备、从控制设备及量子计算系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22908804

Country of ref document: EP

Kind code of ref document: A1