WO2024007403A1 - 一种液面感应装置、方法及采样针的下行方法 - Google Patents

一种液面感应装置、方法及采样针的下行方法 Download PDF

Info

Publication number
WO2024007403A1
WO2024007403A1 PCT/CN2022/110207 CN2022110207W WO2024007403A1 WO 2024007403 A1 WO2024007403 A1 WO 2024007403A1 CN 2022110207 W CN2022110207 W CN 2022110207W WO 2024007403 A1 WO2024007403 A1 WO 2024007403A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid level
sample
container
liquid
image recognition
Prior art date
Application number
PCT/CN2022/110207
Other languages
English (en)
French (fr)
Inventor
吴国银
Original Assignee
苏州长光华医生物医学工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州长光华医生物医学工程有限公司 filed Critical 苏州长光华医生物医学工程有限公司
Publication of WO2024007403A1 publication Critical patent/WO2024007403A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition

Definitions

  • This application belongs to the field of medical devices, is suitable for chemiluminescent equipment, and relates to a liquid level sensing device, method and a descending method of a sampling needle.
  • the present invention proposes a liquid level sensing device and method based on container image recognition and laser ranging technology.
  • a liquid level sensing device based on container image recognition including:
  • a sample rack has a number of uniform slots capable of accommodating sample containers of various specifications
  • Image recognizer used to identify and distinguish different sample containers using image recognition when the sample rack is in the sample suction area
  • a sample suction needle assembly includes a sampling needle, a laser ranging device, a needle beam, and a liquid level detection device; one end of the needle beam is fixed with the sampling needle, a laser ranging device, and a liquid level detection device; the liquid level detection device The device can detect the liquid level based on capacitive detection method;
  • the database module is used to store the tube bottom height parameters and the functional relationship information between the container height parameters and the liquid volume when sample containers of various specifications are installed on the sample rack, for comparison when the image recognizer obtains the sample container image. match.
  • the laser ranging device includes:
  • Main control chip ranging chip, power interface, serial communication interface and peripheral circuits
  • the main control chip and the laser ranging device are connected through a serial communication interface for signal interaction.
  • the main control chip is connected to the control board of the sampling needle through the serial communication interface for signal interaction.
  • the main control chip is connected to the power supply through the power interface. .
  • the image recognizer is further equipped with a module for reading barcodes.
  • a liquid level sensing method based on container image recognition including the following steps:
  • S1 place the sample container on the sample rack.
  • the sample rack is pushed to the sample suction area, use the image recognizer to take photos and compare the sample rack and the sample container to identify the type of sample container placed at each position;
  • S2 retrieve the information saved in the database module to obtain the tube bottom height parameter of each sample container and the functional relationship between the liquid level height parameter and the liquid volume in the sample container;
  • step S4 the laser ranging device transmits the acquired liquid level height parameters to the main control chip through the serial communication interface, and then the main control chip
  • the pipe bottom height parameter of the sample container is retrieved from the database module, and combined with the functional relationship between the liquid level height parameter and the liquid volume in the corresponding sample container, the liquid volume V 0 in the container is calculated.
  • the sampling needle When V 0 >500uL, the sampling needle is controlled to move quickly to the mouth of the sample container, and then switches to the normal speed liquid level detection mode M 1 to detect and aspirate the sample;
  • the sampling needle When V 0 ⁇ 500uL, the sampling needle is controlled to move quickly to around 1mL above the liquid level, and then switches to the slow liquid level detection mode M 2 . It senses the liquid level position at a slow speed and then stops suddenly. The liquid volume requirement is reduced by a corresponding distance to ensure that no vacuum occurs;
  • step S6 According to the pipe bottom height parameter obtained in step S2, limit the maximum downward distance of the sampling needle to be higher than the pipe bottom height.
  • the descending method of the sampling needle of the present invention is switched to the slow liquid level detection mode M 2 .
  • the sampling needle descends a corresponding distance according to the subsequent actual suction volume demand, so that the suction volume is If the liquid volume is V, then run downward to a height corresponding to V*120%.
  • the method of sensing the liquid level position is a liquid level detection method based on capacitive detection.
  • the solution of the present invention can greatly improve the detection stability and reduce the detection dead volume to ensure that the needle tip will not touch the bottom of the container and cause a needle stick phenomenon.
  • Figure 1 is a schematic diagram of the recognition principle of the image recognizer according to the embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the sample suction needle assembly according to the embodiment of the present application.
  • Figure 3 is a schematic diagram of the circuit structure of the laser ranging device according to the embodiment of the present application.
  • connection should be understood in a broad sense.
  • connection, or integral connection can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection, or integral connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in this application can be understood through specific circumstances.
  • the X, Y, and Z directions or the X, Y, and Z axes described in this embodiment are all based on the Cartesian coordinate system.
  • This embodiment provides a liquid level sensing device based on container image recognition, as shown in Figures 1 and 2, including:
  • the sample rack 1 has a number of unified slots 11 that can accommodate sample containers of various specifications; the sample rack 1 used in this embodiment can accommodate at least 4 types of sample containers, as shown in Figure 1, including the first container A. Second container B, third container C, fourth container D;
  • the image recognizer 2 is used to use image recognition to identify and distinguish different sample containers (the first container A, the second container B, the third container C, The fourth container D is very different in shape and is not prone to misjudgment. If you need to use more types of containers, you should avoid types that are very similar in shape);
  • the sample suction needle assembly 3 includes a sampling needle 31, a laser ranging device 32, a needle beam 33, and a liquid level detection device 34; one end of the needle beam 33 is fixed with the sampling needle 31, the laser ranging device 32, and the liquid level.
  • Detection device 34; the liquid level detection device 34 can detect the liquid level based on the capacitance detection method;
  • the database module is used to save the tube bottom height parameters when sample containers of various specifications are installed on the sample rack 1 (each slot 11 on the sample rack 1 has the same shape, so the position of a specific sample container placed in the slot 11 is fixed (that is, the parameters such as the height of the tube bottom are determined) and the functional relationship information between the liquid level height parameters and the liquid volume in the container (the cross-sectional area of different containers is different, so the function is different for different containers; the functional relationship for each container is Relatively certain, it can be obtained through actual measurement during debugging of each instrument and pre-stored in the software debugging parameters) for comparison and matching when the image recognizer 2 obtains the sample container image.
  • the laser ranging device 32 includes:
  • Main control chip ranging chip, power interface, serial communication interface and peripheral circuits
  • the main control chip and the laser ranging device 32 are connected through a serial communication interface for signal interaction.
  • the main control chip is connected to the control board of the sampling needle 31 through the serial communication interface for signal interaction.
  • the main control chip is connected through a power interface. Connect the power supply.
  • the image recognizer 2 is also equipped with a module for reading barcodes. If there is a barcode on the sample container, the container type information can be obtained directly by scanning the code, which increases the reliability of image recognition.
  • This embodiment provides a liquid level sensing method based on container image recognition, which includes the following steps:
  • S2 retrieve the information saved in the database module to obtain the tube bottom height parameter of each sample container and the functional relationship between the liquid level height parameter and the liquid volume in the sample container;
  • step S4 the laser ranging device 32 transmits the obtained liquid level height parameters to the main control chip through the serial communication interface, and then the main control chip The control chip retrieves the tube bottom height parameter of the sample container from the database module, and combines the functional relationship between the liquid level height parameter and the liquid volume in the corresponding sample container to calculate the liquid volume V 0 in the container.
  • This embodiment provides a method for descending the sampling needle, using the above-mentioned liquid level sensing method based on container image recognition, and performing the following steps after step S4:
  • the sampling needle When V 0 >500uL, the sampling needle is controlled to move quickly (v 1 ) to the mouth of the sample container to save downtime, and then switches to the liquid level detection mode M 1 at normal speed (v 2 ) to detect and aspirate the sample (the liquid volume is greater than When V 0 ⁇ 500uL, the liquid level detection technology based on capacitance detection can easily and reliably detect the liquid level and aspirate the sample correctly); when V 0 ⁇ 500uL, the sampling needle is controlled to move quickly to around 1mL above the liquid level to save downtime. , and then switch to the slow speed (v 3 ) liquid level detection mode M 2. The slow speed senses the liquid level position and then makes an emergency stop. Then it descends the corresponding distance according to the actual subsequent liquid suction volume demand to ensure that there is no empty suction (the downward movement). The distance should ensure that the sample covers the tip of the needle for a certain distance to ensure that it is not sucked empty);
  • step S6 According to the pipe bottom height parameter obtained in step S2, limit the maximum downward distance of the sampling needle to be higher than the pipe bottom height. This ensures that the tip of the needle does not touch the bottom of the container and cause a needle stick.
  • the descending method of the sampling needle in this embodiment is to switch to the slow liquid level detection mode M 2 .
  • the sampling needle descends a corresponding distance according to the subsequent actual liquid suction volume demand, so that If the liquid suction volume is V, then run downward to a height corresponding to V*120%.
  • the method of sensing the liquid level position is a liquid level detection method based on capacitive detection.
  • the liquid level detection method based on capacitance detection has high detection accuracy and is a mature technology in the existing technology, which is suitable for liquid level detection with high precision requirements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Power Engineering (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本申请涉及一种液面感应装置、方法及采样针的下行方法,其中,液面感应装置包括:样本架,具有若干个统一的能够容纳多种规格的样本容器的插槽;图像识别器,用于在样本架处于吸样区时,采用图像识别的方式识别区分不同的样本容器;吸样针组件,包括采样针、激光测距装置、针横梁、液面探测装置;针横梁的一端固定有采样针、激光测距装置和液面探测装置;液面探测装置能够基于电容检测方法探测液面。本发明的方案可以极大提高探测稳定性,并降低探测死体积,以保证针尖不会触碰容器底部造成扎针现象。

Description

一种液面感应装置、方法及采样针的下行方法 技术领域
本申请属于医疗器械领域,适用于化学发光设备,涉及一种液面感应装置、方法及采样针的下行方法。
背景技术
目前,全自动化学发光仪器上采样针一般基于电容检测技术探测样本。但是,由于存在环境干扰及液体量很少时探测灵敏度降低等问题,导致该技术在实际使用中存在一定的液面误探、漏探等现象,尤其在容器底部样本量较少时容易出现漏探问题。
发明内容
为了进一步提高液面探测的稳定性,并降低探测死体积,本发明提出一种基于容器图像识别与激光测距技术的液面感应装置及方法。
本发明解决其技术问题所采用的技术方案是:
一种基于容器图像识别的液面感应装置,包括:
样本架,具有若干个统一的能够容纳多种规格的样本容器的插槽;
图像识别器,用于在样本架处于吸样区时,采用图像识别的方式识别区分不同的样本容器;
吸样针组件,包括采样针、激光测距装置、针横梁、液面探测装置;所述针横梁的一端固定有所述采样针、激光测距装置和液面探测装置;所述液面探测装置能够基于电容检测方法探测液面;
数据库模块,用于保存多种规格的样本容器安装在样本架上时管底高度参数及该容器高度参数与液量的函数关系信息,以供所述图像识别器获得样本容器图像时进行比对匹配。
优选地,本发明的基于容器图像识别的液面感应装置,所述激光测距装置包括:
主控芯片、测距芯片、电源接口、串行通信接口和外围电路;
主控芯片与激光测距装置通过串行通信接口连接进行信号交互,所述主控芯片通过串行通信接口与采样针的控制板卡连接进行信号交互,所述主控芯片通过电源 接口连接电源。
优选地,本发明的基于容器图像识别的液面感应装置,所述图像识别器还具备读取条码的模块。
一种基于容器图像识别的液面感应方法,包括以下步骤:
S1,将样本容器放置在样本架上,当样本架被推送到吸样区时,使用图像识别器对样本架和样本容器进行拍照比对,识别出每个位置放置的样本容器的类型;
S2,调取数据库模块中保存的信息,得到每个样本容器的管底高度参数及该样本容器内液面高度参数与液量的函数关系;
S3,将吸样针组件移动到待吸样本容器上方,并短暂停留,通过激光测距装置获取下方样本容器中液面高度参数;
S4,通过所述液面高度参数并结合所述管底高度参数换算出容器中大致的液体量V 0
优选地,本发明的基于容器图像识别的液面感应方法,在步骤S4中,激光测距装置将获取到的液面高度参数通过串行通信接口传送到的主控芯片,再由主控芯片从数据库模块调取样本容器的管底高度参数,并结合相应样本容器内液面高度参数与液量的函数关系,计算得容器中的液量V 0
一种采样针的下行方法,采用上述的基于容器图像识别的液面感应方法,在步骤S4之后执行步骤:
S5,判断V 0的大小范围;
当V 0>500uL时,控制采样针先快速运动到样本容器口,然后切换到正常速度的液面探测模式M 1,探测并吸取样本;
当V 0≤500uL时,控制采样针先快速运动到液面以上1mL附近,然后切换到慢速液面探测模式M 2,慢速感应到液面位置后急停,然后根据接下来的实际吸液量需求下降相应距离,确保不出现吸空;
S6,根据步骤S2获得的所述管底高度参数,限制采样针的下行最大距离高于管底高度。
优选地,本发明的采样针的下行方法,切换到慢速液面探测模式M 2,慢速感应到液面位置后急停之后,根据接下来的实际吸液量需求下降相应距离,令吸液量为V,则向下运行V*120%对应的高度。
优选地,本发明的采样针的下行方法,慢速液面探测模式M 2中,感应液面位置的方法是基于电容检测的液面探测方法。
本发明的有益效果是:
本发明的方案可以极大提高探测稳定性,并降低探测死体积,以保证针尖不会触碰容器底部造成扎针现象。
附图说明
下面结合附图和实施例对本申请的技术方案进一步说明。
图1是本申请实施例的图像识别器识别原理示意图;
图2是本申请实施例的吸样针组件结构示意图;
图3是本申请实施例的激光测距装置电路结构示意图。
图中的附图标记为:
1样本架;
2图像识别器;
3吸样针组件;
11插槽;
31采样针;
32激光测距装置;
33针横梁;
34液面探测装置;
A第一容器;
B第二容器;
C第三容器;
D第四容器。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述 本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明创造的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。本实施例中所述的X、Y、Z方向或X、Y、Z轴均是基于笛卡尔坐标系。
下面将参考附图并结合实施例来详细说明本申请的技术方案。
本实施例提供一种基于容器图像识别的液面感应装置,如图1、2所示,包括:
样本架1,具有若干个统一的能够容纳多种规格的样本容器的插槽11;本实施例中的采用的样本架1可以容纳至少4种样本容器,如图1所示,包括第一容器A、第二容器B、第三容器C、第四容器D;
图像识别器2,用于在样本架1处于吸样区时,采用图像识别的方式识别区分不同的样本容器(本实施例中采用的第一容器A、第二容器B、第三容器C、第四容器D,在形体上差异很大,不容易产生误判别,如需要使用更多种类的容器,也应当避免形体上很相近的种类);
吸样针组件3,包括采样针31、激光测距装置32、针横梁33、液面探测装置34;所述针横梁33的一端固定有所述采样针31、激光测距装置32和液面探测装置34;所述液面探测装置34能够基于电容检测方法探测液面;
数据库模块,用于保存多种规格的样本容器安装在样本架1上时管底高度参数(样本架1上的每个插槽11形状一致,所以特定样本容器放在插槽11的位置是固定的,即管底高度等参数确定)及该容器内液面高度参数与液量的函数关系信息(不同容器的截面积不同,所以不同容器该函数是不同的;该函数关系对于每 种容器是相对确定的,可通过每台仪器调试时实测获得,预存在软件调试参数中),以供所述图像识别器2获得样本容器图像时进行比对匹配。
优选地,本实施例的基于容器图像识别的液面感应装置,如图3所示,所述激光测距装置32包括:
主控芯片、测距芯片、电源接口、串行通信接口和外围电路;
主控芯片与激光测距装置32通过串行通信接口连接进行信号交互,所述主控芯片通过串行通信接口与采样针31的控制板卡连接进行信号交互,所述主控芯片通过电源接口连接电源。
优选地,本实施例的基于容器图像识别的液面感应装置,所述图像识别器2还具备读取条码的模块。如果样本容器上还具有条码,则直接可以通过扫码获得容器种类信息,增加了图像识别的可靠度。
本实施例提供一种基于容器图像识别的液面感应方法,包括以下步骤:
S1,将样本容器放置在样本架1上,当样本架1被推送到吸样区时,使用图像识别器2对样本架1和样本容器进行拍照比对,识别出每个位置放置的样本容器的类型;
S2,调取数据库模块中保存的信息,得到每个样本容器的管底高度参数及该样本容器内液面高度参数与液量的函数关系;
S3,将吸样针组件3移动到待吸样本容器上方,并短暂停留,通过激光测距装置32获取下方样本容器中液面高度参数;
S4,通过所述液面高度参数并结合所述管底高度参数换算出容器中大致的液体量V 0
优选地,本实施例的基于容器图像识别的液面感应方法,在步骤S4中,激光测距装置32将获取到的液面高度参数通过串行通信接口传送到的主控芯片,再由主控芯片从数据库模块调取样本容器的管底高度参数,并结合相应样本容器内液面高度参数与液量的函数关系,计算得容器中的液量V 0
本实施例提供一种采样针的下行方法,采用上述的基于容器图像识别的液面感应方法,在步骤S4之后执行步骤:
S5,判断V 0的大小范围;
当V 0>500uL时,控制采样针先快速(v 1)运动到样本容器口节省下行时间,然 后切换到正常速度(v 2)的液面探测模式M 1,探测并吸取样本(液量大于该值时,基于电容检测的液面探测技术可以容易且可靠地探测到液面,并正确吸样);当V 0≤500uL时,控制采样针先快速运动到液面以上1mL附近节省下行时间,然后切换到慢速(v 3)液面探测模式M 2,慢速感应到液面位置后急停,然后根据接下来的实际吸液量需求下降相应距离,确保不出现吸空(该下行距离应确保样本漫过针尖一定距离以确保不吸空);
S6,根据步骤S2获得的所述管底高度参数,限制采样针的下行最大距离高于管底高度。以保证针尖不会触碰容器底部造成扎针现象。
上述v 3<v 2<v 1
优选地,本实施例的采样针的下行方法,切换到慢速液面探测模式M 2,慢速感应到液面位置后急停之后,根据接下来的实际吸液量需求下降相应距离,令吸液量为V,则向下运行V*120%对应的高度。
优选地,本实施例的采样针的下行方法,慢速液面探测模式M 2中,感应液面位置的方法是基于电容检测的液面探测方法。基于电容检测的液面探测方法的探测的精度高,而且在现有技术中属于成熟技术,适合高精度需求的液面探测。
以上述依据本申请的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项申请技术思想的范围内,进行多样的变更以及修改。本项申请的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (8)

  1. 一种基于容器图像识别的液面感应装置,其特征在于,包括:样本架(1),具有若干个统一的能够容纳多种规格的样本容器的插槽(11);
    图像识别器(2),用于在样本架(1)处于吸样区时,采用图像识别的方式识别区分不同的样本容器;
    吸样针组件(3),包括采样针(31)、激光测距装置(32)、针横梁(33)、液面探测装置(34);所述针横梁(33)的一端固定有所述采样针(31)、激光测距装置(32)和液面探测装置(34);所述液面探测装置(34)能够基于电容检测方法探测液面;
    数据库模块,用于保存多种规格的样本容器安装在样本架(1)上时管底高度参数及该容器高度参数与液量的函数关系信息,以供所述图像识别器(2)获得样本容器图像时进行比对匹配。
  2. 根据权利要求1所述的基于容器图像识别的液面感应装置,其特征在于,所述激光测距装置(32)包括:
    主控芯片、测距芯片、电源接口、串行通信接口和外围电路;
    主控芯片与激光测距装置(32)通过串行通信接口连接进行信号交互,所述主控芯片通过串行通信接口与采样针(31)的控制板卡连接进行信号交互,所述主控芯片通过电源接口连接电源。
  3. 根据权利要求1所述的基于容器图像识别的液面感应装置,其特征在于,所述图像识别器(2)还具备读取条码的模块。
  4. 一种基于容器图像识别的液面感应方法,其特征在于,包括以下步骤:
    S1,将样本容器放置在样本架(1)上,当样本架(1)被推送到吸样区时,使用图像识别器(2)对样本架(1)和样本容器进行拍照比对,识别出每个位置放置的样本容器的类型;
    S2,调取数据库模块中保存的信息,得到每个样本容器的管底高度参数及该样本容器内液面高度参数与液量的函数关系;
    S3,将吸样针组件(3)移动到待吸样本容器上方,并短暂停留,通过激光测距装置(32)获取下方样本容器中液面高度参数;
    S4,通过所述液面高度参数并结合所述管底高度参数换算出容器中大致的液体量 V 0
  5. 根据权利要求4所述的基于容器图像识别的液面感应方法,其特征在于,在步骤S4中,激光测距装置(32)将获取到的液面高度参数通过串行通信接口传送到的主控芯片,再由主控芯片从数据库模块调取样本容器的管底高度参数,并结合相应样本容器内液面高度参数与液量的函数关系,计算得容器中的液量V 0
  6. 一种采样针的下行方法,其特征在于,采用如权利要求4或5所述的基于容器图像识别的液面感应方法,在步骤S4之后执行步骤:
    S5,判断V 0的大小范围;
    当V 0>500uL时,控制采样针先快速运动到样本容器口,然后切换到正常速度的液面探测模式M 1,探测并吸取样本;
    当V 0≤500uL时,控制采样针先快速运动到液面以上1mL附近,然后切换到慢速液面探测模式M 2,慢速感应到液面位置后急停,然后根据接下来的实际吸液量需求下降相应距离,确保不出现吸空;
    S6,根据步骤S2获得的所述管底高度参数,限制采样针的下行最大距离高于管底高度。
  7. 根据权利要求6所述的采样针的下行方法,其特征在于,切换到慢速液面探测模式M 2,慢速感应到液面位置后急停之后,根据接下来的实际吸液量需求下降相应距离,令吸液量为V,则向下运行V*120%对应的高度。
  8. 根据权利要求7所述的采样针的下行方法,其特征在于,慢速液面探测模式M 2中,感应液面位置的方法是基于电容检测的液面探测方法。
PCT/CN2022/110207 2022-07-08 2022-08-04 一种液面感应装置、方法及采样针的下行方法 WO2024007403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210801062.7A CN115165034A (zh) 2022-07-08 2022-07-08 一种液面感应装置、方法及采样针的下行方法
CN202210801062.7 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024007403A1 true WO2024007403A1 (zh) 2024-01-11

Family

ID=83492745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110207 WO2024007403A1 (zh) 2022-07-08 2022-08-04 一种液面感应装置、方法及采样针的下行方法

Country Status (2)

Country Link
CN (1) CN115165034A (zh)
WO (1) WO2024007403A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056649A1 (ja) * 2013-10-17 2015-04-23 株式会社日立ハイテクノロジーズ 検体検査自動化システムおよび容量チェックモジュールならびに生体試料のチェック方法
CN109900341A (zh) * 2019-04-15 2019-06-18 南京诺唯赞医疗科技有限公司 一种用于体外诊断设备的液面检测系统
CN110058036A (zh) * 2019-04-30 2019-07-26 上海仁度生物科技有限公司 一种液面探测装置
CN110926566A (zh) * 2018-09-20 2020-03-27 深圳迈瑞生物医疗电子股份有限公司 一种液面检测方法、样本分析仪和计算机存储介质
CN114112513A (zh) * 2020-08-28 2022-03-01 深圳市帝迈生物技术有限公司 一种液面检测方法、血液分析装置及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056649A1 (ja) * 2013-10-17 2015-04-23 株式会社日立ハイテクノロジーズ 検体検査自動化システムおよび容量チェックモジュールならびに生体試料のチェック方法
CN110926566A (zh) * 2018-09-20 2020-03-27 深圳迈瑞生物医疗电子股份有限公司 一种液面检测方法、样本分析仪和计算机存储介质
CN109900341A (zh) * 2019-04-15 2019-06-18 南京诺唯赞医疗科技有限公司 一种用于体外诊断设备的液面检测系统
CN110058036A (zh) * 2019-04-30 2019-07-26 上海仁度生物科技有限公司 一种液面探测装置
CN114112513A (zh) * 2020-08-28 2022-03-01 深圳市帝迈生物技术有限公司 一种液面检测方法、血液分析装置及存储介质

Also Published As

Publication number Publication date
CN115165034A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN103900997B (zh) 样本分析仪及检测采样针排液的方法及装置
US8075840B2 (en) Automatic multi-purpose analyzer
CN201476844U (zh) 一种电容式液面探测装置
JP2593856B2 (ja) 所定量の試料を調製するための液体レベルセンサー
US7804599B2 (en) Fluid volume verification system
WO2024007403A1 (zh) 一种液面感应装置、方法及采样针的下行方法
CN108896155A (zh) 一种智能体重身高测量仪
EP0694784B1 (en) Liquid sampling apparatus
CN107709958A (zh) 采样机构及其空吸检测方法、样本分析仪
CN201429621Y (zh) 全自动加样仪
CN113188840B (zh) 取样方法、装置、检测设备和存储介质
CN102478417A (zh) 加样系统液面检测装置
JPS63109330A (ja) 液面検出方法及びその装置
JP3282455B2 (ja) 液体採取方法および装置
CN110146141B (zh) 改进套筒型加样针的液面探测装置和方法
CN205373999U (zh) 一种实验室非接触式波浪测量装置
JP2003090754A (ja) 液面検知方法および装置、ならびに液面接触検知方法および装置
CN87208774U (zh) 凸轮轴检测仪
CN203148516U (zh) 用于免疫组化染色机的微量试剂液面检测装置
JP2013032928A (ja) 分注装置
JP3585389B2 (ja) シールドドライブを有する液面検知装置
CN103162770B (zh) 用于免疫组化染色机的微量试剂液面检测方法及装置
CN205940696U (zh) 一种实验用高精度数字化自动水位测试系统
CN114264351A (zh) 基于晶振法的电容液面探测系统
CN209014186U (zh) 一种微差压变送器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949972

Country of ref document: EP

Kind code of ref document: A1