WO2024007384A1 - Phage display library panning method for obtaining bispecific antibody - Google Patents

Phage display library panning method for obtaining bispecific antibody Download PDF

Info

Publication number
WO2024007384A1
WO2024007384A1 PCT/CN2022/108616 CN2022108616W WO2024007384A1 WO 2024007384 A1 WO2024007384 A1 WO 2024007384A1 CN 2022108616 W CN2022108616 W CN 2022108616W WO 2024007384 A1 WO2024007384 A1 WO 2024007384A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
round
antibody
library
amplification
Prior art date
Application number
PCT/CN2022/108616
Other languages
French (fr)
Chinese (zh)
Inventor
张军锋
郭志刚
Original Assignee
浙江蓝盾药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江蓝盾药业有限公司 filed Critical 浙江蓝盾药业有限公司
Publication of WO2024007384A1 publication Critical patent/WO2024007384A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1037Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/005Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies constructed by phage libraries
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/04Methods of screening libraries by measuring the ability to specifically bind a target molecule, e.g. antibody-antigen binding, receptor-ligand binding
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/02Libraries contained in or displayed by microorganisms, e.g. bacteria or animal cells; Libraries contained in or displayed by vectors, e.g. plasmids; Libraries containing only microorganisms or vectors
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®

Definitions

  • the present invention relates to the field of biotechnology, and specifically to a phage display library panning method for obtaining bispecific antibodies.
  • Phage display technology was created by George P. Smith in 1985 by inserting foreign genes into the genome of filamentous phage, so that the polypeptide encoded by the target gene is displayed on the surface of the phage in the form of a fusion protein.
  • Gregory P. Winter established a phage library and used this library to develop a fully human antibody drug - adalimumab (Humira) targeting human tumor necrosis factor ⁇ . The drug was first marketed in the United States in 2003 and was the world's first marketed antibody drug derived from phage display technology. In 2018, the Nobel Prize in Chemistry was awarded to George P. Smith and Gregory P. Winter for their contributions to phage display technology.
  • Bispecific antibodies are a new technology that has emerged in recent years. They can exert a synergistic effect from the different mechanisms of action of two antibodies and are therefore more effective than monospecific antibodies.
  • the discovery of bispecific antibodies takes the route of first screening monospecific antibodies and then constructing bispecific antibodies. The binding properties of individual antibodies in the constructed bispecific antibodies will change.
  • a large number of screenings are required, involving hundreds of configurations, ranging from single Starting from specific antibodies to construct bispecific antibodies is tantamount to re-developing antibodies.
  • This patent constructs a diabody-binding domain phage display library, and directly screening bispecific antibodies from this library is a brand-new idea of bispecific antibody discovery. It not only eliminates the process of re-constructing bispecific antibodies and greatly reduces the workload, but also utilizes the The antibodies screened by the idea have good drug potential because unstable bispecific antibodies with poor expression are screened out during the screening process.
  • the purpose of the present invention is to provide a phage display library panning method for obtaining bispecific antibodies.
  • a method for constructing a phage display library for obtaining bispecific antibodies is provided, and the bispecific antibodies are bispecific fully human single domain antibodies,
  • the method includes the following steps:
  • the second primer set includes SEQ ID No: 48-90
  • the host cell used for phage display includes Escherichia coli.
  • step (a) includes:
  • the step (b) includes: cDNA synthesis, that is, using the PBMC total RNA extracted in step (a2) as a template, reverse transcription to synthesize cDNA;
  • step (c) further includes: performing nucleic acid electrophoresis detection on the first round of PCR amplification products.
  • step (d) further includes: performing nucleic acid electrophoresis detection on the second round of PCR amplification products.
  • the vector used to construct the library includes: pCOMB3.
  • step (h) also includes measuring diversity: taking positive clones, performing phagemid sequencing and analyzing sequence diversity.
  • step (i) also includes:
  • the reaction system of the first round of PCR amplification in step (c) is: ddH 2 O 13.6 ⁇ L, 2.5mM dNTPs 1.6 ⁇ L, 10 ⁇ buffer 2 ⁇ L, cDNA 0.8 ⁇ L, 10 ⁇ M upstream primer 1 ⁇ L, 1 ⁇ L of 10 ⁇ M downstream primer, 0.08 ⁇ L of Ex Taq, total volume 20 ⁇ L.
  • the reaction program of the first round of PCR amplification in step (c) is: 94°C for 4 min, 98°C for 10 s, 59°C for 40 s, 72°C for 50 s, 72°C for 10 min, and the amplification cycle is 25 Second-rate.
  • the reaction system for the second round of PCR amplification in step (d) is: 2.5 ⁇ L of 10 ⁇ buffer, 1.6 ⁇ L of 2.5mM dNTPs, 15 ng of the recovered product of the first round of amplification, and 10 ⁇ M upstream primer. 1 ⁇ L, 10 ⁇ M downstream primer 1 ⁇ L, Ex Taq 0.1 ⁇ L, ddH 2 O make up to a total volume of 25 ⁇ L.
  • the reaction program for the second round of PCR amplification in step (d) is: 94°C for 4 min, 98°C for 10 s, 59°C for 40 s, 72°C for 50 s, 72°C for 10 min, and the amplification cycle is 15 Second-rate.
  • the reaction system for the third round of PCR amplification in step (e) is: 2.5 ⁇ L of 10 ⁇ buffer, 1.6 ⁇ L of 2.5mM dNTPs, 15 ng of recovered product of the second round of amplification, and 10 ⁇ M upstream primer. 1 ⁇ L, 10 ⁇ M downstream primer 1 ⁇ L, Ex Taq 0.1 ⁇ L, ddH 2 O make up to a total volume of 25 ⁇ L.
  • the reaction program of the third round of PCR amplification in step (e) is: 94°C for 4 min, 98°C for 10 s, 59°C for 40 s, 72°C for 50 s, 72°C for 10 min, and the amplification cycle is 15 Second-rate.
  • a phage display library of bispecific antibodies is provided, and the phage display library of bispecific antibodies is constructed using the method described in the first aspect of the present invention.
  • the positive rate of the library is ⁇ 80%, preferably, ⁇ 90%.
  • the antibody sequence diversity of the library is ⁇ 90%, preferably, ⁇ 95%.
  • the library capacity is ⁇ 1 ⁇ 10 8 pfu, preferably, ⁇ 5 ⁇ 10 8 pfu.
  • a method for panning bispecific antibodies comprising the steps:
  • (S2) Use the antigen A1 and the antigen A2 to pan the antibody library to obtain bispecific antibodies against the antigen A1 and the antigen A2.
  • step (S2) the following sub-steps are included:
  • the method further includes:
  • a primer set is provided, the primer set being the primer sequences shown in SEQ ID Nos: 1 to 188.
  • the primer set is primers used for the method of claim 1.
  • Figure 1 shows part of the total RNA non-denaturing electrophoresis test showing RNA extraction; there are 48 RNAs in two rows of samples, and the three bands in each lane are 28S rRNA, 18S rRNA, and 5S rRNA.
  • Marker is DNA Marker, which is 2000bp, 1500bp, 1000bp, 750bp, 500bp, 250bp and 100bp from top to bottom.
  • Figure 2 is an electrophoresis diagram of a partial antibody variable region gene amplification product showing the first round of amplification of the antibody gene; there are 24 samples in two rows. Since the first round of amplification region contains the CH1 region of the antibody gene, the size is approximately 700 bp. (Due to different sizes of antibody genes); DNA Marker from top to bottom is 2000bp, 1000bp, 750bp, 500bp, 250bp and 100bp.
  • Figure 3 shows the electrophoresis diagram of partial antibody variable region gene amplification products showing the second round of amplification of antibody genes; there are 24 samples in two rows, and the target band size is approximately 410bp (different sizes due to different antibody genes); DNA Marker From top to bottom they are 2000bp, 1000bp, 750bp, 500bp, 250bp and 100bp.
  • Figure 4 is an electrophoresis diagram showing the third round of amplification of antibody genes (splicing antibody genes and adding enzyme cutting sites), splicing part of two antibody variable region genes into one gene chain and adding enzyme cutting sites; a total of 24 For each sample, the size of the target band is about 750bp (the size varies depending on the antibody gene); the DNA Marker from top to bottom is 2000bp, 1500bp, 1000bp, 750bp, 500bp, 250bp and 100bp.
  • Figure 5 shows the electrophoresis pattern of the pCOMB3 vector; the DNA Markers from top to bottom are 6000bp, 5000bp, 4000bp, 3000bp, 2500bp, 2000bp and 1500bp.
  • Figure 6 shows the electrophoresis diagram of single clone PCR identification of two antibody variable region gene splicing genes; there are 96 clones in four rows of samples, and the target band size is about 930bp (due to different sizes of different antibody genes); DNA Marker from top to bottom The order is 2000bp, 1500bp, 1000bp, 750bp, 500bp, 250bp and 100bp.
  • Figure 7 shows homology analysis of antibody sequences in positive clones.
  • Figure 8 shows the results of monoclonal phage ELISA.
  • the inventors constructed a single-domain antibody library based on fully human antibody genes for the first time. Specifically, the inventor used specific primers to amplify the fully human antibody gene and spliced it to form a bispecific single domain antibody construct. After connecting the construct with the vector fragment, it was introduced into the host for phage display. cells, thereby obtaining the bispecific fully human single domain antibody phage display antibody library.
  • the single-domain antibody library based on bispecific fully human antibody genes obtained by the method of the present invention has the advantages of high positive rate, good diversity, large library capacity, etc. On this basis, the present invention was completed.
  • the present invention provides for the first time a display library of dual-binding domain antibodies (i.e., bispecific antibodies) and a panning method thereof, in which each monospecific antibody element of the dual-binding domain antibody is a human single-domain antibody element.
  • the schematic diagram is as follows:
  • antibody library of the present invention phage display library of bispecific antibodies of the present invention
  • single domain antibody library of the present invention etc. are used interchangeably and refer to using the method described in the second aspect of the present invention.
  • Phage display antibody library of dual-binding domain antibodies i.e., bispecific antibodies.
  • the library of the present invention is prepared by using a specific primer set and through the construction method described in the first aspect of the present invention.
  • a preferred library of the invention is a phage-based library.
  • the library of the present invention is a library based on M13 phage.
  • the M13 phage coat contains the capsid protein pill.
  • the antibody gene is fused to the pill protein gene.
  • the phage infects E. coli, during the assembly process of the progeny phage, the antibody is brought to the shell by the pill protein and secreted from the progeny phage. There is an antibody fused to the pill protein on the surface of the progeny phage. , thereby realizing antibody display.
  • the M13 phage infects E. coli in a lysogenic manner and does not lyse E. coli.
  • This feature-related element on the M13 phage is used to transform the plasmid and construct a phagemid vector for antibody display.
  • Monoclonal antibodies can be easily obtained by monocloning and sequencing.
  • the invention also provides methods for constructing the library of the invention.
  • the construction method of the invention is as described in the first aspect of the invention.
  • the second primer set includes SEQ ID No: 48-90
  • the inventor also developed a novel bispecific antibody screening (or panning) method, which method includes the steps:
  • the phage display antibodies obtained included antibodies that only bind to a single antigen A1, antibodies that only bind to a single antigen A2, and antibodies that bind only to a single antigen A2.
  • Antibodies that bind two antigens (A1 and A2) If only one of the antibodies is used, most of the antibodies that bind to both antigens at the same time will be discarded. The remaining very small amount of antibodies that bind to both antigens at the same time will be difficult to screen, or it will be difficult to screen for those with suitable performance.
  • the two antibody variable regions are derived from all B cell populations and are rich in variety.
  • the traditional method of first screening monospecific antibodies and then constructing bispecific antibodies can only select a limited number of monospecific antibodies. Construct.
  • bispecific antibodies have good solubility and/or stability and relatively high expression levels. Antibodies with poor solubility and/or stability and low expression levels will be naturally removed.
  • sample density separation liquid purchased from Tianjin Haoyang, product number: LTS1077
  • Example 4 First round of amplification of antibody genes (antibody heavy chain variable region gene amplification) and gel recovery
  • Antibody gene first round amplification primer forward primer (SEQ ID No: 1 ⁇ 43):
  • Antibody gene first round amplification primer reverse primer (SEQ ID No: 44 ⁇ 47):
  • Example 5 second round of amplification of antibody genes (two antibody heavy chain variable region genes plus splicing linkers) and gel recovery
  • Reverse primer for the first antibody variable region in the second round of amplification of antibody genes (SEQ ID No: 91 ⁇ 94):
  • Reverse primer for the second antibody variable region in the second round of amplification of antibody genes (SEQ ID No: 138 ⁇ 141):
  • Example 6 The third round of amplification of antibody genes (two antibody heavy chain variable region genes are spliced through linker) and gel recovery
  • Antibody gene third round amplification primer forward primer (SEQ ID No: 142 ⁇ 184):
  • X9- represents the 9-nucleotide restriction endonuclease I and its protective bases.
  • Restriction endonuclease I can be AgeI, ApaI, AscI, BamHI, BglII, Bsil, ClaI, CsI, EcoRI, FseI, HindIII, KpnI, MfeI, MluI, NcoI, NheI, NotI, PacI, Pmel, Paul, SacI, One of SauI, SphI, VspI, XbaI, and XhoI.
  • Reverse primer for the third round of antibody gene amplification (SEQ ID No: 185 ⁇ 188):
  • Y9- represents the 9-nucleotide restriction endonuclease II and its protective bases.
  • Restriction endonuclease II can be AgeI, ApaI, AscI, BamHI, BglII, Bsil, ClaI, CspI, EcoRI, FseI, HindIII, KpnI, MfeI, MluI, NcoI, NheI, NotI, PacI, Pmel, Paul, SacI, One of SauI, SphI, VspI, XbaI, and XhoI.
  • a centrifugal adsorption column was used to directly purify the PCR product (Omega Company EZNA Gel Extraction Kit, product number: D2500); for the digested antibody gene, use a centrifugal adsorption column for gel recovery and purification (Omega Company EZNA Gel Extraction Kit, item number: D2500).
  • the electrophoresis results are shown in Figure 5.
  • the vector has been cut, the size is consistent with the expected 5000bp, and the enzyme digestion was successful.
  • Magnetic bead washing and blocking absorb 50 ⁇ L of magnetic beads (purchased from Invitrogen), place on a magnetic stand, absorb the liquid after adsorption, resuspend in 1 ml of PBS, wash twice, and use 1 ml of 1.5% skimmed milk powder + 1.5% BSA. Block with blocking agent (concentration of blocking agent gradually increases during the second and third rounds of panning) for 1 hour and remove the liquid.
  • Phage binding Place the magnetic beads on the magnetic stand and remove the liquid. Add the blocked library to magnetic beads, resuspend and incubate with rotation for 1 hour, and remove the liquid.
  • Centrifuge to remove the supernatant, resuspend in 20 ml of 2 ⁇ YT containing ampicillin at a working concentration of 100 ⁇ g/ml and kanamycin at a working concentration of 50 ⁇ g/ml, and incubate overnight at 30°C with shaking at 220 rpm.
  • Phage precipitation Centrifuge at 10,000 rpm for 15 minutes to remove bacterial cells. Add 1/5 volume of 2.5M NaCl/20% PEG8000 to the supernatant and keep in ice bath for 2 hours. Centrifuge at 10,000 rpm for 10 minutes to obtain the phage pellet, remove the residual liquid, add 0.2ml 0.01M PBS (pH7.4) solution to resuspend the pellet, and measure the titer as above.
  • step 11 Repeat steps 2)-10) two or three times to obtain phage display antibodies with strong binding capacity.
  • step 3 use 1 ml of PBS solution containing protein A with a working concentration of 10 ⁇ g/ml, and rotate and incubate for 1 hour.
  • step 3) is changed to 10 ⁇ g/ml protein B in 1 ml PBS solution, and rotated and incubated for 1 hour.
  • the results of the monoclonal phage ELISA are shown in Figure 8.
  • the phages obtained by final panning were monocloned and multiplied in large quantities, the host bacteria were removed, and the supernatant was used as a crude phage antibody for ELISA detection.
  • the results show that these monoclones have different binding abilities to protein A or B. Some monoclones bind to protein A stronger than protein B, and some monoclones bind to protein B stronger than protein A. A small number of monoclones are due to experimental errors and combine with both. All weak.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Provided is a phage display library panning method for obtaining a bispecific antibody. The method comprises: extracting a total RNA of a human PBMC, synthesizing cDNA by reverse transcription with the total RNA serving as a template, performing multiple PCR amplifications by using cDNA as a template, and obtaining a linearized vector fragment and a linearized antibody gene fragment by enzyme cleavage; ligating the fragments to obtain a ligation product and introducing the ligation product into a host cell for phage display to obtain a fully human single-domain antibody phage display antibody library; and carrying out panning and monoclonal ELISA on the library.

Description

一种获得双特异抗体的噬菌体展示库淘选方法A phage display library panning method for obtaining bispecific antibodies 技术领域Technical field
本发明涉及生物技术领域,具体地涉及获得双特异抗体的噬菌体展示库淘选方法。The present invention relates to the field of biotechnology, and specifically to a phage display library panning method for obtaining bispecific antibodies.
背景技术Background technique
噬菌体展示技术于1985年由George P.Smith通过将外源基因插入到丝状噬菌体的基因组中、使目的基因编码的多肽以融合蛋白的形式展示到噬菌体的表面而创建。Gregory P.Winter建立了一个噬菌体库,利用该库开发出了全人源抗体的药物-靶向人肿瘤坏死因子α的阿达木单抗(修美乐)。该药2003年首次在美国上市场,是全球第一个从噬菌体展示技术得到的上市抗体药物。2018年,诺贝尔化学奖授予在噬菌体展示技术方面做出贡献George P.Smith和Gregory P.Winter。Phage display technology was created by George P. Smith in 1985 by inserting foreign genes into the genome of filamentous phage, so that the polypeptide encoded by the target gene is displayed on the surface of the phage in the form of a fusion protein. Gregory P. Winter established a phage library and used this library to develop a fully human antibody drug - adalimumab (Humira) targeting human tumor necrosis factor α. The drug was first marketed in the United States in 2003 and was the world's first marketed antibody drug derived from phage display technology. In 2018, the Nobel Prize in Chemistry was awarded to George P. Smith and Gregory P. Winter for their contributions to phage display technology.
自噬菌体展示技术发现以来,该技术不断发展,在抗体发现包括抗体亲和力成熟方面得到广泛应用。2018年9月3日,EMA批准赛诺菲纳米抗体药物Cablivi(Caplacizumab)用于治疗成人获得性血栓性血小板紫癜(aTTP),Cablivi成为首个上市的单域抗体药物。2021年11月,由康宁杰瑞开发的靶向PD-L1的单域抗体-恩沃利单抗在中国获批上市,成为全球第二款上市的单域抗体药物,也成为全球第一款皮下注射抗体药物。Since the discovery of phage display technology, the technology has continued to evolve and is widely used in antibody discovery, including antibody affinity maturation. On September 3, 2018, EMA approved Sanofi's nanobody drug Cablivi (Caplacizumab) for the treatment of acquired thrombotic thrombotic purpura (aTTP) in adults. Cablivi became the first single-domain antibody drug to be marketed. In November 2021, Envolimab, a single-domain antibody targeting PD-L1 developed by Alphamab, was approved for marketing in China, becoming the second single-domain antibody drug to be launched in the world and the first in the world. Antibody drugs are injected subcutaneously.
双特异抗体是近年兴起的新技术,它可以发挥两种抗体不同作用机制的协同效应因而效果比单特异抗体更强。目前双特异抗体的发现采取先筛选单特异抗体,然后再构建成双特异抗体的路线。构建出的双特异抗体中单个抗体的结合性能会发生改变、同时在实际操作过程中存在双特异抗体分子不稳定以及产量的问题,需要大量筛选,所涉及到的构型上百种,从单特异抗体出发构建双特异抗体无异于重新开发抗体。本专利构建双抗体结合域噬菌体展示文库,从该文库直接筛选双特异抗体是一种全新的双特异抗体发现思路,不仅免去了重新构建双特异抗体的过程而工作量大大降低,而且利用该思路筛选的抗体,因不稳定的、表达量差的双特异抗体在筛选过程中被筛除,因而抗体成药性好。Bispecific antibodies are a new technology that has emerged in recent years. They can exert a synergistic effect from the different mechanisms of action of two antibodies and are therefore more effective than monospecific antibodies. Currently, the discovery of bispecific antibodies takes the route of first screening monospecific antibodies and then constructing bispecific antibodies. The binding properties of individual antibodies in the constructed bispecific antibodies will change. At the same time, there are problems with the instability of bispecific antibody molecules and yield during actual operation. A large number of screenings are required, involving hundreds of configurations, ranging from single Starting from specific antibodies to construct bispecific antibodies is tantamount to re-developing antibodies. This patent constructs a diabody-binding domain phage display library, and directly screening bispecific antibodies from this library is a brand-new idea of bispecific antibody discovery. It not only eliminates the process of re-constructing bispecific antibodies and greatly reduces the workload, but also utilizes the The antibodies screened by the idea have good drug potential because unstable bispecific antibodies with poor expression are screened out during the screening process.
如上所述,现在双特异抗体发现工作量大,还面临成药性的问题。本方法可以在早期筛选过程中直接消除其不足。As mentioned above, the current workload of bispecific antibody discovery is huge and it also faces druggability issues. This method can directly eliminate its shortcomings in the early screening process.
发明内容Contents of the invention
本发明的目的就是提供一种获得双特异抗体的噬菌体展示库淘选方法。The purpose of the present invention is to provide a phage display library panning method for obtaining bispecific antibodies.
在本发明第一方面,提供了一种获得双特异抗体的噬菌体展示库的构建方法,所述的双特异性抗体为双特异性的全人源单域抗体,In a first aspect of the present invention, a method for constructing a phage display library for obtaining bispecific antibodies is provided, and the bispecific antibodies are bispecific fully human single domain antibodies,
所述方法包括以下步骤:The method includes the following steps:
(a)提取人PBMC的总RNA;(a) Extract total RNA from human PBMC;
(b)以所述总RNA为模板,通过反转录,合成cDNA;(b) using the total RNA as a template to synthesize cDNA through reverse transcription;
(c)以所述cDNA为模板,用第一引物集进行第一轮PCR扩增,从而获得第一轮扩增产物;其中,第一引物集包括SEQ ID No:1~43所示的正向引物和SEQ ID No:44-47所示的反向引物;(c) Using the cDNA as a template, use the first primer set to perform the first round of PCR amplification, thereby obtaining the first round of amplification products; wherein the first primer set includes the positive sequences shown in SEQ ID Nos: 1 to 43 Toward primer and reverse primer shown in SEQ ID No:44-47;
(d)以第一轮扩增产物为模板,用第二引物集进行第二轮PCR扩增,从而获得第二轮扩增产物;其中,第二引物集包括SEQ ID No:48~90所示的第一抗体可变区正向引物,SEQ ID No:91-94所示的第一抗体可变区反向引物,SEQ ID No:95~137所示的第二抗体可变区正向引物,和SEQ ID No:138~141所示的第二抗体可变区反向引物;(d) Using the first round amplification product as a template, use the second primer set to perform the second round of PCR amplification to obtain the second round amplification product; wherein, the second primer set includes SEQ ID No: 48-90 The first antibody variable region forward primer shown in SEQ ID No:91-94, the first antibody variable region reverse primer shown in SEQ ID No:91-94, the second antibody variable region forward primer shown in SEQ ID No:95~137 Primers, and the second antibody variable region reverse primer shown in SEQ ID No: 138~141;
(e)以第二轮扩增产物为模板,用第三引物集进行第三轮PCR扩增,从而获得第三轮扩增产物;其中,第三引物集包括SEQ ID No:142~184所示的正向引物,SEQ ID No:185~188所示的反向引物;(e) Using the second round amplification product as a template, use the third primer set to perform the third round of PCR amplification to obtain the third round amplification product; wherein the third primer set includes SEQ ID No: 142~184 The forward primer shown is, the reverse primer shown in SEQ ID No: 185~188;
(f)将用于构建文库的载体和所述第三轮扩增产物用限制性内切酶I和限制性内切酶II进行酶切,获得经酶切的线性化的载体片段和线性化的抗体基因片段;(f) The vector used to construct the library and the third round amplification product are digested with restriction endonuclease I and restriction endonuclease II to obtain digested linearized vector fragments and linearized Antibody gene fragments;
(g)将所述经酶切的线性化的载体片段和线性化的抗体基因片段进行连接反应,从而获得连接产物;(g) performing a ligation reaction on the digested linearized vector fragment and the linearized antibody gene fragment to obtain a ligation product;
(h)将所述连接产物导入用于噬菌体展示的宿主细胞,从而获得所述的双特异性的全人源单域抗体噬菌体展示抗体文库。(h) Introducing the ligation product into a host cell for phage display, thereby obtaining the bispecific fully human single domain antibody phage display antibody library.
在另一优选例中,所述的用于噬菌体展示的宿主细胞包括大肠杆菌。In another preferred embodiment, the host cell used for phage display includes Escherichia coli.
在另一优选例中,所述步骤(a)包括:In another preferred example, step (a) includes:
(a1)人PBMC的分离(a1) Isolation of human PBMC
采集抗凝血,分离获得PBMC;Collect anticoagulated blood and isolate PBMC;
(a2)总RNA的提取(a2) Extraction of total RNA
取所述PBMC,提取总RNA。Take the PBMC and extract total RNA.
在另一优选例中,所述步骤(b)包括:cDNA的合成,即,以步骤(a2)提取的PBMC总RNA为模板,反转录合成cDNA;In another preferred example, the step (b) includes: cDNA synthesis, that is, using the PBMC total RNA extracted in step (a2) as a template, reverse transcription to synthesize cDNA;
在另一优选例中,步骤(c)中还包括:对第一轮PCR扩增产物进行核酸电泳检测。In another preferred example, step (c) further includes: performing nucleic acid electrophoresis detection on the first round of PCR amplification products.
在另一优选例中,步骤(d)中还包括:对第二轮PCR扩增产物进行核酸电泳检测。In another preferred example, step (d) further includes: performing nucleic acid electrophoresis detection on the second round of PCR amplification products.
在另一优选例中,所述的用于构建文库的载体包括:pCOMB3。In another preferred example, the vector used to construct the library includes: pCOMB3.
在另一优选例中,步骤(h)中还包括测定多样性:取阳性克隆,进行噬菌粒测序并分析序列多样性。In another preferred embodiment, step (h) also includes measuring diversity: taking positive clones, performing phagemid sequencing and analyzing sequence diversity.
在另一优选例中,步骤(i)中还包括:In another preferred example, step (i) also includes:
(i1)宿主菌TG1活化;(i1) Activation of host bacterial TG1;
(i2)磁珠洗涤及封闭;(i2) Magnetic beads washing and blocking;
(i3)抗原结合;(i3) Antigen binding;
(i4)库封闭;(i4) Library closed;
(i5)噬菌体结合;(i5) Phage binding;
(i6)洗涤;(i6) Washing;
(i7)洗脱;(i7) Elution;
(i8)测滴度;(i8) Measure titer;
(i9)噬菌体扩增;(i9) Phage amplification;
(i10)噬菌体沉淀;(i10) Phage precipitation;
(i11)重复步骤(i2)~(i10)两或三次,获得结合力强的噬菌体展示抗体。(i11) Repeat steps (i2) to (i10) two or three times to obtain phage display antibodies with strong binding capacity.
在另一优选例中,步骤(c)所述的第一轮PCR扩增,其反应体系为:ddH 2O 13.6μL,2.5mM dNTPs 1.6μL,10×buffer 2μL,cDNA 0.8μL,10μM上游引物1μL,10μM下游引物1μL,Ex Taq 0.08μL,总体积20μL。 In another preferred example, the reaction system of the first round of PCR amplification in step (c) is: ddH 2 O 13.6 μL, 2.5mM dNTPs 1.6 μL, 10× buffer 2 μL, cDNA 0.8 μL, 10 μM upstream primer 1 μL, 1 μL of 10 μM downstream primer, 0.08 μL of Ex Taq, total volume 20 μL.
在另一优选例中,步骤(c)所述的第一轮PCR扩增,其反应程序为:94℃ 4min,98℃ 10s,59℃ 40s,72℃ 50s,72℃ 10min,扩增循环25次。In another preferred example, the reaction program of the first round of PCR amplification in step (c) is: 94°C for 4 min, 98°C for 10 s, 59°C for 40 s, 72°C for 50 s, 72°C for 10 min, and the amplification cycle is 25 Second-rate.
在另一优选例中,步骤(d)所述的第二轮PCR扩增,其反应体系为:10×buffer  2.5μL,2.5mM dNTPs 1.6μL,第一轮扩增回收产物15ng,10μM上游引物1μL,10μM下游引物1μL,Ex Taq 0.1μL,ddH 2O补足至总体积25μL。 In another preferred example, the reaction system for the second round of PCR amplification in step (d) is: 2.5 μL of 10× buffer, 1.6 μL of 2.5mM dNTPs, 15 ng of the recovered product of the first round of amplification, and 10 μM upstream primer. 1 μL, 10 μM downstream primer 1 μL, Ex Taq 0.1 μL, ddH 2 O make up to a total volume of 25 μL.
在另一优选例中,步骤(d)所述的第二轮PCR扩增,其反应程序为:94℃ 4min,98℃ 10s,59℃ 40s,72℃ 50s,72℃ 10min,扩增循环15次。In another preferred example, the reaction program for the second round of PCR amplification in step (d) is: 94°C for 4 min, 98°C for 10 s, 59°C for 40 s, 72°C for 50 s, 72°C for 10 min, and the amplification cycle is 15 Second-rate.
在另一优选例中,步骤(e)所述的第三轮PCR扩增,其反应体系为:10×buffer 2.5μL,2.5mM dNTPs 1.6μL,第二轮扩增回收产物15ng,10μM上游引物1μL,10μM下游引物1μL,Ex Taq 0.1μL,ddH 2O补足至总体积25μL。 In another preferred example, the reaction system for the third round of PCR amplification in step (e) is: 2.5 μL of 10× buffer, 1.6 μL of 2.5mM dNTPs, 15 ng of recovered product of the second round of amplification, and 10 μM upstream primer. 1 μL, 10 μM downstream primer 1 μL, Ex Taq 0.1 μL, ddH 2 O make up to a total volume of 25 μL.
在另一优选例中,步骤(e)所述的第三轮PCR扩增,其反应程序为:94℃ 4min,98℃ 10s,59℃ 40s,72℃ 50s,72℃ 10min,扩增循环15次。In another preferred example, the reaction program of the third round of PCR amplification in step (e) is: 94°C for 4 min, 98°C for 10 s, 59°C for 40 s, 72°C for 50 s, 72°C for 10 min, and the amplification cycle is 15 Second-rate.
在本发明的第二方面,提供了一种双特异抗体的噬菌体展示库,所述双特异抗体的噬菌体展示库是用如本发明第一方面所述的方法构建的。In a second aspect of the present invention, a phage display library of bispecific antibodies is provided, and the phage display library of bispecific antibodies is constructed using the method described in the first aspect of the present invention.
在另一优选例中,所述文库的阳性率为≥80%,较佳地,≥90%。In another preferred embodiment, the positive rate of the library is ≥80%, preferably, ≥90%.
在另一优选例中,所述文库的抗体序列多样性为≥90%,较佳地,≥95%。In another preferred embodiment, the antibody sequence diversity of the library is ≥90%, preferably, ≥95%.
在另一优选例中,所述文库的库容为≥1×10 8pfu,较佳地,≥5×10 8pfu。 In another preferred example, the library capacity is ≥1×10 8 pfu, preferably, ≥5×10 8 pfu.
在本发明的第三方面,提供了一种淘选双特异抗体的方法,包括步骤:In a third aspect of the present invention, a method for panning bispecific antibodies is provided, comprising the steps:
(S1)提供本发明第二方面所述的双特异抗体的噬菌体展示库;(S1) Provide a phage display library of the bispecific antibody according to the second aspect of the present invention;
(S2)利用抗原A1和抗原A2,对所述抗体文库进行淘选,从而获得针对抗原A1和抗原A2的双特异抗体。(S2) Use the antigen A1 and the antigen A2 to pan the antibody library to obtain bispecific antibodies against the antigen A1 and the antigen A2.
在另一优选例中,在步骤(S2)中,包括以下子步骤:In another preferred example, in step (S2), the following sub-steps are included:
(S2a)在第一轮抗体文库淘选时,将两种抗原(A1和A2)同时加入,(S2a) In the first round of antibody library panning, two antigens (A1 and A2) are added at the same time.
(S2b)在第二轮筛选过程中,只用单个抗原A1进行筛选;(S2b) In the second round of screening, only a single antigen A1 was used for screening;
(S2c)在第三轮筛选过程中,只用单个抗原A2进行筛选;(S2c) In the third round of screening, only a single antigen A2 was used for screening;
(即两个抗原A1和A2在这二轮中被交替使用,进行筛选)。由于在第二、三轮筛选过程中,每轮只用单个抗原进行筛选且两个抗原交替使用,这样可以把只结合一个抗原的抗体筛除,所有同时结合两个抗原的抗体全部保留。(That is, the two antigens A1 and A2 are used alternately in these two rounds for screening). Since in the second and third rounds of screening, only a single antigen is used for screening in each round and the two antigens are used alternately, antibodies that only bind to one antigen can be screened out, and all antibodies that bind to both antigens at the same time are retained.
在另一优选例中,所述方法还包括:In another preferred embodiment, the method further includes:
(S3)对于上一步骤获得的双特异性抗体,通过ELISA检测其与抗原A1和抗原A2的结合性能。(S3) For the bispecific antibody obtained in the previous step, detect its binding performance to antigen A1 and antigen A2 through ELISA.
在本发明的第四方面,提供了一种引物集,所述引物集为SEQ ID No:1~188所示的引物序列。In a fourth aspect of the present invention, a primer set is provided, the primer set being the primer sequences shown in SEQ ID Nos: 1 to 188.
在另一优选例中,所述的引物集为用于如权利要求1所述的方法的引物。In another preferred embodiment, the primer set is primers used for the method of claim 1.
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。It should be understood that within the scope of the present invention, the above-mentioned technical features of the present invention and the technical features specifically described below (such as embodiments) can be combined with each other to form new or preferred technical solutions. Due to space limitations, they will not be described one by one here.
附图说明Description of the drawings
图1为显示RNA提取的部分total RNA非变性电泳检测;两排样品共48个RNA,每泳道3条带分别为28S rRNA、18S rRNA、5S rRNA。Marker为DNA Marker,从上到下依次为2000bp、1500bp、1000bp、750bp、500bp、250bp和100bp。Figure 1 shows part of the total RNA non-denaturing electrophoresis test showing RNA extraction; there are 48 RNAs in two rows of samples, and the three bands in each lane are 28S rRNA, 18S rRNA, and 5S rRNA. Marker is DNA Marker, which is 2000bp, 1500bp, 1000bp, 750bp, 500bp, 250bp and 100bp from top to bottom.
图2为显示抗体基因第一轮扩增的部分抗体可变区基因扩增产物电泳图;两排样品共24个样品,因第一轮扩增区有抗体基因CH1区,故大小约为700bp(因抗体基因不同大小不同);DNA Marker从上到下依次为2000bp、1000bp、750bp、500bp、250bp和100bp。Figure 2 is an electrophoresis diagram of a partial antibody variable region gene amplification product showing the first round of amplification of the antibody gene; there are 24 samples in two rows. Since the first round of amplification region contains the CH1 region of the antibody gene, the size is approximately 700 bp. (Due to different sizes of antibody genes); DNA Marker from top to bottom is 2000bp, 1000bp, 750bp, 500bp, 250bp and 100bp.
图3为显示抗体基因第二轮扩增的部分抗体可变区基因扩增产物电泳图;两排样品共24个样品,目标条带大小约为410bp(因抗体基因不同大小不同);DNA Marker从上到下依次为2000bp、1000bp、750bp、500bp、250bp和100bp。Figure 3 shows the electrophoresis diagram of partial antibody variable region gene amplification products showing the second round of amplification of antibody genes; there are 24 samples in two rows, and the target band size is approximately 410bp (different sizes due to different antibody genes); DNA Marker From top to bottom they are 2000bp, 1000bp, 750bp, 500bp, 250bp and 100bp.
图4为显示抗体基因第三轮扩增(拼接抗体基因并加酶切点),部分两条抗体可变区基因拼接为一条基因链同时加入酶切位点的扩增产物电泳图;共24个样品,目标条带大小约为750bp(因抗体基因不同大小不同);DNA Marker从上到下依次为2000bp、1500bp、1000bp、750bp、500bp、250bp和100bp。Figure 4 is an electrophoresis diagram showing the third round of amplification of antibody genes (splicing antibody genes and adding enzyme cutting sites), splicing part of two antibody variable region genes into one gene chain and adding enzyme cutting sites; a total of 24 For each sample, the size of the target band is about 750bp (the size varies depending on the antibody gene); the DNA Marker from top to bottom is 2000bp, 1500bp, 1000bp, 750bp, 500bp, 250bp and 100bp.
图5为显示pCOMB3载体酶切电泳图;DNA Marker从上到下依次为6000bp、5000bp、4000bp、3000bp、2500bp、2000bp和1500bp。Figure 5 shows the electrophoresis pattern of the pCOMB3 vector; the DNA Markers from top to bottom are 6000bp, 5000bp, 4000bp, 3000bp, 2500bp, 2000bp and 1500bp.
图6为显示两个抗体可变区基因拼接基因单克隆PCR鉴定电泳图;四排样品共96个克隆,目标条带大小约为930bp(因抗体基因不同大小不同);DNA Marker从上到下依次为2000bp、1500bp、1000bp、750bp、500bp、250bp和100bp。Figure 6 shows the electrophoresis diagram of single clone PCR identification of two antibody variable region gene splicing genes; there are 96 clones in four rows of samples, and the target band size is about 930bp (due to different sizes of different antibody genes); DNA Marker from top to bottom The order is 2000bp, 1500bp, 1000bp, 750bp, 500bp, 250bp and 100bp.
图7为显示阳性克隆中抗体序列同源性分析。Figure 7 shows homology analysis of antibody sequences in positive clones.
图8为显示单克隆噬菌体ELISA结果。Figure 8 shows the results of monoclonal phage ELISA.
具体实施方式Detailed ways
本发明人经过广泛而深入地研究,通过大量筛选,首次构建了一种基于全人源抗体基因的单域抗体文库。具体地,本发明人采用特定的引物,扩增获得全人源抗体基因并拼接形成双特异性的单域抗体构建物,将所述构建物与载体片段连接后,导入用于噬菌体展示的宿主细胞,从而获得所述的双特异性的全人源单域抗体噬菌体展示抗体文库。本发明方法获得的于双特异性的全人源抗体基因的单域抗体文库具有阳性率高、多样性好、库容大等优点。在此基础上完成了本发明。After extensive and in-depth research and extensive screening, the inventors constructed a single-domain antibody library based on fully human antibody genes for the first time. Specifically, the inventor used specific primers to amplify the fully human antibody gene and spliced it to form a bispecific single domain antibody construct. After connecting the construct with the vector fragment, it was introduced into the host for phage display. cells, thereby obtaining the bispecific fully human single domain antibody phage display antibody library. The single-domain antibody library based on bispecific fully human antibody genes obtained by the method of the present invention has the advantages of high positive rate, good diversity, large library capacity, etc. On this basis, the present invention was completed.
双特异抗体的噬菌体展示库Phage display library of bispecific antibodies
本发明首次提供了一种双结合域抗体(即双特异性抗体)的展示文库及其淘选方法,其中双结合域抗体的每个单特异性抗体元件均为人源的单域抗体元件。其示意图如下所示:The present invention provides for the first time a display library of dual-binding domain antibodies (i.e., bispecific antibodies) and a panning method thereof, in which each monospecific antibody element of the dual-binding domain antibody is a human single-domain antibody element. The schematic diagram is as follows:
VHH1VHH1 LinkerLinker VHH2VHH2
如本文所用,术语“本发明抗体文库”、“本发明的双特异抗体的噬菌体展示库”、“本发明的单域抗体文库”等可互换使用,指采用本发明第二方面中所述的双结合域抗体(即双特异性抗体)的噬菌体展示抗体文库。本发明文库是采用特定的引物集,通过本发明第一方面中所述的构建方法制备的。As used herein, the terms "antibody library of the present invention", "phage display library of bispecific antibodies of the present invention", "single domain antibody library of the present invention", etc. are used interchangeably and refer to using the method described in the second aspect of the present invention. Phage display antibody library of dual-binding domain antibodies (i.e., bispecific antibodies). The library of the present invention is prepared by using a specific primer set and through the construction method described in the first aspect of the present invention.
一种优选的本发明文库是基于噬菌体的文库。优选的,本发明文库是基于M13噬菌体的文库。A preferred library of the invention is a phage-based library. Preferably, the library of the present invention is a library based on M13 phage.
M13噬菌体外壳含有衣壳蛋白pIII。将抗体基因与pIII蛋白基因融合,当噬菌体感染大肠杆菌后,在子代噬菌体组装过程中,抗体被pIII蛋白带至外壳上,从大肠杆菌中分泌出来子代噬菌体表面存在与pIII蛋白融合的抗体,从而实现抗体展示。The M13 phage coat contains the capsid protein pill. The antibody gene is fused to the pill protein gene. When the phage infects E. coli, during the assembly process of the progeny phage, the antibody is brought to the shell by the pill protein and secreted from the progeny phage. There is an antibody fused to the pill protein on the surface of the progeny phage. , thereby realizing antibody display.
M13噬菌体对大肠杆菌的感染为溶源性,不裂解大肠杆菌,其基因组可以复制出的单链DNA形式稳定存在于大肠杆菌,因而可以随着大肠杆菌的增殖而增殖其基因组。利用M13噬菌体上这一特性相关元件改造质粒,构建成噬菌粒载体,用于抗体展示,可以方便的进行单克隆和测序,从而获得单克隆抗体。The M13 phage infects E. coli in a lysogenic manner and does not lyse E. coli. The single-stranded DNA that its genome can replicate stably exists in E. coli, so its genome can proliferate as E. coli proliferates. This feature-related element on the M13 phage is used to transform the plasmid and construct a phagemid vector for antibody display. Monoclonal antibodies can be easily obtained by monocloning and sequencing.
构建方法Build method
本发明还提供了用于构建本发明文库的方法。The invention also provides methods for constructing the library of the invention.
典型地,本发明的构建方法如本发明第一方面中所述。Typically, the construction method of the invention is as described in the first aspect of the invention.
包括步骤:Includes steps:
(a)提取人PBMC的总RNA;(a) Extract total RNA from human PBMC;
(b)以所述总RNA为模板,通过反转录,合成cDNA;(b) using the total RNA as a template to synthesize cDNA through reverse transcription;
(c)以所述cDNA为模板,用第一引物集进行第一轮PCR扩增,从而获得第一轮扩增产物;其中,第一引物集包括SEQ ID No:1~43所示的正向引物和SEQ ID No:44-47所示的反向引物;(c) Using the cDNA as a template, use the first primer set to perform the first round of PCR amplification, thereby obtaining the first round of amplification products; wherein the first primer set includes the positive sequences shown in SEQ ID Nos: 1 to 43 Toward primer and reverse primer shown in SEQ ID No:44-47;
(d)以第一轮扩增产物为模板,用第二引物集进行第二轮PCR扩增,从而获得第二轮扩增产物;其中,第二引物集包括SEQ ID No:48~90所示的第一抗体可变区正向引物,SEQ ID No:91-94所示的第一抗体可变区反向引物,SEQ ID No:95~137所示的第二抗体可变区正向引物,和SEQ ID No:138~141所示的第二抗体可变区反向引物;(d) Using the first round amplification product as a template, use the second primer set to perform the second round of PCR amplification to obtain the second round amplification product; wherein, the second primer set includes SEQ ID No: 48-90 The first antibody variable region forward primer shown in SEQ ID No:91-94, the first antibody variable region reverse primer shown in SEQ ID No:91-94, the second antibody variable region forward primer shown in SEQ ID No:95~137 Primers, and the second antibody variable region reverse primer shown in SEQ ID No: 138~141;
(e)以第二轮扩增产物为模板,用第三引物集进行第三轮PCR扩增,从而获得第三轮扩增产物;其中,第三引物集包括SEQ ID No:142~184所示的正向引物,SEQ ID No:185~188所示的反向引物;(e) Using the second round amplification product as a template, use the third primer set to perform the third round of PCR amplification to obtain the third round amplification product; wherein the third primer set includes SEQ ID No: 142~184 The forward primer shown is, the reverse primer shown in SEQ ID No: 185~188;
(f)将用于构建文库的载体和所述第三轮扩增产物用限制性内切酶I和限制性内切酶II进行酶切,获得经酶切的线性化的载体片段和线性化的抗体基因片段;(f) The vector used to construct the library and the third round amplification product are digested with restriction endonuclease I and restriction endonuclease II to obtain digested linearized vector fragments and linearized Antibody gene fragments;
(g)将所述经酶切的线性化的载体片段和线性化的抗体基因片段进行连接反应,从而获得连接产物;(g) performing a ligation reaction on the digested linearized vector fragment and the linearized antibody gene fragment to obtain a ligation product;
(h)将所述连接产物导入用于噬菌体展示的宿主细胞,从而获得所述的双特异性的全人源单域抗体噬菌体展示抗体文库。(h) Introducing the ligation product into a host cell for phage display, thereby obtaining the bispecific fully human single domain antibody phage display antibody library.
淘选方法panning method
在本发明中,本发明人还开发了一种新颖的双特异抗体筛选(或淘选)方法,该方法包括步骤:In the present invention, the inventor also developed a novel bispecific antibody screening (or panning) method, which method includes the steps:
首先,在第一轮抗体文库淘选时,将两种抗原(A1和A2)同时加入,这样所获得的噬菌体展示抗体包括只结合单一抗原A1的抗体、只结合单一抗原A2的抗体、和同时结合两种抗原(A1和A2)的抗体。若只用其中一个抗原则大部分同时 结合两个抗原的抗体被丢掉,保留下来的极少量的同时结合两个抗原的抗体是很难筛选到或者性能合适的很难筛选到。First, during the first round of antibody library panning, two antigens (A1 and A2) were added at the same time, so that the phage display antibodies obtained included antibodies that only bind to a single antigen A1, antibodies that only bind to a single antigen A2, and antibodies that bind only to a single antigen A2. Antibodies that bind two antigens (A1 and A2). If only one of the antibodies is used, most of the antibodies that bind to both antigens at the same time will be discarded. The remaining very small amount of antibodies that bind to both antigens at the same time will be difficult to screen, or it will be difficult to screen for those with suitable performance.
其次,在第二轮筛选过程中,只用单个抗原A1进行筛选;在第三轮筛选过程中,只用单个抗原A2进行筛选;(即两个抗原A1和A2在这二轮中被交替使用,进行筛选)。由于在第二、三轮筛选过程中,每轮只用单个抗原进行筛选且两个抗原交替使用,这样可以把只结合一个抗原的抗体筛除,所有同时结合两个抗原的抗体全部保留。Secondly, in the second round of screening, only a single antigen A1 was used for screening; in the third round of screening, only a single antigen A2 was used for screening; (that is, the two antigens A1 and A2 were used alternately in these two rounds. , filter). Since in the second and third rounds of screening, only a single antigen is used for screening in each round and the two antigens are used alternately, antibodies that only bind to one antigen can be screened out, and all antibodies that bind to both antigens at the same time are retained.
结果表明,基于本发明的双结合域抗体展示文库以及优选的淘选方法,可高效地获得数量多、性能合适的双特异性抗体(即可同时结合两个抗原的抗体)。The results show that based on the dual-binding domain antibody display library of the present invention and the preferred panning method, a large number of bispecific antibodies (i.e., antibodies that bind two antigens simultaneously) with suitable performance can be efficiently obtained.
本发明的主要优点Main advantages of the invention
(a)直接获得双特异性抗体,改变了以往先获得单特异抗体,再构建成双特异抗体,最后再筛选的双特异抗体获得方法,大大加快实验进程。加之一旦文库建成,可以很容易运用于其它靶点,工作量更加节省。(a) Directly obtaining bispecific antibodies changes the previous method of obtaining monospecific antibodies, then constructing bispecific antibodies, and finally screening bispecific antibodies, which greatly speeds up the experimental process. In addition, once the library is built, it can be easily applied to other targets, saving more work.
(b)本发明中,两个抗体可变区均来源于全部的B细胞群,种类丰富,而传统先筛选单特异抗体再构建成双特异抗体的方法,只能选择有限的单特异抗体进行构建。(b) In the present invention, the two antibody variable regions are derived from all B cell populations and are rich in variety. However, the traditional method of first screening monospecific antibodies and then constructing bispecific antibodies can only select a limited number of monospecific antibodies. Construct.
(c)获得的双特异抗体溶解性和/或稳定性好、表达量相对较高,溶解性和/或稳定性差、表达量低的抗体会被自然去除。(c) The obtained bispecific antibodies have good solubility and/or stability and relatively high expression levels. Antibodies with poor solubility and/or stability and low expression levels will be naturally removed.
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。The present invention will be further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the invention and are not intended to limit the scope of the invention. Experimental methods without specifying specific conditions in the following examples usually follow conventional conditions, such as the conditions described in Sambrook et al., Molecular Cloning: Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989), or according to manufacturing Conditions recommended by the manufacturer. Unless otherwise stated, percentages and parts are by weight.
实施例1、PBMC分离Example 1, PBMC separation
1)取2ml样本密度分离液(购自天津灏洋,货号:LTS1077),加入10ml离心管管底。1) Take 2 ml of sample density separation liquid (purchased from Tianjin Haoyang, product number: LTS1077), and add it to the bottom of a 10 ml centrifuge tube.
2)2ml全血缓慢加到分离液上,750g离心20min,分离出白膜层。2) Slowly add 2ml of whole blood to the separation solution, centrifuge at 750g for 20 minutes, and separate the buffy coat layer.
3)吸管插到白膜层,吸取白膜层至50ml离心管中,边吸边移动吸管,保证尽可能吸到白膜层而少吸取分离液。3) Insert the suction pipe into the buffy coat layer, suck the buffy coat layer into a 50ml centrifuge tube, and move the pipette while sucking to ensure that the buffy coat layer is absorbed as much as possible and the separation liquid is absorbed as little as possible.
4)加入PBS至45ml,颠倒离心管数次,混匀。4) Add PBS to 45ml, invert the centrifuge tube several times, and mix.
5)1500g离心7min,吸去上清。重复步骤4)和5)。5) Centrifuge at 1500g for 7 minutes and aspirate the supernatant. Repeat steps 4) and 5).
6)倒掉PBS,利用微量残液,弹动管底充分分散PBMC。6) Pour away the PBS, use the trace residual liquid, and flick the bottom of the tube to fully disperse the PBMC.
7)加入2ml TRIzol,轻缓抽吸数次至细胞完全裂解。7) Add 2ml TRIzol and gently aspirate several times until the cells are completely lysed.
实施例2、RNA提取Example 2, RNA extraction
1)加入0.3mL氯仿,摇匀后室温静置分层。1) Add 0.3mL chloroform, shake well and let stand at room temperature to separate layers.
2)4℃下12000rpm离心10min。2) Centrifuge at 12,000 rpm for 10 minutes at 4°C.
3)转移上层水相于新的1.5ml离心管中,加入0.8倍体积预冷异丙醇混匀,4℃沉淀30min。3) Transfer the upper water phase to a new 1.5ml centrifuge tube, add 0.8 times the volume of pre-cooled isopropyl alcohol, mix well, and precipitate at 4°C for 30 minutes.
4)4℃下12000rpm离心10min。4) Centrifuge at 12,000 rpm for 10 minutes at 4°C.
5)弃上清,加入1.5mL 70%乙醇洗涤沉淀,将洗液吸除干净,室温干燥5min。5) Discard the supernatant, add 1.5 mL of 70% ethanol to wash the precipitate, absorb the washing liquid clean, and dry at room temperature for 5 minutes.
6)加入20μL无RNA酶去离子水,吹吸使RNA沉淀充分溶解。6) Add 20 μL of RNase-free deionized water and pipet to fully dissolve the RNA precipitate.
7)将总RNA加到1.5%argarose胶孔中,1×TAE电泳缓冲液中快速电泳分离。7) Add the total RNA to the wells of 1.5% argarose gel, and quickly separate it by electrophoresis in 1×TAE electrophoresis buffer.
电泳结果如图1所示,三个条带清淅,RNA完整无降解。The electrophoresis results are shown in Figure 1. The three bands are clear and the RNA is intact and not degraded.
实施例3、反转录Example 3, reverse transcription
1)按以下顺序加入反应物1) Add reactants in the following order
模板RNA                3μgTemplate RNA 3μg
oligo(dT)18引物        1μLoligo(dT)18 primer 1μL
无核酸酶的去离子水     补至12μLNuclease-free deionized water Make up to 12μL
2)70℃孵育5min,立即于冰上冷却。2) Incubate at 70°C for 5 minutes and immediately cool on ice.
3)按以下顺序加入反应物3) Add reactants in the following order
Figure PCTCN2022108616-appb-000001
Figure PCTCN2022108616-appb-000001
Figure PCTCN2022108616-appb-000002
Figure PCTCN2022108616-appb-000002
4)42℃孵育40min,结束后-70℃保存。4) Incubate at 42°C for 40 minutes, then store at -70°C.
实施例4、抗体基因第一轮扩增(抗体重链可变区基因扩增)及胶回收Example 4. First round of amplification of antibody genes (antibody heavy chain variable region gene amplification) and gel recovery
1)按以下顺序加入反应物1) Add reactants in the following order
Figure PCTCN2022108616-appb-000003
Figure PCTCN2022108616-appb-000003
抗体基因第一轮扩增引物正向引物(SEQ ID No:1~43):Antibody gene first round amplification primer forward primer (SEQ ID No: 1~43):
LibF1(SEQ ID No:1)CAGGTGCAGCTGGTGCAGLibF1(SEQ ID No:1)CAGGTGCAGCTGGTGCAG
LibF2(SEQ ID No:2)CAAATGCAGCTGGTGCAGTLibF2(SEQ ID No:2)CAAATGCAGCTGGTGCAGT
LibF3(SEQ ID No:3)GAGGTCCAGCTGGTACAGTCTLibF3(SEQ ID No:3)GAGGTCCAGCTGGTACAGTCT
LibF4(SEQ ID No:4)CGGGTCACCTTGAGGGAGLibF4(SEQ ID No:4)CGGGTCACCTTGAGGGAG
LibF5(SEQ ID No:5)GAGGTGCAGCTGGTGAAGTLibF5(SEQ ID No:5)GAGGTGCAGCTGGTGAAGT
LibF6(SEQ ID No:6)GAGGTTCAGCTGGTGCAGTLibF6(SEQ ID No:6)GAGGTTCAGCTGGTGCAGT
LibF7(SEQ ID No:7)GAGGTGCAGCTGGTGGAGLibF7(SEQ ID No:7)GAGGTGCAGCTGGTGGAG
LibF8(SEQ ID No:8)CAGGTGCAGCTACAGCAGTLibF8(SEQ ID No:8)CAGGTGCAGCTACAGCAGT
LibF9(SEQ ID No:9)CAGGTACAGCTGGTGCAGTCLibF9(SEQ ID No:9)CAGGTACAGCTGGTGCAGTC
LibF10(SEQ ID No:10)CAGGTCCAGCTTGTGCAGTLibF10(SEQ ID No:10)CAGGTCCAGCTTGTTGCAGT
LibF11(SEQ ID No:11)GAGGTACAACTGGTGGAGTCTLibF11(SEQ ID No:11)GAGGTACAACTGGTGGAGTCT
LibF12(SEQ ID No:12)CAGATCACCTTGAAGGAGTCLibF12(SEQ ID No:12)CAGATCACCTTGAAGGAGTC
LibF13(SEQ ID No:13)CAGGTTCAGCTGGTGCAGTLibF13(SEQ ID No:13)CAGGTTCAGCTGGTGCAGT
LibF14(SEQ ID No:14)CAGGTACAGCTGCAGGAGTCLibF14(SEQ ID No:14)CAGGTACAGCTGCAGGAGTC
LibF15(SEQ ID No:15)CAGGTACAGCTGGTGGAGTCTLibF15(SEQ ID No:15)CAGGTACAGCTGGTGGAGTCT
LibF16(SEQ ID No:16)CAGGTGCAGCTACAGGAGTCLibF16(SEQ ID No:16)CAGGTGCAGCTACAGGAGTC
LibF17(SEQ ID No:17)CAGCTGCAGCTGCAGGAGTLibF17(SEQ ID No:17)CAGCTGCAGCTGCAGGAGT
LibF18(SEQ ID No:18)GAGGTGCAGCTGGTGGAGLibF18(SEQ ID No:18)GAGGTGCAGCTGGTGGAG
LibF19(SEQ ID No:19)CAGGTGCAGCTGCAGGACLibF19(SEQ ID No:19)CAGGTGCAGCTGCAGGAC
LibF20(SEQ ID No:20)CAGGTGCAGCTGTTGGAGLibF20(SEQ ID No:20)CAGGTGCAGCTGTTGGAG
LibF21(SEQ ID No:21)CGGCTGCAGCTGCAGGAGTLibF21(SEQ ID No:21)CGGCTGCAGCTGCAGGAGT
LibF22(SEQ ID No:22)GAGGTGCAGCTGGTGCAGLibF22(SEQ ID No:22)GAGGTGCAGCTGGTGCAG
LibF23(SEQ ID No:23)GAGACGCAGCTGGTGGAGTLibF23(SEQ ID No:23)GAGACGCAGCTGGTGGAGT
LibF24(SEQ ID No:24)CAGATGCAGCTGGTGCAGLibF24(SEQ ID No:24)CAGATGCAGCTGGTGCAG
LibF25(SEQ ID No:25)CAGGTACAGCTGATGCAGTCLibF25(SEQ ID No:25)CAGGTACAGCTGATGCAGTC
LibF26(SEQ ID No:26)CAGGTGCAGCTGGTGCAATLibF26(SEQ ID No:26)CAGGTGCAGCTGGTGCAAT
LibF27(SEQ ID No:27)CAGGTCCAGCTGGTGCAGLibF27(SEQ ID No:27)CAGGTCCAGCTGGTGCAG
LibF28(SEQ ID No:28)GAGGTGCATCTGGTGGAGTLibF28(SEQ ID No:28)GAGGTGCATCTGGTGGAGT
LibF29(SEQ ID No:29)CAGGTGCAGCTACAACAGTGLibF29(SEQ ID No:29)CAGGTGCAGCTACAACAGTG
LibF30(SEQ ID No:30)GAAGTGCAGCTGGTGCAGTLibF30(SEQ ID No:30)GAAGGTGCAGCTGGTGCAGT
LibF31(SEQ ID No:31)CAGGTGCAGCTGGTGGAGLibF31(SEQ ID No:31)CAGGTGCAGCTGGTGGAG
LibF32(SEQ ID No:32)GAGGTGCAGCTGGTAGAGTCLibF32(SEQ ID No:32)GAGGTGCAGCTGGTAGAGTC
LibF33(SEQ ID No:33)CAGGTACAGCTGCAGCAGTLibF33(SEQ ID No:33)CAGGTACAGCTGCAGCAGT
LibF34(SEQ ID No:34)GAGGTGCAGCTGTTGGAGTCLibF34(SEQ ID No:34)GAGGTGCAGCTGTTGGAGTC
LibF35(SEQ ID No:35)CAGGTCCAGCTGGTACAGTCTGLibF35(SEQ ID No:35)CAGGTCCAGCTGGTACAGTCTG
LibF36(SEQ ID No:36)GAGATGCAGCTGGTGGAGTCLibF36(SEQ ID No:36)GAGATGCAGCTGGTGGAGTC
LibF37(SEQ ID No:37)CAGGTCACCTTGAAGGAGTCTLibF37(SEQ ID No:37)CAGGTCACCTTGAAGGAGTCT
LibF38(SEQ ID No:38)CAGGTCCAGCTGGTGCAALibF38(SEQ ID No:38)CAGGTCCAGCTGGTGCAA
LibF39(SEQ ID No:39)CAGGTCACCTTGAGGGAGTCLibF39(SEQ ID No:39)CAGGTCACCTTGAGGGAGTC
LibF40(SEQ ID No:40)GAAGTGCAGCTGGTGGAGLibF40(SEQ ID No:40)GAAGTGCAGCTGGTGGAG
LibF41(SEQ ID No:41)CAGGTGCAGCTGCAGGAGLibF41(SEQ ID No:41)CAGGTGCAGCTGCAGGAG
LibF42(SEQ ID No:42)CAGGTGCGGCTGCAGGAGLibF42(SEQ ID No:42)CAGGTGCGGCTGCAGGAG
LibF43(SEQ ID No:43)CAGGTGCAGCTGGTGGALibF43(SEQ ID No:43)CAGGTGCAGCTGGTGGA
抗体基因第一轮扩增引物反向引物(SEQ ID No:44~47):Antibody gene first round amplification primer reverse primer (SEQ ID No: 44~47):
LibR6(SEQ ID No:44)TGGAAGAGGCACGTTCTTTTCLibR6(SEQ ID No:44)TGGAAGAGGCACGTTCTTTTC
LibR7(SEQ ID No:45)ACTCTCTTGTCCACCTTGGTGLibR7(SEQ ID No:45)ACTTCCTTGTCCACCTTGGTG
LibR8(SEQ ID No:46)ACTTTCTTGTCCACCTTGGTGLibR8(SEQ ID No:46)ACTTTCTTGTCCACCTTGGTG
LibR9(SEQ ID No:47)ACTGTCTTGTCCACCTTGGTG、LibR9(SEQ ID No:47)ACTGTTCTTGTCCACCTTGGTG、
2)按以下程序运行PCR扩增2) Run PCR amplification according to the following procedure
94℃,4min→98℃,10s→59℃,40s→72℃,50s→72℃,10min扩增循环25次94℃, 4min→98℃, 10s→59℃, 40s→72℃, 50s→72℃, 10min amplification cycle 25 times
3)将扩增产物加到1%argarose胶孔中,1×TAE电泳缓冲液中电泳分离。3) Add the amplification products to the wells of 1% argarose gel and electrophoresis separate them in 1×TAE electrophoresis buffer.
4)切取目标抗体重链可变区基因条带,按试剂盒说明回收抗体基因片段(Omega公司E.Z.N.A.
Figure PCTCN2022108616-appb-000004
Gel Extraction Kit,货号:D2500)。
4) Cut out the target antibody heavy chain variable region gene strip, and recover the antibody gene fragment according to the kit instructions (Omega Company EZNA
Figure PCTCN2022108616-appb-000004
Gel Extraction Kit, item number: D2500).
电泳结果如图2所示,所有样品均有扩增,700bp目标条带清淅,杂带微弱或没有但有引物二聚体。The electrophoresis results are shown in Figure 2. All samples were amplified, the 700bp target band was clear, and the mixed bands were weak or absent but there were primer dimers.
实施例5、抗体基因第二轮扩增(两个抗体重链可变区基因加拼接用接头)及胶回收Example 5, second round of amplification of antibody genes (two antibody heavy chain variable region genes plus splicing linkers) and gel recovery
1)按以下顺序加入反应物1) Add reactants in the following order
Figure PCTCN2022108616-appb-000005
Figure PCTCN2022108616-appb-000005
抗体基因第二轮扩增第一抗体可变区正向引物(SEQ ID No:48~90):Forward primer for the first antibody variable region in the second round of amplification of antibody genes (SEQ ID No: 48~90):
LibF50(SEQ ID No:48)CAGGTGCAGCTGGTGCAGLibF50(SEQ ID No:48)CAGGTGCAGCTGGTGCAG
LibF51(SEQ ID No:49)CAAATGCAGCTGGTGCAGTLibF51(SEQ ID No:49)CAAATGCAGCTGGTGCAGT
LibF52(SEQ ID No:50)GAGGTCCAGCTGGTACAGTCTLibF52(SEQ ID No:50)GAGGTCCAGCTGGTACAGTCT
LibF53(SEQ ID No:51)CGGGTCACCTTGAGGGAGLibF53(SEQ ID No:51)CGGGTCACCTTGAGGGAG
LibF54(SEQ ID No:52)GAGGTGCAGCTGGTGAAGTLibF54(SEQ ID No:52)GAGGTGCAGCTGGTGAAGT
LibF55(SEQ ID No:53)GAGGTTCAGCTGGTGCAGTLibF55(SEQ ID No:53)GAGGTTCAGCTGGTGCAGT
LibF56(SEQ ID No:54)GAGGTGCAGCTGGTGGAGLibF56(SEQ ID No:54)GAGGTGCAGCTGGTGGAG
LibF57(SEQ ID No:55)CAGGTGCAGCTACAGCAGTLibF57(SEQ ID No:55)CAGGTGCAGCTACAGCAGT
LibF58(SEQ ID No:56)CAGGTACAGCTGGTGCAGTCLibF58(SEQ ID No:56)CAGGTACAGCTGGTGCAGTC
LibF59(SEQ ID No:57)CAGGTCCAGCTTGTGCAGTLibF59(SEQ ID No:57)CAGGTCCAGCTTGTGCAGT
LibF60(SEQ ID No:58)GAGGTACAACTGGTGGAGTCTLibF60(SEQ ID No:58)GAGGTACAACTGGTGGAGTCT
LibF61(SEQ ID No:59)CAGATCACCTTGAAGGAGTCLibF61(SEQ ID No:59)CAGATCACCTTGAAGGAGTC
LibF62(SEQ ID No:60)CAGGTTCAGCTGGTGCAGTLibF62(SEQ ID No:60)CAGGTTCAGCTGGTGCAGT
LibF63(SEQ ID No:61)CAGGTACAGCTGCAGGAGTCLibF63(SEQ ID No:61)CAGGTACAGCTGCAGGAGTC
LibF64(SEQ ID No:62)CAGGTACAGCTGGTGGAGTCTLibF64(SEQ ID No:62)CAGGTACAGCTGGTGGAGTCT
LibF65(SEQ ID No:63)CAGGTGCAGCTACAGGAGTCLibF65(SEQ ID No:63)CAGGTGCAGCTACAGGAGTC
LibF66(SEQ ID No:64)CAGCTGCAGCTGCAGGAGTLibF66(SEQ ID No:64)CAGCTGCAGCTGCAGGAGT
LibF67(SEQ ID No:65)GAGGTGCAGCTGGTGGAGLibF67(SEQ ID No:65)GAGGTGCAGCTGGTGGAG
LibF68(SEQ ID No:66)CAGGTGCAGCTGCAGGACLibF68(SEQ ID No:66)CAGGTGCAGCTGCAGGAC
LibF69(SEQ ID No:67)CAGGTGCAGCTGTTGGAGLibF69(SEQ ID No:67)CAGGTGCAGCTGTTGGAG
LibF70(SEQ ID No:68)CGGCTGCAGCTGCAGGAGTLibF70(SEQ ID No:68)CGGCTGCAGCTGCAGGAGT
LibF71(SEQ ID No:69)GAGGTGCAGCTGGTGCAGLibF71(SEQ ID No:69)GAGGTGCAGCTGGTGCAG
LibF72(SEQ ID No:70)GAGACGCAGCTGGTGGAGTLibF72(SEQ ID No:70)GAGACGCAGCTGGTGGAGT
LibF73(SEQ ID No:71)CAGATGCAGCTGGTGCAGLibF73(SEQ ID No:71)CAGATGCAGCTGGTGCAG
LibF74(SEQ ID No:72)CAGGTACAGCTGATGCAGTCLibF74(SEQ ID No:72)CAGGTACAGCTGATGCAGTC
LibF75(SEQ ID No:73)CAGGTGCAGCTGGTGCAATLibF75(SEQ ID No:73)CAGGTGCAGCTGGTGCAAT
LibF76(SEQ ID No:74)CAGGTCCAGCTGGTGCAGLibF76(SEQ ID No:74)CAGGTCCAGCTGGTGCAG
LibF77(SEQ ID No:75)GAGGTGCATCTGGTGGAGTLibF77(SEQ ID No:75)GAGGTGCATCTGGTGGAGT
LibF78(SEQ ID No:76)CAGGTGCAGCTACAACAGTGLibF78(SEQ ID No:76)CAGGTGCAGCTACAACAGTG
LibF79(SEQ ID No:77)GAAGTGCAGCTGGTGCAGTLibF79(SEQ ID No:77)GAAGGTGCAGCTGGTGCAGT
LibF80(SEQ ID No:78)CAGGTGCAGCTGGTGGAGLibF80(SEQ ID No:78)CAGGTGCAGCTGGTGGAG
LibF81(SEQ ID No:79)GAGGTGCAGCTGGTAGAGTCLibF81(SEQ ID No:79)GAGGTGCAGCTGGTAGAGTC
LibF82(SEQ ID No:80)CAGGTACAGCTGCAGCAGTLibF82(SEQ ID No:80)CAGGTACAGCTGCAGCAGT
LibF83(SEQ ID No:81)GAGGTGCAGCTGTTGGAGTCLibF83(SEQ ID No:81)GAGGTGCAGCTGTTGGAGTC
LibF84(SEQ ID No:82)CAGGTCCAGCTGGTACAGTCTGLibF84(SEQ ID No:82)CAGGTCCAGCTGGTACAGTCTG
LibF85(SEQ ID No:83)GAGATGCAGCTGGTGGAGTCLibF85(SEQ ID No:83)GAGATGCAGCTGGTGGAGTC
LibF86(SEQ ID No:84)CAGGTCACCTTGAAGGAGTCTLibF86(SEQ ID No:84)CAGGTCACCTTGAAGGAGTCT
LibF87(SEQ ID No:85)CAGGTCCAGCTGGTGCAALibF87(SEQ ID No:85)CAGGTCCAGCTGGTGCAA
LibF88(SEQ ID No:86)CAGGTCACCTTGAGGGAGTCLibF88(SEQ ID No:86)CAGGTCACCTTGAGGGAGTC
LibF89(SEQ ID No:87)GAAGTGCAGCTGGTGGAGLibF89(SEQ ID No:87)GAAGTGCAGCTGGTGGAG
LibF90(SEQ ID No:88)CAGGTGCAGCTGCAGGAGLibF90(SEQ ID No:88)CAGGTGCAGCTGCAGGAG
LibF91(SEQ ID No:89)CAGGTGCGGCTGCAGGAGLibF91(SEQ ID No:89)CAGGTGCGGCTGCAGGAG
LibF92(SEQ ID No:90)CAGGTGCAGCTGGTGGALibF92(SEQ ID No:90)CAGGTGCAGCTGGTGGA
抗体基因第二轮扩增第一抗体可变区反向引物(SEQ ID No:91~94):Reverse primer for the first antibody variable region in the second round of amplification of antibody genes (SEQ ID No: 91~94):
LibR11(SEQ ID No:91)LibR11(SEQ ID No:91)
Figure PCTCN2022108616-appb-000006
Figure PCTCN2022108616-appb-000006
LibR12(SEQ ID No:92)LibR12(SEQ ID No:92)
Figure PCTCN2022108616-appb-000007
Figure PCTCN2022108616-appb-000007
LibR13(SEQ ID No:93)LibR13(SEQ ID No:93)
Figure PCTCN2022108616-appb-000008
Figure PCTCN2022108616-appb-000008
LibR14(SEQ ID No:94)LibR14(SEQ ID No:94)
Figure PCTCN2022108616-appb-000009
Figure PCTCN2022108616-appb-000009
注:小写为linker编码区Note: Lowercase letters refer to the linker coding area.
抗体基因第二轮扩增第二抗体可变区正向引物(SEQ ID No:95~137):Forward primer for the second antibody variable region in the second round of amplification of antibody genes (SEQ ID No: 95~137):
LibF101(SEQ ID No:95)LibF101(SEQ ID No:95)
Figure PCTCN2022108616-appb-000010
Figure PCTCN2022108616-appb-000010
LibF102(SEQ ID No:96)LibF102(SEQ ID No:96)
Figure PCTCN2022108616-appb-000011
Figure PCTCN2022108616-appb-000011
LibF103(SEQ ID No:97)LibF103(SEQ ID No:97)
Figure PCTCN2022108616-appb-000012
Figure PCTCN2022108616-appb-000012
LibF104(SEQ ID No:98)LibF104(SEQ ID No:98)
Figure PCTCN2022108616-appb-000013
Figure PCTCN2022108616-appb-000013
LibF105(SEQ ID No:99)LibF105(SEQ ID No:99)
Figure PCTCN2022108616-appb-000014
Figure PCTCN2022108616-appb-000014
LibF106(SEQ ID No:100)LibF106(SEQ ID No:100)
Figure PCTCN2022108616-appb-000015
Figure PCTCN2022108616-appb-000015
LibF107(SEQ ID No:101)LibF107(SEQ ID No:101)
Figure PCTCN2022108616-appb-000016
Figure PCTCN2022108616-appb-000016
LibF108(SEQ ID No:102)LibF108(SEQ ID No:102)
Figure PCTCN2022108616-appb-000017
Figure PCTCN2022108616-appb-000017
LibF109(SEQ ID No:103)LibF109(SEQ ID No:103)
Figure PCTCN2022108616-appb-000018
Figure PCTCN2022108616-appb-000018
LibF110(SEQ ID No:104)LibF110(SEQ ID No:104)
Figure PCTCN2022108616-appb-000019
Figure PCTCN2022108616-appb-000019
LibF111(SEQ ID No:105)LibF111(SEQ ID No:105)
Figure PCTCN2022108616-appb-000020
Figure PCTCN2022108616-appb-000020
LibF112(SEQ ID No:106)LibF112(SEQ ID No:106)
Figure PCTCN2022108616-appb-000021
Figure PCTCN2022108616-appb-000021
LibF113(SEQ ID No:107)LibF113(SEQ ID No:107)
Figure PCTCN2022108616-appb-000022
Figure PCTCN2022108616-appb-000022
LibF114(SEQ ID No:108)LibF114(SEQ ID No:108)
Figure PCTCN2022108616-appb-000023
Figure PCTCN2022108616-appb-000023
LibF115(SEQ ID No:109)LibF115(SEQ ID No:109)
Figure PCTCN2022108616-appb-000024
Figure PCTCN2022108616-appb-000024
LibF116(SEQ ID No:110)LibF116(SEQ ID No:110)
Figure PCTCN2022108616-appb-000025
Figure PCTCN2022108616-appb-000025
LibF117(SEQ ID No:111)LibF117(SEQ ID No:111)
Figure PCTCN2022108616-appb-000026
Figure PCTCN2022108616-appb-000026
LibF118(SEQ ID No:112)LibF118(SEQ ID No:112)
Figure PCTCN2022108616-appb-000027
Figure PCTCN2022108616-appb-000027
LibF119(SEQ ID No:113)LibF119(SEQ ID No:113)
Figure PCTCN2022108616-appb-000028
Figure PCTCN2022108616-appb-000028
LibF120(SEQ ID No:114)LibF120(SEQ ID No:114)
Figure PCTCN2022108616-appb-000029
Figure PCTCN2022108616-appb-000029
LibF121(SEQ ID No:115)LibF121(SEQ ID No:115)
Figure PCTCN2022108616-appb-000030
Figure PCTCN2022108616-appb-000030
LibF122(SEQ ID No:116)LibF122(SEQ ID No:116)
Figure PCTCN2022108616-appb-000031
Figure PCTCN2022108616-appb-000031
LibF123(SEQ ID No:117)LibF123(SEQ ID No:117)
Figure PCTCN2022108616-appb-000032
Figure PCTCN2022108616-appb-000032
LibF124(SEQ ID No:118)LibF124(SEQ ID No:118)
Figure PCTCN2022108616-appb-000033
Figure PCTCN2022108616-appb-000033
LibF125(SEQ ID No:119)LibF125(SEQ ID No:119)
Figure PCTCN2022108616-appb-000034
Figure PCTCN2022108616-appb-000034
LibF126(SEQ ID No:120)LibF126(SEQ ID No:120)
Figure PCTCN2022108616-appb-000035
Figure PCTCN2022108616-appb-000035
LibF127(SEQ ID No:121)LibF127(SEQ ID No:121)
Figure PCTCN2022108616-appb-000036
Figure PCTCN2022108616-appb-000036
LibF128(SEQ ID No:122)LibF128(SEQ ID No:122)
Figure PCTCN2022108616-appb-000037
Figure PCTCN2022108616-appb-000037
LibF129(SEQ ID No:123)LibF129(SEQ ID No:123)
Figure PCTCN2022108616-appb-000038
Figure PCTCN2022108616-appb-000038
LibF130(SEQ ID No:124)LibF130(SEQ ID No:124)
Figure PCTCN2022108616-appb-000039
Figure PCTCN2022108616-appb-000039
LibF131(SEQ ID No:125)LibF131(SEQ ID No:125)
Figure PCTCN2022108616-appb-000040
Figure PCTCN2022108616-appb-000040
LibF132(SEQ ID No:126)LibF132(SEQ ID No:126)
Figure PCTCN2022108616-appb-000041
Figure PCTCN2022108616-appb-000041
LibF133(SEQ ID No:127)LibF133(SEQ ID No:127)
Figure PCTCN2022108616-appb-000042
Figure PCTCN2022108616-appb-000042
LibF134(SEQ ID No:128)LibF134(SEQ ID No:128)
Figure PCTCN2022108616-appb-000043
Figure PCTCN2022108616-appb-000043
LibF135(SEQ ID No:129)LibF135(SEQ ID No:129)
Figure PCTCN2022108616-appb-000044
Figure PCTCN2022108616-appb-000044
LibF136(SEQ ID No:130)LibF136(SEQ ID No:130)
Figure PCTCN2022108616-appb-000045
Figure PCTCN2022108616-appb-000045
LibF137(SEQ ID No:131)LibF137(SEQ ID No:131)
Figure PCTCN2022108616-appb-000046
Figure PCTCN2022108616-appb-000046
LibF138(SEQ ID No:132)LibF138(SEQ ID No:132)
Figure PCTCN2022108616-appb-000047
Figure PCTCN2022108616-appb-000047
LibF139(SEQ ID No:133)LibF139(SEQ ID No:133)
Figure PCTCN2022108616-appb-000048
Figure PCTCN2022108616-appb-000048
LibF140(SEQ ID No:134)LibF140(SEQ ID No:134)
Figure PCTCN2022108616-appb-000049
Figure PCTCN2022108616-appb-000049
LibF141(SEQ ID No:135)LibF141(SEQ ID No:135)
Figure PCTCN2022108616-appb-000050
Figure PCTCN2022108616-appb-000050
LibF142(SEQ ID No:136)LibF142(SEQ ID No:136)
Figure PCTCN2022108616-appb-000051
Figure PCTCN2022108616-appb-000051
LibF143(SEQ ID No:137)LibF143(SEQ ID No:137)
Figure PCTCN2022108616-appb-000052
Figure PCTCN2022108616-appb-000052
注:小写为linker编码区Note: Lowercase letters refer to the linker coding area.
抗体基因第二轮扩增第二抗体可变区反向引物(SEQ ID No:138~141):Reverse primer for the second antibody variable region in the second round of amplification of antibody genes (SEQ ID No: 138~141):
LibR16(SEQ ID No:138)TGAGGAGACGGTGACCAGLibR16(SEQ ID No:138)TGAGGAGACGGTGACCAG
LibR17(SEQ ID No:139)TGAGGAGACAGTGACCAGGGLibR17(SEQ ID No:139)TGAGGAGACAGTGACCAGGG
LibR18(SEQ ID No:140)TGAAGAGACGGTGACCATTGTLibR18(SEQ ID No:140)TGAAGAGACGGTGACCATTGT
LibR19(SEQ ID No:141)TGAGGAGACGGTGACCGTLibR19(SEQ ID No:141)TGAGGAGACGGTGACCGT
2)按以下程序运行PCR扩增2) Run PCR amplification according to the following procedure
94℃,4min→98℃,10s→59℃,40s→72℃,50s→72℃,10min扩增循环15次94℃, 4min→98℃, 10s→59℃, 40s→72℃, 50s→72℃, 10min amplification cycle 15 times
3)将扩增产物加到1%argarose胶孔中,1×TAE电泳缓冲液中电泳分离。3) Add the amplification products to the wells of 1% argarose gel and electrophoresis separate them in 1×TAE electrophoresis buffer.
4)切取目标抗体重链可变区基因条带,按试剂盒说明回收抗体基因片段(Omega公司E.Z.N.A.
Figure PCTCN2022108616-appb-000053
Gel Extraction Kit,货号:D2500)。
4) Cut out the target antibody heavy chain variable region gene strip, and recover the antibody gene fragment according to the kit instructions (Omega Company EZNA
Figure PCTCN2022108616-appb-000053
Gel Extraction Kit, item number: D2500).
电泳结果如图3所示,所有样品均扩增出目的条带,扩增强度不同,目标条带清淅,杂带微弱或没有。The electrophoresis results are shown in Figure 3. All samples amplified the target band with different amplification intensities. The target band was clear and the contaminant bands were weak or absent.
实施例6、抗体基因第三轮扩增(两个抗体重链可变区基因通过linker拼接)及胶回收Example 6. The third round of amplification of antibody genes (two antibody heavy chain variable region genes are spliced through linker) and gel recovery
1)按以下顺序加入反应物1) Add reactants in the following order
Figure PCTCN2022108616-appb-000054
Figure PCTCN2022108616-appb-000054
抗体基因第三轮扩增引物正向引物(SEQ ID No:142~184):Antibody gene third round amplification primer forward primer (SEQ ID No: 142~184):
LibF151(SEQ ID No:142)X9-ATGCCCAGGTTCAGCTGGTGCAGTLibF151(SEQ ID No:142)X9-ATGCCCAGGTTCAGCTGGTGCAGT
LibF152(SEQ ID No:143)X9-ATGCCGAAGTGCAGCTGGTGCAGTLibF152(SEQ ID No:143)X9-ATGCCGAAGTGCAGCTGGTGCAGT
LibF153(SEQ ID No:144)X9-ATGCCGAGATGCAGCTGGTGGAGLibF153(SEQ ID No:144)X9-ATGCCGAGATGCAGCTGGTGGAG
LibF154(SEQ ID No:145)X9-ATGCCCAGGTCCAGCTGGTGCAGLibF154(SEQ ID No:145)X9-ATGCCCAGGTCCCAGCTGGTGCAG
LibF155(SEQ ID No:146)X9-ATGCCGAGGTGCAGCTGGTGGALibF155(SEQ ID No:146)X9-ATGCCGAGGTGCAGCTGGTGGA
LibF156(SEQ ID No:147)X9-ATGCCCAGGTCCAGCTGGTACAGTCLibF156(SEQ ID No:147)X9-ATGCCCAGGTCCAGCTGGTACAGTC
LibF157(SEQ ID No:148)X9-ATGCCCAGGTACAGCTGGTGCAGTCLibF157(SEQ ID No:148)X9-ATGCCCAGGTACAGCTGGTGCAGTC
LibF158(SEQ ID No:149)X9-ATGCCCAGATCACCTTGAAGGAGTCTGLibF158(SEQ ID No:149)X9-ATGCCCAGATCACCTTGAAGGAGTCTG
LibF159(SEQ ID No:150)X9-ATGCCGAGGTGCAGCTGGTGCAGTLibF159(SEQ ID No:150)X9-ATGCCGAGGTGCAGCTGGTGCAGT
LibF160(SEQ ID No:151)X9-ATGCCGAGGTTCAGCTGGTGCAGTCLibF160(SEQ ID No:151)X9-ATGCCGAGGTTCAGCTGGTGCAGTC
LibF161(SEQ ID No:152)X9-ATGCCCAAATGCAGCTGGTGCAGTLibF161(SEQ ID No:152)X9-ATGCCCAAATGCAGCTGGTGCAGT
LibF162(SEQ ID No:153)X9-ATGCCCAGATGCAGCTGGTGCAGLibF162(SEQ ID No:153)X9-ATGCCCAGATGCAGCTGGGTGCAG
LibF163(SEQ ID No:154)X9-ATGCCCAGGTCCAGCTGGTGCAATLibF163(SEQ ID No:154)X9-ATGCCCAGGTCCAGCTGGTGCAAT
LibF164(SEQ ID No:155)X9-ATGCCCAGGTCCAGCTTGTGCAGTLibF164(SEQ ID No:155)X9-ATGCCCAGGTCCAGCTTGTGCAGT
LibF165(SEQ ID No:156)X9-ATGCCCAGGTACAGCTGATGCAGTCTLibF165(SEQ ID No:156)X9-ATGCCCAGGTACAGCTGATGCAGTCT
LibF166(SEQ ID No:157)X9-ATGCCGAGGTGCAGCTGTTGGAGTCLibF166(SEQ ID No:157)X9-ATGCCGAGGTGCAGCTGTTGGAGTC
LibF167(SEQ ID No:158)X9-ATGCCGAGGTCCAGCTGGTACAGTCTGLibF167(SEQ ID No:158)X9-ATGCCGAGGTCCAGCTGGTACAGTCTG
LibF168(SEQ ID No:159)X9-ATGCCCAGGTGCAGCTGGTGCAATLibF168(SEQ ID No:159)X9-ATGCCCAGGTGCAGCTGGTGCAAT
LibF169(SEQ ID No:160)X9-ATGCCCAGGTGCAGCTGCAGGAGLibF169(SEQ ID No:160)X9-ATGCCCAGGTGCAGCTGCAGGAG
LibF170(SEQ ID No:161)X9-ATGCCCAGGTGCAGCTGCAGGACLibF170(SEQ ID No:161)X9-ATGCCCAGGTGCAGCTGCAGGAC
LibF171(SEQ ID No:162)X9-ATGCCCAGGTGCAGCTGGTGGAGTLibF171(SEQ ID No:162)X9-ATGCCCAGGTGCAGCTGGTGGAGT
LibF172(SEQ ID No:163)X9-ATGCCGAAGTGCAGCTGGTGGAGTCLibF172(SEQ ID No:163)X9-ATGCCGAAGTGCAGCTGGTGGAGTC
LibF173(SEQ ID No:164)X9-ATGCCGAGACGCAGCTGGTGGAGTLibF173(SEQ ID No:164)X9-ATGCCGAGACGCAGCTGGTGGAGT
LibF174(SEQ ID No:165)X9-ATGCCGAGGTGCAGCTGGTGGAGALibF174(SEQ ID No:165)X9-ATGCCGAGGTGCAGCTGGTGGAGA
LibF175(SEQ ID No:166)X9-ATGCCCAGGTGCAGCTACAGCAGTLibF175(SEQ ID No:166)X9-ATGCCCAGGTGCAGCTACAGCAGT
LibF176(SEQ ID No:167)X9-ATGCCCAGGTACAGCTGGTGGAGTCLibF176(SEQ ID No:167)X9-ATGCCCAGGTACAGCTGGTGGAGTC
LibF177(SEQ ID No:168)X9-ATGCCCAGCTGCAGCTGCAGGAGTLibF177(SEQ ID No:168)X9-ATGCCCAGCTGCAGCTGCAGGAGT
LibF178(SEQ ID No:169)X9-ATGCCCAGGTGCGGCTGCAGGAGLibF178(SEQ ID No:169)X9-ATGCCCAGGTGCGGCTGCAGGAG
LibF179(SEQ ID No:170)X9-CATGCCCAGGTGCAGCTGGTGGALibF179(SEQ ID No:170)X9-CATGCCCAGGTGCAGCTGGTGGA
LibF180(SEQ ID No:171)X9-ATGCCGAGGTACAACTGGTGGAGTCTLibF180(SEQ ID No:171)X9-ATGCCGAGGTACAACTGGTGGAGTCT
LibF181(SEQ ID No:172)X9-ATGCCCAGGTGCAGCTACAACAGTGLibF181(SEQ ID No:172)X9-ATGCCCAGGTGCAGCTACAACAGTG
LibF182(SEQ ID No:173)X9-ATGCCCAGGTCACCTTGAAGGAGTCTGLibF182(SEQ ID No:173)X9-ATGCCCAGGTCACCTTGAAGGAGTCTG
LibF183(SEQ ID No:174)X9-ATGCCGAGGTGCAGCTGGTAGAGTCTLibF183(SEQ ID No:174)X9-ATGCCGAGGTGCAGCTGGTAGAGTCT
LibF184(SEQ ID No:175)X9-ATGCCCGGGTCACCTTGAGGGAGTLibF184(SEQ ID No:175)X9-ATGCCCGGGTCACCTTGAGGGAGT
LibF185(SEQ ID No:176)X9-ATGCCGAGGTGCATCTGGTGGAGTLibF185(SEQ ID No:176)X9-ATGCCGAGGTGCATCTGGTGGAGT
LibF186(SEQ ID No:177)X9-ATGCCCAGGTACAGCTGCAGGAGLibF186(SEQ ID No:177)X9-ATGCCCAGGTACAGCTGCAGGAG
LibF187(SEQ ID No:178)X9-ATGCCCGGCTGCAGCTGCAGGAGTLibF187(SEQ ID No:178)X9-ATGCCCGGCTGCAGCTGCAGGAGT
LibF188(SEQ ID No:179)X9-ATGCCCAGGTACAGCTGCAGCAGTCLibF188(SEQ ID No:179)X9-ATGCCCAGGTACAGCTGCAGCAGTC
LibF189(SEQ ID No:180)X9-ATGCCCAGGTGCAGCTACAGGAGTLibF189(SEQ ID No:180)X9-ATGCCCAGGTGCAGCTACAGGAGT
LibF190(SEQ ID No:181)X9-ATGCCCAGGTCACCTTGAGGGAGTCLibF190(SEQ ID No:181)X9-ATGCCCAGGTCACCTTGAGGGAGTC
LibF191(SEQ ID No:182)X9-ATGCCCAGGTGCAGCTGTTGGAGLibF191(SEQ ID No:182)X9-ATGCCCAGGTGCAGCTGTTGGAG
LibF192(SEQ ID No:183)X9-CATGCCGAGGTGCAGCTGGTGAAGLibF192(SEQ ID No:183)X9-CATGCCGAGGTGCAGCTGGTGAAG
LibF193(SEQ ID No:184)X9-ATGCCCAGGTGCAGCTGGTGCAGLibF193(SEQ ID No:184)X9-ATGCCCAGGTGCAGCTGGGTGCAG
注:X9-表示9个核苷酸的限制性内切酶I及其保护碱基。限制性内切酶I可以是AgeI、ApaI、AscI、BamHI、BglII、BsiI、ClaI、CspI、EcoRI、FseI、HindIII、KpnI、MfeI、MluI、NcoI、NheI、NotI、PacI、PmeI、PauI、SacI、SauI、SphI、VspI、XbaI、XhoI中的一个。Note: X9- represents the 9-nucleotide restriction endonuclease I and its protective bases. Restriction endonuclease I can be AgeI, ApaI, AscI, BamHI, BglII, Bsil, ClaI, CsI, EcoRI, FseI, HindIII, KpnI, MfeI, MluI, NcoI, NheI, NotI, PacI, Pmel, Paul, SacI, One of SauI, SphI, VspI, XbaI, and XhoI.
抗体基因第三轮扩增反向引物(SEQ ID No:185~188):Reverse primer for the third round of antibody gene amplification (SEQ ID No: 185~188):
LibR21(SEQ ID No:185)Y9-TGAGGAGACGGTGACCAGLibR21(SEQ ID No:185)Y9-TGAGGAGACGGTGACCAG
LibR22(SEQ ID No:186)Y9-TGAGGAGACAGTGACCAGGGLibR22(SEQ ID No:186)Y9-TGAGGAGACAGTGACCAGGG
LibR23(SEQ ID No:187)Y9-TGAAGAGACGGTGACCATTGTLibR23(SEQ ID No:187)Y9-TGAAGAGACGGTGACCATTGT
LibR23(SEQ ID No:188)Y9-TGAGGAGACGGTGACCGTLibR23(SEQ ID No:188)Y9-TGAGGAGACGGTGACCGT
注:Y9-表示9个核苷酸的限制性内切酶II及其保护碱基。限制性内切酶II可以是AgeI、ApaI、AscI、BamHI、BglII、BsiI、ClaI、CspI、EcoRI、FseI、HindIII、KpnI、MfeI、MluI、NcoI、NheI、NotI、PacI、PmeI、PauI、SacI、SauI、SphI、VspI、XbaI、XhoI中的一个。Note: Y9- represents the 9-nucleotide restriction endonuclease II and its protective bases. Restriction endonuclease II can be AgeI, ApaI, AscI, BamHI, BglII, Bsil, ClaI, CspI, EcoRI, FseI, HindIII, KpnI, MfeI, MluI, NcoI, NheI, NotI, PacI, Pmel, Paul, SacI, One of SauI, SphI, VspI, XbaI, and XhoI.
2)按以下程序运行PCR扩增2) Run PCR amplification according to the following procedure
94℃,4min→98℃,10s→59℃,40s→72℃,60s→72℃,10min扩增循环15次94℃, 4min→98℃, 10s→59℃, 40s→72℃, 60s→72℃, 10min amplification cycle 15 times
3)将扩增产物加到1%argarose胶孔中,1×TAE电泳缓冲液中电泳分离。3) Add the amplification products to the wells of 1% argarose gel and electrophoresis separate them in 1×TAE electrophoresis buffer.
4)切取目标抗体重链可变区基因条带,按试剂盒说明回收抗体基因片段(Omega公司E.Z.N.A.
Figure PCTCN2022108616-appb-000055
Gel Extraction Kit,货号:D2500)。
4) Cut out the target antibody heavy chain variable region gene strip, and recover the antibody gene fragment according to the kit instructions (Omega Company EZNA
Figure PCTCN2022108616-appb-000055
Gel Extraction Kit, item number: D2500).
电泳结果如图4所示,所有样品均扩增出750bp左右的目的条带,扩增强度不同,但有较多杂带,这些杂带在切胶纯化回收过程中会除掉,不影响文库构建。The electrophoresis results are shown in Figure 4. All samples amplified a target band of about 750 bp. The amplification intensity was different, but there were many contaminant bands. These contaminant bands will be removed during the gel cutting, purification and recovery process and will not affect the library. Construct.
实施例7、抗体重链可变区基因及载体酶切及回收Example 7. Digestion and recovery of antibody heavy chain variable region genes and vectors
1)酶切1) Enzyme digestion
按以下体系配制限制内切酶I的酶切体系Prepare restriction endonuclease I digestion system according to the following system
Figure PCTCN2022108616-appb-000056
Figure PCTCN2022108616-appb-000056
37℃孵育1.5hIncubate at 37℃ for 1.5h
在以上体系中补加以下成分Add the following ingredients to the above system
10×Tango buffer        42μL10×Tango buffer 42μL
限制内切酶II(Thermo)    15μLRestriction endonuclease II (Thermo) 15μL
ddH 2O           3μL ddH 2 O 3μL
混匀,37℃孵育1.5hMix well and incubate at 37℃ for 1.5h
2)酶切产物纯化2) Purification of enzyme digestion products
对于酶切后的抗体基因,采用离心吸附柱进行PCR产物直接纯化(Omega公司E.Z.N.A.
Figure PCTCN2022108616-appb-000057
Gel Extraction Kit,货号:D2500);对于酶切后的抗体基因,采用离心吸附柱进行胶回收纯化(Omega公司E.Z.N.A.
Figure PCTCN2022108616-appb-000058
Gel Extraction Kit,货号:D2500)。按试剂盒说明书进行操作。
For the enzyme-digested antibody gene, a centrifugal adsorption column was used to directly purify the PCR product (Omega Company EZNA
Figure PCTCN2022108616-appb-000057
Gel Extraction Kit, product number: D2500); for the digested antibody gene, use a centrifugal adsorption column for gel recovery and purification (Omega Company EZNA
Figure PCTCN2022108616-appb-000058
Gel Extraction Kit, item number: D2500). Follow the kit instructions.
电泳结果如图5所示,载体已被切开,大小与预期的5000bp相符,酶切成功。The electrophoresis results are shown in Figure 5. The vector has been cut, the size is consistent with the expected 5000bp, and the enzyme digestion was successful.
实施例8、连接反应及纯化Example 8. Ligation reaction and purification
1)连接反应1) Connection reaction
Figure PCTCN2022108616-appb-000059
Figure PCTCN2022108616-appb-000059
混匀后16℃孵育过夜Mix well and incubate overnight at 16°C
2)纯化2) Purification
采用离心吸附柱进行PCR产物直接纯化(Omega公司E.Z.N.A.
Figure PCTCN2022108616-appb-000060
Gel Extraction Kit,货号:D2500),按试剂盒说明书进行操作。
Direct purification of PCR products using centrifugal adsorption columns (Omega Company EZNA
Figure PCTCN2022108616-appb-000060
Gel Extraction Kit, product number: D2500), follow the instructions of the kit.
实施例9、感受态制备、转化及涂板Example 9. Competent state preparation, transformation and plating
1)制备Mini Agar固体培养基1) Preparation of Mini Agar solid medium
称取1.1g Agar,加入70ml超纯水,121℃湿热灭菌20min,取出摇匀。待温度降至50-60℃时,加入磷酸氢二钠至60mM、磷酸二氢钾至17mM、氯化钠至8mM、氯化铵至18mM、氯化钙至0.1mM、硫酸镁至2mM、维生素B1至1mM、葡萄糖至2%(W/V),终体积为100ml。摇匀,倒入无菌培养皿中凝固。Weigh 1.1g of Agar, add 70ml of ultrapure water, sterilize with moist heat at 121°C for 20 minutes, take out and shake well. When the temperature drops to 50-60°C, add disodium hydrogen phosphate to 60mM, potassium dihydrogen phosphate to 17mM, sodium chloride to 8mM, ammonium chloride to 18mM, calcium chloride to 0.1mM, magnesium sulfate to 2mM, and vitamins B1 to 1mM, glucose to 2% (W/V), and the final volume is 100ml. Shake well and pour into a sterile petri dish to solidify.
2)蘸取TG1种子菌,在Mini Agar固体培养基上划线,37℃培养2天至单克隆出现。2) Dip TG1 seed bacteria, streak on Mini Agar solid medium, and culture at 37°C for 2 days until single clones appear.
3)从Mini Agar平板上挑取TG1单克隆,接种至10ml LDM液体培养基中,37℃下220rpm振荡培养过夜。次日取6ml菌液接种至600ml液体培养基中,37℃下220rpm振荡培养至OD600=0.7。3) Pick the TG1 single clone from the Mini Agar plate, inoculate it into 10 ml LDM liquid medium, and culture it overnight at 37°C with shaking at 220 rpm. The next day, take 6 ml of bacterial solution and inoculate it into 600 ml of liquid culture medium, and culture it with shaking at 37°C and 220 rpm until OD600=0.7.
4)将菌液转入1000ml无菌离心管中,4℃下4000rpm离心10min,弃上清液。用600ml冰上预冷的湿热灭菌超纯水于冰上充分振荡重悬菌体沉淀,如此重复洗涤两次。用6ml冰上预冷的湿热灭菌的10%甘油(超纯水配制),于冰上充分振荡重悬菌体沉淀,于冰上按200μL/支分装至1.5ml无菌EP管中。4) Transfer the bacterial solution into a 1000ml sterile centrifuge tube, centrifuge at 4000rpm for 10 minutes at 4°C, and discard the supernatant. Use 600 ml of moist heat sterilized ultrapure water pre-cooled on ice and shake thoroughly on ice to resuspend the bacterial pellet. Repeat washing twice. Use 6 ml of moist heat-sterilized 10% glycerol (prepared with ultrapure water) pre-cooled on ice, shake thoroughly on ice to resuspend the bacterial pellet, and dispense 200 μL/tube into 1.5 ml sterile EP tubes on ice.
5)取5μL纯化后的连接产物(即噬菌粒),于冰上加入到感受态TG1中,转入冰上预冷的2mm电击杯中,冰浴10min。设置电击仪(哈佛仪器公司,Harvard Apparatus)电压为2.5kV对感受态细胞进行转化。电击后立即转入SOC培养基中,37℃下,180rpm振荡培养1h。对菌液进行梯度稀释,涂2YT培养基平板。倒置平板,于37℃下过夜培养,获得单克隆。5) Take 5 μL of the purified ligation product (ie, phagemid), add it to the competent TG1 on ice, transfer it to a 2mm electroshock cup pre-cooled on ice, and keep in ice bath for 10 minutes. Set the electroshock apparatus (Harvard Apparatus) voltage to 2.5kV to transform competent cells. Immediately after electroporation, the cells were transferred to SOC medium and cultured for 1 hour at 37°C with shaking at 180 rpm. Carry out gradient dilution of the bacterial solution and apply it to the 2YT medium plate. Invert the plate and culture it at 37°C overnight to obtain single clones.
6)挑取单克隆,接种到200μL的2YT液体培养基中,于37℃下200rpm振荡培养过夜。6) Pick a single clone, inoculate it into 200 μL of 2YT liquid medium, and culture it overnight at 37°C with shaking at 200 rpm.
7)取菌液,用LD4F和LD3-R进行PCR扩增鉴定。7) Take the bacterial liquid and use LD4F and LD3-R for PCR amplification and identification.
LD4F:GTTAGCTCACTCATTAGGCACC(SEQ ID No:189)LD4F:GTTAGCTCACTCATTAGGCACC(SEQ ID No:189)
LD3-R:GTAAATGAATTTTCTGTATGAGG(SEQ ID No:190)LD3-R:GTAAATGAATTTTCTGTATGAGG(SEQ ID No:190)
8)取阳性克隆,进行噬菌粒测序并分析序列多样性。8) Take positive clones, perform phagemid sequencing and analyze sequence diversity.
电泳结果如图6所示,有4个克隆有非抗体基因,无非特异扩增外,其余均为正确的阳性克隆,阳性率为92/96=95.8%。The electrophoresis results are shown in Figure 6. There are 4 clones with non-antibody genes. Except for non-specific amplification, the rest are correct positive clones, with a positive rate of 92/96=95.8%.
阳性克隆中抗体序列同源性分析的结果如图7所示,从鉴定为阳性的克隆中随机取30个克隆进行测序,除1个克隆测序列失败外,其余29个克隆均获得序列。以圆形系统发育进化树展示抗体序列的同源性大小,其中粗体数字代表不同的抗体序列,分支的结点上的数字代表自展值。同源性越大,抗体序列越相似,进化树上的末端分支越短。若两个序列的末端分枝消失仅剩结点竖线,表明这两个抗体序列完全一致;反之分枝末端长度差异越大,表明分枝上的抗体因进化而出现的时间相差更远,在序列上表现为序列差异越大。可以看出,这些序列均处于同源性大小不同的多个分支上,无末端分枝消失仅剩结点竖线的序列,所有分析的序列互不相同,故多样性为29/29=100%,展示库中抗体序列多样性好。The results of the homology analysis of the antibody sequences in the positive clones are shown in Figure 7. From the clones identified as positive, 30 clones were randomly selected for sequencing. Except for one clone that failed to sequence, the sequences of the remaining 29 clones were obtained. The homology of antibody sequences is displayed in a circular phylogenetic tree, in which bold numbers represent different antibody sequences, and the numbers on the branch nodes represent bootstrap values. The greater the homology, the more similar the antibody sequences are, and the shorter the terminal branches on the evolutionary tree. If the terminal branches of the two sequences disappear and only the node vertical line is left, it means that the two antibody sequences are completely identical; on the contrary, the greater the difference in the length of the branch ends, it means that the antibodies on the branches appeared at a farther time due to evolution. In the sequence, the greater the sequence difference is. It can be seen that these sequences are on multiple branches with different levels of homology. No terminal branches disappear and only the node vertical lines are left. All the analyzed sequences are different from each other, so the diversity is 29/29=100 %, showing good antibody sequence diversity in the library.
下表展示所构建的抗体文库的质量指标The following table shows the quality indicators of the constructed antibody library
阳性率Positive rate 多样性Diversity 正确率Correct rate 库容storage space
95.8%95.8% 100%100% 100%100% 1×10 9pfu 1×10 9 pfu
实施例10、抗体文库淘选Example 10. Antibody library panning
1)宿主菌TG1活化:制备mini agar培养基平板,划线法过夜培养TG1于37℃培养箱。1) Activation of host bacteria TG1: Prepare a mini agar medium plate, culture TG1 overnight in a 37°C incubator by streaking method.
2)磁珠洗涤及封闭:吸取50μL磁珠(购自Invitrogen),置于磁力架上,吸附后吸去液体,1ml PBS重悬、洗涤两次,用1ml 1.5%脱脂奶粉+1.5%BSA的封闭剂(第二轮、第三轮淘选时封闭剂浓度逐渐增加)封闭1小时,去除液体。2) Magnetic bead washing and blocking: absorb 50 μL of magnetic beads (purchased from Invitrogen), place on a magnetic stand, absorb the liquid after adsorption, resuspend in 1 ml of PBS, wash twice, and use 1 ml of 1.5% skimmed milk powder + 1.5% BSA. Block with blocking agent (concentration of blocking agent gradually increases during the second and third rounds of panning) for 1 hour and remove the liquid.
3)抗原结合:用1ml PBS(pH7.2-7.4)将蛋白A和蛋白B稀释至工作浓度16μg/ml(均购自Acro Biosystem,以后各轮淘选时抗原浓度逐渐降低),用该既含有蛋白A又含有蛋白B的PBS溶液重悬磁珠,旋转孵育1小时。3) Antigen binding: Use 1ml PBS (pH7.2-7.4) to dilute protein A and protein B to a working concentration of 16 μg/ml (both purchased from Acro Biosystem, and the antigen concentration will gradually decrease during each subsequent round of panning). Use this Resuspend the magnetic beads in PBS solution containing protein A and protein B, and rotate and incubate for 1 hour.
4)库封闭:与抗原结合至磁珠同步,取10 11pfu噬菌体病毒颗粒(来自于原始抗体文库或淘选扩增产物),用1ml 1.0%脱脂奶粉+1.0%BSA的封闭剂旋转孵育1小时。 4) Library blocking: Synchronize with the binding of the antigen to the magnetic beads, take 10 11 pfu phage virus particles (from the original antibody library or panning amplification product), and use 1 ml of 1.0% skim milk powder + 1.0% BSA blocking agent to rotate and incubate for 1 Hour.
5)噬菌体结合:将磁珠置于磁力架上,去除液体。将封闭后的库加入磁珠,重悬并旋转孵育1小时,去除液体。5) Phage binding: Place the magnetic beads on the magnetic stand and remove the liquid. Add the blocked library to magnetic beads, resuspend and incubate with rotation for 1 hour, and remove the liquid.
6)洗涤:用1ml PBST[0.01M PBS(pH7.4),0.1%Tween-20(第二、三轮Tween-20浓度分别用0.2%、0.3%)]洗涤,再用0.01M PBS(pH7.4)洗涤。6) Washing: Wash with 1ml PBST [0.01M PBS (pH7.4), 0.1% Tween-20 (the second and third rounds of Tween-20 concentration are 0.2% and 0.3% respectively)], and then use 0.01M PBS (pH7) .4) Washing.
7)洗脱:吸去液体,用300μL 0.2M甘氨酸-盐酸(pH2.2)洗脱10分钟,加入20μL中和液[1M Tris-Cl(pH9.0)]混匀,暂时保存于4℃。7) Elution: Aspirate the liquid, elute with 300μL 0.2M glycine-hydrochloric acid (pH2.2) for 10 minutes, add 20μL neutralizing solution [1M Tris-Cl (pH9.0)], mix well, and temporarily store at 4°C. .
8)测滴度:取2μL、0.2μL(原液用2×YT培养基稀释10倍后取2μL)、0.02μL(原液用2×YT培养基稀释100倍后取2μL)洗脱液,与0.2ml对数中期(OD600=0.5)的TG1混匀,室温孵育30分钟,均匀涂于2×YT-GA100[含2%葡萄糖,100μg/ml氨苄青霉素]平板上,37℃过夜培养,计数约50个克隆的平板上的克隆数,根据稀释倍数计算滴度。8) Measure the titer: Take 2 μL, 0.2 μL (the original solution is diluted 10 times with 2×YT culture medium and then take 2 μL), 0.02 μL (the original solution is diluted 100 times with 2×YT culture medium and then take 2 μL) eluate, and mix with 0.2 ml of mid-logarithmic (OD600=0.5) TG1 was mixed, incubated at room temperature for 30 minutes, evenly spread on 2×YT-GA100 [containing 2% glucose, 100 μg/ml ampicillin] plate, cultured at 37°C overnight, and counted about 50 The number of clones on the plate, and the titer is calculated based on the dilution factor.
9)噬菌体扩增:在淘选进行的同时,挑取mini agar平板上的TG1单克隆,接种于10ml 2×YT培养液中,37℃下,250rpm振荡培养至对数中期(OD600=0.5)。加入200μL淘选获得的洗脱产物,37℃孵育30分钟。加入辅助噬菌体M13KO7,37℃再孵育30分钟,37℃下,250rpm振荡培养1小时。离心去上清,用20ml含工作浓度100μg/ml氨苄青霉素和工作浓度50μg/ml卡那霉素的2×YT重悬,30℃,220rpm振荡培养过夜。9) Phage amplification: While panning is in progress, pick the TG1 single clone on the mini agar plate, inoculate it into 10ml 2×YT culture medium, and culture it to the mid-log phase (OD600=0.5) at 37°C with shaking at 250rpm. . Add 200 μL of the elution product obtained by panning and incubate at 37°C for 30 minutes. Add helper phage M13KO7, incubate at 37°C for another 30 minutes, and then incubate at 37°C with shaking at 250 rpm for 1 hour. Centrifuge to remove the supernatant, resuspend in 20 ml of 2×YT containing ampicillin at a working concentration of 100 μg/ml and kanamycin at a working concentration of 50 μg/ml, and incubate overnight at 30°C with shaking at 220 rpm.
10)噬菌体沉淀:10000rpm离心15分钟去除菌体,上清中加入1/5体积的2.5M NaCl/20%PEG8000,冰浴2小时。10000rpm离心10分钟得到噬菌体沉淀,将残液去除干净,加入0.2ml 0.01M PBS(pH7.4)液重悬沉淀,如上文测滴度。10) Phage precipitation: Centrifuge at 10,000 rpm for 15 minutes to remove bacterial cells. Add 1/5 volume of 2.5M NaCl/20% PEG8000 to the supernatant and keep in ice bath for 2 hours. Centrifuge at 10,000 rpm for 10 minutes to obtain the phage pellet, remove the residual liquid, add 0.2ml 0.01M PBS (pH7.4) solution to resuspend the pellet, and measure the titer as above.
11)重复步骤2)-10)两或三次,获得结合力强的噬菌体展示抗体。其中进行第3)步操作时用含工作浓度10μg/ml的蛋白A的1ml PBS溶液,旋转孵育1小时。而在下一次重复2)-10)时,第3)步则改为10μg/ml的蛋白B的1ml PBS溶液,旋转孵育1小时。11) Repeat steps 2)-10) two or three times to obtain phage display antibodies with strong binding capacity. When performing step 3), use 1 ml of PBS solution containing protein A with a working concentration of 10 μg/ml, and rotate and incubate for 1 hour. When repeating 2)-10) next time, step 3) is changed to 10 μg/ml protein B in 1 ml PBS solution, and rotated and incubated for 1 hour.
实施例11、单克隆ELISAExample 11. Monoclonal ELISA
1)0.3μg/ml链霉亲和素4℃过夜包被酶标板,2%BSA/PBS封闭液处理2h,并用PBS洗涤3次。1) Coat the enzyme plate with 0.3 μg/ml streptavidin overnight at 4°C, treat with 2% BSA/PBS blocking solution for 2 hours, and wash 3 times with PBS.
2)其中部分酶标板按每孔100μL加入工作浓度1μg/ml蛋白A的PBS溶液,部 分酶标板按每孔100μL加入工作浓度1μg/ml蛋白B的PBS溶液,部分酶标板按每孔100μL加入PBS溶液。37℃孵育1h,去除液体,并用PBS洗涤3次。2) Add 100 μL of PBS solution with a working concentration of 1 μg/ml protein A to some enzyme plates per well, add 100 μL of PBS solution with a working concentration of 1 μg/ml protein B to some enzyme plates per well, and add 100 μL of PBS solution with a working concentration of 1 μg/ml protein B to each well of some enzyme plates. Add 100 μL of PBS solution. Incubate at 37°C for 1 h, remove the liquid, and wash three times with PBS.
3)从2×YT-GA100平板上挑取的单克隆菌落,振荡培养至对数中期,加入辅助噬菌体M13KO7,37℃孵育30分钟。37℃,220rpm振荡培养1小时,4000rpm离心15分钟。用400μL含工作浓度100μg/ml氨苄青霉素和工作浓度50μg/ml卡那霉素的2×YT重悬,30℃,220rpm振荡培养过夜。4000rpm离心15分钟,沉淀菌体。3) Pick a single clone colony from the 2×YT-GA100 plate, culture it with shaking to the mid-log phase, add the helper phage M13KO7, and incubate at 37°C for 30 minutes. Incubate at 37°C with shaking at 220 rpm for 1 hour, and centrifuge at 4000 rpm for 15 minutes. Resuspend in 400 μL of 2×YT containing ampicillin at a working concentration of 100 μg/ml and kanamycin at a working concentration of 50 μg/ml, and incubate overnight at 30°C with shaking at 220 rpm. Centrifuge at 4000rpm for 15 minutes to precipitate the bacteria.
4)取50μL 4%BSA/PBS加入到酶标板中,同时取50μL噬菌体上清,混匀,孵育1小时。4) Add 50 μL of 4% BSA/PBS to the microplate, and at the same time, take 50 μL of phage supernatant, mix well, and incubate for 1 hour.
5)去除液体,0.1%PBST洗5次,PBS洗3次,去除液体。5) Remove the liquid, wash 5 times with 0.1% PBST and 3 times with PBS to remove the liquid.
6)将HRP标记抗M13噬菌体抗体(购自北京义翘神州)用2%BSA稀释3000倍,取100μL加入到酶标板中,孵育1小时,去除液体,0.1%PBST洗3次,拍干残液。6) Dilute the HRP-labeled anti-M13 phage antibody (purchased from Beijing Yiqiao Shenzhou) 3000 times with 2% BSA, add 100 μL to the enzyme plate, incubate for 1 hour, remove the liquid, wash 3 times with 0.1% PBST, and pat dry Residual liquid.
7)加入100μL TMB显色液,37℃孵育10min或至蓝色充分显现,加入100μL1M硫酸终止反应,在酶标仪上读取OD450。7) Add 100 μL TMB chromogenic solution, incubate at 37°C for 10 minutes or until the blue color is fully developed, add 100 μL 1M sulfuric acid to terminate the reaction, and read the OD450 on a microplate reader.
单克隆噬菌体ELISA结果如图8所示,最终淘选获得的噬菌体经单克隆化后大量繁殖,去除宿主菌,上清做为噬菌体抗体粗液进行ELISA检测。结果表明,这些单克隆与蛋白A或B的结合能力不同,有些单克隆与蛋白A结合强于蛋白B,有些单克隆与蛋白B结合强于蛋白A,少量单克隆为实验误差与二者结合均弱。The results of the monoclonal phage ELISA are shown in Figure 8. The phages obtained by final panning were monocloned and multiplied in large quantities, the host bacteria were removed, and the supernatant was used as a crude phage antibody for ELISA detection. The results show that these monoclones have different binding abilities to protein A or B. Some monoclones bind to protein A stronger than protein B, and some monoclones bind to protein B stronger than protein A. A small number of monoclones are due to experimental errors and combine with both. All weak.
下表为OD450原始读值和实验组/PBS比值The following table shows the original reading value of OD450 and the ratio of experimental group/PBS
表1 OD450原始读值Table 1 OD450 original reading value
Figure PCTCN2022108616-appb-000061
Figure PCTCN2022108616-appb-000061
Figure PCTCN2022108616-appb-000062
Figure PCTCN2022108616-appb-000062
表2 实验组OD450/PBS组Table 2 Experimental group OD450/PBS group
Figure PCTCN2022108616-appb-000063
Figure PCTCN2022108616-appb-000063
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。All documents mentioned in this application are incorporated by reference in this application to the same extent as if each individual document was individually incorporated by reference. In addition, it should be understood that after reading the above teaching content of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of this application.

Claims (17)

  1. 一种获得双特异抗体的噬菌体展示库的构建方法,其特征在于,所述的双特异性抗体为双特异性的全人源单域抗体,A method for constructing a phage display library for obtaining bispecific antibodies, characterized in that the bispecific antibodies are bispecific fully human single domain antibodies,
    所述方法包括以下步骤:The method includes the following steps:
    (a)提取人PBMC的总RNA;(a) Extract total RNA from human PBMC;
    (b)以所述总RNA为模板,通过反转录,合成cDNA;(b) using the total RNA as a template to synthesize cDNA through reverse transcription;
    (c)以所述cDNA为模板,用第一引物集进行第一轮PCR扩增,从而获得第一轮扩增产物;其中,第一引物集包括SEQ ID No:1~43所示的正向引物和SEQ ID No:44-47所示的反向引物;(c) Using the cDNA as a template, use the first primer set to perform the first round of PCR amplification, thereby obtaining the first round of amplification products; wherein the first primer set includes the positive sequences shown in SEQ ID Nos: 1 to 43 Toward primer and reverse primer shown in SEQ ID No:44-47;
    (d)以第一轮扩增产物为模板,用第二引物集进行第二轮PCR扩增,从而获得第二轮扩增产物;其中,第二引物集包括SEQ ID No:48~90所示的第一抗体可变区正向引物,SEQ ID No:91-94所示的第一抗体可变区反向引物,SEQ ID No:95~137所示的第二抗体可变区正向引物,和SEQ ID No:138~141所示的第二抗体可变区反向引物;(d) Using the first round amplification product as a template, use the second primer set to perform the second round of PCR amplification to obtain the second round amplification product; wherein, the second primer set includes SEQ ID No: 48-90 The first antibody variable region forward primer shown in SEQ ID No:91-94, the first antibody variable region reverse primer shown in SEQ ID No:91-94, the second antibody variable region forward primer shown in SEQ ID No:95~137 Primers, and the second antibody variable region reverse primer shown in SEQ ID No: 138~141;
    (e)以第二轮扩增产物为模板,用第三引物集进行第三轮PCR扩增,从而获得第三轮扩增产物;其中,第三引物集包括SEQ ID No:142~184所示的正向引物,SEQ ID No:185~188所示的反向引物;(e) Using the second round amplification product as a template, use the third primer set to perform the third round of PCR amplification to obtain the third round amplification product; wherein the third primer set includes SEQ ID No: 142~184 The forward primer shown is, the reverse primer shown in SEQ ID No: 185~188;
    (f)将用于构建文库的载体和所述第三轮扩增产物用限制性内切酶I和限制性内切酶II进行酶切,获得经酶切的线性化的载体片段和线性化的抗体基因片段;(f) The vector used to construct the library and the third round amplification product are digested with restriction endonuclease I and restriction endonuclease II to obtain digested linearized vector fragments and linearized Antibody gene fragments;
    (g)将所述经酶切的线性化的载体片段和线性化的抗体基因片段进行连接反应,从而获得连接产物;(g) performing a ligation reaction on the digested linearized vector fragment and the linearized antibody gene fragment to obtain a ligation product;
    (h)将所述连接产物导入用于噬菌体展示的宿主细胞,从而获得所述的双特异性的全人源单域抗体噬菌体展示抗体文库。(h) Introducing the ligation product into a host cell for phage display, thereby obtaining the bispecific fully human single domain antibody phage display antibody library.
  2. 如权利要求1所述的方法,其特征在于,步骤(c)所述的第一轮PCR扩增,其反应体系为:ddH 2O 13.6μL,2.5mM dNTPs 1.6μL,10×buffer 2μL,cDNA 0.8μL,10μM上游引物1μL,10μM下游引物1μL,Ex Taq 0.08μL,总体积20μL。 The method of claim 1, wherein the reaction system of the first round of PCR amplification in step (c) is: ddH 2 O 13.6 μL, 2.5mM dNTPs 1.6 μL, 10× buffer 2 μL, cDNA 0.8 μL, 1 μL of 10 μM upstream primer, 1 μL of 10 μM downstream primer, Ex Taq 0.08 μL, total volume 20 μL.
  3. 如权利要求1所述的方法,其特征在于,步骤(c)所述的第一轮PCR扩增,其反应程序为:94℃ 4min,98℃ 10s,59℃ 40s,72℃ 50s,72℃ 10min,扩增循环 25次。The method according to claim 1, characterized in that the reaction program of the first round of PCR amplification in step (c) is: 94°C 4min, 98°C 10s, 59°C 40s, 72°C 50s, 72°C 10 min, amplification cycle 25 times.
  4. 如权利要求1所述的方法,其特征在于,步骤(d)所述的第二轮PCR扩增,其反应体系为:10×buffer 2.5μL,2.5mM dNTPs 1.6μL,第一轮扩增回收产物15ng,10μM上游引物1μL,10μM下游引物1μL,Ex Taq 0.1μL,ddH 2O补足至总体积25μL。 The method of claim 1, wherein the reaction system of the second round of PCR amplification in step (d) is: 10×buffer 2.5 μL, 2.5mM dNTPs 1.6 μL, and the first round of amplification is recovered 15ng of product, 1μL of 10μM upstream primer, 1μL of 10μM downstream primer, 0.1μL of Ex Taq, and ddH 2 O to make up the total volume to 25μL.
  5. 如权利要求1所述的方法,其特征在于,步骤(d)所述的第二轮PCR扩增,其反应程序为:94℃ 4min,98℃ 10s,59℃ 40s,72℃ 50s,72℃ 10min,扩增循环15次。The method of claim 1, characterized in that the reaction program of the second round of PCR amplification in step (d) is: 94°C 4min, 98°C 10s, 59°C 40s, 72°C 50s, 72°C 10 min, amplification cycle 15 times.
  6. 如权利要求1所述的方法,其特征在于,步骤(e)所述的第三轮PCR扩增,其反应体系为:10×buffer 2.5μL,2.5mM dNTPs 1.6μL,第二轮扩增回收产物15 ng,10μM上游引物1μL,10μM下游引物1μL,Ex Taq 0.1μL,ddH 2O补足至总体积25μL。 The method of claim 1, wherein the reaction system of the third round of PCR amplification in step (e) is: 10× buffer 2.5 μL, 2.5mM dNTPs 1.6 μL, and the second round of amplification is recovered 15 ng of product, 1 μL of 10 μM upstream primer, 1 μL of 10 μM downstream primer, 0.1 μL of Ex Taq, and ddH 2 O to make up the total volume to 25 μL.
  7. 如权利要求1所述的方法,其特征在于,步骤(e)所述的第三轮PCR扩增,其反应程序为:94℃ 4min,98℃ 10s,59℃ 40s,72℃ 50s,72℃ 10min,扩增循环15次。The method according to claim 1, characterized in that the reaction program of the third round of PCR amplification in step (e) is: 94°C 4min, 98°C 10s, 59°C 40s, 72°C 50s, 72°C 10 min, amplification cycle 15 times.
  8. 如权利要求1所述的方法,其特征在于,步骤(h)中还包括:取阳性克隆,进行噬菌粒测序并分析序列多样性。The method of claim 1, wherein step (h) further includes: obtaining positive clones, performing phagemid sequencing and analyzing sequence diversity.
  9. 如权利要求1所述的方法,其特征在于,步骤(i)中还包括:The method of claim 1, wherein step (i) further includes:
    (i1)宿主菌TG1活化;(i1) Activation of host bacterial TG1;
    (i2)磁珠洗涤及封闭;(i2) Magnetic beads washing and blocking;
    (i3)抗原结合;(i3) Antigen binding;
    (i4)库封闭;(i4) Library closed;
    (i5)噬菌体结合;(i5) Phage binding;
    (i6)洗涤;(i6) Washing;
    (i7)洗脱;(i7) Elution;
    (i8)测滴度;(i8) Measure titer;
    (i9)噬菌体扩增;(i9) Phage amplification;
    (i10)噬菌体沉淀;(i10) Phage precipitation;
    (i11)重复步骤(i2)~(i10)两或三次,获得结合力强的噬菌体展示抗体。(i11) Repeat steps (i2) to (i10) two or three times to obtain phage display antibodies with strong binding capacity.
  10. 一种双特异抗体的噬菌体展示库,其特征在于,所述双特异抗体的噬菌体展示库是用如权利要求1~9中任一项所述的方法构建的。A phage display library of bispecific antibodies, characterized in that the phage display library of bispecific antibodies is constructed using the method as described in any one of claims 1 to 9.
  11. 如权利要求10所述的噬菌体展示库,其特征在于,所述文库的阳性率为≥80%,较佳地,≥90%。The phage display library according to claim 10, wherein the positive rate of the library is ≥80%, preferably, ≥90%.
  12. 如权利要求10所述的噬菌体展示库,其特征在于,所述文库的抗体序列多样性为≥90%,较佳地,≥95%。The phage display library of claim 10, wherein the antibody sequence diversity of the library is ≥90%, preferably, ≥95%.
  13. 如权利要求10所述的噬菌体展示库,其特征在于,所述文库的库容为≥1×10 8pfu,较佳地,≥5×10 8pfu。 The phage display library according to claim 10, wherein the library has a library capacity of ≥1×10 8 pfu, preferably ≥5×10 8 pfu.
  14. 一种淘选双特异抗体的方法,其特征在于,包括步骤:A method for panning bispecific antibodies, characterized by comprising the steps:
    (S1)提供权利要求10所述的双特异抗体的噬菌体展示库;(S1) providing a phage display library of the bispecific antibody according to claim 10;
    (S2)利用抗原A1和抗原A2,对所述抗体文库进行淘选,从而获得针对抗原A1和抗原A2的双特异抗体。(S2) Use the antigen A1 and the antigen A2 to pan the antibody library to obtain bispecific antibodies against the antigen A1 and the antigen A2.
  15. 如权利要求14所述的方法,其特征在于,在步骤(S2)中,包括以下子步骤:The method according to claim 14, characterized in that, in step (S2), it includes the following sub-steps:
    (S2a)在第一轮抗体文库淘选时,将两种抗原(A1和A2)同时加入,(S2a) In the first round of antibody library panning, two antigens (A1 and A2) are added at the same time.
    (S2b)在第二轮筛选过程中,只用单个抗原A1进行筛选;(S2b) In the second round of screening, only a single antigen A1 was used for screening;
    (S2c)在第三轮筛选过程中,只用单个抗原A2进行筛选;(S2c) In the third round of screening, only a single antigen A2 was used for screening;
    (即两个抗原A1和A2在这二轮中被交替使用,进行筛选)。由于在第二、三轮筛选过程中,每轮只用单个抗原进行筛选且两个抗原交替使用,这样可以把只结合一个抗原的抗体筛除,所有同时结合两个抗原的抗体全部保留。(That is, the two antigens A1 and A2 are used alternately in these two rounds for screening). Since in the second and third rounds of screening, only a single antigen is used for screening in each round and the two antigens are used alternately, antibodies that only bind to one antigen can be screened out, and all antibodies that bind to both antigens at the same time are retained.
  16. 如权利要求14所述的方法,其特征在于,所述方法还包括:The method of claim 14, further comprising:
    (S3)对于上一步骤获得的双特异性抗体,通过ELISA检测其与抗原A1和抗原A2的结合性能。(S3) For the bispecific antibody obtained in the previous step, detect its binding performance to antigen A1 and antigen A2 through ELISA.
  17. 一种引物集,所述引物集包括序列如SEQ ID No:1~188所示的引物。A primer set, the primer set includes primers with sequences as shown in SEQ ID Nos: 1 to 188.
PCT/CN2022/108616 2022-07-06 2022-07-28 Phage display library panning method for obtaining bispecific antibody WO2024007384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210797823.6A CN117363606A (en) 2022-07-06 2022-07-06 Phage display library panning method for obtaining bispecific antibody
CN202210797823.6 2022-07-06

Publications (1)

Publication Number Publication Date
WO2024007384A1 true WO2024007384A1 (en) 2024-01-11

Family

ID=89397146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108616 WO2024007384A1 (en) 2022-07-06 2022-07-28 Phage display library panning method for obtaining bispecific antibody

Country Status (2)

Country Link
CN (1) CN117363606A (en)
WO (1) WO2024007384A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978713A (en) * 2012-11-23 2013-03-20 浙江大学 Leukemia single-chain antibody library, as well as construction method and application thereof
CN108586613A (en) * 2018-05-08 2018-09-28 济南泰和医药科技有限公司 The human antibody of targeting CD19 and its preparation and application
US20200308256A1 (en) * 2016-06-26 2020-10-01 Gennova Biopharmaceuticals Limited Antibody phage display library

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978713A (en) * 2012-11-23 2013-03-20 浙江大学 Leukemia single-chain antibody library, as well as construction method and application thereof
US20200308256A1 (en) * 2016-06-26 2020-10-01 Gennova Biopharmaceuticals Limited Antibody phage display library
CN108586613A (en) * 2018-05-08 2018-09-28 济南泰和医药科技有限公司 The human antibody of targeting CD19 and its preparation and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEDSGAARD LINE, LJUNGARS ANNE, RIMBAULT CHARLOTTE, SØRENSEN CHRISTOFFER V., TULIKA TULIKA, WADE JACK, WOUTERS YESSICA, MCCAFFERTY : "Advances in antibody phage display technology", DRUG DISCOVERY TODAY, ELSEVIER, AMSTERDAM, NL, vol. 27, no. 8, 1 August 2022 (2022-08-01), AMSTERDAM, NL , pages 2151 - 2169, XP093120169, ISSN: 1359-6446, DOI: 10.1016/j.drudis.2022.05.002 *
WANG JIALI, HE SI-QI; KANG ZI-XI; WANG JIAN-XUN: "Antibody Phage Display Technology and Its Application in the Discovery of Anti-SARS-CoV-2 Antibodies", BIOTECHNOLOGY BULLETIN = SHENGWU JISHU TONGBAO, BEIJING, vol. 38, no. 5, 1 May 2022 (2022-05-01), Beijing, pages 248 - 256, XP093124514, ISSN: 1002-5464, DOI: 10.13560/j.cnki.biotech.bull.1985.2021-0862 *

Also Published As

Publication number Publication date
CN117363606A (en) 2024-01-09

Similar Documents

Publication Publication Date Title
Smith et al. [15] Libraries of peptides and proteins displayed on filamentous phage
JP3344584B2 (en) Recombinant library screening method
Yau et al. Emerging trends in the synthesis and improvement of hapten-specific recombinant antibodies
US20020146827A1 (en) Modulation of polypeptide display on modified filamentous phage
CN109970858B (en) CD22 single domain antibody, nucleotide sequence and kit
AU2005291012B2 (en) Methods for antibody library screening
EP2970952B1 (en) An integrated system for library construction, affinity binder screening and expression thereof
JP7411016B2 (en) Discovering the immune repertoire
CN110003336B (en) PD-1 single domain antibody, nucleotide sequence and kit
EP0742821B1 (en) Method for preparing a multicombinatorial library of antibody gene expression vectors
ES2268907T3 (en) METHODS FOR THE PREPARATION OF NUCLEIC ACIDS AND POLYPEPTIDES THROUGH THE IN VIVO RECOMBINATION, AND USE OF THE SAME.
Crameri pJuFo: a phage surface display system for cloning genes based on protein-ligand interaction
WO2024007384A1 (en) Phage display library panning method for obtaining bispecific antibody
WO2020216191A1 (en) Method for preparing phage library
CN106632670A (en) Swine-derived single-chain antibody capable of resisting swine transmissible gastroenteritis viruses and preparation method of swine-derived single-chain antibody
CN113150122B (en) Preparation method of high-throughput whole rabbit source monoclonal antibody
JP4729043B2 (en) Methods for screening antibody libraries
CN114085289B (en) Construction method and application of semisynthetic single-domain antibody library
Di Niro et al. Profiling the autoantibody repertoire by screening phage-displayed human cDNA libraries
EP3717682A1 (en) An antibody fragment library, and uses thereof
CN113403286B (en) Targeting three-display phage and preparation method and application thereof
CN117364253A (en) Fully human single domain antibody phage display antibody library and construction method thereof
CN116790521A (en) CEA protein capable of recognizing tumor surface, recombinant phage for expressing EGFP protein, construction and application thereof
Smith The phage nanoparticle toolkit
JPH0856677A (en) Conglomerate of phagemid,conglomerate of escherichia coli cell having phagemid,phagemid produced from aforesaid conglomerate,conglomerate of phagemid particle,method of separating conglomerate of phagemid particle and ligand protein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949962

Country of ref document: EP

Kind code of ref document: A1