WO2024007273A1 - 峰值数据速率的确定方法及装置 - Google Patents

峰值数据速率的确定方法及装置 Download PDF

Info

Publication number
WO2024007273A1
WO2024007273A1 PCT/CN2022/104476 CN2022104476W WO2024007273A1 WO 2024007273 A1 WO2024007273 A1 WO 2024007273A1 CN 2022104476 W CN2022104476 W CN 2022104476W WO 2024007273 A1 WO2024007273 A1 WO 2024007273A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
eredcap
data rate
downlink
uplink
Prior art date
Application number
PCT/CN2022/104476
Other languages
English (en)
French (fr)
Inventor
乔雪梅
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280002484.6A priority Critical patent/CN115315983A/zh
Priority to PCT/CN2022/104476 priority patent/WO2024007273A1/zh
Publication of WO2024007273A1 publication Critical patent/WO2024007273A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the field of communication technology, and in particular to a method and device for determining a peak data rate.
  • This application proposes a method and device for determining the peak data rate, providing an effective solution for determining the peak data rate for eRedCap terminals to meet the need for further restrictions on TBS.
  • the first aspect embodiment of the present application provides a method for determining the peak data rate, which is applied to the eRedCap terminal side or applied to the base station side, including: obtaining the maximum uplink transmission block size TBS supported by the eRedCap terminal, and the The maximum downlink TBS supported by the eRedCap terminal; determine the uplink supported by the eRedCap terminal based on the maximum uplink TBS, the duration of the time slot and the maximum number of uplink transmission block TBs supported by the eRedCap terminal in the time slot.
  • the peak data rate of data rate is applied to the eRedCap terminal side or applied to the base station side, including: obtaining the maximum uplink transmission block size TBS supported by the eRedCap terminal, and the The maximum downlink TBS supported by the eRedCap terminal; determine the uplink supported by the eRedCap terminal based on the maximum uplink TBS, the duration of the time slot and the maximum number of uplink transmission block TBs supported by the eRedCap
  • the uplink number supported by the eRedCap terminal is determined based on the maximum uplink TBS, the duration of the time slot, and the maximum number of uplink TBs supported by the eRedCap terminal in the time slot.
  • the peak data rate includes: multiplying the maximum uplink TBS by the maximum number of uplink TBs, and then dividing by the duration of the time slot to obtain the uplink peak data rate supported by the eRedCap terminal.
  • the determination of the number of downlink TBs supported by the eRedCap terminal is based on the maximum downlink TBS, the duration of the time slot and the maximum number of downlink TBs supported by the eRedCap terminal in the time slot.
  • the downlink peak data rate includes: multiplying the maximum downlink TBS by the maximum downlink TB number, and then dividing by the duration of the time slot to obtain the downlink peak data rate supported by the eRedCap terminal.
  • the method further includes: if according to the If the uplink TBS determined by the scheduling information of the eRedCap terminal downlink control information DCI is greater than the maximum uplink TBS, the eRedCap terminal is restricted from processing the physical uplink shared channel PUSCH or from processing all PUSCHs in the time slot; or, restricting The base station does not perform corresponding scheduling; if the downlink TBS determined according to the scheduling information of the eRedCap terminal downlink control information DCI is greater than the maximum downlink TBS, the eRedCap terminal is restricted from processing the physical downlink shared channel PDSCH or not. Processing of all PDSCHs in the time slot; or, restricting the base station from performing corresponding scheduling.
  • the method further includes: if according to the formula If the determined uplink data rate is greater than the uplink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing PUSCH in the time slot, or the base station is restricted from performing corresponding scheduling, where M' is time The number of TBs for uplink transmission in the slot, m' is the m-th TB for uplink transmission, V m' is the TBS of the m-th TB for uplink transmission, and T slot is the duration of the time slot.
  • the determination of the number of downlink TBs supported by the eRedCap terminal is based on the maximum downlink TBS, the duration of the time slot and the maximum number of downlink TBs supported by the eRedCap terminal in the time slot.
  • the method further includes: if according to the formula If the determined downlink data rate is greater than the downlink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing the PDSCH in the time slot, or the base station is restricted from performing corresponding scheduling, where M" is time The number of TBs for downlink transmission in the slot, m" is the m-th TB for downlink transmission, V m" is the TBS of the m-th TB for downlink transmission, and T slot is the duration of the time slot.
  • the second aspect embodiment of the present application provides a method for determining the peak data rate, which is applied to the eRedCap terminal side or applied to the base station side, including: obtaining the first scaling coefficient of the physical uplink shared channel PUSCH and the physical downlink shared channel The second scaling coefficient of PDSCH, wherein the first scaling coefficient and the second scaling coefficient are both greater than 0 and less than 1; according to the uplink peak data rate supported by the legacy terminal and the first scaling coefficient, Determine an uplink peak data rate supported by the eRedCap terminal; and determine a downlink peak data rate supported by the eRedCap terminal based on the downlink peak data rate supported by the traditional terminal and the second scaling factor.
  • determining the uplink peak data rate supported by the eRedCap terminal based on the uplink peak data rate supported by the traditional terminal and the first scaling factor includes: The uplink peak data rate supported by the traditional terminal is multiplied by the first scaling factor to obtain the uplink peak data rate supported by the eRedCap terminal.
  • determining the peak data rate of the eRedCap terminal data downlink based on the peak data rate of the traditional terminal data downlink and the second scaling factor includes: The supported downlink peak data rate is multiplied by the second scaling factor to obtain the downlink peak data rate supported by the eRedCap terminal.
  • the method further Including: If according to the formula If the determined uplink data rate is greater than the uplink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing PUSCH in the time slot, or the base station is restricted from performing corresponding scheduling, where M' is time The number of TBs for uplink transmission in the slot, m' is the m-th TB for uplink transmission, V m' is the TBS of the m-th TB for uplink transmission, and T slot is the duration of the time slot.
  • the method further Including: If according to the formula If the determined downlink data rate is greater than the downlink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing the PDSCH in the time slot, or the base station is restricted from performing corresponding scheduling, where M" is time The number of TBs for downlink transmission in the slot, m" is the m-th TB for downlink transmission, V m" is the TBS of the m-th TB for downlink transmission, and T slot is the duration of the time slot.
  • the maximum uplink TBS supported by the eRedCap terminal is the maximum uplink TBS supported by the traditional terminal multiplied by the first scaling factor, and the maximum downlink TBS supported by the eRedCap terminal The maximum downlink TBS supported by the legacy terminal is multiplied by the second scaling factor.
  • the third aspect embodiment of the present application provides a method for determining the peak data rate, which is applied to the eRedCap terminal side or applied to the base station side, including: obtaining the peak value of the uplink supported by the eRedCap terminal when the capability specified in the communication protocol is reduced.
  • the data rate is used as the uplink peak data rate supported by the eRedCap terminal; and, the downlink peak data rate supported by the eRedCap terminal specified in the communication protocol is obtained as the downlink peak data supported by the eRedCap terminal. rate.
  • the method further includes: If according to the formula If the determined uplink data rate is greater than the uplink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing PUSCH in the time slot, or the base station is restricted from performing corresponding scheduling, where M' is time The number of TBs for uplink transmission in the slot, m' is the m-th TB for uplink transmission, V m' is the TBS of the m-th TB for uplink transmission, and T slot is the duration of the time slot.
  • the method further Including: If according to the formula If the determined downlink data rate is greater than the downlink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing the PDSCH in the time slot, or the base station is restricted from performing corresponding scheduling, where M" is time The number of TBs for downlink transmission in the slot, m" is the m-th TB for downlink transmission, V m" is the TBS of the m-th TB for downlink transmission, and T slot is the duration of the time slot.
  • the fourth aspect embodiment of the present application provides a device for determining the peak data rate, which is applied to the eRedCap terminal side or to the base station side, including: a first acquisition module, used to obtain the maximum uplink transmission block size supported by the eRedCap terminal. TBS, and the maximum downlink TBS supported by the eRedCap terminal; a first determination module configured to determine the maximum uplink TBS based on the maximum uplink TBS, the duration of the time slot, and the maximum uplink transmission block TB supported by the eRedCap terminal in the time slot.
  • the uplink peak data rate supported by the eRedCap terminal determines the uplink peak data rate supported by the eRedCap terminal; and, based on the maximum downlink TBS, the duration of the time slot and the maximum number of downlink TBs supported by the eRedCap terminal in the time slot , determine the downlink peak data rate supported by the eRedCap terminal.
  • the fifth aspect embodiment of the present application provides a device for determining the peak data rate, which is applied to the eRedCap terminal side or to the base station side, including: a second acquisition module for acquiring the first scaling coefficient of the physical uplink shared channel PUSCH and a second scaling coefficient of the physical downlink shared channel PDSCH, wherein the first scaling coefficient and the second scaling coefficient are both greater than 0 and less than 1; a second determination module, configured to determine the The peak data rate of the uplink supported by the eRedCap terminal and the first scaling factor are determined; and the peak data rate of the downlink supported by the traditional terminal is determined according to the peak data rate of the downlink and the second scaling factor.
  • the downlink peak data rate supported by the eRedCap terminal including: a second acquisition module for acquiring the first scaling coefficient of the physical uplink shared channel PUSCH and a second scaling coefficient of the physical downlink shared channel PDSCH, wherein the first scaling coefficient and the second scaling coefficient are both greater than 0 and less than 1; a second determination module
  • the sixth aspect embodiment of the present application provides a device for determining the peak data rate, applied to the eRedCap terminal side or applied to the base station side, including: a third acquisition module, used to obtain the eRedCap terminal's ability to degrade specified in the communication protocol.
  • the supported uplink peak data rate is used as the uplink peak data rate supported by the eRedCap terminal; and, the downlink peak data rate supported by the eRedCap terminal specified in the communication protocol is obtained as the downlink peak data rate supported by the eRedCap terminal.
  • the peak downstream data rate is used to obtain the eRedCap terminal's ability to degrade specified in the communication protocol.
  • the seventh aspect embodiment of the present application provides a communication device, which is applied to the eRedCap terminal side or the base station side.
  • the communication device includes: a transceiver; a memory; a processor, which is connected to the transceiver and the memory respectively, and is configured to pass
  • the computer-executable instructions on the memory are executed to control the wireless signal transmission and reception of the transceiver, and can implement the method as in the first aspect embodiment or the second aspect embodiment or the third aspect embodiment of the present application.
  • the eighth aspect embodiment of the present application provides a computer storage medium, which is applied to the eRedCap terminal side or the base station side, wherein the computer storage medium stores computer executable instructions; after the computer executable instructions are executed by the processor, Implement the method as in the first aspect embodiment or the second aspect embodiment or the third aspect embodiment of the present application.
  • Embodiments of the present application provide a method and device for determining the peak data rate, which can determine the peak data rate for an eRedCap terminal to meet the need for TBS to be further restricted, thereby ensuring that all TBS of an eRedCap terminal scheduled by a base station in a slot
  • the ratio of the sum to the slotduration of the time slot needs to be within the constraints of the newly determined peak data rate to ensure the normal operation of the communication service of the eRedCap terminal.
  • Figure 1 is a schematic flowchart of a method for determining a peak data rate according to an embodiment of the present application
  • Figure 2 is a schematic flowchart of a method for determining a peak data rate according to an embodiment of the present application
  • Figure 3 is a schematic flowchart of a method for determining a peak data rate according to an embodiment of the present application
  • Figure 4 is a schematic flowchart of a method for determining a peak data rate according to an embodiment of the present application
  • Figure 5 is a schematic flowchart of a method for determining a peak data rate according to an embodiment of the present application
  • Figure 6 is a schematic flowchart of a method for determining a peak data rate according to an embodiment of the present application
  • Figure 7 is a schematic flowchart of a method for determining a peak data rate according to an embodiment of the present application
  • Figure 8 is a schematic flowchart of a method for determining a peak data rate according to an embodiment of the present application
  • Figure 9 is a block diagram of a device for determining a peak data rate according to an embodiment of the present application.
  • Figure 10 is a block diagram of a device for determining a peak data rate according to an embodiment of the present application.
  • Figure 11 is a block diagram of a device for determining a peak data rate according to an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or "when” or "in response to determining.”
  • PUSCH Physical Uplink Shared Channel
  • PUSCH is used for the scheduled transmission of uplink data and can carry control information, user service information, broadcast service information, etc.
  • PDSCH Physical Downlink Shared Channel
  • PDSCH is used to carry data from the transmission downlink shared channel (Downlink Shared Channel, DSCH).
  • DSCH Downlink Shared Channel
  • the 3rd Generation Partnership Project (3GPP) established a special standards project in the communication protocol version 17 (release17, Rel-17) stage to analyze and optimize the functional characteristics of existing 5G terminals and networks to implement 5G IoT terminals access the 5G core network through 5G New Radio (NR).
  • 3GPP proposed NR equipment that supports reduced capability (Reduced Capability), also known as RedCap terminal.
  • RedCap terminal equipment Compared with traditional enhanced mobile broadband (eMBB) equipment and ultra-reliable and low latency communication (URLLC) equipment, RedCap terminal equipment has lower cost, lower complexity, and more compact size , performance and other advantages.
  • the eRedCap terminal is based on the RedCap terminal, further reducing terminal costs to support lower-speed 5G IoT terminals using NR technology.
  • this embodiment proposes a method and device for determining the peak data rate, providing an effective solution for determining the peak data rate for eRedCap terminals to meet the need for further restrictions on TBS.
  • Figure 1 shows a schematic flowchart of one of the peak data rate determination methods according to an embodiment of the present application. It can be applied to the eRedCap terminal side or the base station side. As shown in Figure 1, it can include the following steps.
  • Step 101 Obtain the maximum uplink TBS supported by the eRedCap terminal, and obtain the maximum downlink TBS supported by the eRedCap terminal.
  • the maximum uplink TBS and maximum downlink TBS supported by the eRedCap terminal can be obtained from the communication protocol.
  • the maximum uplink TBS (transport block size) supported by the eRedCap terminal can be directly specified in the communication protocol as U bits (number of bits) ), and directly stipulates in the communication protocol that the maximum downlink TBS supported by the eRedCap terminal is D bits. These contents can be preset in the communication protocol.
  • Step 102 Determine the uplink peak data rate supported by the eRedCap terminal based on the maximum uplink TBS supported by the eRedCap terminal, the duration of a time slot, and the maximum number of uplink TBs supported by the eRedCap terminal in the time slot, and based on The maximum downlink TBS supported by the eRedCap terminal, the duration of a time slot, and the maximum number of downlink TBs supported by the eRedCap terminal in the time slot determine the peak downlink data rate supported by the eRedCap terminal.
  • the eRedCap terminal is calculated based on the maximum uplink TBS (U bits) supported by the eRedCap terminal, slot duration (duration of the time slot), and the maximum number of upstream TBs supported by the eRedCap terminal in one slot specified in the communication protocol.
  • the maximum number of downstream TBs supported is calculated by calculating the peak data rate of the downstream supported by the eRedCap terminal.
  • the maximum uplink TBS supported by the eRedCap terminal specified in the communication protocol, the duration of a time slot, and the maximum uplink TB supported by the eRedCap terminal in the time slot can be used
  • the number determines the uplink peak data rate supported by the eRedCap terminal, as well as the maximum downlink TBS supported by the eRedCap terminal specified in the communication protocol, the duration of a time slot and the maximum supported by the eRedCap terminal within the time slot.
  • the number of downstream TBs determines the peak downstream data rate supported by the eRedCap terminal.
  • the peak data rate can then be determined for eRedCap terminals to meet the needs of TBS being further restricted.
  • Figure 2 shows a schematic flowchart of one of the peak data rate determination methods according to an embodiment of the present application. Based on the embodiment shown in Figure 1, as shown in Figure 2, it can be applied to the eRedCap terminal side or to the base station side, and the method can include the following steps.
  • Step 201 Obtain the maximum uplink TBS supported by the eRedCap terminal, and obtain the maximum downlink TBS supported by the eRedCap terminal.
  • Step 202 Multiply the maximum uplink TBS supported by the eRedCap terminal by the maximum number of uplink TBs supported by the eRedCap terminal in one time slot, and then divide it by the duration of the time slot to obtain the uplink peak data supported by the eRedCap terminal. rate, and multiply the maximum downlink TBS supported by the eRedCap terminal by the maximum number of downlink TBs supported by the eRedCap terminal in a time slot, and then divide it by the duration of the time slot to obtain the downlink peak data supported by the eRedCap terminal. rate.
  • U is the maximum upstream TBS supported by the eRedCap terminal
  • M1 is the maximum number of upstream TBs that the eRedCap terminal transmits or can support transmission in one slot
  • T_slot is the duration in the slot.
  • D is the maximum downlink TBS supported by the eRedCap terminal
  • M2 is the maximum number of downlink TBs that the eRedCap terminal transmits or can support transmission in one slot
  • T_slot is the duration in the slot.
  • the maximum uplink TBS supported by the eRedCap terminal specified in the communication protocol can be multiplied by the maximum number of uplink TBs supported by the eRedCap terminal in one time slot, and then divided by The duration of the time slot is determined by the uplink peak data rate supported by the eRedCap terminal, and the maximum downlink TBS supported by the eRedCap terminal specified in the communication protocol multiplied by the maximum downlink TB supported by the eRedCap terminal in one time slot. number, and then divide it by the duration of the time slot to obtain the downlink peak data rate supported by the eRedCap terminal.
  • the peak data rate can then be determined for eRedCap terminals to meet the needs of TBS being further restricted.
  • Figure 3 shows a schematic flowchart of one of the peak data rate determination methods according to an embodiment of the present application. Based on the embodiment shown in Figure 1, as shown in Figure 3, it can be applied to the eRedCap terminal side or to the base station side, and the method can include the following steps.
  • Step 301 Obtain the maximum uplink TBS supported by the eRedCap terminal, and obtain the maximum downlink TBS supported by the eRedCap terminal.
  • this embodiment may also include: if determined based on the scheduling information of the eRedCap terminal downlink control information (DCI) If the uplink TBS is greater than the maximum uplink TBS supported by the eRedCap terminal specified in the communication protocol, the eRedCap terminal is restricted from processing the PUSCH (physical uplink shared channel) or from processing all PUSCHs in the time slot; or, the base station is restricted from processing Corresponding scheduling; if the downlink TBS determined according to the scheduling information of the eRedCap terminal DCI is greater than the maximum downlink TBS supported by the eRedCap terminal specified in the communication protocol, the eRedCap terminal is restricted from processing the PDSCH (physical downlink shared channel) or not Process all PDSCHs in the time slot; or restrict the base station from performing corresponding scheduling.
  • DCI downlink control information
  • the PUSCH will not be processed, or the PUSCH will not be processed. Process all PUSCHs in this slot.
  • the base station side if the uplink TBS determined according to the DCI scheduling information is greater than U bits, the base station is restricted from performing this scheduling.
  • the eRedCap terminal side if the downlink TBS determined by the eRedCap terminal based on the DCI scheduling information is greater than D bits (the maximum downlink TBS supported by the eRedCap terminal specified in the communication protocol), the PDSCH will not be processed, or All PDSCHs in this slot are not processed.
  • the base station side if the downlink TBS determined according to the DCI scheduling information is greater than D bits, the base station is restricted from performing this scheduling.
  • Step 302 Determine the uplink peak data rate supported by the eRedCap terminal based on the maximum uplink TBS supported by the eRedCap terminal, the duration of a time slot, and the maximum number of uplink TBs supported by the eRedCap terminal in the time slot, and based on The maximum downlink TBS supported by the eRedCap terminal, the duration of a time slot, and the maximum number of downlink TBs supported by the eRedCap terminal in the time slot determine the peak downlink data rate supported by the eRedCap terminal.
  • Step 303 If the uplink data rate determined according to Formula 3 is greater than the uplink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing PUSCH in the time slot, or the base station is restricted from performing corresponding scheduling; if according to the formula 4. If the determined downlink data rate is greater than the downlink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing the PDSCH in the time slot, or the base station is restricted from performing corresponding scheduling.
  • M' is the number of TBs for uplink transmission in the time slot
  • m' is the m-th TB for uplink transmission
  • V m' is the TBS of the m-th TB for uplink transmission
  • T slot is the duration of the time slot. duration.
  • M" is the number of TBs for downlink transmission in the time slot
  • m" is the m-th TB for downlink transmission
  • V m is the TBS of the m-th TB for downlink transmission
  • T slot is the duration of the time slot. duration.
  • the uplink data rate determined by the eRedCap terminal according to Formula 3 is greater than the uplink peak data rate supported by the eRedCap terminal calculated in step 302, PUSCH processing in the slot will not be performed; or in the base station
  • the uplink data rate determined according to Formula 3 is greater than the uplink peak data rate supported by the eRedCap terminal calculated in step 302, the base station is restricted from performing this scheduling. In this way, the maximum uplink TBS supported by the eRedCap terminal can be accurately limited based on the upstream peak data rate supported by the eRedCap terminal.
  • the PDSCH in the slot will not be processed; or in On the base station side, if the downlink data rate determined according to Formula 4 is greater than the downlink peak data rate supported by the eRedCap terminal calculated in step 302, the base station is restricted from performing this scheduling. In this way, the maximum downlink TBS supported by the eRedCap terminal can be accurately limited based on the downlink peak data rate supported by the eRedCap terminal.
  • the peak data rate can be determined for the eRedCap terminal to meet the need for TBS to be further restricted. If the uplink TBS determined based on the scheduling information of the eRedCap terminal DCI is greater than the maximum uplink TBS supported by the eRedCap terminal specified in the communication protocol, the eRedCap terminal is restricted from processing PUSCH or from processing all PUSCHs in the time slot; or, The base station is restricted from performing corresponding scheduling; if the downlink TBS determined based on the scheduling information of the eRedCap terminal DCI is greater than the maximum downlink TBS supported by the eRedCap terminal specified in the communication protocol, the eRedCap terminal is restricted from processing PDSCH or not performing time slots.
  • FIG. 4 is a schematic flowchart of a method for determining a peak data rate according to an embodiment of the present application. As shown in Figure 4, it can be applied to the eRedCap terminal side or the base station side. The method can include the following steps.
  • Step 401 Obtain the first scaling coefficient of the PUSCH channel and the second scaling coefficient of the PDSCH channel.
  • both the first scaling coefficient and the second scaling coefficient may be greater than 0 and less than 1.
  • the first scaling factor and the second scaling factor can be obtained through the communication protocol or determined by the terminal and reported to the base station.
  • the maximum uplink TBS supported by the eRedCap terminal specified in the communication protocol is the maximum uplink supported by the traditional terminal.
  • the TBS is multiplied by the first scaling factor
  • the maximum downlink TBS supported by the eRedCap terminal is the maximum downlink TBS supported by the legacy terminal multiplied by the second scaling factor.
  • the maximum uplink TBS supported by the eRedCap terminal is the maximum uplink TBS supported by the traditional terminal multiplied by a first scaling factor
  • the first scaling factor can be 1/A1, A1>1
  • the maximum downlink TBS supported by eRedCap terminals is the maximum downlink TBS supported by traditional terminals multiplied by a second scaling factor.
  • the second scaling factor can be 1/A2, A2>1.
  • the first scaling coefficient 1/A1 of PUSCH and the second scaling coefficient 1/A2 of PDSCH can be obtained.
  • the PDSCH channel and the PUSCH channel can have different scaling coefficients, that is, 1/A1 and 1/A2 can is different.
  • Step 402 Determine the uplink peak data rate supported by the eRedCap terminal based on the uplink peak data rate supported by the traditional terminal and the first scaling coefficient of the PUSCH channel, and determine the downlink peak data rate supported by the traditional terminal based on the PDSCH channel The second scaling factor determines the downlink peak data rate supported by the eRedCap terminal.
  • the uplink peak data rate supported by the eRedCap terminal based on the uplink peak data rate (peak data rate) supported by the traditional terminal (different from the eRedCap terminal) and the first scaling coefficient 1/A1 (A1>1) of the PUSCH channel. data rate, and determine the downlink peak data rate supported by the eRedCap terminal based on the downlink peak data rate supported by the traditional terminal and the second scaling coefficient 1/A2 (A2>1) of the PDSCH channel.
  • the uplink peak data rate supported by the eRedCap terminal can be determined based on the uplink peak data rate supported by the traditional terminal and the first scaling coefficient of the PUSCH channel.
  • the downlink peak data rate supported by the terminal and the second scaling coefficient of the PDSCH channel determine the downlink peak data rate supported by the eRedCap terminal.
  • the peak data rate can then be determined for eRedCap terminals to meet the needs of TBS being further restricted.
  • FIG. 5 is a schematic flowchart of a method for determining a peak data rate according to an embodiment of the present application. Based on the embodiment shown in Figure 4, as shown in Figure 5, it can be applied to the eRedCap terminal side or the base station side, and can include the following steps.
  • Step 501 Obtain the first scaling coefficient of the PUSCH channel and the second scaling coefficient of the PDSCH channel.
  • the first scaling coefficient and the second scaling coefficient are both greater than 0 and less than 1.
  • Step 502 Multiply the peak uplink data rate supported by the traditional terminal by the first scaling coefficient of the PUSCH channel to obtain the peak uplink data rate supported by the eRedCap terminal, and multiply the peak downlink data rate supported by the traditional terminal by The second scaling coefficient of the PDSCH channel is used to obtain the downlink peak data rate supported by the eRedCap terminal.
  • the uplink peak data rate supported by the traditional terminal can be multiplied by the first scaling coefficient of the PUSCH channel to obtain the uplink peak data rate supported by the eRedCap terminal, and the uplink peak data rate supported by the traditional terminal can be obtained.
  • the downlink peak data rate is multiplied by the second scaling factor of the PDSCH channel to obtain the downlink peak data rate supported by the eRedCap terminal.
  • the peak data rate can then be determined for eRedCap terminals to meet the needs of TBS being further restricted.
  • Figure 6 shows a schematic flowchart of one of the peak data rate determination methods according to an embodiment of the present application. Based on the embodiment shown in Figure 4, as shown in Figure 6, it can be applied to the eRedCap terminal side or to the base station side. The method can include the following steps.
  • Step 601 Obtain the first scaling coefficient of the PUSCH channel and the second scaling coefficient of the PDSCH channel.
  • both the first scaling coefficient and the second scaling coefficient may be greater than 0 and less than 1.
  • Step 602 Determine the uplink peak data rate supported by the eRedCap terminal based on the uplink peak data rate supported by the traditional terminal and the first scaling coefficient of the PUSCH channel, and determine the downlink peak data rate supported by the traditional terminal based on the PDSCH channel The second scaling factor determines the downlink peak data rate supported by the eRedCap terminal.
  • Step 603 If the uplink data rate determined according to Formula 3 is greater than the uplink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing PUSCH in the time slot, or the base station is restricted from performing corresponding scheduling; if according to the formula 4. If the determined downlink data rate is greater than the downlink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing the PDSCH in the time slot, or the base station is restricted from performing corresponding scheduling.
  • the uplink data rate determined by the eRedCap terminal if the uplink data rate determined by the eRedCap terminal according to Formula 3 is greater than the uplink peak data rate supported by the eRedCap terminal calculated in step 602, PUSCH processing in the slot will not be performed. Or on the base station side, if the uplink data rate determined according to Formula 3 is greater than the uplink peak data rate supported by the eRedCap terminal calculated in step 602, the base station is restricted from performing this scheduling. In this way, the maximum uplink TBS supported by the eRedCap terminal can be accurately limited based on the upstream peak data rate supported by the eRedCap terminal.
  • the eRedCap terminal if the downlink data rate determined by the eRedCap terminal according to Formula 4 is greater than the downlink peak data rate supported by the eRedCap terminal calculated in step 602, the PDSCH in the slot will not be processed. Or on the base station side, if the downlink data rate determined according to Formula 4 is greater than the downlink peak data rate supported by the eRedCap terminal calculated in step 602, the base station is restricted from performing this scheduling. In this way, the maximum downlink TBS supported by the eRedCap terminal can be accurately limited based on the downlink peak data rate supported by the eRedCap terminal.
  • the peak data rate can be determined for the eRedCap terminal to meet the need for TBS to be further restricted. It can also accurately limit the maximum uplink TBS supported by the eRedCap terminal based on the peak uplink data rate supported by the eRedCap terminal, and accurately limit the maximum downstream TBS supported by the eRedCap terminal based on the peak downlink data rate supported by the eRedCap terminal. , thereby ensuring the normal operation of the communication service of the eRedCap terminal.
  • Figure 7 shows a schematic flowchart of one of the peak data rate determination methods according to an embodiment of the present application. As shown in Figure 7, it can be applied to the eRedCap terminal side or the base station side, and may include the following steps.
  • Step 701 Obtain the uplink peak data rate supported by the eRedCap terminal specified in the communication protocol, as the uplink peak data rate supported by the eRedCap terminal, and obtain the downlink peak data rate supported by the eRedCap terminal specified in the communication protocol, As the downlink peak data rate supported by the eRedCap terminal.
  • the specific value of the peak data rate of the eRedCap terminal can be directly specified in the communication protocol, and different values can be set for the upstream and downstream. Then the upstream peak data rate supported by the eRedCap terminal specified in the communication protocol can be obtained as the upstream peak data rate supported by the eRedCap terminal, and the downlink peak data rate supported by the eRedCap terminal specified in the communication protocol can be obtained as The downstream peak data rate supported by eRedCap terminal.
  • the uplink peak data rate supported by the eRedCap terminal specified in the communication protocol can be obtained as the uplink peak data rate supported by the eRedCap terminal, and the uplink peak data rate specified in the communication protocol can be obtained
  • the peak downlink data rate supported by the eRedCap terminal is used as the peak downlink data rate supported by the eRedCap terminal.
  • the peak data rate can then be determined for eRedCap terminals to meet the needs of TBS being further restricted.
  • Figure 8 shows a schematic flowchart of one of the peak data rate determination methods according to an embodiment of the present application. Based on the embodiment shown in Figure 7, as shown in Figure 8, it can be applied to the eRedCap terminal side or to the base station side, and the method can include the following steps.
  • Step 801 Obtain the uplink peak data rate supported by the eRedCap terminal specified in the communication protocol as the uplink peak data rate supported by the eRedCap terminal, and obtain the downlink peak data rate supported by the eRedCap terminal specified in the communication protocol.
  • the peak data rate is the downlink peak data rate supported by the eRedCap terminal.
  • Step 802 If the uplink data rate determined according to Formula 3 is greater than the uplink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing PUSCH in the time slot, or the base station is restricted from performing corresponding scheduling; if according to the formula 4. If the determined downlink data rate is greater than the downlink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing the PDSCH in the time slot, or the base station is restricted from performing corresponding scheduling.
  • the uplink data rate determined by the eRedCap terminal according to Formula 3 is greater than the uplink peak data rate supported by the eRedCap terminal calculated in step 801, PUSCH processing in the slot will not be performed.
  • the base station side if the uplink data rate determined according to Formula 3 is greater than the uplink peak data rate supported by the eRedCap terminal calculated in step 801, the base station is restricted from performing this scheduling. In this way, the maximum uplink TBS supported by the eRedCap terminal can be accurately limited based on the upstream peak data rate supported by the eRedCap terminal.
  • the PDSCH in the slot will not be processed.
  • the base station side if the downlink data rate determined according to Formula 4 is greater than the downlink peak data rate supported by the eRedCap terminal calculated in step 801, the base station is restricted from performing this scheduling. In this way, the maximum downlink TBS supported by the eRedCap terminal can be accurately limited based on the downlink peak data rate supported by the eRedCap terminal.
  • the peak data rate can be determined for the eRedCap terminal to meet the need for further restrictions on TBS. It can also accurately limit the maximum uplink TBS supported by the eRedCap terminal based on the peak uplink data rate supported by the eRedCap terminal, and accurately limit the maximum downstream TBS supported by the eRedCap terminal based on the peak downlink data rate supported by the eRedCap terminal. , thereby ensuring the normal operation of the communication service of the eRedCap terminal.
  • the above methods shown in Figures 1 to 3 are to determine the uplink TBS supported by the eRedCap terminal based on the maximum uplink TBS supported by the eRedCap terminal, the duration of the time slot, and the maximum number of uplink TBs supported by the eRedCap terminal in the time slot.
  • the peak data rate, and the peak downlink data rate supported by the eRedCap terminal can be determined based on the maximum downlink TBS supported by the eRedCap terminal, the duration of the time slot, and the maximum number of downlink TBs supported by the eRedCap terminal in the time slot.
  • the above methods shown in Figures 4 to 6 are to determine the uplink peak data supported by the eRedCap terminal based on the uplink peak data rate supported by the traditional terminal and the first scaling coefficient 1/A1 (A1>1) of the PUSCH channel. rate, and determine the downlink peak data rate supported by the eRedCap terminal based on the downlink peak data rate supported by the traditional terminal and the second scaling factor 1/A2 (A2>1) of the PDSCH channel.
  • the above method shown in Figures 7 to 8 is to obtain the uplink peak data rate supported by the eRedCap terminal specified in the communication protocol, as the uplink peak data rate supported by the eRedCap terminal, and to obtain the eRedCap terminal specified in the communication protocol.
  • the supported downlink peak data rate is used as the downlink peak data rate supported by the eRedCap terminal.
  • the above methods can also be comprehensively analyzed according to actual needs in actual use, and then determine the peak data rate of the eRedCap terminal.
  • the corresponding priorities are pre-configured, and then based on the priorities, the peak data rate of the eRedCap terminal is obtained by selecting the determination method with the highest priority; for another example, the peak data rate obtained by these determination methods can also be calculated by weighted average calculation. The results are calculated as a weighted average, and then the peak data rate of the eRedCap terminal is determined.
  • network equipment and user equipment may include hardware structures and software modules to implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • the present application also provides a peak data rate determination device, because the peak data rate determination device provided by the embodiments of the present application is consistent with the peak data rate determination method provided by the above embodiments.
  • the implementation of the method for determining the peak data rate is also applicable to the device for determining the peak data rate provided in this embodiment, and will not be described in detail in this embodiment.
  • Figure 9 is a schematic structural diagram of one of the peak data rate determination devices provided by the embodiment of the present application, which can be applied to the eRedCap terminal side or the base station side.
  • the device can include: a first acquisition module 910 , used to obtain the maximum uplink transmission block size TBS supported by the eRedCap terminal, and the maximum downlink TBS supported by the eRedCap terminal; the first determination module 920 is used to obtain the maximum uplink TBS, the duration of the time slot and the time slot of the eRedCap terminal.
  • the maximum number of uplink transmission block TBs supported in the time slot determines the uplink peak data rate supported by the eRedCap terminal; and, based on the maximum downlink TBS, the duration of the time slot and the maximum number of downlink TBs supported by the eRedCap terminal in the time slot number to determine the peak downlink data rate supported by the eRedCap terminal.
  • the first determination module 920 is specifically configured to multiply the maximum uplink TBS by the maximum number of uplink TBs, and then divide it by the duration of the time slot to obtain the uplink peak data rate supported by the eRedCap terminal.
  • the first determination module 920 is specifically configured to multiply the maximum downlink TBS by the maximum number of downlink TBs, and then divide it by the duration of the time slot to obtain the downlink peak data rate supported by the eRedCap terminal.
  • the first determination module 920 is also configured to, after obtaining the maximum uplink TBS supported by the eRedCap terminal and the maximum downlink TBS supported by the eRedCap terminal, if determined according to the scheduling information of the eRedCap terminal downlink control information DCI
  • the uplink TBS is greater than the maximum uplink TBS, then the eRedCap terminal is restricted from processing the physical uplink shared channel PUSCH or from processing all PUSCH in the time slot; or the base station is restricted from performing corresponding scheduling; if the eRedCap terminal downlink control information DCI If the downlink TBS determined by the scheduling information is greater than the maximum downlink TBS, the eRedCap terminal is restricted from processing the physical downlink shared channel PDSCH or from processing all PDSCHs in the time slot; or the base station is restricted from performing corresponding scheduling.
  • the first determination module 920 is also used to determine the uplink supported by the eRedCap terminal based on the maximum uplink TBS, the duration of the time slot, and the maximum number of uplink TBs supported by the eRedCap terminal in the time slot. After the peak data rate, if according to the formula If the determined uplink data rate is greater than the uplink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing PUSCH within the time slot, or the base station is restricted from performing corresponding scheduling, where M' is the uplink transmission within the time slot.
  • the number of TBs, m' is the m-th TB of uplink transmission
  • V m' is the TBS of the m-th TB of uplink transmission
  • T slot is the duration of the time slot.
  • the first determination module 920 is also used to determine the downlink supported by the eRedCap terminal based on the maximum downlink TBS, the duration of the time slot, and the maximum number of downlink TBs supported by the eRedCap terminal in the time slot. After the peak data rate, if according to the formula If the determined downlink data rate is greater than the downlink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing the PDSCH within the time slot, or the base station is restricted from performing corresponding scheduling, where M" is the downlink transmission within the time slot.
  • the number of TBs, m" is the m-th TB of downlink transmission
  • V m" is the TBS of the m-th TB of downlink transmission
  • T slot is the duration of the time slot.
  • the maximum uplink TBS supported by the eRedCap terminal can be multiplied by the maximum number of uplink TBs supported by the eRedCap terminal in the time slot, and then divided by the duration of the time slot to obtain the maximum number of uplink TBS supported by the eRedCap terminal.
  • the uplink peak data rate and multiply the maximum downlink TBS supported by the eRedCap terminal specified in the communication protocol by the maximum number of downlink TBs supported by the eRedCap terminal in the time slot, and then divide by the duration of the time slot to obtain eRedCap
  • the peak downlink data rate supported by the terminal The peak data rate can then be determined for eRedCap terminals to meet the needs of TBS being further restricted.
  • FIG. 10 is a schematic structural diagram of a device for determining a peak data rate provided by an embodiment of the present application. It can be applied to the eRedCap terminal side or the base station side. As shown in Figure 10, the device can include: a second acquisition module 1010, used to acquire the first scaling coefficient of the physical uplink shared channel PUSCH and the third scaling coefficient of the physical downlink shared channel PDSCH.
  • a second acquisition module 1010 used to acquire the first scaling coefficient of the physical uplink shared channel PUSCH and the third scaling coefficient of the physical downlink shared channel PDSCH.
  • the second determination module 1020 is used to determine the eRedCap terminal according to the uplink peak data rate supported by the traditional terminal and the first scaling coefficient the supported uplink peak data rate; and determine the downlink peak data rate supported by the eRedCap terminal based on the downlink peak data rate supported by the traditional terminal and the second scaling factor.
  • the second determination module 1020 is specifically configured to multiply the uplink peak data rate supported by the traditional terminal by the first scaling factor to obtain the uplink peak data rate supported by the eRedCap terminal.
  • the second determination module 1020 is specifically configured to multiply the downlink peak data rate supported by the traditional terminal by the second scaling factor to obtain the downlink peak data rate supported by the eRedCap terminal.
  • the second determination module 1020 is also configured to determine the uplink peak data rate supported by the eRedCap terminal based on the uplink peak data rate of the traditional terminal data and the first scaling factor. If according to the formula If the determined uplink data rate is greater than the uplink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing PUSCH within the time slot, or the base station is restricted from performing corresponding scheduling, where M' is the uplink transmission within the time slot.
  • the number of TBs, m' is the m-th TB of uplink transmission, V m' is the TBS of the m-th TB of uplink transmission, and T slot is the duration of the time slot.
  • the second determination module 1020 is also configured to determine the downlink peak data rate supported by the eRedCap terminal based on the downlink peak data rate of the traditional terminal data and the second scaling factor. If according to the formula If the determined downlink data rate is greater than the downlink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing the PDSCH within the time slot, or the base station is restricted from performing corresponding scheduling, where M" is the downlink transmission within the time slot.
  • the number of TBs, m" is the m-th TB of downlink transmission, V m" is the TBS of the m-th TB of downlink transmission, and T slot is the duration of the time slot.
  • the maximum uplink TBS supported by the eRedCap terminal specified in the communication protocol is the maximum uplink TBS supported by the traditional terminal multiplied by the first scaling factor, and the maximum downlink TBS supported by the eRedCap terminal is multiplied by the first scaling factor.
  • the maximum downstream TBS is multiplied by the second scaling factor.
  • the uplink peak data rate supported by the traditional terminal can be multiplied by the first scaling coefficient of the PUSCH channel to obtain the uplink peak data rate supported by the eRedCap terminal, and the uplink peak data rate supported by the traditional terminal can be obtained.
  • the downlink peak data rate is multiplied by the second scaling factor of the PDSCH channel to obtain the downlink peak data rate supported by the eRedCap terminal.
  • the peak data rate can then be determined for eRedCap terminals to meet the needs of TBS being further restricted.
  • FIG. 11 is a schematic structural diagram of a device for determining a peak data rate provided by an embodiment of the present application. It can be applied to the eRedCap terminal side or to the base station side. As shown in Figure 11, the device can include: a third acquisition module 1110, used to obtain the uplink peak data rate supported by the eRedCap terminal with reduced capabilities specified in the communication protocol, as the uplink peak data rate supported by the eRedCap terminal; and, obtain the downlink peak data rate supported by the eRedCap terminal specified in the communication protocol as the downlink peak data rate supported by the eRedCap terminal.
  • a third acquisition module 1110 used to obtain the uplink peak data rate supported by the eRedCap terminal with reduced capabilities specified in the communication protocol, as the uplink peak data rate supported by the eRedCap terminal
  • the downlink peak data rate supported by the eRedCap terminal specified in the communication protocol as the downlink peak data rate supported by the eRedCap terminal.
  • the third acquisition module 1110 is also used to obtain the uplink peak data rate supported by the eRedCap terminal specified in the communication protocol as the uplink peak data rate supported by the eRedCap terminal. If according to the formula If the determined uplink data rate is greater than the uplink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing PUSCH within the time slot, or the base station is restricted from performing corresponding scheduling, where M' is the uplink transmission within the time slot. The number of TBs, m' is the m-th TB of uplink transmission, V m' is the TBS of the m-th TB of uplink transmission, and T slot is the duration of the time slot.
  • the third acquisition module 1110 is also used to acquire the downlink peak data rate supported by the eRedCap terminal specified in the communication protocol as the downlink peak data rate supported by the eRedCap terminal. If according to the formula If the determined downlink data rate is greater than the downlink peak data rate supported by the eRedCap terminal, the eRedCap terminal is restricted from processing the PDSCH within the time slot, or the base station is restricted from performing corresponding scheduling, where M" is the downlink transmission within the time slot. The number of TBs, m" is the m-th TB of downlink transmission, V m" is the TBS of the m-th TB of downlink transmission, and T slot is the duration of the time slot.
  • the uplink peak data rate supported by the eRedCap terminal stipulated in the communication protocol can be obtained as the uplink peak data rate supported by the eRedCap terminal, and the eRedCap terminal stipulated in the communication protocol can be obtained.
  • the peak downlink data rate is used as the peak downlink data rate supported by the eRedCap terminal.
  • the peak data rate can then be determined for eRedCap terminals to meet the needs of TBS being further restricted.
  • FIG 12 is a schematic structural diagram of a communication device 1200 provided in this embodiment.
  • the communication device 1200 may be a network device, a user equipment, a chip, a chip system, or a processor that supports network equipment to implement the above method, or a chip, a chip system, or a processor that supports user equipment to implement the above method. Processor etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1200 may include one or more processors 1201.
  • the processor 1201 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer Program, a computer program that processes data.
  • the communication device 1200 may also include one or more memories 1202, on which a computer program 1204 may be stored.
  • the processor 1201 executes the computer program 1204, so that the communication device 1200 executes the method described in the above method embodiment.
  • the memory 1202 may also store data.
  • the communication device 1200 and the memory 1202 can be provided separately or integrated together.
  • the communication device 1200 may also include a transceiver 1205 and an antenna 1206.
  • the transceiver 1205 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1205 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1200 may also include one or more interface circuits 1207.
  • the interface circuit 1207 is used to receive code instructions and transmit them to the processor 1201 .
  • the processor 1201 executes code instructions to cause the communication device 1200 to perform the method described in the above method embodiment.
  • the processor 1201 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1201 may store a computer program 1203, and the computer program 1203 runs on the processor 1201, causing the communication device 1200 to perform the method described in the above method embodiment.
  • the computer program 1203 may be solidified in the processor 1201, in which case the processor 1201 may be implemented by hardware.
  • the communication device 1200 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be network equipment or user equipment, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 12 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device can be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 13 refer to the schematic structural diagram of the chip shown in FIG. 13 .
  • the chip shown in Figure 13 includes a processor 1301 and an interface 1302.
  • the number of processors 1301 may be one or more, and the number of interfaces 1302 may be multiple.
  • the chip also includes a memory 1303, which is used to store necessary computer programs and data.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • a computer program product includes one or more computer programs.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program may be transmitted from a website, computer, server or data center via a wireline (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD)) )wait.
  • magnetic media e.g., floppy disks, hard disks, tapes
  • optical media e.g., high-density digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or means for providing machine instructions and/or data to a programmable processor (for example, magnetic disks, optical disks, memories, programmable logic devices (PLD)), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., A user's computer having a graphical user interface or web browser through which the user can interact with implementations of the systems and technologies described herein), or including such backend components, middleware components, or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communications network). Examples of communication networks include: local area network (LAN), wide area network (WAN), and the Internet.
  • Computer systems may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact over a communications network.
  • the relationship of client and server is created by computer programs running on corresponding computers and having a client-server relationship with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种峰值数据速率的确定方法及装置,涉及通信技术领域。通过应用本方法,可为能力下降eRedCap终端确定峰值数据速率,以满足TBS被进一步限制的需求,使得一个slot内基站所调度的一个eRedCap终端的全部TBS的总和与该时隙的持续时长的比值,在这个新确定到的峰值数据速率的约束范围内。

Description

峰值数据速率的确定方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种峰值数据速率的确定方法及装置。
背景技术
一个时隙(slot)内基站所调度的一个终端的全部传输块大小(TransportBlock Size,TBS)的总和与该时隙的时间长度(slotduration)的比值,需要在峰值数据速率(peak data rate,或称为最大数据速率)的约束范围内。
目前,对于能力降低(Reduced Capability,eRedCap)终端,一种可能的复杂度降低的解决方案是限制TBS。该方案有益于混合自动重传请求(Hybrid Automatic Repeat request,HARQ)的缓存大小(buffersize),以及低密度奇偶校验码(Low Density Parity Check Code,LDPC)编码等器件的成本的降低。而如果TBS被进一步限制,则传统终端的峰值数据速率作为TBS的约束条件将不再适用。
但是,目前尚缺乏为eRedCap终端确定峰值数据速率的有效解决方案。
发明内容
本申请提出了一种峰值数据速率的确定方法及装置,提供了一种为eRedCap终端确定峰值数据速率的有效解决方案,以满足TBS被进一步限制的需求。
本申请的第一方面实施例提供了一种峰值数据速率的确定方法,应用于eRedCap终端侧执行或应用于基站侧执行,包括:获取eRedCap终端所支持的最大上行传输块大小TBS,和所述eRedCap终端所支持的最大下行TBS;根据所述最大上行TBS、时隙的持续时长和所述eRedCap终端在时隙内所支持的最大上行传输块TB个数,确定所述eRedCap终端所支持的上行的峰值数据速率;及,根据所述最大下行TBS、时隙的持续时长和所述eRedCap终端在所述时隙内所支持的最大下行TB个数,确定所述eRedCap终端所支持的下行的峰值数据速率。
在本申请的一些实施例中,所述根据所述最大上行TBS、时隙的持续时长和所述eRedCap终端在时隙内所支持的最大上行TB个数,确定所述eRedCap终端所支持的上行的峰值数据速率,包括:将所述最大上行TBS乘以所述最大上行TB个数,再除以所述时隙的持续时长,得到所述eRedCap终端所支持的上行的峰值数据速率。
在本申请的一些实施例中,所述根据所述最大下行TBS、时隙的持续时长和所述eRedCap终端在所述时隙内所支持的最大下行TB个数,确定所述eRedCap终端所支持的下行的峰值数据速率,包括:将所述最大下行TBS乘以所述最大下行TB个数,再除以所述时隙的持续时长,得到所述eRedCap终端所支持的下行的峰值数据速率。
在本申请的一些实施例中,在所述获取通信协议中规定的eRedCap终端所支持的最大上行TBS,和所述eRedCap终端所支持的最大下行TBS之后,所述方法还包括:若根据所述eRedCap终端下行控制信息DCI的调度信息所确定的上行TBS大于所述最大上行TBS,则限制所述eRedCap终端不进行物 理上行共享信道PUSCH的处理或不进行时隙内全部PUSCH的处理;或者,限制基站不进行相应的调度;若根据所述eRedCap终端下行控制信息DCI的调度信息所确定的下行TBS大于所述最大下行TBS,则限制所述eRedCap终端不进行物理下行共享信道PDSCH的处理或不进行时隙内全部PDSCH的处理;或者,限制基站不进行相应的调度。
在本申请的一些实施例中,在所述根据所述最大上行TBS、时隙的持续时长和所述eRedCap终端在时隙内所支持的最大上行TB个数,确定所述eRedCap终端所支持的上行的峰值数据速率之后,所述方法还包括:若根据公式
Figure PCTCN2022104476-appb-000001
确定的上行数据速率大于所述eRedCap终端所支持的上行的峰值数据速率,则限制所述eRedCap终端不进行时隙内PUSCH的处理,或者,限制基站不进行相应的调度,其中,M'为时隙内上行传输的TB个数,m'为上行传输的第m个TB,V m'为上行传输的第m个TB的TBS,T slot为时隙的持续时长。
在本申请的一些实施例中,在所述根据所述最大下行TBS、时隙的持续时长和所述eRedCap终端在所述时隙内所支持的最大下行TB个数,确定所述eRedCap终端所支持的下行的峰值数据速率之后,所述方法还包括:若根据公式
Figure PCTCN2022104476-appb-000002
确定的下行数据速率大于所述eRedCap终端所支持的下行的峰值数据速率,则限制所述eRedCap终端不进行时隙内PDSCH的处理,或者,限制基站不进行相应的调度,其中,M"为时隙内下行传输的TB个数,m"为下行传输的第m个TB,V m"为下行传输的第m个TB的TBS,T slot为时隙的持续时长。
本申请的第二方面实施例提供了一种峰值数据速率的确定方法,应用于eRedCap终端侧执行或应用于基站侧执行,包括:获取物理上行共享信道PUSCH的第一缩放系数和物理下行共享信道PDSCH的第二缩放系数,其中,所述第一缩放系数和所述第二缩放系数均大于0且小于1;根据所述传统终端所支持的上行的峰值数据速率和所述第一缩放系数,确定所述eRedCap终端所支持的上行的峰值数据速率;及根据所述传统终端所支持的下行的峰值数据速率和所述第二缩放系数,确定所述eRedCap终端所支持的下行的峰值数据速率。
在本申请的一些实施例中,所述根据所述传统终端所支持的上行的峰值数据速率和所述第一缩放系数,确定所述eRedCap终端所支持的上行的峰值数据速率,包括:将所述传统终端所支持的上行的峰值数据速率乘以所述第一缩放系数,得到所述eRedCap终端所支持的上行的峰值数据速率。
在本申请的一些实施例中,所述根据所述传统终端数据下行的峰值数据速率和所述第二缩放系数,确定所述eRedCap终端数据下行的峰值数据速率,包括:将所述传统终端所支持的下行的峰值数据速率乘以所述第二缩放系数,得到所述eRedCap终端所支持的下行的峰值数据速率。
在本申请的一些实施例中,在所述根据所述传统终端数据上行的峰值数据速率和所述第一缩放系数,确定所述eRedCap终端所支持的上行的峰值数据速率之后,所述方法还包括:若根据公式
Figure PCTCN2022104476-appb-000003
确 定的上行数据速率大于所述eRedCap终端所支持的上行的峰值数据速率,则限制所述eRedCap终端不进行时隙内PUSCH的处理,或者,限制基站不进行相应的调度,其中,M'为时隙内上行传输的TB个数,m'为上行传输的第m个TB,V m'为上行传输的第m个TB的TBS,T slot为时隙的持续时长。
在本申请的一些实施例中,在所述根据所述传统终端数据下行的峰值数据速率和所述第二缩放系数,确定所述eRedCap终端所支持的下行的峰值数据速率之后,所述方法还包括:若根据公式
Figure PCTCN2022104476-appb-000004
确定的下行数据速率大于所述eRedCap终端所支持的下行的峰值数据速率,则限制所述eRedCap终端不进行时隙内PDSCH的处理,或者,限制基站不进行相应的调度,其中,M"为时隙内下行传输的TB个数,m"为下行传输的第m个TB,V m"为下行传输的第m个TB的TBS,T slot为时隙的持续时长。
在本申请的一些实施例中,所述eRedCap终端所支持的最大上行TBS为所述传统终端所支持的最大上行TBS乘以所述第一缩放系数,以及所述eRedCap终端所支持的最大下行TBS为所述传统终端所支持的最大下行TBS乘以所述第二缩放系数。
本申请的第三方面实施例提供了一种峰值数据速率的确定方法,应用于eRedCap终端侧执行或应用于基站侧执行,包括:获取通信协议中规定的能力下降eRedCap终端所支持的上行的峰值数据速率,作为所述eRedCap终端所支持的上行的峰值数据速率;及,获取通信协议中规定的所述eRedCap终端所支持的下行的峰值数据速率,作为所述eRedCap终端所支持的下行的峰值数据速率。
在本申请的一些实施例中,在所述获取通信协议中规定的eRedCap终端所支持的上行的峰值数据速率,作为所述eRedCap终端所支持的上行的峰值数据速率之后,所述方法还包括:若根据公式
Figure PCTCN2022104476-appb-000005
确定的上行数据速率大于所述eRedCap终端所支持的上行的峰值数据速率,则限制所述eRedCap终端不进行时隙内PUSCH的处理,或者,限制基站不进行相应的调度,其中,M'为时隙内上行传输的TB个数,m'为上行传输的第m个TB,V m'为上行传输的第m个TB的TBS,T slot为时隙的持续时长。
在本申请的一些实施例中,在所述获取通信协议中规定的所述eRedCap终端所支持的下行的峰值数据速率,作为所述eRedCap终端所支持的下行的峰值数据速率之后,所述方法还包括:若根据公式
Figure PCTCN2022104476-appb-000006
确定的下行数据速率大于所述eRedCap终端所支持的下行的峰值数据速率,则限制所述eRedCap终端不进行时隙内PDSCH的处理,或者,限制基站不进行相应的调度,其中,M"为时隙内下行传输的TB个数,m"为下行传输的第m个TB,V m"为下行传输的第m个TB的TBS,T slot为时隙的持续时长。
本申请的第四方面实施例提供了一种峰值数据速率的确定装置,应用于eRedCap终端侧或应用于基站侧,包括:第一获取模块,用于获取eRedCap终端所支持的最大上行传输块大小TBS,和所述eRedCap终端所支持的最大下行TBS;第一确定模块,用于根据所述最大上行TBS、时隙的持续时长和所述eRedCap终端在时隙内所支持的最大上行传输块TB个数,确定所述eRedCap终端所支持的上 行的峰值数据速率;及,根据所述最大下行TBS、时隙的持续时长和所述eRedCap终端在所述时隙内所支持的最大下行TB个数,确定所述eRedCap终端所支持的下行的峰值数据速率。
本申请的第五方面实施例提供了一种峰值数据速率的确定装置,应用于eRedCap终端侧或应用于基站侧,包括:第二获取模块,用于获取物理上行共享信道PUSCH的第一缩放系数和物理下行共享信道PDSCH的第二缩放系数,其中,所述第一缩放系数和所述第二缩放系数均大于0且小于1;第二确定模块,用于根据所述传统终端所支持的上行的峰值数据速率和所述第一缩放系数,确定所述eRedCap终端所支持的上行的峰值数据速率;及根据所述传统终端所支持的下行的峰值数据速率和所述第二缩放系数,确定所述eRedCap终端所支持的下行的峰值数据速率。
本申请的第六方面实施例提供了一种峰值数据速率的确定装置,应用于eRedCap终端侧或应用于基站侧,包括:第三获取模块,用于获取通信协议中规定的能力下降eRedCap终端所支持的上行的峰值数据速率,作为所述eRedCap终端所支持的上行的峰值数据速率;及,获取通信协议中规定的所述eRedCap终端所支持的下行的峰值数据速率,作为所述eRedCap终端所支持的下行的峰值数据速率。
本申请的第七方面实施例提供了一种通信设备,应用于eRedCap终端侧或应用于基站侧,该通信设备包括:收发器;存储器;处理器,分别与收发器及存储器连接,配置为通过执行存储器上的计算机可执行指令,控制收发器的无线信号收发,并能够实现如本申请第一方面实施例或第二方面实施例或第三方面实施例的方法。
本申请的第八方面实施例提供了一种计算机存储介质,应用于eRedCap终端侧或应用于基站侧,其中,计算机存储介质存储有计算机可执行指令;计算机可执行指令被处理器执行后,能够实现如本申请第一方面实施例或第二方面实施例或第三方面实施例的方法。
本申请实施例提供了一种峰值数据速率的确定方法及装置,可为eRedCap终端确定峰值数据速率,以满足TBS被进一步限制的需求,进而使得一个slot内基站所调度的一个eRedCap终端的全部TBS的总和与该时隙的slotduration的比值,需要在这个新确定到的峰值数据速率的约束范围内,从而保证eRedCap终端的通信业务正常运行。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本申请实施例的一种峰值数据速率的确定方法的流程示意图;
图2为根据本申请实施例的一种峰值数据速率的确定方法的流程示意图;
图3为根据本申请实施例的一种峰值数据速率的确定方法的流程示意图;
图4为根据本申请实施例的一种峰值数据速率的确定方法的流程示意图;
图5为根据本申请实施例的一种峰值数据速率的确定方法的流程示意图;
图6为根据本申请实施例的一种峰值数据速率的确定方法的流程示意图;
图7为根据本申请实施例的一种峰值数据速率的确定方法的流程示意图;
图8为根据本申请实施例的一种峰值数据速率的确定方法的流程示意图;
图9为根据本申请实施例的一种峰值数据速率的确定装置的框图;
图10为根据本申请实施例的一种峰值数据速率的确定装置的框图;
图11为根据本申请实施例的一种峰值数据速率的确定装置的框图;
图12为根据本申请实施例的一种通信装置的结构示意图;
图13为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
为了便于理解,首先介绍本实施例涉及的术语。
1、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)
PUSCH作为物理层主要的上行数据承载信道,用于上行数据的调度传输,可以承载控制信息、用户业务信息和广播业务信息等。
2、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)
PDSCH用于承载来自传输下行共享信道(Downlink Shared Channel,DSCH)的数据。
3、eRedCap终端
第三代合作伙伴项目(3rd Generation Partnership Project,3GPP)在通信协议版本17(release17,Rel-17)阶段成立了专门的标准项目来分析并优化现有的5G终端和网络的功能特性来实现5G物联网终端通过5G新空口(New Radio,NR)接入5G核心网。在这个标准项目中,3GPP提出了支持能力降低(Reduced Capability)的NR设备,亦即RedCap终端。与传统的增强移动宽带(enhanced mobile broadband,eMBB)设备、超可靠低时延通信(ultra-reliable and low latencycommunication,URLLC)设备相比,RedCap终端设备具有成本更低、复杂度低、尺寸更紧凑、性能够用等优势。而eRedCap终端是在RedCap终端的基础上,进一步降低终端成本,来支持速率较低的5G物联网终端使用NR技术。
目前对于eRedCap终端,一种可能的复杂度降低的解决方案是限制TBS。该方案有益于HARQbuffersize,以及LDPC编码等器件的成本的降低。而如果TBS被进一步限制,则传统终端的峰值数据速率(peak data rate,或称为最大数据速率)作为TBS的约束条件将不再适用。
为此,本实施例提出了一种峰值数据速率的确定方法及装置,提供了一种为eRedCap终端确定峰值数据速率的有效解决方案,以满足TBS被进一步限制的需求。
下面结合附图对本申请所提供的峰值数据速率的确定方法及装置进行详细地介绍。
图1示出了根据本申请实施例的其中一种峰值数据速率的确定方法的流程示意图。可应用于eRedCap终端侧或者应用于基站侧,如图1所示,可以包括以下步骤。
步骤101、获取eRedCap终端所支持的最大上行TBS,和获取eRedCap终端所支持的最大下行TBS。
eRedCap终端所支持的最大上行TBS和最大下行TBS可从通信协议中获取得到,例如,可在通信协议中直接规定eRedCap终端所支持的最大上行TBS(传输块大小)为U个bits(比特个数),以及在通信协议中直接规定eRedCap终端所支持的最大下行TBS为D个bits,这些内容可在通信协议中预先进行设定。
步骤102、根据eRedCap终端所支持的最大上行TBS、一个时隙的持续时长和eRedCap终端在该时隙内所支持的最大上行TB个数,确定eRedCap终端所支持的上行的峰值数据速率,以及根据eRedCap终端所支持的最大下行TBS、一个时隙的持续时长和eRedCap终端在该时隙内所支持的最大下行TB个数,确定eRedCap终端所支持的下行的峰值数据速率。
例如,根据通信协议中规定的eRedCap终端所支持的最大上行TBS(U个bits)、slotduration(时隙的持续时长)、eRedCap终端在一个slot内所支持的最大上行TB个数,计算得到eRedCap终端所支持的上行的peak data rate(峰值数据速率);以及根据通信协议中规定的eRedCap终端所支持的最大下行TBS(D个bits)、slotduration(时隙的持续时长)、eRedCap终端在slot内所支持的最大下行TB个数,计算得到eRedCap终端所支持的下行的peak data rate。
通过应用本实施例提供的峰值数据速率的确定方法,可根据通信协议中规定的eRedCap终端所支持的最大上行TBS、一个时隙的持续时长和eRedCap终端在该时隙内所支持的最大上行TB个数,确定eRedCap终端所支持的上行的峰值数据速率,以及可根据通信协议中规定的eRedCap终端所支持的最大下行TBS、一个时隙的持续时长和eRedCap终端在该时隙内所支持的最大下行TB个数,确定eRedCap终端所支持的下行的峰值数据速率。进而可为eRedCap终端确定峰值数据速率,以满足TBS被进一步限制的需求。
图2示出了根据本申请实施例的其中一种峰值数据速率的确定方法的流程示意图。基于图1所示实施例,如图2所示,可应用于eRedCap终端侧或者应用于基站侧,且该方法可以包括以下步骤。
步骤201、获取eRedCap终端所支持的最大上行TBS,和获取eRedCap终端所支持的最大下行TBS。
步骤202、将eRedCap终端所支持的最大上行TBS乘以eRedCap终端在一个时隙内所支持的最大上行TB个数,再除以该时隙的持续时长,得到eRedCap终端所支持的上行的峰值数据速率,以及将eRedCap终端所支持的最大下行TBS乘以eRedCap终端在一个时隙内所支持的最大下行TB个数,再除以该时隙的持续时长,得到eRedCap终端所支持的下行的峰值数据速率。
例如,确定TS38.306协议中eRedCap终端所支持的上行的peak data rate(峰值数据速率),如下述公式一所示:
eRedCap终端所支持的上行的peak data rate=U*M1/T_slot(公式一)
在公式一中,U为eRedCap终端所支持的最大上行TBS,M1为eRedCap终端在一个slot内传输或可支持传输的最大上行TB个数,T_slot为该slot内的持续时长。
确定TS38.306协议中eRedCap终端所支持的下行的peak data rate(峰值数据速率),如下述公式二所示:
eRedCap终端所支持的下行的peak data rate=D*M2/T_slot(公式二)
在公式二中,D为eRedCap终端所支持的最大下行TBS,M2为eRedCap终端在一个slot内传输或可支持传输的最大下行TB个数,T_slot为该slot内的持续时长。
通过应用本实施例提供的峰值数据速率的确定方法,可将通信协议中规定的eRedCap终端所支持的最大上行TBS乘以eRedCap终端在一个时隙内所支持的最大上行TB个数,再除以该时隙的持续时长,得到eRedCap终端所支持的上行的峰值数据速率,以及将通信协议中规定的eRedCap终端所支持的最大下行TBS乘以eRedCap终端在一个时隙内所支持的最大下行TB个数,再除以该时隙的持续时长,得到eRedCap终端所支持的下行的峰值数据速率。进而可为eRedCap终端确定峰值数据速率,以满足TBS被进一步限制的需求。
图3示出了根据本申请实施例的其中一种峰值数据速率的确定方法的流程示意图。基于图1所示实施例,如图3所示,可应用于eRedCap终端侧或者应用于基站侧,且该方法可以包括以下步骤。
步骤301、获取eRedCap终端所支持的最大上行TBS,和获取eRedCap终端所支持的最大下行TBS。
在获取到eRedCap终端所支持的最大上行TBS,和eRedCap终端所支持的最大下行TBS之后,本实施例还可包括:若根据eRedCap终端下行控制信息(Downlink Control Information,DCI)的调度信息所确定的上行TBS大于通信协议中规定的eRedCap终端所支持的最大上行TBS,则限制eRedCap终端不进行该PUSCH(物理上行共享信道)的处理或不进行时隙内全部PUSCH的处理;或者,限制基站不进行相应的调度;若根据eRedCap终端DCI的调度信息所确定的下行TBS大于通信协议中规定的eRedCap终端所支持的最大下行TBS,则限制eRedCap终端不进行该PDSCH(物理下行共享信道)的处理或不进行时隙内全部PDSCH的处理;或者,限制基站不进行相应的调度。通过这种可选方式,可保证eRedCap终端的通信业务正常运行。
例如,在eRedCap终端侧,eRedCap终端根据DCI调度信息所确定的上行TBS,若大于U个比特(通信协议中规定的eRedCap终端所支持的最大上行TBS),则不进行该PUSCH的处理,或者不进行该slot内全部PUSCH的处理。或者在基站侧,如果根据DCI调度信息所确定的上行TBS,若大于U个比特,则基站被限制不能进行此调度。
再例如,在eRedCap终端侧,eRedCap终端根据DCI调度信息所确定的下行TBS,若大于D个比特(通信协议中规定的eRedCap终端所支持的最大下行TBS),则不进行该PDSCH的处理,或者不进行该slot内全部PDSCH的处理。或者在基站侧,根据DCI调度信息所确定的下行TBS,若大于D个比特,则基站被限制不能进行此调度。
步骤302、根据eRedCap终端所支持的最大上行TBS、一个时隙的持续时长和eRedCap终端在该时隙内所支持的最大上行TB个数,确定eRedCap终端所支持的上行的峰值数据速率,以及根据eRedCap终端所支持的最大下行TBS、一个时隙的持续时长和eRedCap终端在该时隙内所支持的最大下行TB个数,确定eRedCap终端所支持的下行的峰值数据速率。
步骤303、若根据公式三确定的上行数据速率大于eRedCap终端所支持的上行的峰值数据速率,则限制eRedCap终端不进行时隙内PUSCH的处理,或者,限制基站不进行相应的调度;若根据公式四确定的下行数据速率大于所述eRedCap终端所支持的下行的峰值数据速率,则限制eRedCap终端不进行时隙内PDSCH的处理,或者,限制基站不进行相应的调度。
其中,公式三如下所示:
Figure PCTCN2022104476-appb-000007
在公式三中,M'为时隙内上行传输的TB个数,m'为上行传输的第m个TB,V m'为上行传输的第m个TB的TBS,T slot为时隙的持续时长。
公式四如下所示:
Figure PCTCN2022104476-appb-000008
在公式四中,M"为时隙内下行传输的TB个数,m"为下行传输的第m个TB,V m"为下行传输的第m个TB的TBS,T slot为时隙的持续时长。
例如,在eRedCap终端侧,eRedCap终端根据公式三确定的上行数据速率,若大于步骤302中计算得到的eRedCap终端所支持的上行的峰值数据速率,则不进行该slot内PUSCH的处理;或者在基站侧,根据公式三确定的上行数据速率,若大于步骤302中计算得到的eRedCap终端所支持的上行的峰值数据速率,则基站被限制不能进行此调度。进而可实现根据eRedCap终端所支持上行的峰值数据速率,准确对eRedCap终端所支持的最大上行TBS进行限制。
再例如,在eRedCap终端侧,eRedCap终端根据公式四确定的下行数据速率,若大于步骤302中计算得到的eRedCap终端所支持的下行的峰值数据速率,则不进行该slot内PDSCH的处理;或者在基站侧,根据公式四确定的下行数据速率,若大于步骤302中计算得到的eRedCap终端所支持的下行的峰值数据速率,则基站被限制不能进行此调度。进而可实现根据eRedCap终端所支持下行的峰值数据速率,准确对eRedCap终端所支持的最大下行TBS进行限制。
应当注意的是,虽然图3所示实施例是在图1所示实施例的基础上进行描述,类似地,该图3所示实施例也可基于图2所示实施例,在此不再进行赘述。
通过应用本实施例提供的方法,可为eRedCap终端确定峰值数据速率,以满足TBS被进一步限制的需求。若根据eRedCap终端DCI的调度信息所确定的上行TBS大于通信协议中规定的eRedCap终端所支持的最大上行TBS,则限制eRedCap终端不进行PUSCH的处理或不进行时隙内全部PUSCH的处理;或者,限制基站不进行相应的调度;若根据eRedCap终端DCI的调度信息所确定的下行TBS大于通信协议中规定的eRedCap终端所支持的最大下行TBS,则限制eRedCap终端不进行PDSCH的处理或不进行时隙内全部PDSCH的处理;或者,限制基站不进行相应的调度。并可实现根据eRedCap终端所支持上行的峰值数据速率,准确对eRedCap终端所支持的最大上行TBS进行限制以及根据eRedCap终端所支持下行的峰值数据速率,准确对eRedCap终端所支持的最大下行TBS进行限制,从而保证eRedCap终端的通信业务正常运行。
图4为根据本申请实施例的其中一种峰值数据速率的确定方法的流程示意图。如图4所示,可应用于eRedCap终端侧或者应用于基站侧,该方法可以包括以下步骤。
步骤401、获取PUSCH信道的第一缩放系数和PDSCH信道的第二缩放系数。
其中,第一缩放系数和第二缩放系数均可大于0且小于1。第一缩放系数和第二缩放系数可通过通信协议获取得到或由终端自行确定并上报给基站,可选的,通信协议中规定的eRedCap终端所支持的最大上行TBS为传统终端所支持的最大上行TBS乘以第一缩放系数,以及eRedCap终端所支持的最大下行TBS为传统终端所支持的最大下行TBS乘以第二缩放系数。
例如,可在通信协议中规定eRedCap终端所支持的最大上行TBS为传统终端所支持的最大上行TBS乘以第一缩放系数,该第一缩放系数可为1/A1,A1>1;以及在通信协议中规定eRedCap终端所支持的最大下行TBS为传统终端所支持的最大下行TBS乘以第二缩放系数,该第二缩放系数可为1/A2,A2>1。通过该规定内容,可获取PUSCH的第一缩放系数1/A1和PDSCH的第二缩放系数1/A2,其中,PDSCH信道和PUSCH信道可有不同的缩放系数,即1/A1与1/A2可以是不同的。
步骤402、根据传统终端所支持的上行的峰值数据速率和PUSCH信道的第一缩放系数,确定eRedCap终端所支持的上行的峰值数据速率,及根据传统终端所支持的下行的峰值数据速率和PDSCH信道的第二缩放系数,确定eRedCap终端所支持的下行的峰值数据速率。
例如,根据传统终端(区别于eRedCap终端)所支持的上行的peak data rate(峰值数据速率)和PUSCH信道的第一缩放系数1/A1(A1>1),确定eRedCap终端所支持的上行的peak data rate,及根据传统终端所支持的下行的peak data rate和PDSCH信道的第二缩放系数1/A2(A2>1),确定eRedCap终端所支持的下行的peak data rate。
通过应用本实施例提供的峰值数据速率的确定方法,可根据传统终端所支持的上行的峰值数据速率和PUSCH信道的第一缩放系数,确定eRedCap终端所支持的上行的峰值数据速率,及根据传统终端所支持的下行的峰值数据速率和PDSCH信道的第二缩放系数,确定eRedCap终端所支持的下行的峰值数据速率。进而可为eRedCap终端确定峰值数据速率,以满足TBS被进一步限制的需求。
图5为根据本申请实施例的其中一种峰值数据速率的确定方法的流程示意图。基于图4所示的实施例,如图5所示,可应用于eRedCap终端侧或者应用于基站侧,可以包括以下步骤。
步骤501、获取PUSCH信道的第一缩放系数和PDSCH信道的第二缩放系数。
其中,第一缩放系数和第二缩放系数均大于0且小于1。
步骤502、将传统终端所支持的上行的峰值数据速率乘以PUSCH信道的第一缩放系数,得到eRedCap终端所支持的上行的峰值数据速率,以及将传统终端所支持的下行的峰值数据速率乘以PDSCH信道的第二缩放系数,得到eRedCap终端所支持的下行的峰值数据速率。
例如,将传统终端所支持的上行的peak data rate(峰值数据速率)乘以PUSCH信道的第一缩放系数1/A1(A1>1),得到eRedCap终端所支持的上行的peak data rate,以及将传统终端所支持的下行的peak data rate乘以PDSCH信道的第二缩放系数1/A2(A2>1),得到eRedCap终端所支持的下行的peak data rate。
通过应用本实施例提供的方法,可将传统终端所支持的上行的峰值数据速率乘以PUSCH信道的第一缩放系数,得到eRedCap终端所支持的上行的峰值数据速率,以及将传统终端所支持的下行的峰值 数据速率乘以PDSCH信道的第二缩放系数,得到eRedCap终端所支持的下行的峰值数据速率。进而可为eRedCap终端确定峰值数据速率,以满足TBS被进一步限制的需求。
图6示出了根据本申请实施例的其中一种峰值数据速率的确定方法的流程示意图。基于图4所示实施例,如图6所示,可应用于eRedCap终端侧或者应用于基站侧,该方法可以包括以下步骤。
步骤601、获取PUSCH信道的第一缩放系数和PDSCH信道的第二缩放系数。
其中,第一缩放系数和第二缩放系数均可大于0且小于1。
步骤602、根据传统终端所支持的上行的峰值数据速率和PUSCH信道的第一缩放系数,确定eRedCap终端所支持的上行的峰值数据速率,及根据传统终端所支持的下行的峰值数据速率和PDSCH信道的第二缩放系数,确定eRedCap终端所支持的下行的峰值数据速率。
步骤603、若根据公式三确定的上行数据速率大于eRedCap终端所支持的上行的峰值数据速率,则限制eRedCap终端不进行时隙内PUSCH的处理,或者,限制基站不进行相应的调度;若根据公式四确定的下行数据速率大于eRedCap终端所支持的下行的峰值数据速率,则限制eRedCap终端不进行时隙内PDSCH的处理,或者,限制基站不进行相应的调度。
需要说明的是,步骤603中使用的公式三和公式四,可参见上述步骤303中的公式三和公式四的所示内容,在此不再赘述。
例如,在eRedCap终端则,eRedCap终端根据公式三确定的上行数据速率,若大于步骤602中计算得到的eRedCap终端所支持的上行的峰值数据速率,则不进行该slot内PUSCH的处理。或者在基站侧,根据公式三确定的上行数据速率,若大于步骤602中计算得到的eRedCap终端所支持的上行的峰值数据速率,则基站被限制不能进行此调度。进而可实现根据eRedCap终端所支持上行的峰值数据速率,准确对eRedCap终端所支持的最大上行TBS进行限制。
再例如,在eRedCap终端则,eRedCap终端根据公式四确定的下行数据速率,若大于步骤602中计算得到的eRedCap终端所支持的下行的峰值数据速率,则不进行该slot内PDSCH的处理。或者在基站侧,根据公式四确定的下行数据速率,若大于步骤602中计算得到的eRedCap终端所支持的下行的峰值数据速率,则基站被限制不能进行此调度。进而可实现根据eRedCap终端所支持下行的峰值数据速率,准确对eRedCap终端所支持的最大下行TBS进行限制。
应当注意的是,虽然图6所示实施例是在图4所示实施例的基础上进行描述,类似地,该图6所示实施例也可基于图5所示实施例,在此不再进行赘述。
通过应用本实施例提供的方法,可为eRedCap终端确定峰值数据速率,以满足TBS被进一步限制的需求。并可实现根据eRedCap终端所支持上行的峰值数据速率,准确对eRedCap终端所支持的最大上行TBS进行限制以及根据eRedCap终端所支持下行的峰值数据速率,准确对eRedCap终端所支持的最大下行TBS进行限制,从而保证eRedCap终端的通信业务正常运行。
图7示出了根据本申请实施例的其中一种峰值数据速率的确定方法的流程示意图。如图7所示,可应用于eRedCap终端侧或者应用于基站侧,可以包括以下步骤。
步骤701、获取通信协议中规定的eRedCap终端所支持的上行的峰值数据速率,作为eRedCap终端所支持的上行的峰值数据速率,以及获取通信协议中规定的eRedCap终端所支持的下行的峰值数据速率,作为eRedCap终端所支持的下行的峰值数据速率。
例如,可在通信协议中直接规定eRedCap终端的peak data rate(峰值数据速率)的具体取值,其中上下行可以设置不同的取值。进而可获取通信协议中规定的eRedCap终端所支持的上行的peak data rate,作为eRedCap终端所支持的上行的peak data rate,以及获取通信协议中规定的eRedCap终端所支持的下行的peak data rate,作为eRedCap终端所支持的下行的peak data rate。
通过应用本实施例提供的峰值数据速率的确定方法,可获取通信协议中规定的eRedCap终端所支持的上行的峰值数据速率,作为eRedCap终端所支持的上行的峰值数据速率,以及获取通信协议中规定的eRedCap终端所支持的下行的峰值数据速率,作为eRedCap终端所支持的下行的峰值数据速率。进而可为eRedCap终端确定峰值数据速率,以满足TBS被进一步限制的需求。
图8示出了根据本申请实施例的其中一种峰值数据速率的确定方法的流程示意图。基于图7所示实施例,如图8所示,可应用于eRedCap终端侧或者应用于基站侧,该方法可以包括以下步骤。
步骤801、获取通信协议中规定的eRedCap终端所支持的上行的峰值数据速率,作为所述eRedCap终端所支持的上行的峰值数据速率,以及获取通信协议中规定的所述eRedCap终端所支持的下行的峰值数据速率,作为所述eRedCap终端所支持的下行的峰值数据速率。
步骤802、若根据公式三确定的上行数据速率大于eRedCap终端所支持的上行的峰值数据速率,则限制eRedCap终端不进行时隙内PUSCH的处理,或者,限制基站不进行相应的调度;若根据公式四确定的下行数据速率大于eRedCap终端所支持的下行的峰值数据速率,则限制eRedCap终端不进行时隙内PDSCH的处理,或者,限制基站不进行相应的调度。
需要说明的是,步骤802中使用的公式三和公式四,可参见上述步骤303中的公式三和公式四的所示内容,在此不再赘述。
例如,在eRedCap终端侧,eRedCap终端根据公式三确定的上行数据速率,若大于步骤801中计算得到的eRedCap终端所支持的上行的峰值数据速率,则不进行该slot内PUSCH的处理。或者在基站侧,根据公式三确定的上行数据速率,若大于步骤801中计算得到的eRedCap终端所支持的上行的峰值数据速率,则基站被限制不能进行此调度。进而可实现根据eRedCap终端所支持上行的峰值数据速率,准确对eRedCap终端所支持的最大上行TBS进行限制。
再例如,在eRedCap终端侧,eRedCap终端根据公式四确定的下行数据速率,若大于步骤801中计算得到的eRedCap终端所支持的下行的峰值数据速率,则不进行该slot内PDSCH的处理。或者在基站侧,根据公式四确定的下行数据速率,若大于步骤801中计算得到的eRedCap终端所支持的下行的峰值数据速率,则基站被限制不能进行此调度。进而可实现根据eRedCap终端所支持下行的峰值数据速率,准确对eRedCap终端所支持的最大下行TBS进行限制。
通过应用本实施例提供的峰值数据速率的确定方法,可为eRedCap终端确定峰值数据速率,以满足TBS被进一步限制的需求。并可实现根据eRedCap终端所支持上行的峰值数据速率,准确对eRedCap终端所支持的最大上行TBS进行限制以及根据eRedCap终端所支持下行的峰值数据速率,准确对eRedCap终端所支持的最大下行TBS进行限制,从而保证eRedCap终端的通信业务正常运行。
上述如图1至图3所示的方法是根据eRedCap终端所支持的最大上行TBS、时隙的持续时长和eRedCap终端在时隙内所支持的最大上行TB个数,确定eRedCap终端所支持的上行的峰值数据速率,以及可根据eRedCap终端所支持的最大下行TBS、时隙的持续时长和eRedCap终端在时隙内所支持的最大下行TB个数,确定eRedCap终端所支持的下行的峰值数据速率。上述如图4至图6所示的方法是根据传统终端所支持的上行的峰值数据速率和PUSCH信道的第一缩放系数1/A1(A1>1),确定eRedCap终端所支持的上行的峰值数据速率,及根据传统终端所支持的下行的峰值数据速率和PDSCH信道的第二缩放系数1/A2(A2>1),确定eRedCap终端所支持的下行的峰值数据速率。而上述如图7至8所示的方法是获取通信协议中规定的eRedCap终端所支持的上行的峰值数据速率,作为eRedCap终端所支持的上行的峰值数据速率,以及获取通信协议中规定的eRedCap终端所支持的下行的峰值数据速率,作为eRedCap终端所支持的下行的峰值数据速率。
需要说明的是,上述这几种方式在实际使用中还可根据实际需求进行综合分析,进而确定eRedCap终端确定峰值数据速率。例如,预先配置各自对应的优先级,进而根据优先级,选择优先级最高的确定方式得到eRedCap终端的峰值数据速率;再例如,还可通过加权平均计算的方式,将这几种确定方式得到的结果进行加权平均计算,进而确定得到eRedCap终端的峰值数据速率等。
上述本申请提供的实施例中,分别从网络设备、用户设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和用户设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
与上述几种实施例提供的峰值数据速率的确定方法相对应,本申请还提供一种峰值数据速率的确定装置,由于本申请实施例提供的峰值数据速率的确定装置与上述几种实施例提供的峰值数据速率的确定方法相对应,因此峰值数据速率的确定方法的实施方式也适用于本实施例提供的峰值数据速率的确定装置,在本实施例中不再详细描述。
图9为本申请实施例提供的其中一种峰值数据速率的确定装置的结构示意图,可应用于eRedCap终端侧或者应用于基站侧,如图9所示,该装置可以包括:第一获取模块910,用于获取eRedCap终端所支持的最大上行传输块大小TBS,和eRedCap终端所支持的最大下行TBS;第一确定模块920,用于根据最大上行TBS、时隙的持续时长和eRedCap终端在时隙内所支持的最大上行传输块TB个数,确定eRedCap终端所支持的上行的峰值数据速率;及,根据最大下行TBS、时隙的持续时长和eRedCap终端在时隙内所支持的最大下行TB个数,确定eRedCap终端所支持的下行的峰值数据速率。
在一些实施例中,第一确定模块920,具体用于将最大上行TBS乘以最大上行TB个数,再除以时隙的持续时长,得到eRedCap终端所支持的上行的峰值数据速率。
在一些实施例中,第一确定模块920,具体还用于将最大下行TBS乘以最大下行TB个数,再除以时隙的持续时长,得到eRedCap终端所支持的下行的峰值数据速率。
在一些实施例中,第一确定模块920,还用于在获取eRedCap终端所支持的最大上行TBS,和eRedCap终端所支持的最大下行TBS之后,若根据eRedCap终端下行控制信息DCI的调度信息所确定的上行TBS大于最大上行TBS,则限制eRedCap终端不进行物理上行共享信道PUSCH的处理或不进行时隙内全部PUSCH的处理;或者,限制基站不进行相应的调度;若根据eRedCap终端下行控制信息 DCI的调度信息所确定的下行TBS大于最大下行TBS,则限制eRedCap终端不进行物理下行共享信道PDSCH的处理或不进行时隙内全部PDSCH的处理;或者,限制基站不进行相应的调度。
在一些实施例中,第一确定模块920,还用于在根据最大上行TBS、时隙的持续时长和eRedCap终端在时隙内所支持的最大上行TB个数,确定eRedCap终端所支持的上行的峰值数据速率之后,若根据公式
Figure PCTCN2022104476-appb-000009
确定的上行数据速率大于eRedCap终端所支持的上行的峰值数据速率,则限制eRedCap终端不进行时隙内PUSCH的处理,或者,限制基站不进行相应的调度,其中,M'为时隙内上行传输的TB个数,m'为上行传输的第m个TB,V m'为上行传输的第m个TB的TBS,T slot为时隙的持续时长。
在一些实施例中,第一确定模块920,还用于在根据最大下行TBS、时隙的持续时长和eRedCap终端在时隙内所支持的最大下行TB个数,确定eRedCap终端所支持的下行的峰值数据速率之后,若根据公式
Figure PCTCN2022104476-appb-000010
确定的下行数据速率大于eRedCap终端所支持的下行的峰值数据速率,则限制eRedCap终端不进行时隙内PDSCH的处理,或者,限制基站不进行相应的调度,其中,M"为时隙内下行传输的TB个数,m"为下行传输的第m个TB,V m"为下行传输的第m个TB的TBS,T slot为时隙的持续时长。
通过应用本实施例提供的方案,可将eRedCap终端所支持的最大上行TBS乘以eRedCap终端在时隙内所支持的最大上行TB个数,再除以时隙的持续时长,得到eRedCap终端所支持的上行的峰值数据速率,以及将通信协议中规定的eRedCap终端所支持的最大下行TBS乘以eRedCap终端在时隙内所支持的最大下行TB个数,再除以时隙的持续时长,得到eRedCap终端所支持的下行的峰值数据速率。进而可为eRedCap终端确定峰值数据速率,以满足TBS被进一步限制的需求。
图10为本申请实施例提供的其中一种峰值数据速率的确定装置的结构示意图。可应用于eRedCap终端侧或者应用于基站侧,如图10所示,该装置可以包括:第二获取模块1010,用于获取物理上行共享信道PUSCH的第一缩放系数和物理下行共享信道PDSCH的第二缩放系数,其中,第一缩放系数和第二缩放系数均大于0且小于1;第二确定模块1020,用于根据传统终端所支持的上行的峰值数据速率和第一缩放系数,确定eRedCap终端所支持的上行的峰值数据速率;及根据传统终端所支持的下行的峰值数据速率和第二缩放系数,确定eRedCap终端所支持的下行的峰值数据速率。
在一些实施例中,第二确定模块1020,具体用于将传统终端所支持的上行的峰值数据速率乘以第一缩放系数,得到eRedCap终端所支持的上行的峰值数据速率。
在一些实施例中,第二确定模块1020,具体还用于将传统终端所支持的下行的峰值数据速率乘以第二缩放系数,得到eRedCap终端所支持的下行的峰值数据速率。
在一些实施例中,第二确定模块1020,还用于在根据传统终端数据上行的峰值数据速率和第一缩放系数,确定eRedCap终端所支持的上行的峰值数据速率之后,若根据公式
Figure PCTCN2022104476-appb-000011
确定的上行数据速率大于eRedCap终端所支持的上行的峰值数据速率,则限制eRedCap终端不进行时隙内PUSCH的处理,或者,限制基站不进行相应的调度,其中,M'为时隙内上行传输的TB个数,m'为上行传输的第m个TB,V m'为上行传输的第m个TB的TBS,T slot为时隙的持续时长。
在一些实施例中,第二确定模块1020,还用于在根据传统终端数据下行的峰值数据速率和第二缩放系数,确定eRedCap终端所支持的下行的峰值数据速率之后,若根据公式
Figure PCTCN2022104476-appb-000012
确定的下行数据速率大于eRedCap终端所支持的下行的峰值数据速率,则限制eRedCap终端不进行时隙内PDSCH的处理,或者,限制基站不进行相应的调度,其中,M"为时隙内下行传输的TB个数,m"为下行传输的第m个TB,V m"为下行传输的第m个TB的TBS,T slot为时隙的持续时长。
在一些实施例中,通信协议中规定的eRedCap终端所支持的最大上行TBS为传统终端所支持的最大上行TBS乘以第一缩放系数,以及eRedCap终端所支持的最大下行TBS为传统终端所支持的最大下行TBS乘以第二缩放系数。
通过应用本实施例提供的方案,可将传统终端所支持的上行的峰值数据速率乘以PUSCH信道的第一缩放系数,得到eRedCap终端所支持的上行的峰值数据速率,以及将传统终端所支持的下行的峰值数据速率乘以PDSCH信道的第二缩放系数,得到eRedCap终端所支持的下行的峰值数据速率。进而可为eRedCap终端确定峰值数据速率,以满足TBS被进一步限制的需求。
图11为本申请实施例提供的一种峰值数据速率的确定装置的结构示意图。可应用于eRedCap终端侧或者应用于基站侧,如图11所示,该装置可包括:第三获取模块1110,用于获取通信协议中规定的能力下降eRedCap终端所支持的上行的峰值数据速率,作为eRedCap终端所支持的上行的峰值数据速率;及,获取通信协议中规定的eRedCap终端所支持的下行的峰值数据速率,作为eRedCap终端所支持的下行的峰值数据速率。
在一些实施例中,第三获取模块1110,还用于在获取通信协议中规定的eRedCap终端所支持的上行的峰值数据速率,作为eRedCap终端所支持的上行的峰值数据速率之后,若根据公式
Figure PCTCN2022104476-appb-000013
确定的上行数据速率大于eRedCap终端所支持的上行的峰值数据速率,则限制eRedCap终端不进行时隙内PUSCH的处理,或者,限制基站不进行相应的调度,其中,M'为时隙内上行传输的TB个数,m'为上行传输的第m个TB,V m'为上行传输的第m个TB的TBS,T slot为时隙的持续时长。
在一些实施例中,第三获取模块1110,还用于在获取通信协议中规定的eRedCap终端所支持的下行的峰值数据速率,作为eRedCap终端所支持的下行的峰值数据速率之后,若根据公式
Figure PCTCN2022104476-appb-000014
确定的下行数据速率大于eRedCap终端所支持的下行的峰值数据速率,则限制eRedCap终端不进行时隙 内PDSCH的处理,或者,限制基站不进行相应的调度,其中,M"为时隙内下行传输的TB个数,m"为下行传输的第m个TB,V m"为下行传输的第m个TB的TBS,T slot为时隙的持续时长。
通过应用本实施例提供的方案,可获取通信协议中规定的eRedCap终端所支持的上行的峰值数据速率,作为eRedCap终端所支持的上行的峰值数据速率,以及获取通信协议中规定的eRedCap终端所支持的下行的峰值数据速率,作为eRedCap终端所支持的下行的峰值数据速率。进而可为eRedCap终端确定峰值数据速率,以满足TBS被进一步限制的需求。
请参见图12,图12是本实施例提供的一种通信装置1200的结构示意图。通信装置1200可以是网络设备,也可以是用户设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持用户设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1200可以包括一个或多个处理器1201。处理器1201可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1200中还可以包括一个或多个存储器1202,其上可以存有计算机程序1204,处理器1201执行计算机程序1204,以使得通信装置1200执行上述方法实施例中描述的方法。可选的,存储器1202中还可以存储有数据。通信装置1200和存储器1202可以单独设置,也可以集成在一起。
可选的,通信装置1200还可以包括收发器1205、天线1206。收发器1205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1205可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1200中还可以包括一个或多个接口电路1207。接口电路1207用于接收代码指令并传输至处理器1201。处理器1201运行代码指令以使通信装置1200执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1201中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1201可以存有计算机程序1203,计算机程序1203在处理器1201上运行,可使得通信装置1200执行上述方法实施例中描述的方法。计算机程序1203可能固化在处理器1201中,该种情况下,处理器1201可能由硬件实现。
在一种实现方式中,通信装置1200可以包括电路,该电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide  semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者用户设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图12的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如该通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图13所示的芯片的结构示意图。图13所示的芯片包括处理器1301和接口1302。其中,处理器1301的数量可以是一个或多个,接口1302的数量可以是多个。
可选的,芯片还包括存储器1303,存储器1303用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请申请的技术方案所期望的结果,本文在此不进行限制。
此外,应该理解,本申请所述的各种实施例可以单独实施,也可以在方案允许的情况下与其他实施例组合实施。
本领域普通技术人员可以意识到,结合本文中所申请的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种峰值数据速率的确定方法,其特征在于,应用于能力下降eRedCap终端侧执行或应用于基站侧执行,所述方法包括:
    获取eRedCap终端所支持的最大上行传输块大小TBS,和所述eRedCap终端所支持的最大下行TBS;
    根据所述最大上行TBS、时隙的持续时长和所述eRedCap终端在时隙内所支持的最大上行传输块TB个数,确定所述eRedCap终端所支持的上行的峰值数据速率;及,
    根据所述最大下行TBS、时隙的持续时长和所述eRedCap终端在所述时隙内所支持的最大下行TB个数,确定所述eRedCap终端所支持的下行的峰值数据速率。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述最大上行TBS、时隙的持续时长和所述eRedCap终端在时隙内所支持的最大上行TB个数,确定所述eRedCap终端所支持的上行的峰值数据速率,包括:
    将所述最大上行TBS乘以所述最大上行TB个数,再除以所述时隙的持续时长,得到所述eRedCap终端所支持的上行的峰值数据速率。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述最大下行TBS、时隙的持续时长和所述eRedCap终端在所述时隙内所支持的最大下行TB个数,确定所述eRedCap终端所支持的下行的峰值数据速率,包括:
    将所述最大下行TBS乘以所述最大下行TB个数,再除以所述时隙的持续时长,得到所述eRedCap终端所支持的下行的峰值数据速率。
  4. 根据权利要求1所述的方法,其特征在于,在所述获取eRedCap终端所支持的最大上行TBS,和所述eRedCap终端所支持的最大下行TBS之后,所述方法还包括:
    若根据所述eRedCap终端下行控制信息DCI的调度信息所确定的上行TBS大于所述最大上行TBS,则限制所述eRedCap终端不进行物理上行共享信道PUSCH的处理或不进行时隙内全部PUSCH的处理;或者,限制基站不进行相应的调度;
    若根据所述eRedCap终端DCI的调度信息所确定的下行TBS大于所述最大下行TBS,则限制所述eRedCap终端不进行物理下行共享信道PDSCH的处理或不进行时隙内全部PDSCH的处理;或者,限制基站不进行相应的调度。
  5. 根据权利要求1所述的方法,其特征在于,在所述根据所述最大上行TBS、时隙的持续时长和所述eRedCap终端在时隙内所支持的最大上行TB个数,确定所述eRedCap终端所支持的上行的峰值数据速率之后,所述方法还包括:
    若根据公式
    Figure PCTCN2022104476-appb-100001
    确定的上行数据速率大于所述eRedCap终端所支持的上行的峰值数据速率,则限制所述eRedCap终端不进行时隙内PUSCH的处理,或者,限制基站不进行相应的调度,其中,M' 为时隙内上行传输的TB个数,m'为上行传输的第m个TB,V m'为上行传输的第m个TB的TBS,T slot为时隙的持续时长。
  6. 根据权利要求1所述的方法,其特征在于,在所述根据所述最大下行TBS、时隙的持续时长和所述eRedCap终端在所述时隙内所支持的最大下行TB个数,确定所述eRedCap终端所支持的下行的峰值数据速率之后,所述方法还包括:
    若根据公式
    Figure PCTCN2022104476-appb-100002
    确定的下行数据速率大于所述eRedCap终端所支持的下行的峰值数据速率,则限制所述eRedCap终端不进行时隙内PDSCH的处理,或者,限制基站不进行相应的调度,其中,M"为时隙内下行传输的TB个数,m"为下行传输的第m个TB,V m"为下行传输的第m个TB的TBS,T slot为时隙的持续时长。
  7. 一种峰值数据速率的确定方法,其特征在于,应用于能力下降eRedCap终端侧执行或应用于基站侧执行,所述方法包括:
    获取物理上行共享信道PUSCH的第一缩放系数和物理下行共享信道PDSCH的第二缩放系数,其中,所述第一缩放系数和所述第二缩放系数均大于0且小于1;
    根据所述传统终端所支持的上行的峰值数据速率和所述第一缩放系数,确定所述eRedCap终端所支持的上行的峰值数据速率;及,
    根据所述传统终端所支持的下行的峰值数据速率和所述第二缩放系数,确定所述eRedCap终端所支持的下行的峰值数据速率。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述传统终端所支持的上行的峰值数据速率和所述第一缩放系数,确定所述eRedCap终端所支持的上行的峰值数据速率,包括:
    将所述传统终端所支持的上行的峰值数据速率乘以所述第一缩放系数,得到所述eRedCap终端所支持的上行的峰值数据速率。
  9. 根据权利要求7所述的方法,其特征在于,所述根据所述传统终端数据下行的峰值数据速率和所述第二缩放系数,确定所述eRedCap终端数据下行的峰值数据速率,包括:
    将所述传统终端所支持的下行的峰值数据速率乘以所述第二缩放系数,得到所述eRedCap终端所支持的下行的峰值数据速率。
  10. 根据权利要求7所述的方法,其特征在于,在所述根据所述传统终端数据上行的峰值数据速率和所述第一缩放系数,确定所述eRedCap终端所支持的上行的峰值数据速率之后,所述方法还包括:
    若根据公式
    Figure PCTCN2022104476-appb-100003
    确定的上行数据速率大于所述eRedCap终端所支持的上行的峰值数据速率,则限制所述eRedCap终端不进行时隙内PUSCH的处理,或者,限制基站不进行相应的调度,其中,M'为时隙内上行传输的TB个数,m'为上行传输的第m个TB,V m'为上行传输的第m个TB的TBS,T slot为时隙的持续时长。
  11. 根据权利要求7所述的方法,其特征在于,在所述根据所述传统终端数据下行的峰值数据速率和所述第二缩放系数,确定所述eRedCap终端所支持的下行的峰值数据速率之后,所述方法还包括:
    若根据公式
    Figure PCTCN2022104476-appb-100004
    确定的下行数据速率大于所述eRedCap终端所支持的下行的峰值数据速率,则限制所述eRedCap终端不进行时隙内PDSCH的处理,或者,限制基站不进行相应的调度,其中,M"为时隙内下行传输的TB个数,m"为下行传输的第m个TB,V m"为下行传输的第m个TB的TBS,T slot为时隙的持续时长。
  12. 根据权利要求1所述的方法,其特征在于,所述eRedCap终端所支持的最大上行TBS为所述传统终端所支持的最大上行TBS乘以所述第一缩放系数,以及所述eRedCap终端所支持的最大下行TBS为所述传统终端所支持的最大下行TBS乘以所述第二缩放系数。
  13. 一种峰值数据速率的确定方法,其特征在于,应用于能力下降eRedCap终端侧执行或应用于基站侧执行,所述方法包括:
    获取通信协议中规定的eRedCap终端所支持的上行的峰值数据速率,作为所述eRedCap终端所支持的上行的峰值数据速率;及,
    获取通信协议中规定的所述eRedCap终端所支持的下行的峰值数据速率,作为所述eRedCap终端所支持的下行的峰值数据速率。
  14. 根据权利要求13所述的方法,其特征在于,在所述获取通信协议中规定的eRedCap终端所支持的上行的峰值数据速率,作为所述eRedCap终端所支持的上行的峰值数据速率之后,所述方法还包括:
    若根据公式
    Figure PCTCN2022104476-appb-100005
    确定的上行数据速率大于所述eRedCap终端所支持的上行的峰值数据速率,则限制所述eRedCap终端不进行时隙内PUSCH的处理,或者,限制基站不进行相应的调度,其中,M'为时隙内上行传输的TB个数,m'为上行传输的第m个TB,V m'为上行传输的第m个TB的TBS,T slot为时隙的持续时长。
  15. 根据权利要求13所述的方法,其特征在于,在所述获取通信协议中规定的所述eRedCap终端所支持的下行的峰值数据速率,作为所述eRedCap终端所支持的下行的峰值数据速率之后,所述方法还包括:
    若根据公式
    Figure PCTCN2022104476-appb-100006
    确定的下行数据速率大于所述eRedCap终端所支持的下行的峰值数据速率,则限制所述eRedCap终端不进行时隙内PDSCH的处理,或者,限制基站不进行相应的调度,其中,M"为时隙内下行传输的TB个数,m"为下行传输的第m个TB,V m"为下行传输的第m个TB的TBS,T slot为时隙的持续时长。
  16. 一种峰值数据速率的确定装置,其特征在于,应用于能力下降eRedCap终端侧或应用于基站侧,所述装置包括:
    第一获取模块,用于获取eRedCap终端所支持的最大上行传输块大小TBS,和所述eRedCap终端所支持的最大下行TBS;
    第一确定模块,用于根据所述最大上行TBS、时隙的持续时长和所述eRedCap终端在时隙内所支持的最大上行传输块TB个数,确定所述eRedCap终端所支持的上行的峰值数据速率;及,根据所述最大下行TBS、时隙的持续时长和所述eRedCap终端在所述时隙内所支持的最大下行TB个数,确定所述eRedCap终端所支持的下行的峰值数据速率。
  17. 一种峰值数据速率的确定装置,其特征在于,应用于能力下降eRedCap终端侧或应用于基站侧,所述装置包括:
    第二获取模块,用于获取物理上行共享信道PUSCH的第一缩放系数和物理下行共享信道PDSCH的第二缩放系数,其中,所述第一缩放系数和所述第二缩放系数均大于0且小于1;
    第二确定模块,用于根据所述传统终端所支持的上行的峰值数据速率和所述第一缩放系数,确定所述eRedCap终端所支持的上行的峰值数据速率;及根据所述传统终端所支持的下行的峰值数据速率和所述第二缩放系数,确定所述eRedCap终端所支持的下行的峰值数据速率。
  18. 一种峰值数据速率的确定装置,其特征在于,应用于能力下降eRedCap终端侧或应用于基站侧,所述装置包括:
    第三获取模块,用于获取通信协议中规定的eRedCap终端所支持的上行的峰值数据速率,作为所述eRedCap终端所支持的上行的峰值数据速率;及,获取通信协议中规定的所述eRedCap终端所支持的下行的峰值数据速率,作为所述eRedCap终端所支持的下行的峰值数据速率。
  19. 一种通信设备,应用于能力下降eRedCap终端侧或应用于基站侧,所述通信设备包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1-15中任一项所述的方法。
  20. 一种计算机存储介质,应用于能力下降eRedCap终端侧或应用于基站侧,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1-15中任一项所述的方法。
PCT/CN2022/104476 2022-07-07 2022-07-07 峰值数据速率的确定方法及装置 WO2024007273A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002484.6A CN115315983A (zh) 2022-07-07 2022-07-07 峰值数据速率的确定方法及装置
PCT/CN2022/104476 WO2024007273A1 (zh) 2022-07-07 2022-07-07 峰值数据速率的确定方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104476 WO2024007273A1 (zh) 2022-07-07 2022-07-07 峰值数据速率的确定方法及装置

Publications (1)

Publication Number Publication Date
WO2024007273A1 true WO2024007273A1 (zh) 2024-01-11

Family

ID=83868329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104476 WO2024007273A1 (zh) 2022-07-07 2022-07-07 峰值数据速率的确定方法及装置

Country Status (2)

Country Link
CN (1) CN115315983A (zh)
WO (1) WO2024007273A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024179562A1 (en) * 2023-03-02 2024-09-06 Mediatek Inc. Method and apparatus for device feature support and device capability indication for enhanced reduced capability user equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021155495A1 (en) * 2020-02-04 2021-08-12 Qualcomm Incorporated Capability configurations for new radio redcap devices
CN113676293A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 一种信息发送、接收方法、装置和系统
WO2022067856A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Methods and apparatus for determining parameters for a reduced capability user equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021155495A1 (en) * 2020-02-04 2021-08-12 Qualcomm Incorporated Capability configurations for new radio redcap devices
CN113676293A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 一种信息发送、接收方法、装置和系统
WO2022067856A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Methods and apparatus for determining parameters for a reduced capability user equipment

Also Published As

Publication number Publication date
CN115315983A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2023184457A1 (zh) 生效时间确定方法及装置
WO2024031715A1 (zh) 一种harq反馈方法及其装置
WO2024007273A1 (zh) 峰值数据速率的确定方法及装置
WO2018201984A1 (zh) 数据的传输方法和设备
WO2024000531A1 (zh) 一种循环前缀扩展cpe的发送方法及其装置
WO2024007270A1 (zh) 层2缓存大小的确定方法及装置
WO2023231035A1 (zh) 一种非授权频段下传输资源的确定方法及装置
WO2024050784A1 (zh) Ta调整的生效时间确定方法及装置
WO2024050783A1 (zh) Pdcch与prach之间时序关系的确定方法及装置
WO2024050777A1 (zh) 传输配置方法、装置及系统
WO2024000533A1 (zh) 人工智能应用管理方法、装置及通信设备
WO2024000527A1 (zh) 轨道角动量oam模态指示方法及装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2023245587A1 (zh) 生效时间获取方法及装置
WO2023245681A1 (zh) 基于轨道角动量的上行传输配置方法、装置及系统
WO2024017036A1 (zh) 一种数据发送方法及装置
WO2023130284A1 (zh) 混合自动重传请求反馈方法及装置
WO2024016244A1 (zh) 支持非激活态组播业务接收的配置方法及装置
WO2024000526A1 (zh) 预编码方法及装置
WO2022217440A1 (zh) 一种上行数据的传输方法及其装置
WO2023097630A1 (zh) 混合自动重传的时隙偏移的确定、指示方法及装置
WO2023193279A1 (zh) 频域资源配置方法及装置
WO2023212962A1 (zh) 定位管理功能网元选择方法及装置
WO2024016242A1 (zh) 混合自动重传请求harq进程处理方法及装置
WO2024197938A1 (zh) 一种禁用混合自动重传请求harq反馈的指示方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949857

Country of ref document: EP

Kind code of ref document: A1