WO2024017036A1 - 一种数据发送方法及装置 - Google Patents

一种数据发送方法及装置 Download PDF

Info

Publication number
WO2024017036A1
WO2024017036A1 PCT/CN2023/105257 CN2023105257W WO2024017036A1 WO 2024017036 A1 WO2024017036 A1 WO 2024017036A1 CN 2023105257 W CN2023105257 W CN 2023105257W WO 2024017036 A1 WO2024017036 A1 WO 2024017036A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdu set
pdu
transmission path
pdus
preset value
Prior art date
Application number
PCT/CN2023/105257
Other languages
English (en)
French (fr)
Inventor
强鹂
刘南南
常俊仁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024017036A1 publication Critical patent/WO2024017036A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • the present application relates to the field of communication technology, and in particular, to a data sending method and device.
  • Extended reality includes augmented reality (AR), virtual reality (VR), mixed reality (MR) and many other virtual reality technologies.
  • AR augmented reality
  • VR virtual reality
  • MR mixed reality
  • many data packets transmitted by XR services the importance of different data packets may be different.
  • the sender can use a transmission path that can provide better service quality QoS to send its important/non-discardable data. packets, and use transmission paths that provide weaker QoS to send unimportant/discardable data packets to save network overhead.
  • the embodiments of the present application provide a data sending method and device, which is beneficial to improving the precision of service quality control of the protocol data unit set PDU set and saving network overhead.
  • embodiments of the present application provide a data sending method, which can be applied to the sending end (for example, on the device or chip of the sending end).
  • the method includes: based on the attributes of the protocol data unit set PDU set, mapping the protocol data units PDU in the PDU set to one or more transmission paths, and the characteristics of each transmission path in the multiple transmission paths are different; in one or more transmission paths PDUs in the PDU set are sent over multiple transmission paths.
  • the number of transmission paths is less than or equal to the number of attribute values of the same type of attributes in the PDU set.
  • the sending end can map the PDUs in the PDU set to multiple transmission paths that are smaller than the number of attribute values of the same type of attributes in the PDU set, which is beneficial to improving the fine control of the service quality of the PDU set. At the same time, it simplifies the network architecture and saves network overhead.
  • the attributes of the PDU set include: priority, importance, the proportion of PDUs in the PDU set that are tolerated to be lost, the correct reception rate of the PDUs in the PDU set, and the fault tolerance rate that the PDUs in the PDU set need to meet. , the type of information carried by the PDU set, the number of bytes allowed to be lost/error in the total number of bytes of the PDU set, the bit error rate of the data in the PDU set, and whether the PDU set can be discarded.
  • the attributes of a PDU set can represent the priority, importance, etc. of the PDUs in the PDU set.
  • the characteristics of the transmission path include: PDU packet loss rate, bandwidth, transmission delay, logical channel priority, and priority.
  • the transmission path characteristic is the PDU packet loss rate
  • the higher the bandwidth the better the characteristics of the transmission path.
  • the characteristic of the transmission path is the transmission delay. The smaller the transmission delay, the better the characteristics of the transmission path.
  • the characteristics of the transmission path are logical channel priorities. The higher the logical channel priority, the better the characteristics of the transmission path. When the characteristic of the transmission path is priority, the higher the priority, the better the characteristics of the transmission path.
  • attributes of the same type of PDU set have at least three different values. This method can improve the precision of quality of service control of PDU set.
  • all PDUs in the PDU set are mapped to the first transmission path; and/or, if the attribute value of the PDU set is not better than the first preset value, At the second default value, all PDUs in the PDU set are mapped to the second transmission path; and/or, if the attribute value of the PDU set is better than the second default value and not better than the first default value, the PDU (100-X)% of the PDUs in the set are mapped to the first transmission path, and X% of the PDUs are mapped to the second transmission path.
  • the characteristics of the first transmission path are better than the third preset value, and the characteristics of the second transmission path are not better than the fourth preset value.
  • the first preset value is better than the second preset value, and the third preset value is better than the fourth preset value.
  • X is related to the attribute value of the PDU set, and X is greater than 0 and less than 100.
  • the attribute value of the PDU set is the value characterizing the attribute of the PDU set. For example, when the attribute of PDU set is priority, the attribute value of PDU set It refers to the level value corresponding to the priority of this PDU set. When the attributes of the PDU set are different, the attribute value of the PDU set is better than the first preset value, or the attribute value of the PDU set is not better than the second preset value, which has different meanings.
  • the attribute value of the PDU set is better than the first preset value, which means that the priority level of the PDU set is greater than the first preset value, and the attribute value of the PDU set is not better than the second preset value.
  • the set value means that the priority level of the PDU set is less than or equal to the second preset value.
  • the attribute value of the PDU set is better than the first preset value, which means that the tolerated loss ratio of the PDUs in the PDU set is less than the first preset value.
  • the attribute value of the PDU set is not better than the second preset value, which means that the tolerated loss ratio of PDUs in the PDU set is greater than or equal to the second preset value.
  • the characteristics of the first transmission path are better than the third preset value, and the characteristics of the second transmission path are not better than the fourth preset value, both have different understandings.
  • the characteristics of the first transmission path are better than the third preset value, which may refer to the following situations: the packet loss rate of the PDU of the first transmission path is less than the third preset value; the bandwidth of the first transmission path is higher than the third preset value; The transmission delay of the first transmission path is less than the third preset value; the logical channel priority of the first transmission path is higher than the third preset value; and the priority of the first transmission path is higher than the third preset value.
  • the characteristics of the second transmission path are not better than the fourth preset value, and have a similar understanding as above.
  • the sending end maps it to the first transmission path with better characteristics to increase the percentage of PDUs in the PDU set being successfully sent.
  • the sending end maps them to the second transmission path with average characteristics to save network overhead.
  • the sender maps part of the PDUs in each PDU set to the first transmission path, and maps the remaining PDUs in each PDU set to the second transmission path.
  • the attribute value of the PDU set is better than the first preset value, all PDUs in the PDU set are mapped to the first transmission path; and/or, if the attribute value of the PDU set is not Better than the second default value, all PDUs in the PDU set are mapped to the second transmission path; and/or, if the attribute value of the PDU set is better than the second default value and not better than the first default value, (100-X-x)% of the PDUs in the PDU set are mapped to the first transmission path, and (X+x)% of the PDUs are mapped to the second transmission path.
  • the characteristics of the first transmission path are better than the third preset value, and the characteristics of the second transmission path are not better than the fourth preset value.
  • the first preset value is better than the second preset value, and the third preset value is better than the fourth preset value.
  • X is related to the attribute value of the PDU set, and X is greater than 0 and less than 100.
  • x is a real number greater than or equal to 0 and less than or equal to 100-X.
  • the sending end determines that the second transmission path with poor transmission characteristics can also bear the successful transmission of a part of PDUs. Therefore, for the PDU set whose attributes are in the middle, the sender not only lets the first transmission path bear the part of the PDU set that needs to be sent successfully, but also lets the second transmission path bear the part of the PDU set that needs to be sent successfully. A part of the PDU, that is, the first transmission path and the second transmission path both bear the part of the PDU that needs to be successfully sent in the PDU set to ensure the percentage of the PDU in the PDU set that is successfully sent.
  • the sender maps the PDUs in the PDU set to transmission paths with different characteristics according to the attributes of each PDU set, and the number of mapped transmission paths is less than or equal to the same type of PDU set
  • the number of attribute values of the attribute can improve the precision of service quality control and save network overhead.
  • the first transmission path is associated with a first Packet Data Convergence Protocol (PDCP) entity
  • the second transmission path is associated with a second PDCP entity.
  • the first transmission path is associated with the first Packet Data Convergence Protocol (PDCP) entity, which can be understood as: the first transmission path is a transmission path through which the sending end uses the first PDCP entity to transmit data.
  • the second transmission path is a transmission path through which the sending end uses the second PDCP entity to transmit data.
  • the sender includes two PDCP entities, and different PDCP entities are associated with different transmission paths.
  • the first PDCP entity is associated with a first radio link control RLC entity and a second RLC entity of the second PDCP entity. Since the characteristics of the first transmission path are better than those of the second transmission path, the first RLC entity transmits in acknowledgment mode to ensure the characteristics of the first transmission path, and the second RLC entity transmits in a non-acknowledgement mode to save network overhead.
  • the first PDCP entity is associated with multiple first RLC entities
  • the second PDCP entity is associated with the second RLC entity.
  • the plurality of first RLC entities ensure the characteristics of the first transmission path by adopting non-acknowledgement mode transmission.
  • the second RLC entity also transmits in non-acknowledged mode to save network overhead.
  • both the first transmission path and the second transmission path are associated with the third PDCP entity. That is to say, the sending end includes a third PDCP entity, and the first transmission path and the second transmission path jointly use the third PDCP entity to transmit data.
  • the third PDCP entity is associated with the first RLC entity and with the second RLC entity.
  • the first RLC entity is an RLC entity associated with the first transmission path
  • the second RLC entity is an RLC entity associated with the second transmission path.
  • the characteristics of the first transmission path are better than the characteristics of the second transmission path, so the first RLC entity transmits in acknowledgment mode to ensure the characteristics of the first transmission path, and the second RLC entity transmits in a non-acknowledgement mode to save network overhead.
  • the third PDCP entity is associated with multiple first RLC entities and with the second RLC entity.
  • the plurality of first RLC entities are RLC entities associated with the first transmission path
  • the second RLC entities are RLC entities associated with the second transmission path.
  • first RLC entities associated with the first transmission path can transmit in unacknowledged mode to ensure the characteristics of the first transmission path, and second RLC entities associated with the second transmission path can still transmit in unacknowledged mode to save money.
  • Network overhead can be
  • the sending end can also associate the sequence number of the parent PDU set of the first PDU set with the sequence number of the child PDU set of the second PDU set.
  • the first PDU set is any PDU set in the PDU set
  • the second PDU set is a PDU set composed of part or all of the PDUs in the first PDU set.
  • the second PDU set is a PDU set composed of all PDUs in the first PDU set
  • the second PDU set is the first PDU set.
  • the parent PDU set sequence number is the sequence number maintained by the service data adaptation protocol SDAP layer
  • the sub-PDU set sequence number is the sequence number maintained by the PDCP layer.
  • the parent PDU set sequence number is the sequence number maintained by the PDCP layer
  • the sub-PDU set sequence number is the sequence number maintained by the RLC layer.
  • the sender can associate the sequence number maintained by the SDAP layer of any PDU set in the PDU set with the sequence number maintained by the PDCP layer of the PDU set composed of part or all of the PDU sets in the PDU set.
  • the sender can associate the sequence number maintained by the PDCP layer of any PDU set in the PDU set with the sequence number maintained by the RLC layer of the PDU set composed of part or all of the PDUs in the PDU set.
  • the sending end may also stop sending the third PDU set and the fourth PDU set when it is determined that y PDUs in the third PDU set are lost.
  • y is an integer greater than or equal to 1
  • the third PDU set is a PDU set composed of part of the PDUs mapped to the first transmission path
  • the fourth PDU set is composed of part of the PDUs mapped to the second transmission path PDU set
  • the serial number of the parent PDU set of the fourth PDU set is the same as the serial number of the parent PDU set of the third PDU set.
  • the sending end determines not to continue sending other PDUs in the PDU set, and not to continue sending PDUs in the PDU set that have the same parent PDU set sequence number as the PDU set. This method can increase the percentage of PDUs in the remaining PDU sets except the third PDU set and the fourth PDU set that are successfully sent, and can save network overhead.
  • the sending end may also send the third PDU set and the third PDU set when it is determined that y messages in the third PDU set are lost and z messages in the fourth PDU set are successfully sent.
  • the third PDU set is a PDU set consisting of partial PDUs mapped to the first transmission path
  • the fourth PDU set is a PDU set consisting of partial PDUs mapped to the second transmission path
  • the fourth PDU set The sequence number of the parent PDU set is the same as the sequence number of the parent PDU set of the third PDU set.
  • y is an integer greater than or equal to 1
  • z is an integer greater than or equal to y.
  • the difference from the above embodiment is that when the sending end determines that there is a lost PDU in the PDU set composed of some PDUs mapped to the first transmission path, it does not directly stop sending other PDUs in the PDU set and the PDU set. set the PDU set with the same parent PDU set sequence number, but determine whether a PDU set that is greater than or equal to the number of losses and has the same parent PDU set sequence number as the PDU set is successfully sent on the second transmission path. PDU in .
  • the sending end determines that the second transmission path has been used to successfully send PDUs in the PDU set that are greater than or equal to the number of losses and have the same parent PDU set sequence number as the PDU set, it indicates that it will continue to send other PDUs in the PDU set. And the PDU in the PDU set with the same parent PDU set sequence number as the PDU set can also ensure that the PDU set and the PDU set with the same parent PDU set sequence number as the PDU set are successfully sent. Therefore, the sender continues to send PDUs in this PDU set and PDUs in the same parent PDU set as this PDU set.
  • this application also provides a communication device.
  • the communication device has part or all of the functions of the sending end described in the first aspect.
  • the communication device may have the functions of some or all of the embodiments of the sending end described in the first aspect of this application, or may have the functions of independently implementing any of the embodiments of this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other communication devices.
  • the communication device may further include a storage unit coupled to the processing unit and the communication unit, which stores necessary program instructions and data for the communication device.
  • the communication device includes: a processing unit and a communication unit;
  • a processing unit configured to map the protocol data units PDU in the PDU set to one or more transmission paths based on the attributes of the protocol data unit set PDU set; the characteristics of each transmission path in the multiple transmission paths vary. same;
  • a communication unit configured to send the PDU in the PDU set on the one or more transmission paths
  • the number of transmission paths is less than or equal to the number of attribute values of the same type of attributes of the PDU set.
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory
  • the processing unit may be a processor
  • the communication device includes: a processor and a transceiver
  • a processor configured to map the protocol data units PDU in the PDU set to one or more transmission paths based on the attributes of the protocol data unit set PDU set; the characteristics of each transmission path in the multiple transmission paths vary. same;
  • a transceiver for sending the PDU in the PDU set on the one or more transmission paths
  • the number of transmission paths is less than or equal to the number of attribute values of the same type of attributes of the PDU set.
  • the communication device is a chip or a chip system.
  • the processing unit can also be embodied as a processing circuit or a logic circuit; the transceiver unit can be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may be used to perform, for example, but not limited to, baseband related processing
  • the transceiver may be used to perform, for example, but not limited to, radio frequency transceiver.
  • the above-mentioned devices may be arranged on separate chips, or at least part or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on an independent chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • the digital baseband processor can be integrated with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • SoC system on a chip
  • the embodiments of this application do not limit the implementation form of the above devices.
  • this application also provides a processor for executing the various methods mentioned above.
  • the process of sending the above information and receiving the above information in the above method can be understood as the process of the processor outputting the above information, and the process of the processor receiving the input above information.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver for transmission by the transceiver. After the above information is output by the processor, it may also need to undergo other processing before reaching the transceiver.
  • the processor receives the above information input, the transceiver receives the above information and inputs it into the processor. Furthermore, after the transceiver receives the above information, the above information may need to undergo other processing before being input to the processor.
  • sending the PDU in the PDU set on one or more transmission paths can be understood as the processor outputting the PDU in the PDU set on one or more transmission paths.
  • processor output and reception, input operations rather than the transmitting and receiving operations performed directly by RF circuits and antennas.
  • the above-mentioned processor may be a processor specifically designed to perform these methods, or may be a processor that executes computer instructions in a memory to perform these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated on the same chip as the processor, or can be separately provided on different chips.
  • ROM read-only memory
  • this application also provides a communication system, which includes one or more network devices and one or more terminal devices.
  • the system may also include other devices that interact with network devices and terminal devices.
  • the present application provides a computer-readable storage medium for storing instructions that, when executed by a computer, implement the method described in any one of the above first aspects.
  • the present application also provides a computer program product including instructions that, when run on a computer, implement the method described in any one of the above first aspects.
  • this application provides a chip system.
  • the chip system includes a processor and an interface.
  • the interface is used to obtain a program or instructions.
  • the processor is used to call the program or instructions to implement or support the sending end implementation.
  • the first aspect involves the functions. For example, at least one of the data and information involved in the above method is determined or processed.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data for the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a communication device, including a processor for executing a computer program or executable instructions stored in a memory.
  • the computer program or executable instructions When executed, the device performs the steps of the first aspect. Methods in possible implementations.
  • processor and memory are integrated;
  • the above-mentioned memory is located outside the communication device.
  • beneficial effects from the second aspect to the eighth aspect can be referred to the beneficial effects from the first aspect, and will not be described again here.
  • Figure 1 is a schematic system structure diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flowchart of a data sending method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a sending end entity architecture provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another sending end entity architecture provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another sending end entity architecture provided by an embodiment of the present application.
  • Figure 6 is another sending end entity architecture diagram provided by the embodiment of the present application.
  • Figure 7 is a mapping schematic diagram of a protocol data unit set mapping provided by an embodiment of the present application.
  • Figure 8 is a mapping schematic diagram of yet another protocol data unit set mapping provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • At least one (item) refers to one or more.
  • “Plural” means two or more.
  • “At least two (items)” means two or three or more than three.
  • “And/or” is used to describe the relationship between associated objects, indicating that three relationships can exist. For example, “A and/or B” can mean: only A exists, only B exists, and both A and B exist simultaneously, where A and B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship. “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c”, or “a and b and c” ”, where a, b, c can be single or multiple.
  • "...when” and “if” both mean that corresponding processing will be made under certain objective circumstances. They do not limit the time, nor do they require judgment during implementation, nor do they mean that there are other limitations.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the present application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • a wireless communication system may include one or more network devices and one or more terminal devices. Wireless communication systems can also perform point-to-point communication, such as communication between multiple terminal devices.
  • the wireless communication systems mentioned in the embodiments of this application include but are not limited to: narrowband-internet of things (NB-IoT), long term evolution (LTE), 5G/6G
  • NB-IoT narrowband-internet of things
  • LTE long term evolution
  • 5G/6G The three major application scenarios of mobile communication systems: enhanced mobile broadband (eMBB), ultra-reliable low latency communication (URLLC) and massive machine type of communication (mMTC), Wireless fidelity (WiFi) system, or mobile communication system after 5G, etc.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low latency communication
  • mMTC massive machine type of communication
  • WiFi Wireless fidelity
  • mobile communication system after 5G etc.
  • the network device is a device with wireless transceiver function, used to communicate with the terminal device, and may be an evolved base station (evolved Node B, eNB or eNodeB) in LTE, or a 5G/6G network.
  • eNB evolved Node B
  • eNodeB evolved Node B
  • 5G/6G 5G/6G network.
  • Base station or future evolution of public land mobile Base stations broadband network partnership gateways (BNG), aggregation switches or non-3rd generation partner project (3GPP) access equipment in public land mobile networks (PLMN).
  • BNG broadband network partnership gateways
  • 3GPP non-3rd generation partner project
  • the network equipment in the embodiments of this application may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, future equipment that implements base station functions, and WiFi systems.
  • the access node transmitting and receiving point (TRP), transmitting point (TP), mobile switching center and device-to-device (D2D), vehicle outreach (vehicle- to-everything (V2X), machine-to-machine (M2M) communication, equipment that assumes base station functions, etc., the embodiments of the present application do not specifically limit this.
  • Network equipment can communicate and interact with core network equipment and provide communication services to terminal equipment.
  • the core network equipment is, for example, equipment in the 5G network core network (core network, CN).
  • core network As a bearer network, the core network provides an interface to the data network, provides terminals with communication connections, authentication, management, policy control, and carries data services.
  • the terminal devices involved in the embodiments of this application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems. Terminal devices may also be called terminals. Terminal equipment can also refer to user equipment (UE), access terminal, subscriber unit, user agent, cellular phone, smart phone, wireless data card, personal digital assistant ( personal digital assistant (PDA) computers, tablet computers, wireless modems, handsets, laptop computers, machine type communication (MTC) terminals, and high-altitude aircraft Communication equipment, wearable devices, drones, robots, terminals in device-to-device (D2D) communication, terminals in vehicle to everything (V2X), virtual reality, VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home or terminals in future communication networks Equipment, etc., are not limited in this application
  • the sending end may be the above-mentioned network device or the above-mentioned terminal device.
  • Protocol data unit can be a service data adaptation protocol (service data adaptation protocol, SDAP) entity, packet data convergence protocol (packet data convergence protocol, PDCP) entity, wireless link control (radio link control, RLC) entity, media access control ( medium access control, MAC) entity.
  • Protocol resources can be logical channels, logical channel groups, hybrid automatic repeat request (HARQ) entities, and HARQ processes.
  • FIG. 1 An embodiment of the present application proposes a data sending method 100.
  • Figure 2 is a schematic flowchart of the data sending method 100.
  • the data sending method 100 is explained from the perspective of the sending end.
  • the data sending method 100 includes but is not limited to the following steps:
  • the sender maps the protocol data units PDU in the PDU set to one or more transmission paths based on the attributes of the protocol data unit set PDU set.
  • the sending end sends the PDU in the PDU set on one or more transmission paths.
  • the characteristics of each transmission path in the multiple transmission paths are different, and the number of transmission paths is less than or equal to the number of attribute values of the same type of attributes in the protocol data unit set PDU set.
  • a PDU set includes one or more protocol data units PDU.
  • the data included in a PDU set can correspond to the data of one frame, and the data of one frame can be the data of one frame of picture.
  • PDU can also be understood as a data packet.
  • a PDU set includes one or more PDUs, which can also be understood as: a PDU includes one or more data packets.
  • the messages in the PDU set belong to the same service flow, or belong to the same Internet Protocol (IP) flow, or belong to the same quality of service (QoS) flow.
  • IP Internet Protocol
  • QoS quality of service
  • the attributes of the PDU set include but are not limited to: priority, importance, proportion of PDUs in the PDU set that are tolerated to be lost, correct reception rate of PDUs in the PDU set, PDUs in the PDU set need to meet The fault tolerance rate and the information carried by the PDU set Type, the number of bytes allowed to be lost/error in the total number of bytes of the PDU set, the bit error rate of the data in the PDU set, and whether the PDU set can be discarded.
  • PDU set #1 includes 100 PDUs, and the tolerated ratio of PDUs in the PDU set #1 is 20%, which means that the PDU set #1 can tolerate the loss of up to 20 PDUs, which means that the PDU set #1 is required to be lost. At least 80 PDUs are sent successfully.
  • the correct reception rate of PDUs in a PDU set refers to the minimum probability of correct reception of PDUs in a PDU set.
  • PDU set #3 includes 100 PDUs, and the correct reception rate of PDUs in PDU set #3 is 60%, which means that at least 60 PDUs in PDU set #3 should be received correctly.
  • the fault tolerance rate that the PDUs in the PDU set must meet refers to the probability that the PDUs in the PDU set will fail to be sent at most.
  • PDU set #4 includes 100 PDUs, and the fault tolerance rate that the PDUs in the PDU set #4 need to meet is 10%, which means that the PDU set #4 can tolerate up to 10 PDUs being sent failed.
  • the type of information carried by a PDU set refers to the type of information carried by the PDU in the PDU set.
  • the types of information carried by the PDU set include but are not limited to the following: video data, voice data, control instruction data, I-frame data in the video, P-frame data in the video, and sensor data.
  • the PDU in PDU set #1 carries video data
  • the PDU in PDU set #2 carries voice data
  • the PDU in PDU set #3 carries the data of the I frame in the video
  • the PDU in PDU set #2 carries the data of the P frame in the video.
  • the number of bytes allowed to be lost/errored in the total number of bytes of the PDU set represents the maximum number of bytes that can be lost/errored in the total number of bytes of the PDU set.
  • PDU set #2 contains 100 bytes, and the number of allowed/error bytes in the total number of bytes in the PDU set #2 is 30, which means that the maximum number of bytes in the PDU set #2 can be lost/
  • An error of 30 bytes means that at least 70 bytes in the PDU set#2 are required to be sent successfully.
  • the bit error rate of the data in the PDU set can refer to the highest bit error rate allowed when the data in the PDU set is sent.
  • PDU set #3 includes 100 PDUs, and the bit error rate of the data in PDU set #3 is 10%, then the maximum allowed bit error rate of the 100 PDUs in PDU set #3 is 10%, that is, the 100 A maximum of 10 PDUs are allowed to be transmitted incorrectly.
  • Whether the PDU set can be discarded can refer to whether all the data in the PDU set can be discarded.
  • the PDU set is PDU set#1, and PDU set#1 includes 80 PDUs. If PDU set#1 can be discarded, it means that all 80 PDUs in the PDU set#1 can be discarded, which means that the PDU set# The data carried by 1 is less important.
  • the PDU set includes PDU set#1, PDU set#2 and PDU set#3. If the PDU set can be discarded, it means that the data in PDU set#1, PDU set#2 and PDU set#3 can all be discarded. .
  • the attribute value of the PDU set refers to the value of the attribute characterizing the PDU set.
  • the attribute value of the PDU set refers to the level value corresponding to the priority of the PDU set.
  • the attribute value of the PDU set refers to the degree level corresponding to the importance of the PDU set.
  • the attribute value of the PDU set refers to the proportion of the PDUs in the PDU set that are tolerated to be lost.
  • the attribute of the PDU set is the correct reception rate of the PDUs in the PDU set
  • the attribute value of the PDU set refers to the correct reception rate of the PDUs in the PDU set.
  • the attribute value of the PDU set refers to the fault tolerance rate that the PDUs in the PDU set need to meet.
  • the attribute value of the PDU set refers to the priority or importance level value corresponding to the type of information carried in the PDU set.
  • the attribute values of the same type of attributes of a PDU set refer to one or more attribute values corresponding to an attribute of the PDU set.
  • the priority of the PDU set can be divided into level A, level B and level C. Then level A, level B and level C are the corresponding numbers when the attribute of the PDU set is priority. attribute value.
  • the tolerated loss ratio of the PDUs in the PDU set can include 0%, 40%, 70%, 100%, then 0%, 40% , 70%, and 100% are multiple attribute values corresponding to the proportion of PDUs in the PDU set that are tolerated to be lost.
  • the characteristics of the transmission path include but are not limited to: PDU packet loss rate, bandwidth, delay, logical channel priority, and priority.
  • the packet loss rate of PDU refers to the packet loss rate of PDU transmitted on the transmission path.
  • the smaller the packet loss rate of PDU the better the characteristics of the transmission path.
  • Bandwidth refers to the bandwidth used to transmit PDUs on the transmission path. The larger the bandwidth, the better the characteristics of the transmission path.
  • Latency refers to the delay in transmitting PDUs on the transmission path. The smaller the delay, the better the characteristics of the transmission path.
  • the logical channel priority refers to the logical channel priority of the transmission path.
  • the logical channel priority may refer to the priority corresponding to the transmission path when transmitting from the RLC layer to the lower protocol layer.
  • the higher the priority of the logical channel the better the characteristics of the transmission path.
  • the priority refers to the priority of the transmission path, which can refer to the protocol starting from the PDCP layer to the lower layer. When transmitting at the negotiation layer, the priority corresponding to the transmission path. The higher the priority, the better the characteristics of the transmission path.
  • attributes of the same type in the PDU set have at least three different attribute values.
  • the priority of the PDU set can be divided into level A, level B and level C, and the level of level A is greater than the level of level B, and the level of level B is greater than the level of level C.
  • the importance level of the PDU set can be divided into three levels: important, unimportant, and generally important.
  • the attribute of the PDU set is the type of information carried by the PDU set
  • the type of information carried by the PDU set can be divided into video data, voice data, and sensor data.
  • this method allows the sender to subdivide the same type of attributes of the PDU set into at least three different levels/different attribute values, thereby improving the precision of the service quality control of the PDU set.
  • the sending end maps the PDUs in the PDU set to one or more transmission paths, which can also be understood as: the sending end uses one or more transmission paths to send the PDUs in the PDU set, or the sending end uses Resources on one or more transmission paths send PDUs in the PDU set.
  • the following combines the number and attributes of the PDU set to describe the implementation method of the sender mapping the PDUs in the PDU set to one or more transmission paths based on the attributes of the PDU set:
  • Case 1 There are one or more PDU sets, and the attribute values of the one or more PDU sets are better than the first preset value.
  • the sender will add the PDUs in each PDU set to the one or more PDU sets. are mapped to the first transmission path.
  • the characteristics of the first transmission path are better than the third preset value, and the first preset value and the third preset value are preset.
  • the attribute values of the PDU set are better than the first preset value and have different meanings. For example, when the attribute of the PDU set is priority, the attribute value of the PDU set is better than the first preset value, which means that the attribute value of the PDU set is greater than the first preset value. For another example, when the attribute of the PDU set is the tolerated loss ratio of the PDUs in the PDU set, the attribute value of the PDU set is better than the first preset value, which means that the attribute value of the PDU set is less than the first preset value.
  • attribute values of one or more PDU sets are the same or different, or that the attribute values of some PDU sets in one or more PDU sets are the same and the attribute values of some PDU sets are different.
  • the characteristics of the first transmission path are better than the third preset value, which may refer to the following situations: the packet loss rate of the PDU of the first transmission path is less than the third preset value; the bandwidth of the first transmission path is higher than the third preset value; The transmission delay of the first transmission path is less than the third preset value; the logical channel priority of the first transmission path is higher than the third preset value; the priority of the first transmission path is higher than the third preset value.
  • the first preset value may be preset based on the attribute category of the PDU set.
  • the attribute of the PDU set is the tolerated loss ratio of the PDUs in the PDU set, and the sending end sets the first default value in advance to 10%.
  • the attribute of the PDU set is the correct reception rate of the PDUs in the PDU set, and the sending end sets the first default value to 95% in advance.
  • the third preset value may be preset based on a category characterizing the characteristics of the transmission path.
  • the characteristic of the transmission path is the packet loss rate of the PDU, and the sending end sets the third preset value to 5% in advance.
  • the characteristic of the transmission path is transmission delay, and the sending end sets the third preset value in advance to 0.2, with the unit being ms.
  • each PDU set in the one or more PDU sets is of higher importance or priority. High, or the proportion of PDUs in each PDU set that is tolerated to be lost is smaller, etc., so that the percentage of PDUs in each PDU set that are required to be successfully sent is higher.
  • the attribute of a PDU set is the tolerated loss ratio of PDUs in the PDU set.
  • the first default value is 5%, indicating that the tolerated loss ratio of each PDU set in the one or more PDU sets is less than 5%, that is, Greater than 95% of the PDUs in each PDU set in the one or more PDU sets are required to be sent successfully.
  • the characteristics of the first transmission path are better than the third preset value, indicating that the first transmission path is a transmission path with higher characteristics, or it may mean that the first transmission path can provide a higher quality of service (QoS). data transmission.
  • QoS quality of service
  • data transmission For example, when using the first transmission path to send a PDU, it can be ensured that the PDU has a lower packet loss rate, that is, it can be ensured that the sent PDU will hardly be lost, or it can be ensured that the PDU has a low delay, etc.
  • the sending end maps the PDUs in each PDU set in the one or more PDU sets to the first transmission path, so as to Ensure that the percentage of PDUs in each PDU set in the one or more PDU sets is successfully sent, or to increase the percentage of PDUs in each PDU set in the one or more PDU sets that are successfully sent.
  • the PDU set is PDU set #1
  • the tolerated loss ratio of PDUs in PDU set #1 is 0.5%
  • the first preset value is 1%
  • the sending end maps all PDUs in PDU set #1 to On the first transmission path, that is, the sending end uses the first transmission path to send all PDUs in the PDU set #1.
  • PDU set includes PDU set#1, PDU set#2, PDU set#3, PDU set#1, PDU set#2, PDU set#3
  • the correct acceptance rate of PDU is 100%, and the first preset value is 90%, then the sender maps the PDUs in PDU set#1, PDU set#2, and PDU set#3 to the first transmission path, that is, The sending end uses the first transmission and path to send PDU set #1, PDU set #2, and PDU set #3.
  • the PDU set includes PDU set#1, PDU set#2, and PDU set#3.
  • the tolerated loss ratios of the PDUs in PDU set#1, PDU set#2, and PDU set#3 are 100% and 100%, respectively. 98%, 90%, and the first default value is 85%, then the sender will map the PDUs in PDU set#1, PDU set#2, and PDU set#3 to the first transmission path.
  • Case 2 There are one or more PDU sets, and the attribute values of the one or more PDU sets are not better than the second preset value.
  • the sender puts the one or more PDU sets in each PDU set.
  • the PDUs are all mapped to the second transmission path, and the characteristics of the second transmission path are not better than the fourth preset value.
  • the second preset value and the third preset value are both preset, and the first preset value is better than the second preset value, and the third preset value is better than the fourth preset value.
  • the second preset value may be preset based on the attribute category of the PDU set.
  • the attribute of the PDU set is the tolerated loss ratio of the PDUs in the PDU set, and the sending end sets the second default value to 90% in advance.
  • the fourth preset value may be preset based on a category characterizing the characteristics of the transmission path.
  • the characteristic of the transmission path is the packet loss rate of the PDU, and the sending end sets the fourth preset value to 80% in advance.
  • attribute values of one or more PDU sets are the same or different, or that the attribute values of some PDU sets in one or more PDU sets are the same and the attribute values of some PDU sets are different.
  • the attribute value of the PDU set is not better than the second default value and has different meanings.
  • the attribute value of the PDU set is not better than the second preset value, which means that the attribute value of the PDU set is less than or equal to the second preset value.
  • the characteristics of the transmission path are different, the characteristics of the second transmission path are not better than the fourth preset value, and there are also different understandings.
  • the characteristics of the second transmission path are not better than the fourth preset value, which is contrary to the above understanding that the characteristics of the first transmission path are better than the third preset value, and will not be described again.
  • the characteristic of the transmission path is the packet loss rate of the PDU
  • the characteristic of the second transmission path is not better than the fourth preset value, which means that the packet loss rate of the PDU of the second transmission path is greater than or equal to the fourth preset value.
  • the third preset value is better than the fourth preset value, indicating that the characteristics of the first transmission path are better than the characteristics of the second transmission path.
  • the characteristics of the first transmission path are better than those of the second transmission path, which can refer to the following situations: the packet loss rate of the PDU of the first transmission path is less than the packet loss rate of the PDU of the second transmission path; the bandwidth of the first transmission path is greater than that of the second transmission path.
  • the bandwidth of the two transmission paths; the delay of the first transmission path is less than the delay of the second transmission path; the logical channel priority of the first transmission path is higher than the logical channel priority of the second transmission path; the priority of the first transmission path Higher priority than the second transmission path.
  • the characteristics of the first transmission path are better than the characteristics of the second transmission path, and the second transmission path provides best effort service (best effort).
  • the second transmission path provides a best-effort service, which means that the sending end uses its best effort to transmit the PDU transmitted on the second transmission path based on network conditions.
  • network conditions are good, more PDUs or all PDUs to be sent on the second transmission path can be sent successfully.
  • the network condition is poor, fewer PDUs to be sent on the second transmission path can be successfully sent, or none of them can be sent successfully.
  • the PDU on the second transmission path can be completely successfully sent, that is, the packet loss rate of the PDU on the second transmission path is 0%. None of the PDUs on the transmission path are successfully sent. At this time, the packet loss rate of the PDUs on the second transmission path is 100%.
  • the attribute value of one or more PDU sets is not better than the second preset value, it indicates that in the one or more PDU sets, the percentage of PDUs in each PDU set that are required to be successfully sent is low, or is not constrained, For example, the one or more PDU sets are allowed to serve as best effort.
  • the characteristics of the second transmission path are not better than the fourth preset value, indicating that the service quality provided on the second transmission path cannot be guaranteed, that is, the service quality provided on the second transmission path depends on network conditions.
  • the sender maps the PDUs of each PDU set in the one or more PDU sets to the second transmission path, so as to When the network condition is good, the PDU of each PDU set is sent as much as possible, but when the network condition is poor, the percentage of PDUs of each PDU set being successfully sent is not guaranteed to save network overhead.
  • the PDU set is PDU set #1
  • the tolerated loss ratio of PDUs in PDU set #1 is 90%
  • the first default value is 80%
  • the sender maps all PDUs in PDU set #1 To the second transmission path, that is, the sending end uses the second transmission path to send all PDUs in PDU set #1.
  • the PDU set includes PDU set #1, PDU set #2, and PDU set #3.
  • the correct acceptance rates of PDUs in PDU set #1, PDU set #2, and PDU set #3 are 8% and 10% respectively. , 15%, and the first default value is 20%, then the sending end maps all the PDUs in PDU set #1, PDU set #2, and PDU set #3 to the second transmission path, that is, uses the second transmission path to send All PDUs in PDU set#1, PDU set#2, and PDU set#3.
  • Case 3 There are one or more PDU sets, and the attribute values of the one or more PDU sets are better than the second preset value and not better than the first preset value.
  • the sending end puts the one or more PDU sets into , part of the PDUs in each PDU set is mapped to the first transmission path, and the remaining part of the PDUs is mapped to the second transmission path.
  • Implementations in which the sending end maps one or more of the above PDU sets, and some PDUs in each PDU set to the first transmission path, and the remaining PDUs to the second transmission path include but are not limited to the following implementations:
  • Embodiment 1 The sending end maps the above one or more PDU sets, (100-X)% of the PDUs in each PDU set to the first transmission path, and maps X% of the PDUs in each PDU set to the first transmission path. on the second transmission path.
  • the characteristics of the first transmission path are better than the third preset value, and the characteristics of the second transmission path are not better than the fourth preset value, that is, the characteristics of the first transmission path are better than the characteristics of the second transmission path.
  • the characteristics of the first transmission path are better than the characteristics of the second transmission path. Please refer to the above description and will not be described again.
  • attribute values of one or more PDU sets are the same or different, or that the attribute values of some PDU sets in one or more PDU sets are the same and the attribute values of some PDU sets are different.
  • X is related to the attribute value of the PDU set, and X is greater than 0 and less than 100.
  • X is related to the attribute value of the PDU set, which means that the value of X is determined based on the attribute value of the PDU set.
  • the attribute of PDU set is priority. The lower the priority value, the higher the priority level.
  • the priority of PDU set is level 1, and the value of X can be equal to 0. Then, all PDUs in the PDU set are mapped to the first transmission path, and no PDU is mapped to the second transmission path.
  • the tolerated loss ratio of PDUs in each PDU set is 30%, and the value of X can be 30. Then, in one or more PDU sets, 70% of the PDUs in each PDU set are mapped to the first transmission path, and the remaining 30% of the PDUs are mapped to the second transmission path to ensure that one or more PDU sets At least 70% of the PDUs in each PDU set are successfully sent.
  • one or more PDU sets include PDU set#1, PDU set#2 and PDU set#3, and the correct reception rate of the PDUs in PDU set#1, PDU set#2 and PDU set#3 is 90% respectively.
  • the X corresponding to PDU set#1 can be 10
  • the X corresponding to PDU set#2 can be 20
  • the X corresponding to PDU set#3 can be 30.
  • the sender maps 90% of the PDUs in PDU set #1 to the first transmission path, maps the remaining 10% of the PDUs in PDU set #1 to the second transmission path, and maps 80% of the PDUs in PDU set #2 of PDUs are mapped to the first transmission path, the remaining 20% of the PDUs in PDU set #2 are mapped to the second transmission path, and 70% of the PDUs in PDU set #3 are mapped to the first transmission path, and the PDUs in PDU set #3 are mapped to the first transmission path. The remaining 30% of PDUs in set #3 are mapped to the second transmission path.
  • one or more PDU sets are PDU set #1, and the information carried by this PDU set #1 is voice data. Since the importance of voice data is relatively high, the value of X is determined to be 15. Then, the sending end maps 85% of the PDUs in PDU set #1 to the first transmission path and 15% of the PDUs to the second transmission path to ensure that more than 85% of the PDUs in PDU set #1 are successfully sent. .
  • the sending end maps the first part of the PDU in the PDU set to the first transmission path with better characteristics.
  • the remaining PDUs in the second part are mapped to the second transmission path with poor characteristics, and the values of the first part and the second part are determined based on the attribute values of the PDU set.
  • the sending end directly maps all PDUs in the PDU set to the third transmission path.
  • the transmission of the third transmission path The characteristics are better than the fourth preset value and not better than the third preset value. That is to say, the sending end maps all PDUs in the PDU set whose attribute values are better than the second preset value and not better than the first preset value to the third transmission path that matches the attribute value of the PDU set. .
  • this application can map the PDU set whose attribute value is better than the second preset value and not better than the first preset value.
  • the PDU is divided more finely, but there is no third transmission path. Therefore, this application can improve the precision of PDU set service quality control while saving network overhead.
  • Embodiment 2 The sender maps one or more PDU sets, (100-X-x)% of the PDUs in each PDU set to the first transmission path, and (X+x)% of the PDUs in each PDU set is mapped to the second transmission path.
  • X is related to the attribute value of the PDU set.
  • x is a real number greater than or equal to 0 and less than or equal to 100-X.
  • X is related to the attribute value of the PDU set.
  • the determination method of x can be a smaller number obtained through multiple experimental verifications.
  • attribute values of one or more PDU sets are the same or different, or that the attribute values of some PDU sets in one or more PDU sets are the same and the attribute values of some PDU sets are different.
  • the sending end determines that the second transmission path with poor transmission characteristics can also bear the successful transmission of a part of PDUs. Therefore, for a PDU set whose attributes are in the middle, the sending end not only lets the first transmission path bear the A part of the PDU in the PDU set that needs to be sent successfully also allows the second transmission path to bear the responsibility for a part of the PDU that needs to be sent successfully in the PDU set, that is, the first transmission path and the second transmission path both bear the responsibility of the PDU set that needs to be sent successfully. part of the PDU to ensure the percentage of PDUs in the PDU set that are successfully sent.
  • the PDU set is PDU set #1
  • the tolerated loss ratio of PDUs in PDU set #1 is 30%
  • the second transmission path can bear the PDU loss ratio is 5%.
  • the sending end maps 65% of the PDUs in PDU set #1 to the first transmission path, and maps 35% of the PDUs in PDU set #1 to the second transmission path.
  • PDU set #1 includes 100 PDUs
  • the sender maps 65 PDUs in PDU set #1 to the first transmission path, and maps the remaining 35 PDUs in PDU set #1 to the second transmission path.
  • the PDU set includes PDU set #1 and PDU set #2.
  • the tolerated loss ratios of PDUs in PDU set #1 and PDU set #2 are 20% and 30% respectively.
  • the second transmission path can transmit at least 10 % of data packets.
  • the sender maps 70% of the PDUs in PDU set #1 to the first transmission path, maps the remaining 30% of the PDUs in PDU set #1 to the second transmission path, and maps 60% of the PDUs in PDU set #2 to the second transmission path. of PDUs are mapped to the first transmission path, and the remaining 40% of the PDUs in PDU set #2 are mapped to the second transmission path.
  • This method can ensure that at least 80% of the PDUs in PDU set #1 are successfully sent, and at least 70% of the PDUs in PDU set #2 are sent successfully.
  • Embodiment 3 The sending end maps (100-X)% of the data in each PDU in each PDU set in the one or more PDU sets to the first transmission path, and maps X% of the data in each PDU to the second transmission path.
  • the value of X can be found in the above description and will not be described again.
  • Embodiment 4 The sending end can map (100-X-x)% of the data in each PDU of each PDU set in the one or more PDU sets to the first transmission path, and (X+x) in each PDU )% of the data is mapped to the second transmission path.
  • the values of X and x can be found in the above description and will not be described again.
  • Embodiment 3 and 4 For one or more PDU sets whose attribute values are better than the second preset value and not better than the first preset value, the differences between Embodiment 3 and 4 and the above Embodiment 1 and 2 That is, in Embodiment 3 and 4, the sending end maps part of the data in each PDU of each PDU set in the one or more PDU sets to the first transmission path, and the data in each PDU The remaining data is mapped to the second transmission path.
  • This method can also ensure that in one or more PDU sets, the percentage of PDUs in each PDU set that is successfully sent.
  • Case 4 There are one or more PDU sets, the attribute values of some PDU sets in one or more PDU sets are better than the first preset value, and the attribute values of some PDU sets are better than the second preset value but not better than The first preset value, the sending end maps the PDUs in the partial PDU set that are better than the first preset value to the first transmission path, and the attribute value is better than the second preset value and not better than the first preset value
  • part of the PDU in each PDU set is mapped to the first transmission path, and the remaining part of the PDU in each PDU set is mapped to the second transmission path.
  • the sender maps part of the PDU set whose attribute value is better than the second preset value and not better than the first preset value, and maps part of the PDU in each PDU set to the first transmission path, and each PDU
  • mapping the remaining PDUs in the set to the second transmission path please refer to the implementation of case 3 above, which will not be described again.
  • the sender maps each part of the PDU set to the first transmission path and the second transmission path according to the attribute value of each part. , to ensure the percentage of PDUs in each part of the PDU set that are successfully sent.
  • the PDU set includes PDU set #1 and PDU set #2.
  • the tolerated loss ratio of PDUs in PDU set #1 is 0.3%
  • the tolerated loss ratio of PDUs in PDU set #2 is 10%. If the first default value is 1% and the second default value is 20%, then the sending end maps all PDUs in PDU set #1 to the first transmission path to ensure that more than 99.7% of the PDUs in PDU set #1 are Successfully sent, and 90% of the PDUs in PDU set #2 are mapped to the first transmission path, and 10% of the PDUs in PDU set #2 are mapped to the second transmission path to ensure that at least 90% of the PDUs in PDU set #2 are % of PDUs were sent successfully.
  • Case 5 There are one or more PDU sets, and the attribute values of some PDU sets in one or more PDU sets are not better than the second default value.
  • the attribute values of some PDU sets are better than the second default value and are not better.
  • the sending end maps the PDUs in the partial PDU set that are no better than the second preset value to the first transmission path, and maps the attribute values that are better than the second preset value and no better than the first preset value.
  • part of the PDU in each PDU set is mapped to the first transmission path, and the remaining part of the PDU in each PDU set is mapped to the second transmission path.
  • the sending end maps the PDU set whose attribute value is better than the second preset value and not better than the first preset value, and maps some PDUs in each PDU set to the first transmission path, and each PDU set
  • mapping the rest of the PDUs to the second transmission path please refer to the implementation in case 3 above, which will not be described again.
  • the PDU set includes PDU set #1 and PDU set #2.
  • the tolerated loss ratio of PDUs in PDU set #1 is 80%
  • the tolerated loss ratio of PDUs in PDU set #2 is 40%.
  • the first default value is 10%
  • the second default value is 70%.
  • the sender maps all the PDUs in PDU set #1 to the second transmission path, and maps 60% of the PDUs in PDU set #2 to the second transmission path. On the first transmission path, 40% of the PDUs in PDU set #2 are mapped to the second transmission path.
  • Case 6 There are one or more PDU sets.
  • the attribute values of some PDU sets in one or more PDU sets are better than the first preset value.
  • the attribute values of some PDU sets are not better than the second preset value.
  • Some PDU sets have attribute values that are not better than the second preset value.
  • the attribute value of the set is better than the second preset value and not better than the first preset value.
  • the sending end maps some PDUs in the set that are better than the first preset value to the first transmission path and will not be better than the first preset value.
  • the PDUs in the partial PDU set of the second preset value are mapped to the first transmission path, and the partial PDU set whose attribute value is better than the second preset value and not better than the first preset value are mapped to the first transmission path. Part of the PDUs is mapped to the first transmission path, and the remaining part of the PDUs in each PDU set is mapped to the second transmission path.
  • mapping method of one or more PDU sets by the sending end please refer to the implementation methods in case 1 to case 3 above, which will not be described again.
  • PDU set includes PDU set #1, PDU set #2, and PDU set #3.
  • the tolerated loss ratio of PDUs in PDU set #1 is 5%
  • the tolerated loss ratio of PDUs in PDU set #2 is 5%.
  • the tolerated loss ratio of PDUs in PDU set #3 is 80%
  • the first preset value is 10%
  • the second preset value is 70%.
  • the sender maps all the PDUs in PDU set #1 to the first transmission path, and maps 60% of the PDUs in PDU set #2 to the first transmission path, and 40% of the PDUs in PDU set #2 Map to the second transmission path, and map all PDUs in PDU set #3 to the second transmission path.
  • the attribute values of the same type of attributes of one or more PDU sets are divided into three types, but the PDUs in the one or more PDU sets are still mapped to the first transmission path and the second transmission path, that is, The number of transmission paths to which the PDU set is mapped is smaller than the number of attribute values of the same type of attributes of the PDU set, which can improve the precision of PDU set service quality control and save network overhead.
  • Case 7 There are one or more PDU sets, the attribute values of some PDU sets in one or more PDU sets are better than the first preset value, and the attribute values of some PDU sets are not better than the second preset value.
  • the sending end Map the PDU set whose attribute value of the PDU set in one or more PDU sets is better than the first preset value to the first transmission path, and map the PDU set whose attribute value is not better than the second preset value to the first transmission path. on the second transmission path.
  • the sending end mapping one or more PDU sets whose attribute values are better than the first preset value to the first transmission path, please refer to the implementation of case 1 above and will not be described again.
  • the sending end mapping the PDU set whose attribute value is not better than the second preset value to the second transmission path please refer to the implementation of case 2 above, and will not be described again.
  • the PDU set includes PDU set #1 and PDU set #2.
  • the tolerated loss ratio of PDUs in PDU set #1 is 5%
  • the tolerated loss ratio of PDUs in PDU set #2 is 90%.
  • One preset value is 10%
  • the second preset value is 70%. Then, the sending end maps all PDUs in PDU set #1 to the first transmission path, and maps all PDUs in PDU set #2 to the second transmission path.
  • the sending end can divide the attribute values of the same type of PDU set into at least three values, and when the attribute values of the PDU set are different, the sending end maps them in different ways.
  • the entity architecture diagram of the sending end can be shown in Figure 3.
  • the sending end includes a service data adaptation protocol SDAP entity, a first PDCP entity, a second PDCP entity, a first RLC entity, a second RLC entity and a MAC entity.
  • the SDAP entity is connected to the first PDCP entity and the second PDCP entity.
  • the first transmission path is associated with the first PDCP entity
  • the second transmission path is associated with the second PDCP entity. That is to say, the first transmission path is a transmission path used when the first PDCP entity is used for transmission, and the second transmission path is a transmission path used when the second PDCP entity is used for transmission.
  • the first PDCP entity is associated with the first RLC entity
  • the second PDCP entity is associated with the second RLC entity. That is, the first PDCP entity is connected with the first RLC entity, and the second PDCP entity is connected with the second RLC entity. .
  • the first PDCP entity is associated with multiple first RLC entities
  • the second PDCP entity is associated with the second RLC entity. That is, the first PDCP entity is connected with multiple first RLC entities, and the second PDCP entity is associated with multiple first RLC entities.
  • the PDCP entity is connected to the second RLC entity.
  • the first PDCP entity When the first PDCP entity is associated with the first RLC entity, and the second PDCP entity is associated with the second RLC entity, the first RLC entity uses the acknowledged mode (AM) for transmission, and the second RLC entity uses the unacknowledged mode (unacknowledged mode, UM) transmission.
  • AM acknowledged mode
  • UM unacknowledged mode
  • AM transmission refers to a transmission mode that requires confirmation from the peer entity.
  • the sender uses the AM transmission mode for transmission, if the peer entity does not confirm the successful transmission of the data, the data will be retransmitted to ensure the successful transmission of the data. Therefore, the first RLC entity uses AM transmission to ensure that the characteristics of the first transmission path are better than the characteristics of the second transmission path, and the characteristics of the first transmission path are better than the third preset value.
  • UM mode refers to a transmission mode that does not require confirmation from the peer entity.
  • the sender uses the UM transmission mode to transmit, it does not need to wait for the peer entity to confirm the data. Even if the transmitted data is not successfully transmitted, the data will not be retransmitted, so the successful transmission of the data is not guaranteed. Therefore, the second RLC entity uses the UM mode for transmission, which does not ensure correct transmission of data on the second transmission path, but can save network overhead.
  • the first PDCP entity When the first PDCP entity is associated with a plurality of first RLC entities, and the second PDCP entity is associated with a second RLC entity, the plurality of first RLC entities and the second RLC entity all transmit in a non-acknowledged mode.
  • the multiple first RLC entities can ensure that the characteristics of the first transmission path are better than the third preset value through duplication.
  • the entity architecture diagram of the sending end may also be shown in Figure 5.
  • the sending end includes an SDAP entity, a third PDCP entity, a first RLC entity, a second RLC entity and a MAC entity. Both the first transmission path and the second transmission path are associated with the third PDCP entity, that is, both the first transmission path and the second transmission path are transmission paths that use the third PDCP entity for transmission.
  • the third PDCP entity is associated with the first RLC entity and the second RLC entity, that is, the third PDCP entity is connected with the first RLC entity and the second RLC entity.
  • the first RLC entity and the second RLC entity are RLC entities associated with the first transmission path and the second transmission path respectively, that is, the first RLC entity and the second RLC entity are respectively associated with the first transmission path and the second transmission path.
  • the third PDCP entity is associated with multiple first RLC entities and second RLC entities, that is, the third PDCP entity is connected with multiple first RLC entities and second RLC entities.
  • the first RLC entity and the second RLC entity are RLC entities used when transmitting using the first transmission path and the second transmission path respectively.
  • the first RLC entity may use AM transmission and the second RLC entity may use UM transmission to ensure that the characteristics of the first transmission path are better than those of the second transmission path. characteristics, and the characteristics of the first transmission path are better than the third preset value.
  • the third PDCP entity is associated with multiple first RLC entities and second RLC entities, multiple first RLC entities and second RLC entities may all transmit in UM mode.
  • the multiple first RLC entities can ensure that the characteristics of the first transmission path are better than the third preset value through copying.
  • the bandwidth of the first transmission path is higher than the bandwidth of the second transmission path, or the logical channel priority of the first transmission path is higher than the logical channel priority of the second transmission path, or other methods can ensure the first transmission.
  • the characteristics of the path are better than those of the second transmission path.
  • the PDU set includes PDU set #1, PDU set #2, and PDU set #3, and the tolerated loss ratio of PDUs in PDU set #1 is 0%, and the tolerated loss ratio of PDUs in PDU set #2 is 0%.
  • the tolerated loss ratio of PDUs is 30%, and PDU set #3 is allowed to serve as best effort.
  • the sender maps all PDUs in PDU set #1 to the first transmission path associated with the first RLC entity, and maps all PDUs in PDU set #3 to the second transmission path associated with the second RLC entity.
  • the sending end before receiving the PDU set from the upper layer, the sending end will receive indication information indicating the classification information of the PDU set. For example, as shown in Figure 8, before receiving PDU set #1, PDU set #2, PDU set #3, and PDU set #4, the sender will receive classification information indicating the type of each PDU set respectively. Among them, type 1 is used to indicate that the PDU in PDU set #1 is allowed to lose the proportion of 0%, type 2 is used to indicate that the PDU in PDU set #2 is allowed to provide best-effort service, and type 3 is used to indicate that PDU set #3 The tolerated loss ratio of PDUs in PDU set #4 is 30%.
  • the sending end determines the attribute value of each PDU set in PDU set#1, PDU set#2, PDU set#3, and PDU set#4 based on the classification information indicating the type of each PDU set, and based on each The attribute values of each PDU set map the PDUs in each PDU set to the first transmission path and the second transmission path.
  • the sending end maps PDU set #1 to the first transmission path, maps PDU set #2 to the second transmission path, and maps PDU set #3 and PDU set 70% of the PDUs in set #4 are mapped to the first transmission path, and 30% of the PDUs in PDU set #3 and PDU set #4 are mapped to the second transmission path.
  • This classification information can be carried in the PDU set or in additional indication information (such as start marker/end marker).
  • the classification information can be the priority, importance, the proportion of PDUs in the PDU set that are tolerated to be lost, the correct reception rate of PDUs in the PDU set, the fault tolerance rate that the PDUs in the PDU set need to meet, the type of information carried by the PDU set, the PDU One or more of the number of bytes allowed to be lost/errored in the total number of bytes of the set, the bit error rate of the data in the PDU set, and whether the PDU set can be discarded.
  • the classification information is one or more of the proportion of PDUs in the PDU set that are tolerated to be lost, the correct reception rate of PDUs in the PDU set, and the error tolerance rate that the PDUs in the PDU set need to meet
  • the sending end can directly map the PDUs in the PDU set to the first transmission path and the second transmission path based on the attribute values of the PDU set determined by the classification information.
  • the classification information is one or more of the priority, importance, type of information carried by the PDU set, the number of bytes allowed to be lost/error in the total number of bytes of the PDU set, and whether the PDU set can be discarded.
  • the originating end determines whether the PDU set can be discarded based on the priority/importance/information carried by the PDU set/the number of bytes that are allowed to be lost/error in the total number of bytes of the PDU set/whether the PDU set is tolerated to be lost.
  • the proportional association table converts the attribute value of the PDU set determined based on the classification information into the proportion of the PDU in the PDU set that is tolerated to be lost, and then based on the PDU in the PDU set
  • the proportion of tolerated losses maps the PDUs in the PDU set to the first transmission path and the second transmission path.
  • the classification information of PDU set #1 is the importance level of PDU set #1
  • the importance level of PDU set #1 is importance level 1.
  • the importance level is the ratio between the importance level and the tolerated loss ratio of PDUs in the PDU set.
  • importance level 1 is converted into a PDU set with a tolerated loss ratio of 0%
  • importance level 2 is converted into a PDU set with a tolerated loss ratio of 20%
  • importance level 3 is converted into The tolerated loss ratio of PDUs in the PDU set is 100%.
  • the sending end determines that the tolerated loss ratio of PDUs in PDU set #1 is 0%, and then maps PDU set #1 to the first transmission path with better transmission characteristics.
  • the classification information of PDU set#2 is the number of bytes allowed to be lost in the total number of bytes of PDU set#2, PDU set#2 includes 100 bytes, and the total number of bytes of PDU set#2 The number of bytes allowed to be lost is 30.
  • the sender determines the tolerated loss ratio of PDUs in PDU set #2 based on the correlation table between the number of bytes allowed to be lost in the total number of bytes of the PDU set and the tolerated loss ratio of PDUs in the PDU set is 30%, thereby mapping 30 bytes of the 100 bytes included in PDU set #2 to the second transmission path, and mapping the remaining 70 bytes of the 100 bytes included in PDU set #2 to the second transmission path. on a transmission path.
  • the sending end can also associate the parent PDU set sequence number of the first PUD set with the sub-PDU set sequence number of the second PDU set.
  • the first PDU set is any PDU set in the PDU set.
  • the first PDU set is the PDU set.
  • the PDU set is PDU set#1
  • the first PDU set is the PDU set#1.
  • the first PDU set is any one of the multiple PDU sets.
  • PDU set includes PDU set #1, PDU set #2 and PDU set #3.
  • the first PDU set can be PDU set #1, PDU set #2, or PDU set #3.
  • the second PDU set is a PDU set composed of part or all of the PDUs in the first PDU set.
  • the first PDU set is PDU set #1
  • the PDUs in PDU set #1 are all mapped to the first transmission path or the second transmission path
  • the second PDU set is all of the second PDU set #1.
  • a PDU set consisting of PDUs can also be considered as the second PDU set as the first PDU set (PDU set#1).
  • the first PDU set is PDU set #1
  • PDU set #1 includes 100 PDUs
  • 90 PDUs in PDU set #1 are mapped to the first transmission path
  • the remaining 10 PDUs in PDU set #1 is mapped to the second transmission path.
  • the second PDU set is PDU set#a composed of 90 PDUs in PDU set#1 and PDU set#b composed of the remaining 10 PDUs.
  • the parent PDU set sequence number is maintained by the SDAP layer.
  • the sequence number of the sub-PDU set is the sequence number maintained by the PDCP layer.
  • sequence number maintained by the SDAP layer of the PDU set may refer to the sequence number of the PDU set allocated by the SDAP entity of the sending end for the PDU set.
  • all PDUs in a PDU set have the same PDU set sequence number.
  • the PDU set sequence number indicates that these PDUs belong to the same PDU set.
  • the sequence number maintained by the SDAP layer of the PDU set may mean that the SDAP entity at the sending end uses the sequence number in the application layer/inner layer/upper layer/payload carried by the PDU of the PDU set as the sequence number of the PDU set, and in the SDAP layer records.
  • the sequence number maintained by the PDCP layer of the PDU set may refer to the sequence number assigned by the PDCP entity at the sending end to the PDU set composed of all or part of the PDUs in the PDU set.
  • the sequence number indicates that these PDUs belong to the same PDU set. It should be understood that the sequence number of the PDU set is different from the sequence number of the PDU. For different PDUs in the same PDUset, the sequence numbers of the PDUs are different, but the sequence numbers of the PDU set are the same.
  • the sequence number maintained by the RLC layer of the PDU set may refer to the sequence number assigned by the RLC entity of the sending end to the PDU set consisting of all or part of the PDUs in the PDU set.
  • the sequence number indicates that these PDUs belong to the same PDU set.
  • the first PDU set is PDU set #1
  • the second PDU set is a PDU set #a composed of 90 PDUs in PDU set #1
  • a PDU set composed of the remaining 10 PDUs in PDU set #1 #b
  • PDU set #a is mapped to the first transmission path
  • PDU set #b is mapped to the second transmission path
  • the first transmission path is associated with the first PDCP entity
  • the second transmission path is associated with the second PDCP.
  • the sender combines the sequence number A of PDU set #1 maintained by the SDAP layer, the sequence number #a of PDU set #a maintained by the first PDCP layer, and the sequence number # of PDU set #b maintained by the second PDCP layer.
  • sequence number #b the sending end can subsequently query the remaining sequence numbers related to the sequence number based on any one of sequence number #a, sequence number #b, and sequence number A. For example, the sending end can query sequence number #b and sequence number A based on sequence number #a.
  • the first PDU set is PDU set #2
  • PDU set #2 is mapped to the first transmission path
  • the first transmission path is associated with the first PDCP layer
  • the sending end uses the PDU set #2 maintained by the SDAP layer
  • the sequence number is associated with the sequence number of PDU set#2 maintained by the first PDCP layer.
  • the first PDU set is PDU set #3
  • PDU set #3 is mapped to the second transmission path
  • the second transmission path is associated with the second PDCP layer
  • the sending end uses the PDU set #3 maintained by the SDAP layer
  • the sequence number is associated with the sequence number of PDU set#2 maintained by the second PDCP layer.
  • the parent PDU set sequence number is a sequence maintained by the PDCP layer. number
  • the sub-PDU set sequence number is maintained by the RLC layer serial number.
  • the first PDU set is PDU set #1
  • the second PDU set is PDU set #a composed of 90 PDUs in PDU set #1
  • PDU set #a is mapped to the first transmission path
  • PDU set #b is mapped to the second transmission path
  • the PDCP entity of the sending end is the third PDCP entity
  • the third PDCP entity is connected to the first RLC entity and the Two RLC entities are associated
  • the first RLC entity is associated with the first transmission path
  • the second RLC entity is associated with the second transmission path.
  • the sender combines the sequence number B of PDU set#1 maintained by the third PDCP layer, the sequence number #m of PDU set#a maintained by the first RLC layer, and the sequence of PDU set#b maintained by the second RLC layer.
  • the number #n is associated, so that the sending end can subsequently query the remaining sequence numbers based on any one of the sequence number #m, the sequence number #n, and the sequence number B. For example, the sender searches for sequence number #n based on sequence number #m.
  • the PDCP entity at the sending end is the third PDCP entity
  • the first PDU set is PDU set #2
  • PDU set #2 is mapped to the first transmission path
  • the first transmission path is associated with the first RLC layer
  • send The end associates the sequence number of PDU set#2 maintained by the third PDCP layer with the sequence number of PDU set#2 maintained by the first RLC layer.
  • the PDCP entity at the sending end is the third PDCP entity
  • the first PDU set is PDU set #3
  • PDU set #3 is mapped to the second transmission path
  • the second transmission path is associated with the second RLC layer
  • the sequence number maintained by the SDAP layer of any PDU set in the PDU set can be compared with the sequence number maintained by the PDCP layer of the PDU set composed of part or all of the PDU set. association.
  • the sequence number maintained by the PDCP layer of any PDU set in the PDU set can be associated with the sequence number maintained by the RLC layer of the PDU set consisting of some or all PDUs in the PDU set.
  • the above-mentioned first PDU set can be understood as a mother frame
  • the second PDU set can be understood as a subframe
  • the mother PDU set sequence number can also be understood as the mother frame frame number
  • the sub-PDU set sequence number can also be understood as a mother frame number. It is understood as the subframe frame number.
  • the main frame number is the frame number maintained by the SDAP layer
  • the subframe frame number is the frame number maintained by the PDCP layer.
  • the sender includes a PDCP entity
  • the main frame frame number is the frame number of the PDU set in the PDCP layer
  • the subframe frame number is the frame number of the PDU set in the RLC layer.
  • the sending end includes the first PDCP layer and the second PDCP layer
  • the PDU set includes PDU set#1, PDU set#2, and PDU set#3, that is, PDU set#1, PDU set#2, and PDU set#3 They are mother frame 1, mother frame 2, and mother frame 3 respectively.
  • PDU set#1 is mapped to the first transmission path
  • PDU set#2 is mapped to the second transmission path
  • PDU set#a composed of 80 PDUs in PDU set#3 is mapped to the first transmission path
  • PDU set#b composed of 20 PDUs in PDU set#3 is mapped to the second transmission path.
  • the sender can regard PDU set #1 as subframe 1, PDU set #2 as subframe 2, PDU set #a as subframe 3, and PDU set #b as subframe 4.
  • the sender associates the mother frame number of mother frame 1 (frame number maintained by the SDAP layer) with the subframe frame number of subframe 1 (frame number maintained by the first PDCP layer), and associates the mother frame number of mother frame 2 with (frame number maintained by the SDAP layer) is associated with the subframe frame number of subframe 2 (frame number maintained by the second PDCP layer), and the mother frame frame number of mother frame 3 (frame number maintained by the SDAP layer) is associated with the subframe number of subframe 3.
  • the subframe frame number of frame 3 (frame number maintained by the first PDCP layer) is associated with the subframe frame number of subframe 4 (frame number maintained by the second PDCP layer).
  • the PDCP entity at the sender is the third PDCP layer
  • the PDU set includes PDU set#1, PDU set#2, and PDU set#3, that is, PDU set#1, PDU set#2, and PDU set#3 are respectively parent Frame 1, mother frame 2, mother frame 3.
  • PDU set#1 is mapped to the first transmission path
  • PDU set#2 is mapped to the second transmission path
  • PDU set#a composed of 80 PDUs in PDU set#3 is mapped to the first transmission path
  • PDU set#b composed of the remaining 20 PDUs in PDU set#3 is mapped to the second transmission path.
  • the first transmission path is associated with the first RLC entity
  • the second transmission path is associated with the second RLC entity.
  • the sending end can regard PDU set #1 as subframe 1 and PDU set #2 as subframe 2.
  • Treat PDU set#a as subframe 3 and PDU set#b as subframe 4.
  • the sender associates the mother frame number of mother frame 1 (frame number maintained by the third PDCP layer) with the subframe frame number of subframe 1 (frame number maintained by the first RLC layer), and associates the mother frame number of mother frame 2 with
  • the frame number (frame number maintained by the third PDCP layer) is associated with the subframe frame number of subframe 2 (frame number maintained by the second RLC layer), and the mother frame frame number of mother frame 3 (frame number maintained by the third PDCP layer) ), associated with the subframe frame number of subframe 3 (frame number maintained by the first RLC layer), and the subframe frame number of subframe 3 (frame number maintained by the second RLC layer).
  • the sending end may also stop sending the third PDU set and the fourth PDU set when it determines that y PDUs in the third PDU set are lost.
  • y is an integer greater than or equal to 1
  • the third PDU set is a PDU set composed of part of the PDUs mapped to the first transmission path
  • the fourth PDU set is composed of part of the PDUs mapped to the second transmission path.
  • PDU set, and the serial number of the parent PDU set of the fourth PDU set is the same as the serial number of the parent PDU set of the third PDU set.
  • the sequence number of the parent PDU set of the fourth PDU set is the same as the sequence number of the parent PDU set of the third PDU set, indicating that the fourth PDU set and the third PDU set are two sub-PDU sets split into the same parent PDU set.
  • the first PDU set is a PDU set in the PDU set
  • 80 PDUs in the first PDU set are mapped to the first transmission path
  • the remaining 20 PDUs are mapped to the second transmission path.
  • the 80 PDUs form PDU set #a
  • the remaining 20 PDUs form PDU set #b.
  • PDU set#a is the third PDU set
  • PDU set#b is the fourth PDU set
  • PDU set#a is the fourth PDU set
  • PDU set#b is the third PDU set.
  • the PDCP entity of the sending end includes the first PDCP entity and the second PDCP entity.
  • the sending end determines that y PDUs in the third PDU set are lost, it stops sending the third PDU set and informs the SDAP entity of the third PDCP set.
  • the parent PDU set sequence number of the third PDCP set is queried through the SDAP entity to see if there are other PDU sets that are the same as the parent PDU set sequence number of the third PDCP set, that is, whether there is a fourth PDU set.
  • the PDCP entity of the sending end includes the first PDCP entity and the second PDCP entity.
  • the sending end determines that y PDUs in the third PDU set are lost, it stops sending the third PDU set and passes the third PDU set to determine Whether there is a fourth PDU set with the same sequence number as the parent PDU set of the third PDU set. If it exists, stop sending the PDUs in the fourth PDU set.
  • the PDCP entity of the sending end includes the third PDCP entity.
  • the sending end determines that y PDUs in the third PDU set are lost, it stops sending the third PDU set and informs the third PDCP entity of the parent PDU of the third PDCP set. set sequence number, and query through the third PDCP entity whether there are other PDU sets with the same sequence number as the parent PDU set of the third PDCP set, that is, whether there is a fourth PDU set. If there is a fourth PDU set with the same sequence number as the parent PDU set of the third PDCP set, the sending of PDUs in the fourth PDU set is also stopped to save network overhead.
  • the sending end when there is a lost PDU in the PDU set #a composed of PDUs mapped to the first transmission path in the first PDU set, the sending end will no longer continue to send the remaining PDUs in the PDU set #a, and also The PDU in PDU set #b that has the same sequence number as the parent PDU set #a is no longer sent to save network overhead.
  • this method when the sending end determines that there are lost PDUs in the PDU set composed of part of the PDUs mapped to the first transmission path, that is, it cannot guarantee the percentage of PDUs in the PDU set being successfully sent, so it will not continue to send. Other PDUs in the PDU set, and PDUs in the PDU set with the same parent PDU set sequence number as the PDU set will no longer be sent to save network overhead.
  • this method can increase the percentage of PDUs in the remaining PDU sets except the third PDU set and the fourth PDU set that are successfully sent.
  • the third PDU set and the fourth PDU set are sent.
  • the third PDU set is a PDU set consisting of partial PDUs mapped to the first transmission path
  • the fourth PDU set is a PDU set consisting of partial PDUs mapped to the second transmission path
  • the parent PDU of the fourth PDU set The set sequence number is the same as the parent PDU set sequence number of the third PDU set.
  • y is an integer greater than or equal to 1
  • z is an integer greater than or equal to y.
  • the difference from the above embodiment is that when the sending end determines that there is a lost PDU in the PDU set composed of some PDUs mapped to the first transmission path, it does not directly stop sending other PDUs in the PDU set and the PDU set. set the PDU set with the same parent PDU set sequence number, but determine whether a PDU set that is greater than or equal to the number of losses and has the same parent PDU set sequence number as the PDU set is successfully sent on the second transmission path. PDU in .
  • the sending end determines that the second transmission path has been used to successfully send PDUs in the PDU set that are greater than or equal to the number of losses and have the same parent PDU set sequence number as the PDU set, it indicates that it will continue to send other PDUs in the PDU set. And the PDU in the PDU set with the same parent PDU set sequence number as the PDU set can also ensure that the PDU set and the PDU set with the same parent PDU set sequence number as the PDU set are successfully sent. Therefore, the sender continues to send PDUs in this PDU set and PDUs in the same parent PDU set as this PDU set.
  • the sending end can map the PDUs in the PDU set to multiple transmission paths that are smaller than the number of attribute values of the same type of attributes in the PDU set, which is beneficial to improving the precision of the service quality control of the PDU set.
  • it saves network overhead, which can be understood as: it is beneficial to provide fine QoS control under a small number of architecture branches.
  • the sending end may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a hardware structure Whether it is implemented as a software module or as a hardware structure plus software module depends on the specific application and design constraints of the technical solution.
  • an embodiment of the present application provides a communication device 900.
  • the communication device 900 may be a component of the sending end (for example, an integrated circuit, a chip, etc.).
  • the communication device 900 may also be other communication units, used to implement the methods in the method embodiments of the present application.
  • the communication device 900 may include: a communication unit 901 and a processing unit 902.
  • a storage unit 903 may also be included.
  • one or more units in Figure 9 may be implemented by one or more processors, or by one or more processors and memories; or by one or more processors and a transceiver; or may be implemented by one or more processors, memories, and transceivers, which are not limited in the embodiments of the present application.
  • the processor, memory, and transceiver can be set separately or integrated.
  • the communication device 900 has the function of implementing the sending end described in the embodiments of this application.
  • the communication device 900 includes modules or units or means (means) corresponding to the sending end performing the sending end-related steps described in the embodiments of this application.
  • the functions, units or means (means) can be implemented through software, or through Hardware implementation can also be implemented by hardware executing corresponding software implementation, or it can be implemented by combining software and hardware.
  • a communication device 900 may include: a processing unit 902 and a communication unit 901;
  • the processing unit 902 is configured to map the protocol data units PDU in the PDU set to one or more transmission paths based on the attributes of the protocol data unit set PDU set; the characteristics of each transmission path in the multiple transmission paths Are not the same;
  • Communication unit 901 configured to send the PDU in the PDU set on the one or more transmission paths; the number of the transmission paths is less than or equal to the number of attribute values of the same type of attributes of the PDU set .
  • the attributes of the PDU set include: priority, importance, proportion of PDUs in the PDU set that are tolerated to be lost, correct reception rate of PDUs in the PDU set, and requirements that the PDUs in the PDU set need to meet. Error tolerance rate, the type of information carried by the PDU set, the number of bytes allowed to be lost/error in the total number of bytes of the PDU set, the bit error rate of the data in the PDU set, and whether the PDU set can be discarded.
  • the characteristics of the transmission path include: PDU packet loss rate, bandwidth, transmission delay, logical channel priority, and priority.
  • attributes of the same type of the PDU set have at least three different attribute values.
  • the attribute value of the PDU set is better than the first preset value, all PDUs in the PDU set are mapped to the first transmission path; and/or, if the PDU set is The attribute value of the set is not better than the second preset value, and all PDUs in the PDU set are mapped to the second transmission path; and/or, if the attribute value of the PDU set is better than the second preset value and No better than the first preset value, (100-X)% of the PDUs in the PDU set are mapped to the first transmission path, and X% of the PDUs are mapped to the second transmission path; the first transmission The characteristics of the path are better than the third preset value, and the characteristics of the second transmission path are not better than the fourth preset value; the first preset value is better than the second preset value, and the third preset value is not better than the fourth preset value.
  • the set value is better than the fourth preset value; the X is related to the attribute value of the PDU set,
  • the attribute value of the PDU set is better than the first preset value, all PDUs in the PDU set are mapped to the first transmission path; and/or, if the PDU set is The attribute value of the set is not better than the second preset value, and all PDUs in the PDU set are mapped to the second transmission path; and/or, if the attribute value of the PDU set is better than the second preset value and Not better than the first preset value, (100-X-x)% of the PDUs in the PDU set are mapped to the first transmission path, and (X+x)% of the PDUs are mapped to the second transmission path; so The characteristics of the first transmission path are better than the third preset value, and the characteristics of the second transmission path are not better than the fourth preset value; the first preset value is better than the second preset value, so The third preset value is better than the fourth preset value; the X is related to the attribute value of the PDU set, the X is greater than 0
  • the first transmission path is associated with a first Packet Data Convergence Protocol (PDCP) entity
  • the second transmission path is associated with a second PDCP entity.
  • PDCP Packet Data Convergence Protocol
  • the first Radio Link Control RLC entity associated with the first PDCP entity adopts acknowledgment mode for transmission, and the second RLC entity associated with the second PDCP entity adopts non-acknowledgment mode for transmission;
  • multiple first RLC entities associated with the first PDCP entity and a second RLC entity associated with the second PDCP entity all transmit in a non-acknowledged mode.
  • both the first transmission path and the second transmission path are associated with a third PDCP entity.
  • the first RLC entity associated with the third PDCP entity adopts acknowledgment mode for transmission, and the associated second RLC entity adopts non-acknowledgement mode for transmission; or, the first RLC entity associated with the third PDCP entity adopts acknowledgment mode for transmission.
  • Multiple first RLC entities and associated second RLC entities all transmit in non-acknowledged mode; the first RLC entity is an RLC entity associated with the first transmission path, and the second RLC entity is associated with the RLC entity associated with the second transmission path.
  • the processing unit 902 is also configured to: associate the sequence number of the parent PDU set of the first PDU set with the sequence number of the sub-PDU set of the second PDU set; the first PDU set is the Any PDU set in the PDU set, the second PDU set is A PDU set composed of part or all of the PDUs in the first PDU set; the parent PDU set sequence number is a sequence number maintained by the Service Data Adaptation Protocol SDAP layer, and the sub-PDU set sequence number is maintained by the PDCP layer The sequence number; or, the parent PDU set sequence number is a sequence number maintained by the PDCP layer, and the sub-PDU set sequence number is a sequence number maintained by the RLC layer.
  • the processing unit 902 is also configured to: stop sending the third PDU set and the fourth PDU set when it is determined that y PDUs in the third PDU set are lost; the y is greater than or an integer equal to 1;
  • the third PDU set is a PDU set consisting of partial PDUs mapped to the first transmission path; the fourth PDU set is a PDU set consisting of partial PDUs mapped to the second transmission path, And the parent PDU set sequence number of the fourth PDU set is the same as the parent PDU set sequence number of the third PDU set.
  • the processing unit 902 is also used to: determine that y messages in the third PDU set are lost and z messages in the fourth PDU set are successfully sent, sending the Three PDU sets and the fourth PDU set;
  • the third PDU set is a PDU set composed of partial PDUs mapped to the first transmission path;
  • the fourth PDU set is mapped to the second A PDU set consisting of some PDUs on the transmission path, and the sequence number of the parent PDU set of the fourth PDU set is the same as the sequence number of the parent PDU set of the third PDU set;
  • the y is an integer greater than or equal to 1,
  • the z is an integer greater than or equal to the y.
  • FIG. 10 is a schematic structural diagram of the communication device 1000.
  • the communication device 1000 may be a sending end, or may be a chip, chip system, or processor that supports the sending end to implement the above method.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • the communication device 1000 may include one or more processors 1001 .
  • the processor 1001 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or a central processing unit (CPU).
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to process communication devices (such as base stations, baseband chips, terminals, terminal chips, distributed units (DU) or centralized units (centralized units)). unit, CU), etc.) to control, execute software programs, and process data of software programs.
  • DU distributed units
  • centralized units centralized units
  • the communication device 1000 may include one or more memories 1002, on which instructions 1004 may be stored, and the instructions may be executed on the processor 1001, causing the communication device 1000 to perform the above method. Methods described in the Examples.
  • the memory 1002 may also store data.
  • the processor 1001 and the memory 1002 can be provided separately or integrated together.
  • the memory 1002 may include, but is not limited to, non-volatile memories such as hard disk drive (HDD) or solid-state drive (SSD), random access memory (Random Access Memory, RAM), erasable programmable memory, etc.
  • non-volatile memories such as hard disk drive (HDD) or solid-state drive (SSD), random access memory (Random Access Memory, RAM), erasable programmable memory, etc.
  • Read-only memory Erasable Programmable ROM, EPROM
  • ROM or portable read-only memory Compact Disc Read-Only Memory, CD-ROM
  • the communication device 1000 may also include a transceiver 1005 and an antenna 1006.
  • the transceiver 1005 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1005 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., and is used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., and is used to implement the transmitting function.
  • the processor 1001 is configured to map the protocol data units PDU in the PDU set to one or more transmission paths based on the attributes of the protocol data unit set PDU set; each transmission path in the multiple transmission paths The characteristics are not the same;
  • the transceiver 1005 is used to send the PDU in the PDU set on the one or more transmission paths; the number of the transmission paths is less than or equal to the attribute value of the same type attribute of the PDU set number.
  • the attributes of the PDU set include: priority, importance, proportion of PDUs in the PDU set that are tolerated to be lost, correct reception rate of PDUs in the PDU set, and requirements that the PDUs in the PDU set need to meet. Error tolerance rate, the type of information carried by the PDU set, the number of bytes allowed to be lost/error in the total number of bytes of the PDU set, the bit error rate of the data in the PDU set, and whether the PDU set can be discarded.
  • the characteristics of the transmission path include: PDU packet loss rate, bandwidth, transmission delay, logical channel priority, and priority.
  • attributes of the same type of the PDU set have at least three different attribute values.
  • the attribute value of the PDU set is better than the first preset value, all PDUs in the PDU set are mapped to the first transmission path; and/or, if the PDU If the attribute value of the set is not better than the second preset value, all PDUs in the PDU set are mapped to the second transmission path; and/or, if the attribute value of the PDU set is better than the second preset value and No better than the first preset value, (100-X)% of the PDUs in the PDU set are mapped to the first transmission path, and X% of the PDUs are mapped to the second transmission path; so The characteristics of the first transmission path are better than the third preset value, and the characteristics of the second transmission path are not better than the fourth preset value; the first preset value is better than the second preset value, so The third preset value is better than the fourth preset value; the X is related to the attribute value of the PDU set, and the X is greater than 0 and less than 100.
  • the attribute value of the PDU set is better than the first preset value, all PDUs in the PDU set are mapped to the first transmission path; and/or, if the PDU set is The attribute value of the set is not better than the second preset value, and all PDUs in the PDU set are mapped to the second transmission path; and/or, if the attribute value of the PDU set is better than the second preset value and Not better than the first preset value, (100-X-x)% of the PDUs in the PDU set are mapped to the first transmission path, and (X+x)% of the PDUs are mapped to the second transmission path; so The characteristics of the first transmission path are better than the third preset value, and the characteristics of the second transmission path are not better than the fourth preset value; the first preset value is better than the second preset value, so The third preset value is better than the fourth preset value; the X is related to the attribute value of the PDU set, the X is greater than 0
  • the first transmission path is associated with a first Packet Data Convergence Protocol (PDCP) entity
  • the second transmission path is associated with a second PDCP entity.
  • PDCP Packet Data Convergence Protocol
  • the first Radio Link Control RLC entity associated with the first PDCP entity adopts acknowledgment mode for transmission, and the second RLC entity associated with the second PDCP entity adopts non-acknowledgment mode for transmission;
  • multiple first RLC entities associated with the first PDCP entity and a second RLC entity associated with the second PDCP entity all transmit in a non-acknowledged mode.
  • both the first transmission path and the second transmission path are associated with a third PDCP entity.
  • the first RLC entity associated with the third PDCP entity adopts acknowledgment mode for transmission, and the associated second RLC entity adopts non-acknowledgement mode for transmission; or, the first RLC entity associated with the third PDCP entity adopts acknowledgment mode for transmission.
  • Multiple first RLC entities and associated second RLC entities all transmit in non-acknowledged mode; the first RLC entity is an RLC entity associated with the first transmission path, and the second RLC entity is associated with the RLC entity associated with the second transmission path.
  • the processor 1001 is also configured to: associate the parent PDU set sequence number of the first PDU set with the sub-PDU set sequence number of the second PDU set; the first PDU set is the Any PDU set in the PDU set, the second PDU set is a PDU set composed of part or all of the PDUs in the first PDU set; the parent PDU set sequence number is maintained by the service data adaptation protocol SDAP layer The sequence number of the sub-PDU set is a sequence number maintained by the PDCP layer; or the parent PDU set sequence number is a sequence number maintained by the PDCP layer, and the sub-PDU set sequence number is maintained by the RLC layer serial number.
  • the processor 1001 is also configured to: when determining that y PDUs in the third PDU set are lost, stop sending the third PDU set and the fourth PDU set; the y is greater than or An integer equal to 1; the third PDU set is a PDU set consisting of partial PDUs mapped to the first transmission path; the fourth PDU set is a partial PDU mapped to the second transmission path The PDU set composed of the PDU set, and the sequence number of the parent PDU set of the fourth PDU set is the same as the sequence number of the parent PDU set of the third PDU set.
  • the processor 1001 is also configured to: determine that y messages in the third PDU set are lost, and when z messages in the fourth PDU set are successfully sent, send the Three PDU sets and the fourth PDU set;
  • the third PDU set is a PDU set composed of partial PDUs mapped to the first transmission path;
  • the fourth PDU set is mapped to the second A PDU set consisting of some PDUs on the transmission path, and the sequence number of the parent PDU set of the fourth PDU set is the same as the sequence number of the parent PDU set of the third PDU set;
  • the y is an integer greater than or equal to 1,
  • the z is an integer greater than or equal to the y.
  • the processor 1001 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1001 can store instructions 1003, and the instructions 1003 run on the processor 1001, which can cause the communication device 1000 to execute the method described in the above method embodiment.
  • the instructions 1003 may be fixed in the processor 1001, in which case the processor 1001 may be implemented by hardware.
  • the communication device 1000 may include a circuit, and the circuit may implement the sending or receiving or communication functions in the foregoing method embodiments.
  • the processor and transceiver described in the embodiments of this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (application specific integrated circuits). circuit, ASIC), printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal-oxide-semiconductor (NMOS), P-type metal oxidation Physical semiconductors (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS N-type metal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be the first device, but the scope of the communication device described in the embodiments of the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 10 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include a storage component for storing data and instructions;
  • ASIC such as modem (modulator)
  • the communication device may be a chip or a chip system
  • the chip 1100 shown in FIG. 11 includes a processor 1101 and an interface 1102.
  • the number of processors 1101 may be one or more, and the number of interfaces 1102 may be multiple.
  • the processor 1101 may be a logic circuit, and the interface 1102 may be an input-output interface, an input interface or an output interface.
  • the chip 1100 may also include memory 1103 .
  • the processor 1101 is configured to map the protocol data units PDU in the PDU set to one or more transmission paths based on the attributes of the protocol data unit set PDU set; each transmission path in the multiple transmission paths The characteristics are not the same;
  • the interface 1102 is used to send the PDU in the PDU set on the one or more transmission paths;
  • the number of transmission paths is less than or equal to the number of attribute values of the same type of attributes of the PDU set.
  • the chip 1100 can also perform the implementation described above for the communication device 900 .
  • This application also provides a computer-readable storage medium for storing computer software instructions. When the instructions are executed by a communication device, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product for storing computer software instructions. When the instructions are executed by a communication device, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program that, when run on a computer, implements the functions of any of the above method embodiments.
  • This application also provides a communication system, which includes one or more network devices and one or more terminal devices.
  • the system may also include other devices that interact with network devices and terminal devices in the solution provided by this application.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, high-density digital video disc (DVD)), or semiconductor media (eg, SSD), etc.

Abstract

本申请提供了一种数据发送方法及装置。该方法应用于发送端,该方法包括:基于协议数据单元集合PDU set的属性,将PDU set中的协议数据单元PDU映射到一条或多条传输路径上,多条传输路径中每条传输路径的特性不相同;在一条或多条传输路径上发送PDU set中的PDU,传输路径的条数小于或等于PDU set的同类型属性的属性值个数。可见,发送端可将PDU set中的PDU映射到小于PDU set的同类型属性的属性值个数的多条传输路径上,从而有利于在提升对PDU set服务质量控制精细度的同时,节省网络开销。

Description

一种数据发送方法及装置
本申请要求于2022年7月22日提交中国国家知识产权局、申请号为202210866262.0、申请名称为“一种数据发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据发送方法及装置。
背景技术
扩展现实(extended reality,XR)包括增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)、混合现实(mixed reality,MR)等诸多虚拟现实技术。XR业务传输的诸多数据报文中,不同数据报文的重要程度可能不相同。
当待传输的数据报文按照重要程度被分为重要和不重要,或者,可丢弃和不可丢弃等时,发送端可采用能提供较好服务质量QoS的传输路径发送其重要/不可丢弃的数据报文,而采用提供较弱QoS的传输路径发送其不重要/可丢弃的数据报文,以节省网络开销。
然而,待传输的数据报文被分为更多级别的重要程度时,发送端应如何发送这些数据报文。
发明内容
本申请实施例提供了一种数据发送方法及装置,有利于在提升对协议数据单元集合PDU set服务质量控制的精细度的同时,节省网络开销。
第一方面,本申请实施例提供一种数据发送方法,可应用于发送端(例如发送端的设备或芯片上)。该方法包括:基于协议数据单元集合PDU set的属性,将PDU set中的协议数据单元PDU映射到一条或多条传输路径上,多条传输路径中每条传输路径的特性不相同;在一条或多条传输路径上发送PDU set中的PDU,传输路径的条数小于或等于PDU set的同类型属性的属性值个数。
可见,本申请实施例中,发送端可将PDU set中的PDU映射到小于PDU set的同类型属性的属性值个数的多条传输路径上,从而有利于在提升对PDU set服务质量控制精细度的同时,简化网络架构,节省网络开销。
一种可选的实施方式中,PDU set的属性包括:优先级、重要程度、PDU set内的PDU被容忍丢失的比例、PDU set内PDU的正确接收率、PDU set内PDU需满足的容错率、PDU set承载的信息的类型、PDU set的总字节数中允许被丢失/错误的字节数、PDU set内的数据的误码率、PDU set是否可以被丢弃。
可见,PDU set的属性可表征着该PDU set内PDU的优先级、重要程度等。
一种可选的实施方式中,传输路径的特性包括:PDU的丢包率、带宽、传输时延、逻辑信道优先级、优先级。
传输路径的特性为PDU的丢包率时,PDU的丢包率越小,传输路径的特性越好。传输路径的特性为带宽时,带宽越高,传输路径的特性越好。传输路径的特性为传输时延时,传输时延越小,传输路径的特性越好。传输路径的特性为逻辑信道优先级,逻辑信道优先级越高,传输路径的特性越好。传输路径的特性为优先级时,优先级越高,传输路径的特性越好。
一种可选的实施方式中,PDU set的同类型属性有至少三种不同的取值,该方式可提升对PDU set的服务质量控制的精细度。
一种可选的实施方式中,如果PDU set的属性值优于第一预设值,PDU set内的PDU均被映射到第一传输路径上;和/或,如果PDU set的属性值不优于第二预设值,PDU set内的PDU均被映射到第二传输路径上;和/或,如果PDU set的属性值优于第二预设值且不优于第一预设值,PDU set内(100-X)%的PDU被映射到第一传输路径上,以及X%的PDU被映射到第二传输路径上。
其中,第一传输路径的特性优于第三预设值,第二传输路径的特性不优于第四预设值。第一预设值优于第二预设值,第三预设值优于第四预设值。X与PDU set的属性值相关,X大于0,且小于100。
PDU set的属性值是表征PDU set的属性的值。例如,PDU set的属性为优先级时,PDU set的属性值 是指该PDU set的优先级对应的级别值。PDU set的属性不同时,PDU set的属性值优于第一预设值,或者,PDU set的属性值不优于第二预设值,具有不同的含义。
例如,PDU set的属性为优先级时,PDU set的属性值优于第一预设值,是指PDU set的优先级级别大于第一预设值,PDU set的属性值不优于第二预设值,是指PDU set的优先级级别小于或等于第二预设值。再例如,PDU set的属性为PDU set内的PDU被容忍丢失的比例时,PDU set的属性值优于第一预设值,是指PDU set内的PDU被容忍丢失的比例小于第一预设值,PDU set的属性值不优于第二预设值,是指PDU set内的PDU被容忍丢失的比例大于或等于第二预设值。
传输路径的特性不同时,第一传输路径的特性优于第三预设值,第二传输路径的特性不优于第四预设值,均有不同的理解。第一传输路径的特性优于第三预设值,可指下列情况:第一传输路径的PDU的丢包率小于第三预设值;第一传输路径的带宽高于第三预设值;第一传输路径的传输时延小于第三预设值;第一传输路径的逻辑信道优先级高于第三预设值;第一传输路径的优先级高于第三预设值。同理,第二传输路径的特性不优于第四预设值,也具有上述类似的理解。
可见,对于PDU set的属性较优的PDU set,发送端将其映射到特性较好的第一传输路径上,以提高该PDU set内的PDU被成功发送的百分比。对于PDU set的属性较弱的PDU set,发送端将其映射到特性一般的第二传输路径上,以节省网络开销。对于PDU set的属性介于中间的PDU set,发送端将每个PDU set中的部分PDU映射到第一传输路径上,将每个PDU set中的其余部分PDU映射到第二传输路径上,以在保证该PDU set的属性一般的PDU set中PDU被成功发送的百分比的前提下,节省网络开销。
另一种可选的实施方式中,如果PDU set的属性值优于第一预设值,PDU set内的PDU均被映射到第一传输路径上;和/或,如果PDU set的属性值不优于第二预设值,PDU set内的PDU均被映射到第二传输路径上;和/或,如果PDU set的属性值优于第二预设值且不优于第一预设值,PDU set内(100-X-x)%的PDU被映射到第一传输路径上,以及(X+x)%的PDU被映射到第二传输路径上。其中,第一传输路径的特性优于第三预设值,第二传输路径的特性不优于第四预设值。第一预设值优于第二预设值,第三预设值优于第四预设值。X与PDU set的属性值相关,X大于0,且小于100。x为大于或等于0,且小于或等于100-X的实数。
该方式与上述实施方式的不同之处在于,发送端确定传输特性较差的第二传输路径也能承担一部分PDU的成功发送。从而,对于PDU set的属性介于中间的PDU set,发送端不仅让第一传输路径承担PDU set中需被成功发送的一部分PDU,也让第二传输路径承担该PDU set中需被成功发送的一部分PDU,即使得第一传输路径和第二传输路径均承担PDU set中需被成功发送的部分PDU,以保证该PDU set中PDU被成功发送的百分比。
上述两种方式中,发送端均按照每个PDU set的属性,将PDU set中的PDU映射到特性不相同的传输路径上,且被映射的传输路径的条数小于或等于PDU set的同类型属性的属性值个数,从而可在提升服务质量控制精细度的同时,节省网络开销。
一种可选的实施方式中,第一传输路径与第一分组数据汇聚协议PDCP实体关联,第二传输路径与第二PDCP实体关联。第一传输路径与第一分组数据汇聚协议PDCP实体关联,可理解为:第一传输路径是发送端采用第一PDCP实体传输数据的传输路径。同理,第二传输路径是发送端采用第二PDCP实体传输数据的传输路径。
可见,发送端包括两个PDCP实体,不同PDCP实体关联不同传输路径。
一种可选的实施方式中,第一PDCP实体关联第一无线链路控制RLC实体,第二PDCP实体的第二RLC实体。由于第一传输路径的特性优于第二传输路径的特性,因此第一RLC实体采用确认模式传输,以保证第一传输路径的特性,第二RLC实体采用非确认模式传输,以节省网络开销。
可选的,第一PDCP实体关联多个第一RLC实体,第二PDCP实体关联第二RLC实体。多个第一RLC实体通过采用非确认模式传输,来保证第一传输路径的特性。第二RLC实体也采用非确认模式传输,以节省网络开销。
另一种可选的实施方式中,第一传输路径和第二传输路径均与第三PDCP实体关联。也就是说,发送端包括一个第三PDCP实体,第一传输路径和第二传输路径共同采用该第三PDCP实体传输数据。
一种可选的实施方式中,第三PDCP实体与第一RLC实体关联,以及与第二RLC实体关联。第一RLC实体是与第一传输路径关联的RLC实体,第二RLC实体是与第二传输路径关联的RLC实体。
第一传输路径的特性优于第二传输路径的特性,因此第一RLC实体采用确认模式传输,以确保该第一传输路径的特性,第二RLC实体采用非确认模式传输,以节省网络开销。
另一种可选的实施方式中,第三PDCP实体与多个第一RLC实体关联,以及与第二RLC实体关联。多个第一RLC实体是与第一传输路径关联的RLC实体,第二RLC实体是与第二传输路径关联的RLC实体。
与第一传输路径关联的多个第一RLC实体可采用非确认模式传输,来确保第一传输路径的特性,与第二传输路径关联的第二RLC实体仍可采用非确认模式传输,以节省网络开销。
一种可选的实施方式中,发送端还可将第一PDU set的母PDU set序列号与第二PDU set的子PDU set序列号关联。其中,第一PDU set是PDU set中的任意一个PDU set,第二PDU set是由第一PDU set中部分或全部PDU组成的PDU set。第二PDU set是第一PDU set中全部PDU组成的PDU set时,第二PDU set就是第一PDU set。
发送端包括第一PDCP实体和第二PDCP实体时,母PDU set序列号是由业务数据适配协议SDAP层维护的序列号,子PDU set序列号是由PDCP层维护的序列号。发送端包括第三PDCP实体时,母PDU set序列号是由PDCP层维护的序列号,子PDU set序列号是由RLC层维护的序列号。
可见,发送端可将PDU set中的任意一个PDU set的SDAP层维护的序列号,与该PDU set中部分或全部PDU组成的PDU set的PDCP层维护的序列号关联。或者,发送端可将PDU set中的任意一个PDU set的PDCP层维护的序列号,与该PDU set中部分或全部PDU组成的PDU set的RLC层维护的序列号关联。
一种可选的实施方式中,发送端还可在确定第三PDU set中的y个PDU丢失时,停止发送第三PDU set和第四PDU set。其中,y为大于或等于1的整数,第三PDU set是被映射到第一传输路径上的部分PDU组成的PDU set;第四PDU set是被映射到第二传输路径上的部分PDU组成的PDU set,且第四PDU set的母PDU set序列号与第三PDU set的母PDU set序列号相同。
被映射到第一传输路径上的部分PDU组成的PDU set中存在丢失的PDU时,不能保证该PDU set中的PDU被全部成功发送,即不能保证该PDU set中的PDU被发送的百分比。那么,发送端确定不再继续发送该PDU set中的其他PDU,以及不再继续发送与该PDU set具有相同母PDU set序列号的PDU set中的PDU。该方式可提高除开第三PDU set和第四PDU set之外的其余PDU set中PDU被成功发送的百分比,且可节省网络开销。
另一种可选的实施方式中,发送端还可在确定第三PDU set中的y个报文丢失,且第四PDU set中z个报文被成功发送时,发送第三PDU set和第四PDU set。其中,第三PDU set是被映射到第一传输路径上的部分PDU组成的PDU set,第四PDU set是被映射到第二传输路径上的部分PDU组成的PDU set,且第四PDU set的母PDU set序列号与第三PDU set的母PDU set序列号相同。y为大于或等于1的整数,z为大于或等于所述y的整数。
与上述实施方式的不同之处在于,发送端确定被映射到第一传输路径上的部分PDU组成的PDU set中存在丢失的PDU时,不是直接停止发送该PDU set中的其他PDU和与该PDU set具有相同母PDU set序列号的PDU set中的PDU,而是确定第二传输路径上是否成功发送了大于或等于丢失个数,且与该PDU set具有相同的母PDU set序列号的PDU set中的PDU。如果发送端确定采用第二传输路径成功发送了大于或等于丢失个数,且与该PDU set具有相同的母PDU set序列号的PDU set中的PDU,则表明继续发送该PDU set中的其他PDU和与该PDU set具有相同母PDU set序列号的PDU set中的PDU,还可确保该PDU set和与该PDU set具有相同母PDU set序列号的PDU set中PDU被成功发送的百分比。因此,发送端仍继续发送该PDU set中的PDU和与该PDU set具有相同的母PDU set中的PDU。
第二方面,本申请还提供一种通信装置。该通信装置具有实现上述第一方面所述的发送端的部分或全部功能。比如,该通信装置的功能可具备本申请中第一方面所述的发送端的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持该通信装置与其他通信装置之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:处理单元和通信单元;
处理单元,用于基于协议数据单元集合PDU set的属性,将所述PDU set中的协议数据单元PDU映射到一条或多条传输路径上;所述多条传输路径中每条传输路径的特性不相同;
通信单元,用于在所述一条或多条传输路径上发送所述PDU set中的所述PDU;
所述传输路径的条数小于或等于所述PDU set的同类型属性的属性值个数。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
作为示例,通信单元可以为收发器或通信接口,存储单元可以为存储器,处理单元可以为处理器。
一种实施方式中,所述通信装置包括:处理器和收发器;
处理器,用于基于协议数据单元集合PDU set的属性,将所述PDU set中的协议数据单元PDU映射到一条或多条传输路径上;所述多条传输路径中每条传输路径的特性不相同;
收发器,用于在所述一条或多条传输路径上发送所述PDU set中的所述PDU;
所述传输路径的条数小于或等于所述PDU set的同类型属性的属性值个数。
另外,该方面中,上行通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,该通信装置为芯片或芯片系统。所述处理单元也可以体现为处理电路或逻辑电路;所述收发单元可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on a chip,SoC)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第三方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的,在一条或多条传输路径上发送PDU set中的PDU,可以理解为,处理器在一条或多条传输路径上输出PDU set中的PDU。
对于处理器所涉及的发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第四方面,本申请还提供了一种通信系统,该系统包括一个或多个网络设备,以及一个或多个终端设备。在另一种可能的设计中,该系统还可以包括与网络设备、终端设备进行交互的其他设备。
第五方面,本申请提供了一种计算机可读存储介质,用于储存指令,当所述指令被计算机运行时,实现上述第一方面任一项所述的方法。
第六方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,实现上述第一方面任一项所述的方法。
第七方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持发送端实现第一方面所涉及的功能。例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第八方面,本申请提供一种通信装置,包括处理器,用于执行存储器中存储的计算机程序或可执行指令,当计算机程序或可执行指令被执行时,使得该装置执行如第一方面各个可能的实现中的方法。
在一种可能的实现中,处理器和存储器集成在一起;
在另一种可能的实现中,上述存储器位于该通信装置之外。
第二方面到第八方面的有益效果可以参考第一方面有益效果,此处不再赘述。
附图说明
图1是本申请实施例提供的一种通信系统的系统结构示意图;
图2是本申请实施例提供的一种数据发送方法的流程示意图;
图3是本申请实施例提供的一种发送端实体架构示意图;
图4是本申请实施例提供的另一种发送端实体架构示意图;
图5是本申请实施例提供的又一种发送端实体架构示意图;
图6是本申请实施例提供的又一种发送端实体架构意图;
图7是本申请实施例提供的一种协议数据单元集合映射的映射示意图;
图8是本申请实施例提供的又一种协议数据单元集合映射的映射示意图;
图9是本申请实施例提供的一种通信装置的结构示意图;
图10是本申请实施例提供的另一种通信装置的结构示意图;
图11是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例中的技术方案进行清楚、完整的描述。
其中,本申请的说明书、权利要求书及附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个。“多个”是指两个或两个以上。“至少两个(项)”是指两个或三个及三个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系。例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。“…时”以及“若”均指在某种客观情况下会做出相应的处理,并非是限定时间,且也不要求实现时要有判断的动作,也不意味着存在其它限定。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
为了更好的理解本申请实施例公开的数据发送方法,对本申请实施例适用的通信系统进行描述。
本申请实施例可应用于第五代移动通信(5th generation mobile communication,5G)系统、第六代移动通信(6th generation mobile communication,6G)系统、卫星通信及短距等无线通信系统中,系统架构如图1所示。无线通信系统可以包括一个或多个网络设备,以及一个或多个终端设备。无线通信系统也可以进行点对点通信,如多个终端设备之间互相通信。
可理解的,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(narrow band-internet of things,NB-IoT)、长期演进系统(long term evolution,LTE),5G/6G移动通信系统的三大应用场景:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra reliable low latency communication,URLLC)和海量机器类通信(massive machine type of communication,mMTC),无线保真(wireless fidelity,WiFi)系统,或者5G之后的移动通信系统等。
本申请实施例中,网络设备是具有无线收发功能的设备,用于与终端设备进行通信,可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB),或者是5G/6G网络中的基站或者未来演进的公共陆地移 动网络(public land mobile network,PLMN)中的基站、宽带网络业务网关(broadband network gateway,BNG)、汇聚交换机或者非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等。可选的,本申请实施例中的网络设备可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、未来实现基站功能的设备、WiFi系统中的接入节点、传输接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,本申请实施例对此不作具体限定。
网络设备可以和核心网设备进行通信交互,向终端设备提供通信服务。核心网设备例如为5G网络核心网(core network,CN)中的设备。核心网作为承载网络提供到数据网络的接口,为终端提供通信连接、认证、管理、策略控制以及对数据业务完成承载等。
本申请实施例所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端设备也可称为终端。终端设备也可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户代理、蜂窝电话(cellular phone)、智能手机(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、设备到设备通信(device-to-device,D2D)中的终端、车到一切(vehicle to everything,V2X)中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者未来通信网络中的终端设备等,本申请不作限制。
本申请实施例中,发送端可以是上述网络设备,也可以是上述终端设备。
本申请实施例中的“映射”,可理解为将协议数据单元集合(protocol data unit set,PDU set)中的所有或部分协议数据单元(protocol data unit,PDU)放在协议实体的缓存/队列/窗口中,并在有传输资源的时候,通过该协议实体或与该协议实体关联的协议资源将缓存/队列/窗口中的PDU发送给接收端。协议实体可以是业务数据适配协议(service data adaptation protocol,SDAP)实体、分组数据汇聚协议(packet data convergence protocol,PDCP)实体、无线链路控制(radio link control,RLC)实体、介质访问控制(medium access control,MAC)实体。协议资源可以是逻辑信道、逻辑信道组、混合自动重传请求(hybrid automatic repeat request,HARQ)实体、HARQ进程。
本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
本申请实施例提出一种数据发送方法100,图2是该数据发送方法100的流程示意图。该数据发送方法100从发送端的角度进行阐述。该数据发送方法100包括但不限于以下步骤:
S101.发送端基于协议数据单元集合PDU set的属性,将PDU set中的协议数据单元PDU映射到一条或多条传输路径上。
S102.发送端在一条或多条传输路径上发送PDU set中的PDU。
其中,多条传输路径中每条传输路径的特性不相同,传输路径的条数小于或等于协议数据单元集合PDU set的同类型属性的属性值个数。
PDU set包括一个或多个协议数据单元PDU。XR业务中,一个PDU set包括的数据可与一个帧的数据对应,该一个帧的数据可以是一帧画面的数据。
本申请实施例中,PDU也可理解为数据报文。那么,一个PDU set包括一个或多个PDU,也可理解为:一个PDU包括一个或多个数据报文。
可理解的,PDU set中的报文属于同一个业务流,或者属于同一个网际互连协议(Internet Protocol,IP)流,或者属于同一个服务质量(quality of service,QoS)流。
一种可选的实施方式中,PDU set的属性包括但不限于:优先级、重要程度、PDU set内的PDU被容忍丢失的比例、PDU set内PDU的正确接收率、PDU set内PDU需满足的容错率、PDU set承载的信息的 类型、PDU set的总字节数中允许被丢失/错误的字节数、PDU set内的数据的误码率、PDU set是否可以被丢弃。
其中,优先级和重要程度分别代表的是PDU set中PDU的优先级和PDU的重要程度。PDU set内的PDU被容忍丢失的比例,是指该PDU set内的PDU最多被容忍丢失的比例。例如,PDU set#1包括100个PDU,该PDU set#1内的PDU被容忍的比例为20%,则表明该PDU set#1内最多容忍丢失20个PDU,也即要求该PDU set#1内至少有80个PDU被成功发送。
PDU set内PDU的正确接收率,是指PDU set内PDU最少被正确接收的概率。例如,PDU set#3包括100个PDU,且PDU set#3内PDU的正确接收率为60%,则表明该PDU set#3内至少应有60个PDU被正确接收。PDU set内PDU需满足的容错率,是指PDU set内PDU最多被发送失败的概率。例如,PDU set#4包括100个PDU,且该PDU set#4内PDU需满足的容错率为10%,则表明该PDU set#4中最多容忍10个PDU被发送失败。
PDU set承载的信息的类型,是指该PDU set中PDU承载的信息所属的类型。PDU set承载的信息的类型包括但不限于以下:视频类数据、语音类数据、控制指令类数据、视频中I帧的数据、视频中P帧的数据、传感器数据。
例如,PDU set#1中的PDU承载的是视频数据,PDU set#2中的PDU承载的是语音数据。再例如,PDU set#3中的PDU承载的是视频中I帧的数据,PDU set#2中的PDU承载的是视频中P帧的数据。
PDU set的总字节数中允许被丢失/错误的字节数,代表PDU set的总字节数中可被丢失/错误的最多字节数。例如,PDU set#2中包括100个字节,该PDU set#2内的总字节数中允许/错误的字节数为30个,则表明该PDU set#2内最最多可被丢失/错误30个字节,也即要求该PDU set#2中至少有70个字节被成功发送。
PDU set内的数据的误码率,可指PDU set内的数据被发送时允许的最高误码率。例如,PDU set#3包括100个PDU,PDU set#3内的数据的误码率为10%,那么PDU set#3内的100个PDU被允许的最高误码率为10%,即该100个PDU中最多允许被错误传输10个。
PDU set是否可以被丢弃,可指该PDU set内的全部数据是否可被丢弃。例如,PDU set为PDU set#1,PDU set#1包括80个PDU,若PDU set#1可被丢弃,表明该PDU set#1中的80个PDU均可被丢弃,可说明该PDU set#1承载的数据不太重要。再例如,PDU set包括PDU set#1、PDU set#2和PDU set#3,若PDU set可被丢弃,表明PDU set#1、PDU set#2和PDU set#3中的数据均可被丢弃。
可见,不论PDU set的属性为哪一类或哪几类,PDU set的属性不同时,该PDU set内PDU的重要程度也不相同。
可理解的,PDU set的属性值是指表征PDU set的属性的值。例如,PDU set的属性为优先级时,PDU set的属性值是指PDU set的优先级对应的级别值。再例如,PDU set的属性为重要程度时,PDU set的属性值是指PDU set的重要程度对应的程度等级。再例如,PDU set的属性为PDU set内的PDU被容忍丢失的比例时,PDU set的属性值是指PDU set内的PDU被容忍丢失的比例值。再例如,PDU set的属性为PDU set内PDU的正确接收率,PDU set的属性值是指PDU set内PDU的正确接收率。再例如,PDU set的属性为PDU set内PDU需满足的容错率时,PDU set的属性值是指PDU set内PDU需满足的容错率。再例如,PDU set的属性为PDU set承载的信息的类型时,PDU set的属性值是指PDU set内承载的信息的类型对应的优先级或重要等级的级别值等。
PDU set的同类型属性的属性值,是指PDU set的一个属性对应的一个或多个属性值。例如,PDU set的属性为优先级时,PDU set的优先级可被分为A级、B级和C级,则A级、B级和C级是PDU set的属性为优先级时对应的多个属性值。再例如,PDU set的属性为PDU set内的PDU被容忍丢失的比例时,PDU set内的PDU被容忍丢失的比例可包括0%、40%、70%、100%,则0%、40%、70%、100%是PDU set的属性为PDU set内的PDU被容忍丢失的比例时对应的多个属性值。
一种可选的实施方式中,传输路径的特性包括但不限于:PDU的丢包率、带宽、时延、逻辑信道优先级、优先级。
其中,PDU的丢包率是指传输路径上传输的PDU的丢包率,PDU的丢包率越小,传输路径的特性越优。带宽是指传输路径上用于传输PDU的带宽,带宽越大,传输路径的特性越优。时延是指传输路径上传输PDU的时延,时延越小,传输路径的特性越优。逻辑信道优先级是指传输路径的逻辑信道优先级,该逻辑信道优先级可以是指从RLC层开始向下层协议层传输时,传输路径对应的优先级。逻辑信道优先级越高,传输路径的特性越优。优先级是指传输路径的优先级,该优先级可以指从PDCP层开始向下层协 议层传输时,传输路径对应的优先级。优先级越高,传输路径的特性越好。
一种可选的实施方式中,PDU set的同类型属性有至少三种不同的属性值。例如,PDU set的属性为优先级时,PDU set的优先级可被分为A级、B级和C级,且A级的级别大于B级的级别,B级的级别大于C级的级别。再例如,PDU set的属性为重要程度时,PDU set的重要等级可被分为重要、不重要、一般重要三个等级。再例如,PDU set的属性为PDU set承载的信息的类型时,PDU set承载的信息类型可分为视频数据、语音数据、传感器数据。
可见,该方式可使得发送端将PDU set的同类型属性细分为至少三种不同等级/不同属性值,从而可提升对PDU set的服务质量控制的精细度。
本申请实施例中,发送端将PDU set中的PDU映射到一条或多条传输路径上,还可理解为:发送端采用一条或多条传输路径发送PDU set中的PDU,或者,发送端利用一条或多条传输路径上的资源发送PDU set中的PDU。
以下结合PDU set的个数和属性情况,阐述发送端基于PDU set的属性,将PDU set中的PDU映射到一条或多条传输路径上的实施方式:
情况1:PDU set为一个或多个,且该一个或多个PDU set的属性值均优于第一预设值,发送端将该一个或多个PDU set中,每个PDU set内的PDU均映射到第一传输路径上。
其中,第一传输路径的特性优于第三预设值,第一预设值和第三预设值是预先设定的。
PDU set的属性为不同类别时,PDU set的属性值优于第一预设值,具有不同的含义。例如,PDU set的属性为优先级时,PDU set的属性值优于第一预设值,是指PDU set的属性值大于第一预设值。再例如,PDU set的属性为PDU set内的PDU被容忍丢失的比例时,PDU set的属性值优于第一预设值,是指PDU set的属性值小于第一预设值。
可理解的,一个或多个PDU set的属性值相同或不相同,或者一个或多个PDU set中的部分PDU set的属性值相同,部分PDU set的属性值不相同。
传输路径的特性不同时,第一传输路径的特性优于第三预设值,也有不同的理解。第一传输路径的特性优于第三预设值,可指下列情况:第一传输路径的PDU的丢包率小于第三预设值;第一传输路径的带宽高于第三预设值;第一传输路径的传输时延小于第三预设值;第一传输路径的逻辑信道优先级高于第三预设值;第一传输路径的优先级高于第三预设值。
本申请实施例中,第一预设值可以是基于PDU set的属性类别预先设定的。例如,PDU set的属性为PDU set内的PDU被容忍丢失的比例,发送端提前设定第一预设值为10%。再例如,PDU set的属性为PDU set内PDU的正确接收率,发送端提前设定第一预设值为95%。
第三预设值可以是基于表征传输路径的特性的类别而预先设定的。例如,传输路径的特性为PDU的丢包率,发送端提前设定第三预设值为5%。再例如,传输路径的特性为传输时延,发送端提前设定第三预设值为0.2,单位为ms。
PDU set为一个或多个,且该一个或多个PDU set的属性值优于第一预设值时,表明该一个或多个PDU set中的每个PDU set均是重要程度或优先级较高,或每个PDU set内的PDU被容忍丢失的比例较小等,从而每个PDU set内的PDU被要求成功发送的百分比较高。
例如,PDU set的属性为PDU set内的PDU被容忍丢失的比例,第一预设值为5%,表明该一个或多个PDU set中每个PDU set被容忍丢失的比例小于5%,即该一个或多个PDU set中每个PDU set中大于95%的PDU被要求成功发送。
第一传输路径的特性优于第三预设值,表明第一传输路径是特性较高的传输路径,或者,可代表着第一传输路径可提供较高服务质量(quality of service,QoS)的数据传输。例如,采用第一传输路径发送PDU时,可确保PDU可具有较低的丢包率,即确保发送的PDU几乎不会被丢失,或者可确保PDU的时延较低等。
因此,发送端在一个或多个PDU set的属性值优于第一预设值时,将该一个或多个PDU set中,每个PDU set内的PDU均映射到第一传输路径上,以确保该一个或多个PDU set中每个PDU set内的PDU被成功发送的百分比,或者以提高该一个或多个PDU set中每个PDU set内的PDU被成功发送的百分比。
示例性的,PDU set为PDU set#1,PDU set#1的PDU被容忍丢失的比例为0.5%,第一预设值为1%,则发送端将PDU set#1中的全部PDU映射到第一传输路径上,即发送端采用第一传输路径发送该PDU set#1中的全部PDU。
示例性的,PDU set包括PDU set#1、PDU set#2、PDU set#3,PDU set#1、PDU set#2、PDU set#3内的 PDU的正确接受率均为100%,第一预设值为90%,则发送端将PDU set#1、PDU set#2、PDU set#3中的PDU均映射到第一传输路径上,即发送端均采用第一传输与路径发送PDU set#1、PDU set#2、PDU set#3。
示例性的,PDU set包括PDU set#1、PDU set#2、PDU set#3,PDU set#1、PDU set#2、PDU set#3内的PDU的被容忍丢失的比例分别为100%、98%、90%,第一预设值为85%,则发送端将将PDU set#1、PDU set#2、PDU set#3中的PDU均映射到第一传输路径上。
情况2:PDU set为一个或多个,且该一个或多个PDU set的属性值均不优于第二预设值,发送端将该一个或多个PDU set中,每个PDU set内的PDU均映射到第二传输路径上,第二传输路径的特性不优于第四预设值。
其中,第二预设值和第三预设值均是预先设定的,且第一预设值优于第二预设值,第三预设值优于第四预设值。
可理解的,第二预设值可以是基于PDU set的属性类别预先设定的。例如,PDU set的属性为PDU set内的PDU被容忍丢失的比例,发送端提前设定第二预设值为90%。
第四预设值可以是基于表征传输路径的特性的类别而预先设定的。例如,传输路径的特性为PDU的丢包率,发送端提前设定第四预设值为80%。
可理解的,一个或多个PDU set的属性值相同或不相同,或者一个或多个PDU set中的部分PDU set的属性值相同,部分PDU set的属性值不相同。
PDU set的属性不同时,PDU set的属性值不优于第二预设值,也具有不同的含义。例如,PDU set的属性为优先级时,PDU set的属性值不优于第二预设值,是指PDU set的属性值小于或等于第二预设值。
传输路径的特性不同时,第二传输路径的特性不优于第四预设值,也有不同的理解。第二传输路径的特性不优于第四预设值,与上述第一传输路径的特性优于第三预设值的理解相反,不再赘述。例如,传输路径的特性为PDU的丢包率,第二传输路径的特性不优于第四预设值,是指第二传输路径的PDU的丢包率大于或等于第四预设值。
第三预设值优于第四预设值,表明第一传输路径的特性优于第二传输路径的特性。第一传输路径的特性优于第二传输路径的特性,可指下列情况:第一传输路径的PDU的丢包率小于第二传输路径的PDU的丢包率;第一传输路径的带宽大于第二传输路径的带宽;第一传输路径的时延小于第二传输路径的时延;第一传输路径的逻辑信道优先级高于第二传输路径的逻辑信道优先级;第一传输路径的优先级高于第二传输路径的优先级。
一种可选的实施方式中,第一传输路径的特性优于第二传输路径的特性,且第二传输路径提供尽力服务(best effort)。
第二传输路径提供尽力服务,是指发送端基于网络情况,尽力传输在该第二传输路径上传输的PDU。网络情况较好时,第二传输路径上待发送的PDU中较多PDU可被成功发送或全部PDU可被成功发送。网络情况较差时,第二传输路径上待发送的PDU中较少PDU能被成功发送,或者均不能被成功发送。
例如,发送端在网络情况较好时,第二传输路径上的PDU可完全被成功发送,即第二传输路径上的PDU的丢包率为0%,而在网络情况较差时,第二传输路径上的PDU均未成功发送,此时第二传输路径上的PDU的丢包率为100%。
一个或多个PDU set的属性值不优于第二预设值时,表明该一个或多个PDU set中,每个PDU set内的PDU被要求成功发送的百分比较低,或者未受约束,比如,该一个或多个PDU set被允许为尽力服务。第二传输路径的特性不优于第四预设值,表明第二传输路径上提供的服务质量不能被保证,即第二传输路径上提供的服务质量是视网络情况而定的。
因此,发送端在一个或多个PDU set的属性值不优于第二预设值时,将该一个或多个PDU set中,每个PDU set的PDU均映射到第二传输路径上,以在网络情况较好时,尽力发送每个PDU set的PDU,而在网络情况较差时,不确保该每个PDU set的PDU被成功发送的百分比,以节省网络开销。
示例性的,PDU set为PDU set#1,PDU set#1的内的PDU被容忍丢失的比例为90%,第一预设值为80%,发送端将PDU set#1中的PDU全部映射到第二传输路径上,即发送端采用第二传输路径发送PDU set#1中的全部PDU。
示例性的,PDU set包括PDU set#1、PDU set#2、PDU set#3,PDU set#1、PDU set#2、PDU set#3内的PDU的正确接受率分别为8%、10%、15%,第一预设值为20%,则发送端将PDU set#1、PDU set#2、PDU set#3中的PDU均映射到第二传输路径上,即采用第二传输路径发送PDU set#1、PDU set#2、PDU set#3中的所有PDU。
情况3:PDU set为一个或多个,且该一个或多个PDU set的属性值优于第二预设值且不优于第一预设值,发送端将该一个或多个PDU set中,每个PDU set内的部分PDU映射到第一传输路径上,其余部分PDU映射到第二传输路径上。
发送端将上述一个或多个PDU set中,每个PDU set内的部分PDU映射到第一传输路径上,其余部分PDU映射到第二传输路径上的实施方式包括但不限于以下实施方式:
实施方式1:发送端将上述一个或多个PDU set中,每个PDU set内(100-X)%的PDU映射到第一传输路径上,以及每个PDU set内X%的PDU映射到第二传输路径上。
第一传输路径的特性优于第三预设值,第二传输路径的特性不优于第四预设值,即第一传输路径的特性优于第二传输路径的特性。第一传输路径的特性优于第二传输路径的特性,可参见上述所述,不再赘述。
可理解的,一个或多个PDU set的属性值相同或不相同,或者一个或多个PDU set中的部分PDU set的属性值相同,部分PDU set的属性值不相同。
另外,X与PDU set的属性值相关,X大于0,且小于100。
可理解的,X与PDU set的属性值相关,是指X的取值是基于PDU set的属性值确定的。例如,PDU set的属性为优先级,优先级的数值越低,优先级的级别越高,PDU set优先级为1级,X的取值可等于0。那么,PDU set中的PDU均被映射到第一传输路径上,没有PDU被映射到第二传输路径上。
再例如,一个或多个PDU set中,每个PDU set内的PDU被容忍丢失的比例为30%,X的取值可为30。那么,一个或多个PDU set中,每个PDU set中70%的PDU被映射到第一传输路径上,其余30%的PDU被映射到第二传输路径上,以确保一个或多个PDU set中每个PDU set内至少有70%的PDU被成功发送。
再例如,一个或多个PDU set包括PDU set#1、PDU set#2和PDU set#3,PDU set#1、PDU set#2和PDU set#3内的PDU的正确接收率分别为90%、80%、70%,那么PDU set#1对应的X可为10,PDU set#2对应的X可为20,PDU set#3对应的X可为30。从而,发送端将PDU set#1中90%的PDU映射到第一传输路径上,将PDU set#1中其余10%的PDU映射到第二传输路径上,以及将PDU set#2中80%的PDU映射到第一传输路径上,将PDU set#2中其余20%的PDU映射到第二传输路径上,以及将PDU set#3中70%的PDU映射到第一传输路径上,将PDU set#3中其余30%的PDU映射到第二传输路径上。
再例如,一个或多个PDU set为PDU set#1,该PDU set#1承载的信息为语音数据,由于语音数据的重要程度比较高,则确定X的取值为15。那么,发送端将PDU set#1中85%的PDU映射到第一传输路径上,15%的PDU映射到第二传输路径上,以确保PDU set#1内的大于85%的PDU被成功发送。
该方式中,对于属性值优于第二预设值且不优于第一预设值的PDU set,发送端将PDU set中的第一部分的PDU映射到特性较好的第一传输路径上,其余第二部分的PDU映射到特性较差的第二传输路径上,且第一部分和第二部分的取值是基于该PDU set的属性值确定的。该方式可在确保该PDU set内PDU被成功发送的百分比的同时,节省网络开销。
目前,对于属性值优于第二预设值且不优于第一预设值的PDU set,发送端直接将该PDU set中的全部PDU映射到第三传输路径上,第三传输路径的传输特性优于第四预设值,且不优于第三预设值。也就是说,发送端是将属性值优于第二预设值且不优于第一预设值的PDU set中的全部PDU,映射到与该PDU set的属性值匹配的第三传输路径上。
可见,本申请中对于属性值优于第二预设值且不优于第一预设值的PDU set的映射方式,与目前的方式相比,本申请可将协议数据单元集合PDU set中的PDU进行更为精细的划分,但未第三传输路径。因此,本申请可在提升对PDU set服务质量控制的精细度的同时,节省网络开销。
实施方式2:发送端将一个或多个PDU set中,每个PDU set内(100-X-x)%的PDU映射到第一传输路径上,以及每个PDU set内(X+x)%的PDU被映射到第二传输路径上。
其中,X与PDU set的属性值相关,X大于0,且小于100,详见上述,不再赘述。x为大于或等于0,且小于或等于100-X的实数。
可理解的,X与PDU set的属性值相关,X的确定方式可参见上述实施方式1中所述,不再赘述。x可以是经多次实验验证获得的一个较小数。
可理解的,一个或多个PDU set的属性值相同或不相同,或者一个或多个PDU set中的部分PDU set的属性值相同,部分PDU set的属性值不相同。
该实施方式与上述实施方式1的不同之处在于,发送端确定传输特性较差的第二传输路径也能承担一部分PDU的成功发送。从而,对于PDU set的属性介于中间的PDU set,发送端不仅让第一传输路径承担 PDU set中需被成功发送的一部分PDU,也让第二传输路径承担该PDU set中需被成功发送的一部分PDU,即使得第一传输路径和第二传输路径均承担PDU set中需被成功发送的部分PDU,以保证该PDU set中PDU被成功发送的百分比。
例如,PDU set为PDU set#1,PDU set#1内的PDU被容忍丢失的比例为30%,且第二传输路径上能承担PDU不被丢失的比例为5%。那么,发送端将PDU set#1内65%的PDU映射到第一传输路径上,将PDU set#1内35%的PDU映射到第二传输路径上。若PDU set#1包括100个PDU,则发送端将PDU set#1内65个PDU映射到第一传输路径上,将PDU set#1内其余35个PDU映射到第二传输路径上。
再例如,PDU set包括PDU set#1和PDU set#2,PDU set#1和PDU set#2内的PDU被容忍丢失的比例分别为20%、30%,假设第二传输路径至少能传输10%的数据报文。那么,发送端将PDU set#1内70%的PDU映射到第一传输路径上,将PDU set#1内其余30%的PDU映射到第二传输路径上,以及将PDU set#2内60%的PDU映射到第一传输路径上,将PDU set#2内其余40%的PDU映射到第二传输路径上。该方式能够保证PDU set#1内至少80%的PDU被成功发送,PDU set#2内至少70%的PDU被成功发送。
实施方式3:发送端将该一个或多个PDU set中,每个PDU set中每个PDU中(100-X)%的数据映射到第一传输路径上,每个PDU中X%的数据映射到第二传输路径上。X的取值可参见上述所述,不再赘述。
实施方式4:发送端可将该一个或多个PDU set中,每个PDU set的每个PDU中(100-X-x)%的数据映射到第一传输路径上,每个PDU中(X+x)%的数据映射到第二传输路径上。X、x的取值可参见上述所述,不再赘述。
对于PDU set的属性值优于第二预设值且不优于第一预设值的一个或多个PDU set而言,实施方式3和实施方式4与上述实施方式1、实施方式2的区别在于,实施方式3和实施方式4中,发送端是将该一个或多个PDU set中,每个PDU set的每个PDU中的部分数据映射到第一传输路径上,以及每个PDU中的其余部分数据映射到第二传输路径上。该方式也可确保一个或多个PDU set中,每个PDU set中PDU被成功发送的百分比。
情况4:PDU set为一个或多个,一个或多个PDU set中的部分PDU set的属性值优于第一预设值,部分PDU set的属性值优于第二预设值且不优于第一预设值,发送端将优于第一预设值的部分PDU set中的PDU映射到第一传输路径上,将属性值优于第二预设值且不优于第一预设值的部分PDU set中,每个PDU set中的部分PDU映射到第一传输路径上,以及每个PDU set中其余部分PDU映射到第二传输路径上。
发送端将优于第一预设值的部分PDU set中的PDU映射到第一传输路径上的实施方式可参见上述情况1的实施方式,不再赘述。
发送端将PDU set的属性值优于第二预设值且不优于第一预设值的部分PDU set中,每个PDU set中的部分PDU映射到第一传输路径上,以及每个PDU set中的其余部分PDU映射到第二传输路径上的实施方式可参见上述情况3的实施方式,不再赘述。
可见,当PDU set中包括上述情况1和情况3中的两种属性值的PDU set时,发送端分别按照每部分PDU set的属性值,将其映射到第一传输路径和第二传输路径上,以确保每部分PDU set中PDU被成功发送的百分比。
示例性的,PDU set包括PDU set#1、PDU set#2,PDU set#1内的PDU被容忍丢失的比例为0.3%,PDU set#2内的PDU被容忍丢失的比例为10%,第一预设值为1%,第二预设值为20%,则发送端将PDU set#1内的PDU全部映射到第一传输路径上,以确保PDU set#1内大于99.7%的PDU被成功发送,以及将PDU set#2内90%的PDU映射到第一传输路径上,PDU set#2内的10%的PDU映射到第二传输路径上,以确保PDU set#2内至少有90%的PDU被成功发送。
情况5:PDU set为一个或多个,一个或多个PDU set中的部分PDU set的属性值不优于第二预设值,部分PDU set的属性值优于第二预设值且不优于第一预设值,发送端将不优于第二预设值的部分PDU set中的PDU映射到第一传输路径上,将属性值优于第二预设值且不优于第一预设值的部分PDU set中,每个PDU set中的部分PDU映射到第一传输路径上,以及每个PDU set中的其余部分PDU映射到第二传输路径上。
发送端将不优于第二预设值的部分PDU set中的PDU映射到第一传输路径上的实施方式,可参见上述情况2中的实施方式,不再赘述。
发送端将PDU set的属性值优于第二预设值且不优于第一预设值的PDU set中,每个PDU set中的部分PDU映射到第一传输路径上,以及每个PDU set中的其余部分PDU映射到第二传输路径上的实施方式,可参见上述情况3中的实施方式,不再赘述。
示例性的,PDU set包括PDU set#1、PDU set#2,PDU set#1内的PDU被容忍丢失的比例为80%,PDU set#2内的PDU被容忍丢失的比例为40%,第一预设值为10%,第二预设值为70%,则发送端将PDU set#1内的PDU全部映射到第二传输路径上,以及将PDU set#2内60%的PDU映射到第一传输路径上,PDU set#2内的40%的PDU映射到第二传输路径上。
情况6:PDU set为一个或多个,一个或多个PDU set中的部分PDU set的属性值优于第一预设值,部分PDU set的属性值不优于第二预设值,部分PDU set的属性值优于第二预设值且不优于第一预设值,发送端将优于第一预设值的部分PDU set中的PDU映射到第一传输路径上,将不优于第二预设值的部分PDU set中的PDU映射到第一传输路径上,将属性值优于第二预设值且不优于第一预设值的部分PDU set中,每个PDU set中部分PDU映射到第一传输路径上,以及每个PDU set中的其余部分PDU映射到第二传输路径上。
该情况下,发送端对一个或多个PDU set的映射方式,可参见上述情况1至情况3中的实施方式,不再赘述。
示例性的,PDU set包括PDU set#1、PDU set#2、PDU set#3,PDU set#1内的PDU被容忍丢失的比例为5%,PDU set#2内的PDU被容忍丢失的比例为40%,PDU set#3内的PDU被容忍丢失的比例为80%,第一预设值为10%,第二预设值为70%。那么,发送端将PDU set#1内的PDU全部映射到第一传输路径上,以及将PDU set#2内60%的PDU映射到第一传输路径上,PDU set#2内的40%的PDU映射到第二传输路径上,以及将PDU set#3内的PDU全部映射到第二传输路径上。
该方式中,一个或多个PDU set的同类型属性的属性值被划分为了三种,但仍将该一个或多个PDU set中的PDU映射到了第一传输路径和第二传输路径上,即PDU set被映射的传输路径的条数小于PDU set的同类型属性的属性值个数,可在提升对PDU set服务质量控制精细度的同时,节省网络开销。
情况7:PDU set为一个或多个,一个或多个PDU set中的部分PDU set的属性值优于第一预设值,部分PDU set的属性值不优于第二预设值,发送端将一个或多个PDU set中PDU set的属性值优于第一预设值的PDU set映射到第一传输路径上,将PDU set的属性值不优于第二预设值的PDU set映射到第二传输路径上。
发送端将一个或多个PDU set中PDU set的属性值优于第一预设值的PDU set映射到第一传输路径上的实施方式,可参见上述情况1的实施方式,不再赘述。发送端将PDU set的属性值不优于第二预设值的PDU set映射到第二传输路径上的实施方式,可参见上述情况2的实施方式,不再赘述。
示例性的,PDU set包括PDU set#1、PDU set#2,PDU set#1内的PDU被容忍丢失的比例为5%,PDU set#2内的PDU被容忍丢失的比例为90%,第一预设值为10%,第二预设值为70%。那么,发送端将PDU set#1内的PDU全部映射到第一传输路径上,以及将PDU set#2内的全部PDU映射到第二传输路径上。
可见,发送端可将PDU set的同类型属性值划分为至少三个取值,且PDU set的属性值不相同时,发送端对其映射方式也不相同。
本申请实施例中,发送端的实体架构图可如图3所示,发送端包括业务数据适配协议SDAP实体、第一PDCP实体、第二PDCP实体、第一RLC实体、第二RLC实体和MAC实体。SDAP实体与第一PDCP实体和第二PDCP实体相连。第一传输路径与第一PDCP实体关联,第二传输路径与第二PDCP实体关联。也就是说,第一传输路径是采用第一PDCP实体进行传输是采用的传输路径,第二传输路径是采用第二PDCP实体进行传输时采用的传输路径。
如图3所示,第一PDCP实体与第一RLC实体关联,第二PDCP实体与第二RLC实体关联,即第一PDCP实体与第一RLC实体相连,第二PDCP实体与第二RLC实体相连。
可选的,如图4所示,第一PDCP实体与多个第一RLC实体关联,第二PDCP实体与第二RLC实体关联,即第一PDCP实体与多个第一RLC实体相连,第二PDCP实体与第二RLC实体相连。
第一PDCP实体与第一RLC实体关联,第二PDCP实体与第二RLC实体关联时,第一RLC实体采用确认模式(acknowledged mode,AM)传输,第二RLC实体采用非确认模式(unacknowledged mode,UM)传输。
AM传输是指需要对等实体确认的一种传输模式。发送端采用AM传输模式进行传输时,如果对等实体未确认数据的成功传输,则会进行数据重传,以确保数据的成功传输。因此,第一RLC实体采用AM传输,可确保第一传输路径的特性优于第二传输路径的特性,且第一传输路径的特性优于第三预设值。
UM模式是指不需要对等实体确认的一种传输模式。发送端采用UM传输模式进行传输时,无需等待对等实体对数据的确认,即使传输的数据未被成功传输,也不进行数据重传,因此不保证数据的成功传输。 因此,第二RLC实体采用UM模式传输,可不确保第二传输路径上数据的正确传输,可节省网络开销。
第一PDCP实体与多个第一RLC实体关联,第二PDCP实体与第二RLC实体关联时,多个第一RLC实体与第二RLC实体均采用非确认模式传输。多个第一RLC实体采用非确认模式时,多个第一RLC实体之间可通过复制(duplication)的方式,来保证第一传输路径的特性优于第三预设值。
另一种可选的实施方式中,发送端的实体架构图还可如图5所示,发送端包括SDAP实体、第三PDCP实体、第一RLC实体、第二RLC实体和MAC实体。第一传输路径和第二传输路径均与该第三PDCP实体关联,即第一传输路径与第二传输路径均是采用该第三PDCP实体进行传输的传输路径。
如图5所示,第三PDCP实体与第一RLC实体和第二RLC实体关联,即第三PDCP实体与第一RLC实体和第二RLC实体相连。第一RLC实体和第二RLC实体分别是与第一传输路径、与第二传输路径关联的RLC实体,即第一RLC实体和第二RLC实体分别是第一传输路径、第二传输路径传输时所采用的RLC实体。
可选的,如图6所示,第三PDCP实体与多个第一RLC实体和第二RLC实体关联,即第三PDCP实体与多个第一RLC实体和第二RLC实体相连。第一RLC实体和第二RLC实体分别是采用第一传输路径、第二传输路径传输时所采用的RLC实体。
第三PDCP实体与第一RLC实体和第二RLC实体关联时,第一RLC实体可采用AM传输,第二RLC实体可采用UM传输,以确保第一传输路径的特性优于第二传输路径的特性,且第一传输路径的特性优于第三预设值。第三PDCP实体与多个第一RLC实体和第二RLC实体关联时,多个第一RLC实体和第二RLC实体均可采用UM模式传输。同理,多个第一RLC实体采用非确认模式时,多个第一RLC实体之间可通过复制的方式,保证第一传输路径的特性优于第三预设值。
可选的,第一传输路径的带宽高于第二传输路径的带宽,或者第一传输路径的逻辑信道优先级高于第二传输路径的逻辑信道优先级,等其他方式均可确保第一传输路径的特性优于第二传输路径的特性。
示例性的,如图7所示,PDU set包括PDU set#1、PDU set#2、PDU set#3,且PDU set#1内的PDU被容忍丢失的比例为0%,PDU set#2内的PDU被容忍丢失的比例为30%,PDU set#3被允许为尽力服务。那么,发送端将PDU set#1中的PDU全部映射到与第一RLC实体关联第一传输路径上,将PDU set#3中的PDU全部映射到与第二RLC实体关联的第二传输路径上,将PDU set#2内70%的PDU映射到与第一RLC实体关联的第一传输路径上,将PDU set#2内其余30%的PDU映射到与第二RLC实体关联的第二传输路径上。若PDU set#2包括100个PDU,则发送端将PDU set#2内的70个PDU映射到第一传输路径上,将PDU set#2内的其余30个PDU映射到第二传输路径上。
一种可选的实施方式中,发送端从上层接收PDU set之前,会接收到用于指示该PDU set的分类信息的指示信息。例如,如图8所示,发送端在接收PDU set#1、PDU set#2、PDU set#3、PDU set#4之前,会分别接收到用于指示每个PDU set的类型的分类信息。其中,类型1用于指示PDU set#1内的PDU被容忍丢失的比例为0%,类型2用于指示PDU set#2内的PDU被允许为尽力服务,类型3用于指示PDU set#3和PDU set#4内的PDU被容忍丢失的比例为30%。
那么,发送端基于用于指示每个PDU set的类型的分类信息,确定PDU set#1、PDU set#2、PDU set#3、PDU set#4中每个PDU set的属性值,并基于每个PDU set的属性值,将每个PDU set内的PDU映射到第一传输路径和第二传输路径上。发送端基于类型1、类型2和类型3指示的信息,将PDU set#1映射到第一传输路径上,将PDU set#2映射到第二传输路径上,以及将PDU set#3和PDU set#4中70%的PDU映射到第一传输路径上,将PDU set#3和PDU set#4中30%的PDU映射到第二传输路径上。
该分类信息可携带于PDU set中,也可携带于额外的指示信息(比如,start marker/end marker)中。该分类信息可以是优先级、重要程度、PDU set内的PDU被容忍丢失的比例、PDU set内PDU的正确接收率、PDU set内PDU需满足的容错率、PDU set承载的信息的类型、PDU set的总字节数中允许被丢失/错误的字节数、PDU set内的数据的误码率、PDU set是否可以被丢弃中的一种或多种。
一种可选的实施方式中,分类信息是PDU set内的PDU被容忍丢失的比例、PDU set内PDU的正确接收率、PDU set内PDU需满足的容错率中的一种或多种时,发送端可直接基于分类信息确定的PDU set的属性值,将PDU set中的PDU映射到第一传输路径和第二传输路径上。分类信息是优先级、重要程度、PDU set承载的信息的类型、PDU set的总字节数中允许被丢失/错误的字节数、PDU set是否可以被丢弃中的一种或多种时,发端端根据优先级/重要程度/PDU set承载的信息/PDU set的总字节数中允许被丢失/错误的字节数/PDU set是否可以被丢弃,与PDU set内的PDU被容忍丢失的比例的关联表,将基于分类信息确定的PDU set的属性值,转换为PDU set内的PDU被容忍丢失的比例,然后再基于PDU set内的PDU 被容忍丢失的比例,将PDU set内的PDU映射到第一传输路径和第二传输路径上。
示例性的,PDU set#1的分类信息为该PDU set#1的重要等级,且PDU set#1的重要等级为重要等级1,重要等级与PDU set内的PDU被容忍丢失的比例之间的关联表中,重要等级1被转换为PDU set内的PDU被容忍丢失的比例为0%,重要等级2被转换为PDU set内的PDU被容忍丢失的比例为20%,重要等级3被转换为PDU set内的PDU被容忍丢失的比例为100%。那么,发送端确定PDU set#1内的PDU被容忍丢失的比例为0%,进而将PDU set#1映射到传输特性较好的第一传输路径上。
示例性的,PDU set#2的分类信息为该PDU set#2的总字节数中允许被丢失的字节数,PDU set#2包括100个字节,PDU set#2的总字节数中允许被丢失的字节数为30个。发送端基于该PDU set的总字节数中允许被丢失的字节数,与PDU set内的PDU被容忍丢失的比例之间的关联表,确定PDU set#2内的PDU被容忍丢失的比例为30%,从而将PDU set#2包括的100个字节中的30个字节映射到第二传输路径上,将该PDU set#2包括的100个字节中的其余70个映射到第一传输路径上。
一种可选的实施方式中,发送端还可将第一PUD set的母PDU set序列号与第二PDU set的子PDU set序列号关联。
其中,第一PDU set是PDU set中的任意一个PDU set。PDU set的数量为1时,第一PDU set就是该PDU set。例如,PDU set为PDU set#1,那么第一PDU set就是该PDU set#1。PDU set包括多个PDU set时,第一PDU set是多个PDU set中的任意一个。例如,PDU set包括PDU set#1、PDU set#2和PDU set#3,第一PDU set可以是PDU set#1,也可以是PDU set#2,也可以是PDU set#3。
第二PDU set是由第一PDU set中部分或全部PDU组成的PDU set。例如,第一PDU set为PDU set#1,PDU set#1中的PDU均被映射到第一传输路径或第二传输路径上时,第二PDU set是该第二PDU set#1中的全部PDU组成的PDU set,也可认为第二PDU set就是该第一PDU set(PDU set#1)。
再例如,第一PDU set为PDU set#1,PDU set#1包括100个PDU,PDU set#1中的90个PDU被映射到第一传输路径上,PDU set#1中的其余10个PDU被映射到第二传输路径上。那么,第二PDU set是该PDU set#1中的90个PDU组成的PDU set#a和其余10个PDU组成的PDU set#b。
一种可选的实施方式中,发送端的实体架构如上述图3和图4时,即发送端的PDCP实体包括第一PDCP实体和第二PDCP实体时,该母PDU set序列号是由SDAP层维护的序列号,子PDU set序列号是由PDCP层维护的序列号。
可理解的,PDU set的SDAP层维护的序列号可以是指发送端的SDAP实体为该PDU set分配的PDU set的序列号。在SDAP层,一个PDU set内的所有PDU具备相同的PDU set序列号。换句话说,在SDAP层,该PDU set序列号指示了这些PDU属于同一个PDU set。或者,PDU set的SDAP层维护的序列号可以是指发送端的SDAP实体将该PDU set的PDU携带的应用层/内层/上层/payload中的序列号作为该PDU set的序列号,并在SDAP层记录。PDU set的PDCP层维护的序列号可以是指发送端的PDCP实体为PDU set内的全部or部分PDU组成的PDU set分配的序列号,该序列号指示了这些PDU属于同一个PDU集合。应理解,PDU set的序列号不同于PDU的序列号。对于同一个PDUset内的不同PDU,PDU的序列号是不相同的,但是PDU set的序列号是相同的。
PDU set的RLC层维护的序列号可以是指发送端的RLC实体为PDU set内的全部or部分PDU组成的PDU set分配的序列号,该序列号指示了这些PDU属于同一个PDU集合。
示例性地,第一PDU set是PDU set#1,第二PDU set是PDU set#1中的90个PDU组成的PDU set#a,以及PDU set#1中的其余10个PDU组成的PDU set#b,PDU set#a被映射到第一传输路径上,PDU set#b被映射到第二传输路径上,第一传输路径与第一PDCP实体关联,第二传输路径与第二PDCP关联。那么,发送端将SDAP层维护的PDU set#1的序列号A,与第一PDCP层维护的PDU set#a的序列号#a,以及第二PDCP层维护的PDU set#b的序列号#b关联,以使得发送端后续可基于序列号#a、序列号#b、序列号A中的任意一个序列号,查询与该序列号相关的其余序列号。例如,发送端可基于序列号#a,查询序列号#b和序列号A。
示例性的,第一PDU set是PDU set#2,PDU set#2被映射到第一传输路径上,第一传输路径与第一PDCP层关联,则发送端将SDAP层维护的PDU set#2的序列号与第一PDCP层维护的PDU set#2的序列号关联。
示例性的,第一PDU set是PDU set#3,PDU set#3被映射到第二传输路径上,第二传输路径与第二PDCP层关联,则发送端将SDAP层维护的PDU set#3的序列号与第二PDCP层维护的PDU set#2的序列号关联。
另一种可选的实施方式中,发送端的实体架构如上述图5和图6所示时,即发送端的PDCP实体为第三PDCP实体时,该母PDU set序列号是由PDCP层维护的序列号,子PDU set序列号是由RLC层维护的 序列号。
示例性的,第一PDU set是PDU set#1,第二PDU set是PDU set#1中的90个PDU组成的PDU set#a,以及PDU set#1中的其余10个PDU组成的PDU set#b,PDU set#a被映射到第一传输路径上,PDU set#b被映射到第二传输路径上,发送端的PDCP实体为第三PDCP实体,第三PDCP实体与第一RLC实体和第二RLC实体关联,第一RLC实体与第一传输路径关联,第二RLC实体与第二传输路径关联。
那么,发送端将第三PDCP层维护的PDU set#1的序列号B,与第一RLC层维护的PDU set#a的序列号#m,以及第二RLC层维护的PDU set#b的序列号#n关联,以使得发送端后续可基于序列号#m、序列号#n和序列号B中的任意一个序列号,查询其余序列号。例如,发送端基于序列号#m,查找序列号#n。
示例性的,发送端的PDCP实体为第三PDCP实体,第一PDU set是PDU set#2,PDU set#2被映射到第一传输路径上,第一传输路径与第一RLC层关联,则发送端将第三PDCP层维护的PDU set#2的序列号与第一RLC层维护的PDU set#2的序列号关联。
示例性的,发送端的PDCP实体为第三PDCP实体,第一PDU set是PDU set#3,PDU set#3被映射到第二传输路径上,第二传输路径与第二RLC层关联,则发送端将第三PDCP层维护的PDU set#3的序列号与第二RLC层维护的PDU set#2的序列号关联。
可见,发送端包括两个PDCP层时,可将PDU set中的任意一个PDU set的SDAP层维护的序列号,与由该PDU set中部分或全部PDU组成的PDU set的PDCP层维护的序列号关联。发送端包括一个PDCP层时,可将PDU set中的任意一个PDU set的PDCP层维护的序列号,与由该PDU set中部分或全部PDU组成的PDU set的RLC层维护的序列号关联。
可选的,上述第一PDU set可被理解为母帧,第二PDU set可被理解为子帧,母PDU set序列号也可被理解为是母帧帧号,子PDU set序列号也可被理解为是子帧帧号。
类似的,发送端包括两个PDCP实体时,母帧帧号是SDAP层维护的帧号,子帧帧号是PDCP层维护的帧号。或者,发送端包括一个PDCP实体时,母帧帧号是PDCP层中PDU set的帧号,子帧帧号是RLC层中PDU set的帧号。
示例性的,发送端包括第一PDCP层和第二PDCP层,PDU set包括PDU set#1、PDU set#2、PDU set#3,即PDU set#1、PDU set#2、PDU set#3分别为母帧1、母帧2、母帧3。PDU set#1被映射到第一传输路径上,PDU set#2被映射到第二传输路径上,PDU set#3中的80个PDU组成的PDU set#a被映射到第一传输路径上,以及PDU set#3中的20个PDU组成的PDU set#b被映射到第二传输路径上。那么,发送端可将PDU set#1也视为子帧1,将PDU set#2视为子帧2,将PDU set#a视为子帧3,将PDU set#b视为子帧4。
发送端将母帧1的母帧帧号(SDAP层维护的帧号),与子帧1的子帧帧号(第一PDCP层维护的帧号)关联,将母帧2的母帧帧号(SDAP层维护的帧号),与子帧2的子帧帧号(第二PDCP层维护的帧号)关联,将母帧3的母帧帧号(SDAP层维护的帧号),与子帧3的子帧帧号(第一PDCP层维护的帧号),以及子帧4的子帧帧号(第二PDCP层维护的帧号)关联。
示例性的,发送端的PDCP实体为第三PDCP层,PDU set包括PDU set#1、PDU set#2、PDU set#3,即PDU set#1、PDU set#2、PDU set#3分别为母帧1、母帧2、母帧3。PDU set#1被映射到第一传输路径上,PDU set#2被映射到第二传输路径上,PDU set#3中的80个PDU组成的PDU set#a被映射到第一传输路径上,以及PDU set#3中的其余20个PDU组成的PDU set#b被映射到第二传输路径上。第一传输路径与第一RLC实体关联,第二传输路径与第二RLC实体关联,那么,发送端可将PDU set#1也视为子帧1,将PDU set#2视为子帧2,将PDU set#a视为子帧3,将PDU set#b视为子帧4。
发送端将母帧1的母帧帧号(第三PDCP层维护的帧号)与子帧1的子帧帧号(第一RLC层维护的帧号)关联,将母帧2的母帧帧号(第三PDCP层维护的帧号)与子帧2的子帧帧号(第二RLC层维护的帧号)关联,将母帧3的母帧帧号(第三PDCP层维护的帧号),与子帧3的子帧帧号(第一RLC层维护的帧号),以及子帧3的子帧帧号(第二RLC层维护的帧号)关联。
一种可选的实施方式中,发送端还可确定第三PDU set中的y个PDU丢失时,停止发送第三PDU set和第四PDU set。其中,y为大于或等于1的整数,第三PDU set是被映射到第一传输路径上的部分PDU组成的PDU set,第四PDU set是被映射到第二传输路径上的部分PDU组成的PDU set,且第四PDU set的母PDU set序列号与第三PDU set的母PDU set序列号相同。
第四PDU set的母PDU set序列号与第三PDU set的母PDU set序列号相同,表明第四PDU set和第三PDU set是被同一个母PDU set拆分成的两个子PDU set。例如,第一PDU set是PDU set中的一个PDU set,第一PDU set中的80个PDU被映射到第一传输路径上,其余20个PDU被映射到第二传输路径上, 且该80个PDU组成PDU set#a,其余20个PDU组成PDU set#b。那么,PDU set#a和PDU set#b的母PDU set序列号相同,即PDU set#a是第三PDU set,PDU set#b是第四PDU set,或者,PDU set#a是第四PDU set,PDU set#b是第三PDU set。
可理解的,发送端的PDCP实体包括第一PDCP实体和第二PDCP实体,发送端确定第三PDU set中的y个PDU丢失时,停止发送第三PDU set,并告知SDAP实体该第三PDCP set的母PDU set序列号,通过SDAP实体查询是否存在与该第三PDCP set的母PDU set序列号相同的其余PDU set,即是否存在第四PDU set。若存在与该第三PDCP set的母PDU set序列号相同的第四PDU set,则也停止发送该第四PDU set中的PDU,即发送端清空存储第三PDU set和第四PDU set的缓存器(buffer),以节省网络开销。
可选的,发送端的PDCP实体包括第一PDCP实体和第二PDCP实体,发送端确定第三PDU set中的y个PDU丢失时,停止发送第三PDU set,并自行通过第三PDU set,确定是否存在与第三PDU set的母PDU set序列号相同的第四PDU set,若存在,则停止发送第四PDU set中的PDU。
类似的,发送端的PDCP实体包括第三PDCP实体,发送端确定第三PDU set中的y个PDU丢失时,停止发送第三PDU set,并告知第三PDCP实体,该第三PDCP set的母PDU set序列号,通过第三PDCP实体查询是否存在与该第三PDCP set的母PDU set序列号相同的其余PDU set,即是否存在第四PDU set。若存在与该第三PDCP set的母PDU set序列号相同的第四PDU set,则也停止该第四PDU set中PDU的发送,以节省网络开销。
示例性的,第一PDU set中被映射到第一传输路径上的PDU组成的PDU set#a中存在丢失的PDU时,发送端不再继续发送该PDU set#a中的其余PDU,以及也不再发送与该PDU set#a具有相同母PDU set序列号的PDU set#b中的PDU,以节省网络开销。
该方式中,发送端在确定被映射到第一传输路径上的部分PDU组成的PDU set中存在丢失的PDU时,即不能保证该PDU set中的PDU被成功发送的百分比,那么不再继续发送该PDU set中的其他PDU,以及不再继续发送与该PDU set具有相同母PDU set序列号的PDU set中的PDU,以节省网络开销。另外,该方式可提高除第三PDU set和第四PDU set外其余PDU set中PDU被成功发送的百分比。
另一种可选的实施方式中,确定第三PDU set中的y个报文丢失,且第四PDU set中z个报文被成功发送时,发送第三PDU set和第四PDU set。第三PDU set是被映射到第一传输路径上的部分PDU组成的PDU set,第四PDU set是被映射到第二传输路径上的部分PDU组成的PDU set,且第四PDU set的母PDU set序列号与第三PDU set的母PDU set序列号相同。y为大于或等于1的整数,z为大于或等于y的整数。
与上述实施方式的不同之处在于,发送端确定被映射到第一传输路径上的部分PDU组成的PDU set中存在丢失的PDU时,不是直接停止发送该PDU set中的其他PDU和与该PDU set具有相同母PDU set序列号的PDU set中的PDU,而是确定第二传输路径上是否成功发送了大于或等于丢失个数,且与该PDU set具有相同的母PDU set序列号的PDU set中的PDU。如果发送端确定采用第二传输路径成功发送了大于或等于丢失个数,且与该PDU set具有相同的母PDU set序列号的PDU set中的PDU,则表明继续发送该PDU set中的其他PDU和与该PDU set具有相同母PDU set序列号的PDU set中的PDU,还可确保该PDU set和与该PDU set具有相同母PDU set序列号的PDU set中PDU被成功发送的百分比。因此,发送端仍继续发送该PDU set中的PDU和与该PDU set具有相同的母PDU set中的PDU。
本申请实施例中,发送端可将PDU set中的PDU映射到小于PDU set的同类型属性的属性值个数的多条传输路径上,从而有利于在提升对PDU set服务质量控制精细度的同时,节省网络开销,或者可理解为:有利于在少量的架构分支下,提供精细的QoS控制。
需要说明的是,本申请中不同实施例或者不同实施例中的部分步骤(例如,任一个或多个步骤)之间可以相互结合,形成新的实施例。需要说明的是,不限定不同实施例中的部分步骤或任一个或多个步骤可以包括某个实施例中的可选步骤,也可以包括某个实施例中的必选步骤,也可以包括某个实施例中的可选步骤和必选步骤,本申请不限定。
需要说明的是,如果没有特殊说明以及逻辑冲突,不同实施例之间的术语和/或描述具有一致性,且可以相互引用。
需要说明的是,本申请实施例中各步骤的先后顺序,本申请不限制。
需要说明的是,本申请实施例中不同条件的判断的先后顺序,本申请不限制。
需要说明的是,本申请中的“后”、“时”不严格限制时间点。
为了实现上述本申请实施例提供的方法中的各功能,发送端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、 软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图9所示,本申请实施例提供了一种通信装置900。该通信装置900可以是发送端的部件(例如,集成电路,芯片等等)。该通信装置900也可以是其他通信单元,用于实现本申请方法实施例中的方法。该通信装置900可以包括:通信单元901和处理单元902。可选的,还可以包括存储单元903。
在一种可能的设计中,如图9中的一个或者多个单元可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述通信装置900具备实现本申请实施例描述的发送端的功能。比如,所述通信装置900包括发送端执行本申请实施例描述的发送端涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
在一种可能的设计中,一种通信装置900可包括:处理单元902和通信单元901;
处理单元902,用于基于协议数据单元集合PDU set的属性,将所述PDU set中的协议数据单元PDU映射到一条或多条传输路径上;所述多条传输路径中每条传输路径的特性不相同;
通信单元901,用于在所述一条或多条传输路径上发送所述PDU set中的所述PDU;所述传输路径的条数小于或等于所述PDU set的同类型属性的属性值个数。
一种可选的实现方式中,所述PDU set的属性包括:优先级、重要程度、PDU set内的PDU被容忍丢失的比例、PDU set内PDU的正确接收率、PDU set内PDU需满足的容错率、PDU set承载的信息的类型、PDU set的总字节数中允许被丢失/错误的字节数、PDU set内的数据的误码率、PDU set是否可以被丢弃。
一种可选的实现方式中,所述传输路径的特性包括:PDU的丢包率、带宽、传输时延、逻辑信道优先级、优先级。
一种可选的实现方式中,所述PDU set的同类型属性有至少三种不同的属性值。
一种可选的实现方式中,如果所述PDU set的属性值优于第一预设值,所述PDU set内的PDU均被映射到第一传输路径上;和/或,如果所述PDU set的属性值不优于第二预设值,所述PDU set内的PDU均被映射到第二传输路径上;和/或,如果所述PDU set的属性值优于第二预设值且不优于第一预设值,所述PDU set内(100-X)%的PDU被映射到第一传输路径上,以及X%的PDU被映射到第二传输路径上;所述第一传输路径的特性优于第三预设值,所述第二传输路径的特性不优于第四预设值;所述第一预设值优于所述第二预设值,所述第三预设值优于所述第四预设值;所述X与所述PDU set的属性值相关,所述X大于0,且小于100。
一种可选的实现方式中,如果所述PDU set的属性值优于第一预设值,所述PDU set内的PDU均被映射到第一传输路径上;和/或,如果所述PDU set的属性值不优于第二预设值,所述PDU set内的PDU均被映射到第二传输路径上;和/或,如果所述PDU set的属性值优于第二预设值且不优于第一预设值,所述PDU set内(100-X-x)%的PDU被映射到第一传输路径上,以及(X+x)%的PDU被映射到第二传输路径上;所述第一传输路径的特性优于第三预设值,所述第二传输路径的特性不优于第四预设值;所述第一预设值优于所述第二预设值,所述第三预设值优于所述第四预设值;所述X与所述PDU set的属性值相关,所述X大于0,且小于100;所述x为大于或等于0,且小于或等于100-X的实数。
一种可选的实现方式中,所述第一传输路径与第一分组数据汇聚协议PDCP实体关联,所述第二传输路径与第二PDCP实体关联。
一种可选的实现方式中,与所述第一PDCP实体关联的第一无线链路控制RLC实体采用确认模式传输,与所述第二PDCP实体关联的第二RLC实体采用非确认模式传输;或者,与所述第一PDCP实体关联的多个第一RLC实体,以及与所述第二PDCP实体关联的第二RLC实体,均采用非确认模式传输。
另一种可选的实现方式中,所述第一传输路径和所述第二传输路径均与第三PDCP实体关联。
一种可选的实现方式中,与所述第三PDCP实体关联的第一RLC实体采用确认模式传输,关联的第二RLC实体采用非确认模式传输;或者,与所述第三PDCP实体关联的多个第一RLC实体,以及关联的第二RLC实体,均采用非确认模式传输;所述第一RLC实体是与所述第一传输路径关联的RLC实体,所述第二RLC实体是与所述第二传输路径关联的RLC实体。
一种可选的实现方式中,处理单元902,还用于:将第一PDU set的母PDU set序列号与第二PDU set的子PDU set序列号关联;所述第一PDU set是所述PDU set中的任意一个PDU set,所述第二PDU set是 由所述第一PDU set中部分或全部PDU组成的PDU set;所述母PDU set序列号是由业务数据适配协议SDAP层维护的序列号,所述子PDU set序列号是由PDCP层维护的序列号;或者,所述母PDU set序列号是由PDCP层维护的序列号,所述子PDU set序列号是由RLC层维护的序列号。
一种可选的实现方式中,处理单元902,还用于:确定第三PDU set中的y个PDU丢失时,停止发送所述第三PDU set和第四PDU set;所述y为大于或等于1的整数;
所述第三PDU set是被映射到所述第一传输路径上的部分PDU组成的PDU set;所述第四PDU set是被映射到所述第二传输路径上的部分PDU组成的PDU set,且所述第四PDU set的母PDU set序列号与所述第三PDU set的母PDU set序列号相同。
另一种可选的实现方式中,处理单元902,还用于:确定第三PDU set中的y个报文丢失,且第四PDU set中z个报文被成功发送时,发送所述第三PDU set和所述第四PDU set;所述第三PDU set是被映射到所述第一传输路径上的部分PDU组成的PDU set;所述第四PDU set是被映射到所述第二传输路径上的部分PDU组成的PDU set,且所述第四PDU set的母PDU set序列号与所述第三PDU set的母PDU set序列号相同;所述y为大于或等于1的整数,所述z为大于或等于所述y的整数。
本申请实施例和上述所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,不再赘述。
本申请实施例还提供一种通信装置1000,图10为通信装置1000的结构示意图。所述通信装置1000可以是发送端,也可以是支持发送端实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置1000可以包括一个或多个处理器1001。所述处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或中央处理器(central processing unit,CPU)。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,分布单元(distributed unit,DU)或集中单元(centralized unit,CU)等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置1000中可以包括一个或多个存储器1002,其上可以存有指令1004,所述指令可在所述处理器1001上被运行,使得所述通信装置1000执行上述方法实施例中描述的方法。可选的,所述存储器1002中还可以存储有数据。所述处理器1001和存储器1002可以单独设置,也可以集成在一起。
存储器1002可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、ROM或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。
可选的,所述通信装置1000还可以包括收发器1005、天线1006。所述收发器1005可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1005可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
一种设计中,对于通信装置1000用于实现本申请实施例中发送端的功能的情况:
所述处理器1001,用于基于协议数据单元集合PDU set的属性,将所述PDU set中的协议数据单元PDU映射到一条或多条传输路径上;所述多条传输路径中每条传输路径的特性不相同;
所述收发器1005,用于在所述一条或多条传输路径上发送所述PDU set中的所述PDU;所述传输路径的条数小于或等于所述PDU set的同类型属性的属性值个数。
一种可选的实现方式中,所述PDU set的属性包括:优先级、重要程度、PDU set内的PDU被容忍丢失的比例、PDU set内PDU的正确接收率、PDU set内PDU需满足的容错率、PDU set承载的信息的类型、PDU set的总字节数中允许被丢失/错误的字节数、PDU set内的数据的误码率、PDU set是否可以被丢弃。
一种可选的实现方式中,所述传输路径的特性包括:PDU的丢包率、带宽、传输时延、逻辑信道优先级、优先级。
一种可选的实现方式中,所述PDU set的同类型属性有至少三种不同的属性值。
一种可选的实现方式中,如果所述PDU set的属性值优于第一预设值,所述PDU set内的PDU均被映射到第一传输路径上;和/或,如果所述PDU set的属性值不优于第二预设值,所述PDU set内的PDU均被映射到第二传输路径上;和/或,如果所述PDU set的属性值优于第二预设值且不优于第一预设值,所述PDU set内(100-X)%的PDU被映射到第一传输路径上,以及X%的PDU被映射到第二传输路径上;所 述第一传输路径的特性优于第三预设值,所述第二传输路径的特性不优于第四预设值;所述第一预设值优于所述第二预设值,所述第三预设值优于所述第四预设值;所述X与所述PDU set的属性值相关,所述X大于0,且小于100。
一种可选的实现方式中,如果所述PDU set的属性值优于第一预设值,所述PDU set内的PDU均被映射到第一传输路径上;和/或,如果所述PDU set的属性值不优于第二预设值,所述PDU set内的PDU均被映射到第二传输路径上;和/或,如果所述PDU set的属性值优于第二预设值且不优于第一预设值,所述PDU set内(100-X-x)%的PDU被映射到第一传输路径上,以及(X+x)%的PDU被映射到第二传输路径上;所述第一传输路径的特性优于第三预设值,所述第二传输路径的特性不优于第四预设值;所述第一预设值优于所述第二预设值,所述第三预设值优于所述第四预设值;所述X与所述PDU set的属性值相关,所述X大于0,且小于100;所述x为大于或等于0,且小于或等于100-X的实数。
一种可选的实现方式中,所述第一传输路径与第一分组数据汇聚协议PDCP实体关联,所述第二传输路径与第二PDCP实体关联。
一种可选的实现方式中,与所述第一PDCP实体关联的第一无线链路控制RLC实体采用确认模式传输,与所述第二PDCP实体关联的第二RLC实体采用非确认模式传输;或者,与所述第一PDCP实体关联的多个第一RLC实体,以及与所述第二PDCP实体关联的第二RLC实体,均采用非确认模式传输。
另一种可选的实现方式中,所述第一传输路径和所述第二传输路径均与第三PDCP实体关联。
一种可选的实现方式中,与所述第三PDCP实体关联的第一RLC实体采用确认模式传输,关联的第二RLC实体采用非确认模式传输;或者,与所述第三PDCP实体关联的多个第一RLC实体,以及关联的第二RLC实体,均采用非确认模式传输;所述第一RLC实体是与所述第一传输路径关联的RLC实体,所述第二RLC实体是与所述第二传输路径关联的RLC实体。
一种可选的实现方式中,处理器1001,还用于:将第一PDU set的母PDU set序列号与第二PDU set的子PDU set序列号关联;所述第一PDU set是所述PDU set中的任意一个PDU set,所述第二PDU set是由所述第一PDU set中部分或全部PDU组成的PDU set;所述母PDU set序列号是由业务数据适配协议SDAP层维护的序列号,所述子PDU set序列号是由PDCP层维护的序列号;或者,所述母PDU set序列号是由PDCP层维护的序列号,所述子PDU set序列号是由RLC层维护的序列号。
一种可选的实现方式中,处理器1001,还用于:确定第三PDU set中的y个PDU丢失时,停止发送所述第三PDU set和第四PDU set;所述y为大于或等于1的整数;所述第三PDU set是被映射到所述第一传输路径上的部分PDU组成的PDU set;所述第四PDU set是被映射到所述第二传输路径上的部分PDU组成的PDU set,且所述第四PDU set的母PDU set序列号与所述第三PDU set的母PDU set序列号相同。
另一种可选的实现方式中,处理器1001,还用于:确定第三PDU set中的y个报文丢失,且第四PDU set中z个报文被成功发送时,发送所述第三PDU set和所述第四PDU set;所述第三PDU set是被映射到所述第一传输路径上的部分PDU组成的PDU set;所述第四PDU set是被映射到所述第二传输路径上的部分PDU组成的PDU set,且所述第四PDU set的母PDU set序列号与所述第三PDU set的母PDU set序列号相同;所述y为大于或等于1的整数,所述z为大于或等于所述y的整数。
本申请实施例和上述所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,不再赘述。
另一种可能的设计中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
又一种可能的设计中,可选的,处理器1001可以存有指令1003,指令1003在处理器1001上运行,可使得所述通信装置1000执行上述方法实施例中描述的方法。指令1003可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
又一种可能的设计中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请实施例中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化 物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是第一装置,但本申请实施例中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图10的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(modulator);
(4)可嵌入在其他设备内的模块;
对于通信装置可以是芯片或芯片系统的情况,可参见图11所示的芯片的结构示意图。图11所示的芯片1100包括处理器1101和接口1102。其中,处理器1101的数量可以是一个或多个,接口1102的数量可以是多个。该处理器1101可以是逻辑电路,该接口1102可以是输入输出接口、输入接口或输出接口。所述芯片1100还可包括存储器1103。
一种设计中,对于芯片用于实现本申请实施例中发送端的功能的情况:
所述处理器1101,用于基于协议数据单元集合PDU set的属性,将所述PDU set中的协议数据单元PDU映射到一条或多条传输路径上;所述多条传输路径中每条传输路径的特性不相同;
所述接口1102,用于在所述一条或多条传输路径上发送所述PDU set中的所述PDU;
所述传输路径的条数小于或等于所述PDU set的同类型属性的属性值个数。
本申请实施例中,芯片1100还可执行上述通信装置900所述的实现方式。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例和上述数据发送方法100所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述数据发送方法100所示实施例的描述,不再赘述。
本申请还提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序,当其在计算机上运行时,实现上述任一方法实施例的功能。
本申请还提供了一种通信系统,该系统包括一个或多个网络设备,以及一个或多个终端设备。在另一种可能的设计中,该系统还可以包括本申请提供的方案中与网络设备、终端设备进行交互的其他设备。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种数据发送方法,其特征在于,所述方法包括:
    基于协议数据单元集合PDU set的属性,将所述PDU set中的协议数据单元PDU映射到一条或多条传输路径上;所述多条传输路径中每条传输路径的特性不相同;
    在所述一条或多条传输路径上发送所述PDU set中的所述PDU;
    所述传输路径的条数小于或等于所述PDU set的同类型属性的属性值个数。
  2. 根据权利要求1所述的方法,其特征在于,
    所述PDU set的属性包括:优先级、重要程度、PDU set内的PDU被容忍丢失的比例、PDU set内PDU的正确接收率、PDU set内PDU需满足的容错率、PDU set承载的信息的类型、PDU set的总字节数中允许被丢失/错误的字节数、PDU set内的数据的误码率、PDU set是否可以被丢弃。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述传输路径的特性包括:PDU的丢包率、带宽、传输时延、逻辑信道优先级、优先级。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述PDU set的同类型属性有至少三种不同的属性值。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,
    如果所述PDU set的属性值优于第一预设值,所述PDU set内的PDU均被映射到第一传输路径上;和/或,
    如果所述PDU set的属性值不优于第二预设值,所述PDU set内的PDU均被映射到第二传输路径上;和/或,
    如果所述PDU set的属性值优于第二预设值且不优于第一预设值,所述PDU set内(100-X)%的PDU被映射到第一传输路径上,以及X%的PDU被映射到第二传输路径上;
    所述第一传输路径的特性优于第三预设值,所述第二传输路径的特性不优于第四预设值;所述第一预设值优于所述第二预设值,所述第三预设值优于所述第四预设值;
    所述X与所述PDU set的属性值相关,所述X大于0,且小于100。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,
    如果所述PDU set的属性值优于第一预设值,所述PDU set内的PDU均被映射到第一传输路径上;和/或,
    如果所述PDU set的属性值不优于第二预设值,所述PDU set内的PDU均被映射到第二传输路径上;和/或,
    如果所述PDU set的属性值优于第二预设值且不优于第一预设值,所述PDU set内(100-X-x)%的PDU被映射到第一传输路径上,以及(X+x)%的PDU被映射到第二传输路径上;
    所述第一传输路径的特性优于第三预设值,所述第二传输路径的特性不优于第四预设值;所述第一预设值优于所述第二预设值,所述第三预设值优于所述第四预设值;
    所述X与所述PDU set的属性值相关,所述X大于0,且小于100;所述x为大于或等于0,且小于或等于100-X的实数。
  7. 根据权利要求5或6所述的方法,其特征在于,
    所述第一传输路径与第一分组数据汇聚协议PDCP实体关联,所述第二传输路径与第二PDCP实体关联。
  8. 根据权利要求7所述的方法,其特征在于,
    与所述第一PDCP实体关联的第一无线链路控制RLC实体采用确认模式传输,与所述第二PDCP实体关联的第二RLC实体采用非确认模式传输;或者,
    与所述第一PDCP实体关联的多个第一RLC实体,以及与所述第二PDCP实体关联的第二RLC实体,均采用非确认模式传输。
  9. 根据权利要求5或6所述的方法,其特征在于,
    所述第一传输路径和所述第二传输路径均与第三PDCP实体关联。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    与所述第三PDCP实体关联的第一RLC实体采用确认模式传输,关联的第二RLC实体采用非确认模式传输;或者,
    与所述第三PDCP实体关联的多个第一RLC实体,以及关联的第二RLC实体,均采用非确认模式传输;
    所述第一RLC实体是与所述第一传输路径关联的RLC实体,所述第二RLC实体是与所述第二传输路径关联的RLC实体。
  11. 根据权利要求7至10任一项所述的方法,其特征在于,所述方法还包括:
    将第一PDU set的母PDU set序列号与第二PDU set的子PDU set序列号关联;
    所述第一PDU set是所述PDU set中的任意一个PDU set,所述第二PDU set是由所述第一PDU set中部分或全部PDU组成的PDU set;
    所述母PDU set序列号是由业务数据适配协议SDAP层维护的序列号,所述子PDU set序列号是由PDCP层维护的序列号;或者,
    所述母PDU set序列号是由PDCP层维护的序列号,所述子PDU set序列号是由RLC层维护的序列号。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    确定第三PDU set中的y个PDU丢失时,停止发送所述第三PDU set和第四PDU set;所述y为大于或等于1的整数;
    所述第三PDU set是被映射到所述第一传输路径上的部分PDU组成的PDU set;
    所述第四PDU set是被映射到所述第二传输路径上的部分PDU组成的PDU set,且所述第四PDU set的母PDU set序列号与所述第三PDU set的母PDU set序列号相同。
  13. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    确定第三PDU set中的y个报文丢失,且第四PDU set中z个报文被成功发送时,发送所述第三PDU set和所述第四PDU set;
    所述第三PDU set是被映射到所述第一传输路径上的部分PDU组成的PDU set;
    所述第四PDU set是被映射到所述第二传输路径上的部分PDU组成的PDU set,且所述第四PDU set的母PDU set序列号与所述第三PDU set的母PDU set序列号相同;
    所述y为大于或等于1的整数,所述z为大于或等于所述y的整数。
  14. 一种通信装置,其特征在于,包括:
    处理单元,用于基于协议数据单元集合PDU set的属性,将所述PDU set中的协议数据单元PDU映射到一条或多条传输路径上;所述多条传输路径中每条传输路径的特性不相同;
    通信单元,用于在所述一条或多条传输路径上发送所述PDU set中的所述PDU;
    所述传输路径的条数小于或等于所述PDU set的同类型属性的属性值个数。
  15. 根据权利要求14所述的装置,其特征在于,
    所述PDU set的属性包括:优先级、重要程度、PDU set内的PDU被容忍丢失的比例、PDU set内PDU的正确接收率、PDU set内PDU需满足的容错率、PDU set承载的信息的类型、PDU set的总字节数中允许被丢失/错误的字节数、PDU set内的数据的误码率、PDU set是否可以被丢弃。
  16. 根据权利要求14或15所述的装置,其特征在于,
    所述传输路径的特性包括:PDU的丢包率、带宽、传输时延、逻辑信道优先级、优先级。
  17. 根据权利要求14至16任一项所述的装置,其特征在于,所述PDU set的同类型属性有至少三种不同的属性值。
  18. 根据权利要求14至17任一项所述的装置,其特征在于,
    如果所述PDU set的属性值优于第一预设值,所述PDU set内的PDU均被映射到第一传输路径上;和/或,
    如果所述PDU set的属性值不优于第二预设值,所述PDU set内的PDU均被映射到第二传输路径上;和/或,
    如果所述PDU set的属性值优于第二预设值且不优于第一预设值,所述PDU set内(100-X)%的PDU被映射到第一传输路径上,以及X%的PDU被映射到第二传输路径上;
    所述第一传输路径的特性优于第三预设值,所述第二传输路径的特性不优于第四预设值;所述第一预设值优于所述第二预设值,所述第三预设值优于所述第四预设值;
    所述X与所述PDU set的属性值相关,所述X大于0,且小于100。
  19. 根据权利要求14至17任一项所述的装置,其特征在于,
    如果所述PDU set的属性值优于第一预设值,所述PDU set内的PDU均被映射到第一传输路径上;和/或,
    如果所述PDU set的属性值不优于第二预设值,所述PDU set内的PDU均被映射到第二传输路径上;和/或,
    如果所述PDU set的属性值优于第二预设值且不优于第一预设值,所述PDU set内(100-X-x)%的PDU被映射到第一传输路径上,以及(X+x)%的PDU被映射到第二传输路径上;
    所述第一传输路径的特性优于第三预设值,所述第二传输路径的特性不优于第四预设值;所述第一预设值优于所述第二预设值,所述第三预设值优于所述第四预设值;
    所述X与所述PDU set的属性值相关,所述X大于0,且小于100;所述x为大于或等于0,且小于或等于100-X的实数。
  20. 根据权利要求18或19所述的装置,其特征在于,
    所述第一传输路径与第一分组数据汇聚协议PDCP实体关联,所述第二传输路径与第二PDCP实体关联。
  21. 根据权利要求20所述的装置,其特征在于,
    与所述第一PDCP实体关联的第一无线链路控制RLC实体采用确认模式传输,与所述第二PDCP实体关联的第二RLC实体采用非确认模式传输;或者,
    与所述第一PDCP实体关联的多个第一RLC实体,以及与所述第二PDCP实体关联的第二RLC实体,均采用非确认模式传输。
  22. 根据权利要求18或19所述的装置,其特征在于,
    所述第一传输路径和所述第二传输路径均与第三PDCP实体关联。
  23. 根据权利要求22所述的装置,其特征在于,
    与所述第三PDCP实体关联的第一RLC实体采用确认模式传输,关联的第二RLC实体采用非确认模式传输;或者,
    与所述第三PDCP实体关联的多个第一RLC实体,以及关联的第二RLC实体,均采用非确认模式传输;
    所述第一RLC实体是与所述第一传输路径关联的RLC实体,所述第二RLC实体是与所述第二传输路径关联的RLC实体。
  24. 根据权利要求20至23任一项所述的装置,其特征在于,所述处理单元,还用于:
    将第一PDU set的母PDU set序列号与第二PDU set的子PDU set序列号关联;
    所述第一PDU set是由所述PDU set中的任意一个PDU set,所述第二PDU set是所述第一PDU set中部分或全部PDU组成的PDU set;
    所述母PDU set序列号是由业务数据适配协议SDAP层维护的序列号,所述子PDU set序列号是由PDCP层维护的序列号;或者,
    所述母PDU set序列号是由PDCP层维护的序列号,所述子PDU set序列号是由RLC层维护的序列号。
  25. 根据权利要求24所述的装置,其特征在于,所述处理单元,还用于:
    确定第三PDU set中的y个PDU丢失时,停止发送所述第三PDU set和第四PDU set;所述y为大于或等于1的整数;
    所述第三PDU set是被映射到所述第一传输路径上的部分PDU组成的PDU set;
    所述第四PDU set是被映射到所述第二传输路径上的部分PDU组成的PDU set,且所述第四PDU set的母PDU set序列号与所述第三PDU set的母PDU set序列号相同。
  26. 根据权利要求24所述的装置,其特征在于,所述处理单元,还用于:
    确定第三PDU set中的y个报文丢失,且第四PDU set中z个报文被成功发送时,发送所述第三PDU set和所述第四PDU set;
    所述第三PDU set是被映射到所述第一传输路径上的部分PDU组成的PDU set;
    所述第四PDU set是被映射到所述第二传输路径上的部分PDU组成的PDU set,且所述第四PDU set的母PDU set序列号与所述第三PDU set的母PDU set序列号相同;
    所述y为大于或等于1的整数,所述z为大于或等于所述y的整数。
  27. 一种通信装置,其特征在于,包括处理器和收发器,所述收发器用于与其它通信装置进行通信;所述处理器用于运行程序,以使得所述通信装置实现权利要求1至13任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储有指令,当其在计算机上运行时,使得权利要求1至13任一项所述的方法被执行。
  29. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得权利要求1至13任一项所述的方法被执行。
PCT/CN2023/105257 2022-07-22 2023-06-30 一种数据发送方法及装置 WO2024017036A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210866262.0 2022-07-22
CN202210866262.0A CN117478608A (zh) 2022-07-22 2022-07-22 一种数据发送方法及装置

Publications (1)

Publication Number Publication Date
WO2024017036A1 true WO2024017036A1 (zh) 2024-01-25

Family

ID=89617041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105257 WO2024017036A1 (zh) 2022-07-22 2023-06-30 一种数据发送方法及装置

Country Status (2)

Country Link
CN (1) CN117478608A (zh)
WO (1) WO2024017036A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476445A (zh) * 2017-03-24 2019-11-19 诺基亚技术有限公司 利用分离承载的分组数据汇聚协议窗口
CN112136338A (zh) * 2018-05-15 2020-12-25 索尼公司 无线通信装置和方法
WO2021259112A1 (zh) * 2020-06-24 2021-12-30 华为技术有限公司 一种业务传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476445A (zh) * 2017-03-24 2019-11-19 诺基亚技术有限公司 利用分离承载的分组数据汇聚协议窗口
CN112136338A (zh) * 2018-05-15 2020-12-25 索尼公司 无线通信装置和方法
WO2021259112A1 (zh) * 2020-06-24 2021-12-30 华为技术有限公司 一种业务传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "QoS re-mapping of QoS flow and DRB", 3GPP TSG-RAN WG2 MEETING #99 R2-1707939, 20 August 2017 (2017-08-20), XP051317873 *
HUAWEI, HISILICON: "QoS Flow to DRB Re-Mapping", 3GPP TSG-RAN WG2 MEETING #99BIS R2-1710228, 8 October 2017 (2017-10-08), XP051342280 *

Also Published As

Publication number Publication date
CN117478608A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2021159974A1 (zh) 混合自动重传请求信息的反馈方法及设备
WO2020063108A1 (zh) 数据传输的方法和装置
US11509597B2 (en) Data transmission method and device
CN109547168A (zh) 数据传输方法、终端设备和网络设备
WO2022002221A1 (zh) 多链路建立方法及通信装置
WO2020088472A1 (zh) 通信方法及装置
WO2022213294A1 (zh) 一种时域资源分配的方法及装置
US20220368494A1 (en) Uplink re-transmission with compact memory usage
US11259362B2 (en) Method for repeatedly transmitting data and device
WO2020048517A1 (zh) 一种rrc连接方法、设备及系统
US20210219171A1 (en) Communication method and device
WO2020015733A1 (zh) D2d通信的方法和终端设备
WO2021244264A1 (zh) 通信方法、装置和系统
WO2021052210A1 (zh) 混合自动重传请求的指示方法、装置及存储介质
US11064503B2 (en) Method and apparatus for transmitting control information
WO2024017036A1 (zh) 一种数据发送方法及装置
WO2019085920A1 (zh) 信息传输方法和通信设备
WO2019213883A1 (zh) 资源调度方法、终端及网络设备
WO2022198413A1 (zh) 一种上行控制信息uci的资源映射方法及其装置
WO2024011463A1 (zh) 一种处理数据的方法及装置、通信设备
WO2018189882A1 (ja) 無線通信装置、無線通信方法、及び無線通信システム
WO2022218244A1 (zh) 通信方法及装置
WO2023125341A1 (zh) 一种通信方法及装置
WO2023131062A1 (zh) 一种流分类业务的通信方法和通信装置
WO2023207555A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842101

Country of ref document: EP

Kind code of ref document: A1