WO2024007193A1 - 电芯堆叠设备和电池组装设备 - Google Patents

电芯堆叠设备和电池组装设备 Download PDF

Info

Publication number
WO2024007193A1
WO2024007193A1 PCT/CN2022/104123 CN2022104123W WO2024007193A1 WO 2024007193 A1 WO2024007193 A1 WO 2024007193A1 CN 2022104123 W CN2022104123 W CN 2022104123W WO 2024007193 A1 WO2024007193 A1 WO 2024007193A1
Authority
WO
WIPO (PCT)
Prior art keywords
limiting
battery core
limiting device
direction perpendicular
battery
Prior art date
Application number
PCT/CN2022/104123
Other languages
English (en)
French (fr)
Inventor
刘晓龙
胡小锋
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280067237.4A priority Critical patent/CN118056299A/zh
Priority to PCT/CN2022/104123 priority patent/WO2024007193A1/zh
Publication of WO2024007193A1 publication Critical patent/WO2024007193A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general

Definitions

  • the present application relates to the field of battery technology, and in particular to a cell stacking device and a battery assembly device.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • the stacking quality of the battery cells determines whether subsequent battery modules can be formed, and plays a very important role in the assembly of the entire battery.
  • This application provides a battery core stacking device and a battery assembly device, which can improve the stacking quality of the battery cells and thereby improve the success rate of subsequent molding.
  • this application provides a battery core stacking device, including:
  • the first limiting device is configured to limit the bottom surface of the battery core
  • the second limiting device is configured to limit the first side of the battery core
  • the third limiting device is configured to limit the second side of the battery core
  • the bottom surface, the first side surface and the second side surface intersect each other.
  • the bottom surface, the first side and the second side of the battery core can be limited respectively.
  • the first limiting device not only limits the bottom surface of the battery core, but also supports the gravity of the entire battery core, and the bottom surface, the first side and the second side intersect with each other, that is, the bottom surface, the first side and the second side Adjacent to each other, it is possible to limit the position of the cells on three sides, thereby positioning a single cell, improving the stacking quality, avoiding rework problems caused by detecting unqualified stacking quality after the stacking is completed, and effectively improving the stacking efficiency; further It can also improve the probability of successful molding of modules composed of multiple cells and improve the assembly efficiency of the entire battery.
  • the cell stacking device further includes at least one of a fourth limiting device, a fifth limiting device and a sixth limiting device,
  • the fourth limiting device is configured to drive the battery core to move in a direction perpendicular to the top surface of the battery core and to limit the top surface;
  • the fifth limiting device is configured to drive the battery core to move in a direction perpendicular to the third side of the battery core, and to limit the third side, which is arranged opposite to the first side;
  • the sixth limiting device is configured to drive the battery core to move in a direction perpendicular to the fourth side of the battery core, and to limit the fourth side, which is arranged opposite to the second side.
  • the battery core can be driven to move in a direction perpendicular to the top surface of the battery core, so that the battery core can move under the driving action of the fourth limiting device until the bottom surface of the battery core is in contact with the first limiting device.
  • the fourth limiting device can also limit the top surface of the battery core after it stops moving, thereby limiting the battery core to the first limiting device and the fourth limiting device.
  • the purpose is to achieve simultaneous limiting of the bottom and top surfaces of the battery core.
  • the battery core can be driven to move in a direction perpendicular to the third side of the battery core, so that the battery core can move under the driving action of the fifth limiting device until the first side of the battery core is in contact with the third side.
  • the fifth limiting device stops moving it can also limit the third side of the battery core, thereby limiting the battery core to the second limiting device and the third limiting device.
  • the purpose between the five limiting devices is to realize simultaneous limiting of the first side and the third side of the battery core.
  • the battery core can be driven to move in a direction perpendicular to the fourth side of the battery core, so that the battery core can move under the driving action of the sixth limiting device until the second side of the battery core is in contact with the third side.
  • the sixth limiting device stops moving it can also limit the fourth side of the battery core, thereby limiting the battery core to the third limiting device and the third limiting device.
  • the purpose between the six limiting devices is to realize simultaneous limiting of the second side and the fourth side of the battery core.
  • the battery core stacking device further includes a fourth limiting device and a sixth limiting device.
  • the fourth limiting device includes a first limiting member, and the first limiting member is configured to move between the sixth limiting device and the sixth limiting device.
  • the driving battery core is pressed against the top surface of the battery core while moving in a direction perpendicular to the fourth side surface.
  • the battery core can be positioned on the top surface of the battery core.
  • the sixth limiting device drives the battery core to move in a direction perpendicular to the fourth side surface, so that the battery core moves on the top surface.
  • the first limiting component includes a rolling component that is in rolling fit with the battery core and/or a sliding component that is in sliding fit with the battery core.
  • the friction force between the first limiting part and the battery core can be reduced, and the resistance of the battery core to relative movement relative to the first limiting part can be reduced.
  • the first limiting member includes a plurality of rolling members and/or a plurality of sliding members, and the plurality of rolling members and/or a plurality of sliding members are spaced apart in a direction perpendicular to the first side surface.
  • the fourth limiting device further includes a second limiting member, which is located upstream of the first limiting member in the stacking direction of the plurality of cells, and the second limiting members are respectively Press against the top surface of different cells.
  • the second limiting member By arranging the second limiting member and disposing the second limiting member upstream of the first limiting member, when the first limiting member is pressed against the top surface of the battery core located downstream, the second limiting member can be The piece is pressed against the top surface of another battery core located upstream, thereby keeping the top surface of the battery core located upstream and the top surface of the battery core located downstream under the limiting effect at the same time, to avoid stacking another battery core This causes misalignment of the top surfaces of the upstream and downstream cells.
  • the second limiting member when the first limiting member and the battery core it is pressed against move relative to each other, the second limiting member is configured such that the distance between the second limiting member and the battery core it is pressed against is in a direction perpendicular to the second side surface. Stay relatively stationary.
  • the second limiting member and the battery core against which the second limiting member is pressed can be made There will be no relative movement between them in the direction perpendicular to the second side surface, thereby improving the limiting effect of the second limiting member on the top surface in the direction perpendicular to the top surface, thereby maintaining the relative positioning of the battery cores that have been positioned. stability.
  • the second limiting member includes a limiting surface that contacts the top surface of the battery core and limits the top surface of the battery core.
  • the fifth limiting device includes one or more limiting members for limiting the third side of the battery core, and the plurality of limiting members are arranged in a direction perpendicular to the second side.
  • the cell stacking device further includes a fourth limiting device, a fifth limiting device and a sixth limiting device.
  • the fifth limiting device includes one or more devices for performing damage on the third side of the cell. Limiting parts, a plurality of limiting parts are arranged in a direction perpendicular to the second side surface.
  • the fifth limiting device when multiple battery cores are stacked in a direction perpendicular to the second side, the fifth limiting device can be moved in a direction perpendicular to the second side. This method realizes the limiting effect of the limiting member on multiple different battery cores.
  • the fifth limiting device includes a plurality of limiting members, and the plurality of limiting members are arranged in a direction perpendicular to the second side surface, the limiting effect on the plurality of electric cores can be achieved through the plurality of limiting members. , thereby reducing or omitting the movement of the fifth limiting device in a direction perpendicular to the second side surface.
  • At least one of the one or more limiting members includes a third limiting member, the third limiting member includes an elastic member, and the elastic member is configured to move in a direction perpendicular to the third side surface. Provides stretch.
  • elastic force can be provided in a direction perpendicular to the third side, thereby allowing the lengths of the plurality of battery cores to be different in the direction perpendicular to the third side.
  • At least one of the one or more limiters includes a third limiter. member, the third limiting member includes an elastic member, and when the elastic member is configured to provide elastic force in a direction perpendicular to the third side, the influence of the length difference of the multiple battery cores in the direction perpendicular to the third side can be avoided.
  • the third limiting member further includes a first limiting plate connected to the elastic member, and the first limiting plate includes a limiting portion for limiting the third side of the battery core.
  • a limiting portion that is smoother and has a relatively greater stiffness than the elastic member can be provided, thereby improving the limiting effect.
  • At least one of the one or more restraints includes a fourth restraint that is rigid in a direction perpendicular to the third side.
  • the fourth limiting member By configuring the fourth limiting member as a rigid structure in a direction perpendicular to the third side surface, a more certain limiting effect can be provided compared to the third limiting member including an elastic member.
  • the fifth limiting device further includes a mounting bracket, and one or more limiting members are installed on the mounting bracket.
  • one or more limiters can be installed on the mounting bracket to provide stable support for the one or more limiters.
  • one or more limiting members are installed on the mounting bracket, and the one or more limiting members can be driven synchronously by driving the mounting bracket.
  • the fourth limiting device and/or the fifth limiting device are configured to be movable in a direction perpendicular to the second side, so that when the number of stacked cells increases, the fourth limiting device And/or the fifth limiting device moves in a direction perpendicular to the second side surface to limit the newly stacked battery cells.
  • the height of the second limiting device is smaller than the height of the battery core.
  • the height of the second limiting device By setting the height of the second limiting device to be smaller than the height of the battery core, the area of the part where the first side of the battery core fits the second limiting device can be reduced, thereby reducing the impact of the flatness of the first side on the second limiting device.
  • the influence of the limiting accuracy of the second limiting device effectively controls the overall positioning accuracy of the battery core.
  • the second limiting device includes a second limiting plate and a plurality of connecting plates spaced apart in a direction perpendicular to the second side, and the connecting plates connect the second limiting plate and the first limiting device.
  • the two limiting plates are in a long strip shape extending in a direction perpendicular to the second side surface, and in a direction perpendicular to the bottom surface, the height of the second limiting plate is smaller than the height of the battery core.
  • the connecting plate By providing the connecting plate, the second limiting plate and the first limiting device can be connected together, that is, the connection between the second limiting device and the first limiting device is realized, and the quality of the second limiting device and the first limiting device is improved.
  • the relative stability of the bit device By providing the connecting plate, the second limiting plate and the first limiting device can be connected together, that is, the connection between the second limiting device and the first limiting device is realized, and the quality of the second limiting device and the first limiting device is improved.
  • the relative stability of the bit device By providing the connecting plate, the second limiting plate and the first limiting device can be connected together, that is, the connection between the second limiting device and the first limiting device is realized, and the quality of the second limiting device and the first limiting device is improved.
  • the distance between the second limiting plate and the bottom surface of the battery core can also be increased in a direction perpendicular to the bottom surface, thereby raising the limiting position of the second limiting plate to the first side, thereby preventing The limiting position of the second limiting plate to the first side is too low and the battery core may tip over, which effectively improves the positioning stability and safety of the battery core.
  • Multiple connecting plates can have a limiting effect on the first side of the battery core.
  • the total area where the multiple connecting plates limit the position of the battery core can be reduced, thereby reducing the cost of the multiple connecting plates.
  • the impact of unevenness between the limiting parts on the limiting accuracy of the first side if the distance between the side of the second limiting plate close to the battery core and the battery core is set to be smaller than the distance between the side of the connecting plate close to the battery core and the battery core, multiple connecting plates can be made to The first side of the core does not have a limiting function.
  • the second limiting device limits the first side of the battery core through the second limiting plate.
  • the unevenness of the limiting parts of the multiple connecting plates affects the battery core. The impact on the limit accuracy is minimized.
  • the second limiting plate is arranged in a long strip shape extending in a direction perpendicular to the second side surface, so that the second limiting plate can be continuous in a direction perpendicular to the second side surface, so that the plurality of cells can be connected along the direction of the second limiting plate.
  • the height of the second limiting plate is less than the height of the battery core, which can reduce the area of the part where the first side of the battery core and the second limiting plate fit together, thereby reducing the resistance of the first side.
  • the influence of plane flatness on the limiting accuracy of the second limiting plate effectively controls the overall positioning accuracy of the battery core.
  • the third limiting device includes a plurality of limiting blocks spaced apart in a direction perpendicular to the first side surface.
  • the limiting area of the third limiting device can be reduced by increasing the gap, thereby reducing the flatness of the second side of the battery core and limiting the accuracy of the third limiting device. degree of influence.
  • the present application provides a battery assembly equipment, including the above-mentioned cell stacking equipment.
  • Figure 1 is a schematic structural diagram of some embodiments of electrical devices used in batteries assembled using the cell stacking equipment disclosed in the present application;
  • Figure 2 is a schematic structural diagram of some embodiments of batteries assembled using the cell stacking equipment disclosed in the present application;
  • FIG. 3 is a schematic structural diagram of some embodiments of the battery core stacking equipment disclosed in this application.
  • Figure 4 is a schematic structural diagram of a battery cell suitable for some embodiments of the battery core stacking device disclosed in the present application;
  • Figure 5 is a schematic structural diagram of a battery cell suitable for other embodiments of the battery core stacking device disclosed in the present application;
  • Figure 6 is a schematic structural diagram of the first limiting device, the second limiting device and the third limiting device in some embodiments of the battery core stacking equipment disclosed in the present application;
  • Figure 7 is a schematic structural diagram of the first limiting member in some embodiments of the battery core stacking equipment disclosed in this application;
  • Figure 8 is a schematic structural diagram of the second limiting member in some embodiments of the cell stacking equipment disclosed in this application;
  • Figure 9 is a schematic structural diagram of the fifth limiting device in some embodiments of the battery core stacking equipment disclosed in this application.
  • Figure 10 is a schematic structural diagram of the fifth limiting device in other embodiments of the battery core stacking equipment disclosed in this application;
  • FIG 11 is a schematic structural diagram of other embodiments of the battery core stacking equipment disclosed in this application.
  • Figure 12 is a schematic structural diagram of the sixth limiting device in some embodiments of the cell stacking equipment disclosed in this application.
  • the third limiting member 511. The elastic member; 512. The first limiting plate; 52. The fourth limiting member; 53. Installation bracket;
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to two or more, unless otherwise explicitly and specifically limited.
  • multiple sets refers to two or more sets
  • multiple slices refers to two or more slices, unless otherwise clearly and specifically limited.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • the inventor found that in related technologies, in order to improve the quality of the battery core stacking, the stacking quality will be detected through a detection device after the stacking is completed. If it is found that some battery cells are not aligned, the stacking quality will be detected. All cells in the module are returned to the original station for re-stacking. This detection method will waste a lot of time, greatly reduce the stacking efficiency, and thus reduce the battery assembly efficiency.
  • the device includes three limiting devices. These three limiting devices respectively limit the three intersecting sides of the battery core, thereby realizing stacking of a single battery.
  • the three-sided positioning of the core enables precise positioning of the entire module, avoiding rework problems caused by detecting cells with unqualified stacking quality through inspection after the stacking is completed, effectively saving time and improving stacking efficiency.
  • the cell stacking equipment disclosed in the embodiments of the present application is suitable for battery assembly equipment.
  • the cell stacking equipment can improve the efficiency of the cell stacking in the cell stacking process, thereby improving the assembly of the entire battery. efficiency.
  • Batteries assembled using the cell stacking equipment and battery assembly equipment disclosed in the embodiments of the present application can be applied to a variety of electrical devices.
  • the electrical devices can be mobile phones, portable devices, notebook computers, battery cars, electric vehicles, Ships, spacecraft, electric toys and electric tools, etc.
  • spacecraft include airplanes, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed or mobile electric toys, such as game consoles, electric car toys , electric ship toys and electric aircraft toys, etc.
  • Power tools include metal cutting power tools, grinding power tools, assembly power tools and railway power tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact Drills, concrete vibrators and planers.
  • the electrical device can be a vehicle 1000, such as a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.; or the electrical device can also be a drone or a ship, etc.
  • the vehicle 1000 may include a battery 100, an axle 200, a wheel 300 connected to the axle 200, a motor 400, and a controller 500.
  • the controller 500 is used to control the operation of the motor 400
  • the motor 400 is used to drive the axle 200 to rotate.
  • the rotation of the axle 200 drives the rotation of the wheels 300.
  • the battery 100 can be disposed at the bottom, head or tail of the vehicle 1000 to provide electrical energy for the operation of the motor 400 and other components in the vehicle.
  • a battery 100 assembled using the cell stacking equipment and battery assembly equipment disclosed in the embodiment of the present application may include a box assembly 80 and a plurality of cells 70 .
  • Multiple battery cells 70 can be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the multiple battery cells 70 are both connected in series and in parallel.
  • the multiple battery cells 70 can be connected in series, in parallel, or in mixed connection to form a battery module.
  • Multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box assembly 80 .
  • all the battery cells 70 may be directly connected in series, parallel, or mixed together, and then the entire battery core 70 may be accommodated in the box assembly 80 .
  • the interior of the box assembly 80 is a hollow structure.
  • the box assembly 80 may include a box body 80a and a cover 80b.
  • the box body 80a and the cover body 80b are fastened together.
  • both the box body 80a and the cover body 80b can be hollow rectangular parallelepipeds with only one open surface.
  • the opening of the box body 80a and the opening of the cover body 80b are arranged oppositely, and the box body 80a and the cover body 80b are interlocked to form a A box that closes the chamber.
  • the box 80a may be a rectangular parallelepiped with an opening and the cover 80b may be plate-shaped
  • the cover 80b may be a rectangular parallelepiped with an opening and the box 80a may be plate-shaped.
  • the box 80a and the cover 80b may be oppositely arranged and engaged.
  • a box assembly 80 is formed with an enclosed chamber.
  • At least one battery core 70 is connected in parallel or in series or in a mixed combination, and then placed in a closed chamber formed by fastening the box 80a and the cover 80b.
  • the battery core 70 includes a lithium ion secondary battery, a lithium ion primary battery, a lithium sulfur battery, a sodium lithium ion battery, a sodium ion battery or a magnesium ion battery, etc., which are not limited in the embodiments of the present disclosure.
  • the cell stacking equipment includes a first limiting device 10, a second limiting device 20 and a third limiting device 30.
  • the first limiting device 10 The second limiting device 20 is configured to limit the bottom surface 711 of the battery core 70 .
  • the second limiting device 20 is configured to limit the first side surface 712 of the battery core 70 .
  • the third limiting device 30 is configured to limit the position of the bottom surface 711 of the battery core 70 .
  • the second side surface 713 is used for limiting, wherein the bottom surface 711, the first side surface 712 and the second side surface 713 intersect with each other.
  • the first limiting device 10 can limit the bottom surface 711 of the battery core 70 while also supporting the gravity of the entire battery core 70 , and the bottom surface 711 , the first side surface 712 and the second side surface 713 intersect with each other, that is, the bottom surface 711
  • the first side 712 and the second side 713 are adjacent to each other, so the three-sided positioning of the battery core 70 can be realized, thereby positioning the single battery core 70, improving the stacking quality, and avoiding detection of unqualified stacking quality after the stacking is completed.
  • the resulting rework problem can effectively improve the stacking efficiency; further, it can also improve the probability of successful molding of a module composed of multiple battery cells 70 and improve the assembly efficiency of the entire battery.
  • FIG. 4 and FIG. 5 there are two structural schematic diagrams of the battery core 70 applicable to the embodiment of the battery core stacking device disclosed in the present application.
  • the battery core 70 includes a battery core body 71 and two terminals 72 disposed on the top of the battery core body 71 .
  • the two terminals 72 have different polarities.
  • the terminal 72 is electrically connected to the battery core body 71 , and the terminal 72 can also be connected to other battery cores 70 or electrical components.
  • the battery core body 71 is in the shape of a rectangular parallelepiped.
  • the battery core body 71 includes a bottom surface 711, a first side surface 712, a second side surface 713, a top surface 714 that is opposite and parallel to the bottom surface 711, and a third surface that is opposite and parallel to the first side surface 712.
  • the side surface 715 and the fourth side surface 716 are opposite and parallel to the second side surface 713 .
  • the bottom surface 711, the first side surface 712 and the second side surface 713 are perpendicular to each other and intersect with each other.
  • liquid glue can be applied on the second side 713 and/or the fourth side 716 of the battery core 70.
  • Two adjacent battery cores 70 They are connected by liquid glue to avoid relative movement between the respective battery cores 70 after stacking.
  • the battery core 70 includes a battery core body 71 , two terminals 72 provided on the top of the battery core body 71 , and a spacer 73 provided on the side of the battery core body 71 .
  • the two terminals 72 have different polarities.
  • the terminal 72 is electrically connected to the battery core body 71 , and the terminal 72 can also be connected to other battery cores 70 or electrical components.
  • the battery core body 71 is in the shape of a rectangular parallelepiped.
  • the battery core body 71 includes a bottom surface 711, a first side surface 712, a second side surface 713, a top surface 714 that is opposite and parallel to the bottom surface 711, and a third surface that is opposite and parallel to the first side surface 712.
  • the side surface 715 and the fourth side surface 716 are opposite and parallel to the second side surface 713 .
  • the bottom surface 711, the first side surface 712 and the second side surface 713 are perpendicular to each other and intersect with each other.
  • the spacer 73 is installed on the second side 713 of the cell body 71 .
  • the spacer 73 can also be installed on the fourth side 716 of the cell body 71 or the spacer 73 can be provided on the second side 713 and the fourth side 716 of the cell body 71 at the same time.
  • a solid adhesive is provided on the side of the spacer 73 away from the battery core body 71.
  • the embodiments of the cell stacking equipment disclosed in this application are not limited to being used to stack the cell 70 shown in Figures 4 and 5, and can also be used to stack cells with other structures, such as the bottom surface, the first The side 712 and the second side 713 are not cells or the like that are perpendicular to each other.
  • the cell stacking device further includes at least one of the fourth limiting device 40 , the fifth limiting device 50 and the sixth limiting device 60 .
  • the cell stacking equipment further includes a fourth limiting device 40; the cell stacking equipment further includes a fifth limiting device 50; the cell stacking equipment further includes a sixth limiting device 60; the cell stacking equipment further includes a fourth limiting device.
  • the cell stacking equipment also includes a fifth limiting device 50 and a sixth limiting device 60; the cell stacking equipment also includes a fourth limiting device 40 and a sixth limiting device 60 ; Alternatively, the cell stacking device further includes a fourth limiting device 40, a fifth limiting device 50 and a sixth limiting device 60.
  • the fourth limiting device 40 is configured to drive the battery core 70 to move in a direction perpendicular to the top surface 714 of the battery core 70 and to limit the top surface 714;
  • the fifth limiting device 50 is configured to drive the battery core 70 to move in a direction perpendicular to the third side 715 of the battery core 70 , and to limit the third side 715 .
  • the third side 715 is arranged opposite to the first side 712 ;
  • the sixth limiting device 60 is configured to drive the battery core 70 to move in a direction perpendicular to the fourth side 716 of the battery core 70 and to limit the fourth side 716.
  • the fourth side 716 is arranged opposite to the second side 713. .
  • the battery core 70 can be driven to move in a direction perpendicular to the top surface 714 of the battery core 70 , so that the battery core 70 can move to a position under the driving action of the fourth limiting device 40 .
  • the bottom surface 711 of the first limiting device 10 is in contact with the limiting portion of the first limiting device 10.
  • it can also limit the top surface 714 of the battery core 70, thereby realizing that the battery core 70
  • the purpose of being limited between the first limiting device 10 and the fourth limiting device 40 is to achieve simultaneous limiting of the bottom surface 711 and the top surface 714 of the battery core 70 .
  • the battery core 70 can be driven to move in a direction perpendicular to the third side 715 of the battery core 70 , so that the battery core 70 can move to a position under the driving action of the fifth limiting device 50 .
  • the first side 712 of the battery core 70 is in contact with the limiting portion of the second limiting device 20.
  • the fifth limiting device 50 can also limit the third side 715 of the battery core 70 after the movement stops, thereby achieving
  • the purpose of limiting the battery core 70 between the second limiting device 20 and the fifth limiting device 50 is to achieve simultaneous restriction of the first side 712 and the third side 715 of the battery core 70 .
  • the battery core 70 can be driven to move in a direction perpendicular to the fourth side 716 of the battery core 70 , so that the battery core 70 can move to a position under the driving action of the sixth limiting device 60 .
  • the second side 713 of the battery core 70 is in contact with the limiting portion of the third limiting device 30 .
  • it can also limit the fourth side 716 of the battery core 70 , thereby achieving
  • the purpose of limiting the battery core 70 between the third limiting device 30 and the sixth limiting device 60 is to achieve simultaneous restriction of the second side 713 and the fourth side 716 of the battery core 70 .
  • the first limiting device 10 can adopt a flat structure.
  • This structure can provide a relatively flat limiting surface to limit and support the bottom surface 711 of the battery core 70, and can also increase the limiting surface.
  • the flatness of the fit with the bottom surface 711 improves the limiting effect and support stability.
  • the first limiting device 10 may also adopt other structural forms such as a plurality of spaced apart slats or cylindrical bars, which will not be described in detail here.
  • the height of the second limiting device 20 is smaller than the height of the battery core 70 .
  • the height of the second limiting device 20 By setting the height of the second limiting device 20 to be smaller than the height of the battery core 70 , the area of the portion where the first side 712 of the battery core 70 is in contact with the second limiting device 20 can be reduced, thereby reducing the size of the first side 712
  • the influence of the plane flatness on the limiting accuracy of the second limiting device 20 can effectively control the overall positioning accuracy of the battery core 70 .
  • the second limiting device 20 includes a second limiting plate 21 and a plurality of connecting plates 22 spaced apart in a direction perpendicular to the second side 713 , and the connecting plates 22 are connected to the second limiting plate 21 .
  • the limiting plate 21 and the first limiting device 10 the second limiting plate 21 is a long strip extending in a direction perpendicular to the second side surface 713, and in a direction perpendicular to the bottom surface 711, the second limiting plate 21 The height is smaller than the height of the battery core 70 .
  • the connecting plate 22 By providing the connecting plate 22, the second limiting plate 21 and the first limiting device 10 can be connected together, that is, the connection between the second limiting device 20 and the first limiting device 10 is realized, and the second limiting device 22 is improved.
  • the distance between the second limiting plate 21 and the bottom surface 711 of the battery core 70 can also be increased in the direction perpendicular to the bottom surface 711, thereby raising the second limiting plate 21 to the first side surface.
  • the limiting position of 712 prevents the second limiting plate 21 from being too low on the first side 712 and causing the battery core 70 to tip over, effectively improving the positioning stability and safety of the battery core 70 .
  • the plurality of connecting plates 22 can have a limiting effect on the first side 712 of the battery core 70.
  • the total area of the multiple connecting plates 22 limiting the position of the battery core 70 can be reduced. This reduces the impact of unevenness between the limiting portions of the plurality of connecting plates 22 on the limiting accuracy of the first side surface 712 .
  • the distance between the side of the second limiting plate 21 close to the battery core 70 and the battery core 70 is set to be smaller than the distance between the side of the connecting plate 22 close to the battery core 70 and the battery core 70 , then it can be The plurality of connecting plates 22 does not have a limiting effect on the first side 712 of the battery core 70 .
  • the second limiting device 20 limits the first side 712 of the battery core 70 through the second limiting plate 21 . The impact of the unevenness of the limiting portion of the connecting plate 22 on the limiting accuracy of the battery core 70 is minimized.
  • the second limiting plate 21 is arranged in a long strip shape extending in a direction perpendicular to the second side 713, so that the second limiting plate 21 can be continuous in a direction perpendicular to the second side 713, so that it can be used in multiple situations.
  • the second limiting plate 21 When multiple battery cores are stacked in a direction perpendicular to the second side 713, it is ensured that the multiple battery cores can be limited by the second limiting plate 21 to avoid the second limiting plate 21 being stacked in a direction perpendicular to the second side 713.
  • the gap appears on the battery core 70 and affects the limiting effect on a certain battery core 70 .
  • the height of the second limiting plate 21 is smaller than the height of the battery core 70, which can reduce the area of the part where the first side 712 of the battery core 70 and the second limiting plate 21 fit together. Thereby, the influence of the flatness of the first side surface 712 on the limiting accuracy of the second limiting plate 21 is reduced, thereby effectively controlling the overall positioning accuracy of the battery core 70 .
  • the second limiting device 20 may also adopt a structural form such as a plurality of strips or columns arranged at intervals up and down, which will not be described in detail here.
  • the third limiting device 30 includes a plurality of limiting blocks 31 spaced apart in a direction perpendicular to the first side 712 .
  • the limiting area of the third limiting device 30 can be reduced by increasing the gap, thereby reducing the flatness of the second side 713 of the battery core 70 to the third limiting device. 30 influence on the limit accuracy.
  • the third limiting device 30 may also adopt a structural form such as a long strip or a plurality of spaced apart columns, which will not be described in detail here.
  • the fourth limiting device 40 includes a first limiting member 41 , and the first limiting member 41 is configured to drive the battery core 70 along a direction perpendicular to the sixth limiting device 60 .
  • the four side surfaces 716 press against the top surface 714 of the battery core 70 while moving in different directions.
  • the sixth limiting device 60 can drive the battery core 70 along the direction perpendicular to the third position.
  • the process of directional movement of the four side surfaces 716 enables the battery core 70 to position the second side 713 and the fourth side 716 of the battery core 70 without changing the position of the top surface 714 , so that the top surface of the battery core 70
  • the position 714 will not be affected by the positioning process of the second side 713 and the fourth side 716.
  • Positioning of the four surfaces bottom surface 711 and top surface 714.
  • the first limiting member 41 may include a rolling member 411 that rolls with the battery core 70 , or a sliding member that slides with the battery core 70 . .
  • the first limiting member 41 includes a plurality of rolling members 411 and/or a plurality of sliding members, and the plurality of rolling members 411 and/or a plurality of sliding members are spaced apart in a direction perpendicular to the first side 712.
  • multiple rolling members 411 and/or multiple sliding members By arranging multiple rolling members 411 and/or multiple sliding members, multiple positions of the top surface 714 can be limited and supported, thereby improving the limiting effect on the top surface 714 .
  • the first limiting member 41 further includes a first connecting shaft 412.
  • the first connecting shaft 412 is connected between two adjacent rolling members 411 or between two adjacent sliding members.
  • the first connecting shaft 412 By providing the first connecting shaft 412, the two rolling elements 411 can be connected together, thereby improving the relative stability between the two rolling elements 411, and also enabling the movement of the two rolling elements 411 to be synchronized.
  • the first connecting shaft 412 may adopt a structural form such as a cylinder or a cuboid.
  • the fourth limiting device 40 further includes a second limiting member 42 , and the second limiting member 42 is located on the first limiting member in the stacking direction of the plurality of battery cores 70 . 41, and the second limiting member 42 and the first limiting member 41 are pressed against the top surfaces 714 of different battery cores 70 respectively.
  • the second limiting member 42 By providing the second limiting member 42 and disposing the second limiting member 42 upstream of the first limiting member 41, when the first limiting member 41 is pressed against the top surface 714 of the battery core 70 located downstream, , the second limiting member 42 is pressed against the top surface 714 of another battery core 70 located upstream, thereby maintaining the top surface 714 of the upstream battery core 70 and the top surface 714 of the downstream battery core 70 at the same time. Under the limiting effect, the problem of misalignment of the top surfaces 714 of the upstream and downstream battery cores 70 when stacking another battery core 70 is avoided.
  • the second limiting member 42 and the first limiting member 41 are respectively pressed against the top surfaces 714 of two adjacent battery cores 70 .
  • the second limiting member 42 when the first limiting member 41 and the battery core 70 it is pressed against move relative to each other, the second limiting member 42 is configured to be between the battery core 70 and the battery core 70 it is pressed against, perpendicular to the second position.
  • the direction of side 713 remains relatively fixed.
  • the second limiting member 42 and the position of the second limiting member 42 can be There will be no relative movement between the pressing cells 70 in the direction perpendicular to the second side surface 713, thereby improving the limiting effect of the second limiting member 42 on the top surface 714 in the direction perpendicular to the top surface 714.
  • the relative stability of the positioned battery core 70 is maintained.
  • the second limiting member 42 includes a limiting surface that contacts the top surface 714 of the battery core 70 and limits the top surface 714 of the battery core 70 .
  • the second limiting member 42 adopts a flat structure, which is convenient for providing a relatively flat limiting surface, thereby improving the limiting effect on the top surface 714 of the battery core 70.
  • the second limiting member 42 may also adopt a structural form such as a plurality of strip plates arranged at intervals, which will not be described in detail here.
  • the first limiting member 41 and the second limiting member 42 can be pressed against the two terminals 72 of the battery core 70 respectively.
  • the top surfaces of the two terminals 72 are relatively flat, which can improve the connection with the first limiting member.
  • the fifth limiting device 50 includes one or more limiting members for limiting the third side 715 of the battery core 70 .
  • the plurality of limiting members arranged in a direction perpendicular to the second side 713 .
  • the fifth limiting device 50 when multiple cells 70 are stacked in a direction perpendicular to the second side 713, the fifth limiting device 50 can be configured to be stacked in a direction perpendicular to the second side.
  • the directional movement of 713 realizes the limiting effect of the limiting member on multiple different battery cores 70 .
  • the fifth limiting device 50 includes a plurality of limiting members, and the plurality of limiting members are arranged in a direction perpendicular to the second side 713 , the plurality of limiting members may be used to control the plurality of battery cores 70 . Limiting effect, thereby reducing or omitting the movement of the fifth limiting device 50 in the direction perpendicular to the second side surface 713 .
  • the plurality of limiting members may be arranged at intervals or continuously in a direction perpendicular to the second side 713 , which may be determined based on the size of the limiting area for limiting the third side 715 of the battery core 70 .
  • the fifth limiting device 50 includes two limiting members spaced apart in a direction perpendicular to the second side 713 ; as shown in FIG. 10 , the fifth limiting device 50 includes two limiting members arranged along a direction perpendicular to the second side 713 . 12 stoppers arranged at intervals in the direction of 713.
  • At least one of the one or more limiting members includes a third limiting member 51 , the third limiting member 51 includes an elastic member 511 , and the elastic member 511 is configured to rotate perpendicularly to the third limiting member 51 .
  • the side 715 provides elasticity in the direction.
  • elastic force can be provided in a direction perpendicular to the third side 715 , thereby allowing the lengths of the plurality of battery cores 70 to be different in the direction perpendicular to the third side 715 .
  • At least one of the one or more limiting members includes a third limiting member.
  • the limiting member 51 and the third limiting member 51 include an elastic member 511, and when the elastic member 511 is configured to provide elastic force in a direction perpendicular to the third side 715, it can prevent the plurality of battery cores 70 from moving perpendicular to the third side.
  • the length difference in the direction of the side surface 715 affects the limiting effect of other limiting members in the fifth limiting device 50 on the third side surface 715 of other battery cells 70 .
  • the elastic member 511 may be a spring or elastic rubber.
  • the third limiting member 51 further includes a first limiting plate 512 connected to the elastic member 511 .
  • the first limiting plate 512 includes a limiting plate for limiting the third side 715 of the battery core 70 . bit part.
  • a relatively smooth and relatively rigid limiting portion can be provided compared to the elastic member 511, thereby improving the limiting effect.
  • At least one of the one or more restraints includes a fourth restraint 52 that is rigid in a direction perpendicular to the third side 715 .
  • the fourth limiting member 52 By configuring the fourth limiting member 52 to be a rigid structure in a direction perpendicular to the third side surface 715 , a more certain limiting effect can be provided compared to the third limiting member 51 including the elastic member 511 .
  • the fourth limiting member 52 may include one thick limiting block, or may include multiple thin limiting blocks connected as a whole.
  • the fifth limiting device 50 further includes a mounting bracket 53, and one or more limiting members are installed on the mounting bracket 53.
  • one or more limiting members can be installed on the mounting bracket 53, thereby providing stable support for the one or more limiting members.
  • one or more limiting members are installed on the mounting bracket 53, and the one or more limiting members can be driven synchronously by driving the mounting bracket 53.
  • one or more limiting members can be driven individually.
  • FIG. 11 it is a schematic structural diagram of a cell stacking device using the fifth limiting device 50 embodiment shown in FIG. 10 .
  • the fifth limiting device 50 does not need to move in a direction perpendicular to the second side 713 .
  • the fourth limiting device 40 and/or the fifth limiting device 50 are configured to be movable in a direction perpendicular to the second side 713, so that when the number of stacked battery cells 70 increases, the fourth limiting device 40 and/or the fifth limiting device 50 are configured to move in a direction perpendicular to the second side 713.
  • the four limiting devices 40 and/or the fifth limiting device 50 move in a direction perpendicular to the second side 713 to limit the newly stacked battery cores 70 .
  • the sixth limiting device 60 includes a third limiting plate 61 and a second connecting shaft 62 installed on a side of the third limiting plate 61 away from the battery core 70 .
  • the second connecting shaft 62 is used to connect the driving component to drive the third limiting plate 61 to move in a direction perpendicular to the second side surface 713 .
  • the third limiting plate 61 has a flat structure, which can provide a relatively flat limiting surface and improve the limiting effect on the fourth side 716 .
  • the second connecting shaft 62 may adopt a cylindrical structural form, or may adopt a rectangular parallelepiped or other structural form.
  • the sixth limiting device 60 may also adopt a structural form such as a plurality of spaced apart strip blocks, which will not be described in detail here.
  • this application also provides a battery assembly equipment.
  • the cell stacking equipment includes a first limiting device 10 , a second limiting device 20 , a third limiting device 30 , a fourth limiting device 40 , and a fifth limiting device 50 and the sixth limiting device 60.
  • the battery core 70 includes a battery core body 71 and two terminals 72 disposed on the top of the battery core body 71 .
  • the battery core body 71 is in the shape of a rectangular parallelepiped.
  • the battery core body 71 includes a bottom surface 711, a first side surface 712, a second side surface 713, a top surface 714 that is opposite and parallel to the bottom surface 711, and a third surface that is opposite and parallel to the first side surface 712.
  • the side surface 715 and the fourth side surface 716 are opposite and parallel to the second side surface 713 .
  • the bottom surface 711, the first side surface 712 and the second side surface 713 are perpendicular to each other and intersect with each other.
  • the battery core 70 includes a battery core body 71 , two terminals 72 provided on the top of the battery core body 71 , and a spacer 73 provided on the side of the battery core body 71 .
  • the battery core body 71 is in the shape of a rectangular parallelepiped.
  • the battery core body 71 includes a bottom surface 711, a first side surface 712, a second side surface 713, a top surface 714 that is opposite and parallel to the bottom surface 711, and a third surface that is opposite and parallel to the first side surface 712.
  • the side surface 715 and the fourth side surface 716 are opposite and parallel to the second side surface 713 .
  • the bottom surface 711, the first side surface 712 and the second side surface 713 are perpendicular to each other and intersect with each other.
  • the first limiting device 10 is used to limit the bottom surface 711 of the battery core 70
  • the second limiting device 20 is used to limit the first side 712 of the battery core 70
  • the third limiting device 30 is used to limit the position of the battery core 70 .
  • the second side 713 of the core 70 is limited, and the fourth limiting device 40 is used to drive the battery core 70 to move in a direction perpendicular to the top surface 714 of the battery core 70 and to limit the top surface 714; the fifth limiter The positioning device 50 is used to drive the battery core 70 to move in a direction perpendicular to the third side 715 of the battery core 70 and to limit the third side 715; the sixth limiting device 60 is used to drive the battery core 70 to move in a direction perpendicular to the third side 715 of the battery core 70.
  • the direction of the fourth side 716 of the battery core 70 moves and is used to limit the fourth side 716 .
  • the first limiting device 10 includes a flat limiting plate.
  • the limiting plate has a limiting surface in contact with the bottom surface 711 of the battery core 70 .
  • the second limiting device 20 includes a long second limiting plate 21 and two connecting plates 22 .
  • the two connecting plates 22 are used to connect the second limiting plate 21 and the first limiting device 10 .
  • the height of the second limiting plate 21 is smaller than the height of the battery core 70 .
  • the third limiting device 30 includes two limiting blocks 31 extending in a direction perpendicular to the bottom surface 711 , and the two limiting blocks 31 are spaced apart in a direction perpendicular to the first side surface 712 . Two limiting blocks 31 are installed on the first limiting device 10 .
  • the first limiting device 10 , the second limiting device 20 and the third limiting device 30 are connected as a whole.
  • the first limiting member 41 includes two rolling members 411 and a first connecting shaft 412 connected between the two rolling members 411 .
  • the first connecting shaft 412 is in the shape of a cylinder.
  • the second limiting member 42 includes a flat limiting plate having a limiting surface in contact with the top surface 714 of the battery core 70 .
  • the fifth limiting device 50 includes a mounting bracket 53 and a third limiting member 51 and a fourth limiting member 52 installed on the mounting bracket 53 .
  • the third limiting member 51 includes an elastic member 511 and the first limiting plate 512.
  • the elastic member 511 is connected between the mounting bracket 53 and the first limiting plate 512.
  • the elastic member 511 provides elastic force in a direction perpendicular to the first side surface 712 .
  • the fourth limiting member 52 is rigid in a direction perpendicular to the first side surface 712 .
  • the fifth limiting device 50 includes a mounting bracket 53 and 12 third limiting parts 51 installed on the mounting bracket 53.
  • the 12 third limiting parts 51 are along a direction perpendicular to the second side 713. Spaced arrangement.
  • FIG 3 it is a structural schematic diagram of an embodiment of the battery core stacking equipment using the fifth limiting device 50 shown in Figure 9; as shown in Figure 11, it is a schematic structural diagram using the fifth limiting device shown in Figure 10 A schematic structural diagram of an embodiment of a cell stacking device of 50.
  • the sixth limiting device 60 includes a third limiting plate 61 and a second connecting shaft 62 installed on a side of the third limiting plate 61 away from the battery core 70 .
  • the third limiting plate 61 has a flat structure
  • the second connecting shaft 62 has a cylindrical shape.
  • liquid glue can be applied to the second side 713 and/or the fourth side 716 of the battery core 70. , so that two adjacent battery cores 70 are connected through liquid glue.
  • the battery core stacking device embodiment shown in Figure 11 can be used for stacking. Even if the position of the two battery cores 70 is changed due to the fluidity of the liquid glue during bonding, If misalignment occurs, the elastic member 511 included in the third limiting member 51 can also be used for flexible positioning.
  • the stacking direction of the plurality of battery cells 70 is perpendicular to the second side surface 713 , and the fourth limiting device 40 and/or the fifth limiting device 50 are movable along the stacking direction, where the fifth limiting device 70 is movable along the stacking direction.
  • the positioning device 50 includes 12 third limiting members 51 .
  • the first limiting member 41 and/or the second limiting member 42 in the fourth limiting device 40 are driven to move in a direction perpendicular to the bottom surface 711 , so that the bottom surface 711 of the battery core 70 is in contact with the first limiting device 10 fit;
  • the sixth limiting device 60 is first driven to move in a direction perpendicular to the second side 713, so that the second side 713 of the second battery core 70 is close to the fourth side 716 of the first battery core 70, and the second battery There is a preset distance between the second side 713 of the core 70 and the fourth side 716 of the first battery core 70;
  • the fifth limiting device 50 is driven to move in a direction perpendicular to the first side 712 (here, it can be determined according to the position of the fifth limiting device 50 whether the fifth limiting device 50 needs to move in a direction perpendicular to the first side 712 movement), so that one of the third limiting parts 51 is opposite to the first battery core 70, and the other third limiting part 51 is opposite to the second battery core 70; and then continue to drive the fifth limiting device 50 Move in a direction perpendicular to the first side 712 to make the first side 712 of the second battery core 70 fit with the second limiting plate 21 in the second limiting device 20;
  • the fourth limiting device 40 is driven to move in a direction perpendicular to the bottom surface 711, so that the first limiting member 41 contacts the top surface 714 of the second battery core 70, and the second limiting member 42 contacts the first battery core 70.
  • the top surface 714 of the core 70 is in contact to realize the fit between the bottom surface 711 of the second battery core 70 and the first limiting device 10;
  • the sixth limiting device 60 is driven vertically. Move in the direction of the second side 713 so that the second side 713 of the second battery core 70 contacts the fourth side 716 of the first battery core 70;
  • the third battery cell 70, the fourth battery cell 70... are stacked in sequence according to the stacking process of the second battery cell 70.
  • a spacer 73 is provided on the side of the battery core body 71, and a solid adhesive is provided on the side of the spacer 73 away from the battery core body 71.
  • two adjacent battery cores 70 are bonded and connected through spacers 73 to prevent relative movement between the battery cores 70 after stacking.
  • the battery core stacking device embodiment as shown in Figure 3 can be used for stacking. Before the two battery cores 70 are bonded, first pass through the The fourth limiting member 52 with strong rigidity in the direction perpendicular to the first side 712 is accurately positioned, and then the sixth limiting device 60 is used to position in the direction perpendicular to the second side 713 and achieve bonding. connection to avoid the problem of dislocation after bonding and difficulty in separating and re-bonding the two battery cores 70 .
  • the stacking direction of the plurality of battery cores 70 is perpendicular to the second side surface 713 , and the fourth limiting device 40 and/or the fifth limiting device 50 are movable along the stacking direction, where the fifth limiting device 70 is movable along the stacking direction.
  • the positioning device 50 includes a third limiting member 51 and a fourth limiting member 52 .
  • the first limiting member 41 and/or the second limiting member 42 in the fourth limiting device 40 are driven to move in a direction perpendicular to the bottom surface 711 , so that the bottom surface 711 of the battery core 70 is in contact with the first limiting device 10 fit;
  • the third limiting member 51 and/or the fourth limiting member 52 in the fifth limiting device 50 are driven to move in a direction perpendicular to the first side 712 so that the first side 712 and the second limiting member of the battery core 70 are The second limiting plate 21 in the device 20 is fitted;
  • the sixth limiting device 60 is first driven to move in a direction perpendicular to the second side 713, so that the second side 713 of the second battery core 70 is close to the fourth side 716 of the first battery core 70, and the second battery There is a preset distance between the second side 713 of the core 70 and the fourth side 716 of the first battery core 70;
  • the fifth limiting device 50 is driven to move in a direction perpendicular to the first side 712 (here, it can be determined according to the position of the fifth limiting device 50 whether the fifth limiting device 50 needs to move in a direction perpendicular to the first side 712 movement), so that the third limiter 51 is opposite to the first battery core 70, and the fourth limiter 52 is opposite to the second battery core 70; and then continue to drive the fifth limiter 50 along a direction perpendicular to the first battery core 70.
  • One side 712 moves in a direction so that the first side 712 of the second battery core 70 fits the second limiting plate 21 in the second limiting device 20;
  • the fourth limiting device 40 is driven to move in a direction perpendicular to the bottom surface 711, so that the first limiting member 41 contacts the top surface 714 of the second battery core 70, and the second limiting member 42 contacts the first battery core 70.
  • the top surface 714 of the core 70 is in contact to realize the fit between the bottom surface 711 of the second battery core 70 and the first limiting device 10;
  • the sixth limiting device 60 is driven vertically. Move in the direction of the second side 713 so that the second side 713 of the second battery core 70 contacts the fourth side 716 of the first battery core 70;
  • the third battery cell 70, the fourth battery cell 70... are stacked in sequence according to the stacking process of the second battery cell 70.
  • the embodiment of the cell stacking equipment provided in this application can effectively improve the accuracy of cell stacking, improve positioning stability, improve stacking quality, ensure that the side surfaces between cells are not misaligned, and prevent later modules from being unable to be formed; it can Effectively improve the dimensional qualification rate of the module (including but not limited to the side profile and bottom profile/flatness of the module).
  • the battery core can be accurately positioned in a direction perpendicular to the bottom surface;
  • the fourth limiting device includes The first limiter with a rolling element can be positioned in a direction perpendicular to the second side while being pressurized at the top;
  • the fourth limiter also includes a second limiter that can interact with the first limiter.
  • the battery core is bonded with a spacer of solid glue; the height of the second limiting device is smaller than the height of the battery core, which can reduce the impact of the flatness of the battery core on the positioning accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电芯堆叠设备和电池组装设备,其中电芯堆叠设备包括第一限位装置(10)、第二限位装置(20)和第三限位装置(30),第一限位装置(10)被配置为对电芯(70)的底面(711)进行限位,第二限位装置(20)被配置为对电芯(70)的第一侧面(712)进行限位,第三限位装置(30)被配置为对电芯(70)的第二侧面(713)进行限位,其中,底面(711)、第一侧面(712)和第二侧面(713)彼此相交。电池组装设备包括电芯堆叠设备。

Description

电芯堆叠设备和电池组装设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电芯堆叠设备和电池组装设备。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池的组装过程中,电芯的堆叠质量关系着后续电池模组是否能够成型,对整个电池的组装有着十分重要的作用。
发明内容
本申请提供一种电芯堆叠设备和电池组装设备,可以改善电芯的堆叠质量,进而提高后续模组成型的成功率。
第一方面,本申请提供一种电芯堆叠设备,包括:
第一限位装置,被配置为对电芯的底面进行限位;
第二限位装置,被配置为对电芯的第一侧面进行限位;和
第三限位装置,被配置为对电芯的第二侧面进行限位,
其中,底面、第一侧面和第二侧面彼此相交。
通过设置第一限位装置、第二限位装置和第三限位装置,可以分别对电芯的底面、第一侧面和第二侧面进行限位。其中,第一限位装置对电芯的底面进行限位的同时,还可以支撑整个电芯的重力,而且底面、第一侧面和第二侧面彼此相交,即底面、第一侧面和第二侧面彼此相邻,因此可以实现对电芯的三面限位,进而实现对单个电芯的定位,提高堆叠质量,避免堆叠完成后检测出堆叠质量不合格而造成的返工问题,有效提高堆叠效率;进一步地,也可以提高多个电芯所组成的模组的成型成功概率,提高整个电池的组装效率。
在一些实施例中,电芯堆叠设备还包括第四限位装置、第五限位装置和第六限位装置中的至少一个,
第四限位装置被配置为驱动电芯沿垂直于电芯的顶面的方向运动,并用于对顶面 进行限位;
第五限位装置被配置为驱动电芯沿垂直于电芯的第三侧面的方向运动,并用于对第三侧面进行限位,第三侧面与第一侧面相对布置;
第六限位装置被配置为驱动电芯沿垂直于电芯的第四侧面的方向运动,并用于对第四侧面进行限位,第四侧面与第二侧面相对布置。
通过第四限位装置,可以驱动电芯沿垂直于电芯的顶面的方向运动,以使电芯能够在第四限位装置的驱动作用下运动至使电芯的底面与第一限位装置的限位部贴合的位置,同时,第四限位装置停止运动后还可以对电芯的顶面进行限位,从而实现将电芯限制于第一限位装置和第四限位装置之间的目的,实现对电芯的底面和顶面的同时限位。
通过第五限位装置,可以驱动电芯沿垂直于电芯的第三侧面的方向运动,以使电芯能够在第五限位装置的驱动作用下运动至使电芯的第一侧面与第二限位装置的限位部贴合的位置,同时,第五限位装置停止运动后还可以对电芯的第三侧面进行限位,从而实现将电芯限制于第二限位装置和第五限位装置之间的目的,实现对电芯的第一侧面和第三侧面的同时限位。
通过第六限位装置,可以驱动电芯沿垂直于电芯的第四侧面的方向运动,以使电芯能够在第六限位装置的驱动作用下运动至使电芯的第二侧面与第三限位装置的限位部贴合的位置,同时,第六限位装置停止运动后还可以对电芯的第四侧面进行限位,从而实现将电芯限制于第三限位装置和第六限位装置之间的目的,实现对电芯的第二侧面和第四侧面的同时限位。
在一些实施例中,电芯堆叠设备还包括第四限位装置和第六限位装置,第四限位装置包括第一限位件,第一限位件被配置为在第六限位装置驱动电芯沿垂直于第四侧面的方向运动的同时压靠于电芯的顶面。
通过设置第一限位件,并且使第一限位件在第六限位装置驱动电芯沿垂直于第四侧面的方向运动的同时压靠于电芯的顶面,可以使电芯在顶面被第一限位件压靠,即电芯的顶面被限位的前提下,实现第六限位装置驱动电芯沿垂直于第四侧面的方向运动的过程,使得电芯在顶面位置不发生改变的前提下实现对电芯的第二侧面和第四侧面的定位,从而使电芯的顶面位置不会受到第二侧面和第四侧面的定位过程的影响,在完成对第二侧面和第四侧面的定位后,相当于同时实现了对第二侧面、第四侧面、底面和顶面这四个面的定位。
在一些实施例中,第一限位件包括与电芯滚动配合的滚动件和/或与电芯滑动配合的滑动件。
通过设置滚动件和/或滑动件,可以减小第一限位件和电芯之间的摩擦力,降低电芯相对于第一限位件发生相对运动的阻力。
在一些实施例中,第一限位件包括多个滚动件和/或多个滑动件,多个滚动件和/或多个滑动件沿垂直于第一侧面的方向间隔布置。
通过设置多个滚动件和/或多个滑动件,可以实现对顶面的多个位置的限位和支撑,从而提高对顶面的限位效果。
在一些实施例中,第四限位装置还包括第二限位件,在多个电芯的堆叠方向上,第二限位件位于第一限位件的上游,且第二限位件分别压靠在不同的电芯的顶面。
通过设置第二限位件,并将第二限位件设置于第一限位件的上游,可以在第一限位件压靠在位于下游的电芯的顶面时,使第二限位件压靠在位于上游的另一电芯的顶面上,从而保持位于上游的电芯的顶面和位于下游的电芯的顶面同时处于限位作用下,避免在堆叠另一电芯上造成上、下游电芯的顶面位置发生错位的问题。
在一些实施例中,在第一限位件与其所压靠的电芯发生相对运动时,第二限位件被配置为与其所压靠的电芯之间在垂直于第二侧面的方向上保持相对固定。
通过将第二限位件配置为与其所压靠的电芯之间在垂直于第二侧面的方向上保持相对固定,可以使第二限位件和第二限位件所压靠的电芯之间在垂直于第二侧面的方向上不会发生相对运动,从而提高第二限位件在垂直于顶面的方向上对顶面的限位效果,进而保持已定位完成的电芯的相对稳定性。
在一些实施例中,第二限位件包括与电芯的顶面接触并对电芯的顶面进行限位的限位面。
通过在第二限位件设置限位面,可以使第二限位件与电芯的顶面之间为面接触,从而增大对顶面进行限位的限位面积,提高对顶面的限位效果。
在一些实施例中,第五限位装置包括一个或多个用于对电芯的第三侧面进行限位的限位件,多个限位件沿垂直于第二侧面的方向布置。
在一些实施例中,电芯堆叠设备还包括第四限位装置、第五限位装置和第六限位装置,第五限位装置包括一个或多个用于对电芯的第三侧面进行限位的限位件,多个限位件沿垂直于第二侧面的方向布置。
在第五限位装置包括一个限位件的实施例中,在多个电芯沿垂直于第二侧面的方向堆叠时,可以通过使第五限位装置沿垂直于第二侧面的方向运动的方式实现该限位件对多个不同电芯的限位作用。
在第五限位装置包括多个限位件,且多个限位件沿垂直于第二侧面的方向布置的 实施例中,通过多个限位件可以实现对多个电芯的限位作用,从而减少或省略第五限位装置沿垂直于第二侧面的方向的运动。
在一些实施例中,一个或多个限位件中的至少一个限位件包括第三限位件,第三限位件包括弹性件,弹性件被配置为在垂直于第三侧面的方向上提供弹力。
通过设置弹性件,可以在垂直于第三侧面的方向上提供弹力,从而允许多个电芯在垂直于第三侧面的方向上的长度有所差异。
在实际生产过程中,各个电芯在垂直于第三侧面的方向上的长度会因制造等误差而有所差异,在一个或多个限位件中的至少一个限位件包括第三限位件,第三限位件包括弹性件,且弹性件被配置为在垂直于第三侧面的方向上提供弹力时,则可以避免多个电芯在垂直于第三侧面的方向上的长度差异影响第五限位装置中其他限位件对其他电芯的第三侧面的限位效果。
在一些实施例中,第三限位件还包括与弹性件连接的第一限位板,第一限位板包括用于对电芯的第三侧面进行限位的限位部。
通过设置第一限位板,可以相比于弹性件提供比较平整和刚度相对较大的限位部,从而提高限位效果。
在一些实施例中,一个或多个限位件中的至少一个限位件包括第四限位件,第四限位件在垂直于第三侧面的方向上是刚性的。
通过将第四限位件设置为在垂直于第三侧面的方向上是刚性的结构,相比于包括弹性件的第三限位件可以提供更加确定的限位效果。
在一些实施例中,第五限位装置还包括安装支架,一个或多个限位件安装于安装支架。
通过设置安装支架,可以将一个或多个限位件安装于安装支架,从而为一个或多个限位件提供稳定支撑。
而且,将一个或多个限位件安装于安装支架,可以通过驱动安装支架的方式实现对一个或多个限位件的同步驱动。
在一些实施例中,第四限位装置和/或第五限位装置被配置为沿垂直于第二侧面的方向可动,以在堆叠的电芯数量增加时,通过使第四限位装置和/或第五限位装置沿垂直于第二侧面的方向运动的方式实现对新堆叠上来的电芯的限位作用。
在一些实施例中,在垂直于底面的方向上,第二限位装置的高度小于电芯的高度。
通过将第二限位装置的高度设置为小于电芯的高度,可以减小电芯的第一侧面与 第二限位装置贴合的部分的面积,从而降低第一侧面的平面平整度对第二限位装置的限位精确度的影响,进而有效控制电芯的整体定位精确度。
在一些实施例中,第二限位装置包括第二限位板和多个沿垂直于第二侧面的方向间隔设置的连接板,连接板连接第二限位板和第一限位装置,第二限位板为沿垂直于第二侧面的方向延伸的长条形状,且在垂直于底面的方向上,第二限位板的高度小于电芯的高度。
通过设置连接板,可以将第二限位板和第一限位装置连接在一起,即实现了第二限位装置和第一限位装置的连接,提高了第二限位装置和第一限位装置的相对稳定性。
通过设置连接板,还可以在垂直于底面的方向上,增大第二限位板和电芯的底面之间的距离,从而升高第二限位板对第一侧面的限位位置,避免第二限位板对第一侧面的限位位置太低而出现电芯倾翻的问题,有效提高电芯的定位稳定性和安全性。
多个连接板对电芯的第一侧面可以具有限位作用,通过设置多个间隔布置的连接板,可以减小多个连接板对电芯进行限位的总面积,从而降低多个连接板的限位部之间的不平整对第一侧面的限位精确度的影响。当然,如果将第二限位板的靠近电芯的侧面与电芯之间的距离设置为小于连接板的靠近电芯的侧面与电芯之间的距离,则可以使多个连接板对电芯的第一侧面不具备限位作用,此时第二限位装置通过第二限位板对电芯的第一侧面进行限位,多个连接板的限位部的不平整性对电芯的限位精确度的影响降至最小。
第二限位板设置为沿垂直于第二侧面的方向延伸的长条形状,则可以使第二限位板在沿垂直于第二侧面的方向上是连续的,从而在多个电芯沿垂直于第二侧面的方向堆叠时保证多个电芯均能够被第二限位板进行限位,避免由于第二限位板在沿垂直于第二侧面的方向上出现间隙而影响对某个电芯的限位作用。
在垂直于底面的方向上,第二限位板的高度小于电芯的高度,这样可以减小电芯的第一侧面与第二限位板贴合的部分的面积,从而降低第一侧面的平面平整度对第二限位板的限位精确度的影响,进而有效控制电芯的整体定位精确度。
在一些实施例中,第三限位装置包括多个沿垂直于第一侧面的方向间隔布置的限位块。
通过设置多个间隔布置的限位块,可以通过增加间隙的方式减小第三限位装置的限位面积,从而降低电芯的第二侧面的平整度对第三限位装置的限位精确度的影响。
第二方面,本申请提供一种电池组装设备,包括上述的电芯堆叠设备。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段, 而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是采用本申请公开的电芯堆叠设备所组装的电池所应用的用电装置一些实施例的结构示意图;
图2是采用本申请公开的电芯堆叠设备所组装的电池一些实施例的结构示意图;
图3是本申请公开的电芯堆叠设备一些实施例的结构示意图;
图4是本申请公开的电芯堆叠设备一些实施例所适用的电芯的结构示意图;
图5是本申请公开的电芯堆叠设备另一些实施例所适用的电芯的结构示意图;
图6是本申请公开的电芯堆叠设备一些实施例中第一限位装置、第二限位装置和第三限位装置的结构示意图;
图7是本申请公开的电芯堆叠设备一些实施例中第一限位件的结构示意图;
图8是本申请公开的电芯堆叠设备一些实施例中第二限位件的结构示意图;
图9是本申请公开的电芯堆叠设备一些实施例中第五限位装置的结构示意图;
图10是本申请公开的电芯堆叠设备另一些实施例中第五限位装置的结构示意图;
图11是本申请公开的电芯堆叠设备另一些实施例的结构示意图;
图12是本申请公开的电芯堆叠设备一些实施例中第六限位装置的结构示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
1000、车辆;100、电池;200、车桥;300、车轮;400、马达;500、控制器;
10、第一限位装置;20、第二限位装置;30、第三限位装置;40、第四限位装置;50、第五限位装置;60、第六限位装置;70、电芯;80、箱体组件;80a、箱体;80b、盖体;
21、第二限位板;22、连接板;
31、限位块;
41、第一限位件;411、滚动件;412、第一连接轴;42、第二限位件;
51、第三限位件;511、弹性件;512、第一限位板;52、第四限位件;53、安装支架;
61、第三限位板;62、第二连接轴;
71、电芯本体;711、底面;712、第一侧面;713、第二侧面;714、顶面;715、第三侧面;716、第四侧面;72、端子;73、隔垫。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。此外,术语“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上,除非另有明确具体的限定。同理,“多组”指的是两组以上,“多片”指的是两片以上,除非另有明确具体的限定。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽 度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请的发明人注意到,随着动力电池需求量的不断扩增,对电池的组装效率也提出了更高的要求。在电池的组装过程中,电芯堆叠是很重要的一个环节。
经过对电芯堆叠过程的仔细研究,发明人发现在相关技术中,为了提高电芯堆叠的质量,会在堆叠完成后通过检测装置对堆叠质量进行检测,若发现有些电芯没有对齐,则将该模组中的所有电芯都送回原工位重新进行堆叠。这种检测方式会浪费很多的时间,大大降低堆叠效率,进而降低电池的组装效率。
为了提高堆叠效率,发明人提出一种电芯堆叠设备,该设备包括三个限位装置,这三个限位装置分别对电芯的三个彼此相交的侧面进行限位,从而实现对单个电芯的三面定位,进而实现对整个模组的精确定位,避免在堆叠完成后再通过检测将堆叠质量不合格的电芯检出而带来的返工问题,有效节约时间,提高堆叠效率。
本申请实施例公开的电芯堆叠设备适用于电池组装设备,电芯堆叠设备作为电池组装设备中的一个组成部分,可以在电芯堆叠工序中提高电芯堆叠的效率,进而提高整个电池的组装效率。
采用本申请实施例公开的电芯堆叠设备和电池组装设备所组装形成的电池可以应用于多种用电装置上,比如,用电装置可以是手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火 箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
如图1所示,用电装置可以是车辆1000,例如新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;或者用电装置也可以是无人机或轮船等。具体地,车辆1000可包括电池100、车桥200、连接于车桥200的车轮300、马达400和控制器500,控制器500用于控制马达400工作,马达400用于驱动车桥200转动,车桥200转动带动车轮300转动,电池100可以设置在车辆1000的底部、头部或尾部,用于为马达400以及车辆中其它部件的工作提供电能。
如图2所示,采用本申请实施例公开的电芯堆叠设备和电池组装设备所组装形成的电池100可以包括箱体组件80和多个电芯70。多个电芯70之间可串联或并联或混联,混联是指多个电芯70中既有串联又有并联,可以是多个电芯70先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体组件80内。也可以是所有电芯70之间直接串联或并联或混联在一起,再将所有电芯70构成的整体容纳于箱体组件80内。
箱体组件80内部为中空结构,例如,箱体组件80可以包括箱体80a和盖体80b。箱体80a和盖体80b扣合在一起。例如,箱体80a和盖体80b均可以为中空长方体且各自只有一个面为开口面,箱体80a的开口和盖体80b的开口相对设置,并且箱体80a和盖体80b相互扣合形成具有封闭腔室的箱体。也可以为,箱体80a为具有开口的长方体而盖体80b为板状,或者盖体80b为具有开口的长方体而箱体80a为板状,箱体80a和盖体80b相对设置并扣合而形成具有封闭腔室的箱体组件80。至少一个电芯70相互并联或串联或混联组合后,置于箱体80a和盖体80b扣合后形成的封闭腔室内。其中,电芯70包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本公开实施例对此并不限定。
为了能够更清楚地理解本申请电芯堆叠设备的定位原理,首先对电芯堆叠设备的结构进行详细说明。
在一些实施例中,参考图3、图4和图5所示,电芯堆叠设备包括第一限位装置10、第二限位装置20和第三限位装置30,第一限位装置10被配置为对电芯70的底面711进行限位,第二限位装置20被配置为对电芯70的第一侧面712进行限位,第三限位装置30被配置为对电芯70的第二侧面713进行限位,其中,底面711、第一侧面712和 第二侧面713彼此相交。
通过设置第一限位装置10、第二限位装置20和第三限位装置30,可以分别对电芯70的底面711、第一侧面712和第二侧面713进行限位。其中,第一限位装置10对电芯70的底面711进行限位的同时,还可以支撑整个电芯70的重力,而且底面711、第一侧面712和第二侧面713彼此相交,即底面711、第一侧面712和第二侧面713彼此相邻,因此可以实现对电芯70的三面限位,进而实现对单个电芯70的定位,提高堆叠质量,避免堆叠完成后检测出堆叠质量不合格而造成的返工问题,有效提高堆叠效率;进一步地,也可以提高多个电芯70所组成的模组的成型成功概率,提高整个电池的组装效率。
如图4和图5所示,为本申请公开的电芯堆叠设备实施例所适用的电芯70的两种结构示意图。
如图4所示,电芯70包括电芯本体71和设置于电芯本体71的顶部的两个端子72。两个端子72的极性不同。端子72与电芯本体71电连接,端子72还可以与其他电芯70或者用电部件连接。电芯本体71呈长方体形状,电芯本体71包括底面711、第一侧面712、第二侧面713、与底面711相对且平行设置的顶面714、与第一侧面712相对且平行设置的第三侧面715和与第二侧面713相对且平行设置的第四侧面716。其中,底面711、第一侧面712和第二侧面713彼此垂直且相交。
对于如图4所示的电芯70来说,多个电芯70堆叠时,可以在电芯70的第二侧面713和/或第四侧面716上涂抹液体胶,相邻两个电芯70之间通过液体胶粘接连接,以避免堆叠后各个电芯70之间发生相对运动。
如图5所示,电芯70包括电芯本体71、设置于电芯本体71的顶部的两个端子72和设置于电芯本体71的侧面的隔垫73。两个端子72的极性不同。端子72与电芯本体71电连接,端子72还可以与其他电芯70或者用电部件连接。电芯本体71呈长方体形状,电芯本体71包括底面711、第一侧面712、第二侧面713、与底面711相对且平行设置的顶面714、与第一侧面712相对且平行设置的第三侧面715和与第二侧面713相对且平行设置的第四侧面716。其中,底面711、第一侧面712和第二侧面713彼此垂直且相交。
在如图5所示的实施例中,隔垫73安装于电芯本体71的第二侧面713上。在其他实施例中,也可以将隔垫73安装于电芯本体71的第四侧面716上或者在电芯本体71的第二侧面713和第四侧面716上同时设置隔垫73。隔垫73的远离电芯本体71的侧面设有固体粘胶,在将多个电芯70堆叠时,相邻两个电芯70之间通过隔垫73粘接连接, 以避免堆叠后各个电芯70之间发生相对运动。
需要说明的是,本申请公开的电芯堆叠设备实施例不限制用于堆叠如图4和图5所示的电芯70,也可以用于堆叠具有其他结构的电芯,比如底面、第一侧面712和第二侧面713并非彼此垂直的电芯等。
在一些实施例中,电芯堆叠设备还包括第四限位装置40、第五限位装置50和第六限位装置60中的至少一个。比如,电芯堆叠设备还包括第四限位装置40;电芯堆叠设备还包括第五限位装置50;电芯堆叠设备还包括第六限位装置60;电芯堆叠设备还包括第四限位装置40和第五限位装置50;电芯堆叠设备还包括第五限位装置50和第六限位装置60;电芯堆叠设备还包括第四限位装置40和第六限位装置60;或者,电芯堆叠设备还包括第四限位装置40、第五限位装置50和第六限位装置60。
其中,第四限位装置40被配置为驱动电芯70沿垂直于电芯70的顶面714的方向运动,并用于对顶面714进行限位;
第五限位装置50被配置为驱动电芯70沿垂直于电芯70的第三侧面715的方向运动,并用于对第三侧面715进行限位,第三侧面715与第一侧面712相对布置;
第六限位装置60被配置为驱动电芯70沿垂直于电芯70的第四侧面716的方向运动,并用于对第四侧面716进行限位,第四侧面716与第二侧面713相对布置。
通过第四限位装置40,可以驱动电芯70沿垂直于电芯70的顶面714的方向运动,以使电芯70能够在第四限位装置40的驱动作用下运动至使电芯70的底面711与第一限位装置10的限位部贴合的位置,同时,第四限位装置40停止运动后还可以对电芯70的顶面714进行限位,从而实现将电芯70限制于第一限位装置10和第四限位装置40之间的目的,实现对电芯70的底面711和顶面714的同时限位。
通过第五限位装置50,可以驱动电芯70沿垂直于电芯70的第三侧面715的方向运动,以使电芯70能够在第五限位装置50的驱动作用下运动至使电芯70的第一侧面712与第二限位装置20的限位部贴合的位置,同时,第五限位装置50停止运动后还可以对电芯70的第三侧面715进行限位,从而实现将电芯70限制于第二限位装置20和第五限位装置50之间的目的,实现对电芯70的第一侧面712和第三侧面715的同时限位。
通过第六限位装置60,可以驱动电芯70沿垂直于电芯70的第四侧面716的方向运动,以使电芯70能够在第六限位装置60的驱动作用下运动至使电芯70的第二侧面713与第三限位装置30的限位部贴合的位置,同时,第六限位装置60停止运动后还可以对电芯70的第四侧面716进行限位,从而实现将电芯70限制于第三限位装置30和第六限位装置60之间的目的,实现对电芯70的第二侧面713和第四侧面716的同时限位。
下面结合附图6至12,对本申请提供的电芯堆叠设备一些实施例中的一些组成部件的结构进行介绍。
如图6所示,第一限位装置10可以采用平板式结构,这种结构可以提供比较平整的限位面,以便对电芯70的底面711进行限位和支撑,还可以提高限位面与底面711的贴合平整度,提高限位效果和支撑稳定性。
在其他实施例中,第一限位装置10也可以采用多个间隔布置的板条或者圆柱条等其他结构形式,这里不再详述。
在一些实施例中,在垂直于底面711的方向上,第二限位装置20的高度小于电芯70的高度。
通过将第二限位装置20的高度设置为小于电芯70的高度,可以减小电芯70的第一侧面712与第二限位装置20贴合的部分的面积,从而降低第一侧面712的平面平整度对第二限位装置20的限位精确度的影响,进而有效控制电芯70的整体定位精确度。
如图6所示,在一些实施例中,第二限位装置20包括第二限位板21和多个沿垂直于第二侧面713的方向间隔设置的连接板22,连接板22连接第二限位板21和第一限位装置10,第二限位板21为沿垂直于第二侧面713的方向延伸的长条形状,且在垂直于底面711的方向上,第二限位板21的高度小于电芯70的高度。
通过设置连接板22,可以将第二限位板21和第一限位装置10连接在一起,即实现了第二限位装置20和第一限位装置10的连接,提高了第二限位装置20和第一限位装置10的相对稳定性。
通过设置连接板22,还可以在垂直于底面711的方向上,增大第二限位板21和电芯70的底面711之间的距离,从而升高第二限位板21对第一侧面712的限位位置,避免第二限位板21对第一侧面712的限位位置太低而出现电芯70倾翻的问题,有效提高电芯70的定位稳定性和安全性。
多个连接板22对电芯70的第一侧面712可以具有限位作用,通过设置多个间隔布置的连接板22,可以减小多个连接板22对电芯70进行限位的总面积,从而降低多个连接板22的限位部之间的不平整对第一侧面712的限位精确度的影响。当然,如果将第二限位板21的靠近电芯70的侧面与电芯70之间的距离设置为小于连接板22的靠近电芯70的侧面与电芯70之间的距离,则可以使多个连接板22对电芯70的第一侧面712不具备限位作用,此时第二限位装置20通过第二限位板21对电芯70的第一侧面712进行限位,多个连接板22的限位部的不平整性对电芯70的限位精确度的影响降至最小。
第二限位板21设置为沿垂直于第二侧面713的方向延伸的长条形状,则可以使 第二限位板21在沿垂直于第二侧面713的方向上是连续的,从而在多个电芯沿垂直于第二侧面713的方向堆叠时保证多个电芯均能够被第二限位板21进行限位,避免由于第二限位板21在沿垂直于第二侧面713的方向上出现间隙而影响对某个电芯70的限位作用。
在垂直于底面711的方向上,第二限位板21的高度小于电芯70的高度,这样可以减小电芯70的第一侧面712与第二限位板21贴合的部分的面积,从而降低第一侧面712的平面平整度对第二限位板21的限位精确度的影响,进而有效控制电芯70的整体定位精确度。
在其他实施例中,第二限位装置20也可以采用多个上下间隔布置的长条或者柱体等结构形式,这里不再详述。
如图6所示,在一些实施例中,第三限位装置30包括多个沿垂直于第一侧面712的方向间隔布置的限位块31。
通过设置多个间隔布置的限位块31,可以通过增加间隙的方式减小第三限位装置30的限位面积,从而降低电芯70的第二侧面713的平整度对第三限位装置30的限位精确度的影响。
当然,在其他实施例中,第三限位装置30也可以采用长条板或者多个间隔布置的柱形体等结构形式,这里不再详述。
如图7所示,在一些实施例中,第四限位装置40包括第一限位件41,第一限位件41被配置为在第六限位装置60驱动电芯70沿垂直于第四侧面716的方向运动的同时压靠于电芯70的顶面714。
通过设置第一限位件41,并且使第一限位件41在第六限位装置60驱动电芯70沿垂直于第四侧面716的方向运动的同时压靠于电芯70的顶面714,可以使电芯70在顶面714被第一限位件41压靠,即电芯70的顶面714被限位的前提下,实现第六限位装置60驱动电芯70沿垂直于第四侧面716的方向运动的过程,使得电芯70在顶面714位置不发生改变的前提下实现对电芯70的第二侧面713和第四侧面716的定位,从而使电芯70的顶面714位置不会受到第二侧面713和第四侧面716的定位过程的影响,在完成对第二侧面713和第四侧面716的定位后,相当于同时实现了对第二侧面713、第四侧面716、底面711和顶面714这四个面的定位。
第一限位件41的具体结构可以有多种选择,比如,第一限位件41可以包括与电芯70滚动配合的滚动件411,也可以包括与电芯70滑动配合的滑动件等等。
在一些实施例中,第一限位件41包括多个滚动件411和/或多个滑动件,多个滚 动件411和/或多个滑动件沿垂直于第一侧面712的方向间隔布置。
通过设置多个滚动件411和/或多个滑动件,可以实现对顶面714的多个位置的限位和支撑,从而提高对顶面714的限位效果。
在一些实施例中,第一限位件41还包括第一连接轴412,第一连接轴412连接于两个相邻的滚动件411之间或者连接于两个相邻的滑动件之间。
通过设置第一连接轴412,可以将两个滚动件411连接在一起,提高两个滚动件411之间的相对稳定性,也可以使两个滚动件411实现运动同步。第一连接轴412可以采用圆柱体或者长方体等结构形式。
如图8所示,在一些实施例中,第四限位装置40还包括第二限位件42,在多个电芯70的堆叠方向上,第二限位件42位于第一限位件41的上游,且第二限位件42和第一限位件41分别压靠在不同的电芯70的顶面714。
通过设置第二限位件42,并将第二限位件42设置于第一限位件41的上游,可以在第一限位件41压靠在位于下游的电芯70的顶面714时,使第二限位件42压靠在位于上游的另一电芯70的顶面714上,从而保持位于上游的电芯70的顶面714和位于下游的电芯70的顶面714同时处于限位作用下,避免在堆叠另一电芯70上造成上、下游电芯70的顶面714位置发生错位的问题。
在一些实施例中,第二限位件42和第一限位件41分别压靠在相邻的两个电芯70的顶面714。
在一些实施例中,在第一限位件41与其所压靠的电芯70发生相对运动时,第二限位件42被配置为与其所压靠的电芯70之间在垂直于第二侧面713的方向上保持相对固定。
通过将第二限位件42配置为与其所压靠的电芯70之间在垂直于第二侧面713的方向上保持相对固定,可以使第二限位件42和第二限位件42所压靠的电芯70之间在垂直于第二侧面713的方向上不会发生相对运动,从而提高第二限位件42在垂直于顶面714的方向上对顶面714的限位效果,进而保持已定位完成的电芯70的相对稳定性。
在一些实施例中,第二限位件42包括与电芯70的顶面714接触并对电芯70的顶面714进行限位的限位面。
通过在第二限位件42设置限位面,可以使第二限位件42与电芯70的顶面714之间为面接触,从而增大对顶面714进行限位的限位面积,提高对顶面714的限位效果。
如图8所示,第二限位件42采用平板式结构,便于提供比较平整的限位面,进 而提高对电芯70的顶面714的限位效果。
在其他实施例中,第二限位件42也可以采用多个间隔布置的条形板等结构形式,这里不再详述。
在一些实施例中,第一限位件41和第二限位件42可以分别压靠在电芯70的两个端子72上,两个端子72的顶面比较平整,可以提高与第一限位件41和第二限位件42的接触稳定性。
如图9和图10所示,在一些实施例中,第五限位装置50包括一个或多个用于对电芯70的第三侧面715进行限位的限位件,多个限位件沿垂直于第二侧面713的方向布置。
在第五限位装置50包括一个限位件的实施例中,在多个电芯70沿垂直于第二侧面713的方向堆叠时,可以通过使第五限位装置50沿垂直于第二侧面713的方向运动的方式实现该限位件对多个不同电芯70的限位作用。
在第五限位装置50包括多个限位件,且多个限位件沿垂直于第二侧面713的方向布置的实施例中,通过多个限位件可以实现对多个电芯70的限位作用,从而减少或省略第五限位装置50沿垂直于第二侧面713的方向的运动。
其中,多个限位件沿垂直于第二侧面713的方向可以间隔布置,也可以连续布置,具体可根据对电芯70的第三侧面715进行限位的限位面积大小来确定。
如图9所示,第五限位装置50包括沿垂直于第二侧面713的方向间隔布置的两个限位件;如图10所示,第五限位装置50包括沿垂直于第二侧面713的方向间隔布置的12个限位件。
在一些实施例中,一个或多个限位件中的至少一个限位件包括第三限位件51,第三限位件51包括弹性件511,弹性件511被配置为在垂直于第三侧面715的方向上提供弹力。
通过设置弹性件511,可以在垂直于第三侧面715的方向上提供弹力,从而允许多个电芯70在垂直于第三侧面715的方向上的长度有所差异。
在实际生产过程中,各个电芯70在垂直于第三侧面715的方向上的长度会因制造等误差而有所差异,在一个或多个限位件中的至少一个限位件包括第三限位件51,第三限位件51包括弹性件511,且弹性件511被配置为在垂直于第三侧面715的方向上提供弹力时,则可以避免多个电芯70在垂直于第三侧面715的方向上的长度差异影响第五限位装置50中其他限位件对其他电芯70的第三侧面715的限位效果。
弹性件511可以采用弹簧或者具有弹性的橡胶等。
在一些实施例中,第三限位件51还包括与弹性件511连接的第一限位板512,第一限位板512包括用于对电芯70的第三侧面715进行限位的限位部。
通过设置第一限位板512,可以相比于弹性件511提供比较平整和刚度相对较大的限位部,从而提高限位效果。
在一些实施例中,一个或多个限位件中的至少一个限位件包括第四限位件52,第四限位件52在垂直于第三侧面715的方向上是刚性的。
通过将第四限位件52设置为在垂直于第三侧面715的方向上是刚性的结构,相比于包括弹性件511的第三限位件51可以提供更加确定的限位效果。
第四限位件52可以包括一块较厚的限位块,也可以包括多个较薄且连接为整体的限位块。
在一些实施例中,第五限位装置50还包括安装支架53,一个或多个限位件安装于安装支架53。
通过设置安装支架53,可以将一个或多个限位件安装于安装支架53,从而为一个或多个限位件提供稳定支撑。
而且,将一个或多个限位件安装于安装支架53,可以通过驱动安装支架53的方式实现对一个或多个限位件的同步驱动。
在未设置安装支架53的实施例中,则可以对一个或多个限位件分别进行单独驱动。
如图11所示,为采用图10所示的第五限位装置50实施例的电芯堆叠设备的结构示意图。
在该实施例中,在堆叠电芯70的数量不超过12个之前,第五限位装置50不需要在沿垂直于第二侧面713的方向运动。
在一些实施例中,第四限位装置40和/或第五限位装置50被配置为沿垂直于第二侧面713的方向可动,以在堆叠的电芯70数量增加时,通过使第四限位装置40和/或第五限位装置50沿垂直于第二侧面713的方向运动的方式实现对新堆叠上来的电芯70的限位作用。
如图12所示,第六限位装置60包括第三限位板61和安装于第三限位板61的远离电芯70的一侧的第二连接轴62。第二连接轴62用于连接驱动部件,以驱动第三限位板61沿垂直于第二侧面713的方向运动。
第三限位板61为平板式结构,可以提供比较平整的限位面,提高对第四侧面716的限位效果。第二连接轴62可以采用圆柱体结构形式,也可以采用长方体等结构形式。
在其他实施例中,第六限位装置60也可以采用多个间隔布置的条形块等结构形式,这里不再详述。
基于上述各个实施例中的电芯堆叠设备,本申请还提供了一种电池组装设备。
下面结合附图3至12,对本申请提供的电芯堆叠设备一些实施例的结构和工作过程进行介绍。
在如图3所示的实施例中,电芯堆叠设备包括第一限位装置10、第二限位装置20、第三限位装置30、第四限位装置40、第五限位装置50和第六限位装置60。
如图4所示,电芯70包括电芯本体71和设置于电芯本体71的顶部的两个端子72。电芯本体71呈长方体形状,电芯本体71包括底面711、第一侧面712、第二侧面713、与底面711相对且平行设置的顶面714、与第一侧面712相对且平行设置的第三侧面715和与第二侧面713相对且平行设置的第四侧面716。其中,底面711、第一侧面712和第二侧面713彼此垂直且相交。
如图5所示,电芯70包括电芯本体71、设置于电芯本体71的顶部的两个端子72和设置于电芯本体71的侧面的隔垫73。电芯本体71呈长方体形状,电芯本体71包括底面711、第一侧面712、第二侧面713、与底面711相对且平行设置的顶面714、与第一侧面712相对且平行设置的第三侧面715和与第二侧面713相对且平行设置的第四侧面716。其中,底面711、第一侧面712和第二侧面713彼此垂直且相交。
第一限位装置10用于对电芯70的底面711进行限位,第二限位装置20用于对电芯70的第一侧面712进行限位,第三限位装置30用于对电芯70的第二侧面713进行限位,第四限位装置40用于驱动电芯70沿垂直于电芯70的顶面714的方向运动,并用于对顶面714进行限位;第五限位装置50用于驱动电芯70沿垂直于电芯70的第三侧面715的方向运动,并用于对第三侧面715进行限位;第六限位装置60用于驱动电芯70沿垂直于电芯70的第四侧面716的方向运动,并用于对第四侧面716进行限位。
如图6所示,第一限位装置10包括平板式的限位板,该限位板具有与电芯70的底面711接触的限位面。
第二限位装置20包括长条形的第二限位板21和两个连接板22,两个连接板22用于连接第二限位板21和第一限位装置10。在垂直于底面711的方向上,第二限位板21的高度小于电芯70的高度。
第三限位装置30包括两个沿垂直于底面711的方向延伸的限位块31,两个限位块31沿垂直于第一侧面712的方向间隔布置。两个限位块31安装于第一限位装置10上。
在如图6所示的实施例中,第一限位装置10、第二限位装置20和第三限位装置30连接为整体。
如图7所示,第一限位件41包括两个滚动件411和连接于两个滚动件411之间的第一连接轴412,第一连接轴412呈圆柱体形状。
如图8所示,第二限位件42包括平板式的限位板,该限位板具有与电芯70的顶面714接触的限位面。
如图9所示,第五限位装置50包括安装支架53以及安装于安装支架53上的一个第三限位件51和一个第四限位件52,第三限位件51包括弹性件511和第一限位板512,弹性件511连接于安装支架53和第一限位板512之间。弹性件511在垂直于第一侧面712的方向上提供弹性力。第四限位件52在垂直于第一侧面712的方向上是刚性的。
如图10所示,第五限位装置50包括安装支架53以及安装于安装支架53上的12个第三限位件51。12个第三限位件51沿垂直于第二侧面713的方向间隔布置。
如图3所示,为采用如图9所示的第五限位装置50的电芯堆叠设备实施例的结构示意图;如图11所示,为采用如图10所示的第五限位装置50的电芯堆叠设备实施例的结构示意图。
如图12所示,第六限位装置60包括第三限位板61和安装于第三限位板61的远离电芯70的一侧的第二连接轴62。第三限位板61为平板式结构,第二连接轴62为圆柱体形状。
对于如图4所示的电芯70结构来说,为了提高堆叠后各个电芯70之间的相对稳定性,可以在电芯70的第二侧面713和/或第四侧面716上涂抹液体胶,以使相邻两个电芯70之间通过液体胶粘接连接。
对于采用液体胶进行粘接的电芯70来说,可以采用如图11所示的电芯堆叠设备实施例进行堆叠,即使在粘接时由于液体胶的流动性使两个电芯70的位置发生错位,也可以通过第三限位件51所包括的弹性件511进行柔性定位。
具体操作流程为:
如图11所示,多个电芯70的堆叠方向为垂直于第二侧面713的方向,第四限位装置40和/或第五限位装置50沿堆叠方向可动,其中,第五限位装置50包括12个第三限位件51。
先将第一个电芯70放置于第一限位装置10上;
然后,驱动第四限位装置40中的第一限位件41和/或第二限位件42沿垂直于底 面711的方向运动,以使电芯70的底面711与第一限位装置10贴合;
驱动第五限位装置50沿垂直于第一侧面712的方向运动,以使电芯70的第一侧面712和第二限位装置20中的第二限位板21贴合;
驱动第六限位装置60沿垂直于第二侧面713的方向运动,以使电芯70的第二侧面713和第三限位装置30中的限位块31贴合;
其中,驱动第四限位装置40、驱动第五限位装置50和驱动第六限位装置60的步骤无先后顺序的限制;
接着,将第二个电芯70放置于第一限位装置10上;
先驱动第六限位装置60沿垂直于第二侧面713的方向运动,以使第二个电芯70的第二侧面713贴近第一个电芯70的第四侧面716,且第二个电芯70的第二侧面713与第一个电芯70的第四侧面716之间具有预设距离;
然后,驱动第五限位装置50沿垂直于第一侧面712的方向运动(此处可根据第五限位装置50的位置判断第五限位装置50是否需要沿垂直于第一侧面712的方向运动),以使其中一个第三限位件51与第一个电芯70相对,并使另一个第三限位件51与第二个电芯70相对;再继续驱动第五限位装置50沿垂直于第一侧面712的方向运动,以使第二个电芯70的第一侧面712和第二限位装置20中的第二限位板21贴合;
接着,驱动第四限位装置40沿垂直于底面711的方向运动,并使第一限位件41与第二个电芯70的顶面714接触,第二限位件42与第一个电芯70的顶面714接触,实现第二个电芯70的底面711和第一限位装置10的贴合;
在第一限位件41与第二个电芯70的顶面714接触,第二限位件42与第一个电芯70的顶面714接触的同时,驱动第六限位装置60沿垂直于第二侧面713的方向运动,以使第二个电芯70的第二侧面713和第一个电芯70的第四侧面716接触;
至此,完成第二个电芯70的堆叠;
按照第二个电芯70的堆叠流程依次堆叠第三个电芯70、第四个电芯70…。
对于如图5所示的电芯70结构来说,电芯本体71的侧面设有隔垫73,隔垫73的远离电芯本体71的侧面设有固体粘胶,在将多个电芯70堆叠时,相邻两个电芯70之间通过隔垫73粘接连接,以避免堆叠后各个电芯70之间发生相对运动。
对于采用设有固体胶的隔垫73进行粘接的电芯70来说,可以采用如图3所示的电芯堆叠设备实施例进行堆叠,在两个电芯70粘接之前,先通过在垂直于第一侧面712的方向具有较强刚度的第四限位件52进行精确定位,然后再通过第六限位装置60进行在垂直于第二侧面713的方向上的定位,并实现粘接连接,避免粘接后出现错位又很难 将两个电芯70分离重新粘接的问题。
具体操作流程为:
如图3所示,多个电芯70的堆叠方向为垂直于第二侧面713的方向,第四限位装置40和/或第五限位装置50沿堆叠方向可动,其中,第五限位装置50包括一个第三限位件51和一个第四限位件52。
先将第一个电芯70放置于第一限位装置10上;
然后,驱动第四限位装置40中的第一限位件41和/或第二限位件42沿垂直于底面711的方向运动,以使电芯70的底面711与第一限位装置10贴合;
驱动第五限位装置50中的第三限位件51和/或第四限位件52沿垂直于第一侧面712的方向运动,以使电芯70的第一侧面712和第二限位装置20中的第二限位板21贴合;
驱动第六限位装置60沿垂直于第二侧面713的方向运动,以使电芯70的第二侧面713和第三限位装置30中的限位块31贴合;
其中,驱动第四限位装置40、驱动第五限位装置50和驱动第六限位装置60的步骤无先后顺序的限制;
接着,将第二个电芯70放置于第一限位装置10上;
先驱动第六限位装置60沿垂直于第二侧面713的方向运动,以使第二个电芯70的第二侧面713贴近第一个电芯70的第四侧面716,且第二个电芯70的第二侧面713与第一个电芯70的第四侧面716之间具有预设距离;
然后,驱动第五限位装置50沿垂直于第一侧面712的方向运动(此处可根据第五限位装置50的位置判断第五限位装置50是否需要沿垂直于第一侧面712的方向运动),以使第三限位件51与第一个电芯70相对,并使第四限位件52与第二个电芯70相对;再继续驱动第五限位装置50沿垂直于第一侧面712的方向运动,以使第二个电芯70的第一侧面712和第二限位装置20中的第二限位板21贴合;
接着,驱动第四限位装置40沿垂直于底面711的方向运动,并使第一限位件41与第二个电芯70的顶面714接触,第二限位件42与第一个电芯70的顶面714接触,实现第二个电芯70的底面711和第一限位装置10的贴合;
在第一限位件41与第二个电芯70的顶面714接触,第二限位件42与第一个电芯70的顶面714接触的同时,驱动第六限位装置60沿垂直于第二侧面713的方向运动,以使第二个电芯70的第二侧面713和第一个电芯70的第四侧面716接触;
至此,完成第二个电芯70的堆叠;
按照第二个电芯70的堆叠流程依次堆叠第三个电芯70、第四个电芯70…。
本申请提供的电芯堆叠设备实施例可以有效提高电芯堆叠的精度,提高定位稳定性,提高堆叠质量,保证电芯与电芯之间的侧面不发生错位,避免后期模组无法成型;可以有效提高模组的尺寸合格率(包括但不限于模组的侧面轮廓度和底面轮廓度/平面度)。
本申请提供的电芯堆叠设备实施例,通过设置对电芯的顶面进行加压的第四限位装置,可以在垂直于底面的方向上对电芯进行精确定位;第四限位装置包括具有滚动件的第一限位件,可以在顶部加压的同时实现在垂直于第二侧面方向上的定位;第四限位装置还包括第二限位件,可以与第一限位件相互配合实现对电芯顶部的分步加压以及第四限位装置的分步撤离;通过采用包括弹性件的第三限位件,可以提高对电芯在垂直于第一侧面方向上的长度包容性,实现对不同长度电芯的逐个精准定位;通过设置在垂直于第一侧面的方向上是刚性的第四限位件,可以在垂直于第一侧面的方向上实现刚性定位,适用于采用设有固体胶的隔垫粘接的电芯;第二限位装置的高度小于电芯的高度,则可以减小电芯的平面度影响定位精度。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (19)

  1. 一种电芯堆叠设备,其特征在于,包括:
    第一限位装置(10),被配置为对电芯(70)的底面(711)进行限位;
    第二限位装置(20),被配置为对所述电芯(70)的第一侧面(712)进行限位;和
    第三限位装置(30),被配置为对所述电芯(70)的第二侧面(713)进行限位,
    其中,所述底面(711)、所述第一侧面(712)和所述第二侧面(713)彼此相交。
  2. 根据权利要求1所述的电芯堆叠设备,其特征在于,所述电芯堆叠设备还包括第四限位装置(40)、第五限位装置(50)和第六限位装置(60)中的至少一个,
    所述第四限位装置(40)被配置为驱动所述电芯(70)沿垂直于所述电芯(70)的顶面(714)的方向运动,并用于对所述顶面(714)进行限位;
    所述第五限位装置(50)被配置为驱动所述电芯(70)沿垂直于所述电芯(70)的第三侧面(715)的方向运动,并用于对所述第三侧面(715)进行限位,所述第三侧面(715)与所述第一侧面(712)相对布置;
    所述第六限位装置(60)被配置为驱动所述电芯(70)沿垂直于所述电芯(70)的第四侧面(716)的方向运动,并用于对所述第四侧面(716)进行限位,所述第四侧面(716)与所述第二侧面(713)相对布置。
  3. 根据权利要求2所述的电芯堆叠设备,其特征在于,所述电芯堆叠设备还包括第四限位装置(40)和第六限位装置(60),所述第四限位装置(40)包括第一限位件(41),所述第一限位件(41)被配置为在所述第六限位装置(60)驱动所述电芯(70)沿垂直于所述第四侧面(716)的方向运动的同时压靠于所述电芯(70)的顶面(714)。
  4. 根据权利要求3所述的电芯堆叠设备,其特征在于,所述第一限位件(41)包括与所述电芯(70)滚动配合的滚动件(411)和/或与所述电芯(70)滑动配合的滑动件。
  5. 根据权利要求4所述的电芯堆叠设备,其特征在于,所述第一限位件(41)包括多个所述滚动件(411)和/或多个所述滑动件,多个所述滚动件(411)和/或多个所述滑动件沿垂直于所述第一侧面(712)的方向间隔布置。
  6. 根据权利要求3至5任一项所述的电芯堆叠设备,其特征在于,所述第四限位装置(40)还包括第二限位件(42),在多个所述电芯(70)的堆叠方向上,所述第二限 位件(42)位于所述第一限位件(41)的上游,且所述第二限位件(42和所述第一限位件(41)分别压靠在不同的所述电芯(70)的顶面(714)。
  7. 根据权利要求6所述的电芯堆叠设备,其特征在于,在所述第一限位件(41)与其所压靠的所述电芯(70)发生相对运动时,所述第二限位件(42)被配置为与其所压靠的所述电芯(70)之间在垂直于所述第二侧面(713)的方向上保持相对固定。
  8. 根据权利要求6或7所述的电芯堆叠设备,其特征在于,所述第二限位件(42)包括与所述电芯(70)的顶面(714)接触并对所述电芯(70)的顶面(714)进行限位的限位面。
  9. 根据权利要求2所述的电芯堆叠设备,其特征在于,所述第五限位装置(50)包括一个或多个用于对所述电芯(70)的第三侧面(715)进行限位的限位件,多个所述限位件沿垂直于所述第二侧面(713)的方向布置。
  10. 根据权利要求3至8任一项所述的电芯堆叠设备,其特征在于,所述电芯堆叠设备还包括第四限位装置(40)、第五限位装置(50)和第六限位装置(60),所述第五限位装置(50)包括一个或多个用于对所述电芯(70)的第三侧面(715)进行限位的限位件,多个所述限位件沿垂直于所述第二侧面(713)的方向布置。
  11. 根据权利要求9或10所述的电芯堆叠设备,其特征在于,一个或多个所述限位件中的至少一个限位件包括第三限位件(51),所述第三限位件(51)包括弹性件(511),所述弹性件(511)被配置为在垂直于所述第三侧面(715)的方向上提供弹力。
  12. 根据权利要求11所述的电芯堆叠设备,其特征在于,所述第三限位件(51)还包括与所述弹性件(511)连接的第一限位板(512),所述第一限位板(512)包括用于对所述电芯(70)的第三侧面(715)进行限位的限位部。
  13. 根据权利要求9至12任一项所述的电芯堆叠设备,其特征在于,一个或多个所述限位件中的至少一个限位件包括第四限位件(52),所述第四限位件(52)在垂直于所述第三侧面(715)的方向上是刚性的。
  14. 根据权利要求9至13任一项所述的电芯堆叠设备,其特征在于,所述第五限位装置(50)还包括安装支架(53),一个或多个所述限位件安装于所述安装支架(53)。
  15. 根据权利要求2至14任一项所述的电芯堆叠设备,其特征在于,所述第四限位装置(40)和/或所述第五限位装置(50)被配置为沿垂直于所述第二侧面(713)的方向可动。
  16. 根据权利要求1至15任一项所述的电芯堆叠设备,其特征在于,在垂直于所述底面(711)的方向上,所述第二限位装置(20)的高度小于所述电芯(70)的高度。
  17. 根据权利要求1至16任一项所述的电芯堆叠设备,其特征在于,所述第二限位装置(20)包括第二限位板(21)和多个沿垂直于所述第二侧面(713)的方向间隔设置的连接板(22),所述连接板(22)连接所述第二限位板(21)和所述第一限位装置(10),所述第二限位板(21)为沿垂直于所述第二侧面(713)的方向延伸的长条形状,且在垂直于所述底面(711)的方向上,所述第二限位板(21)的高度小于所述电芯(70)的高度。
  18. 根据权利要求1至17任一项所述的电芯堆叠设备,其特征在于,所述第三限位装置(30)包括多个沿垂直于所述第一侧面(712)的方向间隔布置的限位块(31)。
  19. 一种电池组装设备,其特征在于,包括如权利要求1至18任一项所述的电芯堆叠设备。
PCT/CN2022/104123 2022-07-06 2022-07-06 电芯堆叠设备和电池组装设备 WO2024007193A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280067237.4A CN118056299A (zh) 2022-07-06 2022-07-06 电芯堆叠设备和电池组装设备
PCT/CN2022/104123 WO2024007193A1 (zh) 2022-07-06 2022-07-06 电芯堆叠设备和电池组装设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104123 WO2024007193A1 (zh) 2022-07-06 2022-07-06 电芯堆叠设备和电池组装设备

Publications (1)

Publication Number Publication Date
WO2024007193A1 true WO2024007193A1 (zh) 2024-01-11

Family

ID=89454733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104123 WO2024007193A1 (zh) 2022-07-06 2022-07-06 电芯堆叠设备和电池组装设备

Country Status (2)

Country Link
CN (1) CN118056299A (zh)
WO (1) WO2024007193A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209515900U (zh) * 2019-02-03 2019-10-18 无锡奥特维智能装备有限公司 电芯堆叠装置
US20200185753A1 (en) * 2018-12-06 2020-06-11 Hyundai Motor Company Cell stacking apparatus and manufacturing system for secondary battery
CN213304195U (zh) * 2020-09-25 2021-05-28 浙江零跑科技有限公司 一种电芯模组堆叠成组工装
CN213459824U (zh) * 2020-09-30 2021-06-15 江苏逸飞激光设备有限公司 一种模组自动堆叠机构
CN213905429U (zh) * 2020-12-31 2021-08-06 合肥国轩高科动力能源有限公司 一种锂电池模组预堆叠装置
CN215578660U (zh) * 2021-07-07 2022-01-18 恒大新能源技术(深圳)有限公司 一种电芯堆叠装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200185753A1 (en) * 2018-12-06 2020-06-11 Hyundai Motor Company Cell stacking apparatus and manufacturing system for secondary battery
CN209515900U (zh) * 2019-02-03 2019-10-18 无锡奥特维智能装备有限公司 电芯堆叠装置
CN213304195U (zh) * 2020-09-25 2021-05-28 浙江零跑科技有限公司 一种电芯模组堆叠成组工装
CN213459824U (zh) * 2020-09-30 2021-06-15 江苏逸飞激光设备有限公司 一种模组自动堆叠机构
CN213905429U (zh) * 2020-12-31 2021-08-06 合肥国轩高科动力能源有限公司 一种锂电池模组预堆叠装置
CN215578660U (zh) * 2021-07-07 2022-01-18 恒大新能源技术(深圳)有限公司 一种电芯堆叠装置

Also Published As

Publication number Publication date
CN118056299A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
US11858332B2 (en) Battery, power consumption apparatus, and method for producing battery
WO2023207798A1 (zh) 热管理部件、电池及用电装置
WO2024007193A1 (zh) 电芯堆叠设备和电池组装设备
US11962027B2 (en) Battery, power consumption device, method for producing battery
KR101787634B1 (ko) 스웰링 대응구조를 구비하는 엔드플레이트 및 이를 포함하는 배터리모듈
US20230121633A1 (en) Battery and power consuming device
CN219582062U (zh) 焊接装置及其夹具
CN202534744U (zh) 铝塑膜包装锂电池组组装设备
WO2023231523A1 (zh) 一种调节装置、打包设备及调节方法
WO2023185863A1 (zh) 一种电池仓及换电系统
WO2022120848A1 (zh) 电池、用电装置及制备电池的方法
US20230163419A1 (en) Battery cell, battery, power consuming apparatus, and method and apparatus for manufacturing battery cell
CN217700769U (zh) 电池模组整形机构
WO2024031418A1 (zh) 电池、用电装置以及电池的成型方法
WO2024036771A1 (zh) 加热装置、电池以及用电装置
WO2023083024A1 (zh) 定位装置及系统
KR20240019840A (ko) 배터리 셀, 배터리, 전기 장치 및 배터리 셀의 제조 방법
CN220652172U (zh) 电池模组、电池及用电设备
CN219383171U (zh) 电池装载工装
CN216213930U (zh) 一种端板组件、电池模块和电池
WO2024031416A1 (zh) 电池以及用电装置
CN220282041U (zh) 一种托盘及生产线
US11870090B2 (en) Battery module, battery and assembling method and device thereof, and electrical apparatus
WO2024000623A1 (zh) 堆叠设备
CN217719809U (zh) 电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949781

Country of ref document: EP

Kind code of ref document: A1