WO2024007188A1 - 电池参数获取方法及相关装置 - Google Patents

电池参数获取方法及相关装置 Download PDF

Info

Publication number
WO2024007188A1
WO2024007188A1 PCT/CN2022/104101 CN2022104101W WO2024007188A1 WO 2024007188 A1 WO2024007188 A1 WO 2024007188A1 CN 2022104101 W CN2022104101 W CN 2022104101W WO 2024007188 A1 WO2024007188 A1 WO 2024007188A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current
parameters
impedance
target period
Prior art date
Application number
PCT/CN2022/104101
Other languages
English (en)
French (fr)
Inventor
王丹凤
宋晋阳
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/104101 priority Critical patent/WO2024007188A1/zh
Publication of WO2024007188A1 publication Critical patent/WO2024007188A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Definitions

  • This application relates to the field of new energy technology, and in particular to a battery parameter acquisition method, system, device, storage medium and computer program product.
  • Embodiments of the present application provide a battery parameter acquisition method, system, device, storage medium and computer program product to solve the problem that the degree of battery performance deterioration is difficult to estimate due to complex actual working conditions.
  • this application provides a method for obtaining battery parameters.
  • the method for obtaining battery parameters may include:
  • the current performance parameters of the battery are determined, and the current performance parameters include at least one of current internal resistance and current discharge power.
  • the working condition data of the battery is obtained, and the current impedance parameters of the battery are obtained through the working condition data. Finally, the current performance parameters of the battery are determined based on the current impedance parameters.
  • the current performance parameters may include the current internal resistance and the current at least one of the discharge powers. Among them, the current performance parameters of the battery during use are determined based on the current impedance parameters, and the current impedance parameters are determined based on the working condition data of each battery when used.
  • the current performance obtained by this method of obtaining battery parameters The parameters are more targeted and accurate, and can accurately assess the health status of the battery, thereby helping the battery to maximize its performance, avoid under-voltage faults, indirectly extend the service life of the cells in the battery, and solve the problem of complex actual working conditions. , the problem of battery performance deterioration that is difficult to estimate.
  • the battery When the battery is used as a power battery and installed in a vehicle-like vehicle, it can improve driving safety and the power of the vehicle.
  • the operating condition data includes the temperature, state of charge, actual current and actual voltage of multiple cells in the battery.
  • Obtain the current impedance parameters of the battery through working condition data which can include:
  • the mapping relationship is set through the working condition data, and then the corresponding current impedance parameter is found from the mapping relationship through the measured temperature value and real-time state of charge, ensuring that the current impedance parameter is related to the current usage status of the battery. , which indirectly considers the real-time nature of the current performance parameters and improves the accuracy of the current performance parameters.
  • the actual voltage and actual current of multiple cells in the target period are processed respectively to obtain the current-voltage fitting parameters and fitting goodness of multiple cells in the target period.
  • the battery cells whose fitting goodness is greater than the preset threshold are selected from multiple battery cells as the target battery cells.
  • the current-voltage fitting parameters and fitting goodness are obtained through processing and calculation based on the actual current and actual voltage of the cell, and the current-voltage fitting parameters of the target cell with high fitting goodness are selected. , temperature and state of charge, realizing the calculation of various data of the entire battery, and finally generating a mapping relationship between temperature, state of charge and impedance parameters, which provides a favorable basis for subsequent acquisition of current impedance parameters.
  • This process of selecting target cells using the goodness of fit makes the final calculated impedance parameters more realistic for evaluating the internal resistance of the battery and improves data accuracy.
  • the above method may also include:
  • the period when the actual current of the cell shows a unidirectional trend change is regarded as the target period.
  • process the actual voltage and actual current of multiple cells in the target period respectively to obtain the current-voltage fitting parameters and fitting goodness of multiple cells in the target period which may include:
  • Linear fitting is performed on the actual voltages and actual currents of multiple cells in the target period, respectively, to obtain linear fitting functions of multiple cells in the target period.
  • the slope of the linear fitting function is the current-voltage fitting parameter.
  • the actual currents of multiple cells in the target period are substituted into the linear fitting functions of the multiple cells in the target period for calculation, and the fitting voltages of the multiple cells in different target periods are obtained.
  • the fitting goodness of multiple cells in the target period is calculated.
  • the process of obtaining the fitting goodness and current-voltage fitting parameters is given, which provides a data basis for selecting a suitable target cell and calculating the impedance parameters of the battery.
  • calculating the fitting goodness of multiple cells in the target period based on the fitted voltages and actual voltages of the multiple cells in the target period may include:
  • R 2 ⁇ (U n,1 -U mean )2/ ⁇ (U n,2 -U mean ) 2
  • U n,1 is the fitted voltage of cell n in the target period
  • U n,2 is the actual voltage of cell n in the target period
  • U mean is the mean value of the fitted voltage and the actual voltage in the target period
  • R 2 is the fitting goodness of cell n in the target period.
  • the calculation process of the goodness of fit is given, which can well characterize the degree of linear correlation between current and voltage under working conditions.
  • generating a mapping relationship between the temperature, state of charge and impedance parameters of the battery where the target cell is located may include:
  • the first average value, the second average value and the third average value are correspondingly used as the impedance parameters, temperature and state of charge of the battery where the target cell is located, and a mapping relationship between temperature, state of charge and impedance parameters is obtained.
  • the data of the entire battery in the target period is measured by the average data of multiple target cells in the same target period, so that the overall operation of the cells in the battery can be evaluated and meet the actual data requirements.
  • determine the current performance parameters of the battery based on the current impedance parameters which may include:
  • the initial impedance parameters correspond to the current performance parameters.
  • the current performance parameters are actual performance parameters of the current battery after aging.
  • the current performance parameters can also be determined by using the initial conditions of the battery at the same temperature and the same state of charge.
  • the initial impedance parameters and initial performance parameters are obtained by reference and comparison.
  • the current performance parameters obtained are highly accurate and can accurately evaluate the battery health status, thereby helping the battery maximize its performance, avoid under-voltage faults, and prolong the battery life.
  • the service life of the battery core solves the problem of difficulty in estimating the degree of battery performance deterioration due to complex actual working conditions. When the battery is used as a power battery and installed in a vehicle-like vehicle, it can improve driving safety and the power of the vehicle.
  • calculating the current performance parameters of the battery based on the initial impedance parameters, initial performance parameters and current impedance parameters may include:
  • calculations are performed based on the impedance change amplitude and the initial performance parameters to provide a calculation method for the current performance parameters, which provides a theoretical basis for ultimately guiding the performance of the battery.
  • perform a first operation on the impedance change amplitude and the initial performance parameters to obtain the current performance parameters which may include:
  • the initial performance parameters include the initial internal resistance.
  • the initial discharge power and the impedance change amplitude are divided to obtain the current discharge power, and the initial performance parameters include the initial discharge power.
  • the battery parameter acquisition system may include:
  • the first acquisition module is used to acquire the battery’s operating condition data
  • the second acquisition module is used to obtain the current impedance parameters of the battery through the working condition data
  • the determination module is used to determine the current performance parameters of the battery based on the current impedance parameters, where the current performance parameters include at least one of current internal resistance and current discharge power.
  • the present application provides a battery parameter acquisition device.
  • the battery parameter acquisition device may include a processor, a memory, and a program or instruction stored in the memory and executable on the processor. When the program or instruction is executed by the processor Steps to implement the battery parameter acquisition method as described above.
  • the present application also provides a battery parameter acquisition device, which is configured to perform the steps of the battery parameter acquisition method in the above aspect.
  • the present application also provides a readable storage medium in which a program or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, the steps of the battery parameter acquisition method in the above aspect are implemented.
  • the present application also provides a computer program product, which can be executed by a processor to implement the steps of the battery parameter acquisition method in the above aspect.
  • Figure 1 is a schematic flow chart of an embodiment of a battery parameter acquisition method according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of another embodiment of the battery parameter acquisition method according to the embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another embodiment of the battery parameter acquisition method according to the embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another embodiment of the battery parameter acquisition method according to the embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another embodiment of the battery parameter acquisition method according to the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another embodiment of the battery parameter acquisition method according to the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another embodiment of the battery parameter acquisition method according to the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another embodiment of the battery parameter acquisition method according to the embodiment of the present application.
  • FIG. 9 is a schematic diagram of optional modules of an embodiment of the battery parameter acquisition system according to the embodiment of the present application.
  • FIG. 10 is a schematic diagram of an optional hardware structure of the battery parameter acquisition device according to the embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • power batteries can be used as the main power source for electrical equipment (such as vehicles, ships or spacecrafts, etc.), while energy storage batteries can be used as charging sources for electrical equipment.
  • electrical equipment such as vehicles, ships or spacecrafts, etc.
  • energy storage batteries can be used as charging sources for electrical equipment.
  • Metaphor As an example and not a limitation, in some application scenarios, the power battery may be a battery in a power-consuming device, and the energy storage battery may be a battery in a charging device.
  • both power batteries and energy storage batteries may be collectively referred to as batteries.
  • the device may be an electric vehicle, a spacecraft, etc.
  • the performance of the batteries set in them is constantly changing throughout the battery life cycle.
  • the battery capacity will decay to varying degrees due to aging. Therefore, how to evaluate battery health status has always been one of the issues of great concern in this field.
  • Battery performance parameters which may include, for example, at least one of internal resistance and discharge power, have always been a key indicator for evaluating battery performance deterioration and are also an important basis for evaluating battery health.
  • Battery performance parameters which may include, for example, at least one of internal resistance and discharge power, have always been a key indicator for evaluating battery performance deterioration and are also an important basis for evaluating battery health.
  • the battery is running in the electrical device, it is often under very complex working conditions, which makes it difficult to evaluate the performance parameters of the battery.
  • batteries with different aging states are usually used to conduct battery DC internal resistance experiments in a laboratory environment before leaving the factory, and then after leaving the factory, the DC internal resistance experiments are carried out. Based on the obtained DC internal resistance data, the discharge power of the battery is calculated.
  • the data obtained by this method are theoretical data under laboratory conditions.
  • the inventor of this application designed an impedance parameter and an algorithm related to the impedance parameter based on the working condition data of the battery during use.
  • the battery in the electrical device was obtained.
  • Current impedance parameters thereby obtaining current performance parameters that can evaluate the degree of battery performance deterioration based on the current impedance parameters. Since the current performance parameters of the battery during use are determined based on the current impedance parameters, and the current impedance parameters are determined based on the working condition data of each battery when used, the accuracy of the current performance parameters obtained by this method of obtaining battery parameters is High, it can accurately assess the health status of the battery, thereby helping to guide the performance of the battery and extending the service life of the cells in the battery. This solves the problem of difficult to estimate the degree of battery performance deterioration due to complex actual working conditions. When the battery is used as a power battery and installed in a vehicle-like vehicle, it can improve driving safety and the power of the vehicle.
  • the battery parameter acquisition method, system, device, storage medium and computer program product provided by the embodiment of the present application are described below.
  • the battery parameter acquisition method provided by the embodiment of the present application is first introduced below.
  • FIG. 1 shows a schematic flow chart of an optional embodiment of the battery parameter acquisition method according to the embodiment of the present application.
  • the battery parameter acquisition method may include the following steps:
  • the current performance parameters are actual performance parameters of the current battery after aging, and the current performance parameters may include at least one of current internal resistance and current discharge power.
  • the battery parameter acquisition method of this application can be applied to electrical devices (such as electric vehicles) or control systems of electrical devices, and can also be applied to batteries or battery BMS (Battery Management System). , or can also be applied to independent performance testing devices.
  • the battery involved in the embodiments of the present application may be a battery pack, a battery module, or other possible battery structures or a combination of multiple different battery structures. Subsequent embodiments of the present application will take the battery pack as an example. for example.
  • the above-mentioned battery pack can be used in a variety of scenarios. It may be used as a power battery to provide power to electrical devices, or it may be electrically connected to a charging device to achieve energy storage. But no matter what kind of usage scenario, the working condition data during its use can be recorded.
  • the above-mentioned battery pack can be provided with a corresponding cell parameter table, and the cell parameter table can record all working condition data of the battery pack when it is in use.
  • the data range of the above-mentioned battery operating condition data can cover the entire operation process of the battery, including the charging process, discharging process and data when the battery is not in use.
  • the charging process may include the process of charging the battery pack at a power swap station
  • the discharging process may include the battery pack being configured on the electric vehicle, so that the electrical energy stored in the battery pack is converted into mechanical energy, thereby enabling the electric vehicle to drive and park. the process of.
  • the working condition data can include the temperature, state of charge, actual current and actual voltage of multiple cells in the battery.
  • the working condition data can also record the number of daily charge and discharge cycles of the battery, and the cumulative number of days of use for a single charge and discharge. and other data.
  • the above working condition data is data generated during the use of the battery. Therefore, the current impedance parameters obtained through the working condition data are for the battery corresponding to the working condition data. Compared with the use of DC internal resistance experiments in the laboratory With the obtained internal resistance data, the current impedance parameters are more targeted, thus making the current performance parameters more accurate.
  • the above-mentioned current impedance parameter is a parameter that can reflect the relative size of the real-time internal resistance of the battery after use. It can represent the internal resistance of the battery and can be the internal resistance of the battery or a multiple of the internal resistance.
  • the current performance parameters can be calculated.
  • This current performance parameter is a key indicator that can reflect the degree of battery performance deterioration. It is the current actual performance parameter after the battery has aged.
  • the embodiment of the present application obtains the working condition data of the battery, and then obtains the current impedance parameters of the battery through the working condition data, and finally determines the current performance parameters of the battery based on the current impedance parameters.
  • the current performance parameters of the battery during use are determined based on the current impedance parameters, and the current impedance parameters are determined based on the working condition data of each battery when used. Therefore, the current performance obtained by this method of obtaining battery parameters
  • the parameters are more targeted and accurate, and can accurately assess the health status of the battery, thereby helping the battery to maximize its performance, avoid under-voltage faults, indirectly extend the service life of the cells in the battery, and solve the problem of complex actual working conditions. , the problem of battery performance deterioration that is difficult to estimate.
  • the battery is used as a power battery and installed in a vehicle-like vehicle, it can improve driving safety and the power of the vehicle.
  • the method may include:
  • S210 Establish a mapping relationship between the temperature, state of charge and impedance parameters of the battery through the working condition data.
  • S220 Find the current impedance parameter corresponding to the measured temperature value and real-time state of charge of the battery from the mapping relationship.
  • the embodiments of this application mainly refine the process of calculating current impedance parameters based on working condition data.
  • working condition data including the temperature, state of charge, actual current and actual voltage of multiple cells in the battery. That is to say, there are corresponding impedance parameters for different temperatures and different states of charge.
  • the above-mentioned battery pack is provided with a cell parameter table as an example. Multiple temperatures and multiple states of charge can be configured in the cell parameter table, thereby forming sites at different temperatures and different states of charge.
  • the value of a point is the impedance parameter at a specific temperature and state of charge recorded in the cell parameter table.
  • the points at multiple temperatures and multiple states of charge recorded in the cell parameter table represent the above Mapping relationship between battery temperature, state of charge and impedance parameters.
  • the temperature and state of charge in the mapping relationship can be configured, and when the battery is in use, real-time monitoring can be performed by collecting operating condition data.
  • the impedance parameters calculated based on the working condition data are saved into the mapping relationship.
  • the actual measured temperature value and real-time state of charge can be used as indexes to find the current impedance parameters corresponding to the index.
  • the measured temperature value and real-time state of charge may be the measured temperature value and real-time state of charge of the battery when the request to obtain the current performance parameters is initiated after the mapping relationship is generated.
  • the measured temperature value and the real-time state of charge can be obtained from the operating condition data when the request is initiated. That is, the temperature in the above operating condition data can include the measured temperature value, and the state of charge can include the real-time state of charge.
  • the actual measured temperature value and the real-time state of charge can be calculated based on the temperature and state of charge of multiple battery cells in the working condition data.
  • the measured temperature value can be the average or maximum temperature of the multiple battery cores. value.
  • the above mapping relationship can be self-updated according to the battery usage time.
  • the mapping relationship can be rebuilt every one month.
  • the mapping relationship is still stored in the form of a parameter configuration table. If the completion time of the current parameter configuration table has reached one month, the values of each position in the parameter configuration table will be cleared, and the work will be collected again by re-collecting the data. The position data is stored and updated according to the condition data. After the values of each position in the parameter configuration table are supplemented, the parameter configuration table is updated and the current impedance parameters can be searched accordingly.
  • the node to be updated may also be determined based on the update time of the impedance parameters at different temperatures and different states of charge in the mapping relationship table. For example, when the update time of the distance impedance parameter K1 exceeds the update time threshold and the update time of the other impedance parameters does not exceed the time threshold, only the value of the impedance parameter K1 can be updated in the mapping relationship table.
  • the mapping relationship is set through the working condition data, and then the corresponding current impedance parameter is found from the mapping relationship through the measured temperature value and real-time state of charge, ensuring that the current impedance parameter is related to the current usage status of the battery. , which indirectly considers the real-time nature of the current performance parameters and improves the accuracy of the current performance parameters.
  • the above-mentioned S210 establishes the temperature and charge of the battery through the working condition data.
  • the mapping relationship between electrical states and impedance parameters can include:
  • S310 Process the actual voltages and actual currents of the multiple cells in the target period respectively to obtain the current-voltage fitting parameters and fitting goodness of the multiple cells in the target period.
  • the goodness of fit can represent the degree of linear correlation between the actual current and the actual voltage of the battery cell during the target period, and the degree of deviation between the fitted voltage and the actual voltage of the battery cell during the target period.
  • S320 Screen out the battery cells whose fitting goodness is greater than the preset threshold from multiple battery cells as the target battery cells.
  • S330 Generate a mapping relationship between the temperature, state of charge and impedance parameters of the battery where the target battery is located based on the temperature, state of charge and current-voltage fitting parameters of the target battery in the target period.
  • the target period may be all periods of the battery, or it may be a period in which the battery is in a stable state after screening.
  • the target period may be a period after the first preset time of normal startup of the battery.
  • the duration of the target period can also be further limited in combination with the aforementioned target period selection method, and a period longer than the preset duration can be selected as the target period.
  • the preset duration can be, for example, 2 seconds, 3 seconds, or 5 seconds.
  • the battery operating condition data obtained based on the target period actually includes the temperature, state of charge, actual current and actual voltage of multiple cells in the battery.
  • the operating conditions of the battery can be accurately assessed through various data of multiple cells. condition.
  • the multiple cells may be all cells in the battery, or they may be cells whose working condition data are in a stable state or within a normal range during the target period after screening.
  • the temperature and state of charge of the above-mentioned battery core are not limited and can cover all conditions in the battery core operating conditions.
  • the temperature range can be between minus thirty degrees Celsius and above zero sixty degrees Celsius, and the state of charge can be 0 to 100%.
  • the current-voltage of each cell can be fitted based on the actual current and actual voltage of multiple cells selected in the battery, and the current-voltage fitting parameters of the multiple cells in the target period can be obtained.
  • the current-voltage fitting parameter is obtained by fitting the actual current-actual voltage, it is a parameter that can characterize the relationship between the current and voltage of the battery core, that is, it represents the internal function of the battery core. blocking situation.
  • the fitting method may be linear fitting, for example.
  • the curve may also be split into multiple straight lines, and then linear fitting may be implemented for each straight line.
  • the goodness of fit can be obtained by combining the actual voltage and the fitted voltage obtained by fitting.
  • the goodness of fit greater than the preset threshold can be used as the criterion.
  • the above preset threshold may be 0.97, 0.95 or other values.
  • the goodness of fit represents the degree of linear correlation between the actual voltage and the actual current of the cell. Therefore, the greater the goodness of fit, the higher the degree of linear correlation between the actual current and the actual voltage.
  • the fitted voltage The smaller the deviation from the actual voltage, the closer the fitting parameters are to the true level of the cell impedance. Therefore, taking the battery cells whose fitting goodness is greater than the preset threshold as the target battery can better describe the real operating conditions of the actual battery cells and exclude some cells with abnormal data.
  • current-voltage fitting parameters are parameters that can characterize the relationship between the current and voltage of the battery core, that is, they represent the internal resistance of the battery core, therefore, after selecting the target battery cell, according to all targets
  • the current-voltage fitting parameters of the battery cell can calculate the impedance parameters of the battery where the target battery cell is located.
  • the current-voltage fitting parameters and fitting goodness are obtained through processing and calculation based on the actual current and actual voltage of the cell, and the current-voltage fitting parameters of the target cell with high fitting goodness are selected. , temperature and state of charge, realizing the calculation of various data of the entire battery, and finally generating a mapping relationship between temperature, state of charge and impedance parameters, which provides a favorable basis for subsequent acquisition of current impedance parameters.
  • This process of selecting target cells using the goodness of fit makes the final calculated impedance parameters more realistic for evaluating the internal resistance of the battery and improves data accuracy.
  • FIG 4 is a schematic flow chart of another embodiment of the battery parameter acquisition method proposed in the present application based on the above embodiment.
  • the battery parameter obtaining method may also include:
  • S420 The period when the actual current of the battery cell shows a unidirectional trend change is used as the target period.
  • the target period is defined for the working condition data as the period in which the actual current shows a one-way trend change.
  • the one-way trend change may be a monotonic increasing trend or a monotonic decreasing trend. There is a strong linear relationship between the actual current and voltage in this target period, and its fitting parameters are closer to the true impedance level of the battery core.
  • FIG. 5 is an optional flow diagram of yet another embodiment of the battery parameter acquisition method proposed in the present application based on the above embodiment.
  • the data of multiple cells in the target period are measured respectively.
  • the actual voltage and actual current are processed to obtain the current-voltage fitting parameters and fitting goodness of multiple cells in the target period, which can include:
  • S510 perform linear fitting on the actual voltage and actual current of multiple cells in the target period, respectively, to obtain linear fitting functions of multiple cells in the target period, where the slope of the linear fitting function is current-voltage fitting. parameter.
  • S520 Substitute the actual currents of the multiple batteries in the target period into the linear fitting functions of the multiple batteries in the target period for calculation, and obtain the fitted voltages of the multiple batteries in different target periods.
  • S530 Calculate the fitting goodness of the multiple batteries in the target period based on the fitted voltages and actual voltages of the multiple batteries in the target period.
  • This embodiment obtains the current-voltage fitting parameters through linear fitting, and obtains the corresponding fitting goodness of multiple cells in the target period based on the results of the linear fitting (i.e., the linear fitting function) and the actual voltage data. .
  • the selected target period is a period in which the current shows a unidirectional change trend
  • the current-voltage change under this working condition can show a better linearity or approach a linear change, so it can be used by linear fitting , get the linear fitting function.
  • the slope of the linear fitting function is the relationship between current and voltage, so the slope of the linear fitting function can be used as the impedance parameter to evaluate the internal resistance of the battery cell.
  • the obtained current-voltage fitting parameters can evaluate the actual internal resistance of the battery cell is related to the error degree of subsequent battery impedance parameters, so it can be evaluated by the goodness of fit.
  • the process of obtaining the fitting goodness and current-voltage fitting parameters is given, which provides a data basis for selecting appropriate target cells and calculating the impedance parameters of the battery.
  • S530 calculate multiple battery cells based on the fitted voltage and actual voltage of the multiple battery cells in the target period.
  • the process of goodness of fit during the target period can include:
  • R 2 ⁇ (U n,1 -U mean ) 2 / ⁇ (U n,2 -U mean ) 2 (1)
  • U n,1 is the fitted voltage of cell n in the target period
  • U n,2 is the actual voltage of cell n in the target period
  • U mean is the mean value of the fitted voltage and the actual voltage in the target period
  • R 2 is the fitting goodness of cell n in the target period.
  • the goodness of fit can be measured using the correlation coefficient, which is a statistical index that can measure the linear correlation between two variables. It can be calculated by calculating the correlation coefficient between the actual current and the actual voltage between multiple cells. It can well evaluate the degree of linear correlation between actual current and actual voltage, so the goodness of fit can well characterize the degree of linear correlation between current and voltage under working conditions.
  • the correlation coefficient is a statistical index that can measure the linear correlation between two variables. It can be calculated by calculating the correlation coefficient between the actual current and the actual voltage between multiple cells. It can well evaluate the degree of linear correlation between actual current and actual voltage, so the goodness of fit can well characterize the degree of linear correlation between current and voltage under working conditions.
  • the calculation of the goodness of fit can also be implemented through other metrics that can represent the degree of matching, such as standard deviation, variance, etc.
  • the first average value, the second average value and the third average value are correspondingly used as the impedance parameters, temperature and state of charge of the battery where the target cell is located, and a mapping relationship between temperature, state of charge and impedance parameters is obtained.
  • the above calculation sequence for calculating the impedance parameters, temperature and state of charge of the cell where the target cell is located can be performed simultaneously or sequentially. When executed sequentially, the order of execution can be adjusted according to actual needs.
  • the data of the entire battery in the target period is measured by the average data of multiple target cells in the same target period, which can evaluate the overall operation of the battery cells in the battery and meet the actual data requirements.
  • the average value may not be calculated, but the median, maximum value, mode, etc. may be used to measure the data of the entire battery within the target period.
  • determining the current performance parameters of the battery based on the current impedance parameter may include:
  • S710 Obtain the initial impedance parameters and initial performance parameters of the battery, and the initial performance parameters correspond to the current performance parameters.
  • S720 Calculate the current performance parameters of the battery based on the initial impedance parameters, initial performance parameters and current impedance parameters.
  • the initial impedance parameter of the battery is the impedance data of the battery just after it leaves the factory or in the early stages of use.
  • the initial impedance parameter can be obtained through experimental testing in the laboratory before the battery leaves the factory, or it can be mapped for the first time after the battery leaves the factory. The relationship is generated and obtained.
  • the type of the initial performance parameter of the battery corresponds to the type of the current performance parameter to be obtained. For example, if the current performance parameter is the current internal resistance, then the initial performance parameter is the initial internal resistance. When the current performance parameter is the current discharge power, the initial performance parameter is the initial discharge power.
  • the above initial performance parameters can be obtained through experimental testing before the battery leaves the factory.
  • the initial performance parameter is the initial internal resistance as an example.
  • the initial internal resistance can be measured in the laboratory through the battery DC internal resistance experiment.
  • the initial performance parameters can also refer to the settings of the aforementioned cell parameter table, that is, an initial performance parameter table can also be set.
  • the initial performance parameter table is configured with multiple temperatures and multiple states of charge, for different There are corresponding sites for temperature and different states of charge, and each site can record the initial performance parameters at the corresponding temperature and state of charge. After obtaining the site values at all temperatures and all states of charge, the initial performance parameter table can be stored in the BMS of the battery pack, or the initial performance parameter table can also be stored in an independent storage module.
  • the current performance parameters are the actual performance parameters of the current battery after aging.
  • the current performance parameters can be determined not only by changes in impedance parameters, but also by the same temperature and the same state of charge.
  • the initial impedance parameters and initial performance parameters of the battery are obtained for reference and comparison.
  • the current performance parameters obtained are highly accurate and can accurately assess the health status of the battery, thereby helping the battery maximize its performance and avoid undervoltage. Failure, extending the service life of the cells in the battery, and solving the problem of difficult-to-estimate battery performance deterioration due to complex actual working conditions.
  • the battery is used as a power battery and installed in a vehicle-like vehicle, it can improve driving safety and the power of the vehicle.
  • the current performance parameters of the battery are calculated based on the initial impedance parameters, initial performance parameters and current impedance parameters.
  • S810 Divide the current impedance parameter and the initial impedance parameter to obtain the impedance change range of the battery.
  • S820 Perform a first operation on the impedance change amplitude and the initial performance parameters to obtain the current performance parameters.
  • the impedance parameters or internal resistance of the battery tend to show an increasing trend, so the resulting impedance change amplitude is usually greater than 1.
  • the first operation can be performed according to the law of the impedance change amplitude.
  • the specific operation method of the first operation is related to the type of the performance parameter, and finally the current performance parameter can be obtained.
  • the current performance parameter is the current internal resistance
  • the initial performance parameter corresponds to the initial internal resistance
  • the first operation is a multiplication operation. That is, the current internal resistance can be obtained by multiplying the impedance change amplitude and the initial internal resistance.
  • the state of charge and temperature value of the battery are the same or similar, thereby ensuring the consistency of the battery state and making the current performance parameters obtained more accurate.
  • DCR R*F
  • DCR the current internal resistance
  • R the initial internal resistance
  • F the impedance change amplitude
  • the first operation may be a division operation. That is, the initial discharge power and the impedance change amplitude can be divided to obtain the current discharge power.
  • the state of charge and temperature values of the battery are the same or similar, thereby ensuring the consistency of the battery state and making the current performance parameters obtained more accurate.
  • POWER P/F
  • POWER the current discharge power
  • P the initial discharge power
  • F the impedance change amplitude
  • the initial performance parameters correspond to the initial discharge power and the initial internal resistance.
  • the method of obtaining the aforementioned current performance parameters can refer to the aforementioned example, and will not be described in detail here. .
  • calculations are performed based on the impedance change amplitude and the initial performance parameters to provide a calculation method for the current performance parameters, which provides a theoretical basis for ultimately guiding the performance of the battery.
  • FIG. 1 to FIG. 8 describe in detail the embodiment of the battery parameter acquisition method of the present application, and the battery parameter acquisition device of the present application will be described later.
  • the battery parameter acquisition system may include:
  • the first acquisition module 910 may be used to acquire battery operating condition data.
  • the second acquisition module 920 may be used to acquire the current impedance parameter of the battery through the working condition data.
  • the determination module 930 may be configured to determine the current performance parameters of the battery according to the current impedance parameters, where the current performance parameters include at least one of current internal resistance and current discharge power.
  • the working condition data includes the temperature, state of charge, actual current and actual voltage of multiple cells in the battery.
  • the above-mentioned second acquisition module 920 may include:
  • the establishment unit can be used to establish the mapping relationship between the temperature, state of charge and impedance parameters of the battery through operating condition data.
  • the search unit can be used to search the current impedance parameter corresponding to the measured temperature value and real-time state of charge of the battery from the mapping relationship.
  • the above establishment unit may include:
  • the processing subunit can be used to process the actual voltage and actual current of multiple cells in the target period, respectively, to obtain the current-voltage fitting parameters and fitting goodness of the multiple cells in the target period.
  • the filtering subunit can be used to select battery cells whose fitting goodness is greater than a preset threshold from multiple battery cells as target cells.
  • the generation subunit can be used to generate a mapping relationship between the temperature, state of charge and impedance parameters of the battery where the target cell is located based on the temperature, state of charge and current-voltage fitting parameters of the target cell in the target period.
  • the above establishment unit may further include:
  • the acquisition subunit is used to obtain the actual current of multiple battery cells at different periods of time from the operating condition data; the period in which the actual current of the battery core shows a one-way trend change is used as the target period.
  • the above processing subunit can also be used to linearly fit the actual voltage and actual current of multiple cells in the target period, and obtain multiple The linear fitting function of the battery cell in the target period, and the slope of the linear fitting function is the current-voltage fitting parameter.
  • the actual currents of multiple cells in the target period are substituted into the linear fitting function of multiple cells in the target period for calculation, and the fitting voltages of multiple cells in different target periods are obtained;
  • the fitted voltage and actual voltage of the period are calculated to calculate the fitting goodness of multiple cells in the target period.
  • the above processing subunit can also be used to substitute the fitted voltages and actual voltages of multiple cells in the target period into the following formula, to obtain multiple The goodness of fit of each battery cell in the target period,
  • R 2 ⁇ (U n,1 -U mean ) 2 / ⁇ (U n,2 -U mean ) 2
  • U n,1 is the fitted voltage of cell n in the target period
  • U n,2 is the actual voltage of cell n in the target period
  • U mean is the mean value of the fitted voltage and the actual voltage in the target period
  • R 2 is the fitting goodness of cell n in the target period.
  • the above-mentioned generating subunit can also be used to calculate the current-voltage fitting parameters of multiple target cells in the same target period.
  • the first average of The third mean value corresponds to the impedance parameter, temperature and state of charge of the battery where the target cell is located, and the mapping relationship between temperature, state of charge and impedance parameters is obtained.
  • the above-mentioned determination module 930 may include:
  • the acquisition unit is used to acquire the initial impedance parameters and initial performance parameters of the battery.
  • the initial performance parameters correspond to the current performance parameters.
  • the calculation unit is used to calculate the current performance parameters of the battery based on the initial impedance parameters, initial performance parameters and current impedance parameters.
  • the above calculation unit can also be used to divide the current impedance parameter and the initial impedance parameter to obtain the impedance change amplitude of the battery; Perform a first operation on the impedance change amplitude and the initial performance parameters to obtain the current performance parameters.
  • the above calculation unit can also be used to multiply the impedance change amplitude and the initial internal resistance to obtain the current internal resistance and the initial internal resistance.
  • the performance parameters include the initial internal resistance; and/or, the current discharge power is obtained by dividing the initial discharge power and the impedance change amplitude, and the initial performance parameters include the initial discharge power.
  • FIG 10 shows a schematic diagram of the hardware structure of a battery parameter acquisition device provided by an embodiment of the present application.
  • the battery parameter acquisition device may include a processor 1001 and a memory 1002 storing computer program instructions.
  • processor 1001 may include a central processing unit (CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits according to the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • Memory 1002 may include bulk storage for data or instructions.
  • the memory 1002 may include a hard disk drive (HDD), a floppy disk drive, flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive or two or more A combination of many of the above.
  • Memory 1002 may include removable or non-removable (or fixed) media, where appropriate.
  • the memory 1002 may be internal or external to the integrated gateway disaster recovery device.
  • memory 1002 is non-volatile solid-state memory.
  • memory may include read-only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical, or other physical/tangible memory storage devices.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk storage media devices e.g., magnetic disks
  • optical storage media devices e.g., flash memory devices
  • electrical, optical, or other physical/tangible memory storage devices e.g., electrically erasable programmable read-only memory
  • memory includes one or more tangible (non-transitory) computer-readable storage media (e.g., memory devices) encoded with software including computer-executable instructions, and when the software is executed (e.g., by one or multiple processors) operable to perform the operations described with reference to a method according to an aspect of the present disclosure.
  • the processor 1001 reads and executes the computer program instructions stored in the memory 1002 to implement any of the battery parameter acquisition methods in the above embodiments.
  • the battery parameter acquisition device may also include a communication interface 1003 and a bus 1009. Among them, as shown in Figure 10, the processor 1001, the memory 1002, and the communication interface 1003 are connected through the bus 1009 and complete communication with each other.
  • the communication interface 1003 is mainly used to implement communication between modules, devices, units and/or equipment in the embodiments of this application.
  • Bus 1009 includes hardware, software, or both, coupling the components of the image processing device to each other.
  • the bus may include Accelerated Graphics Port (AGP) or other graphics bus, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), HyperTransport (HT) interconnect, Industry Standard Architecture (ISA) Bus, Infinite Bandwidth Interconnect, Low Pin Count (LPC) Bus, Memory Bus, Micro Channel Architecture (MCA) Bus, Peripheral Component Interconnect (PCI) Bus, PCI-Express (PCI-X) Bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these.
  • bus 1009 may include one or more buses.
  • the battery parameter acquisition device can execute the battery parameter acquisition method in the embodiment of the present application, thereby realizing the battery parameter acquisition method described in conjunction with the above embodiment.
  • embodiments of the present application may provide a computer storage medium for implementation.
  • the computer storage medium stores computer program instructions; when the computer program instructions are executed by the processor, any one of the battery parameter acquisition methods in the above embodiments is implemented.
  • embodiments of the present application also provide a computer program product, including a computer program.
  • the computer program When the computer program is executed by a processor, the steps and corresponding contents of the foregoing method embodiments can be implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供一种电池参数获取方法及相关装置,其中电池参数获取方法包括:获取电池的工况数据;通过工况数据,获取电池的当前阻抗参数;根据当前阻抗参数,确定电池的当前性能参数,当前性能参数包括当前内阻和当前放电功率中的至少一者。

Description

电池参数获取方法及相关装置 技术领域
本申请涉及新能源技术领域,尤其涉及一种电池参数获取方法、系统、装置、存储介质和计算机程序产品。
背景技术
随着新能源技术的发展,利用电池作为能源的用电设备逐渐占领市场。而随着用电设备使用时间的推移,电池会出现老化现象。但由于实际工况复杂,电池性能的恶化程度难以估计。
发明内容
本申请实施例提供了一种电池参数获取方法、系统、装置、存储介质和计算机程序产品,以解决由于实际工况复杂,电池性能恶化程度难以估计的问题。
一方面,本申请提供一种电池参数获取方法,该电池参数获取方法可以包括:
获取电池的工况数据。
通过工况数据,获取电池的当前阻抗参数。
根据当前阻抗参数,确定电池的当前性能参数,当前性能参数包括当前内阻和当前放电功率中的至少一者。
在这些实施例中,通过获取电池的工况数据,进而通过工况数据,获取电池的当前阻抗参数,最终根据当前阻抗参数,确定电池的当前性能参数,当前性能参数可以包括当前内阻和当前放电功率中的至少一者。其中,电池在使用过程中的当前性能参数是依据当前阻抗参数确定的,而当前阻抗参数又是依据每个电池使用时的工况数据决定的,因此这种电池参数获取方式所获得的当前性能参数更具针对性,准确度高,能够准确评估电池健康状态,由此帮助电池最大程度发挥性能,避免出现欠压故障,间接延长了电池中电芯的使用寿命,解决了由于实际工况复杂,电池性能恶化程度难以估计的问题。在电池作为动力电池,安装在类似车辆的交通工具中时,能够提升驾驶安全性和交通工具的动力。
可选地,工况数据包括电池中多个电芯的温度、荷电状态、实际电流以及实际电压。
通过工况数据,获取电池的当前阻抗参数,可以包括:
通过工况数据,建立电池的温度、荷电状态与阻抗参数间的映射关系。
从映射关系中,查找与电池的温度实测值和实时荷电状态对应的当前阻抗参数。
在这些实施例中,通过工况数据设置映射关系,进而在后续通过温度实测值和实时荷电状态从映射关系中查找对应的当前阻抗参数,保证了当前阻抗参数是与电池的当前使用状态相关的,间接考虑了当前性能参数的实时性,提升了当前性能参数的准确度。
可选地,通过工况数据,建立电池的温度、荷电状态与阻抗参数间的映射关系,可以包括:
分别对多个电芯在目标时段的实际电压和实际电流进行处理,得到多个电芯在目标时段的电流-电压拟合参数和拟合优度。
从多个电芯中筛选出拟合优度大于预设阈值的电芯作为目标电芯。
根据目标电芯在目标时段的温度、荷电状态和电流-电压拟合参数,生成目标电芯所在电池的温度、荷电状态与阻抗参数间的映射关系。
在这些实施例中,通过电芯的实际电流和实际电压,处理计算得到电流-电压拟合参数以及拟合优度,并选择出拟合优度高的目标电芯的电流-电压拟合参数、温度和荷电状态,实现了电池整体各项数据的计算,最终生成了温度、荷电状态与阻抗参数间的映射关系,为后续当前阻抗参数的获取提供了有利依据。该利用拟合优度选择目标电芯的过程,使得最终计算得到的阻抗参数更能够真实评估电池的内阻,提高了数据准确度。
可选地,分别对多个电芯在目标时段的实际电压和实际电流进行处理之前,上述方法还可以包括:
从工况数据中,获取多个电芯在不同时段的实际电流。
将电芯的实际电流呈现单向趋势变化的时段作为目标时段。
在这些实施例中,通过选择目标时段,能够找到实际电流和电压存在较强的线性关系的时段,由此计算得到的拟合参数更贴近电芯真实的阻抗水平。
可选地,分别对多个电芯在目标时段的实际电压和实际电流进行处理,得到多个电芯在目标时段的电流-电压拟合参数和拟合优度,可以包括:
分别对多个电芯在目标时段的实际电压和实际电流进行线性拟合,得到多个电芯在目标时段的线性拟合函数,线性拟合函数的斜率为电流-电压拟合参数。
将多个电芯在目标时段的实际电流对应代入多个电芯在目标时段的线性拟合函数中进行计算,得到多个电芯在不同目标时段的拟合电压。
根据多个电芯在目标时段的拟合电压和实际电压,计算多个电芯在目标时段的拟合优度。
在这些实施例中,给出了处理得到拟合优度以及电流-电压拟合参数的过程,为选择出合适的目标电芯和计算电池的阻抗参数提供了数据基础。
可选地,根据多个电芯在目标时段的拟合电压和实际电压,计算多个电芯在目标时段的拟合优度,可以包括:
分别将多个电芯在目标时段的拟合电压和实际电压代入以下公式,得到多个电芯在目标时段的拟合优度,
R 2=∑(U n,1-U mean)2/∑(U n,2-U mean) 2
其中,U n,1为电芯n在目标时段的拟合电压,U n,2为电芯n在目标时段的实际电压,U mean为在目标时段的拟合电压和实际电压的均值,R 2为电芯n在目标时段的拟合优度。
在这些实施例中,给出了拟合优度的运算过程,能够很好地表征工况中电流和电压的线性相关程度。
可选地,根据目标电芯在目标时段的温度、荷电状态和电流-电压拟合参数,生成目标电芯所在电池的温度、荷电状态与阻抗参数间的映射关系,可以包括:
计算多个目标电芯在同一目标时段的电流-电压拟合参数的第一均值。
计算多个目标电芯在同一目标时段的温度的第二均值。
计算多个目标电芯在同一目标时段的荷电状态的第三均值。
将第一均值、第二均值和第三均值对应作为目标电芯所在电池的阻抗参数、温度和荷电状态,得到温度、荷电状态与阻抗参数间的映射关系。
在这些实施例中,通过多个目标电芯在同一目标时段的数据均值来衡量整个电池在该目标时段的数据,能够评估电池中电芯整体的运行情况,符合实际数据要求。
可选地,根据当前阻抗参数,确定电池的当前性能参数,可以包括:
获取电池的初始阻抗参数和初始性能参数,初始性能参数与当前性能参数对应。
根据初始阻抗参数、初始性能参数和当前阻抗参数,计算电池的当前性能参数。
在这些实施例中,当前性能参数是老化后的当前电池的实际性能参数,该当前性能参数的确定,除借助阻抗参数的变化以外,还可以借相同温度和相同荷电状态时,电池初始情况下的初始阻抗参数以及初始性能参数进行参考和对比获得,由此获得的当前性能参数准确度高,能够准确评估电池健康状态,进而帮助电池最大程度发 挥性能,避免出现欠压故障,延长电池中电芯的使用寿命,解决了由于实际工况复杂,电池性能恶化程度难以估计的问题。在电池作为动力电池,安装在类似车辆的交通工具中时,能够提升驾驶安全性和交通工具的动力。
可选地,根据初始阻抗参数、初始性能参数和当前阻抗参数,计算电池的当前性能参数,可以包括:
将当前阻抗参数与初始阻抗参数相除,得到电池的阻抗变化幅度。
对阻抗变化幅度和初始性能参数进行第一运算,得到当前性能参数。
在这些实施例中,通过阻抗变化幅度,结合初始性能参数进行运算,给出了当前性能参数的计算方式,为最终指导电池发挥性能提供了理论依据。
可选地,对阻抗变化幅度和初始性能参数进行第一运算,得到当前性能参数,可以包括:
将阻抗变化幅度与初始内阻进行乘法运算,得到当前内阻,初始性能参数包括初始内阻。
和/或,将初始放电功率与阻抗变化幅度进行除法运算,得到当前放电功率,初始性能参数包括初始放电功率。
另一方面,本申请提供一种电池参数获取系统,该电池参数获取系统可以包括:
第一获取模块,用于获取电池的工况数据;
第二获取模块,用于通过工况数据,获取电池的当前阻抗参数;
确定模块,用于根据当前阻抗参数,确定电池的当前性能参数,当前性能参数包括当前内阻和当前放电功率中的至少一者。
又一方面,本申请提供一种电池参数获取装置,该电池参数获取装置可以包括处理器,存储器及存储在存储器上并可在处理器上运行的程序或指令,程序或指令被处理器执行时实现如上述方面的电池参数获取方法的步骤。
再一方面,本申请还提供一种电池参数获取装置,该电池参数获取装置被配置为用于执行上述方面的电池参数获取方法的步骤。
再一方面,本申请还提供一种可读存储介质,该可读存储介质上可读存储介质上存储程序或指令,程序或指令被处理器执行时实现上述方面的电池参数获取方法的步骤。
再一方面,本申请还提供一种计算机程序产品,该计算机程序产品可被处理器执行以实现如上述方面的电池参数获取方法的步骤。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手 段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请实施例的电池参数获取方法一实施例的流程示意图。
图2为本申请实施例的电池参数获取方法另一实施例的流程示意图。
图3为本申请实施例的电池参数获取方法又一实施例的流程示意图。
图4为本申请实施例的电池参数获取方法再一实施例的流程示意图。
图5为本申请实施例的电池参数获取方法再一实施例的流程示意图。
图6为本申请实施例的电池参数获取方法再一实施例的流程示意图。
图7为本申请实施例的电池参数获取方法再一实施例的流程示意图。
图8为本申请实施例的电池参数获取方法再一实施例的流程示意图。
图9为本申请实施例的电池参数获取系统一实施例的可选模块示意图。
图10为本申请实施例的电池参数获取装置的可选硬件结构示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在新能源领域中,动力电池可作为用电设备(例如车辆、船舶或航天器等)的主要动力源,而储能电池可作为用电设备的充电来源,二者的重要性均不言而喻。作为示例而非限定,在一些应用场景中,动力电池可为用电设备中的电池,储能电池可为充电设备中的电池。为了便于描述,在下文中,动力电池和储能电池均可统称为电池。
正如背景技术所述,随着新能源技术的发展,以电池作为能源载体的设备越来越多。例如该设备可以是电动车辆、航天器等等。而这些以电池作为能源载体的设备,随着使用时间的推移,其中设置的电池的各项性能,在整个电池生命周期中是处于不断变化的。特别是随着用电设备使用时间的增加,电池容量会因为老化现象,从而出现不同程度的衰减。因此如何评估电池健康状态一直是本领域着重关注的问题之一。
电池性能参数,例如可以包括内阻以及放电功率中的至少一者,一直以来是电 池性能恶化程度评估的关键指标,也是评估电池健康状态的重要依据。但电池在用电装置中运行时,往往处于非常复杂的工况下,由此导致电池的性能参数难以评估。
以用电装置是车辆进行举例说明,由于车辆运行时实际工况的复杂性,电池以及整车的功率衰减程度难以估计,由此影响了车辆的性能发挥,使得用户的驾乘体验较差。
相关技术中,为了解决电池的性能参数难以估计的问题,通常是在出厂前的实验室环境内,预先使用不同老化状态的电池进行电池直流内阻实验,进而在出厂后,通过直流内阻实验得到的直流内阻数据,计算得到电池的放电功率。但这种方法所得到的数据是实验室情况下的理论数据。
仍以用电装置是车辆为例,在实际情况中,车主的驾驶习惯以及用车频率不同,由此导致每个电池的容量衰减程度不一样,因此前述性能参数评估方案并未考虑用电装置个性化使用的影响,实际评估出的性能参数准确度低,难以发挥电池的最大性能。
为了解决上述问题,本申请的发明人基于电池在使用过程中的工况数据,设计了一种阻抗参数以及该阻抗参数相关的算法,通过分析获取的工况数据,得到用电装置中电池的当前阻抗参数,从而根据当前阻抗参数,得到能够评估电池性能恶化程度的当前性能参数。由于电池在使用过程中的当前性能参数是依据当前阻抗参数确定的,而当前阻抗参数是依据每个电池使用时的工况数据决定的,这种电池参数获取方式所获得的当前性能参数准确度高,能够准确评估电池健康状态,由此帮助指导电池的性能发挥,延长电池中电芯的使用寿命,从而解决了由于实际工况复杂,电池性能恶化程度难以估计的问题。在电池作为动力电池,安装在类似车辆的交通工具中时,能够提升驾驶安全性和交通工具的动力。
以下对本申请实施例提供的电池参数获取方法、系统、装置、存储介质和计算机程序产品进行说明,下面首先对本申请实施例提供的电池参数获取方法进行介绍。
参看图1,图1示出了本申请实施例的电池参数获取方法一可选实施例的流程示意图。在本实施例中,该电池参数获取方法可以包括以下步骤:
S110,获取电池的工况数据。
S120,通过工况数据,获取电池的当前阻抗参数。
S130,根据当前阻抗参数,确定电池的当前性能参数。
其中,当前性能参数为老化后的当前电池实际的性能参数,当前性能参数可以包括当前内阻和当前放电功率中的至少一者。
需要说明的是,本申请的电池参数获取方法可以应用于用电装置(例如电动汽车)或者用电装置的控制系统中,还可以应用于电池或电池的BMS(Battery Management System,电池管理系统),或者还可以应用于独立的性能检测装置。
需要说明的是,本申请实施例涉及的电池可以是电池包、电池模组,还可以是其它可能实现的电池结构或多种不同电池结构的组合,本申请后续实施例以电池包为例进行举例说明。
上述电池包可以存在多种使用场景,其可能作为动力电池向用电装置提供动力,也可能与充电装置电连接,进而实现储能。但不管在哪种使用场景,均可以记录其使用过程中的工况数据。示例性地,上述电池包可以设置对应的电芯参数表,该电芯参数表可以记录有电池包在使用时的所有工况数据。
上述电池的工况数据的数据范围可以覆盖电池的运行全过程,可以包括电池的充电过程、放电过程以及未使用时的数据。示例性地,充电过程可以包括电池包在换电站进行充电的过程,放电过程可以包括电池包被配置在电动汽车上,使得电池包内存储的电能转化为机械能,进而使电动汽车行驶和驻车的过程。
该工况数据可以包括电池中多个电芯的温度、荷电状态、实际电流和实际电压,当然,工况数据还可以记录电池每日循环充放电的次数,单次充放电的累计使用天数等其他数据。
可以理解的是,上述工况数据是电池使用过程中所产生的数据,因此通过工况数据获得的当前阻抗参数是针对工况数据对应的电池的,相比在实验室中利用直流内阻实验得到的内阻数据,该当前阻抗参数更具针对性,进而使得当前性能参数的准确度高。
此外,还需要说明的是,上述当前阻抗参数是能够反映电池使用后实时内阻相对大小的参数,其可以表征电池的内阻,可以是电池的内阻或内阻的倍数。
在得到了电池的当前阻抗参数的基础上,可以计算获得当前性能参数。该当前性能参数是能够反映电池性能恶化程度的关键指标,其是电池发生老化现象后的当前实际的性能参数。
本申请实施例通过获取电池的工况数据,进而通过工况数据,获取电池的当前阻抗参数,最终根据当前阻抗参数,确定电池的当前性能参数。其中,电池在使用过程中的当前性能参数是依据当前阻抗参数确定的,而当前阻抗参数又是依据每个电池使用时的工况数据决定的,因此这种电池参数获取方式所获得的当前性能参数更具针对性,准确度高,能够准确评估电池健康状态,由此帮助电池最大程度发挥性能,避免出现欠压故障,间接延长了电池中电芯的使用寿命,解决了由于实际工况复杂,电池性能恶化程度难以估计的问题。在电池作为动力电池,安装在类似车辆的交通工具中时,能够提升驾驶安全性和交通工具的动力。
参看图2,基于上述实施例,提出本申请的电池参数获取方法的另一实施例,在该实施例中,该方法可以包括:
S110,获取电池的工况数据。
S210,通过工况数据,建立电池的温度、荷电状态与阻抗参数间的映射关系。
S220,从映射关系中,查找与电池的温度实测值和实时荷电状态对应的当前阻抗参数。
S130,根据当前阻抗参数,确定电池的当前性能参数。
本申请实施例相比前述实施例,主要对通过工况数据计算当前阻抗参数的过程进行了细化。在本实施例中,通过电池中多个电芯的温度、荷电状态、实际电流以及实际电压在内的工况数据,建立了电池的温度、荷电状态和阻抗参数间的映射关系,也就是说,针对不同温度和不同荷电状态,存在其对应的阻抗参数。
仍以上述电池包中设置有电芯参数表进行示例说明,可以在电芯参数表中配置多个温度和多个荷电状态,由此形成不同温度和不同荷电状态下的位点,每个位点的值即是电芯参数表中记录的特定温度和荷电状态下的阻抗参数,该电芯参数表中记录的多个温度和多个荷电状态下的位点即代表着上述电池的温度、荷电状态与阻抗参数间的映射关系。
需要说明的是,在映射关系生成之前,可以对映射关系中的温度和荷电状态进行配置,并在电池使用时,通过收集工况数据进行即时监测,在达到映射关系中的某个温度和荷电状态时,即保存此时依据工况数据计算得到的阻抗参数至映射关系中。当所有温度和荷电状态下的阻抗参数均记录完成,则可以将温度实测值和实时荷电状态作为索引,找到该索引对应的当前阻抗参数。
其中,温度实测值和实时荷电状态可以是映射关系生成之后,获取该当前性能参数的请求发起时,电池的温度实测值和实时荷电状态。
该温度实测值和实时荷电状态可以从发起请求时的工况数据中获得,即上述工况数据中的温度可以包括温度实测值,荷电状态可以包括实时荷电状态。示例性地,可以分别通过工况数据中多个电芯的温度和荷电状态,计算得到温度实测值和实时荷电状态,例如温度实测值可以是多个电芯的温度的平均值或者最大值。
在一些可选示例中,上述映射关系可以根据电池的使用时间进行自更新,例如可以以一个月为周期进行映射关系的重建。示例性地,仍以映射关系是以参数配置表的形式存储进行举例说明,若当前参数配置表的完成时间已经达到一个月,则将参数配置表中各个位点的值清空,通过重新收集工况数据进行位点值的存储更新,在参数配置表中各个位点的值得到补充后,参数配置表更新完成,可以据此进行当前阻抗参数的查找。
在另一些可选示例中,也可以根据映射关系表中不同温度和不同荷电状态下的阻抗参数的更新时间决定更新的节点。例如,当距离阻抗参数K1的更新时间超过更新时间阈值,其余阻抗参数的更新时间未超过时间阈值,可以在映射关系表中仅对该阻抗参数K1的值进行更新。
在这些实施例中,通过工况数据设置映射关系,进而在后续通过温度实测值和实时荷电状态从映射关系中查找对应的当前阻抗参数,保证了当前阻抗参数是与电池的当前使用状态相关的,间接考虑了当前性能参数的实时性,提升了当前性能参数的准确度。
参看图3,基于本申请的上述实施例,提出本申请所涉及的电池参数获取方法的又一可选实施例,在该实施例中,上述S210,通过工况数据,建立电池的温度、荷电状态与阻抗参数间的映射关系,可以包括:
S310,分别对多个电芯在目标时段的实际电压和实际电流进行处理,得到多个电芯在目标时段的电流-电压拟合参数和拟合优度。
其中,拟合优度可以表征电芯在目标时段的实际电流和实际电压的线性相关程度,以及电芯在目标时段的拟合电压与实际电压的偏差程度。
S320,从多个电芯中筛选出拟合优度大于预设阈值的电芯作为目标电芯。
S330,根据目标电芯在目标时段的温度、荷电状态和电流-电压拟合参数,生成目标电芯所在电池的温度、荷电状态与阻抗参数间的映射关系。
其中目标时段可以是电池的所有时段,也可以是经筛选后,电池处于稳定状态的时段,例如该目标时段可以是电池正常启动第一预设时间后的时段。
还可以结合前述目标时段的选择方法,进一步对目标时段的时长进行限制,选择时长大于预设时长的时段作为目标时段,该预设时长例如可以为2秒、3秒或者5秒。
基于目标时段所获得的电池的工况数据实际包括有电池中多个电芯的温度、荷电状态、实际电流和实际电压,通过多个电芯的各项数据能够准确评估所属电池的运行工况。该多个电芯可以是电池中的全部电芯,也可以是经过筛选后得到的在目标时段内工况数据处于稳定状态或者正常范围的电芯。
上述电芯的温度和荷电状态不限制,可以涵盖电芯工况中的所有情况,示例性地,温度范围可以在零下三十摄氏度至零上六十度摄氏度之间,荷电状态可以为0至100%。
可以依据电池中选择的多个电芯的实际电流和实际电压,对各个电芯的电流-电压进行拟合,得到多个电芯在目标时段的电流-电压拟合参数。需要说明的是,由于该电流-电压拟合参数是实际电流-实际电压进行拟合后得到的,因此是能够表征电芯的电流和电压之间关系的参数,也即代表了电芯的内阻情况。
该拟合方法例如可以是线性拟合,而针对实际电压和实际电流呈现曲线变化的情况,也可以将曲线拆分为多条直线,再针对每条直线实现线性拟合。而在得到拟合关系的基础上,结合实际电压和拟合得到的拟合电压即可获取拟合优度。
后续在选择评估电池的阻抗参数所使用的电芯时,可以以拟合优度大于预设阈 值作为标准。上述预设阈值可以是0.97,也可以是0.95或者其他值。
可以理解的是,拟合优度表征了电芯的实际电压和实际电流之间的线性相关程度,由此拟合优度越大,实际电流和实际电压的线性相关程度越高,拟合电压与实际电压的偏差越小,其拟合参数也越接近电芯阻抗的真实水平。由此,将拟合优度大于预设阈值的电芯作为目标电芯,更能够描述实际电芯的真实运行情况,排除部分异常数据的电芯。
另一方面,由于上述电流-电压拟合参数是能够表征电芯的电流和电压之间关系的参数,也即代表了电芯的内阻情况,因此在选择得到目标电芯后,根据所有目标电芯的电流-电压拟合参数,即能够计算得到目标电芯所在电池的阻抗参数。
此外,不同阻抗参数是在不同工况下记录的,因此基于前述获得的电池中各个电芯的温度和荷电状态,也能得到电池整体的温度和荷电状态。
在已知电池整体的温度、荷电状态和阻抗参数的情况下,即可生成电池的温度、荷电状态与阻抗参数间的映射关系。
在本实施例中,通过电芯的实际电流和实际电压,处理计算得到电流-电压拟合参数以及拟合优度,并选择出拟合优度高的目标电芯的电流-电压拟合参数、温度和荷电状态,实现了电池整体各项数据的计算,最终生成了温度、荷电状态与阻抗参数间的映射关系,为后续当前阻抗参数的获取提供了有利依据。该利用拟合优度选择目标电芯的过程,使得最终计算得到的阻抗参数更能够真实评估电池的内阻,提高了数据准确度。
参看图4,图4是基于上述实施例,提出的本申请电池参数获取方法的又一实施例的流程示意图。在本实施例中,上述S310之前,该电池参数获取方法还可以包括:
S410,从工况数据中,获取多个电芯在不同时段的实际电流。
S420,将电芯的实际电流呈现单向趋势变化的时段作为目标时段。
在本实施例中,针对工况数据限定了目标时段为实际电流呈现单向趋势变化的时段,该单向趋势变化可以是单调递增趋势,可以是单调递减趋势。该目标时段的实际电流和电压存在较强的线性关系,其拟合参数更贴近电芯真实的阻抗水平。
参见图5,图5是基于上述实施例,提出的本申请的电池参数获取方法的再一实施例的可选流程示意图,在该实施例中,S310中分别对多个电芯在目标时段的实际电压和实际电流进行处理,得到多个电芯在目标时段的电流-电压拟合参数和拟合优度,可以包括:
S510,分别对多个电芯在目标时段的实际电压和实际电流进行线性拟合,得到多个电芯在目标时段的线性拟合函数,其中,线性拟合函数的斜率为电流-电压拟合参数。
S520,将多个电芯在目标时段的实际电流对应代入多个电芯在目标时段的线性拟合函数中进行计算,得到多个电芯在不同目标时段的拟合电压。
S530,根据多个电芯在目标时段的拟合电压和实际电压,计算多个电芯在目标时段的拟合优度。
本实施例通过线性拟合得到了电流-电压拟合参数,并基于线性拟合的结果(即线性拟合函数)和实际电压数据得到了目标时段下多个电芯分别对应的拟合优度。
需要说明的是,由于选择的目标时段是电流呈现单向变化趋势的时段,在此种工况下的电流-电压变化可以呈现较好的线性或者趋近于线性变化,因此可以通过线性拟合,得到线性拟合函数。而该线性拟合函数的斜率即是电流和电压的关系,因此可以以线性拟合函数的斜率作为评估电芯内阻的阻抗参数。
示例性地,假设T0至Tn时间段内,单个电芯的实际电流呈现单调递增,则可以对T0至Tn时间段内单个电芯的实际电流和实际电压数据进行拟合,该拟合关系满足U=k*I+b,其中U为拟合电压,I为实际电流,b为常数,k为斜率,即电流-电压拟合参数。
另一方面,得到的电流-电压拟合参数是否能够评估电芯的实际内阻情况,关系到后续电池阻抗参数的误差程度,因此可以通过拟合优度进行评估。可以是将目标时段内的若干实际电流代入线性拟合函数中,得到拟合电压,结合实际电压,得到的拟合电压与实际电压之间的偏离程度即是拟合优度,由此可以选择得到准确的电流-电压拟合参数。
在本实施例中,给出了处理得到拟合优度以及电流-电压拟合参数的过程,为选择出合适的目标电芯和计算电池的阻抗参数提供了数据基础。
参看图6,基于上述实施例提出本申请电池参数获取方法的再一实施例,在该实施例中,S530,根据多个电芯在目标时段的拟合电压和实际电压,计算多个电芯在目标时段的拟合优度的过程,可以包括:
S610,分别将多个电芯在目标时段的拟合电压和实际电压代入公式(1),得到多个电芯在目标时段的拟合优度,
R 2=∑(U n,1-U mean) 2/∑(U n,2-U mean) 2      (1)
其中,U n,1为电芯n在目标时段的拟合电压,U n,2为电芯n在目标时段的实际电压,U mean为在目标时段的拟合电压和实际电压的均值,R 2为电芯n在目标时段的拟合优度。
需要说明的是,拟合优度可以使用相关系数进行度量,该相关系数是能够衡量两变量间线性相关关系的统计指标,通过多个电芯间的实际电流与实际电压的相关系数计算,能够很好地评估实际电流和实际电压之间的线性相关程度,因此该拟合优度 能够很好地表征工况中电流和电压的线性相关程度。
上述利用目标时段的拟合电压和实际电压进行运算时,可以先求出目标时段所对应的拟合电压和实际电压的均值,然后将目标时段的均值、拟合电压和实际电压代入上述公式中,以求解得到目标时段电芯的拟合优度。
当然,其他实施例中,也可以通过其他能够表征匹配程度的度量实现拟合优度的计算,例如标准差、方差等。
基于前述实施例提出本申请电池参数获取方法的再一实施例,在本实施例中,根据目标电芯在目标时段的温度、荷电状态和电流-电压拟合参数,生成目标电芯所在电池的温度、荷电状态与阻抗参数间的映射关系,包括:
计算多个目标电芯在同一目标时段的电流-电压拟合参数的第一均值。
计算多个目标电芯在同一目标时段的温度的第二均值。
计算多个目标电芯在同一目标时段的荷电状态的第三均值。
将第一均值、第二均值和第三均值对应作为目标电芯所在电池的阻抗参数、温度和荷电状态,得到温度、荷电状态与阻抗参数间的映射关系。
需要说明的是,上述计算目标电芯所在电芯的阻抗参数、温度以及荷电状态的计算顺序可以同时进行,也可以先后执行,在先后执行时其执行顺序可以根据实际需要进行调整。
在本实施例中,通过多个目标电芯在同一目标时段的数据均值来衡量整个电池在该目标时段的数据,能够评估电池中电芯整体的运行情况,符合实际数据要求。在其他实施例中,也可以不计算均值,转而采用中位数、最大值或者众数等衡量整个电池在目标时段内的数据。
参看图7,基于上述实施例,提出本申请电池参数获取方法的再一实施例,在该实施例中,S130中根据当前阻抗参数,确定电池的当前性能参数,可以包括:
S710,获取电池的初始阻抗参数和初始性能参数,初始性能参数与当前性能参数对应。
S720,根据初始阻抗参数、初始性能参数和当前阻抗参数,计算电池的当前性能参数。
在本实施例中,在利用当前阻抗参数确定当前性能参数的基础上,还加入了另外两种参数进行当前性能参数的确定,这两种参数分别为电池的初始阻抗参数和初始性能参数。可以理解的是,电池的初始阻抗参数即是电池刚刚出厂或使用初期的阻抗数据,该初始阻抗参数可以是电池出厂前,在实验室通过实验测试得到,也可以在电池出厂后,首次通过映射关系的生成获得。
而电池的初始性能参数的类型与待获得的当前性能参数的类型对应,例如当前 性能参数为当前内阻,则初始性能参数为初始内阻。当当前性能参数为当前放电功率时,初始性能参数为初始放电功率。
上述初始性能参数可以在电池出厂前,经实验测试得到。以初始性能参数为初始内阻为例进行说明,该初始内阻可以在实验室通过电池直流内阻实验测得。
在另一些示例中,该初始性能参数也可以参考前述电芯参数表的设置,即也可以设置初始性能参数表,该初始性能参数表中配置有多种温度和多种荷电状态,针对不同温度和不同荷电状态存在对应的位点,每个位点可以记录对应温度和荷电状态下的初始性能参数。在得到了所有温度和所有荷电状态下的位点值后,可以将初始性能参数表存在电池包的BMS中,或者,初始性能参数表也可以存储在独立的存储模块中。
需要说明的是,在本实施例中,当前性能参数是老化后的当前电池的实际性能参数,该当前性能参数的确定,除借助阻抗参数的变化以外,还可以借相同温度和相同荷电状态时,电池初始情况下的初始阻抗参数以及初始性能参数进行参考和对比获得,由此获得的当前性能参数准确度高,能够准确评估电池健康状态,进而帮助电池最大程度发挥性能,避免出现欠压故障,延长电池中电芯的使用寿命,解决了由于实际工况复杂,电池性能恶化程度难以估计的问题。在电池作为动力电池,安装在类似车辆的交通工具中时,能够提升驾驶安全性和交通工具的动力。
参看图8,基于上述实施例,提出本申请电池参数获取方法的再一实施例,在该实施例中,S720中根据初始阻抗参数、初始性能参数和当前阻抗参数,计算电池的当前性能参数,可以包括:
S810,将当前阻抗参数与初始阻抗参数相除,得到电池的阻抗变化幅度。
S820,对阻抗变化幅度和初始性能参数进行第一运算,得到当前性能参数。
需要说明的是,随着电池使用时间的推移,电池的阻抗参数或内阻往往呈现增长趋势,因此得到的阻抗变化幅度通常大于1。在求得阻抗变化幅度的基础上,可以依据阻抗变化幅度的规律,执行第一运算,该第一运算具体的运算方式与性能参数的类型相关,最终可以求得当前性能参数。
示例性地,当当前性能参数为当前内阻时,初始性能参数对应为初始内阻,该第一运算为乘法运算。即可以将阻抗变化幅度与初始内阻进行乘法运算,得到当前内阻。其中当前内阻与初始内阻获取时,所在电池的荷电状态和温度值相同或者近似,由此保证电池所处状态的一致性,使求得的当前性能参数更为准确。
用数学关系表示上述当前内阻的运算过程,即是DCR=R*F,其中DCR为当前内阻,R为初始内阻,F为阻抗变化幅度。
示例性地,当当前性能参数为当前放电功率,初始性能参数对应为初始放电功率,该第一运算可以为除法运算。即可以将初始放电功率与阻抗变化幅度进行除法运 算,得到当前放电功率。其中当前放电功率与初始放电功率获取时,所在电池的荷电状态和温度值相同或者近似,由此保证电池所处状态的一致性,使求得的当前性能参数更为准确。
用数学关系表示上述当前放电功率的运算过程,即是POWER=P/F,其中POWER为当前放电功率,P为初始放电功率,F为阻抗变化幅度。
在其他示例中,当当前性能参数为当前放电功率和当前内阻,初始性能参数对应为初始放电功率和初始内阻,而求得前述当前性能参数的方式可以参考前述示例,在此不过多赘述。
在这些实施例中,通过阻抗变化幅度,结合初始性能参数进行运算,给出了当前性能参数的计算方式,为最终指导电池发挥性能提供了理论依据。
上述图1至图8详细描述了本申请电池参数获取方法的实施例,后续对本申请的电池参数获取装置进行说明。
参看图9,在本申请电池参数获取系统的一实施例中,该电池参数获取系统可以包括:
第一获取模块910,可以用于获取电池的工况数据。
第二获取模块920,可以用于通过工况数据,获取电池的当前阻抗参数。
确定模块930,可以用于根据当前阻抗参数,确定电池的当前性能参数,当前性能参数包括当前内阻和当前放电功率中的至少一者。
基于上述实施例,在本申请电池参数获取系统的另一实施例中,工况数据包括电池中多个电芯的温度、荷电状态、实际电流以及实际电压。
上述第二获取模块920可以包括:
建立单元,可以用于通过工况数据,建立电池的温度、荷电状态与阻抗参数间的映射关系。
查找单元,可以用于从映射关系中,查找与电池的温度实测值和实时荷电状态对应的当前阻抗参数。
基于上述实施例,在本申请电池参数获取系统的又一实施例中,上述建立单元可以包括:
处理子单元,可以用于分别对多个电芯在目标时段的实际电压和实际电流进行处理,得到多个电芯在目标时段的电流-电压拟合参数和拟合优度。
筛选子单元,可以用于从多个电芯中筛选出拟合优度大于预设阈值的电芯作为目标电芯。
生成子单元,可以用于根据目标电芯在目标时段的温度、荷电状态和电流-电 压拟合参数,生成目标电芯所在电池的温度、荷电状态与阻抗参数间的映射关系。
基于上述实施例,在本申请电池参数获取系统的再一实施例中,上述建立单元还可以包括:
获取子单元,用于从工况数据中,获取多个电芯在不同时段的实际电流;将电芯的实际电流呈现单向趋势变化的时段作为目标时段。
基于上述实施例,在本申请电池参数获取系统的再一实施例中,上述处理子单元还可以用于分别对多个电芯在目标时段的实际电压和实际电流进行线性拟合,得到多个电芯在目标时段的线性拟合函数,线性拟合函数的斜率为电流-电压拟合参数。将多个电芯在目标时段的实际电流对应代入多个电芯在目标时段的线性拟合函数中进行计算,得到多个电芯在不同目标时段的拟合电压;根据多个电芯在目标时段的拟合电压和实际电压,计算多个电芯在目标时段的拟合优度。
基于上述实施例,在本申请电池参数获取系统的再一实施例中,上述处理子单元,还可以用于分别将多个电芯在目标时段的拟合电压和实际电压代入以下公式,得到多个电芯在目标时段的拟合优度,
R 2=∑(U n,1-U mean) 2/∑(U n,2-U mean) 2
其中,U n,1为电芯n在目标时段的拟合电压,U n,2为电芯n在目标时段的实际电压,U mean为在目标时段的拟合电压和实际电压的均值,R 2为电芯n在目标时段的拟合优度。
基于上述实施例,提出本申请电池参数获取系统的再一实施例,在本实施例中,上述生成子单元,还可以用于计算多个目标电芯在同一目标时段的电流-电压拟合参数的第一均值;计算多个目标电芯在同一目标时段的温度的第二均值;计算多个目标电芯在同一目标时段的荷电状态的第三均值;将第一均值、第二均值和第三均值对应作为目标电芯所在电池的阻抗参数、温度和荷电状态,得到温度、荷电状态与阻抗参数间的映射关系。
基于上述实施例,提出本申请电池参数获取系统的再一实施例,在本实施例中,上述确定模块930,可以包括:
获取单元,用于获取电池的初始阻抗参数和初始性能参数,初始性能参数与当前性能参数对应。
计算单元,用于根据初始阻抗参数、初始性能参数和当前阻抗参数,计算电池的当前性能参数。
基于上述实施例,提出本申请电池参数获取系统的再一实施例,在本实施例中,上述计算单元,还可以用于将当前阻抗参数与初始阻抗参数相除,得到电池的阻抗变化幅度;对阻抗变化幅度和初始性能参数进行第一运算,得到当前性能参数。
基于上述实施例,提出本申请电池参数获取系统的再一实施例,在本实施例 中,上述计算单元,还可以用于将阻抗变化幅度与初始内阻进行乘法运算,得到当前内阻,初始性能参数包括初始内阻;和/或,将初始放电功率与阻抗变化幅度进行除法运算,得到当前放电功率,初始性能参数包括初始放电功率。
图10示出了本申请实施例提供的电池参数获取装置的硬件结构示意图。该电池参数获取装置可以包括处理器1001以及存储有计算机程序指令的存储器1002。
具体地,上述处理器1001可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器1002可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器1002可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器1002可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器1002可在综合网关容灾设备的内部或外部。在特定实施例中,存储器1002是非易失性固态存储器。
在特定实施例中,存储器可包括只读存储器(ROM),随机存取存储器(RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)计算机可读存储介质(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本公开的一方面的方法所描述的操作。
处理器1001通过读取并执行存储器1002中存储的计算机程序指令,以实现上述实施例中的任意一种电池参数获取方法。
在一个示例中,电池参数获取装置还可包括通信接口1003和总线1009。其中,如图10所示,处理器1001、存储器1002、通信接口1003通过总线1009连接并完成相互间的通信。
通信接口1003,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线1009包括硬件、软件或两者,将图片处理设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线1009可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
该电池参数获取装置可以执行本申请实施例中的电池参数获取方法,从而实现结合上述实施例描述的电池参数获取方法。
另外,结合上述实施例中的电池参数获取方法,本申请实施例可提供一种计算机存储介质来实现。该计算机存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种电池参数获取方法。
另外,本申请实施例还提供了一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时可实现前述方法实施例的步骤及相应内容。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种电池参数获取方法,所述方法包括:
    获取所述电池的工况数据;
    通过所述工况数据,获取所述电池的当前阻抗参数;
    根据所述当前阻抗参数,确定所述电池的当前性能参数,所述当前性能参数包括当前内阻和当前放电功率中的至少一者。
  2. 根据权利要求1所述的方法,其中,所述工况数据包括所述电池中多个电芯的温度、荷电状态、实际电流以及实际电压;
    所述通过所述工况数据,获取所述电池的当前阻抗参数,包括:
    通过所述工况数据,建立所述电池的温度、荷电状态与阻抗参数间的映射关系;
    从所述映射关系中,查找与电池的温度实测值和实时荷电状态对应的所述当前阻抗参数。
  3. 根据权利要求2所述的方法,其中,所述通过所述工况数据,建立所述电池的温度、荷电状态与阻抗参数间的映射关系,包括:
    分别对多个所述电芯在目标时段的实际电压和实际电流进行处理,得到多个所述电芯在所述目标时段的电流-电压拟合参数和拟合优度;
    从多个所述电芯中筛选出拟合优度大于预设阈值的电芯作为目标电芯;
    根据所述目标电芯在所述目标时段的温度、荷电状态和电流-电压拟合参数,生成所述目标电芯所在电池的温度、荷电状态与阻抗参数间的映射关系。
  4. 根据权利要求3所述的方法,其中,所述分别对多个所述电芯在目标时段的实际电压和实际电流进行处理之前,所述方法还包括:
    从所述工况数据中,获取多个所述电芯在不同时段的实际电流;
    将电芯的实际电流呈现单向趋势变化的时段作为目标时段。
  5. 根据权利要求3所述的方法,其中,所述分别对多个所述电芯在目标时段的实际电压和实际电流进行处理,得到多个所述电芯在所述目标时段的电流-电压拟合参数和拟合优度,包括:
    分别对多个所述电芯在所述目标时段的实际电压和实际电流进行线性拟合,得到多个所述电芯在所述目标时段的线性拟合函数,所述线性拟合函数的斜率为所述电流-电压拟合参数;
    将多个所述电芯在所述目标时段的实际电流对应代入多个所述电芯在所述目标时段的线性拟合函数中进行计算,得到多个所述电芯在不同目标时段的拟合电压;
    根据多个所述电芯在所述目标时段的拟合电压和实际电压,计算多个电芯在所述目标时段的拟合优度。
  6. 根据权利要求5所述的方法,其中,所述根据多个所述电芯在所述目标时段的拟合电压和实际电压,计算多个电芯在所述目标时段的拟合优度,包括:
    分别将多个所述电芯在所述目标时段的拟合电压和实际电压代入以下公式,得到多个电芯在所述目标时段的拟合优度,
    R 2=Σ(U n,1-U mean) 2/Σ(U n,2-U mean) 2
    其中,U n,1为电芯n在目标时段的拟合电压,U n,2为电芯n在目标时段的实际电压,U mean为在目标时段的拟合电压和实际电压的均值,R 2为电芯n在目标时段的所述拟合优度。
  7. 根据权利要求3所述的方法,其中,所述根据所述目标电芯在所述目标时段的温度、荷电状态和电流-电压拟合参数,生成所述目标电芯所在电池的温度、荷电状态与阻抗参数间的映射关系,包括:
    计算多个所述目标电芯在同一所述目标时段的电流-电压拟合参数的第一均值;
    计算多个所述目标电芯在同一所述目标时段的温度的第二均值;
    计算多个所述目标电芯在同一所述目标时段的荷电状态的第三均值;
    将所述第一均值、所述第二均值和所述第三均值对应作为所述目标电芯所在电池的阻抗参数、温度和荷电状态,得到所述温度、荷电状态与阻抗参数间的所述映射关系。
  8. 根据权利要求1所述的方法,其中,所述根据所述当前阻抗参数,确定所述电池的当前性能参数,包括:
    获取所述电池的初始阻抗参数和初始性能参数,所述初始性能参数与所述当前性能参数对应;
    根据所述初始阻抗参数、所述初始性能参数和所述当前阻抗参数,计算所述电池的当前性能参数。
  9. 根据权利要求8所述的方法,其中,所述根据所述初始阻抗参数、所述初始性能参数和所述当前阻抗参数,计算所述电池的当前性能参数,包括:
    将所述当前阻抗参数与所述初始阻抗参数相除,得到所述电池的阻抗变化幅度;
    对所述阻抗变化幅度和所述初始性能参数进行第一运算,得到所述当前性能参数。
  10. 根据权利要求9所述的方法,其中,所述对所述阻抗变化幅度和所述初始性能参数进行第一运算,得到所述当前性能参数,包括:
    将所述阻抗变化幅度与初始内阻进行乘法运算,得到所述当前内阻,所述初始性能参数包括所述初始内阻;
    和/或,将初始放电功率与所述阻抗变化幅度进行除法运算,得到所述 当前放电功率,所述初始性能参数包括所述初始放电功率。
  11. 一种电池参数获取系统,所述系统包括:
    第一获取模块,用于获取所述电池的工况数据;
    第二获取模块,用于通过所述工况数据,获取所述电池的当前阻抗参数;
    确定模块,用于根据所述当前阻抗参数,确定所述电池的当前性能参数,所述当前性能参数包括当前内阻和当前放电功率中的至少一者。
  12. 一种电池参数获取装置,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1~10任一项所述的电池参数获取方法的步骤。
  13. 一种电池参数获取装置,被配置为用于执行1~10任一项所述的电池参数获取方法的步骤。
  14. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1~10任一项所述的电池参数获取方法的步骤。
  15. 一种计算机程序产品,所述计算机程序产品可被处理器执行以实现如权利要求1~10中任一项所述的电池参数获取方法的步骤。
PCT/CN2022/104101 2022-07-06 2022-07-06 电池参数获取方法及相关装置 WO2024007188A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104101 WO2024007188A1 (zh) 2022-07-06 2022-07-06 电池参数获取方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104101 WO2024007188A1 (zh) 2022-07-06 2022-07-06 电池参数获取方法及相关装置

Publications (1)

Publication Number Publication Date
WO2024007188A1 true WO2024007188A1 (zh) 2024-01-11

Family

ID=89454748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104101 WO2024007188A1 (zh) 2022-07-06 2022-07-06 电池参数获取方法及相关装置

Country Status (1)

Country Link
WO (1) WO2024007188A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333447A (zh) * 2018-03-30 2019-10-15 比亚迪股份有限公司 动力电池组的电池功率状态sop计算方法、装置和电动汽车
DE102018216518A1 (de) * 2018-09-26 2020-03-26 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Verfahren und Vorrichtung zur Diagnose von Batteriezellen
CN111624494A (zh) * 2020-04-20 2020-09-04 北京航空航天大学 基于电化学参数的电池分析方法和系统
CN113805086A (zh) * 2021-09-16 2021-12-17 安徽师范大学 一种锂离子电池内阻的快速估算方法
CN113933710A (zh) * 2021-10-29 2022-01-14 风帆有限责任公司 电池功率状态的在线预测方法及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333447A (zh) * 2018-03-30 2019-10-15 比亚迪股份有限公司 动力电池组的电池功率状态sop计算方法、装置和电动汽车
DE102018216518A1 (de) * 2018-09-26 2020-03-26 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Verfahren und Vorrichtung zur Diagnose von Batteriezellen
CN111624494A (zh) * 2020-04-20 2020-09-04 北京航空航天大学 基于电化学参数的电池分析方法和系统
CN113805086A (zh) * 2021-09-16 2021-12-17 安徽师范大学 一种锂离子电池内阻的快速估算方法
CN113933710A (zh) * 2021-10-29 2022-01-14 风帆有限责任公司 电池功率状态的在线预测方法及终端设备

Similar Documents

Publication Publication Date Title
CN108828461B (zh) 动力电池soh值估算方法及系统
Nikolian et al. Complete cell-level lithium-ion electrical ECM model for different chemistries (NMC, LFP, LTO) and temperatures (− 5 C to 45 C)–Optimized modelling techniques
US9859736B2 (en) Battery control method based on ageing-adaptive operation window
EP2851700B1 (en) Method and terminal for displaying capacity of battery
JP2022529546A (ja) 電池容量決定方法及び装置、管理システム、及び記憶媒体
CN101535827A (zh) 用于在电池非平衡时确定电池的荷电状态的设备和方法
CN110888065B (zh) 电池包荷电状态修正方法和装置
CN113093015B (zh) 电池寿命估算方法、装置、电池管理系统、汽车及介质
CN111856309B (zh) 一种电池健康状态的定量判断方法
EP4148439A1 (en) Battery state calculation method and calculation device, and storage medium
Sadabadi et al. Model-based state of health estimation of a lead-acid battery using step-response and emulated in-situ vehicle data
Li et al. Real-time estimation of lead-acid battery parameters: A dynamic data-driven approach
CN114371409A (zh) 电池状态预测模型的训练方法、电池状态预测方法及装置
CN113189495A (zh) 一种电池健康状态的预测方法、装置及电子设备
CN115221795A (zh) 容量预测模型的训练方法、预测方法、装置、设备及介质
CN111707955A (zh) 电池剩余寿命的估算方法、装置和介质
CN115932634A (zh) 一种对电池健康状态评估的方法、装置、设备及存储介质
WO2024007188A1 (zh) 电池参数获取方法及相关装置
CN112356737A (zh) 电池充电管理方法及电池管理系统
CN116540099A (zh) 锂离子动力电池的使用寿命预测方法、装置、设备及介质
WO2022024848A1 (ja) 電池管理装置、演算システム、電池の劣化予測方法、及び電池の劣化予測プログラム
CN115902625A (zh) 一种电池系统的性能预测方法、装置、设备及存储介质
CN114089204A (zh) 一种电池容量跳水拐点预测方法及装置
CN111077466B (zh) 一种确定车辆电池健康状态的方法及装置
WO2023220949A1 (zh) 换电方法、系统、装置、存储介质和计算机程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949776

Country of ref document: EP

Kind code of ref document: A1