WO2022024848A1 - 電池管理装置、演算システム、電池の劣化予測方法、及び電池の劣化予測プログラム - Google Patents

電池管理装置、演算システム、電池の劣化予測方法、及び電池の劣化予測プログラム Download PDF

Info

Publication number
WO2022024848A1
WO2022024848A1 PCT/JP2021/026999 JP2021026999W WO2022024848A1 WO 2022024848 A1 WO2022024848 A1 WO 2022024848A1 JP 2021026999 W JP2021026999 W JP 2021026999W WO 2022024848 A1 WO2022024848 A1 WO 2022024848A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
deterioration
soh
data
unit
Prior art date
Application number
PCT/JP2021/026999
Other languages
English (en)
French (fr)
Inventor
洋平 石井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022540204A priority Critical patent/JPWO2022024848A1/ja
Priority to EP21849655.2A priority patent/EP4191733A4/en
Priority to CN202180059962.2A priority patent/CN116134658A/zh
Priority to US18/006,364 priority patent/US20230266399A1/en
Publication of WO2022024848A1 publication Critical patent/WO2022024848A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/42Control modes by adaptive correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to a battery management device for predicting battery deterioration, a calculation system, a battery deterioration prediction method, and a battery deterioration prediction program.
  • HVs hybrid vehicles
  • PSVs plug-in hybrid vehicles
  • EVs electric vehicles
  • the FCC, SOC (State Of Charge), and SOH values calculated based on the measurement data of the running electric vehicle are affected by the measurement error of the sensor and noise.
  • the influence of error or noise is large, the above-mentioned method of linearly regressing the amount of change in FCC or SOC increases the possibility of erroneous determination.
  • the present disclosure has been made in view of such circumstances, and an object thereof is to provide a technique for detecting sudden deterioration of a battery with high accuracy.
  • the battery management device of one aspect of the present disclosure includes a measuring unit that at least measures the voltage and current of the battery, and an SOH that estimates the SOH of the battery based on the measurement data of the battery.
  • the deterioration regression curve generation unit that generates the deterioration regression curve of the battery by performing curve regression of the plurality of SOH specified in the time series of the battery, and the plurality of SOH of the first data section.
  • the battery is provided with a sudden deterioration determination unit for determining whether or not sudden deterioration has occurred.
  • FIG. It is a figure for demonstrating the arithmetic system used by the business operator which concerns on embodiment. It is a figure for demonstrating the detailed configuration of the battery system mounted on the electric vehicle which concerns on embodiment. It is a figure which shows the structural example of the battery control part which concerns on Example 1.
  • FIG. It is a figure for demonstrating the estimation method of FCC. It is the figure which showed the deterioration curve of a secondary battery by a graph. It is a figure which showed an example of the deterioration curve when sudden deterioration occurs in a secondary battery by a graph. It is a figure which showed the concrete example of a plurality of deterioration curves with different data sections by a graph.
  • FIG. 1 shows the specific example of the 1st division method of a data section. It is a figure which shows the specific example of the 2nd division method of a data section. It is a flowchart which shows the flow of the sudden deterioration determination process of a battery module by a battery management part. It is a figure which shows the configuration example of the arithmetic system which concerns on Example 2.
  • FIG. 1 is a diagram for explaining an arithmetic system 1 used by a business operator according to an embodiment.
  • the business operator owns a plurality of electric vehicles 3 and operates a business by utilizing the plurality of electric vehicles 3.
  • a business operator utilizes a plurality of electric vehicles 3 to operate a delivery business (home delivery business), a taxi business, a rental car business, or a car sharing business.
  • a pure EV without an engine is assumed as the electric vehicle 3.
  • the calculation system 1 is a system for managing the business of the business operator.
  • the arithmetic system 1 is composed of one or a plurality of information processing devices (for example, a server and a PC).
  • a part or all of the information processing apparatus constituting the arithmetic system 1 may exist in the data center.
  • it may be configured by a combination of a server (in-house server, cloud server, or rental server) in the data center and a client PC in the business operator.
  • the plurality of electric vehicles 3 are parked in the parking lot or garage of the business office of the business operator while waiting.
  • the plurality of electric vehicles 3 have a wireless communication function and can perform wireless communication with the arithmetic system 1.
  • the plurality of electric vehicles 3 transmit the traveling data including the operation data of the mounted secondary battery to the calculation system 1. While the electric vehicle 3 is traveling, the traveling data may be wirelessly transmitted to the server constituting the arithmetic system 1 via the network. For example, the travel data may be transmitted once every 10 seconds. Further, the travel data for one day may be batch-transmitted at a predetermined timing once a day (for example, at the end of business hours).
  • the electric vehicle 3 when the arithmetic system 1 is composed of the company's own server or PC installed in the business office, the electric vehicle 3 returns the driving data for one day to the company's server or the company's server after returning to the business office after the business is closed. It may be sent to a PC. In that case, it may be transmitted wirelessly to the company's server or PC, or may be connected to the company's server or PC by wire and transmitted via wire. Further, the data may be transmitted to the company's own server or PC via the recording medium in which the traveling data is recorded. Further, when the arithmetic system 1 is composed of a combination of a cloud server and a client PC in the business operator, the electric vehicle 3 may transmit driving data to the cloud server via the client PC in the business operator. ..
  • FIG. 2 is a diagram for explaining a detailed configuration of the battery system 40 mounted on the electric vehicle 3 according to the embodiment.
  • the battery system 40 is connected to the motor 34 via the first relay RY1 and the inverter 35.
  • the inverter 35 converts the DC power supplied from the battery system 40 into AC power and supplies it to the motor 34 during power running.
  • the AC power supplied from the motor 34 is converted into DC power and supplied to the battery system 40.
  • the motor 34 is a three-phase AC motor, and rotates according to the AC power supplied from the inverter 35 during power running.
  • the rotational energy due to deceleration is converted into AC power and supplied to the inverter 35.
  • the first relay RY1 is a contactor inserted between the wiring connecting the battery system 40 and the inverter 35.
  • the vehicle control unit 30 controls the first relay RY1 to be in an on state (closed state) during traveling, and electrically connects the battery system 40 and the power system of the electric vehicle 3.
  • the vehicle control unit 30 controls the first relay RY1 to an off state (open state) when the vehicle is not running, and electrically shuts off the power system of the battery system 40 and the electric vehicle 3.
  • another type of switch such as a semiconductor switch may be used.
  • the battery system 40 can be charged from the commercial power system 9 by connecting to the charger 4 installed outside the electric vehicle 3 with the charging cable 38.
  • the charger 4 is connected to the commercial power system 9 and charges the battery system 40 in the electric vehicle 3 via the charging cable 38.
  • the second relay RY2 is inserted between the wiring connecting the battery system 40 and the charger 4.
  • another type of switch such as a semiconductor switch may be used.
  • the battery management unit 42 of the battery system 40 controls the second relay RY2 to the on state (closed state) before the start of charging, and controls the second relay RY2 to the off state (open state) after the charging is completed.
  • alternating current in the case of normal charging and by direct current in the case of quick charging.
  • direct current in the case of quick charging.
  • alternating current power is converted to direct current power by an AC / DC converter (not shown) inserted between the second relay RY2 and the battery system 40.
  • the battery system 40 includes a battery module 41 and a battery management unit 42, and the battery module 41 includes a plurality of cells E1-En connected in series.
  • the battery module 41 may be configured by connecting a plurality of battery modules in series / series / parallel.
  • a lithium ion battery cell a nickel hydrogen battery cell, a lead battery cell or the like can be used.
  • a lithium ion battery cell nominal voltage: 3.6-3.7V
  • the number of cells E1-En in series is determined according to the drive voltage of the motor 34.
  • Shunt resistors Rs are connected in series with multiple cells E1-En.
  • the shunt resistance Rs functions as a current detection element.
  • a Hall element may be used instead of the shunt resistance Rs.
  • a plurality of temperature sensors T1 and T2 for detecting the temperatures of the plurality of cells E1-En are installed in the battery module 41.
  • One temperature sensor may be installed in the battery module, or one temperature sensor may be installed in each of a plurality of cells.
  • a thermistor can be used for the temperature sensors T1 and T2.
  • the battery management unit 42 includes a voltage measurement unit 43, a temperature measurement unit 44, a current measurement unit 45, and a battery control unit 46.
  • Each node of the plurality of cells E1-En connected in series and the voltage measuring unit 43 are connected by a plurality of voltage lines.
  • the voltage measuring unit 43 measures the voltage of each cell E1-En by measuring the voltage between two adjacent voltage lines.
  • the voltage measuring unit 43 transmits the measured voltage of each cell E1-En to the battery control unit 46.
  • the voltage measuring unit 43 Since the voltage measuring unit 43 has a high voltage with respect to the battery control unit 46, the voltage measuring unit 43 and the battery control unit 46 are connected by a communication line in an insulated state.
  • the voltage measuring unit 43 can be configured by an ASIC (Application Specific Integrated Circuit) or a general-purpose analog front-end IC.
  • the voltage measuring unit 43 includes a multiplexer and an A / D converter.
  • the multiplexer outputs the voltage between two adjacent voltage lines to the A / D converter in order from the top.
  • the A / D converter converts the analog voltage input from the multiplexer into a digital value.
  • the temperature measuring unit 44 includes a voltage dividing resistor and an A / D converter.
  • the A / D converter sequentially converts a plurality of analog voltages divided by the plurality of temperature sensors T1 and T2 and the plurality of voltage dividing resistors into digital values and outputs the digital values to the battery control unit 46.
  • the battery control unit 46 estimates the temperatures of the plurality of cells E1-En based on the digital values. For example, the battery control unit 46 estimates the temperature of each cell E1-En based on the value measured by the temperature sensor most adjacent to each cell E1-En.
  • the current measuring unit 45 includes a differential amplifier and an A / D converter.
  • the differential amplifier amplifies the voltage across the shunt resistor Rs and outputs it to the A / D converter.
  • the A / D converter converts the voltage input from the differential amplifier into a digital value and outputs it to the battery control unit 46.
  • the battery control unit 46 estimates the current flowing through the plurality of cells E1-En based on the digital value.
  • the temperature measurement unit 44 and the current measurement unit 45 transfer the analog voltage to the battery control unit 46. It may be output to the digital value and converted into a digital value by the A / D converter in the battery control unit 46.
  • the battery control unit 46 determines the state of the plurality of cells E1-En based on the voltage, temperature, and current of the plurality of cells E1-En measured by the voltage measurement unit 43, the temperature measurement unit 44, and the current measurement unit 45. to manage.
  • the battery control unit 46 and the vehicle control unit 30 are connected by an in-vehicle network.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • FIG. 3 is a diagram showing a configuration example of the battery control unit 46 according to the first embodiment.
  • the battery control unit 46 includes a processing unit 461 and a storage unit 462.
  • the processing unit 461 includes an SOC estimation unit 4611, an FCC estimation unit 4612, an SOH estimation unit 4613, a deterioration regression curve generation unit 4614, a sudden deterioration determination unit 4615, and a data transmission unit 4616.
  • the function of the processing unit 461 can be realized by the cooperation of the hardware resource and the software resource, or only by the hardware resource.
  • As hardware resources CPU, ROM, RAM, ASIC, FPGA (Field Programmable Gate Array), and other LSIs can be used. Programs such as firmware can be used as software resources.
  • the storage unit 462 includes an SOC-OCV (Open Circuit Voltage) characteristic holding unit 4621, a battery data holding unit 4622, and a time-series SOH value holding unit 4623.
  • the storage unit 462 includes a non-volatile recording medium such as an EEPROM (Electrically Erasable Programmable Read-Only Memory) and a NAND flash memory, and records various programs and data.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • the SOC-OCV characteristic holding unit 4621 describes the characteristic data of the SOC-OCV curves of a plurality of cells E1-En.
  • the SOC-OCV curves of the plurality of cells E1-En are created in advance by the battery manufacturer and registered in the SOC-OCV characteristic holding unit 4621 at the time of shipment. The battery maker conducts various tests to derive the SOC-OCV curve of the cells E1-En.
  • the battery data holding unit 4622 records battery data including the voltage, current, and temperature of a plurality of cells E1-En in chronological order.
  • the battery data may further include the SOC estimated by the SOC estimation unit 4611.
  • the time-series SOH value holding unit 4623 holds the SOH time-series data estimated by the SOH estimation unit 4613.
  • the SOH time series data is recorded, for example, once a day, once every few days, or once a week.
  • the time-series SOH value holding unit 4623 and the battery data holding unit 4622 may be integrated into one table.
  • the SOC estimation unit 4611 estimates the SOC of each of the plurality of cells E1-En.
  • the SOC estimation unit 4611 estimates the SOC by the OCV method, the current integration method, or a combination thereof.
  • the OCV method is a method of estimating SOC based on the OCV of each cell E1-En measured by the voltage measuring unit 43 and the characteristic data of the SOC-OCV curve held in the SOC estimation unit 4611.
  • the current integration method is a method of estimating SOC based on the OCV at the start of charging / discharging of each cell E1-En and the integrated value of the current measured by the current measuring unit 45. In the current integration method, the measurement error of the current measuring unit 45 accumulates as the charging / discharging time becomes longer. Therefore, it is preferable to use the SOC estimated by the OCV method to correct the SOC estimated by the current integration method.
  • the FCC estimation unit 4612 can estimate the FCC of the cell based on the characteristic data of the SOC-OCV curve held in the SOC estimation unit 4611 and the two OCVs of the cell measured by the voltage measurement unit 43. can.
  • FIG. 4 is a diagram for explaining an FCC estimation method.
  • the FCC estimation unit 4612 acquires two OCVs in the cell.
  • the FCC estimation unit 4612 refers to the SOC-OCV curve, identifies the two SOCs corresponding to the two voltages, and calculates the difference ⁇ SOC between the two SOCs.
  • the SOCs of the two points are 20% and 75%, and the ⁇ SOC is 55%.
  • the FCC estimation unit 4612 can estimate the FCC by calculating the following (Equation 1).
  • the SOH estimation unit 4613 estimates SOH based on the estimated FCC.
  • the SOH is defined by the ratio of the current FCC to the initial FCC, and the lower the value (closer to 0%), the more the deterioration is progressing.
  • the SOH estimation unit 4613 can estimate the SOH by calculating the following (Equation 2).
  • SOH current FCC / initial FCC ... (Equation 2) Further, SOH may be obtained by capacity measurement by complete charge / discharge, or may be obtained by adding storage deterioration and cycle deterioration.
  • Storage deterioration can be estimated based on SOC, temperature, and storage deterioration rate.
  • Cycle degradation can be estimated based on the SOC range used, temperature, current rate, and cycle degradation rate.
  • the storage deterioration rate and the cycle deterioration rate can be derived in advance by experiments or simulations.
  • the SOC, temperature, SOC range, and current rate can be determined by measurement.
  • the SOH can also be estimated based on the correlation with the internal resistance of the cell.
  • the internal resistance can be estimated by dividing the voltage drop generated when a predetermined current is passed through the cell for a predetermined time by the current value.
  • the internal resistance is related to decrease as the temperature rises, and increases as the SOH decreases.
  • the SOH estimation unit 4613 stores the estimated SOH in the time-series SOH value holding unit 4623.
  • the SOH estimation unit 4613 estimates SOH once a day, once every few days, or once a week, and stores it in the time-series SOH value holding unit 4623.
  • the deterioration regression curve generation unit 113 generates a deterioration regression curve of the battery module 41 by performing a curve regression on a plurality of SOH specified in the time series of the battery module 41.
  • the least squares method can be used for curve regression.
  • FIG. 5 is a graph showing the deterioration curve of the secondary battery. As shown in the following (Equation 3), it is known that the deterioration of the secondary battery progresses in proportion to the square root (0.5th power law) of time.
  • the deterioration regression curve generation unit 4614 obtains the deterioration coefficient w1 of the above (Equation 3 ) by the exponential curve regression of the 0.5th power with the time t as the independent variable and the SOH as the dependent variable.
  • FIG. 6 is a graph showing an example of a deterioration curve when sudden deterioration occurs in the secondary battery.
  • FIG. 6 shows an example in which sudden deterioration occurs at point P1.
  • the usage method that places a heavy burden on the secondary battery such as charging / discharging in a low temperature or high temperature environment and charging / discharging at a high rate, is repeated, sudden deterioration is likely to occur.
  • the life of the secondary battery is shortened because the secondary battery cannot be used basically.
  • the main cause of rapid deterioration is the decrease in electrolyte, but it is necessary to disassemble the secondary battery to directly measure the amount of electrolyte.
  • the occurrence of sudden deterioration is detected by detecting that the SOH of the battery module 41 deviates significantly from the deterioration curve.
  • the sudden deterioration determination unit 4615 is based on the deterioration coefficient w1 of the deterioration regression curve of the battery module 41 generated based on the plurality of SOH of the first data section and the plurality of SOH of the second data section. Based on the difference or ratio of the generated deterioration regression curve of the battery module 41 to the deterioration coefficient w 1 , it is determined whether or not the battery module 41 has suddenly deteriorated. The sudden deterioration determination unit 4615 determines that the battery module 41 has undergone sudden deterioration when the difference or the ratio deviates from a predetermined range.
  • the sudden deterioration determination unit 4615 determines that sudden deterioration has occurred when the absolute value of the difference or the ratio exceeds the threshold value, and determines that sudden deterioration has not occurred when the absolute value is equal to or less than the threshold value. ..
  • the threshold value a value derived by an experiment or a simulation can be used. The determination of sudden deterioration may be executed on a cell-by-cell basis.
  • FIG. 7 is a graph showing specific examples of a plurality of deterioration curves having different data sections.
  • the deterioration curve based on the SOH of the past 100 points, the deterioration curve based on the SOH of the past 200 points, the deterioration curve based on the SOH of the past 300 points, and the deterioration curve based on the SOH of all points are superimposed. I'm drawing.
  • the deterioration curve based on the past 200 points, the deterioration curve based on the past 300 points, and the deterioration curve based on all points are almost the same, and the deterioration coefficient w1 of each deterioration curve is also almost the same value.
  • the deterioration coefficient w 1 of the deterioration curve based on the past 100 points is smaller than the deterioration coefficient w 1 of the other three deterioration curves.
  • the SOH contained in the region R1 surrounded by the dotted line circle is significantly lower than the SOH in the region before that. Therefore, it can be estimated that sudden deterioration has occurred at some point in the region R1. If the above threshold value is set to a value corresponding to the difference in the region R1 between the deterioration coefficient w 1 of the deterioration curve based on the past 100 points and the deterioration coefficient w 1 of the deterioration curve based on the past 200 points, the deterioration coefficient w of both is set. Region R1 can be detected by comparing 1 .
  • FIG. 8 is a diagram showing a specific example of the first division method of the data section.
  • the first delimiter method is to change the number of data going back to the past by making the end points of a plurality of data sections common.
  • the first data interval is set to an interval including a past a SOH from the last specified SOH.
  • the second data interval is set to an interval including the past b (b> a) SOH from the last specified SOH.
  • the third data interval is set to an interval including the past c (c> b> a) SOH from the last specified SOH.
  • FIG. 9 is a diagram showing a specific example of the second division method of the data section.
  • the second delimiter method is a delimiter method in which the number of a plurality of data sections is shared and the data sections are sequentially traced back to the past.
  • the first data interval is set to the interval including the past a SOH from the last specified SOH.
  • the second data section is set to a section containing a past a SOH from the last specified SOH, excluding the SOH included in the first data section.
  • the third data section is set to a section containing a past a SOH from the last specified SOH, excluding the SOH included in the first data section and the second data section.
  • a 100.
  • the data transmission unit 4616 of the battery control unit 46 notifies the vehicle control unit 30 of the voltage, current, temperature, SOC, FCC, and SOH of the plurality of cells E1-En via the vehicle-mounted network.
  • the vehicle control unit 30 generates driving data including battery data and vehicle data.
  • the battery data includes the voltage, current, and temperature of the plurality of cells E1-En.
  • SOC can be included in the battery data in addition to voltage, current, and temperature.
  • some models can include at least one of FCC and SOH in addition to voltage, current, temperature and SOC.
  • Vehicle data can include average speed, mileage, travel route, and the like.
  • the data transmission unit 4616 notifies the vehicle control unit 30 of the sudden deterioration detection signal via the in-vehicle network.
  • the vehicle control unit 30 receives the sudden deterioration detection signal of the battery module 41, the vehicle control unit 30 lights a warning lamp in the instrument panel provided in the driver's seat to indicate an abnormality of the battery module 41, and informs the driver of the abnormality of the battery module 41. Notify. Further, the vehicle control unit 30 may notify the driver of the abnormality of the battery module 41 by the voice synthesis output.
  • the wireless communication unit 36 performs signal processing for wirelessly connecting to the network via the antenna 36a.
  • the wireless communication unit 36 wirelessly transmits the travel data acquired from the vehicle control unit 30 to the calculation system 1. Further, the wireless communication unit 36 wirelessly transmits the sudden deterioration detection signal of the battery module 41 acquired from the vehicle control unit 30 to the calculation system 1.
  • a wireless communication network to which the electric vehicle 3 can be wirelessly connected for example, a mobile phone network (cellular network), wireless LAN, ETC (Electronic Toll Collection System), DSRC (Dedicated Short Range Communications), V2I (Vehicle-to-Infrastructure) , V2V (Vehicle-to-Vehicle) can be used.
  • FIG. 10 is a flowchart showing the flow of the sudden deterioration determination process of the battery module 41 by the battery management unit 42.
  • the SOH estimation unit 4613 estimates the SOH of the battery module 41 based on the measurement data of the battery module 41 (S10).
  • the deterioration regression curve generation unit 4614 performs a curve regression of a plurality of SOH in the first data section of the battery module 41 to perform a first deterioration regression of the battery module 41. Generate a curve (S11). At the same time, the deterioration regression curve generation unit 4614 performs curve regression on a plurality of SOH in the second data section of the battery module 41 to generate a second deterioration regression curve of the battery module 41 (S12).
  • the sudden deterioration determination unit 4615 calculates the difference between the deterioration coefficient w 1 of the first deterioration regression curve and the deterioration coefficient w 1 of the second deterioration regression curve (S13). When the absolute value of the difference is equal to or less than the threshold value (N in S14), the sudden deterioration determination unit 4615 determines that the battery module 41 has not undergone sudden deterioration (S15). When the absolute value of the difference exceeds the threshold value (Y in S14), the sudden deterioration determination unit 4615 determines that the battery module 41 has undergone sudden deterioration (S16).
  • Example 1 described above an example in which the battery management unit 42 performs the sudden deterioration determination process of the battery module 41 has been described.
  • the calculation system 1 may perform the sudden deterioration determination process of the battery module 41.
  • FIG. 11 is a diagram showing a configuration example of the arithmetic system 1 according to the second embodiment.
  • the arithmetic system 1 includes a processing unit 11, a storage unit 12, a display unit 13, and an operation unit 14.
  • the processing unit 11 includes a data acquisition unit 111, a SOH specific unit 112, a deterioration regression curve generation unit 113, a sudden deterioration determination unit 114, an operation reception unit 115, and a display control unit 116.
  • the function of the processing unit 11 can be realized only by the cooperation of the hardware resource and the software resource, or by the hardware resource alone.
  • CPU, GPU (Graphics Processing Unit), ROM, RAM, ASIC, FPGA, and other LSIs can be used. Programs such as operating systems and applications can be used as software resources.
  • the storage unit 12 includes a travel data holding unit 121, a driver data holding unit 122, an SOC-OCV characteristic holding unit 123, and a time-series SOH value holding unit 124.
  • the storage unit 12 includes a non-volatile recording medium such as an HDD (Hard Disk Drive) and an SSD (Solid State Drive), and records various programs and data.
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • the driving data holding unit 121 holds driving data collected from a plurality of electric vehicles 3 owned by the business operator.
  • the driver data holding unit 122 holds data of a plurality of drivers belonging to the business operator. For example, the cumulative mileage of each of the driven electric vehicles 3 is managed for each driver.
  • the SOC-OCV characteristic holding unit 123 holds the SOC-OCV characteristics of the plurality of battery modules 41 mounted on the plurality of electric vehicles 3 owned by the business operator.
  • SOC-OCV characteristics of the battery module 41 those acquired from each electric vehicle 3 may be used, or those estimated based on the traveling data collected from each electric vehicle 3 may be used.
  • the SOC-OCV characteristic estimation unit (not shown) of the processing unit 11 determines the SOC of the period during which the battery module 41 can be regarded as a dormant state from the set of SOC and voltage at a plurality of times included in the acquired battery data. And a set of voltage ( ⁇ OCV) are extracted, and the SOC-OCV characteristics are approximated based on the extracted plurality of sets of SOC and OCV.
  • the SOC-OCV characteristic estimation unit is based on the set data of SOC and OCV acquired from a plurality of electric vehicles 3 equipped with the battery modules 41 of the same type, and the common SOC-OCV of the battery modules 41 of the same type. Properties may be generated.
  • the SOC-OCV characteristics may be maintained in cell units.
  • the time-series SOH value holding unit 124 holds the SOH time-series data for each battery module 41.
  • the SOH time series data is recorded, for example, once a day, once every few days, or once a week.
  • the display unit 13 includes a display such as a liquid crystal display or an organic EL display, and displays an image generated by the processing unit 11.
  • the operation unit 14 is a user interface such as a keyboard, a mouse, and a touch panel, and accepts operations by the user of the arithmetic system 1.
  • the data acquisition unit 111 acquires travel data including battery data of the battery modules 41 mounted on the plurality of electric vehicles 3, and stores the acquired travel data in the travel data holding unit 121.
  • the SOH specifying unit 112 identifies the SOH of the battery module 41 mounted on each electric vehicle 3 based on the battery data included in the traveling data acquired by the data acquisition unit 111.
  • the SOH specifying unit 112 stores the specified SOH in the time-series SOH value holding unit 124.
  • the SOH specifying unit 112 can use the acquired SOH as it is.
  • SOH can be calculated based on the above (Equation 1) and (Equation 2). That is, the SOH specifying unit 112 calculates the current integrated amount Q for the period between the two points of time when the two points of OCV are acquired based on the transition of the current included in the battery data, and the calculated current integrated amount.
  • FCC is estimated by applying Q to the above (Equation 1).
  • the SOH specifying unit 112 applies the calculated FCC to the above (Equation 2) to calculate the SOH.
  • the SOH specifying unit 112 applies the voltage ( ⁇ OCV) during the period in which the battery module 41 can be regarded as a dormant state to the SOC-OCV characteristics to estimate the SOC. .. Alternatively, the SOH specifying unit 112 integrates the current values for a certain period to estimate the SOC. The SOH specifying unit 112 uses the estimated SOC to calculate the SOH in the same manner as when the battery data includes the SOC.
  • the deterioration regression curve generation unit 113 generates a deterioration regression curve of each battery module 41 by performing a curve regression on a plurality of SOH specified in the time series of each battery module 41.
  • the sudden deterioration determination unit 114 has a deterioration coefficient w1 of the deterioration regression curve of the battery module 41 generated based on a plurality of SOHs in the first data section in the time-series SOH of the specific battery module 41.
  • the difference or ratio of the deterioration regression curve of the battery module 41 generated based on the plurality of SOH in the second data section to the deterioration coefficient w 1 is calculated.
  • the sudden deterioration determination unit 114 determines whether or not the sudden deterioration has occurred in the battery module 41 based on the calculated difference or ratio.
  • the operation reception unit 117 accepts the user's operation on the operation unit 14.
  • the display control unit 118 causes the display unit 13 to display various types of information. In the second embodiment, the determination result of the sudden deterioration of each battery module 41 is displayed.
  • the battery without disassembling the battery module 41 is used. Sudden deterioration of the module 41 can be detected with high accuracy. Even when data including an estimation error of SOH is used as in the battery module 41 mounted on the electric vehicle 3, robust detection can be performed. According to the experiment of the present inventor, it was found that the maximum error can be suppressed to about 5% if there is about 100 points of SOH. If SOH is estimated once a day, sudden deterioration can be detected with high accuracy in a little over 3 months. The error is reduced as the number of SOH increases.
  • a method of determining sudden deterioration based on the amount of change in the slope of a straight line obtained by linearly regressing the amount of change in FCC or SOH of the battery module 41 is also conceivable. This method is considered to work effectively when the error or noise is small, but when the error or noise is large, the determination of sudden deterioration may become unstable.
  • a deterioration regression curve is generated by dividing the time-series SOH data section.
  • the deterioration coefficient w1 of the deterioration regression curve does not substantially change.
  • the deterioration coefficient w1 of the deterioration regression curve as a parameter, it is possible to detect a change in the deterioration regression curve itself due to sudden deterioration.
  • By detecting the change in the deterioration regression curve itself it is possible to perform robust detection by comparing the change amount of the FCC or SOH with the case of detecting the change in the slope of the straight line linearly regression.
  • the calculation system 1 determines the presence or absence of sudden deterioration based on the measurement data transmitted from the electric vehicle 3 instead of the battery management unit 42 in the electric vehicle 3, the business operator who owns a large number of electric vehicles 3. Vehicle management can be streamlined.
  • the data section may be divided by the number of days (for example, 100 days). In this case, it becomes easy to set the confirmation of the presence or absence of sudden deterioration of the battery module 41 as one of the items of the periodic vehicle inspection.
  • the deterioration regression curve generation unit 4614 compares the deterioration coefficient w1 based on the data of the first data section and the deterioration coefficient w1 based on the data of the second data section.
  • the deterioration regression curve generation unit 4614 statistically processes a deterioration coefficient w1 based on the data of the first data section and a plurality of deterioration coefficients w1 based on the data of the plurality of data sections (for example,). It may be compared with the mean value, the variance value, the standard deviation value).
  • the deterioration regression curve generation unit 4614 When comparing by the variance value, the deterioration regression curve generation unit 4614 has the squared value of the deviation of the deterioration coefficient w1 based on the data of the first data section and the plurality of deterioration coefficients w1 based on the data of the plurality of data sections. Compare with the variance value. When comparing with the standard deviation value, the deterioration regression curve generation unit 4614 uses the absolute value of the deviation of the deterioration coefficient w 1 based on the data of the first data section and the plurality of deterioration coefficients w 1 based on the data of the plurality of data sections. Compare with the standard deviation value of. In these cases, sudden deterioration can be detected with higher accuracy.
  • an AC signal in the frequency band (for example, 100 Hz to 10 kHz) on which the electrolytic solution reacts is applied from the outside of the battery module 41 to measure the AC impedance value of the battery module 41, and the measured AC impedance value is equal to or higher than the threshold value.
  • the circuit is unnecessary.
  • the electric vehicle 3 may be moved to the ground to determine the sudden deterioration based on the AC impedance value.
  • the sudden deterioration determination method according to the present embodiment is performed frequently (for example, when the data is increased by one), sudden deterioration occurs even though the sudden deterioration has not actually occurred. The probability of erroneous determination is high.
  • the sudden deterioration determination method according to the present embodiment can be used. Even if it is performed frequently, the probability of erroneous judgment is low. That is, the sudden deterioration of the battery module 41 can be detected at an early stage with high accuracy.
  • the electric vehicle 3 may be a two-wheeled electric motorcycle (electric scooter) or an electric bicycle. Further, the electric vehicle 3 also includes a low-speed electric vehicle 3 such as a golf cart and a land car used in a shopping mall, an entertainment facility, or the like.
  • the target on which the battery module 41 is mounted is not limited to the electric vehicle 3.
  • electric mobile bodies such as electric vessels, railroad vehicles, and multicopters (drones) are also included.
  • the target on which the battery module 41 is mounted also includes a stationary power storage system and a consumer electronic device (smartphone, notebook PC, etc.).
  • the embodiment may be specified by the following items.
  • a measuring unit (43-45) that measures at least the voltage and current of the battery (E1, 41), and Based on the measurement data of the battery (E1, 41), the SOH estimation unit (4613) for estimating the SOH (State Of Health) of the battery (E1, 41) and A deterioration regression curve generation unit (4614) that generates a deterioration regression curve of the battery (E1, 41) by curve-regressing a plurality of SOH specified in the time series of the battery (E1, 41).
  • the deterioration coefficient of the deterioration regression curve of the battery (E1, 41) generated based on the plurality of SOH of the first data section and the battery generated based on the plurality of SOH of the second data section.
  • a battery management device (42) that determines whether or not sudden deterioration has occurred in the battery (E1, 41) based on the difference or ratio with the deterioration coefficient of the deterioration regression curve of (E1, 41).
  • the battery (E1, 41) may be the cell E1 or the module 41.
  • the sudden deterioration determination unit (4615) determines that the battery (E1, 41) has undergone sudden deterioration when the difference or the ratio deviates from a predetermined range.
  • the battery management device (42) according to item 1.
  • sudden deterioration can be detected with high accuracy by detecting that the deterioration is out of the normal deterioration.
  • the first data section is a section containing a past a SOH from the last specified SOH.
  • the second data section is a section containing the past b (b> a) SOH from the last specified SOH.
  • the battery management device (42) according to item 1 or 2, wherein the battery management device (42) is characterized in that.
  • stable detection can be performed by duplicating the data sections.
  • the first data section is a section containing a past a SOH from the last specified SOH.
  • the second data section is a section containing a past a SOH from the last specified SOH, excluding the first data section.
  • the battery management device (42) according to item 1 or 2, wherein the battery management device (42) is characterized in that.
  • the second data section includes a plurality of data sections and includes a plurality of data sections.
  • the deterioration coefficient of the second data section is a value obtained by statistically processing each deterioration coefficient of the plurality of data sections.
  • the detection accuracy can be further improved.
  • a sudden deterioration determination unit (114) that determines whether or not sudden deterioration has occurred in the battery (E1, 41) based on the difference or ratio of the deterioration curve of E1, 41) to the deterioration coefficient.
  • An arithmetic system (1) characterized in that it is provided with.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

SOH推定部(4613)は、電池(E1、41)の測定データをもとに、電池(E1、41)のSOH(State Of Health)を推定する。劣化回帰曲線生成部(4614)は、電池(E1、41)の時系列に特定された複数のSOHを曲線回帰して、電池(E1、41)の劣化回帰曲線を生成する。急劣化判定部(4615)は、第1のデータ区間の複数のSOHをもとに生成される電池(E1、41)の劣化回帰曲線の劣化係数と、第2のデータ区間の複数のSOHをもとに生成される電池(E1、41)の劣化回帰曲線の劣化係数との差または比率をもとに、電池(E1、41)に急劣化が発生しているか否かを判定する。

Description

電池管理装置、演算システム、電池の劣化予測方法、及び電池の劣化予測プログラム
 本開示は、電池の劣化予測を行うための電池管理装置、演算システム、電池の劣化予測方法、及び電池の劣化予測プログラムに関する。
 近年、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)、電気自動車(EV)が普及してきている。これらの電動車両にはキーデバイスとして、リチウムイオン電池などの二次電池が搭載される。
 リチウムイオン電池などの二次電池を低温下で繰り返し充放電すると、容量の急激な劣化(以下、急劣化または三次劣化という)が発生しやすくなる。また二次電池をハイレートで繰り返し充放電する場合も、容量の急劣化が発生しやすくなる。容量の急劣化は、電解液の減少、極板反応面積の低下などに起因して発生する。容量の急劣化後は、入出力性能が著しく低下する。また急劣化に伴い、イオンとして溶けているリチウムが金属として析出する現象が発生しやすくなる。金属リチウムが析出すると、金属リチウムがセパレータを貫通し、正極と負極を短絡させる可能性がある。このように容量の急劣化後は、二次電池の安定性、安全性が低下するため、基本的に二次電池の使用を終了させる。
 二次電池の急劣化を検出する方法として、二次電池の満充電容量(FCC:Full Charge Capacity)又は容量維持率(SOH:State Of Health)と使用経過時間を入力とし、経過時間に対する満充電容量又は容量維持率の変化量を線形回帰した直線の傾きの変化量が、閾値を超えた場合に急劣化が発生したと判定する方法が提案されている(例えば、特許文献1参照)。
国際公開第17/098686号
 走行中の電動車両の測定データをもとに算出されるFCC、SOC(State Of Charge)、SOHの値は、センサの測定誤差やノイズの影響を受ける。誤差やノイズの影響が大きい場合、上述したFCC又はSOCの変化量を線形回帰させる方法では、誤判定する可能性が高くなる。
 本開示はこうした状況に鑑みなされたものであり、その目的は、電池の急劣化を高精度に検出する技術を提供することにある。
 上記課題を解決するために、本開示のある態様の電池管理装置は、電池の電圧と電流を少なくとも測定する測定部と、前記電池の測定データをもとに、前記電池のSOHを推定するSOH推定部と、前記電池の時系列に特定された複数のSOHを曲線回帰して、前記電池の劣化回帰曲線を生成する劣化回帰曲線生成部と、第1のデータ区間の複数のSOHをもとに生成される前記電池の劣化回帰曲線の劣化係数と、第2のデータ区間の複数のSOHをもとに生成される前記電池の劣化回帰曲線の劣化係数との差または比率をもとに、前記電池に急劣化が発生しているか否かを判定する急劣化判定部と、を備える。
 なお、以上の構成要素の任意の組み合わせ、本開示の表現を方法、装置、システム、コンピュータプログラムなどの間で変換したものもまた、本開示の態様として有効である。
 本開示によれば、電池の急劣化を高精度に検出することができる。
実施の形態に係る、事業者により利用される演算システムを説明するための図である。 実施の形態に係る、電動車両に搭載された電池システムの詳細な構成を説明するための図である。 実施例1に係る電池制御部の構成例を示す図である。 FCCの推定方法を説明するための図である。 二次電池の劣化曲線をグラフで示した図である。 二次電池に急劣化が発生した場合の劣化曲線の一例をグラフで示した図である。 データ区間が異なる複数の劣化曲線の具体例をグラフで示した図である。 データ区間の第1の区切り方法の具体例を示す図である。 データ区間の第2の区切り方法の具体例を示す図である。 電池管理部による電池モジュールの急劣化判定処理の流れを示すフローチャートである。 実施例2に係る演算システムの構成例を示す図である。
 図1は、実施の形態に係る、事業者により利用される演算システム1を説明するための図である。事業者は、複数の電動車両3を保有し、複数の電動車両3を活用して事業を営んでいる。例えば、事業者は複数の電動車両3を活用して、配送事業(宅配事業)、タクシー事業、レンタカー事業、又はカーシェアリング事業を営んでいる。本実施の形態では、電動車両3として、エンジンを搭載しない純粋なEVを想定する。
 演算システム1は、事業者の業務を管理するためのシステムである。演算システム1は、1台または複数台の情報処理装置(例えば、サーバ、PC)で構成される。演算システム1を構成する情報処理装置の一部または全部はデータセンタに存在していてもよい。例えば、データセンタ内のサーバ(自社サーバ、クラウドサーバ、又はレンタルサーバ)と、事業者内のクライアントPCの組み合わせで構成されてもよい。
 複数の電動車両3は、待機中は、事業者の営業所の駐車場や車庫内に駐車されている。複数の電動車両3は無線通信機能を有し、演算システム1と無線通信が可能である。複数の電動車両3は、搭載している二次電池の運用データを含む走行データを演算システム1に送信する。電動車両3は走行中に、演算システム1を構成するサーバに走行データを、ネットワークを介して無線送信してもよい。例えば、10秒に1回の頻度で走行データを都度送信してもよい。また、1日1回の所定のタイミングに(例えば、営業時間の終了時に)、1日分の走行データをバッチ送信してもよい。
 また、演算システム1が営業所に設置された自社のサーバ又はPCで構成される場合、電動車両3は、営業終了後に営業所に帰還した後、1日分の走行データを当該自社のサーバ又はPCに送信してもよい。その場合、当該自社のサーバ又はPCに無線で送信してもよいし、当該自社のサーバ又はPCと有線接続して有線経由で送信してもよい。また、走行データが記録された記録メディアを経由して、当該自社のサーバ又はPCにデータを送信してもよい。また、演算システム1がクラウドサーバと営業者内のクライアントPCの組み合わせで構成される場合、電動車両3は、営業者内のクライアントPCを経由して、走行データをクラウドサーバに送信してもよい。
 図2は、実施の形態に係る、電動車両3に搭載された電池システム40の詳細な構成を説明するための図である。電池システム40は、第1リレーRY1及びインバータ35を介してモータ34に接続される。インバータ35は力行時、電池システム40から供給される直流電力を交流電力に変換してモータ34に供給する。回生時、モータ34から供給される交流電力を直流電力に変換して電池システム40に供給する。モータ34は三相交流モータであり、力行時、インバータ35から供給される交流電力に応じて回転する。回生時、減速による回転エネルギーを交流電力に変換してインバータ35に供給する。
 第1リレーRY1は、電池システム40とインバータ35を繋ぐ配線間に挿入されるコンタクタである。車両制御部30は、走行時、第1リレーRY1をオン状態(閉状態)に制御し、電池システム40と電動車両3の動力系を電気的に接続する。車両制御部30は非走行時、原則として第1リレーRY1をオフ状態(開状態)に制御し、電池システム40と電動車両3の動力系を電気的に遮断する。なおリレーの代わりに、半導体スイッチなどの他の種類のスイッチを用いてもよい。
 電池システム40は、電動車両3の外に設置された充電器4と充電ケーブル38で接続することにより商用電力系統9から充電することができる。充電器4は商用電力系統9に接続され、充電ケーブル38を介して電動車両3内の電池システム40を充電する。電動車両3において、電池システム40と充電器4を繋ぐ配線間に第2リレーRY2が挿入される。なおリレーの代わりに、半導体スイッチなどの他の種類のスイッチを用いてもよい。電池システム40の電池管理部42は充電開始前に、第2リレーRY2をオン状態(閉状態)に制御し、充電終了後にオフ状態(開状態)に制御する。
 一般的に、普通充電の場合は交流で、急速充電の場合は直流で充電される。交流で充電される場合、第2リレーRY2と電池システム40との間に挿入されるAC/DCコンバータ(不図示)により、交流電力が直流電力に変換される。
 電池システム40は、電池モジュール41と電池管理部42を備え、電池モジュール41は、直列接続された複数のセルE1-Enを含む。なお電池モジュール41は、複数の電池モジュールが直列/直並列接続されて構成されていてもよい。セルには、リチウムイオン電池セル、ニッケル水素電池セル、鉛電池セル等を用いることができる。以下、本明細書ではリチウムイオン電池セル(公称電圧:3.6-3.7V)を使用する例を想定する。セルE1-Enの直列数は、モータ34の駆動電圧に応じて決定される。
 複数のセルE1-Enと直列にシャント抵抗Rsが接続される。シャント抵抗Rsは電流検出素子として機能する。なおシャント抵抗Rsの代わりにホール素子を用いてもよい。また電池モジュール41内に、複数のセルE1-Enの温度を検出するための複数の温度センサT1、T2が設置される。温度センサは電池モジュールに1つ設置されてもよいし、複数のセルごとに1つ設置されてもよい。温度センサT1、T2には例えば、サーミスタを使用することができる。
 電池管理部42は、電圧測定部43、温度測定部44、電流測定部45及び電池制御部46を備える。直列接続された複数のセルE1-Enの各ノードと、電圧測定部43との間は複数の電圧線で接続される。電圧測定部43は、隣接する2本の電圧線間の電圧をそれぞれ測定することにより、各セルE1-Enの電圧を測定する。電圧測定部43は、測定した各セルE1-Enの電圧を電池制御部46に送信する。
 電圧測定部43は電池制御部46に対して高圧であるため、電圧測定部43と電池制御部46間は絶縁された状態で、通信線で接続される。電圧測定部43は、ASIC(Application Specific Integrated Circuit)または汎用のアナログフロントエンドICで構成することができる。電圧測定部43はマルチプレクサ及びA/D変換器を含む。マルチプレクサは、隣接する2本の電圧線間の電圧を上から順番にA/D変換器に出力する。A/D変換器は、マルチプレクサから入力されるアナログ電圧をデジタル値に変換する。
 温度測定部44は分圧抵抗およびA/D変換器を含む。A/D変換器は、複数の温度センサT1、T2と複数の分圧抵抗によりそれぞれ分圧された複数のアナログ電圧を順次、デジタル値に変換して電池制御部46に出力する。電池制御部46は当該デジタル値をもとに複数のセルE1-Enの温度を推定する。例えば電池制御部46は、各セルE1-Enの温度を、各セルE1-Enに最も隣接する温度センサで測定された値をもとに推定する。
 電流測定部45は差動アンプ及びA/D変換器を含む。差動アンプはシャント抵抗Rsの両端電圧を増幅してA/D変換器に出力する。A/D変換器は、差動アンプから入力される電圧をデジタル値に変換して電池制御部46に出力する。電池制御部46は当該デジタル値をもとに複数のセルE1-Enに流れる電流を推定する。
 なお電池制御部46内にA/D変換器が搭載されており、電池制御部46にアナログ入力ポートが設置されている場合、温度測定部44及び電流測定部45はアナログ電圧を電池制御部46に出力し、電池制御部46内のA/D変換器でデジタル値に変換してもよい。
 電池制御部46は、電圧測定部43、温度測定部44及び電流測定部45により測定された複数のセルE1-Enの電圧、温度、及び電流をもとに複数のセルE1-Enの状態を管理する。電池制御部46と車両制御部30間は、車載ネットワークにより接続される。車載ネットワークとして例えば、CAN(Controller Area Network)やLIN(Local Interconnect Network)を使用することができる。
 図3は、実施例1に係る電池制御部46の構成例を示す図である。電池制御部46は、処理部461及び記憶部462を備える。処理部461は、SOC推定部4611、FCC推定部4612、SOH推定部4613、劣化回帰曲線生成部4614、急劣化判定部4615及びデータ送信部4616を含む。処理部461の機能はハードウェア資源とソフトウェア資源の協働、又はハードウェア資源のみにより実現できる。ハードウェア資源として、CPU、ROM、RAM、ASIC、FPGA(Field Programmable Gate Array)、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。
 記憶部462は、SOC-OCV(Open Circuit Voltage)特性保持部4621、電池データ保持部4622及び時系列SOH値保持部4623を含む。記憶部462は、EEPROM(Electrically Erasable Programmable Read-Only Memory)、NAND型フラッシュメモリ等の不揮発性の記録媒体を含み、各種のプログラム及びデータを記録する。
 SOC-OCV特性保持部4621には、複数のセルE1-EnのSOC-OCVカーブの特性データが記述されている。複数のセルE1-EnのSOC-OCVカーブは、電池メーカにより予め作成され、出荷時にSOC-OCV特性保持部4621に登録される。電池メーカは各種の試験を行って、セルE1-EnのSOC-OCVカーブを導出している。
 電池データ保持部4622は、複数のセルE1-Enの電圧、電流、温度を含む電池データを時系列に記録する。なお電池データには、SOC推定部4611により推定されるSOCがさらに含まれていてもよい。
 時系列SOH値保持部4623は、SOH推定部4613により推定されるSOHの時系列データを保持する。SOHの時系列データは、例えば、1日に1回、数日に1回、又は1週間に1回の頻度で記録される。なお、時系列SOH値保持部4623と電池データ保持部4622は、1つのテーブルに統合されていてもよい。
 SOC推定部4611は、複数のセルE1-EnのそれぞれのSOCを推定する。SOC推定部4611は、OCV法、電流積算法、又は両者を組み合わせてSOCを推定する。OCV法は、電圧測定部43により測定される各セルE1-EnのOCVと、SOC推定部4611に保持されるSOC-OCVカーブの特性データをもとにSOCを推定する方法である。電流積算法は、各セルE1-Enの充放電開始時のOCVと、電流測定部45により測定される電流の積算値をもとにSOCを推定する方法である。電流積算法は、充放電時間が長くなるにつれて、電流測定部45の測定誤差が累積していく。従って、OCV法により推定されたSOCを用いて、電流積算法により推定されたSOCを補正することが好ましい。
 FCC推定部4612は、SOC推定部4611に保持されるSOC-OCVカーブの特性データと、電圧測定部43により測定されるセルの2点のOCVをもとに当該セルのFCCを推定することができる。
 図4は、FCCの推定方法を説明するための図である。FCC推定部4612は、セルの2点のOCVを取得する。FCC推定部4612は、SOC-OCVカーブを参照して、2点の電圧にそれぞれ対応する2点のSOCを特定し、2点のSOCの差分ΔSOCを算出する。図4に示す例では2点のSOCは20%と75%であり、ΔSOCは55%である。
 FCC推定部4612は、電流測定部45により測定される電流の推移をもとに、2点のOCVを取得した2点の時刻の間の期間の電流積算量(=充放電容量)Qを算出する。FCC推定部4612は、下記(式1)を算出してFCCを推定することができる。
 FCC=Q/ΔSOC ・・・(式1)
 SOH推定部4613は、推定されたFCCをもとにSOHを推定する。SOHは、初期のFCCに対する現在のFCCの比率で規定され、数値が低いほど(0%に近いほど)劣化が進行していることを示す。SOH推定部4613は、下記(式2)を算出してSOHを推定することができる。
 SOH=現在のFCC/初期のFCC ・・・(式2)
 また、SOHは、完全充放電による容量測定により求めてもよいし、保存劣化とサイクル劣化を合算することにより求めてもよい。保存劣化はSOC、温度、及び保存劣化速度をもとに推定することができる。サイクル劣化は、使用するSOC範囲、温度、電流レート、及びサイクル劣化速度をもとに推定することができる。保存劣化速度およびサイクル劣化速度は、予め実験やシミュレーションにより導出することができる。SOC、温度、SOC範囲、及び電流レートは測定により求めることができる。
 またSOHは、セルの内部抵抗との相関関係をもとに推定することもできる。内部抵抗は、セルに所定の電流を所定時間流した際に発生する電圧降下を、当該電流値で割ることにより推定することができる。内部抵抗は温度が上がるほど低下する関係にあり、SOHが低下するほど増加する関係にある。
 SOH推定部4613は、推定したSOHを時系列SOH値保持部4623に保存する。SOH推定部4613は、例えば、1日に1回、数日に1回、又は1週間に1回の頻度でSOHを推定し、時系列SOH値保持部4623に保存する。
 劣化回帰曲線生成部113は、電池モジュール41の時系列に特定された複数のSOHを曲線回帰して、電池モジュール41の劣化回帰曲線を生成する。曲線回帰には例えば、最小二乗法を使用することができる。
 図5は、二次電池の劣化曲線をグラフで示した図である。二次電池の劣化は、下記(式3)に示すように、時間の平方根(0.5乗則)に比例して進行することが知られている。
 SOH=w+w√t ・・・(式3)
 wは初期値、wは劣化係数。
 劣化回帰曲線生成部4614は、時間tを独立変数、SOHを従属変数とする、0.5乗の指数曲線回帰により、上記(式3)の劣化係数wを求める。wは共通であり、通常、1.0~1.1の範囲に設定される。実際の初期容量と公称値が一致している場合はw=1.0に設定され、公称値が最低保証量に設定され、実際の初期容量より低く設定されている場合は、1.0より大きい値が設定される。
 図6は、二次電池に急劣化が発生した場合の劣化曲線の一例をグラフで示した図である。図6では、P1点で急劣化が発生した例を示している。上述のように低温または高温環境下での充放電、ハイレートでの充放電など、二次電池にとって負担が大きい使用方法が繰り返し行われると、急劣化が発生しやすくなる。急劣化が発生すると、基本的に二次電池が使用できなくなるため二次電池の寿命が短くなる。急劣化の主な要因は電解液の減少にあるが、電解液の量を直接測定するには二次電池を分解する必要がある。電池モジュール41の使用中に各セルE1-Enを分解するのは現実的ではなく、各セルE1-Enを分解せずに急劣化を判定する方法が求められる。これに対して本実施の形態では、電池モジュール41のSOHが、劣化曲線から大きく外れることを検出することにより急劣化の発生を検出する。
 急劣化判定部4615は、第1のデータ区間の複数のSOHをもとに生成される電池モジュール41の劣化回帰曲線の劣化係数wと、第2のデータ区間の複数のSOHをもとに生成される電池モジュール41の劣化回帰曲線の劣化係数wとの差または比率をもとに、電池モジュール41に急劣化が発生しているか否かを判定する。急劣化判定部4615は、当該差または当該比率が所定範囲を逸脱しているとき、電池モジュール41に急劣化が発生していると判定する。即ち、急劣化判定部4615は、当該差または当該比率の絶対値が閾値を超えているとき急劣化が発生していると判定し、当該閾値以下のとき急劣化が発生していないと判定する。当該閾値には、実験やシミュレーションにより導出された値を使用することができる。なお、急劣化の判定はセル単位で実行されてもよい。
 図7は、データ区間が異なる複数の劣化曲線の具体例をグラフで示した図である。図7に示す劣化回帰曲線(SOH=w+w√t)のwは、1.05に設定されている。これは、電池モジュール41の実際の初期容量が公称値より大きいことを示している。図7に示す例では、過去100点のSOHにもとづく劣化曲線、過去200点のSOHにもとづく劣化曲線、過去300点のSOHにもとづく劣化曲線、及び全点のSOHにもとづく劣化曲線を重畳して描いている。過去200点にもとづく劣化曲線、過去300点にもとづく劣化曲線、及び全点にもとづく劣化曲線はほぼ同じであり、各劣化曲線の劣化係数wもほぼ同じ値になっている。これに対して、過去100点にもとづく劣化曲線の劣化係数wは、他の3本の劣化曲線の劣化係数wより小さな値になっている。
 図7に示す例では、点線丸で囲った領域R1に含まれるSOHが、それ以前の領域のSOHより大きく低下していることが分かる。従って、領域R1のどこかの地点で急劣化が発生したと推定できる。上記閾値を例えば、過去100点にもとづく劣化曲線の劣化係数wと過去200点にもとづく劣化曲線の劣化係数wとの領域R1における差分に対応する値に設定すれば、両者の劣化係数wを比較することにより、領域R1を検出することができる。
 図8は、データ区間の第1の区切り方法の具体例を示す図である。第1の区切り方法は、複数のデータ区間の終点を共通にして、過去に遡るデータの個数を変えるものである。例えば、第1のデータ区間は、最後に特定されたSOHから過去a個のSOHを含む区間に設定される。第2のデータ区間は、最後に特定されたSOHから過去b(b>a)個のSOHを含む区間に設定される。第3のデータ区間は、最後に特定されたSOHから過去c(c>b>a)個のSOHを含む区間に設定される。図8に示す例では、a=100、b=200、c=300である。
 図9は、データ区間の第2の区切り方法の具体例を示す図である。第2の区切り方法は、複数のデータ区間の個数を共通にして、過去に順次遡る区切り方法である。第1のデータ区間は、最後に特定されたSOHから過去a個のSOHを含む区間に設定される。第2のデータ区間は、第1のデータ区間に含まれるSOHを除いて、最後に特定されたSOHから過去a個のSOHを含む区間に設定される。第3のデータ区間は、第1のデータ区間及び第2のデータ区間に含まれるSOHを除いて、最後に特定されたSOHから過去a個のSOHを含む区間に設定される。図9に示す例では、a=100である。
 図3に戻る。電池制御部46のデータ送信部4616は、複数のセルE1-Enの電圧、電流、温度、SOC、FCC、SOHを、車載ネットワークを介して車両制御部30に通知する。車両制御部30は、電池データと車両データを含む走行データを生成する。電池データには、複数のセルE1-Enの電圧、電流、温度が含まれる。なお電池システム40によっては、電池データに電圧、電流、温度に加えてSOCを含めることができる機種もある。さらに、電圧、電流、温度、SOCに加えて、FCC及びSOHの少なくとも一方を含めることができる機種もある。車両データには、平均速度、走行距離、走行ルート等を含めることができる。
 急劣化判定部4615により電池モジュール41の急劣化が検出された場合、データ送信部4616は急劣化検出信号を、車載ネットワークを介して車両制御部30に通知する。車両制御部30は電池モジュール41の急劣化検出信号を受信すると、運転席に設けられたメーターパネル内の、電池モジュール41の異常を示す警告ランプを点灯させて、運転者に電池モジュール41の異常を通知する。また車両制御部30は、音声合成出力により電池モジュール41の異常を運転者に通知してもよい。
 無線通信部36は、アンテナ36aを介してネットワークに無線接続するための信号処理を行う。本実施の形態では、無線通信部36は、車両制御部30から取得した走行データを演算システム1に無線送信する。また、無線通信部36は、車両制御部30から取得した電池モジュール41の急劣化検出信号を演算システム1に無線送信する。電動車両3が無線接続可能な無線通信網として、例えば、携帯電話網(セルラー網)、無線LAN、ETC(Electronic Toll Collection System)、DSRC(Dedicated Short Range Communications)、V2I(Vehicle-to-Infrastructure)、V2V(Vehicle-to-Vehicle)を使用することができる。
 図10は、電池管理部42による電池モジュール41の急劣化判定処理の流れを示すフローチャートである。SOH推定部4613は、電池モジュール41の測定データをもとに電池モジュール41のSOHを推定する(S10)。
 電池モジュール41の急劣化の有無を判定するタイミングにおいて、劣化回帰曲線生成部4614は、電池モジュール41の第1のデータ区間の複数のSOHを曲線回帰して、電池モジュール41の第1の劣化回帰曲線を生成する(S11)。同時に、劣化回帰曲線生成部4614は、電池モジュール41の第2のデータ区間の複数のSOHを曲線回帰して、電池モジュール41の第2の劣化回帰曲線を生成する(S12)。
 急劣化判定部4615は、第1の劣化回帰曲線の劣化係数wと第2の劣化回帰曲線の劣化係数wとの差を算出する(S13)。急劣化判定部4615は、当該差の絶対値が閾値以下のとき(S14のN)、電池モジュール41に急劣化が発生していないと判定する(S15)。急劣化判定部4615は、当該差の絶対値が当該閾値を超えるとき(S14のY)、電池モジュール41に急劣化が発生していると判定する(S16)。
 上述した実施例1では、電池モジュール41の急劣化判定処理を電池管理部42が行う例を説明した。この点、電池モジュール41の急劣化判定処理を演算システム1が行ってもよい。
 図11は、実施例2に係る演算システム1の構成例を示す図である。演算システム1は、処理部11、記憶部12、表示部13及び操作部14を備える。処理部11は、データ取得部111、SOH特定部112、劣化回帰曲線生成部113、急劣化判定部114、操作受付部115及び表示制御部116を含む。処理部11の機能はハードウェア資源とソフトウェア資源の協働、又はハードウェア資源のみにより実現できる。ハードウェア資源として、CPU、GPU(Graphics Processing Unit)、ROM、RAM、ASIC、FPGA、その他のLSIを利用できる。ソフトウェア資源としてオペレーティングシステム、アプリケーション等のプログラムを利用できる。
 記憶部12は、走行データ保持部121、運転者データ保持部122、SOC-OCV特性保持部123及び時系列SOH値保持部124を含む。記憶部12は、HDD(Hard Disk Drive)、SSD(Solid State Drive)等の不揮発性の記録媒体を含み、各種のプログラム及びデータを記録する。
 走行データ保持部121は、事業者が保有している複数の電動車両3から収集した走行データを保持する。運転者データ保持部122は、事業者に所属する複数の運転者のデータを保持する。例えば、運転者ごとに、運転した電動車両3ごとの累計走行距離を管理する。
 SOC-OCV特性保持部123は、事業者が保有している複数の電動車両3にそれぞれ搭載された複数の電池モジュール41のSOC-OCV特性を保持する。電池モジュール41のSOC-OCV特性は、各電動車両3から取得したものを使用してもよいし、各電動車両3から収集された走行データをもとに推定したものを使用してもよい。
 後者の場合、処理部11のSOC-OCV特性推定部(不図示)は、取得された電池データに含まれる複数の時刻のSOCと電圧の組から、電池モジュール41が休止状態とみなせる期間のSOCと電圧(≒OCV)の組を抽出し、抽出した複数組のSOCとOCVをもとにSOC-OCV特性を近似する。なおSOC-OCV特性推定部は、同種別の電池モジュール41を搭載した複数の電動車両3から取得されたSOCとOCVの組データをもとに、当該種別の電池モジュール41の共通のSOC-OCV特性を生成してもよい。なお、SOC-OCV特性はセル単位で保持されてもよい。
 時系列SOH値保持部124は、電池モジュール41ごとのSOHの時系列データを保持する。SOHの時系列データは、例えば、1日に1回、数日に1回、又は1週間に1回の頻度で記録される。
 表示部13は液晶ディスプレイ、有機ELディスプレイ等のディスプレイを備え、処理部11により生成された画像を表示する。操作部14はキーボード、マウス、タッチパネル等のユーザインタフェースであり、演算システム1のユーザの操作を受け付ける。
 データ取得部111は、複数の電動車両3にそれぞれ搭載された電池モジュール41の電池データを含む走行データを取得し、取得した走行データを走行データ保持部121に保存する。SOH特定部112は、データ取得部111により取得された走行データに含まれる電池データをもとに、各電動車両3に搭載された電池モジュール41のSOHを特定する。SOH特定部112は、特定したSOHを時系列SOH値保持部124に保存する。
 取得された電池データにSOHが含まれる場合、SOH特定部112は、取得したSOHをそのまま使用することができる。取得された電池データにSOHが含まれないが、電圧、電流、温度、SOCが含まれる場合、上記(式1)及び(式2)をもとにSOHを算出することができる。即ち、SOH特定部112は、電池データに含まれる電流の推移をもとに、2点のOCVを取得した2点の時刻の間の期間の電流積算量Qを算出し、算出した電流積算量Qを上記(式1)に適用してFCCを推定する。SOH特定部112は、算出したFCCを上記(式2)に適用してSOHを算出する。
 取得された電池データにSOCもSOHも含まれない場合、SOH特定部112は、電池モジュール41が休止状態とみなせる期間の電圧(≒OCV)を、SOC-OCV特性に適用してSOCを推定する。または、SOH特定部112は、一定期間の電流値を積算してSOCを推定する。SOH特定部112は、推定したSOCを使用して、電池データにSOCが含まれる場合と同様にSOHを算出する。
 劣化回帰曲線生成部113は、各電池モジュール41の時系列に特定された複数のSOHを曲線回帰して、各電池モジュール41の劣化回帰曲線を生成する。急劣化判定部114は、特定の電池モジュール41の時系列のSOHにおける、第1のデータ区間の複数のSOHをもとに生成される当該電池モジュール41の劣化回帰曲線の劣化係数wと、第2のデータ区間の複数のSOHをもとに生成される当該電池モジュール41の劣化回帰曲線の劣化係数wとの差または比率を算出する。急劣化判定部114は、算出した差または比率をもとに、当該電池モジュール41に急劣化が発生しているか否かを判定する。
 操作受付部117は、操作部14に対するユーザの操作を受け付ける。表示制御部118は、各種の情報を表示部13に表示させる。実施例2では、各電池モジュール41の急劣化の判定結果を表示させる。
 以上説明したように本実施の形態によれば、データ区間を変えて生成した複数の劣化回帰曲線の劣化係数wの差または比率を参照することにより、電池モジュール41を分解せずに、電池モジュール41の急劣化を高精度に検出することができる。電動車両3に搭載された電池モジュール41のように、SOHの推定誤差を含むデータを使用する場合でも、頑健な検出を行うことができる。本発明者の実験によれば、100点程度のSOHがあれば、最大誤差を5%程度に抑えることができることが分かった。SOHを1日1回の頻度で推定すれば、3ヶ月強で急劣化を高精度に検出できる状態になる。なお、SOHの数が多くなるほど誤差が低減される。
 電池モジュール41のFCC又はSOHの変化量を線形回帰した直線の傾きの変化量をもとに急劣化を判定する方法も考えられる。この方法は、誤差やノイズが小さい場合には有効に機能すると考えられるが、誤差やノイズが大きい場合には、急劣化の判定が不安定になる可能性がある。
 これに対して本実施の形態では、時系列のSOHのデータ区間を区切って劣化回帰曲線を生成する。通常劣化であれば、劣化回帰曲線の劣化係数w1に実質的な変化は発生しない。劣化回帰曲線の劣化係数w1をパラメータとして使用することにより、急劣化に起因する劣化回帰曲線そのものの変化を検出することができる。劣化回帰曲線そのものの変化を検出することにより、FCC又はSOHの変化量を線形回帰した直線の傾きの変化を検出する場合と比較し、頑健な検出を行うことができる。
 電動車両3に搭載された電池モジュール41に急劣化が発生すると、電動車両3の走行可能距離が急減する。急劣化を検出することで電動車両3の適切な時期での交換や、使用方法の変更などを行うことができる。このように電池モジュール41の急劣化を検出することにより、電池モジュール41の使用に対する安全性を向上させることができる。
 また、電動車両3内の電池管理部42ではなく、電動車両3から送信された測定データをもとに演算システム1が急劣化の有無を判定する場合、多数の電動車両3を保有する事業者の車両管理を効率化することができる。
 以上、本開示を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
 上述の実施の形態では、データ区間をSOHの個数で区切る例を説明した。この点、データ区間を日数(例えば、100日など)で区切ってもよい。この場合、電池モジュール41の急劣化の有無の確認を、定期的な車両点検の項目の一つとして設定しやすくなる。
 上述の実施の形態では、劣化回帰曲線生成部4614は、第1のデータ区間のデータにもとづく劣化係数wと第2のデータ区間のデータにもとづく劣化係数wとを比較した。この点、劣化回帰曲線生成部4614は、第1のデータ区間のデータにもとづく劣化係数wと、複数のデータ区間のデータにもとづく複数の劣化係数wを統計的に処理した値(例えば、平均値、分散値、標準偏差値)とを比較してもよい。
 分散値で比較する場合、劣化回帰曲線生成部4614は、第1のデータ区間のデータにもとづく劣化係数wの偏差の二乗値と、複数のデータ区間のデータにもとづく複数の劣化係数wの分散値とを比較する。標準偏差値で比較する場合、劣化回帰曲線生成部4614は、第1のデータ区間のデータにもとづく劣化係数wの偏差の絶対値と、複数のデータ区間のデータにもとづく複数の劣化係数wの標準偏差値とを比較する。これらの場合、より高精度に急劣化を検出することができる。
 上述の実施の形態に係る急劣化の判定方法と、別の急劣化の判定方法と組み合わせて使用してもよい。例えば、電池モジュール41の外部から、電解液が反応する周波数帯(例えば、100Hz~10kHz)の交流信号を印加して、電池モジュール41の交流インピーダンス値を測定し、測定した交流インピーダンス値が閾値以上であるか否かに応じて、電池モジュール41の急劣化を検出または予測する方法がある。この方法では、電池モジュール41に交流信号を印加し、交流インピーダンス値を測定する回路が必要になる。一方、本実施の形態に係る急劣化の判定方法では、当該回路は不要である。
 本実施の形態に係る急劣化の判定方法により急劣化が発生していると判定された場合、電池モジュール41の交流インピーダンス値を測定可能な回路装置を有している施設(例えば、カーディーラ)に電動車両3を移動させ、交流インピーダンス値による急劣化の判定を行ってもよい。
 電池モジュール41に急劣化が発生してから早期に、ユーザに警告を通知するには、急劣化の判定処理を高頻度に行う必要がある。本実施の形態に係る急劣化の判定方法を高頻度に行うと(例えば、データが1個増えるごとに行うと)、実際には急劣化が発生していないにも関わらず急劣化が発生していると誤判定する確率が高くなる。
 これに対して、実施の形態に係る急劣化の判定処理を1次判定、交流インピーダンス値による急劣化の判定処理を2次判定と位置づければ、本実施の形態に係る急劣化の判定方法を高頻度で行っても、誤判定する確率が低くなる。即ち、電池モジュール41の急劣化を早期に高精度で検出することができる。
 上述の実施の形態では、電動車両3に搭載された電池モジュール41の急劣化を判定する例を想定した。この点、電動車両3は二輪の電動バイク(電動スクータ)または電気自転車であってもよい。また、電動車両3には、ゴルフカートや、ショッピングモールやエンタテイメント施設などで使用されるランドカーなどの低速の電動車両3も含まれる。
 また、電池モジュール41が搭載される対象は電動車両3に限るものではない。例えば、電動船舶、鉄道車両、マルチコプタ(ドローン)などの電動移動体も含まれる。また、電池モジュール41が搭載される対象には、定置型蓄電システム、民生用の電子機器(スマートフォン、ノートPCなど)も含まれる。
 なお、実施の形態は、以下の項目によって特定されてもよい。
 [項目1]
 電池(E1、41)の電圧と電流を少なくとも測定する測定部(43-45)と、
 前記電池(E1、41)の測定データをもとに、前記電池(E1、41)のSOH(State Of Health)を推定するSOH推定部(4613)と、
 前記電池(E1、41)の時系列に特定された複数のSOHを曲線回帰して、前記電池(E1、41)の劣化回帰曲線を生成する劣化回帰曲線生成部(4614)と、
 第1のデータ区間の複数のSOHをもとに生成される前記電池(E1、41)の劣化回帰曲線の劣化係数と、第2のデータ区間の複数のSOHをもとに生成される前記電池(E1、41)の劣化回帰曲線の劣化係数との差または比率をもとに、前記電池(E1、41)に急劣化が発生しているか否かを判定する急劣化判定部(4615)と、
 を備えることを特徴とする電池管理装置(42)。
 電池(E1、41)は、セルE1であってもよいし、モジュール41であってもよい。
 これによれば、電池(E1、41)の急劣化を高精度に検出することができる。
 [項目2]
 前記急劣化判定部(4615)は、前記差または前記比率が所定範囲を逸脱しているとき、前記電池(E1、41)に急劣化が発生していると判定する、
 項目1に記載の電池管理装置(42)。
 これによれば、通常劣化から外れたことを検出することにより、急劣化を高精度に検出することができる。
 [項目3]
 前記第1のデータ区間は、最後に特定されたSOHから過去a個のSOHを含む区間であり、
 前記第2のデータ区間は、最後に特定されたSOHから過去b(b>a)個のSOHを含む区間である、
 ことを特徴とする項目1または2に記載の電池管理装置(42)。
 これによれば、データ区間を重複させることにより、安定した検出を行うことができる。
 [項目4]
 前記第1のデータ区間は、最後に特定されたSOHから過去a個のSOHを含む区間であり、
 前記第2のデータ区間は、前記第1のデータ区間を除いた、最後に特定されたSOHから過去a個のSOHを含む区間である、
 ことを特徴とする項目1または2に記載の電池管理装置(42)。
 これによれば、データ区間を重複させないことにより、早期検出を実現することができる。
 [項目5]
 前記第2のデータ区間は複数のデータ区間を含み、
 前記第2のデータ区間の劣化係数は、前記複数のデータ区間の各劣化係数を統計的に処理した値である、
 ことを特徴とする項目1または2に記載の電池管理装置(42)。
 これによれば、検出精度をさらに向上させることができる。
 [項目6]
 電池(E1、41)の測定データを取得するデータ取得部(111)と、
 前記電池(E1、41)の測定データをもとに、前記電池(E1、41)のSOHを特定するSOH特定部(112)と、
 前記電池(E1、41)の時系列に特定された複数のSOHを曲線回帰して、前記電池(E1、41)の劣化回帰曲線を生成する劣化回帰曲線生成部(113)と、
 第1のデータ区間の複数のSOHをもとに生成される前記電池(E1、41)の劣化曲線の劣化係数と、第2のデータ区間の複数のSOHをもとに生成される前記電池(E1、41)の劣化曲線の劣化係数との差または比率をもとに、前記電池(E1、41)に急劣化が発生しているか否かを判定する急劣化判定部(114)と、
 を備えることを特徴とする演算システム(1)。
 これによれば、電池(E1、41)の急劣化を高精度に検出することができる。
 [項目7]
 電池(E1、41)の測定データをもとに、前記電池(E1、41)のSOHを特定するステップと、
 前記電池(E1、41)の時系列に特定された複数のSOHを曲線回帰して、前記電池(E1、41)の劣化回帰曲線を生成するステップと、
 第1のデータ区間の複数のSOHをもとに生成される前記電池(E1、41)の劣化回帰曲線の劣化係数と、第2のデータ区間の複数のSOHをもとに生成される前記電池(E1、41)の劣化回帰曲線の劣化係数との差または比率をもとに、前記電池(E1、41)に急劣化が発生しているか否かを判定するステップと、
 を有することを特徴とする電池(E1、41)の劣化予測方法。
 これによれば、電池(E1、41)の急劣化を高精度に検出することができる。
 [項目8]
 電池(E1、41)の測定データをもとに、前記電池(E1、41)のSOHを特定する処理と、
 前記電池(E1、41)の時系列に特定された複数のSOHを曲線回帰して、前記電池(E1、41)の劣化回帰曲線を生成する処理と、
 第1のデータ区間の複数のSOHをもとに生成される前記電池(E1、41)の劣化回帰曲線の劣化係数と、第2のデータ区間の複数のSOHをもとに生成される前記電池(E1、41)の劣化回帰曲線の劣化係数との差または比率をもとに、前記電池(E1、41)に急劣化が発生しているか否かを判定する処理と、
 をコンピュータに実行させることを特徴とする電池(E1、41)の劣化予測プログラム。
 これによれば、電池(E1、41)の急劣化を高精度に検出することができる。
 1 演算システム、 E1-En セル、 T1,T2 温度センサ、 RY1,RY2 リレー、 3 電動車両、 4 充電器、 11 処理部、 111 データ取得部、 112 SOH特定部、 113 劣化回帰曲線生成部、 114 急劣化判定部、 115 操作受付部、 116 表示制御部、 12 記憶部、 121 走行データ保持部、 122 運転者データ保持部、 123 SOC-OCV特性保持部、 124 時系列SOH値保持部、 13 表示部、 14 操作部、 30 車両制御部、 34 モータ、 35 インバータ、 36 無線通信部、 36a アンテナ、 38 充電ケーブル、 40 電池システム、 41 電池モジュール、 42 電池管理部、 43 電圧測定部、 44 温度測定部、 45 電流測定部、 46 電池制御部、 461 処理部、 4611 SOC推定部、 4612 FCC推定部、 4613 SOH推定部、 4614 劣化回帰曲線生成部、 4615 急劣化判定部、 4616 データ送信部、 462 記憶部、 4621 SOC-OCV特性保持部、 4622 電池データ保持部、 4623 時系列SOH値保持部。

Claims (8)

  1.  電池の電圧と電流を少なくとも測定する測定部と、
     前記電池の測定データをもとに、前記電池のSOH(State Of Health)を推定するSOH推定部と、
     前記電池の時系列に特定された複数のSOHを曲線回帰して、前記電池の劣化回帰曲線を生成する劣化回帰曲線生成部と、
     第1のデータ区間の複数のSOHをもとに生成される前記電池の劣化回帰曲線の劣化係数と、第2のデータ区間の複数のSOHをもとに生成される前記電池の劣化回帰曲線の劣化係数との差または比率をもとに、前記電池に急劣化が発生しているか否かを判定する急劣化判定部と、
     を備えることを特徴とする電池管理装置。
  2.  前記急劣化判定部は、前記差または前記比率が所定範囲を逸脱しているとき、前記電池に急劣化が発生していると判定する、
     請求項1に記載の電池管理装置。
  3.  前記第1のデータ区間は、最後に特定されたSOHから過去a個のSOHを含む区間であり、
     前記第2のデータ区間は、最後に特定されたSOHから過去b(b>a)個のSOHを含む区間である、
     ことを特徴とする請求項1または2に記載の電池管理装置。
  4.  前記第1のデータ区間は、最後に特定されたSOHから過去a個のSOHを含む区間であり、
     前記第2のデータ区間は、前記第1のデータ区間を除いた、最後に特定されたSOHから過去a個のSOHを含む区間である、
     ことを特徴とする請求項1または2に記載の電池管理装置。
  5.  前記第2のデータ区間は複数のデータ区間を含み、
     前記第2のデータ区間の劣化係数は、前記複数のデータ区間の各劣化係数を統計的に処理した値である、
     ことを特徴とする請求項1または2に記載の電池管理装置。
  6.  電池の測定データを取得するデータ取得部と、
     前記電池の測定データをもとに、前記電池のSOHを特定するSOH特定部と、
     前記電池の時系列に特定された複数のSOHを曲線回帰して、前記電池の劣化回帰曲線を生成する劣化回帰曲線生成部と、
     第1のデータ区間の複数のSOHをもとに生成される前記電池の劣化曲線の劣化係数と、第2のデータ区間の複数のSOHをもとに生成される前記電池の劣化曲線の劣化係数との差または比率をもとに、前記電池に急劣化が発生しているか否かを判定する急劣化判定部と、
     を備えることを特徴とする演算システム。
  7.  電池の測定データをもとに、前記電池のSOHを特定するステップと、
     前記電池の時系列に特定された複数のSOHを曲線回帰して、前記電池の劣化回帰曲線を生成するステップと、
     第1のデータ区間の複数のSOHをもとに生成される前記電池の劣化回帰曲線の劣化係数と、第2のデータ区間の複数のSOHをもとに生成される前記電池の劣化回帰曲線の劣化係数との差または比率をもとに、前記電池に急劣化が発生しているか否かを判定するステップと、
     を有することを特徴とする電池の劣化予測方法。
  8.  電池の測定データをもとに、前記電池のSOHを特定する処理と、
     前記電池の時系列に特定された複数のSOHを曲線回帰して、前記電池の劣化回帰曲線を生成する処理と、
     第1のデータ区間の複数のSOHをもとに生成される前記電池の劣化回帰曲線の劣化係数と、第2のデータ区間の複数のSOHをもとに生成される前記電池の劣化回帰曲線の劣化係数との差または比率をもとに、前記電池に急劣化が発生しているか否かを判定する処理と、
     をコンピュータに実行させることを特徴とする電池の劣化予測プログラム。
PCT/JP2021/026999 2020-07-29 2021-07-19 電池管理装置、演算システム、電池の劣化予測方法、及び電池の劣化予測プログラム WO2022024848A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022540204A JPWO2022024848A1 (ja) 2020-07-29 2021-07-19
EP21849655.2A EP4191733A4 (en) 2020-07-29 2021-07-19 BATTERY MANAGEMENT SYSTEM, CALCULATION SYSTEM, BATTERY DEGRADATION PREDICTION METHOD AND BATTERY DEGRADATION PREDICTION PROGRAM
CN202180059962.2A CN116134658A (zh) 2020-07-29 2021-07-19 电池管理装置、运算系统、电池的劣化预测方法以及电池的劣化预测程序
US18/006,364 US20230266399A1 (en) 2020-07-29 2021-07-19 Battery management system, calculation system, battery degradation prediction method, and battery degradation prediction program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020128059 2020-07-29
JP2020-128059 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022024848A1 true WO2022024848A1 (ja) 2022-02-03

Family

ID=80035553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026999 WO2022024848A1 (ja) 2020-07-29 2021-07-19 電池管理装置、演算システム、電池の劣化予測方法、及び電池の劣化予測プログラム

Country Status (5)

Country Link
US (1) US20230266399A1 (ja)
EP (1) EP4191733A4 (ja)
JP (1) JPWO2022024848A1 (ja)
CN (1) CN116134658A (ja)
WO (1) WO2022024848A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122305A1 (ja) * 2022-12-05 2024-06-13 パナソニックIpマネジメント株式会社 電池分析システム、電池分析方法および電池分析プログラム、電池分析プログラムが記載された記憶媒体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117574788B (zh) * 2024-01-17 2024-05-14 中国第一汽车股份有限公司 一种基于多尺度建模的电池健康度预测方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521206A (ja) * 2008-04-16 2011-07-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 再充電可能バッテリの寿命を予測する方法及び装置
JP2012120438A (ja) * 2007-08-10 2012-06-21 Sony Corp バッテリパック、電子機器、および残容量表示導出方法
JP2016128824A (ja) * 2012-01-11 2016-07-14 株式会社東芝 電池寿命事前検知方法、電池システム、及び電池コントローラ
JP2016133514A (ja) * 2015-01-21 2016-07-25 三星電子株式会社Samsung Electronics Co.,Ltd. バッテリの状態を推定する方法及び装置
WO2017098686A1 (ja) 2015-12-10 2017-06-15 ソニー株式会社 電池パック、蓄電装置及び劣化検出方法
JP2018185209A (ja) * 2017-04-25 2018-11-22 株式会社デンソー 蓄電装置
WO2019054020A1 (ja) * 2017-09-15 2019-03-21 パナソニックIpマネジメント株式会社 電池管理装置、電池システム、及び電池管理方法
WO2019171688A1 (ja) * 2018-03-07 2019-09-12 パナソニックIpマネジメント株式会社 二次電池の残存性能評価方法、二次電池の残存性能評価プログラム、演算装置、及び残存性能評価システム
CN110456275A (zh) * 2019-08-26 2019-11-15 东莞塔菲尔新能源科技有限公司 一种判断电芯析锂的方法及系统
JP2020042036A (ja) * 2014-12-10 2020-03-19 株式会社Gsユアサ 蓄電素子状態推定装置及び蓄電素子状態推定方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120438A (ja) * 2007-08-10 2012-06-21 Sony Corp バッテリパック、電子機器、および残容量表示導出方法
JP2011521206A (ja) * 2008-04-16 2011-07-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 再充電可能バッテリの寿命を予測する方法及び装置
JP2016128824A (ja) * 2012-01-11 2016-07-14 株式会社東芝 電池寿命事前検知方法、電池システム、及び電池コントローラ
JP2020042036A (ja) * 2014-12-10 2020-03-19 株式会社Gsユアサ 蓄電素子状態推定装置及び蓄電素子状態推定方法
JP2016133514A (ja) * 2015-01-21 2016-07-25 三星電子株式会社Samsung Electronics Co.,Ltd. バッテリの状態を推定する方法及び装置
WO2017098686A1 (ja) 2015-12-10 2017-06-15 ソニー株式会社 電池パック、蓄電装置及び劣化検出方法
JP2018185209A (ja) * 2017-04-25 2018-11-22 株式会社デンソー 蓄電装置
WO2019054020A1 (ja) * 2017-09-15 2019-03-21 パナソニックIpマネジメント株式会社 電池管理装置、電池システム、及び電池管理方法
WO2019171688A1 (ja) * 2018-03-07 2019-09-12 パナソニックIpマネジメント株式会社 二次電池の残存性能評価方法、二次電池の残存性能評価プログラム、演算装置、及び残存性能評価システム
CN110456275A (zh) * 2019-08-26 2019-11-15 东莞塔菲尔新能源科技有限公司 一种判断电芯析锂的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191733A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122305A1 (ja) * 2022-12-05 2024-06-13 パナソニックIpマネジメント株式会社 電池分析システム、電池分析方法および電池分析プログラム、電池分析プログラムが記載された記憶媒体

Also Published As

Publication number Publication date
EP4191733A4 (en) 2024-06-12
US20230266399A1 (en) 2023-08-24
JPWO2022024848A1 (ja) 2022-02-03
EP4191733A1 (en) 2023-06-07
CN116134658A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
US9533597B2 (en) Parameter identification offloading using cloud computing resources
JP6124157B2 (ja) バッテリーの可用時間推定装置及び方法
CN102778652B (zh) 利用置信度值来确定蓄电池的充电状态的系统和方法
CN113165550B (zh) 信息处理系统、控制装置以及车辆用电源系统
WO2022024848A1 (ja) 電池管理装置、演算システム、電池の劣化予測方法、及び電池の劣化予測プログラム
US20230065968A1 (en) Calculation system, battery characteristic estimation method, and battery characteristic estimation program
CN109693545B (zh) 一种电池剩余能量、车辆剩余里程的估算方法及装置
JP7407367B2 (ja) 管理システム、管理プログラム、及び電動車両
CN102455411A (zh) 自适应的缓慢变化电流检测
WO2022009696A1 (ja) 演算システム、電池の検査方法、及び電池の検査プログラム
EP4035934A1 (en) In-vehicle notification device, notification program, and calculation device
WO2022024847A1 (ja) 演算システム、電池の劣化予測方法、及び電池の劣化予測プログラム
US12066493B2 (en) Battery state analysis system and battery state analysis method
WO2023026743A1 (ja) 劣化判定システム、劣化判定方法、および劣化判定プログラム
EP4316894A1 (en) Remaining capacity notification device, remaining capacity notification method, and remaining capacity notification program
JP7486130B2 (ja) 管理装置、及び車両用電源システム
US11811028B2 (en) On-vehicle system, secondary battery management system, charge rate output method, and program
WO2024157509A1 (ja) 車両利用状況推定システム、車両利用状況推定方法および車両利用状況推定プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540204

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021849655

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021849655

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE