WO2024005436A2 - Organic electroluminescent device including light extraction layer - Google Patents

Organic electroluminescent device including light extraction layer Download PDF

Info

Publication number
WO2024005436A2
WO2024005436A2 PCT/KR2023/008578 KR2023008578W WO2024005436A2 WO 2024005436 A2 WO2024005436 A2 WO 2024005436A2 KR 2023008578 W KR2023008578 W KR 2023008578W WO 2024005436 A2 WO2024005436 A2 WO 2024005436A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
electrode
light extraction
organic electroluminescent
Prior art date
Application number
PCT/KR2023/008578
Other languages
French (fr)
Korean (ko)
Other versions
WO2024005436A3 (en
Inventor
손성국
Original Assignee
손성국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손성국 filed Critical 손성국
Publication of WO2024005436A2 publication Critical patent/WO2024005436A2/en
Publication of WO2024005436A3 publication Critical patent/WO2024005436A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to organic electroluminescent devices, and particularly to organic electroluminescent devices including a light extraction layer.
  • the luminous efficiency of organic electroluminescent devices is divided into internal luminous efficiency and external luminous efficiency.
  • external luminous efficiency internal luminescence generated from the organic material layer interposed between the first and second electrodes is reduced by about 20% through an optical process. It is emitted to the outside at a low level, and about 80% is destroyed in the optical process.
  • UV light existing in the natural world or UV light generated during the film encapsulation process causes denaturation of the light emitting layer and functional layer.
  • the purpose of the present invention is to achieve better device service life in RGB image display devices.
  • Patent Document 1 an organic light extraction layer with a refractive index of 1.7 or more and a film thickness of 60 nm is deposited on the upper electrode of an organic EL device, and red light emission and green light emission are obtained. This resulted in an improvement in luminous efficiency of the device by approximately 1.5 times.
  • the improvement in lifespan is achieved by ensuring that the wavelength of light generated from the light emitting layer falls within the absorption band region of the light extraction layer, thereby not reducing efficiency due to its own light absorption, and by using the UV light present in natural light. This is to prevent the lifespan of the device from being reduced and to extend the lifespan of the device by absorbing UV light sources that may occur during the device manufacturing process.
  • the present invention for achieving the above object includes a substrate, a first electrode, at least one organic layer including a blue light-emitting layer, a second electrode, and a light extraction layer in this order, and the light extraction layer satisfies the following conditions (1) to It may be composed of an organic electroluminescent device containing a material that satisfies condition (3).
  • condition (1) n(@450nm) ⁇ 2.00
  • n represents the refractive index at a defined wavelength
  • k represents the extinction coefficient at a defined wavelength
  • the second electrode may be made of an organic electroluminescent device containing metal.
  • the light extraction layer may be composed of an organic electroluminescent device having a film thickness of 200 nm or less.
  • It may be comprised of an organic electroluminescent device in which the peak wavelength of the PL spectrum of the light emitting material included in the blue light emitting layer is 430 nm or more and 500 nm or less.
  • the organic layer may be composed of an organic electroluminescent device that further includes a red light-emitting layer and a green light-emitting layer.
  • It may be composed of a light extraction layer for an organic electroluminescent device having a refractive index of 2.20 or more at a wavelength of 450 nm under condition (1).
  • the organic electroluminescent device according to the present invention can have high efficiency by having a light extraction layer containing a light extraction layer compound having a refractive index (n) of 2.0 or more at a wavelength of 450 nm.
  • both blue devices, green devices, and red devices can have high efficiency.
  • the organic light-emitting device forms a light extraction layer using a compound for a light extraction layer that has an extinction coefficient (k) of 0.1 or more at 420 nm and an extinction coefficient (k) of 0.01 or less at 450 nm, thereby preventing the absorption of visible light in the visible region. It can help maintain the long life of devices made of organic electroluminescent devices by reducing the possibility of reduced efficiency and color change, and by absorbing UV light that may be exposed during the manufacturing process and use of the device.
  • FIG. 1 is a cross-sectional view schematically showing an organic light-emitting device according to an embodiment of the present invention.
  • Figure 2 is a graph showing the spectrum of blue wavelengths generated from organic electroluminescent devices and the extinction coefficient within the range of 380 nm to 530 nm for each comparative compound.
  • the light extraction layer for an organic electroluminescent device according to an embodiment of the present invention may satisfy the following conditions.
  • n the refractive index at a defined wavelength.
  • the k represents the extinction coefficient at a defined wavelength.
  • the organic electroluminescent device according to the present invention has a refractive index of 2.25 or more at a wavelength of 450 nm, an extinction coefficient of 0.10 or more at 420 nm, and a light extraction layer containing a light extraction layer compound with an extinction coefficient of 0.01 or less at 450 nm, and has high efficiency and You can have a long life.
  • the light extraction layer for an organic electroluminescent device can be used in the device process if it has an extinction coefficient of 0.10 or more at 420 nm among light extraction materials with a high refractive index of 2.0 or more at the 450 nm wavelength under condition (1). It can contribute to improving the service life of organic electroluminescent devices by minimizing damage to organic substances inside the organic electroluminescent devices by effectively absorbing high energy in the UV region during use.
  • an organic light emitting device includes a first electrode 110, a hole injection layer 210, a charge generation layer 215, a light emitting layer 220, and a first electrode 110 sequentially stacked on a substrate 100. It may include an electron transport layer 230, an electron injection layer 235, a second electrode 120, and a light extraction layer 300.
  • the first electrode 110 and the second electrode 120 are disposed to face each other, and an organic material layer 200 may be disposed between the first electrode 110 and the second electrode 120.
  • the organic material layer 200 may include a hole injection layer 210, a charge generation layer 215, a light emitting layer 220, an electron transport layer 230, and an electron injection layer 235.
  • the light extraction layer 300 presented in the present invention may be disposed on the outside of any one or more of the first electrode and the second electrode.
  • the side adjacent to the organic material layer interposed between the first electrode and the second electrode is called the inner side
  • the side not adjacent to the organic material layer is called the outer side. That is, when the light extraction layer is disposed on the outside of the first electrode, the first electrode is interposed between the light extraction layer and the organic material layer, and when the light extraction layer is disposed on the outside of the second electrode, the first electrode is interposed between the light extraction layer and the organic material layer. 2 electrodes are interposed.
  • the organic light emitting device may have one or more various organic material layers interposed on the inside of the first electrode and the second electrode, and on the outside of at least one of the first electrode and the second electrode.
  • a light extraction layer may be formed. That is, the light extraction layer may be formed on both the outside of the first electrode and the outside of the second electrode, or may be formed only on the outside of the first electrode or the outside of the second electrode.
  • the light extraction layer may have a refractive index of 2.0 or more, specifically 2.2 or more at a wavelength of 450 nm, and an extinction coefficient of 0.10 or more at 420 nm and 0.01 or less at 450 nm.
  • the first electrode 110 is conductive.
  • the first electrode 110 may be formed of a metal alloy or a conductive compound.
  • the first electrode 110 is generally an anode, but its function as an electrode is not limited.
  • the first electrode 110 may be formed on the substrate 100 using an electrode material deposition method, electron beam evaporation, or sputtering method.
  • the material of the first electrode 110 may be selected from materials with a high work function to facilitate injection of holes into the organic light emitting device.
  • the light extraction layer 300 proposed in the present invention is applied when the light emission direction of the organic light emitting device is top emission, and therefore the first electrode 110 uses a reflective electrode.
  • These materials include Mg (magnesium), Al (aluminum), Al-Li (aluminum-lithium), Ca (calcium), Mg-In (magnesium-indium), and Mg-Ag (magnesium-silver), which are not oxides. It can also be manufactured using the same metal.
  • carbon substrate flexible electrode materials such as CNT (carbon nanotube) and graphene may be used.
  • the organic material layer 200 may be formed of multiple layers. When the organic material layer 200 is a plurality of layers, the organic material layer 200 includes a hole transport region 210 to 215 disposed on the first electrode 110, a light-emitting layer 220 disposed on the hole transport region, and the light-emitting layer. It may include an electron transport region (230-235) disposed on (220).
  • the hole injection layer 210 is formed by depositing a hole injection layer material on the top of the first electrode 110 by a method such as vacuum deposition, spin coating, casting, or LB (Langmuir-Blodgett) method. It can be.
  • the deposition conditions vary depending on the compound used as the material for the hole injection layer 210, the structure and thermal characteristics of the desired hole injection layer 210, etc. In general, a deposition temperature of 50-500°C, a vacuum degree of 10-8 to 10-3 torr, a deposition rate of 0.01 to 100 ⁇ /sec, and a layer thickness of 10 ⁇ to 5 ⁇ m can be appropriately selected.
  • a charge generation layer 215 may be additionally deposited on the surface of the hole injection layer 210 as needed. Common materials can be used as the charge generation layer material, and HATCN is an example.
  • the light-emitting layer 220 may be formed by depositing a light-emitting layer material on the hole transport layer 210 or the charge generation layer 215 by a method such as vacuum deposition, spin coating, casting, or LB method. .
  • a method such as vacuum deposition, spin coating, casting, or LB method.
  • the deposition conditions vary depending on the compound used, but it is generally recommended to select conditions within the same range as those for forming the hole injection layer 210.
  • the light emitting layer material may use a known compound as a host or dopant.
  • a hole blocking material is added to the top of the light emitting layer 220 to prevent the diffusion of triplet excitons or holes into the electron transport layer 230 by vacuum deposition or It can be laminated through spin coating.
  • the hole blocking material that can be used is not particularly limited, and known materials can be arbitrarily selected and used. For example, oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, or hole blocking materials described in Japanese Patent Application Laid-Open No.
  • the light emitting layer 220 of the present invention may include one or more layers or two or more blue light emitting layers.
  • the electron transport layer 230 is formed on top of the light emitting layer 220, and may be formed by a method such as vacuum deposition, spin coating, or casting.
  • the deposition conditions for the electron transport layer 230 vary depending on the compound used, but it is generally recommended to select conditions that are approximately the same as those for forming the hole injection layer 210.
  • the electron injection layer 235 may be formed by depositing an electron injection layer material on top of the electron transport layer 230, and may be formed by methods such as vacuum deposition, spin coating, and casting.
  • the second electrode 120 is used as an electron injection electrode, and may be formed on the electron injection layer 235 by a method such as vacuum deposition or sputtering.
  • Various metals may be used as materials for the second electrode 120. Specific examples include materials such as aluminum, gold, silver, and magnesium, but are not limited thereto.
  • the organic light emitting device of the present invention includes the light extraction layer 300, the first electrode 100, the hole injection layer 210, the charge generation layer 215, the light emitting layer 220, the electron transport layer 230, and the electron injection layer described above.
  • organic electroluminescent device having a structure including the layer 235, the second electrode 120, and the light extraction layer 300, organic electroluminescent devices of various structures are possible, and, if necessary, one or two layers. It is also possible to additionally include an intermediate layer.
  • each organic layer formed according to the present invention can be adjusted according to the required degree, and may be specifically 1 to 1,000 nm, and more specifically 1 to 150 nm.
  • the light extraction layer 300 may be formed on both sides of the first electrode 110 on the outer side where the hole injection layer 210 is not formed. Additionally, the electron injection layer 235 may be formed on both sides of the second electrode 120 on the outer side where the electron injection layer 235 is not formed, but is not limited thereto.
  • the light extraction layer 300 may be formed through a deposition process, and the thickness of the light extraction layer 300 may be 100 to 2,000 ⁇ , and more specifically, 300 to 1,000 ⁇ . Through such thickness adjustment, the transmittance of the light extraction layer 300 can be prevented from decreasing.
  • Organic layers with various functions may be additionally formed between the light extraction layer 300 and the first electrode 110 or between the light extraction layer 300 and the second electrode 120
  • Organic layers with various functions may be additionally formed between the light extraction layer 300 and the first electrode 110 or between the light extraction layer 300 and the second electrode 120
  • Organic layers with various functions may be additionally formed on the top (outer surface) of the light extraction layer 300, but is not limited thereto.
  • Electrons and holes recombine in the light emitting layer 220 to generate excitons, and the excitons emit light as they fall from the excited state to the ground state.
  • the optical path generated in the light emitting layer 220 may exhibit very different trends depending on the refractive index of the organic and inorganic materials that make up the organic light emitting device.
  • Light passing through the second electrode 120 can only pass through at an angle smaller than the critical angle of the second electrode 120.
  • Other lights that contact the second electrode 120 at a angle greater than the critical angle are totally reflected or reflected and are not emitted outside the organic light emitting device.
  • the light extraction layer 300 has a high refractive index, it contributes to improving luminous efficiency by reducing total reflection or reflection phenomenon, and if it has an appropriate thickness, it contributes to high efficiency and color purity by maximizing the micro-cavity phenomenon. do.
  • the light extraction layer 300 is located on the outermost side of the organic light emitting device and has a significant influence on the device characteristics without affecting the operation of the device at all. Therefore, the light extraction layer 300 is important from both the viewpoints of protecting the interior of the organic light emitting device and improving device characteristics.
  • Organic materials absorb light energy in a specific wavelength range and this depends on the energy band gap. If this energy band gap is adjusted for the purpose of absorbing the UV region, which can affect the organic materials inside the organic light-emitting device, the light extraction layer 300 can be used for the purpose of protecting the organic light-emitting device, including improving optical properties. You can.
  • the organic light emitting device may be a front emitting type, a back emitting type, or a double-sided emitting type depending on the material used.
  • J.A Measure the refractive index (n) and extinction coefficient (k) using WOOLLAM's Ellipsometer device.
  • the silicon substrate was washed in Ethanol, DI Water, and Acetone using Ultrasonic for 20 minutes each, and then the washed silicon substrate was
  • a specimen is produced by forming a 50nm thick layered film using the compound prepared above at a vacuum level of 2.0x10-7 Torr at a speed of 1 ⁇ /sec.
  • the refractive index and extinction coefficient of the manufactured specimen were measured in the wavelength range of 380 nm to 530 nm using the ellipsometer device.
  • Table 1 shows the structure of a general organic light-emitting device.
  • the organic light-emitting device manufactured as an example of the present invention has the following structure from below: first electrode 110) / hole injection layer 210 / charge generation layer 215 / light emitting layer They are laminated in the following order: (220) / electron transport layer (230) / electron injection layer (235) / second electrode (120)) / light extraction layer (300).
  • a second electrode 120 for electron injection was formed on the electron injection layer 235.
  • Various metals can be used as the cathode.
  • a light extraction layer 300 was formed on the second electrode 120.
  • Table 2 below shows the structural formulas of the materials used in the light extraction layer in Comparative Example 1 and Examples 1 to 4.
  • a glass substrate was provided, a reflective layer containing Ag was formed on the upper part of the substrate as a reflective film of the first electrode, and ITO was deposited on the upper part of the reflective film formed of Ag. Subsequently, 100 nm of HIL-1 was deposited on the hole injection layer as an organic layer on top of the ITO, and a 10 nm fmf layer of a mixture of HIL-1 and HIL-2 (9:1, wt./wt.) was deposited on the host BH01 as a dopant BD01. was doped at 2% by weight to form a 25 nm light-emitting layer.
  • the electron transport layer was formed with a mixture of ET01 and Liq (1:1, wt./wt.) to a thickness of 30 nm, and then 1 nm of LiF was deposited to form an electron injection layer. Subsequently, MgAg was deposited to a thickness of 15 nm as a second electrode, and Alq3 shown in Figure 2 was deposited to a thickness of 60 nm as a light extraction layer on the second electrode.
  • a blue organic light-emitting device was manufactured by encapsulating the device manufactured in this way in a glove box.
  • An organic electroluminescent device was manufactured in the same manner as in Comparative Example 1, except that the k-Test1, k-Test2, k-Test3, and k-Test4 compounds shown in Table 2 were used to form a light extraction layer.
  • life evaluation the change in luminance at 10 mA/cm2 was measured using the same equipment, and life evaluation was conducted with the LED light source evenly illuminated on the specimen in the measurement room to reproduce the everyday use situation (lighting room). (When measuring, measure in a dark room after turning off the lights)
  • the present invention as described above can be widely used in the organic electroluminescent device industry.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is an organic electroluminescent device including a light extraction layer. The organic electroluminescent device including a light extraction layer comprises a substrate, a first electrode, at least one organic layer including a blue light emitting layer, a second electrode, and the light extraction layer in this order, wherein the light extraction layer may contain a material that satisfies the following conditions (1) to (3). Condition (1): n(@450nm) ≥ 2.00, condition (2): k@420nm ≥ 0.10, and condition (3) k@450nm ≤ 0.01 (where n represents the refractive index at a defined wavelength, and k represents the extinction coefficient at a defined wavelength). Accordingly, the organic electroluminescent device may have improved light emission efficiency outside the light extraction layer, and improved color purity.

Description

광추출층을 포함한 유기전계발광소자Organic electroluminescent device including light extraction layer
본 발명은 유기 전계 발광 소자에 관한 것으로 특히 광추출층을 포함하는 유기 전계 발광 소자에 관한 것이다.The present invention relates to organic electroluminescent devices, and particularly to organic electroluminescent devices including a light extraction layer.
유기전계발광 소자의 발광 효율은 내부발광효율과 외부 발광효율로 나뉘어 지는데, 외부발광효율의 경우 제1전극과 제2전극 사이에 개재된 유기물층에서 발현된 내부발광이 광학적인 과정을 거쳐 약 20% 수준으로 외부로 방출되고, 약 80%는 광학적인 과정에서 소멸된다.The luminous efficiency of organic electroluminescent devices is divided into internal luminous efficiency and external luminous efficiency. In the case of external luminous efficiency, internal luminescence generated from the organic material layer interposed between the first and second electrodes is reduced by about 20% through an optical process. It is emitted to the outside at a low level, and about 80% is destroyed in the optical process.
광학추출층은 이렇게 광학적인 과정중 소멸되는 광을 방지하여 외부 발광효율을 향상하기 위해 고굴절률을 갖는 다양한 유기화합물들을 광추출층의 재료로 적용해 왔으며, 현재까지도 외부 발광재까지도 외부발광효율을 높일 수 있는 고굴절률을 갖으면서도 안정적인 유기 화합물을 개발하려는 노력이 계속되고 있으나, 유기전계발광소자에서 청색광의 경우 발광 파장 영역이 440nm~ 510nm부근에서 발광을 하다 보니 고굴절률을 갖는 광추출 층에서 440nm-450nm 영역대의 일부의 광이 흡수가 되면서 효율 저하 및 색순도저하를 초래하게 된다.In order to prevent light from being extinguished during the optical process and improve external luminous efficiency, various organic compounds with high refractive index have been applied as materials for the optical extraction layer. Even to this day, even external luminous materials have improved external luminous efficiency. Efforts are continuing to develop stable organic compounds with a high refractive index that can be increased, but in the case of organic electroluminescent devices, blue light emits light in the region of 440nm to 510nm, so the light extraction layer with a high refractive index has a wavelength of 440nm. As part of the light in the -450 nm range is absorbed, efficiency decreases and color purity decreases.
또한, 자연계에서 존재하는 UV광 또는 필름봉지공정(TFE: Thin Film Encapsulation) 과정중 발생하는 UV광에 의해 발광층 및 기능층의 변성을 초래하게 된다.In addition, UV light existing in the natural world or UV light generated during the film encapsulation process (TFE: Thin Film Encapsulation) causes denaturation of the light emitting layer and functional layer.
광추출능력을 확대하고자 고굴절률 유기 화합물을 개발함과 동시에 기구의 제조 및 사용 과정중 발생하는 기구의 수명 저하요소인 UV광에 대한 안정성을 갖는 유기화합물을 개발하려는 노력이 계속되어오고 있다.Efforts are being made to develop high refractive index organic compounds to expand light extraction ability, and at the same time, to develop organic compounds that are stable against UV light, which is a factor in reducing the lifespan of instruments that occurs during the manufacturing and use of instruments.
<선행기술 문헌><Prior art literature>
한국 공개특허 10-2004-0098238호 Korean Patent Publication No. 10-2004-0098238
본 발명은 RGB 화상 표시 장치에 있어서 보다 좋은 기기 사용 수명을 달성하고자 하는 목적이 있다. The purpose of the present invention is to achieve better device service life in RGB image display devices.
일반적으로 광추출을 향상시키지 위해서는 고굴절 광추출층을 적층하게 되는데, 특허문헌 1에서 유기EL소자의 상부 전극 상에 굴절률 1.7이상, 막두께 60nm의 유기 광추출층을 제막하고, 적색 발광과 녹색 발광 소자에 있어서 1.5배 정도의 발광 효율의 향상을 가져왔다.Generally, in order to improve light extraction, a high refractive light extraction layer is laminated. In Patent Document 1, an organic light extraction layer with a refractive index of 1.7 or more and a film thickness of 60 nm is deposited on the upper electrode of an organic EL device, and red light emission and green light emission are obtained. This resulted in an improvement in luminous efficiency of the device by approximately 1.5 times.
여기서, RGB화상표시 장치에 있어서 수명의 개선에는 발광층에서 발생하는 광의 파장이 광추출층의 흡수밴드영역에 속하여 자체 광 흡수에 의한 효율 감소를 초래하지 않으면서, 자연광에 존재하는 UV광에 의해 기기의 수명이 저하되는 것을 방지하면서, 기기 제작 공정 중 발생 가능한 UV광원을 흡수함으로써 기기의 수명을 연장시키기 위함이다.Here, in the RGB image display device, the improvement in lifespan is achieved by ensuring that the wavelength of light generated from the light emitting layer falls within the absorption band region of the light extraction layer, thereby not reducing efficiency due to its own light absorption, and by using the UV light present in natural light. This is to prevent the lifespan of the device from being reduced and to extend the lifespan of the device by absorbing UV light sources that may occur during the device manufacturing process.
다만, 본 발명의 목적은 이에만 제한되는 것은 아니며, 명시적으로 언급하지 않더라도 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 이에 포함됨은 물론이다. However, the purpose of the present invention is not limited to this, and of course, even if not explicitly mentioned, purposes or effects that can be understood from the means of solving the problem or the embodiment are also included.
상기한 목적을 달성하기 위한 본 발명은 기판, 제1 전극, 청색 발광층을 포함하는 1 이상의 유기층, 제2 전극, 광추출층을 이 순으로 구비하고, 상기 광추출층이 하기 조건 (1) 내지 조건(3)을 만족시키는 재료를 포함하는 유기전계발광소자로 구성될 수 있다. The present invention for achieving the above object includes a substrate, a first electrode, at least one organic layer including a blue light-emitting layer, a second electrode, and a light extraction layer in this order, and the light extraction layer satisfies the following conditions (1) to It may be composed of an organic electroluminescent device containing a material that satisfies condition (3).
여기서, 조건(1) n(@450nm) ≥ 2.00Here, condition (1) n(@450nm) ≥ 2.00
조건(2) k@420nm ≥ 0.10Condition (2) k@420nm ≥ 0.10
조건(3) k@450nm ≤ 0.01Condition (3) k@450nm ≤ 0.01
(이때, 상기 n은 정의된 파장에서의 굴절률을 나타내고, 상기 k는 정의된 파장에서의 흡광계수를 나타낸다).(At this time, n represents the refractive index at a defined wavelength, and k represents the extinction coefficient at a defined wavelength).
상기 제2 전극이 금속을 포함하여 이루어지는 유기 전계 발광 소자로 이루어질 수 있다. The second electrode may be made of an organic electroluminescent device containing metal.
상기 광추출층의 막 두께가 200 ㎚ 이하인 유기 전계 발광 소자로 구성될 수 있다. The light extraction layer may be composed of an organic electroluminescent device having a film thickness of 200 nm or less.
상기 청색 발광층에 포함되는 발광 재료의 PL 스펙트럼의 피크 파장이 430 ㎚ 이상 500 ㎚ 이하인 유기 전계 발광 소자로 구성될 수 있다. It may be comprised of an organic electroluminescent device in which the peak wavelength of the PL spectrum of the light emitting material included in the blue light emitting layer is 430 nm or more and 500 nm or less.
상기 유기층이 적색 발광층과 녹색 발광층을 더 포함하는 유기 전계 발광 소자로 구성될 수 있다. The organic layer may be composed of an organic electroluminescent device that further includes a red light-emitting layer and a green light-emitting layer.
상기 조건(1)의 450nm 파장에서 굴절률이 2.20 이상인 유기전계발광소자용 광추출층으로 구성될 수 있다. It may be composed of a light extraction layer for an organic electroluminescent device having a refractive index of 2.20 or more at a wavelength of 450 nm under condition (1).
본 발명에 따른 유기 전계발광소자는 450nm의 파장에서 굴절률(n)이 2.0 이상인 광추출층용 화합물을 포함하는 광추출층을 구비하여, 고효율을 가질 수 있다.The organic electroluminescent device according to the present invention can have high efficiency by having a light extraction layer containing a light extraction layer compound having a refractive index (n) of 2.0 or more at a wavelength of 450 nm.
구체적으로 상기 광추출층을 형성함으로써, Blue 소자와 Green, Red 소자에서 모두 높은 효율을 가질 수 있다.Specifically, by forming the light extraction layer, both blue devices, green devices, and red devices can have high efficiency.
또한 본 발명에 따른 유기 발광소자는 420nm에서 흡광계수(k)가 0.1이상이고, 450nm에서 흡광계수(k)가 0.01이하인 광추츨층 용 화합물을 이용하여 광추출층을 형성하므로, 가시광 영역 흡수로 인한 효율 감소 및 색변화가능성을 차잔하고, 기기의 제조 공정 및 사용 중에서 노출될 수 있는 UV광을 흡수함으로 유기전계발광소자로 이루어진 기기의 장수명 유지에 도움이 될 수 있다.In addition, the organic light-emitting device according to the present invention forms a light extraction layer using a compound for a light extraction layer that has an extinction coefficient (k) of 0.1 or more at 420 nm and an extinction coefficient (k) of 0.01 or less at 450 nm, thereby preventing the absorption of visible light in the visible region. It can help maintain the long life of devices made of organic electroluminescent devices by reducing the possibility of reduced efficiency and color change, and by absorbing UV light that may be exposed during the manufacturing process and use of the device.
상기의 효과 및 추가적인 효과에 대해서는 아래에 자세히 서술하기로 한다.The above effects and additional effects will be described in detail below.
더불어, 본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다. In addition, the various and beneficial advantages and effects of the present invention are not limited to the above-described content, and may be more easily understood in the process of explaining specific embodiments of the present invention.
도 1은 본 발명의 일 실시예에 따른 유기 발광 소자를 개략적으로 나타낸 단면도이다1 is a cross-sectional view schematically showing an organic light-emitting device according to an embodiment of the present invention.
도 2는 유기전계발광소자에서 발생하는 청색파장의 스펙트럼과 각 비교화합물에 따른 380nm~530nm범위 내에서의 흡광계수를 도시한 그래프이다.Figure 2 is a graph showing the spectrum of blue wavelengths generated from organic electroluminescent devices and the extinction coefficient within the range of 380 nm to 530 nm for each comparative compound.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다.Since the present invention can be subject to various changes and have various forms, specific embodiments will be illustrated in the drawings and described in detail in the text.
그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 명세서에 사용되는 모든 기술 용어 및 과학용어는 다른 언급이 없는 한 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.However, this is not intended to limit the present invention to a specific disclosed form, and all technical and scientific terms used in this specification have the same meaning as generally understood by those skilled in the art unless otherwise specified. .
이하에 본 발명에 대하여 더욱 상세히 설명한다.The present invention will be described in more detail below.
본 발명의 실시예에 따른 유기전계발광소자용 광추출층은 하기조건을 만족할 수 있다.The light extraction layer for an organic electroluminescent device according to an embodiment of the present invention may satisfy the following conditions.
조건(1) n(@450nm) ≥ 2.00Condition (1) n(@450nm) ≥ 2.00
조건(2) k@420nm ≥ 0.10Condition (2) k@420nm ≥ 0.10
조건(3) k@450nm ≤ 0.01Condition (3) k@450nm ≤ 0.01
이때, 상기 n은 정의된 파장에서의 굴절률을 나타낸다. At this time, n represents the refractive index at a defined wavelength.
상기 k는 정의된 파장에서의 흡광계수를 나타낸다.The k represents the extinction coefficient at a defined wavelength.
본 발명에 따른 유기 전계 발광소자는 450nm파장에서 굴절률이 2.25이상이고, 420nm에서 흡광계수가 0.10이상이며, 450nm에서 흡광계수가 0.01이하인 광추출층용 화합물을 포함하는 광추출층을 구비하여, 고효율 및 장수명을 가질 수 있다.The organic electroluminescent device according to the present invention has a refractive index of 2.25 or more at a wavelength of 450 nm, an extinction coefficient of 0.10 or more at 420 nm, and a light extraction layer containing a light extraction layer compound with an extinction coefficient of 0.01 or less at 450 nm, and has high efficiency and You can have a long life.
구체적으로, 본 발명에 따른 유기전계발광 소자용 광추출층은 상기 조건(1)의 450nm파장에서 굴절률이 2.0이상인 고굴절률을 가지는 광추출용재료중 420nm에서 0.10이상의 흡광계수를 가질 경우 기기의 공정 및 사용중 UV영역의 고에너지의 효과적은 흡수로 유기전계발광소자 내부의 유기물들의 손상을 최소화함으로써 유기전계발광소자의 사용수명향상에 기여할 수 있다.Specifically, the light extraction layer for an organic electroluminescent device according to the present invention can be used in the device process if it has an extinction coefficient of 0.10 or more at 420 nm among light extraction materials with a high refractive index of 2.0 or more at the 450 nm wavelength under condition (1). It can contribute to improving the service life of organic electroluminescent devices by minimizing damage to organic substances inside the organic electroluminescent devices by effectively absorbing high energy in the UV region during use.
또한, 450nm에서 0.01이하의 흡광계수를 가질 경우 유기전계발광소자의 내부의 발광을 흡수하지 않아 효율 및 색 순도 향상에 기여할 수 있다.In addition, if it has an extinction coefficient of 0.01 or less at 450 nm, it does not absorb the internal light emission of the organic electroluminescent device, contributing to improving efficiency and color purity.
이하에서, 본 발명에 따른 유기전계발광소자를 보다 구체적으로 설명한다.Below, the organic electroluminescent device according to the present invention will be described in more detail.
도 1은 본 발명의 일 실시예에 따른 유기 발광 소자를 개략적으로 나타낸 단면도이다. 도 1을 참조하면, 일 실시예에 따른 유기 발광 소자는 기판(100)위에 순차적으로 적층된 제1 전극(110), 정공주입층(210), 전하발생층(215), 발광층(220), 전자수송층(230), 전자주입층(235), 제2 전극(120), 광추출층(300)을 포함할 수 있다 1 is a cross-sectional view schematically showing an organic light-emitting device according to an embodiment of the present invention. Referring to FIG. 1, an organic light emitting device according to an embodiment includes a first electrode 110, a hole injection layer 210, a charge generation layer 215, a light emitting layer 220, and a first electrode 110 sequentially stacked on a substrate 100. It may include an electron transport layer 230, an electron injection layer 235, a second electrode 120, and a light extraction layer 300.
제1 전극(110)과 제2 전극(120)은 서로 마주하고 배치되며, 제1 전극(110)과 제2 전극(120) 사이에는 유기물층 (200)이 배치될 수 있다. 유기물층(200)은 정공주입층(210), 전하발생층(215), 발광층(220), 전자수송층(230), 전자주입층(235)를 포함할 수 있다. The first electrode 110 and the second electrode 120 are disposed to face each other, and an organic material layer 200 may be disposed between the first electrode 110 and the second electrode 120. The organic material layer 200 may include a hole injection layer 210, a charge generation layer 215, a light emitting layer 220, an electron transport layer 230, and an electron injection layer 235.
한편, 본 발명에서 제시되는 광추출층(300)은 상기 광추출층은 상기 제1 전극 및 제2 전극 중 어느 하나 이상의 전극의 외측에 배치될 수 있다 Meanwhile, the light extraction layer 300 presented in the present invention may be disposed on the outside of any one or more of the first electrode and the second electrode.
구체적으로, 제1 전극 또는 제2 전극의 양측면 중 제1 전극과 제2 전극 사이에 개재된 유기물층이 인접한 측을 내측이라고 하고, 유기물층과 인접하지 않은 측을 외측이라 한다. 즉, 제1 전극의 외측에 광추출층이 배치되는 경우 광추출층과 유기물층 사이에 제1 전극이 개재되고, 제2 전극의 외측에 광추출층이 배치되는 경우 광추출층과 유기물층 사이에 제2 전극이 개재된다. Specifically, among both sides of the first electrode or the second electrode, the side adjacent to the organic material layer interposed between the first electrode and the second electrode is called the inner side, and the side not adjacent to the organic material layer is called the outer side. That is, when the light extraction layer is disposed on the outside of the first electrode, the first electrode is interposed between the light extraction layer and the organic material layer, and when the light extraction layer is disposed on the outside of the second electrode, the first electrode is interposed between the light extraction layer and the organic material layer. 2 electrodes are interposed.
또한, 본 발명의 일 구현예에 따르면, 상기 유기 발광 소자는 제1 전극 및 제2 전극의 내측에 1층 이상의 다양한 유기물층이 개재될 수 있고, 제1 전극 및 제2 전극 중 어느 하나 이상의 전극 외측에 광추출층이 형성될 수 있다. 즉, 광추출층은 제1 전극의 외측과 제2 전극의 외측에 모두 형성되거나, 제1 전극의 외측 또는 제2 전극의 외측에만 형성될 수 있다 In addition, according to one embodiment of the present invention, the organic light emitting device may have one or more various organic material layers interposed on the inside of the first electrode and the second electrode, and on the outside of at least one of the first electrode and the second electrode. A light extraction layer may be formed. That is, the light extraction layer may be formed on both the outside of the first electrode and the outside of the second electrode, or may be formed only on the outside of the first electrode or the outside of the second electrode.
이때, 상기 광추출층은 450nm파장에서의 굴절률이 2.0이상 구체적으로 2.2이상일 수 있으며, 420nm에서의 흡광계수는 0.10 이상, 450nm에서 0.01이하 일 수 있다.At this time, the light extraction layer may have a refractive index of 2.0 or more, specifically 2.2 or more at a wavelength of 450 nm, and an extinction coefficient of 0.10 or more at 420 nm and 0.01 or less at 450 nm.
도 1에 도시된 일 실시예의 유기 발광 소자에서 제1 전극(110)은 도전성을 갖는다. 제1 전극(110)은 금속 합금 또는 도전성 화합물로 형성될 수 있다. 제1 전극(110)은 일반적으로 양극(anode)이지만 전극으로의 기능은 제한하지 않는다. In the organic light emitting device of one embodiment shown in FIG. 1, the first electrode 110 is conductive. The first electrode 110 may be formed of a metal alloy or a conductive compound. The first electrode 110 is generally an anode, but its function as an electrode is not limited.
제1 전극(110)은 기판(100) 상부에 전극 물질을 증착법, 전자빔 증발 또는 스퍼터링법 등을 이용하여 형성할 수 있다. 제1 전극(110)의 재료는 유기 발광 소자 내부로 정공의 주입이 용이하도록 높은 일함수를 갖는 물질 중에서 선택될 수 있다 The first electrode 110 may be formed on the substrate 100 using an electrode material deposition method, electron beam evaporation, or sputtering method. The material of the first electrode 110 may be selected from materials with a high work function to facilitate injection of holes into the organic light emitting device.
본 발명에서 제안되는 광추출층(300)은 유기 발광 소자의 발광방향이 전면발광일 경우에 적용되며 따라서 제1 전극(110)은 반사형 전극을 사용한다. 이들의 재료로는 산화물이 아닌 Mg(마그네슘), Al(알루미늄), Al-Li(알루미늄-리튬), Ca(칼슘), Mg-In(마그네슘-인듐), Mg-Ag(마그네슘-은)과 같은 금속을 사용하여 제작할 수도 있다. 최근에 와서는 CNT(탄소나노튜브), Graphene(그래핀) 등 탄소기판 유연 전극 재료가 사용될 수도 있다. The light extraction layer 300 proposed in the present invention is applied when the light emission direction of the organic light emitting device is top emission, and therefore the first electrode 110 uses a reflective electrode. These materials include Mg (magnesium), Al (aluminum), Al-Li (aluminum-lithium), Ca (calcium), Mg-In (magnesium-indium), and Mg-Ag (magnesium-silver), which are not oxides. It can also be manufactured using the same metal. Recently, carbon substrate flexible electrode materials such as CNT (carbon nanotube) and graphene may be used.
상기 유기물층(200)은 복수의 층으로 형성될 수 있다. 상기 유기물층(200)이 복수의 층인 경우, 유기물층(200)은 제1 전극(110) 상에 배치된 정공수송영역(210~215), 상기 정공 수송영역 상에 배치된 발광층(220), 상기 발광층(220) 상에 배치된 전자 수송 영역(230~235)를 포함할 수 있다 The organic material layer 200 may be formed of multiple layers. When the organic material layer 200 is a plurality of layers, the organic material layer 200 includes a hole transport region 210 to 215 disposed on the first electrode 110, a light-emitting layer 220 disposed on the hole transport region, and the light-emitting layer. It may include an electron transport region (230-235) disposed on (220).
아울러, 상기 정공주입층(210)은 상기 제1 전극(110)의 상부에 정공주입층 물질을 진공증착법, 스핀코팅법, 캐스트법, LB(Langmuir-Blodgett)법 등과 같은 방법에 의해 증착하여 형성될 수 있다. 상기 진공증착법에 의해 정공주입층(210)을 형성하는 경우, 그 증착조건은 정공주입층(210)의 재료로서 사용하는 화합물, 목적하는 정공주입층(210)의 구조 및 열적특성 등에 따라 다르지만, 일반적으로 50-500℃의 증착온도, 10-8 내지 10-3 torr의 진공도, 0.01 내지 100 Å /sec의 증착속도, 10 Å 내지 5 ㎛의 층 두께 범위에서 적절히 선택할 수 있다. 한편, 정공주입층(210)의 표면에는 전하발생층(215)을 필요에 따라 추가로 증착 할 수 있다. 전하발생층 물질로는 통상의 물질을 사용할 수 있으며, HATCN을 예로 들 수 있다. In addition, the hole injection layer 210 is formed by depositing a hole injection layer material on the top of the first electrode 110 by a method such as vacuum deposition, spin coating, casting, or LB (Langmuir-Blodgett) method. It can be. When forming the hole injection layer 210 by the vacuum deposition method, the deposition conditions vary depending on the compound used as the material for the hole injection layer 210, the structure and thermal characteristics of the desired hole injection layer 210, etc. In general, a deposition temperature of 50-500°C, a vacuum degree of 10-8 to 10-3 torr, a deposition rate of 0.01 to 100 Å/sec, and a layer thickness of 10 Å to 5 ㎛ can be appropriately selected. Meanwhile, a charge generation layer 215 may be additionally deposited on the surface of the hole injection layer 210 as needed. Common materials can be used as the charge generation layer material, and HATCN is an example.
이와 더불어, 상기 발광층(220)은 정공수송층(210) 또는 전하발생층(215)의 상부에 발광층 물질을 진공증착법, 스핀코팅법, 캐스트법, LB법 등과 같은 방법에 의해 증착하여 형성될 수 있다. 상기 진공증착법에 의해 발광층(220)을 형성하는 경우, 그 증착조건은 사용하는 화합물에 따라 다르지만 일반적으로 정공주입층(210)의 형성과 거의 동일한 조건 범위에서 선택하는 것이 좋다. In addition, the light-emitting layer 220 may be formed by depositing a light-emitting layer material on the hole transport layer 210 or the charge generation layer 215 by a method such as vacuum deposition, spin coating, casting, or LB method. . When forming the light emitting layer 220 by the vacuum deposition method, the deposition conditions vary depending on the compound used, but it is generally recommended to select conditions within the same range as those for forming the hole injection layer 210.
상기 발광층 재료는 공지의 화합물을 호스트 또는 도펀트로 사용할 수 있다. The light emitting layer material may use a known compound as a host or dopant.
여기서, 발광층 재료에 인광 도펀트를 함께 사용할 경우에는 삼중항 여기자 또는 정공이 전자수송층(230)으로확산되는 현상을 방지하기 위하여 정공억제재료(HBL)를 발광층(220)의 상부에 추가로 진공증착법 또는 스핀코팅법을 통해 적층시킬 수 있다. 사용할 수 있는 정공억제재료는 특별히 제한되지는 않으며, 공지의 재료를 임의로 선택해서 사용할 수 있다. 예를 들면, 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, 또는 일본특개평 11-329734(A1)에 기재되어 있는 정공억제재료 등을 들 수 있으며, 대표적으로 Balq(비스(8-하이드록시- 2-메틸퀴놀리놀나토)-알루미늄 비페녹사이드), 페난트롤린(phenanthrolines)계 화합물(예: UDC사 BCP(바쏘쿠프로인)) 등을 사용할 수 있다. 이러한 본 발명의 발광층(220)은 1층 이상 또는 2층 이상의 청색 발광층을 포함할 수 있다. Here, when a phosphorescent dopant is used together with the light emitting layer material, a hole blocking material (HBL) is added to the top of the light emitting layer 220 to prevent the diffusion of triplet excitons or holes into the electron transport layer 230 by vacuum deposition or It can be laminated through spin coating. The hole blocking material that can be used is not particularly limited, and known materials can be arbitrarily selected and used. For example, oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, or hole blocking materials described in Japanese Patent Application Laid-Open No. 11-329734 (A1), etc., representative examples include Balq (bis (8-hyde) Roxy-2-methylquinolinolnato)-aluminum biphenoxide), phenanthrolines-based compounds (e.g., UDC's BCP (bassocuproin)), etc. can be used. The light emitting layer 220 of the present invention may include one or more layers or two or more blue light emitting layers.
또한, 상기 전자수송층(230)은 발광층(220)의 상부에 형성되며, 진공증착법, 스핀코팅법, 캐스트법 등의 방법으로 형성될 수 있다. 상기 전자수송층(230)의 증착조건은 사용하는 화합물에 따라 다르지만, 일반적으로 정공주입층(210)의 형성과 거의 동일한 조건 범위에서 선택하는 것이 좋다. Additionally, the electron transport layer 230 is formed on top of the light emitting layer 220, and may be formed by a method such as vacuum deposition, spin coating, or casting. The deposition conditions for the electron transport layer 230 vary depending on the compound used, but it is generally recommended to select conditions that are approximately the same as those for forming the hole injection layer 210.
나아가, 상기 전자주입층(235)은 상기 전자수송층(230)의 상부에 전자주입층 물질을 증착하여 형성될 수 있으며, 진공증착법, 스핀코팅법, 캐스트법 등의 방법으로 형성될 수 있다. Furthermore, the electron injection layer 235 may be formed by depositing an electron injection layer material on top of the electron transport layer 230, and may be formed by methods such as vacuum deposition, spin coating, and casting.
아울러, 상기 제2 전극(120)은 전자주입전극으로 사용되며, 상기 전자주입층(235)의 상부에 진공증착법이나 스퍼터링법 등의 방법에 의해 형성될 수 있다. 상기 제2 전극(120)의 재료로는 다양한 금속이 사용될 수 있다. 구체적인 예로 알루미늄, 금, 은, 마그네슘 등의 물질이 있으며, 이에 제한되는 것은 아니다. In addition, the second electrode 120 is used as an electron injection electrode, and may be formed on the electron injection layer 235 by a method such as vacuum deposition or sputtering. Various metals may be used as materials for the second electrode 120. Specific examples include materials such as aluminum, gold, silver, and magnesium, but are not limited thereto.
본 발명의 유기 발광 소자는 앞서 설명한 광추출층(300), 제1 전극(100), 정공주입층(210), 전하발생층(215),발광층(220), 전자수송층(230), 전자주입층(235), 제2 전극(120) 및 광추출층(300)을 포함하는 구조의 유기전계발광소자 뿐만 아니라, 다양한 구조의 유기전계발광소자가 가능하며, 필요에 따라 1층 또는 2층의 중간층을 더 추가로 포함하는 것도 가능하다. The organic light emitting device of the present invention includes the light extraction layer 300, the first electrode 100, the hole injection layer 210, the charge generation layer 215, the light emitting layer 220, the electron transport layer 230, and the electron injection layer described above. In addition to the organic electroluminescent device having a structure including the layer 235, the second electrode 120, and the light extraction layer 300, organic electroluminescent devices of various structures are possible, and, if necessary, one or two layers. It is also possible to additionally include an intermediate layer.
한편, 본 발명에 따라 형성되는 각 유기물층의 두께는 요구되는 정도에 따라 조절할 수 있으며, 구체적으로는 1내지 1,000 ㎚ 이며, 더욱 구체적으로는 1 내지 150 ㎚ 일 수 있다. 상기 광추출층(300)은 상기 제1 전극(110)의 양측면 중 정공주입층(210)이 형성되지 않은 외측면에 형성될 수 있다. 또한, 상기 제2 전극(120)의 양측면 중 전자주입층(235)이 형성되지 않은 외측면에도 형성될 수 있으며, 이에 제한되는 것은 아니다. 이와 같은 광추출층(300)은 증착 공정으로 형성될 수 있으며, 광추출층(300)의 두께는 100 내지 2,000 Å이며, 더욱 구체적으로는 300 내지 1,000Å 일 수 있다. 이와 같은 두께 조절을 통해 광추출층(300)의 투과율이 저하되는 것을 방지할 수 있다. Meanwhile, the thickness of each organic layer formed according to the present invention can be adjusted according to the required degree, and may be specifically 1 to 1,000 nm, and more specifically 1 to 150 nm. The light extraction layer 300 may be formed on both sides of the first electrode 110 on the outer side where the hole injection layer 210 is not formed. Additionally, the electron injection layer 235 may be formed on both sides of the second electrode 120 on the outer side where the electron injection layer 235 is not formed, but is not limited thereto. The light extraction layer 300 may be formed through a deposition process, and the thickness of the light extraction layer 300 may be 100 to 2,000 Å, and more specifically, 300 to 1,000 Å. Through such thickness adjustment, the transmittance of the light extraction layer 300 can be prevented from decreasing.
또한, 도 1에 도시되지 않았으나, 본 발명의 일 구현예에 따르면, 광추출층(300)과 제1 전극(110)의 사이 또는 광추출층(300)과 제2 전극(120)의 사이에 다양한 기능을 하는 유기물층이 추가적으로 형성될 수 있다. 또는, 광추출층(300)의 상부(외측 표면)에도 다양한 기능을 하는 유기물층이 추가적으로 형성될 수 있으며, 이에 제한되는 것은 아니다. In addition, although not shown in FIG. 1, according to one embodiment of the present invention, between the light extraction layer 300 and the first electrode 110 or between the light extraction layer 300 and the second electrode 120 Organic layers with various functions may be additionally formed. Alternatively, an organic material layer performing various functions may be additionally formed on the top (outer surface) of the light extraction layer 300, but is not limited thereto.
유기 발광 소자에서, 제1 전극(110)과 제2 전극(120)에 각각 전압이 인가됨에 따라 제1 전극(110)으로부터 주입된 정공(hole)은 정공 수송 영역(210~215)을 거쳐 발광층(220)으로 이동되고, 제2 전극(120)로부터 주입된 전자가 전자 수송 영역(230~235)을 거쳐 발광층(220)으로 이동된다. 전자와 정공은 발광층(220)에서 재결합하여 여기자(exciton)를 생성하며, 여기자가 여기 상태에서 바닥 상태로 떨어지면서 발광하게 된다. In an organic light emitting device, as voltage is applied to the first electrode 110 and the second electrode 120, holes injected from the first electrode 110 pass through the hole transport regions 210 to 215 and then pass through the light emitting layer. 220, and the electrons injected from the second electrode 120 move to the light emitting layer 220 through the electron transport regions 230 to 235. Electrons and holes recombine in the light emitting layer 220 to generate excitons, and the excitons emit light as they fall from the excited state to the ground state.
발광층(220)에서 발생된 광경로는 유기 발광 소자를 구성하는 유무기물들의 굴절률에 따라 매우 다른 경향을 나타낼 수 있다. 제2 전극(120)을 통과하는 빛은 제2 전극(120)의 임계각보다 작은 각도로 투과되는 빛들만 통과할 수 있다. 그 외 임계각보다 크게 제2 전극(120)에 접촉하는 빛들은 전반사 또는 반사되어 유기 발광 소자 외부로 방출되지 못한다. The optical path generated in the light emitting layer 220 may exhibit very different trends depending on the refractive index of the organic and inorganic materials that make up the organic light emitting device. Light passing through the second electrode 120 can only pass through at an angle smaller than the critical angle of the second electrode 120. Other lights that contact the second electrode 120 at a angle greater than the critical angle are totally reflected or reflected and are not emitted outside the organic light emitting device.
광추출층(300)의 굴절률이 높으면 이러한 전반사 또는 반사 현상을 줄여서 발광효율 향상에 기여하고 또한 적절한 두께를 갖게 되면 미소공동현상(Micro-cavity)현상의 극대화로 높은 효율 향상과 색순도 향상에도 기여하게 된다. If the light extraction layer 300 has a high refractive index, it contributes to improving luminous efficiency by reducing total reflection or reflection phenomenon, and if it has an appropriate thickness, it contributes to high efficiency and color purity by maximizing the micro-cavity phenomenon. do.
광추출층(300)은 유기 발광 소자의 가장 바깥에 위치하게 되며, 소자의 구동에 전혀 영향을 주지 않으면서 소자특성에는 지대한 영향을 미친다. 따라서 광추출층(300)은 유기 발광 소자의 내부 보호역할과 동시에 소자특성 향상 두가지 관점에서 모두 중요하다. 유기물질들은 특정 파장영역의 광에너지를 흡수하며 이는 에너지 밴드갭에 의존한다. 이 에너지 밴드갭을 유기 발광 소자내부의 유기물질들에 영향을 줄 수 있는 UV영역의 흡수를 목적으로 조정하면 광추출층(300)이 광학특성 개선을 포함하여 유기 발광 소자 보호의 목적으로도 사용될 수 있다. The light extraction layer 300 is located on the outermost side of the organic light emitting device and has a significant influence on the device characteristics without affecting the operation of the device at all. Therefore, the light extraction layer 300 is important from both the viewpoints of protecting the interior of the organic light emitting device and improving device characteristics. Organic materials absorb light energy in a specific wavelength range and this depends on the energy band gap. If this energy band gap is adjusted for the purpose of absorbing the UV region, which can affect the organic materials inside the organic light-emitting device, the light extraction layer 300 can be used for the purpose of protecting the organic light-emitting device, including improving optical properties. You can.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다. The organic light emitting device according to the present specification may be a front emitting type, a back emitting type, or a double-sided emitting type depending on the material used.
이하 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 명세서에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present specification will be described in detail using examples. However, the embodiments according to the present specification may be modified into various other forms, and the scope of the present application is not to be construed as being limited to the embodiments described in detail below. The embodiments of this application are provided to more completely explain the present specification to those with average knowledge in the art.
<실험예 1><Experimental Example 1>
굴절률 및 흡광계수의 측정 방법Methods for measuring refractive index and extinction coefficient
상기 <실험예 2>에서 준비된 광추출층용 화합물에 대하여 J.A. WOOLLAM사의 Ellipsometer기기를 이용하여 굴절률(n) 및 흡광계수(k)을 측정한다.Regarding the compound for the light extraction layer prepared in <Experimental Example 2>, J.A. Measure the refractive index (n) and extinction coefficient (k) using WOOLLAM's Ellipsometer device.
측정용 시편의 제작 : Preparation of specimens for measurement:
화합물의 광학 특성을 측정하기 위해 실리콘 기판을 Ethanol, DI Water, Acetone에 Ultrasonic을 이용하여 각각 20분씩 세척한 후, 세척된 실리콘 기판To measure the optical properties of the compound, the silicon substrate was washed in Ethanol, DI Water, and Acetone using Ultrasonic for 20 minutes each, and then the washed silicon substrate was
위에 준비된 화합물을 2.0x10-7 Torr의 진공도에서 1Å/sec의 속도로 두께 50nm 층착막을 성막 하여 시편을 제작한다.A specimen is produced by forming a 50nm thick layered film using the compound prepared above at a vacuum level of 2.0x10-7 Torr at a speed of 1Å/sec.
제작된 시편은 상기 엘립소미터 장치를 이용하여 380nm~530nm파장범위에서의 굴절률 및 흡광계수를 측정하였다.The refractive index and extinction coefficient of the manufactured specimen were measured in the wavelength range of 380 nm to 530 nm using the ellipsometer device.
<실험예2><Experimental Example 2>
유기전계발광소자의 제조Manufacturing of organic electroluminescent devices
표 1.은 일반적인 유기 발광 소자의 구조를 나타낸 것으로서, 본 발명은 예시로서 제조된 유기 발광 소자는 아래로부터 제1전극(110)) / 정공주입층(210) /전하발생층(215) / 발광층(220) / 전자수송층(230) / 전자주입층(235) / 제2전극(120)) / 광추출층(300) 순으로 적층되어 있다 . Table 1 shows the structure of a general organic light-emitting device. The organic light-emitting device manufactured as an example of the present invention has the following structure from below: first electrode 110) / hole injection layer 210 / charge generation layer 215 / light emitting layer They are laminated in the following order: (220) / electron transport layer (230) / electron injection layer (235) / second electrode (120)) / light extraction layer (300).
정공주입층(210), 전하발생층(215), 발광층(220), 전자수송층(230), 전자주입층(235)에는 하기 표1에 정리된 물질들을 사용하였다. The materials listed in Table 1 below were used for the hole injection layer 210, charge generation layer 215, light emitting layer 220, electron transport layer 230, and electron injection layer 235.
전자주입층(235) 위에 전자 주입을 위한 제2전극(120)을 형성하였다. 음극으로는 다양한 금속이 사용될 수 있다.A second electrode 120 for electron injection was formed on the electron injection layer 235. Various metals can be used as the cathode.
또한, 제2전극(120) 위에 광추출층(300)을 형성하였다.Additionally, a light extraction layer 300 was formed on the second electrode 120.
HIL-1HIL-1 HIL-2HIL-2 BH01BH01
Figure PCTKR2023008578-appb-img-000001
Figure PCTKR2023008578-appb-img-000001
Figure PCTKR2023008578-appb-img-000002
Figure PCTKR2023008578-appb-img-000002
Figure PCTKR2023008578-appb-img-000003
Figure PCTKR2023008578-appb-img-000003
BD01BD01 ET01ET01 LiqLiq
Figure PCTKR2023008578-appb-img-000004
Figure PCTKR2023008578-appb-img-000004
Figure PCTKR2023008578-appb-img-000005
Figure PCTKR2023008578-appb-img-000005
Figure PCTKR2023008578-appb-img-000006
Figure PCTKR2023008578-appb-img-000006
이하 표 2.에는 비교예 1 및 실시예 1 내지 실시예 4에서 광추출층에 이용한 재료의 구조식을 나타낸다.Table 2 below shows the structural formulas of the materials used in the light extraction layer in Comparative Example 1 and Examples 1 to 4.
Alq3Alq3 k-Test1k-Test1

Figure PCTKR2023008578-appb-img-000007

Figure PCTKR2023008578-appb-img-000007

Figure PCTKR2023008578-appb-img-000008

Figure PCTKR2023008578-appb-img-000008
k-Test2k-Test2 k-Test3k-Test3

Figure PCTKR2023008578-appb-img-000009

Figure PCTKR2023008578-appb-img-000009

Figure PCTKR2023008578-appb-img-000010

Figure PCTKR2023008578-appb-img-000010
k-Test4k-Test4

Figure PCTKR2023008578-appb-img-000011

Figure PCTKR2023008578-appb-img-000011
<비교예 1><Comparative Example 1>
유리 기판을 제공하고, 상기 기판 상부에 제 1 전극의 반사막으로 Ag를 포함하는 반사층을 형성하고, 상기 Ag로 형성된 반사막 상부에 ITO를 증착하였다. 이어서, ITO 상부에 유기막층으로서 정공 주입층에 HIL-1 100nm, 전하발생층으로 HIL-1 및 HIL-2 (9:1, wt./wt.)의 혼합물을 10nmfmf 제막 후 호스트 BH01에 도펀트 BD01을 2중량%로 도핑하여 발광층으로 25nm를 제막하였다. 전자 수송층에는 ET01과 Liq(1:1, wt./wt.)의 혼합물로 30nm의 두께로 형성한 후 LiF를 1nm 증착하여 전자주입층을 형성하였다. 이어서, 제 2 전극으로서 MgAg 15nm의 두께로 증착 하였으며, 상기 제2전극위에 광추출층으로 도 2.에 표기된 Alq3를 60nm두께로 증착하였다. 이렇게 제작된 소자를 글러브박스에서 밀봉(Encapsulation)함으로써 Blue 유기전개발광소자를 제작하였다.A glass substrate was provided, a reflective layer containing Ag was formed on the upper part of the substrate as a reflective film of the first electrode, and ITO was deposited on the upper part of the reflective film formed of Ag. Subsequently, 100 nm of HIL-1 was deposited on the hole injection layer as an organic layer on top of the ITO, and a 10 nm fmf layer of a mixture of HIL-1 and HIL-2 (9:1, wt./wt.) was deposited on the host BH01 as a dopant BD01. was doped at 2% by weight to form a 25 nm light-emitting layer. The electron transport layer was formed with a mixture of ET01 and Liq (1:1, wt./wt.) to a thickness of 30 nm, and then 1 nm of LiF was deposited to form an electron injection layer. Subsequently, MgAg was deposited to a thickness of 15 nm as a second electrode, and Alq3 shown in Figure 2 was deposited to a thickness of 60 nm as a light extraction layer on the second electrode. A blue organic light-emitting device was manufactured by encapsulating the device manufactured in this way in a glove box.
<실시예 1> 내지 <실시예 4><Example 1> to <Example 4>
상기 비교예 1과 같은 방법으로 제조하되, 상기 표 2에 표시된 k-Test1, k-Test2, k-Test3, k-Test4화합물을 사용하여 광추출층으로 제막한 유기전계발광소자를 제작하였다.An organic electroluminescent device was manufactured in the same manner as in Comparative Example 1, except that the k-Test1, k-Test2, k-Test3, and k-Test4 compounds shown in Table 2 were used to form a light extraction layer.
<실험예3><Experimental Example 3>
유기전계발광소자의 성능평가Performance evaluation of organic electroluminescent devices
효율 및 색좌표 평가에 있어서 전압은 키슬리 2400 소스 메져먼트 유닛(Kiethley 2400 source measurement unit)으로 전압을 인가 하여 전자 및 정공을 주입하고, 코니카미놀타 분광복사계( Konica Minolta CS-2000)를 이용하여 빛이 방출 될 때의 휘도 및 색좌표를 측정하였다.In evaluating efficiency and color coordinates, voltage is applied to a Keithley 2400 source measurement unit to inject electrons and holes, and light is measured using a Konica Minolta spectroradiometer (Konica Minolta CS-2000). The luminance and color coordinates when emitted were measured.
수명평가의 경우 동일 장비를 활용하여 10mA/cm2에서의 휘도 변화를 측정하였으며, 일상 사용하는 상황(Lighting Room)을 재현하기 위하여 측정실 내의 시편에 LED광원을 고르게 비춘 상태에서 수명 평가를 진행하였다. (측성시에는 소등 후 암실 측정)In the case of life evaluation, the change in luminance at 10 mA/cm2 was measured using the same equipment, and life evaluation was conducted with the LED light source evenly illuminated on the specimen in the measurement room to reproduce the everyday use situation (lighting room). (When measuring, measure in a dark room after turning off the lights)
재료 자체의 수명 평가를 위해서 암실(Darkroom)을 구현하여 수명평가를 진행하여 일상사용 상황일 때의 수명 변화와 재료 자체의 수명 평가상황을 때의 수명 변화를 측정하여 비교하여 그 결과를 표3에 나타내었다.In order to evaluate the lifespan of the material itself, a darkroom was implemented and lifespan evaluation was conducted, and the lifespan change during daily use was measured and compared with the lifespan change during the lifespan evaluation of the material itself. The results are shown in Table 3. indicated.
nn k@420k@420 k@450k@450 Cd/ACd/A CIE_yCIE_y BIB.I. LifeLife
(Lightingroom)(Lighting room)
LifeLife
(Darkroom)(Darkroom)
Alq3Alq3 1.821.82 0.040.04 0.000.00 5.355.35 0.0460.046 116116 118118 203203
k-Test1k-Test1 2.002.00 0.010.01 0.000.00 6.256.25 0.0470.047 133133 120120 199199
k-Test2k-Test2 2.312.31 0.080.08 0.000.00 7.077.07 0.0470.047 150150 145145 205205
k-Test3k-Test3 2.342.34 0.340.34 0.010.01 7.167.16 0.0490.049 146146 175175 211211
k-Test4k-Test4 2.432.43 1.001.00 0.260.26 8.958.95 0.1160.116 7777 197197 205205
실험예 1 및 실험예 3의 결과에서 각 재료들의 파장에 따른 흡광계수 및 파장에 따른 발광 스펙트럼을 도2에 나타내었다.In the results of Experimental Example 1 and Experiment 3, the extinction coefficient according to the wavelength of each material and the emission spectrum according to the wavelength are shown in Figure 2.
도 2.에서와 같이 광추출재료별 파장에 따른 흡광계수를 보면 발광층(EML)에서 발생된 광을 흡수 할수도 있고, 자연계 또는 유기전계발광소자의 제작중 발생하는 UV를 흡수 할 수도 있음을 볼 수 있다.As shown in Figure 2, looking at the absorption coefficient according to the wavelength of each light extraction material, it can be seen that light generated in the light emitting layer (EML) can be absorbed, and UV generated during the production of natural or organic electroluminescent devices can be absorbed. You can.
비교예 1과 실시예 1내지 실시예 4의 결과로부터 청구항 1에서 조건(1)을 만족하는 재료를 광추출층으로 시용하였을 때 현저한 효율 상승을 갖는 것을 확인하였다.From the results of Comparative Example 1 and Examples 1 to 4, it was confirmed that there was a significant increase in efficiency when a material satisfying condition (1) in claim 1 was used as a light extraction layer.
또한 불꺼진방(Darkroom)에서는 모든 재료의 수명이 대동소이 하나 조건(2)를 만족하는 재료를 광추출층으로 사용하였을 때 불이 켜진 방(Lightingroom)에서 수명이 향상되는 것을 확인하였다.In addition, although the lifespan of all materials was the same in a darkroom, it was confirmed that the lifespan was improved in a lighted room when a material that satisfied condition (2) was used as a light extraction layer.
조건(3)을 벗어나는 재료의 경우, 고굴절에 따른 효율 상승을 이룰 수 있었지만, CIE_y가 급격히 증가되고, BI가 감소함을 볼 수 있었는데, 이는 결과적으로 광추출층 자체가 발광층에서 발생하는 광을 일부 흡수함에 따른 것임을 알 수 있었다.In the case of materials outside of condition (3), an increase in efficiency was achieved due to high refraction, but CIE_y was seen to increase sharply and BI to decrease. As a result, the light extraction layer itself absorbed some of the light generated from the light emitting layer. It was found that it was due to absorption.
이상의 결과로부터, 광추출층의 굴절률이 클수록 효율이 증가함을 알 수 있었으며, 흡광계수의 경우 k@420nm≥0.10인 재료의 경우 자연환경에서 기기를 실제 사용할 경우 실제 사용수명향상을 가져올 수 있으며, k@450nm≤0.01인 재료의 경우에서 발광층에서 발생되는 광의 흡수를 피할 수 있음을 확인하여, 고효율, 장수명, 고색순도를 갖는 유기전계발광소자를 구현할 수 있다.From the above results, it can be seen that the greater the refractive index of the light extraction layer, the greater the efficiency. In the case of materials with an extinction coefficient of k@420nm≥0.10, actual service life can be improved when the device is actually used in a natural environment. In the case of a material with k@450nm≤0.01, it was confirmed that absorption of light generated in the light-emitting layer could be avoided, making it possible to implement an organic electroluminescent device with high efficiency, long lifespan, and high color purity.
이상, 본 발명을 본 발명의 원리를 예시하기 위한 바람직할 실시 예와 관련하여 도시하고 또한 설명하였으나, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다. 오히려 첨부된 특허청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등물도 본 발명의 범주에 속하는 것으로 간주되어야 할 것이다. Although the present invention has been shown and described in connection with preferred embodiments for illustrating the principles of the present invention, the present invention is not limited to the configuration and operation as shown and described. Rather, those skilled in the art will be able to understand that many changes and modifications can be made to the present invention without departing from the spirit and scope of the appended claims. Accordingly, all such appropriate changes, modifications and equivalents shall be considered to fall within the scope of the present invention.
상기한 바와 같은 본 발명은 유기전계 발광소자 산업분야에 널리 이용될 수 있다. The present invention as described above can be widely used in the organic electroluminescent device industry.
100...기판100...substrate
110...제1전극110...first electrode
200...유기물층200...organic layer
210...정공주입층210...hole injection layer
215...전하발생층215...charge generation layer
220...발광층220...light emitting layer
230...전자수송층230...electron transport layer
235...전자주입층235...electron injection layer
120...제2전극120...second electrode
300...광추출층300...light extraction layer

Claims (6)

  1. 기판, 제1 전극, 청색 발광층을 포함하는 1 이상의 유기층, 제2 전극, 광추출층을 이 순으로 구비하고, 상기 광추출층이 하기 조건 (1) 내지 조건(3)을 만족시키는 재료를 포함하는 유기전계발광 소자.A substrate, a first electrode, one or more organic layers including a blue light-emitting layer, a second electrode, and a light extraction layer are provided in this order, and the light extraction layer includes a material that satisfies the following conditions (1) to (3). Organic electroluminescent device.
    조건(1) n(@450nm) ≥ 2.00Condition (1) n(@450nm) ≥ 2.00
    조건(2) k(@420nm) ≥ 0.10Condition (2) k(@420nm) ≥ 0.10
    조건(3) k(@450nm) ≤ 0.01Condition (3) k(@450nm) ≤ 0.01
    (이때, 상기 n은 정의된 파장에서의 굴절률을 나타내고, 상기 k는 정의된 파장에서의 흡광계수를 나타낸다).(At this time, n represents the refractive index at a defined wavelength, and k represents the extinction coefficient at a defined wavelength).
  2. 제 1 항에 있어서, According to claim 1,
    상기 제2 전극이 금속을 포함하여 이루어지는 유기 전계 발광 소자.An organic electroluminescent device in which the second electrode includes metal.
  3. 제 1 항에 있어서, According to claim 1,
    상기 광추출층의 막 두께가 200 ㎚ 이하인 유기 전계 발광 소자.An organic electroluminescent device wherein the light extraction layer has a film thickness of 200 nm or less.
  4. 제 1 항에 있어서, According to claim 1,
    상기 청색 발광층에 포함되는 발광 재료의 PL 스펙트럼의 피크 파장이 430 ㎚ 이상 500 ㎚ 이하인 유기 전계 발광 소자. An organic electroluminescent device in which the peak wavelength of the PL spectrum of the light-emitting material included in the blue light-emitting layer is 430 nm or more and 500 nm or less.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 4,
    상기 유기층이 적색 발광층과 녹색 발광층을 더 포함하는 유기 전계 발광 소자.An organic electroluminescent device wherein the organic layer further includes a red light-emitting layer and a green light-emitting layer.
  6. 제 1 항에 있어서, According to claim 1,
    상기 조건(1)의 450nm 파장에서 굴절률이 2.20 이상인 유기전계발광소자용 광추출층.A light extraction layer for an organic electroluminescent device having a refractive index of 2.20 or more at a wavelength of 450 nm under condition (1).
PCT/KR2023/008578 2022-07-01 2023-06-21 Organic electroluminescent device including light extraction layer WO2024005436A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0081228 2022-07-01
KR1020220081228A KR20240003536A (en) 2022-07-01 2022-07-01 Organic electroluminescent device including light extraction layer

Publications (2)

Publication Number Publication Date
WO2024005436A2 true WO2024005436A2 (en) 2024-01-04
WO2024005436A3 WO2024005436A3 (en) 2024-04-25

Family

ID=89380835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008578 WO2024005436A2 (en) 2022-07-01 2023-06-21 Organic electroluminescent device including light extraction layer

Country Status (2)

Country Link
KR (1) KR20240003536A (en)
WO (1) WO2024005436A2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040098238A (en) 2003-05-14 2004-11-20 주식회사 대우일렉트로닉스 Filter assembly for oxygen generator
KR101419247B1 (en) * 2010-12-28 2014-07-16 엘지디스플레이 주식회사 White Organic Emitting Device and Display Device Using the Same
US9882136B2 (en) * 2012-05-31 2018-01-30 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
KR101528663B1 (en) * 2012-11-14 2015-06-15 주식회사 엘지화학 Organic light emitting device and method for preparing the same
KR101581033B1 (en) * 2013-11-01 2015-12-29 서울대학교산학협력단 organic light-emitting diode, and display device and illumination
KR102127238B1 (en) * 2013-12-27 2020-06-26 엘지디스플레이 주식회사 Organic light emitting device
KR20210024969A (en) * 2019-08-26 2021-03-08 주식회사 동진쎄미켐 organic electroluminescent device comprising a capping layer and compound for capping layer applied to the same

Also Published As

Publication number Publication date
WO2024005436A3 (en) 2024-04-25
KR20240003536A (en) 2024-01-09

Similar Documents

Publication Publication Date Title
WO2013154342A1 (en) Organic light-emitting diode containing co-hosts forming exciplex, and lighting device and display apparatus including same
KR101614403B1 (en) White oled with blue light-emitting layers
KR100670383B1 (en) An organic light emitting device and a flat display device comprising the same
WO2012033322A2 (en) Substrate for an organic electronic device and an organic electronic device comprising the same
US20070035238A1 (en) Organic electroluminescent device
WO2013187735A1 (en) Layered structure for oled device, method for manufacturing the same, and oled device having the same
WO2010056070A2 (en) Low voltage-driven organic electroluminescence device, and manufacturing method thereof
KR101760004B1 (en) Oled device with stabilized yellow light-emitting layer
WO2004077886A1 (en) Organic electroluminescent device
KR20050015902A (en) Organic electroluminescence device and fabrication method of the same
KR100879476B1 (en) Organic light emitting device
JP2011054668A (en) Organic electroluminescence device
WO2022102877A1 (en) Organic light-emitting device with improved lifespan characteristics
JP3967946B2 (en) Organic electroluminescence device
WO2024005436A2 (en) Organic electroluminescent device including light extraction layer
JP2005044799A (en) Organic electroluminescent device
KR100685419B1 (en) Organic light emitting display and fabricating method of the same
KR20210027055A (en) Light emitting device
JP2003282265A (en) Organic electroluminescent element
WO2010041870A2 (en) Organic light-emitting diode device
WO2014069831A1 (en) Organic light emitting diode and manufacturing method therefor
JP2003282267A (en) Light emitting device
JP2008218320A (en) Organic electroluminescent element
US8866163B2 (en) White organic electroluminescence device
JP2017154283A (en) Barrier film, method for producing barrier film, and element using the barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831796

Country of ref document: EP

Kind code of ref document: A2