WO2024004604A1 - Film, method for producing same, metal clad laminated board, circuit board, and electronic device - Google Patents

Film, method for producing same, metal clad laminated board, circuit board, and electronic device Download PDF

Info

Publication number
WO2024004604A1
WO2024004604A1 PCT/JP2023/021676 JP2023021676W WO2024004604A1 WO 2024004604 A1 WO2024004604 A1 WO 2024004604A1 JP 2023021676 W JP2023021676 W JP 2023021676W WO 2024004604 A1 WO2024004604 A1 WO 2024004604A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
filler
range
resin
mass
Prior art date
Application number
PCT/JP2023/021676
Other languages
French (fr)
Japanese (ja)
Inventor
愛実 高間
康 大久保
乃傲 許
浩 西村
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2024004604A1 publication Critical patent/WO2024004604A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a film. More specifically, the present invention relates to a film that reduces transmission loss and has excellent adhesiveness to a copper foil layer.
  • a frequency band below 6 GHz called the Sub-6 band and a frequency band above 24 GHz called the millimeter wave band are allocated.
  • the amount of information that can be transmitted at once increases as the frequency of radio waves increases, so these 5G frequency bands are higher frequency bands than the previous generation 4G, and 5G communication equipment has a high frequency band. It needs to be adapted for use.
  • dielectric loss which is one of the elements that make up transmission loss, increases as the frequency of radio waves increases.
  • dielectric loss increases dielectric loss. Therefore, it is required to use a low dielectric loss material that suppresses the increase in dielectric loss.
  • circuit boards include thin, flexible, and bendable flexible boards.
  • This flexible substrate is manufactured by bonding a conductor foil (metal plate) to a base film via an adhesive layer. Therefore, in flexible substrates, development of base films with further reduced dielectric loss is underway.
  • Patent Document 1 discloses a non-aqueous dispersion of a fluororesin that contains a fluororesin micropowder and a fluorine additive containing at least a fluorine-containing group and a lipophilic group, and has a water content of 5000 ppm or less by Karl Fischer method.
  • a technique related to a fluororesin-containing polyimide precursor solution composition containing at least a polyimide precursor solution and a polyimide precursor solution is disclosed.
  • Patent Document 2 discloses a technology related to a low dielectric constant polyimide terminal-capped with an alicyclic dicarboxylic acid anhydride or an alicyclic monoamine.
  • Patent No. 6491947 Japanese Patent Application Publication No. 2020-070359
  • the present invention was made in view of the above problems and circumstances, and an object to be solved is to provide a film etc. that reduces dielectric loss and has excellent adhesiveness to a copper foil layer.
  • the present inventor investigated the causes of the above problems, and as a result, in a film containing a resin and a filler, the dielectric loss tangent of the resin and filler, the content of the filler, and the two aspects of the film were determined.
  • the inventors have discovered that by controlling the surface free energy within a specific range, the dielectric loss of the film can be reduced and the adhesion between the film and the copper foil layer can be improved, leading to the present invention. That is, the above-mentioned problems related to the present invention are solved by the following means.
  • a film containing a resin and a filler The dielectric loss tangents of the resin and the filler at a frequency of 28 GHz in an environment of 22° C. and 60% RH are both 0.0150 or less, The content of the filler is within the range of 1.0 to 70.0% by mass based on the total mass of the film,
  • the surface free energies of the two opposing surfaces of the film are respectively A [mJ/m 2 ] and B [mJ/m 2 ]
  • the following formula is satisfied (Formula 1) A ⁇ B (Formula 2) 1 ⁇ B/A ⁇ 1.30
  • the film further contains a surfactant, 3.
  • the film according to item 1 or 2 wherein the content of the surfactant is within the range of 0.10 to 1.00% by mass based on the total mass of the film.
  • a film manufacturing method for manufacturing the film according to item 1 or 2 comprising: preparing a coating liquid containing the resin, the filler, and a solvent; a step of applying the coating liquid onto a support to form a coating film, and a step of drying the coating film,
  • a method for producing a film characterized in that the surface free energy of the support is within a range of 30 to 80 mJ/m 2 .
  • a metal-clad laminate comprising the film according to item 1 or 2.
  • a circuit board comprising the metal-clad laminate according to item 12.
  • An electronic device comprising the circuit board according to item 13.
  • the dielectric used for the circuit board be a film with less dielectric loss.
  • Dielectric loss depends on the dielectric properties (relative permittivity and dielectric loss tangent) of a dielectric, and the smaller the dielectric constant and dielectric loss tangent, the smaller its value.
  • the film of the present invention is considered to be able to reduce dielectric loss because the dielectric loss tangents of the resin and filler at a frequency of 28 GHz in an environment of 22° C. and 60% RH are both 0.0150 or less. . Further, it is considered that dielectric loss can be reduced by containing a relatively large amount of filler having a low dielectric loss tangent. It is thought that this makes it possible to reduce the transmission loss of the film.
  • the surface free energy of the two surfaces of the film satisfies the above (Formula 1) and (Formula 2) (the ratio of the surface free energies is within a specific range), that is, the two surfaces of the film Since the difference in measured surface free energy is relatively small, it is considered that the adhesiveness with the copper foil layer is excellent.
  • the film of the present invention is a film containing a resin and a filler, and the dielectric loss tangents of the resin and the filler at a frequency of 28 GHz in an environment of 22° C. and 60% RH are both 0.0150 or less,
  • the content of the filler is within the range of 1.0 to 70.0% by mass based on the total mass of the film, and the surface free energy is A [mJ/ m 2 ] and B [mJ/m 2 ], it is characterized by satisfying the following formula.
  • (Formula 1) A ⁇ B (Formula 2) 1 ⁇ B/A ⁇ 1.30 This feature is a technical feature common to or corresponding to the embodiments described below.
  • the dielectric loss tangent of the film at a frequency of 28 GHz in an environment of 22° C. and 60% RH is , preferably within the range of 0.0010 to 0.0150.
  • the content of the filler is 15.0 to 15.0 to It is preferably within the range of 50.0% by mass.
  • the amount of residual solvent in the film is preferably within the range of 200 to 3000 ppm by mass.
  • the film further contains a surfactant, and the content of the surfactant is , is preferably within the range of 0.10 to 1.00% by mass based on the total mass of the film.
  • the surface free energy of both opposing surfaces of the film is 25.00. It is preferably within the range of 75.00 mJ/m 2 .
  • the glass transition temperature of the resin is 200° C. or higher.
  • the resin and the filler are soluble in a solvent with a boiling point of 150°C or less. Or it is preferable to have dispersibility.
  • the film manufacturing method of the present invention is a film manufacturing method for manufacturing the film of the present invention, which includes a step of preparing a coating liquid containing the resin, the filler, and a solvent, and coating the coating liquid on a support. , a step of forming a coating film, and a step of drying the coating film, and is characterized in that the surface free energy of the support is within a range of 30 to 80 mJ/m 2 .
  • the filler containing the filler in the step of preparing the coating liquid, is dissolved or dispersed in the solvent.
  • the resin is added to the liquid.
  • the boiling point of the solvent is preferably 150° C. or lower, from the viewpoint of reducing the film manufacturing process temperature (particularly the drying temperature) and reducing thermal shrinkage.
  • the metal-clad laminate of the present invention is characterized by containing the film.
  • the circuit board of the present invention is characterized by comprising the metal-clad laminate.
  • the electronic device of the present invention is characterized by comprising the circuit board.
  • is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
  • the film of the present invention is a film containing a resin and a filler, and the dielectric loss tangent of the resin and the filler at a frequency of 28 GHz in an environment of 22° C. and 60% RH are both 0.0150 or less.
  • the filler content is within the range of 1.0 to 70.0% by mass based on the total mass of the film, and the surface free energy on the two opposing faces of the film is A [mJ/ m 2 ] and B [mJ/m 2 ], it is characterized by satisfying the following formula.
  • Transmission loss is thought to consist of the sum of the dielectric loss of the dielectric material (e.g., base film, etc.) used for the circuit board material, the conductor loss of the conductor used as the signal line on the circuit board, etc. In order to reduce transmission loss, it is considered preferable to mainly reduce dielectric loss and conductor loss.
  • Dielectric loss refers to the phenomenon in which when an alternating current electric field is applied to a dielectric from the outside, part of the electrical energy is lost as heat inside the dielectric, and also refers to the energy lost. In addition, in this specification, it is used in both meanings.
  • Conductor loss is a phenomenon in which some of the electrical energy is lost as heat inside the conductor due to the resistance and skin effect of the conductor used as a signal line (wiring) on a circuit board, and It refers to energy.
  • skin effect refers to the phenomenon in which when an alternating current electric field is applied to a conductor, more current flows toward the outside than the center of the conductor. It occurs when eddy currents are generated inside the conductor due to induced electromotive force and induced current.
  • the film of the present invention contains filler in addition to resin. It is considered that by containing a relatively large amount of filler with a low dielectric constant and dielectric loss tangent, the dielectric constant and dielectric loss tangent of the film can be lowered. However, if too much filler is contained, the fillers tend to aggregate with each other, resulting in an increase in the particle size of the filler.
  • the present inventor found that when the filler is uniformly dispersed, the deviation depending on the measurement location of the surface free energy of the film is relatively small; If there is agglomeration, it is assumed that the deviation depending on the measurement location will be relatively large. That is, it is estimated that when the filler is uniformly dispersed, the difference in surface free energy measured between two opposing sides of the film can be made relatively small.
  • the film by manufacturing the film using the manufacturing method described below, it is possible to make the film contain a relatively large amount of filler, and the surface free energy of the film can be adjusted within a specific range. It will be done. Moreover, it is considered that the filler can be more uniformly dispersed by further containing a surfactant in the film as needed.
  • the film of the present invention is a film containing a resin and a filler, and the dielectric loss tangent of the resin and the filler at a frequency of 28 GHz in an environment of 22° C. and 60% RH are both 0.0150 or less.
  • the filler content is within the range of 1.0 to 70.0% by mass based on the total mass of the film, and the surface free energy of the two opposing faces of the film is as follows (Formula 1 ) and (Equation 2). (Formula 1) A ⁇ B (Formula 2) 1 ⁇ B/A ⁇ 1.30
  • the film of the present invention contains a resin and a filler.
  • a surfactant or the like may be contained, if necessary.
  • the film of the present invention contains resin.
  • the resin has a dielectric loss tangent of 0.0150 or less at a frequency of 28 GHz in an environment of 22° C. and 60% RH.
  • the film of the present invention can reduce dielectric loss by containing the resin.
  • the dielectric loss tangent at a frequency of 28 GHz in an environment of 22° C. and 60% RH is preferably as low as possible; specifically, it is more preferably 0.0140 or less, and even more preferably 0.0100 or less.
  • the resin is not particularly limited as long as it satisfies the above dielectric loss tangent condition, and examples thereof include thermosetting resins and thermoplastic resins.
  • thermosetting resin include polyimide, polyarylate, maleimide compound, cyanate resin, benzocyclobutene resin, polycarbodiimide, and the like.
  • thermoplastic resins include liquid crystal polymers. These may be used alone or in combination of two or more.
  • polyimide refers to a polymer containing an imide bond in a repeating unit in its chemical structure, and is a general term thereof.
  • the polyimide used in the present invention is produced using an aromatic diamine compound and a tetracarboxylic dianhydride through the steps of polymerization to polyamic acid, chemical imidization reaction, formation of powder by precipitation of the polyimide produced, and drying. Preferably, it is produced (manufactured).
  • the powdered polyimide produced by this method will be described below, but the method for producing polyimide according to the present invention is not limited to this method. Alternatively, commercially available polyimide may be used.
  • aromatic diamine compounds include, for example, m-phenylenediamine, p-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3 '-Diaminodiphenylsulfide, 3,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone , 3,3'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 2,2-bis(4-aminophenyl)propan
  • At least one type is preferably an aromatic diamine compound having a fluoro group.
  • an aromatic diamine compound having a fluoro group By using an aromatic diamine compound having a fluoro group, heat resistance and solubility in a solvent can be further improved.
  • tetracarboxylic dianhydride Similar to aromatic diamine compounds, from the viewpoint of solubility in solvents, examples of tetracarboxylic dianhydride include 4,4'-(1,1,1,3,3,3-hexafluoropropane-2 ,2-diyl)diphthalic dianhydride, pyromellitic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 1,4-hydroquinone dibenzoate-3,3',4 , 4'-tetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, etc. . These tetracarboxylic dianhydrides may be used alone or in combination of two or more.
  • At least one type is preferably a tetracarboxylic dianhydride having a fluoro group.
  • N,N-dimethylacetamide, N,N-dimethyl are used as the solvent for polymerization to polyamic acid.
  • Examples include formamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide and the like.
  • the polymerization reaction to form polyamic acid is preferably carried out with stirring in a reaction vessel equipped with a stirring device.
  • methods for obtaining polyamic acid include a method in which a predetermined amount of an aromatic diamine compound is dissolved in the above solvent, and a reaction is carried out by adding tetracarboxylic dianhydride while stirring; A method in which the reaction is carried out by dissolving the carboxylic dianhydride and adding an aromatic diamine compound while stirring. A method in which the reaction is carried out by adding the aromatic diamine compound and the tetracarboxylic dianhydride alternately to the above solvent. , etc.
  • the temperature in the polymerization reaction to form polyamic acid is not particularly limited, but is preferably within the range of 0 to 70°C, more preferably within the range of 10 to 60°C, and within the range of 20 to 50°C. It is even more preferable that there be. By falling within the above range, a high molecular weight polyamic acid with little coloration and excellent transparency can be obtained.
  • aromatic diamine compound and tetracarboxylic dianhydride used for polymerization to polyamic acid are approximately equivalent (mole equivalent), but in order to control the degree of polymerization of the resulting polyamic acid, tetracarboxylic dianhydride is The molar amount of anhydride/molar amount of aromatic diamine compound (molar ratio) may be varied within the range of 0.950 to 1.050.
  • the molar ratio of the tetracarboxylic dianhydride and the aromatic diamine compound is preferably within the range of 1.001 to 1.020, more preferably within the range of 1.001 to 1.010. .
  • the degree of polymerization of the resulting polyamic acid can be stabilized, and the unit (structural unit) derived from the tetracarboxylic dianhydride can be added to the polymer. Since it can be placed at the end, a polyamic acid with little coloring and excellent transparency can be obtained.
  • the concentration of polyamic acid in the polyamic acid solution to be produced is within the range of 10 to 30% by mass based on the total mass of the polyamide solution, from the viewpoint of maintaining appropriate viscosity of the solution and facilitating handling in subsequent steps. It is preferable that Note that the "produced polyamic acid solution” refers to a solution containing a polyamic acid and a solvent that is produced in the method for obtaining the polyamic acid described above.
  • imidizing agents include carboxylic anhydrides such as acetic anhydride, propionic anhydride, succinic anhydride, phthalic anhydride, and benzoic anhydride.From the viewpoint of cost and ease of removal after reaction, Acetic anhydride is preferred.
  • the amount of the imidizing agent added is preferably at least the equivalent of the amide bond of the polyamic acid that undergoes the chemical imidization reaction, and is preferably in the range of 1.1 to 5 times the equivalent of the amide bond.1. More preferably, it is within the range of 5 to 4 times. In this way, by using a slightly excess amount of imidizing agent with respect to the amide bond, the imidizing reaction can be carried out efficiently even at a relatively low temperature.
  • aliphatic, aromatic, or heterocyclic tertiary amines such as pyridine, picoline, quinoline, isoquinoline, trimethylamine, and triethylamine can be used as an imidization promoter.
  • pyridine pyridine
  • picoline quinoline
  • isoquinoline trimethylamine
  • triethylamine triethylamine
  • the temperature in the chemical imidization reaction is not particularly limited, but is preferably in the range of 10°C or more and less than 50°C, more preferably in the range of 15°C or more and less than 45°C.
  • the poor solvent used for precipitation and powderization of polyimide is a poor solvent that can precipitate polyimide, and is preferably a poor solvent that is miscible with the solvent of the polyimide solution, such as , water, methanol, ethanol and the like.
  • methanol is preferable from the viewpoint of being able to obtain polyimide powder having a stable average particle diameter.
  • the amount of the poor solvent used is preferably 0.5 times or more, more preferably 0.8 times or more, and 1 time or more relative to the total mass of the polyimide solution. is even more preferable.
  • the amount is 0.5 times or more with respect to the total mass of the polyimide solution, polyimide powder having a stable average particle diameter can be obtained in high yield.
  • the amount of the poor solvent to be used is generally preferably 10 times or less, more preferably 7 times or less, and even more preferably 5 times or less with respect to the total mass of the polyimide solution. Preferably, it is particularly preferably 4 times or less.
  • Precipitation and powdering of polyimide is preferably carried out by dropping a poor solvent while stirring the polyimide solution.
  • the polyimide solution concentration (polyimide content based on the total mass of the polyimide solution) is preferably within the range of 5 to 30% by mass, and preferably within the range of 10 to 20% by mass. More preferably, the concentration of the polyimide solution is adjusted within the above range in advance.
  • the average particle diameter of the obtained polyimide powder is within the range of 0.02 to 0.80 mm.
  • the average particle diameter can be controlled by the addition rate (addition amount per minute) of the poor solvent to the polyimide solution.
  • the preferable addition rate of the poor solvent depends somewhat on the structure of the polyimide and the concentration of polyimide in the solution. At the latest, immediately before precipitation of polyimide occurs, if the total amount of polyimide solution to be precipitated is Xg, the amount of poor solvent added per minute is preferably 0.0005 to 0.1 times X (g /min), more preferably within the range of 0.001 to 0.05 times of X, and even more preferably within the range of 0.001 to less than 0.04 times of X (g/min), and the addition By maintaining the speed within this range until the precipitation and pulverization of polyimide are completed, polyimide powder with a stable average particle size can be obtained. For example, when precipitating and pulverizing 1000 g of a polyimide solution (polyimide solution concentration is 15% by mass), the addition rate of the poor solvent is preferably within the range of 0.5 to 100 g/min.
  • the addition rate (addition amount per minute) of the poor solvent is set to at least 0.0005 times the total mass of the polyimide solution, the time required for precipitation and pulverization does not become too large, resulting in a decrease in productivity. can be suppressed. Moreover, the average particle diameter of the polyimide powder to be produced can be prevented from becoming too small.
  • the poor solvent at a rate of 0.1 times or less of the total mass of the polyimide solution, the average particle size of the polyimide powder produced does not become too large, and the removal of volatile components by subsequent drying is prevented. Since it can be carried out efficiently, coloring of polyimide and deterioration of heat resistance can be suppressed.
  • the poor solvent may be added at high speed in the initial stage of adding the poor solvent, before precipitation and pulverization occur. Then, the addition rate may be controlled within the above range immediately before the start of precipitation, that is, immediately before the polyimide solution becomes cloudy and precipitation and pulverization of polyimide are observed. Thereafter, the rate of addition must be maintained until precipitation/pulverization is complete.
  • the temperature for precipitation and powderization of polyimide is not particularly limited, but from the viewpoint of suppressing evaporation of the poor solvent used and performing precipitation efficiently, it is preferably carried out at 50 ° C. or lower, and it is preferably carried out at 40 ° C. or lower. It is more preferable.
  • the precipitation and powderization of polyimide can also be carried out by adding a polyimide solution to an excess of a poor solvent, but the polyimide may precipitate in the form of fibers. Therefore, from the viewpoint of obtaining polyimide in a desired particle shape, it is preferable to perform precipitation and pulverization using the above method.
  • the polyimide powder may be dried at any temperature as long as it can remove the residues of the solvent (solvent added in the polymerization reaction to polyamic acid), imidization agent, imidization accelerator, poor solvent, etc. be able to.
  • the temperature is lower than 100°C until the volatile components in the polyimide powder are preferably less than 5%, more preferably less than 3%. After drying at a temperature of 100 to 350°C, more preferably 150 to 300°C, drying is preferably carried out for 0.1 to 24 hours. Thereby, components that are difficult to volatilize, such as imidization agents and imidization promoters, can also be removed.
  • the second step of drying at a high temperature of 100° C. or higher is preferably carried out in an inert and low-moisture atmosphere from the viewpoint of suppressing coloration of the polyimide and reduction in molecular weight.
  • Drying of polyimide may be performed under normal pressure or under reduced pressure. Further, polyimide may be dried, for example, while the temperature is continuously raised from a low temperature of less than 100°C to a high temperature of 100°C or more. In this case, it is preferable that the volatile components contained in the polyimide powder be less than 5% before the drying temperature exceeds 100°C.
  • the amount of volatile components in the polyimide powder after drying at a temperature of less than 100°C is defined by the following formula. Mass of polyimide powder after drying at a temperature below 100°C: Ag Mass of polyimide powder after final drying at a temperature of 100°C or higher: Bg Amount of volatile components remaining after drying at a temperature below 100°C: (AB)/A x 100%
  • polyimide according to the present invention is not limited to the above powdered polyimide, and commercially available products may be used.
  • Commercially available polyimide products include the "Neoprim (registered trademark)” series (manufactured by Mitsubishi Gas Chemical Co., Ltd.), the “Spixeria (registered trademark)” series (manufactured by Somar Corporation), and the “Q-PILON (registered trademark)” series (manufactured by Somar Corporation). (manufactured by P.I.
  • polyarylate specifically refers to amorphous polyarylate, and refers to a polycondensate of divalent phenol and dibasic acid.
  • the dibasic acid is preferably an aromatic dicarboxylic acid.
  • divalent phenols examples include bisphenols, such as resorcinol, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, , 2-bis(4-hydroxy-3-methylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane, 2,2-bis(4-hydroxy-3,5-dichlorophenyl) ) Propane, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxydiphenylmethane, 1,1- Examples include bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane and 1,1-bis(4-hydroxyphenyl)cyclohexane. These may be used
  • the resulting polyarylate becomes amorphous and has better heat resistance.
  • Aromatic dicarboxylic acids are not particularly limited, but include, for example, terephthalic acid, isophthalic acid, phthalic acid, chlorophthalic acid, nitrophthalic acid, 2,5-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, and 2,7-naphthalene.
  • Dicarboxylic acid 1,5-naphthalene dicarboxylic acid, methyl terephthalic acid, 4,4'-biphenyl dicarboxylic acid, 2,2'-biphenyl dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenylmethane dicarboxylic acid , 4,4'-diphenylsulfone dicarboxylic acid, 4,4'-diphenylisopropylidene dicarboxylic acid, 1,2-bis(4-carboxyphenoxy)ethane, 5-sodium sulfoisophthalic acid, diphenic acid and derivatives thereof, etc. Can be mentioned.
  • Examples of the derivatives of aromatic dicarboxylic acids include esters and acid chlorides of alkyls having 1 to 3 carbon atoms in the above-mentioned aromatic dicarboxylic acids. These may be used alone or in combination of two or more.
  • terephthalic acid, isophthalic acid, or derivatives thereof are preferred. Further, from the viewpoint of achieving both heat resistance and fluidity during film formation, it is more preferable to use a mixture of both terephthalic acid or a derivative thereof and isophthalic acid or a derivative thereof.
  • the mixing molar ratio is not particularly limited, but is preferably within the range of 90/10 to 10/90, and preferably within the range of 70/30 to 30/70. More preferably, it is within the range of 55/45 to 45/55. By being within the above range, the polyarylate obtained will be amorphous and have better heat resistance.
  • Polyarylate was prepared by dissolving 1.0 g of polyarylate sample in 100 ml of 1,1,2,2-tetrachloroethane from the viewpoint of improving fluidity, heat resistance, hydrolysis resistance, and mechanical properties when formed into a film.
  • the logarithmic viscosity of the solution at a temperature of 25° C. is preferably within the range of 0.40 to 0.75 dL/g, more preferably within the range of 0.45 to 0.65 dL/g.
  • Polyarylate can be synthesized by a known method. Alternatively, commercially available products may be used. Commercially available polyarylate resins include, for example, "U Polymer U Powder D type (log viscosity 0.72), L type (log viscosity 0.54)” and "Unifiner (registered trademark) M-2040" (both (manufactured by Unitika Co., Ltd.).
  • thermosetting resins examples include the maleimide compounds described in paragraphs 0047 to 0093 of JP-A No. 2022-061729.
  • examples of the cyanate resin used in the present invention include the cyanate resins described in paragraphs 0066 to 0079 of JP-A No. 2022-009110, and the cyanate resins described in paragraph 0046 of JP-A No. 2022-061729. It will be done.
  • maleimide compounds include, for example, "BMI” (manufactured by K.I. Kasei Co., Ltd.), “BMI-4000” (manufactured by Daiwa Kasei Kogyo Co., Ltd.), and “MIR-3000” (manufactured by Nippon Kayaku Co., Ltd.). etc.
  • liquid crystal polymer refers to a thermotropic type of liquid crystal polymer, which is a thermoplastic polymer that exhibits liquid crystal-like properties in which linear chains of molecules are regularly arranged in a molten state. Refers to resin.
  • liquid crystal polymer examples include liquid crystal polyesters, and among them, liquid crystal polyesters containing structural units represented by the following formulas (a1), (a2), and (a3) are preferable.
  • Ar 1 represents a 1,4-phenylene group, 2,6-naphthylene group, or 4,4'-biphenylene group
  • Ar 2 represents 1,4 - represents a phenylene group, a 1,3-phenylene group or a 2,6-naphthylene group
  • Ar 3 represents a 1,4-phenylene group or a 1,3-phenylene group
  • X represents -NH -
  • Y represents -O- or -NH-.
  • the content of the structural unit represented by formula (a1) is within the range of 30 to 80 mol% with respect to 100 mol% of the total structural units of the liquid crystal polyester, and the content of the structural unit represented by formula (a2) is within the range of 30 to 80 mol%. is preferably within the range of 10 to 35 mol%, and the content of the structural unit represented by formula (a3) is preferably within the range of 10 to 35 mol%.
  • the structural unit represented by formula (a1) is a structural unit derived from an aromatic hydroxycarboxylic acid
  • the structural unit represented by formula (a2) is a structural unit derived from an aromatic dicarboxylic acid
  • the structural unit represented by formula (a3) is a structural unit derived from an aromatic dicarboxylic acid.
  • the structural unit is derived from an aromatic diamine or an aromatic amine having a phenolic hydroxyl group.
  • Ar 1 is a 2,6-naphthylene group
  • Ar 2 is a 1,3-phenylene group
  • Ar 3 is a 1,4-phenylene group
  • Y is -O-. is preferred.
  • Examples of the structural unit represented by formula (a1) include structural units derived from p-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 4-hydroxy-4'-biphenylcarboxylic acid, etc. , is preferably a structural unit derived from 2-hydroxy-6-naphthoic acid. These may be used alone or in combination of two or more.
  • the content of the structural unit represented by formula (a1) is preferably in the range of 30 to 80 mol%, and preferably in the range of 40 to 70 mol%, based on 100 mol% of the total structural units of the liquid crystal polyester. It is more preferably within the range of 45 to 65 mol%.
  • Examples of the structural unit represented by formula (a2) include structural units derived from terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, etc. Among them, structural units derived from isophthalic acid are preferred. . These may be used alone or in combination of two or more.
  • the content of the structural unit represented by formula (a2) is preferably in the range of 10 to 35 mol%, and preferably in the range of 15 to 30 mol%, based on 100 mol% of the total structural units of the liquid crystal polyester. It is more preferably within the range of 17.5 to 27.5 mol%.
  • Examples of the structural unit represented by formula (a3) include structural units derived from 3-aminophenol, 4-aminophenol, 1,4-phenylenediamine, 1,3-phenylenediamine, 4-aminobenzoic acid, etc. Among them, a structural unit derived from 4-aminophenol is preferred. These may be used alone or in combination of two or more.
  • the content of the structural unit represented by formula (a3) is preferably in the range of 10 to 35 mol%, and preferably in the range of 15 to 30 mol%, based on 100 mol% of the total structural units of the liquid crystal polyester. It is more preferably within the range of 17.5 to 27.5 mol%.
  • the liquid crystal polyester can be produced, for example, by the method described in JP-A-2019-163431.
  • Dielectric loss tangent (1.5) Physical properties (1.5.1) Dielectric loss tangent
  • the resin according to the present invention has a dielectric loss tangent of 0.0150 or less at a frequency of 28 GHz in an environment of 22° C. and 60% RH.
  • dielectric loss tangent refers to the degree of electrical energy loss in a dielectric. Therefore, for the resin according to the present invention, the lower the dielectric loss tangent (the closer the value is to 0), the more preferable it is.
  • the dielectric loss tangent at a frequency of 28 GHz in an environment of 22° C. and 60% RH is preferably as low as possible; specifically, it is more preferably 0.0140 or less, and even more preferably 0.0100 or less.
  • the dielectric loss tangent can be adjusted to a desired value by appropriately selecting the molecular structure, polymerization ratio, etc. of the monomers in the resin.
  • the dielectric loss tangent of the resin according to the present invention can be measured in accordance with JIS R1641:2007.
  • a test piece of 100 mm x 120 mm in size was prepared for the resin (mixed resin when two or more types are used together), and before measurement, the test piece was prepared in advance at a temperature of 22 ⁇ 1 ° C. and a humidity of 60 ⁇ 5% RH in an environment. Store for 90 hours. Thereafter, the dielectric loss tangent at a frequency of 28 GHz is measured by the cylindrical cavity method.
  • the resin according to the present invention preferably has a glass transition temperature of 200°C or higher.
  • the film can be made heat resistant and can be used in 5G-compatible communication equipment, which is expected to generate more heat as the amount of information increases.
  • each resin has a glass transition temperature of 200°C or higher, and the desired glass transition temperature can be achieved by appropriately selecting the molecular structure of the monomer, polymerization method, polymerization ratio, etc. in the resin. can be adjusted to the value of
  • Tg glass transition temperature
  • the film of the present invention contains a filler.
  • the filler according to the present invention has a dielectric loss tangent of 0.0150 or less at a frequency of 28 GHz in an environment of 22° C. and 60% RH. Further, the filler content is within the range of 1.0 to 70.0% by mass based on the total mass of the film.
  • the film of the present invention can reduce dielectric loss by containing a relatively large amount of filler having a low dielectric loss tangent.
  • filler refers to fine particles, fibers, or additives added for the purpose of reducing dielectric loss of the film. It may also include those that eventually phase separate in the film and are distributed like islands in the sea. That is, when comparing the dielectric loss expressed by the above (Formula 3) in a film of a resin that does not contain a filler (or a mixed resin when two or more types are used together) and a film that contains a filler, Dielectric loss is reduced in films containing fillers.
  • the surface free energy of the film can be adjusted within a specific range and the filler can be contained in a relatively large amount.
  • the method for manufacturing the film of the present invention is not particularly limited, and methods other than the film manufacturing method described below may be used.
  • the content of the filler is within the range of 1.0 to 70.0% by mass based on the total mass of the film. Further, it is preferably within the range of 10.0 to 60.0% by mass, and more preferably within the range of 15.0 to 50.0% by mass.
  • the filler according to the present invention is not particularly limited as long as it has a dielectric loss tangent of 0.0150 or less at a frequency of 28 GHz in an environment of 22° C. and 60% RH. Examples include fine particles.
  • the liquid crystal polymer the same one as the liquid crystal polymer in the above resin can be used, but the physical properties and the like when used as a filler will be described later.
  • the fluororesin fine particles are preferably mixed with the above resin as a non-aqueous dispersion.
  • the fluororesin dispersion contains fluororesin fine particles and at least a fluorine additive having a fluorine-containing substituent and a hydrophobic group, and has a water content of 5000 mass ppm or less by Karl Fischer method. , not particularly limited.
  • the fluororesin dispersion can be prepared using, for example, fluororesin fine particles having an average primary particle diameter of 1 ⁇ m or less, a fluorine-based additive containing a fluorine-containing substituent and a hydrophobic group, a solvent, and the like.
  • fluororesin fine particles examples include polytetrafluoroethylene (PTFE), fluorinated ethylene-propylene copolymer (FEP), perfluoroalkoxy polymer (PFA), chlorotrifluoroethylene (CTFE), and tetrafluoroethylene-chloro.
  • PTFE polytetrafluoroethylene
  • FEP fluorinated ethylene-propylene copolymer
  • PFA perfluoroalkoxy polymer
  • CTFE chlorotrifluoroethylene
  • tetrafluoroethylene-chloro examples include trifluoroethylene copolymer (TFE/CTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), etc.
  • TFE/CTFE trifluoroethylene copolymer
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • the method for producing fluororesin fine particles is not particularly limited, but it is preferably an emulsion polymerization method, such as the method described in the Fluororesin Handbook (edited by Takaomi Satokawa, Nikkan Kogyo Shimbun), etc., which is commonly used. It can be produced by a method. Then, the fluororesin fine particles produced by the emulsion polymerization method are aggregated and dried, and recovered as a fine powder in the form of secondary particles in which the primary particles are aggregated.
  • an emulsion polymerization method such as the method described in the Fluororesin Handbook (edited by Takaomi Satokawa, Nikkan Kogyo Shimbun), etc., which is commonly used. It can be produced by a method. Then, the fluororesin fine particles produced by the emulsion polymerization method are aggregated and dried, and recovered as a fine powder in the form of secondary particles in which the primary particles are aggregated.
  • the average primary particle diameter of the fluororesin fine particles is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and even more preferably 0.3 ⁇ m or less. Since the average primary particle diameter is 1 ⁇ m or less, it is difficult to sediment and can be stably dispersed even in a highly hydrophobic solvent. Further, the average primary particle diameter is preferably as small as possible, but from the viewpoint of ease of manufacture, it is preferably 0.05 ⁇ m or more.
  • average primary particle diameter refers to the volume-based average particle diameter (50% volume diameter, median diameter) measured by laser diffraction/scattering method, dynamic light scattering method, image imaging method, etc. It refers to
  • the average primary particle diameter of the fluororesin fine particles is preferably a value obtained by a laser diffraction/scattering method, a dynamic light scattering method, etc. in the production stage.
  • the fluororesin fine particles are in the state of secondary particles, and the cohesive force between the primary particles is strong, so the primary particle diameter can be easily measured by laser diffraction/scattering method, dynamic light scattering method, etc. In this case, it may be a value obtained by an image imaging method because it is difficult to do so.
  • Measuring devices and methods include, for example, the dynamic light scattering method using a concentrated particle size analyzer “FPAR-1000” (manufactured by Otsuka Electronics Co., Ltd.), and the particle size distribution measuring device “Microtrack” (manufactured by Nikkiso Co., Ltd.). Examples include laser diffraction/scattering methods, and image imaging methods using image analysis particle size distribution measurement software "Macview” (manufactured by Mountec Co., Ltd.).
  • the content of fluororesin in the fluororesin dispersion is preferably within the range of 5 to 70% by mass, more preferably within the range of 10 to 50% by mass, based on the total mass of the fluororesin dispersion. preferable.
  • the fluororesin content of 5% by mass or more in the fluororesin dispersion, the amount of solvent does not become too large and a suitable viscosity is maintained, making it difficult for the fluororesin fine particles to settle and stably. Can be dispersed.
  • the content is 70% by mass or less, the fluororesin fine particles are less likely to aggregate with each other and can be stably dispersed.
  • the fluorine-based additive that can be used in the fluororesin dispersion is not particularly limited as long as it has at least a fluorine-containing substituent and a hydrophobic group, and may also have a hydrophilic group.
  • fluorine-based additive By using a fluorine-based additive, it is possible to lower the surface tension of the highly hydrophobic solvent that is the dispersion medium, improve the wettability of the surface of the fluororesin particles, and improve the dispersibility of the fluororesin particles. .
  • the fluorine-containing substituent in the fluorine-based additive is adsorbed on the surface of the fluororesin fine particles, and the hydrophobic group in the fluorine-based additive extends into a highly hydrophobic solvent. Resin fine particles are less likely to aggregate and can be more stably dispersed.
  • Examples of the fluorine-containing substituent in the fluorine-based additive include a perfluoroalkyl group and a perfluoroalkenyl group.
  • Examples of the hydrophobic group include an alkyl group, a phenyl group, and a siloxane group, and these may be used alone or in combination of two or more.
  • Examples of the hydrophilic group include ethylene oxide, amide group, ketone group, carboxyl group, and sulfone group, and one type may be used alone or two or more types may be used in combination.
  • fluorine-based additives include the "Surflon (registered trademark) series” (manufactured by AGC Seimi Chemical Co., Ltd.) such as Surflon (registered trademark) S-611 containing perfluoroalkyl groups, and Megafac (registered trademark) F. -555, Megafac (registered trademark) F-558, Megafac (registered trademark) F-563, etc., "Megafac (registered trademark) series” (manufactured by DIC), Unidyne (registered trademark), such as Unidyne DS-403N, etc. (Unidyne) series (manufactured by Daikin Industries, Ltd.). These may be used alone or in combination of two or more.
  • the content of the fluorine-based additive in the fluororesin dispersion is preferably within the range of 0.1 to 50% by mass, and preferably within the range of 5 to 35% by mass, based on the total mass of the fluororesin fine particles.
  • the content is more preferably within the range of 15 to 25% by mass.
  • the content of the fluorine-based additive in the fluororesin dispersion is 0.1% by mass or more, the surface of the fluororesin fine particles can be sufficiently wetted with the solvent. Further, by setting the content to 50% by mass or less, it is possible to suppress the foaming of the dispersion from becoming strong and the efficiency of dispersion from decreasing.
  • fluororesin fine particle dispersion other surfactants may be used in combination with the above-mentioned fluororesin additives to the extent that the effects of the present invention are not impaired.
  • Other surfactants are not particularly limited, and nonionic, anionic, cationic, and other surfactants (details will be described later) can be used.
  • Examples of the solvent used in the fluororesin fine particle dispersion include acetone, methyl ethyl ketone, hexane, heptane, octane, 2-heptanone, cycloheptanone, cyclohexanone, cyclohexane, methylcyclohexane, ethylcyclohexane, methyl-n-pentylketone, and methyl.
  • formamide formamide, acetanilide, dioxolane, o-cresol, m-cresol, p-cresol, N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide , dimethyl sulfoxide, ⁇ -butyrolactone, sulfolane, halogenated phenols, xylene, and acetone.
  • the solvent may be highly compatible with water, but if the water content is too large, it may inhibit the dispersibility of the fluororesin fine particles in the solvent, causing increased viscosity and aggregation of particles. There is sex.
  • the water content of the solvent as determined by Karl Fischer method is within the range of 0 to 5000 ppm by mass.
  • the moisture content is measured by the Karl Fischer method in accordance with JIS K 0068:2001, and can be measured using, for example, a Karl Fischer moisture meter "MCU-610" (manufactured by Kyoto Denshi Kogyo Co., Ltd.).
  • the water content in the solvent is preferably 3000 mass ppm or less, more preferably 2500 mass ppm or less, and even more preferably 2000 mass ppm or less. Note that the water content in the solvent can be adjusted by using a commonly used method for dehydrating organic solvents, for example, using molecular sieves or the like.
  • the solvent can further contain an antifoaming agent.
  • an antifoaming agent When the content of fluororesin fine particles in the fluororesin fine particle dispersion is relatively high, or when the content of fluorine-based additives in the fluororesin fine particles is relatively high, foaming of the dispersion can be suppressed by using an antifoaming agent. It can be suppressed.
  • antifoaming agents examples include silicone emulsion type, self-emulsifying type, oil type, oil compound type, solution type, powder type, and solid type.
  • the antifoaming agent is preferably present at the interface between the solvent and air rather than at the interface between the solvent and the fluorine-based additive, and is preferably an antifoaming agent that exhibits hydrophilicity or water solubility.
  • the content of the antifoaming agent is appropriately selected depending on the content of the fluororesin fine particles, but is preferably 1% by mass or less based on the total mass of the fluororesin fine particle dispersion.
  • the average particle diameter of the fluororesin fine particles in the fluororesin fine particle dispersion is preferably 1 ⁇ m or less.
  • the average particle diameter here is an average particle diameter measured by a laser diffraction/scattering method or a dynamic light scattering method.
  • the primary particles aggregate to form secondary particles in the dispersion, and the particle size of the secondary particles exceeds 1 ⁇ m.
  • the particle size of the secondary particles exceeds 1 ⁇ m.
  • the dispersion not only the primary particles but also the secondary particles have a particle diameter of 1 ⁇ m or less, thereby making it possible to obtain a dispersion with low viscosity and stability even during long-term storage.
  • an ultrasonic dispersion machine for example, an ultrasonic dispersion machine, a three-roll mill, a wet ball mill, a bead mill, a wet jet mill, a high-pressure homogenizer, etc. can be used.
  • An example is a method of dispersing using
  • the fluororesin fine particle dispersion preferably has a moisture content in the range of 0 to 5000 ppm by mass as measured by Karl Fischer method.
  • water contained in the materials themselves such as fluororesin particles and fluorocarbon additives, and moisture mixed in during the manufacturing process of dispersing fluororesin particles in the solvent can be considered.
  • storage stability can be improved.
  • the water content in the dispersion is preferably 3000 mass ppm or less, more preferably 2500 mass ppm or less, and even more preferably 2000 mass ppm or less.
  • dehydration methods can be used, for example, molecular sieves can be used. Further, dehydration may be performed by heating or reducing pressure. Furthermore, after preparing the fluororesin fine particle dispersion, water may be removed using molecular sieves, membrane separation, or the like. Methods other than those described above can be used without particular limitation as long as they can reduce the amount of water in the dispersion.
  • Dielectric loss tangent (2.2) Physical properties (2.2.1) Dielectric loss tangent
  • the filler according to the present invention has a dielectric loss tangent of 0.0150 or less at a frequency of 28 GHz in an environment of 22° C. and 60% RH.
  • the dielectric loss tangent at a frequency of 28 GHz in an environment of 22° C. and 60% RH is preferably as low as possible from the viewpoint of reducing dielectric loss. Specifically, it is more preferably 0.0140 or less, and 0.0100 or less. It is even more preferable that there be.
  • the dielectric loss tangent can be adjusted to a desired value by appropriately selecting the molecular structure, polymerization ratio, etc. of the monomer in the filler.
  • the dielectric loss tangent of the filler according to the present invention can be measured in accordance with JIS R1641:2007. 15 g of filler is filled into an alumina crucible and heat treated at an electric furnace temperature of 1000° C. for 4 hours. After the heat treatment, it is cooled to 200° C. in a furnace, and further cooled to room temperature (25° C.) in a desiccator (23° C., 10% RH). Thereafter, the dielectric loss tangent at a frequency of 28 GHz is measured by the cylindrical cavity method. After the sample is cooled to room temperature, it is stored in a stand pack of an aluminum pack (PET/AL/PE laminate bag, manufactured by Seisaku Nippon Sha Co., Ltd.) until measurement and evaluation are performed.
  • an aluminum pack PET/AL/PE laminate bag, manufactured by Seisaku Nippon Sha Co., Ltd.
  • the filler according to the present invention preferably has a glass transition temperature of 260°C or higher.
  • the film can be made heat resistant and can be used in 5G-compatible communication equipment, which is expected to generate more heat as the amount of information increases.
  • each filler has a glass transition temperature of 260°C or higher, and the glass transition temperature can be adjusted to a desired temperature by appropriately selecting the molecular structure of the monomer, polymerization method, polymerization ratio, etc. in the filler. can be adjusted to the value of
  • the filler according to the present invention is preferably fine particles from the viewpoint of uniform mixing with the resin according to the present invention, that is, from the viewpoint of dispersibility.
  • the shape of the filler is not particularly limited, and may be, for example, plate-shaped, spherical, polyhedral-shaped such as a cube, etc.
  • plate-like refers to one in which the thickness of the filler is sufficiently smaller than the major axis or the minor axis of the flat part, preferably 1/2 or less, and further subdivided into, for example, flat-shaped , plate-like, flaky-like, scale-like, etc.
  • the film of the present invention preferably further contains a surfactant.
  • the filler can be more uniformly dispersed in the film, that is, the dispersibility can be improved.
  • the surfactant is not particularly limited as long as it improves the dispersibility of the filler, and examples thereof include nonionic surfactants, anionic surfactants, cationic surfactants, and the like. Further, a polymer type surfactant such as polyvinyl alcohol or a derivative thereof may be used. Among these, nonionic surfactants are preferred from the viewpoint of reducing the dielectric loss tangent of the film.
  • the surfactants may be used alone or in combination of two or more.
  • the surfactant is preferably a fluorine-based surfactant having at least a fluorine-containing group and a hydrophilic group.
  • a fluorine-based surfactant By being a fluorine-based surfactant, it lowers the surface tension of the resin as a dispersion medium, improves the wettability of the surface of the fluororesin fine particles, and improves the dispersibility of the fluororesin fine particles.
  • the fluorine-containing groups are adsorbed on the surface of the fluororesin fine particles, and the hydrophilic groups extend into the resin that serves as the dispersion medium, and the steric hindrance of these hydrophilic groups suppresses aggregation of the fluororesin fine particles, improving dispersion stability. Further improvement.
  • fluorine-containing group examples include a perfluoroalkyl group and a perfluoroalkenyl group.
  • hydrophilic group include ethylene oxide, propylene oxide, amino group, ketone group, carboxyl group, and sulfone group. These may be used alone or in combination of two or more.
  • the fluorosurfactant may further have a hydrophobic group.
  • the hydrophobic group include an alkyl group, a phenyl group, and a siloxane group. These may be used alone or in combination of two or more.
  • fluorosurfactants include, for example, the "Ftergent (registered trademark) series” (manufactured by Neos Co., Ltd.), the “Surflon (registered trademark) series” (manufactured by AGC Seimi Chemical Co., Ltd.), and the “Megafac (trademark) series” (manufactured by AGC Seimi Chemical Co., Ltd.).
  • (registered trademark) series” manufactured by DIC Corporation
  • Unidyne (registered trademark) series manufactured by Daikin Industries, Ltd.
  • fluorosurfactant it is preferable to select the most suitable fluorosurfactant depending on the resin used and the type of fluororesin fine particles used as a filler, and one type may be used alone or two or more types may be used in combination. Further, surfactants other than fluorosurfactants may be used in combination.
  • polyoxyethylene lauryl ether when using something other than fluororesin fine particles as the filler, polyoxyethylene lauryl ether, etc. can be used as the surfactant, and commercially available products include, for example, "Emulgen (registered trademark) series” (Kao Co., Ltd.), etc.
  • the content of the surfactant is preferably within the range of 0.10 to 1.00% by mass, and preferably within the range of 0.20 to 0.50% by mass, based on the total mass of the film. More preferred.
  • the dispersion of the filler can be made more uniform (improvement of dispersibility), and when the content is 1.00% by mass or less, the film It is possible to suppress the surfactant from bleeding out onto the surface and improve adhesion.
  • the film of the present invention may further contain inorganic fine particles, organic fine particles, plasticizers, curing accelerators, coupling agents, pigments, and flame retardants as optional ingredients as necessary to the extent that the effects of the invention are not impaired. etc. may be contained as appropriate.
  • inorganic fine particles examples include aluminum oxide, beryllium oxide, niobium oxide, titanium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, magnesium fluoride, potassium fluorosilicate, phosphinate metal salts, etc. Can be mentioned. These may be used alone or in combination of two or more.
  • the film of the present invention satisfies the following formula when the surface free energies of the two opposing surfaces are A [mJ/m 2 ] and B [mJ/m 2 ], respectively. . (Formula 1) A ⁇ B (Formula 2) 1 ⁇ B/A ⁇ 1.30
  • “Surface free energy” refers to the free energy per unit area on the surface, that is, the excess energy that the surface has compared to the interior (bulk). Note that the larger the surface free energy, the more easily gases and fine particles are adsorbed on the surface, and the easier it is for liquids to wet the surface.
  • the "two opposing surfaces" of the film of the present invention refer to the two surfaces with the largest area, and these two surfaces are in a parallel relationship.
  • the film of the present invention is preferably laminated to a metal plate such as a copper foil layer and used as a metal-clad laminate.
  • This metal-clad laminate which will be described in detail later, is obtained by laminating the film of the present invention and a metal plate via an adhesive layer. Furthermore, when the film of the present invention is used in a multilayer circuit board, two surfaces of the film of the present invention are bonded to other materials via an adhesive layer.
  • surface free energy represents the ease with which gases and fine particles adsorb onto the surface, and the ease with which liquids wet the surface. If there is a difference, a material suitable for forming the adhesive layer on one side may not be suitable for forming the adhesive layer on the other side from the viewpoint of adhesion. Specifically, if there is a large difference in surface free energy, if an adhesive layer is formed using the same material on both sides of the film, the degree of shrinkage due to curing (curing shrinkage) will differ, causing a difference between the film and the other material bonded to it. may peel off.
  • the ratio of the surface free energies is within a specific range, that is, the difference in the surface free energies measured on the two surfaces is relatively small. Even if the same material is used to form the adhesive layers on both sides, the curing shrinkage of the film is the same, so it is difficult to peel off and it is considered that the adhesive layer is excellent. Furthermore, since the same material can be used to form the adhesive layer, productivity is thought to be improved.
  • the film of the present invention has a remarkable effect when the copper foil layer is adhered to both sides of the film, but it also shows sufficient effect when the copper foil layer is adhered to only one side of the film.
  • the adhesive layer is not essential, and for example, copper may be deposited directly on the film of the present invention to form a copper foil layer, and the copper foil layer formed in this way Also, it is considered that the adhesion with the film is excellent.
  • the surface free energies of the film of the present invention measured on two opposing surfaces are preferably both within the range of 25.00 to 75.00 mJ/m 2 .
  • both surface free energies are 25.00 mJ/m 2 or more, the adhesion with the copper foil layer is excellent, and when both are 75.00 mJ/m 2 or less, dielectric loss can be further reduced. That is, it is possible to achieve both reduction in dielectric loss of the film and adhesion between the film and the copper foil layer. Further, it is more preferable that the surface free energies measured on the two opposing surfaces are both within the range of 35.00 to 65.00 mJ/m 2 .
  • the surface free energy measured on two opposing surfaces of the film of the present invention can be adjusted to a desired value by appropriately selecting the type, content, etc. of the material used in the film. Further, by producing (manufacturing) a film using the film manufacturing method described below, it is possible to adjust the value to a desired value.
  • the surface tension is defined as the tension acting on a unit length (unit: [N/m]).
  • the units of surface tension of a solid and surface free energy of a solid are different. The values of things match. Therefore, by determining ⁇ S , the surface free energy of the solid can be determined. Note that the surface tension of a liquid, the surface free energy of a liquid, and the interfacial tension between a solid and a liquid and the interfacial free energy between a solid and a liquid can also be considered in the same way.
  • WSL is expressed using the Kitazaki-Hata equation.
  • the surface free energy ⁇ is divided into three components: a dispersion component ⁇ d , a dipole component ⁇ p and a hydrogen bond component ⁇ h , and can be expressed as the following (Equation 10).
  • ⁇ S ⁇ S d + ⁇ S p + ⁇ S h
  • ⁇ L ⁇ L d + ⁇ L p + ⁇ L h
  • the adhesion work WSL can be expressed by the following (Equation 13).
  • the contact angle ⁇ is measured using a liquid whose surface free energy is known, and a three-dimensional linear equation with unknown components ( ⁇ S d , ⁇ S p , ⁇ S h ) in the surface free energy of the solid is solved, and ( By substituting into Equation 11), the surface free energy ⁇ S of the solid can be calculated.
  • the detailed measurement method includes two points in the TD direction of the film (the width direction of the film to be manufactured): the center of the film, the edges (positions 10 cm from both ends), and the midpoint between the center and the edges.
  • the contact angle was measured at a total of five points, and the arithmetic mean value was taken as the value of the contact angle ⁇ .
  • the film of the present invention preferably has a dielectric loss tangent in a range of 0.0010 to 0.0150 at a frequency of 28 GHz in an environment of 22° C. and 60% RH.
  • the lower the dielectric loss tangent the closer the value is to 0
  • it is 0.0020 or more the adhesiveness with the copper foil layer is improved.
  • the dielectric loss tangent at a frequency of 28 GHz in an environment of 22° C. and 60% RH is preferably within the range of 0.0010 to 0.0150, more preferably within the range of 0.0010 to 0.0070.
  • the dielectric loss tangent can be adjusted to a desired value by appropriately selecting the type, content, etc. of the material used for the film. Further, by producing (manufacturing) a film using the film manufacturing method described below, it is possible to adjust the value to a desired value.
  • the dielectric loss tangent of the film of the present invention can be measured in accordance with JIS R1641:2007.
  • a test piece with a size of 100 mm x 120 mm is prepared and stored for 90 hours in an environment with a temperature of 22 ⁇ 1° C. and a humidity of 60 ⁇ 5% RH before measurement. Thereafter, the dielectric loss tangent at a frequency of 28 GHz is measured by the cylindrical cavity method.
  • the transmission loss of the film of the present invention at a frequency of 28 GHz in an environment of 23° C. and 65% RH is preferably 1.5 dB/10 mm or less, and preferably 0.5 dB/10 mm or less. More preferred. Because the transmission loss is 1.5 dB/10 mm or less, in other words, the film sufficiently suppresses the deterioration and attenuation of electrical, light, sound, etc. signals flowing on the circuit board, making it suitable for 5G compatible communication equipment. It can also be used in
  • One side of the film one side of the two sides
  • an adhesive component such as an adhesive sheet
  • a 2 ⁇ m thick copper plate are laminated with the adhesive sheet in the middle, and then heated at 90°C using a heat press, for example.
  • thermocompression bonding at 0.5 MPa for 0.5 minutes
  • the film, cured adhesive sheet, and copper plate were post-cured at 180°C, 2.0 MPa for 5 minutes, and then at 180°C for 1 hour.
  • a laminate is obtained by sequentially laminating the layers.
  • a microstrip line with a wiring width of 140 ⁇ m and a length of 100 mm was formed as a circuit pattern on the surface of the copper foil layer by chemical etching so that the characteristic impedance was 50 ⁇ , and this was used as a sample.
  • a network analyzer "8722ES” manufactured by Agilent Technology Co., Ltd.
  • a probe "ACP40-250” manufactured by Cascade Microtech Co., Ltd.
  • the amount of residual solvent in the film of the present invention is preferably within the range of 200 to 3000 ppm by mass.
  • the method for producing the film of the present invention is not particularly limited, when producing (manufacturing) the film by the method for producing a film described below, it is preferable that the amount of residual solvent is within the above range. By being within the above range, performance stability and production efficiency can be ensured. Note that “performance” here includes the performance of the film in addition to the effects of the present invention, which reduce the dielectric loss of the film and improve the adhesion between the film and the copper foil layer. It will be done.
  • the amount of residual solvent is more preferably within the range of 400 to 2000 mass ppm, and even more preferably within the range of 500 to 1500 mass ppm. Although it depends on the type of solvent, the effect on electrical properties will be reduced as the amount of residual solvent is reduced, but if the drying load is too high, productivity may deteriorate, so select a solvent while looking at the balance between performance and productivity. Bye.
  • the amount of residual solvent can be adjusted to a desired value by appropriately selecting the drying conditions and the like in the film manufacturing method.
  • the amount of residual solvent in the film of the present invention can be qualitatively and quantitatively determined by headspace gas chromatography.
  • headspace gas chromatography a sample is sealed in a container, heated, and while the container is filled with volatile components, the gas in the container is immediately injected into a gas chromatograph, and the compounds are identified by mass spectrometry. Quantify volatile components while Quantification of volatile components is performed by preparing a calibration curve in advance using a sample whose concentration is known, and comparing the peak area of the volatile component obtained by measurement with the calibration curve.
  • Head space device HP7694 Head Space Sampler (manufactured by Hewlett-Packard) Temperature conditions: Transfer line 140°C, loop temperature 140°C Sample amount: 0.8g/20ml vial GC: HP5890 (manufactured by Hewlett-Packard) MS: HP5971 (manufactured by Hewlett-Packard) Column: HP-624 (30m x inner diameter 0.25mm) Oven temperature: initial temperature 40°C (holding time 3 minutes), heating rate 10°C/min, final temperature 140°C (holding time 30 minutes) Measurement mode: SIM (select ion monitor) mode
  • the thickness of the film of the present invention is preferably within the range of 12.5 to 100.0 ⁇ m, more preferably within the range of 25.0 to 50.0 ⁇ m. By being within the above range, it is possible to achieve thinning of the circuit board and reduction of transmission loss.
  • the film manufacturing method of the present invention is the above-mentioned film manufacturing method, which includes a step of preparing a coating liquid containing a resin, a filler, and a solvent, and coating the coating liquid on a support to form a coating film. and drying the coating film, and is characterized in that the surface free energy of the support is within the range of 30 to 80 mJ/m 2 .
  • the surface free energy of the support is within the range of 30 to 80 mJ/m 2 , so that the surface free energy of the above (Formula 1) and ( A film that satisfies formula 2) can be manufactured.
  • the surface free energy of the support is expressed to the first decimal place, the first decimal place is rounded off for determination.
  • the method for producing a film of the present invention is not particularly limited as long as it includes the following steps, and any known method for producing a film using a solution casting method can be applied.
  • 1) Process of preparing the coating liquid 2) Process of forming the coating film 3) Process of drying the coating film
  • Step of preparing a coating liquid In the step of preparing a coating liquid, a coating liquid containing a resin, a filler, and a solvent is prepared.
  • the order of addition of the resin, filler, and solvent is not particularly limited, but it is preferable to dissolve or disperse the filler in the solvent and then add the resin to prepare the coating liquid.
  • the film further contains a surfactant or other components, it is preferable to add them together with the filler and then add the resin to prepare the coating liquid.
  • filler-containing liquid in which filler, etc. (filler and surfactants and other ingredients added as necessary) are dissolved or dispersed in a solvent, filler, etc. can be uniformly dissolved or dispersed in the coating liquid. Can be dispersed.
  • the solvent is not particularly limited as long as the resin and filler used can be dissolved or dispersed, but if the resin and filler used are dissolved or dispersed in a solvent with a relatively low boiling point (for example, 150 ° C. or lower), , it is preferable to use a low boiling point solvent.
  • a low boiling point solvent By using a low boiling point solvent, the film manufacturing process temperature (particularly the drying temperature) can be reduced, and thermal shrinkage can be reduced.
  • the boiling point of the solvent is more preferably 120°C or lower, even more preferably 90°C or lower, and particularly preferably 70°C or lower.
  • low boiling point solvents examples include aromatic hydrocarbons such as toluene, alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether.
  • Esters such as acetate, ethers such as diethyl ether, propylene glycol monomethyl ether, and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, ketones such as acetone, methyl ethyl ketone, acetylacetone, and cyclohexanone, and methylene chloride.
  • Examples include halogenated hydrocarbons such as. These may be used alone or in combination of two or more.
  • the method for dissolving the resin in the solvent is not particularly limited, and the resin used may be directly dissolved in the solvent, or the resin may be dissolved in the solvent by polymerizing monomers in the solvent.
  • the method of adding fillers, etc. to the solution obtained by dissolving the resin in a solvent is not particularly limited, and the fillers, etc. may be added directly to the solution, or after preparing each aggregate of fillers, etc. , may be added to the solution.
  • an aggregate of polymer particles When the filler and other components added as necessary are particles made of a polymer (polymer particles), it is preferable to prepare an aggregate of polymer particles.
  • a resin may be added to the aggregate, or the aggregate may be added to a solution in which the resin is dissolved.
  • Aggregates of polymer particles are made by combining polymer particles, a surfactant (surfactant here refers to a surfactant used to form an aggregate), an inorganic powder, and an aqueous medium. It can be obtained by spray drying a slurry containing
  • the polymer particle aggregate can be prepared, for example, by the method described in JP-A-2010-138365.
  • the aggregate of polymer particles is composed of a plurality of polymer particles whose mutual connection (fusion) is suppressed. Therefore, the aggregate of polymer particles can be easily separated into polymer particles when dispersed in a solution in which a resin is dissolved in a solvent, and has excellent handling and dispersibility.
  • the content of the resin in the coating liquid is preferably within the range of 5 to 60% by mass, more preferably within the range of 10 to 40% by mass, and 10 to 30% by mass, based on the total mass of the coating liquid. It is more preferable that the amount is within the range of % by mass.
  • the resin content in the coating liquid is 5% by mass or more, sufficient viscosity is imparted to the coating liquid, so that the thickness can be adjusted to a desired thickness when forming a coating film. Furthermore, by setting the content to 60% by mass or less, it is possible to suppress unevenness in the thickness of the coating film when forming the coating film.
  • Step of forming a coating film In the step of forming a coating film, the above coating liquid is applied onto a support to form a coating film. Further, the surface free energy of the support used is within the range of 30 to 80 mJ/m 2 .
  • one side of the coating film is formed in contact with the support, and the other side is in contact with the support. is formed in contact with the atmosphere, that is, the two sides of the coating film are formed under different conditions, so the surface free energy of the two opposing sides of the film obtained by drying the coating film is compared. It is thought that there will be a large difference in terms of performance. However, by adjusting the surface free energy of the surface of the support in contact with the coating film within the range of 30 to 80 mJ/ m2 , the difference in surface free energy between the two opposing surfaces of the film can be made relatively small. It is thought that it is possible to do so.
  • the surface free energy of the support is preferably within the range of 35 to 70 mJ/m 2 , more preferably within the range of 40 to 60 mJ/m 2 .
  • the support is not particularly limited as long as it is a film having a surface free energy of at least one side within the range of 30 to 80 mJ/m 2 .
  • Commercial products of the support film include "Therapel (registered trademark) PJ101, PJ271 and HP2” (manufactured by Toray Industries, Inc.), “Cosmoshine (registered trademark) A4160” (manufactured by Toyobo Co., Ltd., etc.).
  • a support film may be prepared in advance, and the film of the present invention may be formed on the support film.
  • the method for applying the coating liquid onto the support is not particularly limited, and examples thereof include roll coating, rod bar coating, air knife coating, spray coating, curtain method, and the like.
  • Step of drying the coating film the coating film is dried to form a film.
  • the method of drying the coating film is not particularly limited, and examples thereof include hot air, infrared rays, heated rolls, microwaves, and the like.
  • the amount of residual solvent in the film of the present invention is preferably within the range of 200 to 3000 ppm by mass, and it is preferable to appropriately select the drying method and drying conditions so that the amount of residual solvent is within the above range.
  • the method for measuring the amount of residual solvent is as described above.
  • the obtained film may be further stretched.
  • the film may be stretched in only one direction (uniaxial stretching) or in two orthogonal directions (biaxial stretching).
  • biaxial stretching is performed in which the film is stretched in two directions: the width direction (TD direction) of the film and the transport direction (MD direction) perpendicular to the width direction.
  • [stretching ratio in the TD direction/stretching ratio in the MD direction] is preferably within the range of 1.0 to 3.0.
  • the stretching ratios in the TD direction and the MD direction are preferably in the range of 1.01 to 3.5 times, and more preferably in the range of 1.01 to 1.3 times, respectively.
  • the higher the stretching ratio the greater the residual stress of the resulting film tends to be.
  • the stretching ratio is defined as [(stretching direction size of the film after stretching)/(stretching direction size of the film before stretching)].
  • the stretching temperature is preferably (Tg-65)°C or higher and (Tg+60)°C or lower, and (Tg-50)°C or higher and (Tg+50)°C or lower, where Tg is the glass transition temperature of the resin used for the film. More preferably, the temperature is (Tg-30)°C or higher and (Tg+50)°C or lower.
  • the stretching temperature By setting the stretching temperature to (Tg-30)°C or higher, the film tends to have flexibility suitable for stretching, and excessive tension is less likely to be applied to the film during stretching. Furthermore, by setting the stretching temperature to (Tg+60)° C. or lower, a suitable amount of residual stress tends to remain in the film after stretching, and the generation of bubbles due to vaporization of the solvent in the film can be suppressed.
  • Stretching of the film-like material in the MD direction can be carried out, for example, by a method (roll method) in which a plurality of rolls are provided with a difference in peripheral speed and the difference in peripheral speed between the rolls is utilized.
  • Stretching of the film in the TD direction can be carried out, for example, by fixing both ends of the film with clips or pins and widening the interval between the clips or pins in the traveling direction (tenter method).
  • metal-clad laminate of the present invention is characterized by containing the film of the present invention.
  • the metal-clad laminate of the present invention may contain layers other than the above-described film and metal layer of the present invention.
  • An example of a case in which an adhesive layer is provided will be shown below, but in the present invention, the adhesive layer does not necessarily have to be provided.
  • FIG. 3 shows a cross-sectional view of an example of the metal-clad laminate (single-sided) of the present invention.
  • the metal-clad laminate 100 is a single-sided metal-clad laminate in which a metal layer 101 is bonded to one side of a film 103 via an adhesive layer 102, and the metal layer is provided only on one side. Note that any layer other than the metal layer, adhesive layer, and film may be included.
  • FIG. 4 shows a cross-sectional view of an example of the metal-clad laminate (both sides) of the present invention.
  • the metal-clad laminate 110 is a double-sided metal-clad laminate in which the metal layers 101 or 105 are bonded to both sides of the film 103 via the adhesive layer 102 or 104, and the metal layers are provided on both sides. be. Note that any layer other than the metal layer, adhesive layer, and film may be included.
  • the adhesive layers 102 and 104 and the metal layers 101 and 105 may or may not be the same, respectively, but the film of the present invention has a difference in surface free energy between two opposing surfaces (both sides). is relatively small, so even if the same adhesive layer and metal layer are used on both sides, peeling due to differences in the degree of curing shrinkage can be suppressed.
  • the thickness of the metal-clad laminate is not particularly limited, but is preferably within the range of 50 to 500 ⁇ m, more preferably within the range of 100 to 300 ⁇ m.
  • transmission loss can be sufficiently reduced when used as a circuit board, and by being 500 ⁇ m or less, a decrease in flexibility and productivity can be suppressed when used as a circuit board. Can be done.
  • the metal used for the metal layer is not particularly limited, and examples thereof include copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese, and These alloys and the like can be mentioned. Among these, copper or a copper alloy is particularly preferred.
  • the thickness of the metal layer is not particularly limited, and for example, when using a metal foil such as copper foil, it is preferably 35 ⁇ m or less, and more preferably within the range of 5 to 25 ⁇ m. From the viewpoint of production stability and handling properties, the thickness of the metal foil is preferably 5 ⁇ m or more.
  • rolled copper foil or electrolytic copper foil may be used, or commercially available copper foil may be used.
  • the metal foil may be subjected to a surface treatment using, for example, siding, aluminum alcoholate, aluminum chelate, a silane coupling agent, etc., for the purpose of antirust treatment or improvement of adhesive strength.
  • a carrier-attached metal foil containing two or more layers of metal foil may be used.
  • the metal foil with a carrier include a copper foil with a carrier (thickness: 10 to 35 ⁇ m) and an ultra-thin copper foil (thickness: 2 to 5 ⁇ m) laminated on the copper foil with a carrier via a release layer.
  • a carrier-attached copper foil consisting of: By using the carrier-attached copper foil, it is possible to form a fine pattern by MSAP (Modified Semi-Additive Process).
  • the release layer is preferably a metal layer containing nickel or chromium, or a multilayer metal layer in which these metal layers are laminated.
  • the carrier-attached metal foil include "FUTF-5DAF-2" (manufactured by Fukuda Metal Foil and Powder Industries Co., Ltd.).
  • the adhesive component used in the adhesive layer is not particularly limited as long as it has good adhesion between the film of the present invention and metal.
  • Trademark 500 Series
  • the thickness of the adhesive layer is not particularly limited, but for example, it is preferably within the range of 10 to 50 ⁇ m, and more preferably within the range of 15 to 30 ⁇ m.
  • the method for manufacturing the metal-clad laminate of the present invention includes, for example, forming a metal layer on the film of the present invention by heat-pressing a metal foil onto the film of the present invention via the adhesive component, or by metal vapor deposition. There are several methods.
  • double-sided metal-clad laminates for example, after forming a single-sided metal-clad laminate, two single-sided metal-clad laminates are stacked so that the films of the present invention face each other and bonded under heat.
  • a method may be mentioned in which a metal foil is heat-pressed onto the surface of the film of the present invention opposite to the metal layer via the adhesive component.
  • heat compression bonding is carried out at a temperature of 90 to 250°C, preferably 150 to 190°C, a pressure of 0.5 to 5.0 MPa, preferably 1.0 to 3.0 MPa, The time is within the range of 0.5 to 150 minutes, preferably within the range of 5 to 60 minutes.
  • This heat-pressing process is also called a vacuum press process.
  • post-curing may be performed for 5 to 90 minutes at a temperature of 150 to 190° C. after heat and pressure bonding. Note that the curing may be performed in multiple stages by changing the curing conditions. This heat-press bonding process and the post-cure process are collectively called an integration process.
  • Circuit Board The circuit board of the present invention is characterized by comprising the metal clad laminate of the present invention.
  • a flexible substrate can be produced by processing one or more metal layers of the metal-clad laminate described above into a pattern to form a wiring layer (conductor circuit layer).
  • Flexible Printed Circuits are thin and highly flexible, so they can be bent and used for three-dimensional wiring and operational wiring within devices, making electronic devices thin, compact, and lightweight. can contribute to the development of
  • Examples of the structure of the flexible substrate include a single-sided structure using a single-sided metal-clad laminate, a double-sided structure using a double-sided metal-clad laminate, and a multilayer structure in which three or more metal layers are formed by combining metal-clad laminates.
  • the circuit board of the present invention may include any layer other than the metal layer, adhesive layer, and film.
  • the metal layer 201 and the adhesive layer 202 are also collectively referred to as a wiring layer 206.
  • FIG. 5 shows a cross-sectional view of an example of the circuit board (single-sided structure) of the present invention.
  • the circuit board 200 can be manufactured by printing a pattern on the metal-clad laminate 100. Note that the metal layer 201, adhesive layer 202, and film 203 correspond to the metal layer 101, adhesive layer 102, and film 103 described above.
  • FIG. 6 shows a cross-sectional view of an example of the circuit board (double-sided structure) of the present invention.
  • the circuit board 210 can be manufactured by printing a pattern on the metal clad laminate 110. Note that the metal layers 201 and 205, the adhesive layers 202 and 204, and the film 203 correspond to the metal layers 101 and 105, the adhesive layers 102 and 104, and the film 103 described above.
  • FIG. 7 shows a cross-sectional view of an example of the circuit board (multilayer structure) of the present invention.
  • the circuit board 220 can be manufactured by printing a pattern on a metal-clad laminate and laminating them with the adhesive layer 207 interposed therebetween.
  • the metal layer 201, adhesive layer 202, and film 203 correspond to the metal layer 101, adhesive layer 102, and film 103 described above.
  • Methods for manufacturing the circuit board of the present invention include, for example, a method of etching metal foil to process it into a predetermined transmission circuit, an electrolytic plating method (semi-additive process method (SAP method), modified semi-additive process method) of metal foil, etc. (MSAP method), etc.) to form a predetermined transmission circuit.
  • SAP method spin-additive process method
  • MSAP method modified semi-additive process method
  • the unnecessary photoresist layer is finally removed and the circuit board is cleaned.
  • the difference in surface free energy between the two opposing sides of the base film is relatively small, and the wettability is the same, meaning that the same level of cleanability can be obtained on the two sides, suppressing the remaining photoresist layer. It is thought that transmission loss in the circuit board can be suppressed.
  • the film of the present invention may be used not only as a base film but also as a coverlay film.
  • a coverlay film By using a coverlay film, circuits can be protected electrically, mechanically, chemically, and thermally.
  • the electronic device of the present invention is characterized by comprising the circuit board of the present invention.
  • the circuit board of the present invention can be suitably used, for example, in electronic devices such as computers, mobile phones, digital cameras, and televisions.
  • the film of the present invention can also be used for electronic circuits including active elements such as transistors and diodes, passive devices such as resistors, capacitors, and inductors, and sensor elements for sensing pressure, temperature, light, humidity, etc. It can also be suitably used for image display elements such as light emitting elements, liquid crystal displays, electrophoretic displays, and self-luminous displays, wireless and wired communication elements, arithmetic elements, memory elements, MEMS elements, solar cells, thin film transistors, etc. These are preferably included in electronic equipment.
  • Film 1 was produced, and films 2 to 15 were produced by changing the constituent materials.
  • [Preparation of film 1] [Preparation of coating liquid for film 1] Before preparing the film coating solution, add an appropriate amount of methyl ethyl ketone to 100 parts by mass of a 10% by mass solution of filler F1 in methanol (MeOH) (NS-08 manufactured by Nagoya Gosei Co., Ltd.), and distill off the methanol under reduced pressure. A filler dispersion containing 20% by mass of filler in methyl ethyl ketone was prepared. A coating liquid for Film 1 was obtained by mixing the following components.
  • Methyl ethyl ketone (boiling point 80°C) 400.0 parts by mass Resin P1 67.0 parts by mass Filler F1 33.0 parts by mass Filler F1 was added in the form of the above dispersion, and the total amount of methyl ethyl ketone added was as above. It was adjusted by separately adding methyl ethyl ketone. After the adjustment, dispersion treatment using a Manton-Gorlin homogenizer was performed three times to obtain a filler F1-containing liquid. Thereafter, the filler F1-containing liquid was added to the dissolution pot containing methyl ethyl ketone and stirred, and then the resin P1 was added and stirred to obtain a coating liquid for film 1.
  • Film 2 was obtained in the same manner as in the formation of Film 1, except that the contents of the resin and filler were changed as shown in Table II.
  • a coating liquid for film 3 was obtained by mixing the following components. Toluene (boiling point 111°C) 150.0 parts by mass Resin P2 30.0 parts by mass Filler F1 70.0 parts by mass Filler F1 was added in the form of a dispersion ("NS-06": manufactured by Nagoya Gosei Co., Ltd.). The total amount of toluene added was adjusted as above by adding toluene separately. After the adjustment, dispersion treatment using a Manton-Gorlin homogenizer was performed three times to obtain a filler F1-containing liquid. Thereafter, the filler F1-containing liquid was added to a dissolution pot containing toluene and stirred, and the resin P2 was further added and stirred to obtain a coating liquid for film 3.
  • Toluene (boiling point 111°C) 150.0 parts by mass Resin P2 30.0 parts by mass Filler F1 70.0 parts by mass Filler F1 was added in the form of a dis
  • Film 3 was obtained in the same manner as film 1 was formed.
  • Films 4 to 12 and 14 to 15 were obtained in the same manner as in the formation of film 3, except that the types and contents of the constituent materials were changed as shown in Table II.
  • [Preparation of film 13] [Preparation of coating liquid for film 13] Before preparing the film coating solution, 80 parts by mass of dimethylformamide (DMF) was added to 100 parts by mass of a 20% by mass solution of filler F1 in isopropyl alcohol (IPA) (NS-05 manufactured by Nagoya Gosei Co., Ltd.), A filler dispersion containing 20% by mass of filler in dimethylformamide was prepared by distilling off isopropyl alcohol under reduced pressure. A coating liquid for film 13 was obtained by mixing the following components.
  • DMF dimethylformamide
  • IPA isopropyl alcohol
  • Dimethylformamide (boiling point 153°C) 150.0 parts by mass Resin P3 67.0 parts by mass Filler F1 33.0 parts by mass Filler F1 was added in the form of the above dispersion, and the total amount of dimethylformamide added was the same as above. It was adjusted by separately adding dimethylformamide so that After the adjustment, dispersion treatment using a Manton-Gorlin homogenizer was performed three times to obtain a filler F1-containing liquid. Thereafter, the filler F1-containing liquid was added to a dissolution pot containing dimethylformamide and stirred, and the resin P3 was further added and stirred to obtain a coating liquid for film 13.
  • Film 13 was obtained in the same manner as film 1 was formed.
  • F1 "NS series” (polytetrafluoroethylene, manufactured by Nagoya Gosei Co., Ltd.)
  • F2 "Unifiner (registered trademark) V-575" (polyarylate, manufactured by Unitika Co., Ltd.)
  • filler F3 rubber particles prepared by the following method were used.
  • the following components were charged into a reactor equipped with a reflux condenser having an internal volume of 60 L, and the temperature was raised to 75° C. under a nitrogen atmosphere while stirring at a rotation speed of 250 rpm, so that there was virtually no influence of oxygen.
  • a monomer mixture (c1) consisting of the following components was added all at once, and after the exothermic peak was detected, the mixture was maintained for an additional 20 minutes to complete the polymerization of the innermost hard layer.
  • Methyl methacrylate (MMA) 1657.00g
  • BA butyl acrylate
  • MMA Methyl methacrylate
  • ALMA Allyl methacrylate
  • a monomer mixture (b1) consisting of the following components was continuously added over a period of 20 minutes, and after the addition was completed, the mixture was maintained for an additional 20 minutes to complete the polymerization of the hard layer 1.
  • Methyl methacrylate (MMA) 2106.00g
  • Butyl acrylate (BA) 201.60g
  • a monomer mixture (b2) consisting of the following components was continuously added over a period of 20 minutes, and after the addition was completed, the mixture was maintained for an additional 20 minutes. Then, the temperature was raised to 95°C and held for 60 minutes to complete polymerization of the hard layer 2.
  • Methyl methacrylate (MMA) 3148.00g
  • Butyl acrylate (BA) 201.60g
  • the remaining latex was poured into a 3% by mass sodium sulfate warm aqueous solution to salt out and coagulate, and then, after repeated dehydration and washing, it was dried to obtain acrylic particles (rubber particles) with a four-layer structure. .
  • Table I shows the physical properties of the resin, filler, and support. In addition, each physical property was measured by the above-mentioned measuring method.
  • the dielectric loss tangent of each film was measured in accordance with JIS R1641:2007.
  • a test piece with a size of 100 mm x 120 mm was prepared and stored in advance for 90 hours at a temperature of 22 ⁇ 1° C. and a humidity of 60 ⁇ 5% RH environment before measurement. Thereafter, the dielectric loss tangent at a frequency of 28 GHz was measured by the cylindrical cavity method.
  • peel strength was evaluated based on the following criteria. Note that a score of B or higher was considered to be a pass.
  • a microstrip line with a wiring width of 140 ⁇ m and a length of 100 mm was formed as a circuit pattern on the surface of the copper foil layer by chemical etching so that the characteristic impedance was 50 ⁇ , and a sample was prepared.
  • a network analyzer "8722ES” manufactured by Agilent Technology Co., Ltd.
  • a probe "ACP40-250” manufactured by Cascade Microtech Co., Ltd.
  • the transmission loss (dB/10mm) at 28 GHz was measured using the following.
  • the obtained transmission loss was evaluated based on the following criteria. Note that a score of B or higher was considered to be a pass. A: Less than 0.5 dB/10 mm. B: 0.5 dB/10 mm or more and less than 1.5 dB/10 mm. C: 1.5 dB/10 mm or more.
  • Table II and Table III show the constituent materials and evaluation results of each film.
  • "A” and “B” in the “Surface Free Energy” column each mean the value of the surface free energy.
  • “A” and “B” in the columns of "copper foil layer adhesion” and “transmission loss” respectively mean evaluation criteria.
  • Films 101 to 119 were produced by changing the constituent materials and manufacturing conditions.
  • the film was produced by changing the order of addition of the resin and filler in the coating liquid.
  • a coating liquid for film 101 was obtained by mixing the following components. Toluene (boiling point 111°C) 150.0 parts by mass Resin P2 67.0 parts by mass Filler F1 33.0 parts by mass Filler F1 was added in the form of a dispersion ("NS-06": manufactured by Nagoya Gosei Co., Ltd.). The total amount of toluene added was adjusted as above by adding toluene separately. After the adjustment, dispersion treatment using a Manton-Gorlin homogenizer was performed three times to obtain a filler F1-containing liquid. Thereafter, the filler F1-containing liquid was added to a dissolution pot containing toluene and stirred, and then the resin P1 was added and stirred to obtain a coating liquid for film 101.
  • Toluene (boiling point 111°C) 150.0 parts by mass Resin P2 67.0 parts by mass Filler F1 33.0 parts by mass Filler F1 was added in the form of
  • Film 102 was obtained in the same manner as film 101 except that the drying conditions were changed as shown in Table IV.
  • a coating liquid for film 104 was obtained by mixing the following components. Toluene (boiling point 111°C) 150.0 parts by mass Resin P2 66.7 parts by mass Filler F1 33.0 parts by mass Surfactant D1 0.5 parts by mass Filler F1 is a dispersion liquid ("NS-06": Nagoya Gosei Co., Ltd.), and the total amount of toluene added was adjusted by adding toluene separately so that the total amount added was as above. After the adjustment, dispersion treatment using a Manton-Gorlin homogenizer was performed three times to obtain a filler F1-containing liquid.
  • the filler F1-containing solution was added to a dissolution pot containing toluene and stirred, surfactant D1 was added and stirred, and resin P2 was further added and stirred to obtain a coating liquid for film 104. .
  • Films 103, 105, 106, 113 and 114 were obtained in the same manner as in the production of film 104, except that the types and contents of the constituent materials were changed as shown in Table IV.
  • a coating liquid for film 109 was obtained by mixing the following components. Toluene (boiling point 111°C) 150.0 parts by mass Resin P2 66.7 parts by mass Filler F1 33.0 parts by mass Surfactant D1 0.5 parts by mass Filler F1 is a dispersion liquid ("NS-06": Nagoya Gosei Co., Ltd.), and the amount of toluene added was adjusted separately by adding toluene so that the total amount of toluene added was as above. After the adjustment, dispersion treatment using a Manton-Gorlin homogenizer was performed three times to obtain a filler F1-containing liquid. Thereafter, resin P2 was added to a dissolution pot containing toluene and stirred, filler F1-containing liquid was added and stirred, and surfactant D1 was further added and stirred to obtain a coating liquid for film 109. .
  • Film 110 was obtained in the same manner as film 101 except that the drying conditions were changed as follows. On the release layer of the support S1, the coating solution for the film 110 is applied using a die by a back coating method, and after drying the coating film at 140° C. for 30 minutes, the amount of residual solvent becomes 180 mass ppm. Heat vacuum drying (HVCD) was performed at a vacuum degree of 100 Pa to form a film with a thickness of 50 ⁇ m, and a film 110 was obtained.
  • HVCD Heat vacuum drying
  • Films 111 to 112 were obtained in the same manner as in the production of film 101, except that the drying conditions were changed as shown in Table IV.
  • Films 115 to 117 were obtained in the same manner as film 101, except that the types and contents of constituent materials, the types of supports, and drying conditions were changed as shown in Table IV.
  • the Examples and Comparative Examples of the present invention show that the film of the present invention reduces transmission loss and has excellent adhesion to the copper foil layer.
  • Comparison of films 102, 105, 113 and 114 shows that the film further contains a surfactant, and the content of the surfactant is in the range of 0.10 to 1.00% by mass based on the total mass of the film. By being within the range, it is possible to achieve both reduction in dielectric loss of the film and adhesion between the film and the copper foil layer.
  • the dielectric loss of the film can be reduced by adding a resin to the filler-containing liquid in which the filler is dissolved or dispersed in a solvent in the process of preparing the coating liquid in the film manufacturing method.
  • the present invention it is possible to provide a film, etc. that reduces dielectric loss and has excellent adhesiveness to a copper foil layer. Furthermore, by using the film, etc., it is possible to provide communication equipment and the like that are compatible with use in high frequency bands.
  • Metal clad laminate (single side) 101 Metal layer 102 Adhesive layer 103 Film 104 Adhesive layer 105 Metal layer 110 Metal-clad laminate (both sides) 200 Circuit board (single-sided structure) 201 Metal layer 202 Adhesive layer 203 Film 204 Adhesive layer 205 Metal layer 206 Wiring layer 207 Adhesive layer 210 Circuit board (double-sided structure) 220 Circuit board (multilayer structure) ⁇ S surface tension of solid ⁇ L surface tension of liquid ⁇ SL solid-liquid interfacial tension ⁇ contact angle of liquid with solid W SL work of adhesion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention addresses the problem of providing, for example, a film that reduces dielectric loss and is excellent in adhesiveness with a copper foil layer. The film according to the present invention contains a resin and a filler, the film being characterized in that: the dielectric dissipation factors in a frequency of 28 GHz of the resin and the filler in an environment of 22°C and 60% RH are both 0.0150 or less; the content of the filler falls within the range of 1.0%-70.0% by mass based on the total mass of the film; and when the quantities of surface free energy of two facing surfaces of the film are denoted as A [mJ/m2] and B [mJ/m2], respectively, the following expressions are satisfied. (Expression 1): A ≤ B (Expression 2): 1 ≤ B/A < 1.30

Description

フィルム、その製造方法、金属張積層板、回路基板及び電子機器Films, manufacturing methods thereof, metal clad laminates, circuit boards and electronic devices
 本発明は、フィルムに関する。より詳しくは、伝送損失を低減し、かつ銅箔層との接着性に優れたフィルム等に関する。 The present invention relates to a film. More specifically, the present invention relates to a film that reduces transmission loss and has excellent adhesiveness to a copper foil layer.
 近年、インターネットの利用増加、情報端末の高性能化・高機能化に伴い、伝送情報量の大容量化及びデータ処理の高速化に対応した第5世代移動通信システム(5G)の導入及び普及が見込まれ、5Gに対応した通信機器の開発が進められている。 In recent years, with the increase in the use of the Internet and the increasing performance and functionality of information terminals, the introduction and widespread use of fifth generation mobile communication systems (5G), which can handle larger amounts of transmitted information and faster data processing, has increased. In anticipation of this, development of communication equipment compatible with 5G is underway.
 5Gでは、Sub-6帯と呼ばれる6GHz未満の周波数帯と、ミリ波帯と呼ばれる24GHz超の周波数帯が割り当てられている。一度に伝送できる情報量は電波の周波数が高いほど増加するため、これら5Gの周波数帯は、前世代の4Gと比較して高周波数帯であり、5G用の通信機器は、高周波数帯での使用に対応させる必要がある。 In 5G, a frequency band below 6 GHz called the Sub-6 band and a frequency band above 24 GHz called the millimeter wave band are allocated. The amount of information that can be transmitted at once increases as the frequency of radio waves increases, so these 5G frequency bands are higher frequency bands than the previous generation 4G, and 5G communication equipment has a high frequency band. It needs to be adapted for use.
 通信機器等に使用される回路基板においては、伝送損失の少ない材料の使用が求められるが、伝送損失を構成する要素の一つである誘電損失は、電波の周波数が高くなるにつれ大きくなるため、従来の材料を使用すると誘電損失は増加してしまう。したがって、誘電損失の増加を抑制する低誘電損失材料の使用が求められる。 In circuit boards used in communication equipment, it is required to use materials with low transmission loss, but dielectric loss, which is one of the elements that make up transmission loss, increases as the frequency of radio waves increases. Using conventional materials increases dielectric loss. Therefore, it is required to use a low dielectric loss material that suppresses the increase in dielectric loss.
 回路基板としては、一般的に使用されている硬質(リジット)基板の他に、薄くて柔軟性があり、折り曲げ可能であるフレキシブル基板がある。このフレキシブル基板は、ベースフィルムに接着層を介して導体箔(金属板)を貼合し、製造される。
 そのため、フレキシブル基板においては、誘電損失をより低減させたベースフィルムの開発が進められている。
In addition to commonly used rigid boards, circuit boards include thin, flexible, and bendable flexible boards. This flexible substrate is manufactured by bonding a conductor foil (metal plate) to a base film via an adhesive layer.
Therefore, in flexible substrates, development of base films with further reduced dielectric loss is underway.
 特許文献1では、フッ素系樹脂のマイクロパウダーと、少なくとも含フッ素基と親油性基を含有するフッ素系添加剤とを含み、カールフィッシャー法による水分量が5000ppm以下であるフッ素系樹脂の非水系分散体と、ポリイミド前駆体溶液と、を少なくとも含むフッ素系樹脂含有ポリイミド前駆体溶液組成物に関する技術が開示されている。 Patent Document 1 discloses a non-aqueous dispersion of a fluororesin that contains a fluororesin micropowder and a fluorine additive containing at least a fluorine-containing group and a lipophilic group, and has a water content of 5000 ppm or less by Karl Fischer method. A technique related to a fluororesin-containing polyimide precursor solution composition containing at least a polyimide precursor solution and a polyimide precursor solution is disclosed.
 また、特許文献2では、脂環族ジカルボン酸無水物又は脂環族モノアミンで末端封止された低誘電率ポリイミドに関する技術が開示されている。 Moreover, Patent Document 2 discloses a technology related to a low dielectric constant polyimide terminal-capped with an alicyclic dicarboxylic acid anhydride or an alicyclic monoamine.
 これらの技術により、ベースフィルムの誘電損失をより低減させることを可能としたが、誘電損失の低減への要求は高まる一方であり、更なる改良が求められている。 Although these techniques have made it possible to further reduce the dielectric loss of the base film, the demand for reducing dielectric loss is increasing, and further improvements are required.
特許第6491947号公報Patent No. 6491947 特開2020-070359号公報Japanese Patent Application Publication No. 2020-070359
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、誘電損失を低減し、かつ銅箔層との接着性に優れたフィルム等を提供することである。 The present invention was made in view of the above problems and circumstances, and an object to be solved is to provide a film etc. that reduces dielectric loss and has excellent adhesiveness to a copper foil layer.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、樹脂及びフィラーを含有するフィルムにおいて、樹脂及びフィラーの誘電正接、フィラーの含有量、及びフィルムの二つの面における表面自由エネルギーを、特定の範囲内とすることにより、フィルムの誘電損失を低減し、かつフィルムと銅箔層との接着性が向上することを見出し本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In order to solve the above problems, the present inventor investigated the causes of the above problems, and as a result, in a film containing a resin and a filler, the dielectric loss tangent of the resin and filler, the content of the filler, and the two aspects of the film were determined. The inventors have discovered that by controlling the surface free energy within a specific range, the dielectric loss of the film can be reduced and the adhesion between the film and the copper foil layer can be improved, leading to the present invention.
That is, the above-mentioned problems related to the present invention are solved by the following means.
 1.樹脂及びフィラーを含有するフィルムであって、
 前記樹脂及び前記フィラーの、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、共に、0.0150以下であり、
 前記フィラーの含有量が、当該フィルムの全質量に対して、1.0~70.0質量%の範囲内であり、
 当該フィルムの相対する二つの面において、表面自由エネルギーをそれぞれA[mJ/m]及びB[mJ/m]としたとき、下記式を満たす
 (式1) A≦B
 (式2) 1≦B/A<1.30
 ことを特徴とするフィルム。
1. A film containing a resin and a filler,
The dielectric loss tangents of the resin and the filler at a frequency of 28 GHz in an environment of 22° C. and 60% RH are both 0.0150 or less,
The content of the filler is within the range of 1.0 to 70.0% by mass based on the total mass of the film,
When the surface free energies of the two opposing surfaces of the film are respectively A [mJ/m 2 ] and B [mJ/m 2 ], the following formula is satisfied (Formula 1) A≦B
(Formula 2) 1≦B/A<1.30
A film characterized by
 2.当該フィルムの、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、0.0010~0.0150の範囲内である
 ことを特徴とする第1項に記載のフィルム。
2. 2. The film according to item 1, wherein the dielectric loss tangent of the film at a frequency of 28 GHz in an environment of 22° C. and 60% RH is within the range of 0.0010 to 0.0150.
 3.前記フィラーの含有量が、当該フィルムの全質量に対して、15.0~50.0質量%の範囲内である
 ことを特徴とする第1項又は第2項に記載のフィルム。
3. 3. The film according to item 1 or 2, wherein the content of the filler is within the range of 15.0 to 50.0% by mass based on the total mass of the film.
 4.当該フィルムの残留溶媒量が、200~3000質量ppmの範囲内である
 ことを特徴とする第1項又は第2項に記載のフィルム。
4. The film according to item 1 or 2, wherein the amount of residual solvent in the film is within the range of 200 to 3000 ppm by mass.
 5.当該フィルムが、更に界面活性剤を含有し、
 前記界面活性剤の含有量が、当該フィルムの全質量に対して、0.10~1.00質量%の範囲内である
 ことを特徴とする第1項又は第2項に記載のフィルム。
5. The film further contains a surfactant,
3. The film according to item 1 or 2, wherein the content of the surfactant is within the range of 0.10 to 1.00% by mass based on the total mass of the film.
 6.当該フィルムの相対する二つの面において、表面自由エネルギーが、共に、25.00~75.00mJ/mの範囲内である
 ことを特徴とする第1項又は第2項に記載のフィルム。
6. 3. The film according to item 1 or 2, wherein the surface free energy of both opposing surfaces of the film is within the range of 25.00 to 75.00 mJ/m 2 .
 7.前記樹脂のガラス転移温度が、200℃以上である
 ことを特徴とする第1項又は第2項に記載のフィルム。
7. The film according to item 1 or 2, wherein the resin has a glass transition temperature of 200°C or higher.
 8.前記樹脂及び前記フィラーが、沸点が150℃以下である溶媒に対して、可溶性又は分散性を有する
 ことを特徴とする第1項又は第2項に記載のフィルム。
8. The film according to item 1 or 2, wherein the resin and the filler are soluble or dispersible in a solvent having a boiling point of 150°C or less.
 9.第1項又は第2項に記載のフィルムを製造するフィルムの製造方法であって、
 前記樹脂、前記フィラー及び溶媒を含む塗布液を調製する工程、
 前記塗布液を支持体上に塗布し、塗布膜を形成する工程、及び
 前記塗布膜を乾燥させる工程、を有し、
 前記支持体における表面自由エネルギーが、30~80mJ/mの範囲内である
 ことを特徴とするフィルムの製造方法。
9. A film manufacturing method for manufacturing the film according to item 1 or 2, comprising:
preparing a coating liquid containing the resin, the filler, and a solvent;
a step of applying the coating liquid onto a support to form a coating film, and a step of drying the coating film,
A method for producing a film, characterized in that the surface free energy of the support is within a range of 30 to 80 mJ/m 2 .
 10.前記塗布液を調製する工程において、前記フィラーを前記溶媒に溶解又は分散させたフィラー含有液に前記樹脂を添加する
 ことを特徴とする第9項に記載のフィルムの製造方法。
10. 10. The method for producing a film according to item 9, wherein in the step of preparing the coating liquid, the resin is added to a filler-containing liquid in which the filler is dissolved or dispersed in the solvent.
 11.前記溶媒の沸点が、150℃以下である
 ことを特徴とする第9項又は第10項に記載のフィルムの製造方法。
11. 11. The method for producing a film according to item 9 or 10, wherein the boiling point of the solvent is 150°C or less.
 12.第1項又は第2項に記載のフィルムを含む
 ことを特徴とする金属張積層板。
12. A metal-clad laminate comprising the film according to item 1 or 2.
 13.第12項に記載の金属張積層板を具備する
 ことを特徴とする回路基板。
13. A circuit board comprising the metal-clad laminate according to item 12.
 14.第13項に記載の回路基板を具備する
 ことを特徴とする電子機器。
14. An electronic device comprising the circuit board according to item 13.
 本発明の上記手段により、伝送損失を低減し、かつ銅箔層との接着性に優れたフィルム、その製造方法、金属張積層板、回路基板及び電子機器を提供することができる。 By the means of the present invention, it is possible to provide a film that reduces transmission loss and has excellent adhesion to a copper foil layer, a method for producing the same, a metal-clad laminate, a circuit board, and an electronic device.
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。 Although the mechanism of expression or action of the effects of the present invention is not clear, it is speculated as follows.
 詳しくは後述するが、エネルギー効率の観点から、回路基板に用いられる誘導体は、誘電損失のより少ないフィルムであることが好ましい。誘電損失は、誘電体の誘電特性(比誘電率及び誘電正接)に依存し、比誘電率及び誘電正接が小さいほど、その値は小さくなる。 Although details will be described later, from the viewpoint of energy efficiency, it is preferable that the dielectric used for the circuit board be a film with less dielectric loss. Dielectric loss depends on the dielectric properties (relative permittivity and dielectric loss tangent) of a dielectric, and the smaller the dielectric constant and dielectric loss tangent, the smaller its value.
 本発明のフィルムは、樹脂及びフィラーの、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、共に、0.0150以下であることにより、誘電損失を低減させることができると考えられる。
 また、誘電正接の低いフィラーを比較的多量に含有することにより、誘電損失を低減させることができると考えられる。
 これにより、フィルムの伝送損失を低減させることができると考えられる。
The film of the present invention is considered to be able to reduce dielectric loss because the dielectric loss tangents of the resin and filler at a frequency of 28 GHz in an environment of 22° C. and 60% RH are both 0.0150 or less. .
Further, it is considered that dielectric loss can be reduced by containing a relatively large amount of filler having a low dielectric loss tangent.
It is thought that this makes it possible to reduce the transmission loss of the film.
 さらに、フィルムにおける二つの面において、表面自由エネルギーが、上記(式1)及び(式2)を満たす(表面自由エネルギーの比が、特定の範囲内である)ことにより、すなわち、二つの面において測定される表面自由エネルギーの差異が、比較的小さいことにより、銅箔層との接着性に優れると考えられる。 Furthermore, if the surface free energy of the two surfaces of the film satisfies the above (Formula 1) and (Formula 2) (the ratio of the surface free energies is within a specific range), that is, the two surfaces of the film Since the difference in measured surface free energy is relatively small, it is considered that the adhesiveness with the copper foil layer is excellent.
濡れの現象についての説明図Diagram explaining the phenomenon of wetting 界面を引き離す前後のエネルギーについての説明図Explanatory diagram of energy before and after separating the interface 本発明の金属張積層板(片面)の一例の断面図Cross-sectional view of an example of a metal-clad laminate (single-sided) of the present invention 本発明の金属張積層板(両面)の一例の断面図Cross-sectional view of an example of a metal-clad laminate (both sides) of the present invention 本発明の回路基板(片面構造)の一例の断面図A cross-sectional view of an example of a circuit board (single-sided structure) of the present invention 本発明の回路基板(両面構造)の一例の断面図A sectional view of an example of a circuit board (double-sided structure) of the present invention 本発明の回路基板(多層構造)の一例の断面図A sectional view of an example of a circuit board (multilayer structure) of the present invention
 本発明のフィルムは、樹脂及びフィラーを含有するフィルムであって、前記樹脂及び前記フィラーの、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、共に、0.0150以下であり、前記フィラーの含有量が、当該フィルムの全質量に対して、1.0~70.0質量%の範囲内であり、当該フィルムの相対する二つの面において、表面自由エネルギーをそれぞれA[mJ/m]及びB[mJ/m]としたとき、下記式を満たすことを特徴とする。
 (式1) A≦B
 (式2) 1≦B/A<1.30
 この特徴は、下記実施態様に共通する又は対応する技術的特徴である。
The film of the present invention is a film containing a resin and a filler, and the dielectric loss tangents of the resin and the filler at a frequency of 28 GHz in an environment of 22° C. and 60% RH are both 0.0150 or less, The content of the filler is within the range of 1.0 to 70.0% by mass based on the total mass of the film, and the surface free energy is A [mJ/ m 2 ] and B [mJ/m 2 ], it is characterized by satisfying the following formula.
(Formula 1) A≦B
(Formula 2) 1≦B/A<1.30
This feature is a technical feature common to or corresponding to the embodiments described below.
 本発明の実施態様としては、フィルムの誘電損失の低減及びフィルムと銅箔層との接着性を両立する観点から、当該フィルムの、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、0.0010~0.0150の範囲内であることが好ましい。 As an embodiment of the present invention, from the viewpoint of reducing the dielectric loss of the film and achieving both the adhesion between the film and the copper foil layer, the dielectric loss tangent of the film at a frequency of 28 GHz in an environment of 22° C. and 60% RH is , preferably within the range of 0.0010 to 0.0150.
 本発明の実施態様としては、フィルムの誘電損失の低減及びフィルムと銅箔層との接着性を両立する観点から、前記フィラーの含有量が、当該フィルムの全質量に対して、15.0~50.0質量%の範囲内であることが好ましい。 In an embodiment of the present invention, from the viewpoint of reducing dielectric loss of the film and achieving both adhesion between the film and the copper foil layer, the content of the filler is 15.0 to 15.0 to It is preferably within the range of 50.0% by mass.
 本発明の実施態様としては、性能安定性及び生産効率の観点から、当該フィルムの残留溶媒量が、200~3000質量ppmの範囲内であることが好ましい。 In an embodiment of the present invention, from the viewpoint of performance stability and production efficiency, the amount of residual solvent in the film is preferably within the range of 200 to 3000 ppm by mass.
 本発明の実施態様としては、フィルムの誘電損失の低減及びフィルムと銅箔層との接着性を両立する観点から、当該フィルムが、更に界面活性剤を含有し、前記界面活性剤の含有量が、当該フィルムの全質量に対して、0.10~1.00質量%の範囲内であることが好ましい。 In an embodiment of the present invention, the film further contains a surfactant, and the content of the surfactant is , is preferably within the range of 0.10 to 1.00% by mass based on the total mass of the film.
 本発明の実施態様としては、フィルムの誘電損失の低減及びフィルムと銅箔層との接着性を両立する観点から、当該フィルムの相対する二つの面において、表面自由エネルギーが、共に、25.00~75.00mJ/mの範囲内であることが好ましい。 As an embodiment of the present invention, from the viewpoint of reducing the dielectric loss of the film and achieving both the adhesion between the film and the copper foil layer, the surface free energy of both opposing surfaces of the film is 25.00. It is preferably within the range of 75.00 mJ/m 2 .
 本発明の実施態様としては、フィルムの耐熱性の観点から、前記樹脂のガラス転移温度が、200℃以上であることが好ましい。 In an embodiment of the present invention, from the viewpoint of heat resistance of the film, it is preferable that the glass transition temperature of the resin is 200° C. or higher.
 本発明の実施態様としては、フィルムの製造において、低沸点(150℃以下)の溶媒を用いることができる観点から、前記樹脂及び前記フィラーが、沸点が150℃以下である溶媒に対して、可溶性又は分散性を有することが好ましい。 In an embodiment of the present invention, from the viewpoint that a solvent with a low boiling point (150°C or less) can be used in the production of the film, the resin and the filler are soluble in a solvent with a boiling point of 150°C or less. Or it is preferable to have dispersibility.
 本発明のフィルムの製造方法は、本発明のフィルムを製造するフィルムの製造方法であって、前記樹脂、前記フィラー及び溶媒を含む塗布液を調製する工程、前記塗布液を支持体上に塗布し、塗布膜を形成する工程、及び前記塗布膜を乾燥させる工程、を有し、前記支持体における表面自由エネルギーが、30~80mJ/mの範囲内であることを特徴とする。 The film manufacturing method of the present invention is a film manufacturing method for manufacturing the film of the present invention, which includes a step of preparing a coating liquid containing the resin, the filler, and a solvent, and coating the coating liquid on a support. , a step of forming a coating film, and a step of drying the coating film, and is characterized in that the surface free energy of the support is within a range of 30 to 80 mJ/m 2 .
 本発明の実施態様としては、フィラーの分散性を向上させることにより、フィルムの誘電損失を低減させる観点から、前記塗布液を調製する工程において、前記フィラーを前記溶媒に溶解又は分散させたフィラー含有液に前記樹脂を添加することが好ましい。 In an embodiment of the present invention, from the viewpoint of reducing the dielectric loss of the film by improving the dispersibility of the filler, in the step of preparing the coating liquid, the filler containing the filler is dissolved or dispersed in the solvent. Preferably, the resin is added to the liquid.
 本発明の実施態様としては、フィルムの製造プロセス温度(特に乾燥温度)を低減でき、熱収縮を低減できる観点から、前記溶媒の沸点が、150℃以下であることが好ましい。 In an embodiment of the present invention, the boiling point of the solvent is preferably 150° C. or lower, from the viewpoint of reducing the film manufacturing process temperature (particularly the drying temperature) and reducing thermal shrinkage.
 本発明の金属張積層板は、当該フィルムを含むことを特徴とする。 The metal-clad laminate of the present invention is characterized by containing the film.
 本発明の回路基板は、当該金属張積層板を具備することを特徴とする。 The circuit board of the present invention is characterized by comprising the metal-clad laminate.
 本発明の電子機器は、当該回路基板を具備することを特徴とする。 The electronic device of the present invention is characterized by comprising the circuit board.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and forms and aspects for carrying out the present invention will be described in detail. In this application, "~" is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
 1.フィルムの概要
 本発明のフィルムは、樹脂及びフィラーを含有するフィルムであって、樹脂及びフィラーの、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、共に、0.0150以下であり、フィラーの含有量が、当該フィルムの全質量に対して、1.0~70.0質量%の範囲内であり、当該フィルムの相対する二つの面において、表面自由エネルギーをそれぞれA[mJ/m]及びB[mJ/m]としたとき、下記式を満たすことを特徴とする。
 (式1) A≦B
 (式2) 1≦B/A<1.30
1. Summary of the film The film of the present invention is a film containing a resin and a filler, and the dielectric loss tangent of the resin and the filler at a frequency of 28 GHz in an environment of 22° C. and 60% RH are both 0.0150 or less. , the filler content is within the range of 1.0 to 70.0% by mass based on the total mass of the film, and the surface free energy on the two opposing faces of the film is A [mJ/ m 2 ] and B [mJ/m 2 ], it is characterized by satisfying the following formula.
(Formula 1) A≦B
(Formula 2) 1≦B/A<1.30
 エネルギー効率の観点から、通信機器、特に通信機器に具備される回路基板については、回路基板上を流れる電気、光、音等の信号の劣化・減衰する度合(伝送損失)をより低減させることが好ましい。
 伝送損失は、回路基板の材料に用いられる誘電体(例えば、ベースフィルム等)の誘電損失、回路基板上の信号線路として用いられる導体の導体損失等の和で構成されると考えられており、伝送損失を低減させるためには、主に誘電損失及び導体損失を低減させることが好ましいと考えられる。
From the perspective of energy efficiency, it is important to further reduce the degree of deterioration and attenuation (transmission loss) of electrical, light, sound, and other signals flowing on the circuit boards of communication equipment, especially the circuit boards included in communication equipment. preferable.
Transmission loss is thought to consist of the sum of the dielectric loss of the dielectric material (e.g., base film, etc.) used for the circuit board material, the conductor loss of the conductor used as the signal line on the circuit board, etc. In order to reduce transmission loss, it is considered preferable to mainly reduce dielectric loss and conductor loss.
 「誘電損失」とは、誘電体に外部から交流電場を加えたとき、その電気エネルギーの一部が誘導体内部で熱となって失われる現象、また、その失われるエネルギーのことをいう。なお、本明細書においては、両方の意味で使用する。 "Dielectric loss" refers to the phenomenon in which when an alternating current electric field is applied to a dielectric from the outside, part of the electrical energy is lost as heat inside the dielectric, and also refers to the energy lost. In addition, in this specification, it is used in both meanings.
 誘電損失は、以下の式により算出できる。
 (式3) 誘電損失(α)=K×f×(ε1/2×tanδ
 〔ただし、Kは比例定数、fは周波数、εは比誘電率、tanδは誘電正接を表す。〕
Dielectric loss can be calculated using the following formula.
(Formula 3) Dielectric loss (α d ) = K×f×(ε r ) 1/2 × tan δ
[However, K is a proportionality constant, f is a frequency, ε r is a relative dielectric constant, and tan δ is a dielectric loss tangent. ]
 上記(式3)より、誘電損失は、周波数が大きい(高い)ほど、その値は大きくなり、比誘電率及び誘電正接が小さいほど、その値は小さくなることがわかる。したがって、比誘電率及び誘電正接のより小さい材料を使用することにより誘電損失を低減できることがわかる。 From the above (Formula 3), it can be seen that the larger (higher) the frequency, the larger the value of the dielectric loss, and the smaller the relative dielectric constant and dielectric loss tangent, the smaller the value. Therefore, it can be seen that dielectric loss can be reduced by using a material with a smaller relative dielectric constant and dielectric loss tangent.
 「導体損失」とは、回路基板上の信号線路(配線)として使われる導体の抵抗や表皮効果によって、その電気エネルギーの一部が導体内部で熱となって失われる現象、また、その失われるエネルギーのことをいう。
 また、「表皮効果」とは、導体に交流電場を加えたとき、導体の中心部より外側の方に多く電流が流れる現象のことをいい、電磁誘導によって発生する磁界と、その磁界によって発生する誘導起電力と誘導電流により導体内部で渦電流が発生することにより発現する。
"Conductor loss" is a phenomenon in which some of the electrical energy is lost as heat inside the conductor due to the resistance and skin effect of the conductor used as a signal line (wiring) on a circuit board, and It refers to energy.
In addition, "skin effect" refers to the phenomenon in which when an alternating current electric field is applied to a conductor, more current flows toward the outside than the center of the conductor. It occurs when eddy currents are generated inside the conductor due to induced electromotive force and induced current.
 導体損失を低減させるためには導体の抵抗を低下させればよいが、導体の材料としては銅が固定で使用されているのが現状であり、信号線路の形状は設計の要求に依存するため、導体の材料及び信号線路の形状を変化させて大幅に抵抗を低下させることは難しい。したがって、現状として、導体損失を大幅に低減させることは難しく、伝送損失を低減させるためには、誘電損失を低減させることが効果的である。 In order to reduce conductor loss, it is possible to reduce the resistance of the conductor, but copper is currently used as the conductor material, and the shape of the signal line depends on the design requirements. However, it is difficult to significantly reduce the resistance by changing the conductor material and the shape of the signal line. Therefore, at present, it is difficult to significantly reduce conductor loss, and in order to reduce transmission loss, it is effective to reduce dielectric loss.
 本発明のフィルムは、樹脂の他にフィラーを含有する。比誘電率及び誘電正接の低いフィラーを比較的多量に含有させることにより、フィルムの比誘電率及び誘電正接を低下させることができると考えられる。
 ただし、フィラーを多量に含有させすぎると、フィラー同士が凝集しやすく、フィラーの粒子径が大きくなってしまう。
The film of the present invention contains filler in addition to resin. It is considered that by containing a relatively large amount of filler with a low dielectric constant and dielectric loss tangent, the dielectric constant and dielectric loss tangent of the film can be lowered.
However, if too much filler is contained, the fillers tend to aggregate with each other, resulting in an increase in the particle size of the filler.
 本発明者は、フィルムにおけるフィラーの分散状態と、フィルムの表面自由エネルギーの関係について、フィラーが均一に分散している場合は、フィルムの表面自由エネルギーの測定箇所によるズレが比較的小さいが、フィラーが凝集している場合は、測定箇所によるズレが比較的大きくなると推測している。
 すなわち、フィラーが均一に分散している場合は、フィルムの相対する二つの面において測定される表面自由エネルギーの差異を、比較的小さくできると推測している。
Regarding the relationship between the dispersion state of the filler in the film and the surface free energy of the film, the present inventor found that when the filler is uniformly dispersed, the deviation depending on the measurement location of the surface free energy of the film is relatively small; If there is agglomeration, it is assumed that the deviation depending on the measurement location will be relatively large.
That is, it is estimated that when the filler is uniformly dispersed, the difference in surface free energy measured between two opposing sides of the film can be made relatively small.
 本発明においては、後述する製造方法によりフィルムを製造することにより、フィルムにフィラーを比較的多量に含有させることができ、かつフィルムの表面自由エネルギーを特定の範囲内に調整することができると考えられる。
 また、必要に応じて、フィルムに更に界面活性剤を含有させることにより、フィラーをより均一に分散させることができると考えられる。
In the present invention, it is believed that by manufacturing the film using the manufacturing method described below, it is possible to make the film contain a relatively large amount of filler, and the surface free energy of the film can be adjusted within a specific range. It will be done.
Moreover, it is considered that the filler can be more uniformly dispersed by further containing a surfactant in the film as needed.
 2.フィルムの構成
 本発明のフィルムは、樹脂及びフィラーを含有するフィルムであって、樹脂及びフィラーの、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、共に、0.0150以下であり、フィラーの含有量が、当該フィルムの全質量に対して、1.0~70.0質量%の範囲内であり、当該フィルムの相対する二つの面において、表面自由エネルギーが、下記(式1)及び(式2)を満たすことを特徴とする。
 (式1) A≦B
 (式2) 1≦B/A<1.30
2. Structure of the film The film of the present invention is a film containing a resin and a filler, and the dielectric loss tangent of the resin and the filler at a frequency of 28 GHz in an environment of 22° C. and 60% RH are both 0.0150 or less. , the filler content is within the range of 1.0 to 70.0% by mass based on the total mass of the film, and the surface free energy of the two opposing faces of the film is as follows (Formula 1 ) and (Equation 2).
(Formula 1) A≦B
(Formula 2) 1≦B/A<1.30
 本発明のフィルムは、樹脂及びフィラーを含有する。また、その他、必要に応じて、界面活性剤等を含有してもよい。 The film of the present invention contains a resin and a filler. In addition, a surfactant or the like may be contained, if necessary.
 (1)樹脂
 本発明のフィルムは、樹脂を含有する。
 当該樹脂は、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、0.0150以下である。
 本発明のフィルムは、当該樹脂を含有することにより、誘電損失を低減させることができる。
(1) Resin The film of the present invention contains resin.
The resin has a dielectric loss tangent of 0.0150 or less at a frequency of 28 GHz in an environment of 22° C. and 60% RH.
The film of the present invention can reduce dielectric loss by containing the resin.
 22℃・60%RH環境下での周波数28GHzにおける誘電正接は、低いほど好ましく、具体的には、0.0140以下であることがより好ましく、0.0100以下であることが更に好ましい。 The dielectric loss tangent at a frequency of 28 GHz in an environment of 22° C. and 60% RH is preferably as low as possible; specifically, it is more preferably 0.0140 or less, and even more preferably 0.0100 or less.
 樹脂としては、上記誘電正接の条件を満たすものであれば、特に制限されず、例えば、熱硬化性樹脂又は熱可塑性樹脂が挙げられる。
 熱硬化性樹脂としては、例えば、ポリイミド、ポリアリレート、マレイミド化合物、シアネート樹脂、ベンゾシクロブテン樹脂、ポリカルボジイミド等が挙げられる。
 熱可塑性樹脂としては、例えば、液晶ポリマーが挙げられる。
 これらは、一種単独で用いても、二種以上を併用してもよい。
The resin is not particularly limited as long as it satisfies the above dielectric loss tangent condition, and examples thereof include thermosetting resins and thermoplastic resins.
Examples of the thermosetting resin include polyimide, polyarylate, maleimide compound, cyanate resin, benzocyclobutene resin, polycarbodiimide, and the like.
Examples of thermoplastic resins include liquid crystal polymers.
These may be used alone or in combination of two or more.
 (1.1)ポリイミド
 本発明において、「ポリイミド」とは、化学構造における繰り返し単位にイミド結合を含む高分子のことをいい、その総称である。
(1.1) Polyimide In the present invention, "polyimide" refers to a polymer containing an imide bond in a repeating unit in its chemical structure, and is a general term thereof.
 本発明に用いられるポリイミドは、芳香族ジアミン化合物とテトラカルボン酸二無水物を用いて、ポリアミド酸への重合、化学イミド化反応、生成ポリイミドの析出による粉体の形成、及び乾燥の工程を経て作製(製造)されることが好ましい。
 以下、当該方法により作製される粉末のポリイミドについて説明するが、本発明に係るポリイミドの作製方法は、当該方法に限定されない。また、市販品のポリイミドを用いてもよい。
The polyimide used in the present invention is produced using an aromatic diamine compound and a tetracarboxylic dianhydride through the steps of polymerization to polyamic acid, chemical imidization reaction, formation of powder by precipitation of the polyimide produced, and drying. Preferably, it is produced (manufactured).
The powdered polyimide produced by this method will be described below, but the method for producing polyimide according to the present invention is not limited to this method. Alternatively, commercially available polyimide may be used.
 (1.1.1)粉末のポリイミド
 (1.1.1.1)原料
 (芳香族ジアミン化合物)
 芳香族ジアミン化合物と後述のテトラカルボン酸二無水物との反応により、ポリアミド酸への重合を行う観点から、芳香族ジアミン化合物、テトラカルボン酸二無水物及びポリアミド酸は、共通の溶媒(例えば、N,N-ジメチルアセトアミド(DMAC))に可溶性を有する必要がある。
(1.1.1) Powdered polyimide (1.1.1.1) Raw material (aromatic diamine compound)
The aromatic diamine compound, the tetracarboxylic dianhydride, and the polyamic acid are used in a common solvent (for example, It must be soluble in N,N-dimethylacetamide (DMAC).
 このような観点から、芳香族ジアミン化合物としては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、3,4’-ジアミノジフェニルエ-テル、4,4’-ジアミノジフェニルエ-テル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、3,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェニル)スルホン、ビス〔3-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェニル)スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕エ-テル、ビス〔4-(4-アミノフェノキシ)フェニル〕エ-テル、ビス〔3-(3-アミノフェノキシ)フェニル〕エ-テル、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、ビス〔3-(3-アミノフェノキシ)フェニル〕メタン、ビス〔3-(4-アミノフェノキシ)フェニル〕メタン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス〔4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル〕ベンゼン、1,3-ビス〔4-(4-アミノ-6-フルオロメチルフェノキシ)-α,α-ジメチルベンジル〕ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル等が挙げられる。
 これらの芳香族ジアミン化合物は、一種単独で用いても、二種以上を併用してもよい。
From this point of view, aromatic diamine compounds include, for example, m-phenylenediamine, p-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3 '-Diaminodiphenylsulfide, 3,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone , 3,3'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 2,2-bis(4-aminophenyl)propane, 2,2- Bis(3-aminophenyl)propane, 2-(3-aminophenyl)-2-(4-aminophenyl)propane, 2,2-bis(4-aminophenyl)-1,1,1,3,3, 3-hexafluoropropane, 2,2-bis(3-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2-(3-aminophenyl)-2-(4-aminophenyl) )-1,1,1,3,3,3-hexafluoropropane, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis( 3-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, 3,3'-bis(4-aminophenoxy)biphenyl, 3, 4'-bis(3-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl] sulfide, bis[3-(4-aminophenoxy)phenyl] sulfide, bis[4-(3-aminophenoxy) phenyl]sulfide, bis[3-(4-aminophenoxy)phenyl]sulfide, bis[3-(3-aminophenoxy)phenyl]sulfide, bis[3-(4-aminophenoxy)phenyl]sulfone, bis[4- (4-aminophenyl) sulfone, bis[3-(3-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenyl)sulfone, bis[4-(3-aminophenoxy)phenyl]ether, Bis[4-(4-aminophenoxy)phenyl]ether, bis[3-(3-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)phenyl]methane, bis[4- (4-aminophenoxy)phenyl]methane, bis[3-(3-aminophenoxy)phenyl]methane, bis[3-(4-aminophenoxy)phenyl]methane, 2,2-bis[4-(3-amino) phenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[3-(3-aminophenoxy)phenyl]propane, 2,2-bis[4- (3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[4-(4-aminophenoxy)phenyl]-1,1,1,3, 3,3-hexafluoropropane, 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[3-( 4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 1,3-bis[4-(4-amino-6-trifluoromethylphenoxy)-α,α-dimethyl benzyl]benzene, 1,3-bis[4-(4-amino-6-fluoromethylphenoxy)-α,α-dimethylbenzyl]benzene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3, 3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'- Examples include diaminobiphenyl.
These aromatic diamine compounds may be used alone or in combination of two or more.
 中でも、耐熱性の観点から、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス〔4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル〕ベンゼン、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル等のフルオロ基を有する芳香族ジアミン化合物であることが好ましく、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルであることがより好ましい。 Among them, from the viewpoint of heat resistance, 2,2-bis(4-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2,2-bis(3-aminophenyl)-1, 1,1,3,3,3-hexafluoropropane, 2-(3-aminophenyl)-2-(4-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 2, 2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2-bis[4-(4-aminophenoxy)phenyl]-1, 1,1,3,3,3-hexafluoropropane, 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 2,2 -Bis[3-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 1,3-bis[4-(4-amino-6-trifluoromethylphenoxy) -α,α-dimethylbenzyl]benzene, 3,3'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, etc. It is preferably an aromatic diamine compound having a fluoro group, and more preferably 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl.
 芳香族ジアミン化合物を二種以上併用する場合には、少なくとも一種は、フルオロ基を有する芳香族ジアミン化合物であることが好ましい。
 フルオロ基を有する芳香族ジアミン化合物を用いることにより、耐熱性、溶媒への可溶性をより向上させることができる。
When two or more types of aromatic diamine compounds are used in combination, at least one type is preferably an aromatic diamine compound having a fluoro group.
By using an aromatic diamine compound having a fluoro group, heat resistance and solubility in a solvent can be further improved.
 (テトラカルボン酸二無水物)
 芳香族ジアミン化合物と同様に、溶媒への可溶性の観点から、テトラカルボン酸二無水物としては、例えば、4,4’-(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ジフタル酸二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、1,4-ヒドロキノンジベンゾエート-3, 3’,4,4’-テトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物等が挙げられる。
 これらのテトラカルボン酸二無水物は、一種単独で用いても、二種以上を併用してもよい。
(Tetracarboxylic dianhydride)
Similar to aromatic diamine compounds, from the viewpoint of solubility in solvents, examples of tetracarboxylic dianhydride include 4,4'-(1,1,1,3,3,3-hexafluoropropane-2 ,2-diyl)diphthalic dianhydride, pyromellitic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 1,4-hydroquinone dibenzoate-3,3',4 , 4'-tetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, etc. .
These tetracarboxylic dianhydrides may be used alone or in combination of two or more.
 中でも、耐熱性及び溶剤への可溶性の観点から、4,4’-(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ジフタル酸二無水物であることが好ましい。 Among them, from the viewpoint of heat resistance and solubility in solvents, 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)diphthalic dianhydride is preferred. preferable.
 テトラカルボン酸二無水物を二種以上併用する場合には、少なくとも一種は、フルオロ基を有するテトラカルボン酸二無水物であることが好ましい。
 フルオロ基を有するテトラカルボン酸二無水物を用いることにより、耐熱性、溶媒への可溶性をより向上させることができる。
When two or more types of tetracarboxylic dianhydrides are used in combination, at least one type is preferably a tetracarboxylic dianhydride having a fluoro group.
By using a tetracarboxylic dianhydride having a fluoro group, heat resistance and solubility in a solvent can be further improved.
 (1.1.1.2)ポリアミド酸への重合
 前述の芳香族ジアミン化合物及びテトラカルボン酸二無水物を反応させて、ポリアミド酸への重合を行う。
(1.1.1.2) Polymerization to polyamic acid The above-mentioned aromatic diamine compound and tetracarboxylic dianhydride are reacted to polymerize to polyamic acid.
 芳香族ジアミン化合物、テトラカルボン酸二無水物及びポリアミド酸が、共通の溶媒への可溶性を要する観点から、ポリアミド酸への重合に用いる溶媒としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド等が挙げられる。 From the viewpoint that the aromatic diamine compound, tetracarboxylic dianhydride, and polyamic acid need to be soluble in a common solvent, N,N-dimethylacetamide, N,N-dimethyl are used as the solvent for polymerization to polyamic acid. Examples include formamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide and the like.
 ポリアミド酸への重合反応は、撹拌装置を備えた反応容器で撹拌しながら行うことが好ましい。ポリアミド酸を得る方法としては、例えば、上記溶媒に所定量の芳香族ジアミン化合物を溶解させて、撹拌しながらテトラカルボン酸二無水物を投入して反応を行う方法、上記溶媒に所定量のテトラカルボン酸二無水物を溶解させて、撹拌しながら芳香族ジアミン化合物を投入して反応を行う方法、上記溶媒に芳香族ジアミン化合物とテトラカルボン酸二無水物を交互に投入して反応を行う方法、等が挙げられる。 The polymerization reaction to form polyamic acid is preferably carried out with stirring in a reaction vessel equipped with a stirring device. Examples of methods for obtaining polyamic acid include a method in which a predetermined amount of an aromatic diamine compound is dissolved in the above solvent, and a reaction is carried out by adding tetracarboxylic dianhydride while stirring; A method in which the reaction is carried out by dissolving the carboxylic dianhydride and adding an aromatic diamine compound while stirring. A method in which the reaction is carried out by adding the aromatic diamine compound and the tetracarboxylic dianhydride alternately to the above solvent. , etc.
 ポリアミド酸への重合反応における温度は、特に制限されないが、0~70℃の範囲内であることが好ましく、10~60℃の範囲内であることがより好ましく、20~50℃の範囲内であることが更に好ましい。上記範囲内であることにより、着色が少なく透明性に優れた高分子量のポリアミド酸が得られる。 The temperature in the polymerization reaction to form polyamic acid is not particularly limited, but is preferably within the range of 0 to 70°C, more preferably within the range of 10 to 60°C, and within the range of 20 to 50°C. It is even more preferable that there be. By falling within the above range, a high molecular weight polyamic acid with little coloration and excellent transparency can be obtained.
 また、ポリアミド酸への重合に用いられる芳香族ジアミン化合物及びテトラカルボン酸二無水物は、概ね当量(モル当量)であるが、得られるポリアミド酸の重合度をコントロールする目的で、テトラカルボン酸二無水物のモル量/芳香族ジアミン化合物のモル量(モル比率)を0.950~1.050の範囲内で変化させてもよい。 In addition, the aromatic diamine compound and tetracarboxylic dianhydride used for polymerization to polyamic acid are approximately equivalent (mole equivalent), but in order to control the degree of polymerization of the resulting polyamic acid, tetracarboxylic dianhydride is The molar amount of anhydride/molar amount of aromatic diamine compound (molar ratio) may be varied within the range of 0.950 to 1.050.
 中でも、テトラカルボン酸二無水物と芳香族ジアミン化合物のモル比率は、1.001~1.020の範囲内であることが好ましく、1.001~1.010の範囲内であることがより好ましい。このように、テトラカルボン酸二無水物を僅かに過剰にすることで、得られるポリアミド酸の重合度を安定させることができるとともに、テトラカルボン酸二無水物由来のユニット(構造単位)をポリマーの末端に配置することができるため、着色が少なく透明性に優れたポリアミド酸を得ることができる。 Among them, the molar ratio of the tetracarboxylic dianhydride and the aromatic diamine compound is preferably within the range of 1.001 to 1.020, more preferably within the range of 1.001 to 1.010. . In this way, by adding a slight excess of tetracarboxylic dianhydride, the degree of polymerization of the resulting polyamic acid can be stabilized, and the unit (structural unit) derived from the tetracarboxylic dianhydride can be added to the polymer. Since it can be placed at the end, a polyamic acid with little coloring and excellent transparency can be obtained.
 生成するポリアミド酸溶液におけるポリアミド酸の濃度は、溶液の粘度を適正に保ち、その後の工程での取り扱いが容易になる観点から、ポリアミド溶液の全質量に対して、10~30質量%の範囲内であることが好ましい。
 なお、「生成するポリアミド酸溶液」とは、上記のポリアミド酸を得る方法において生成した、ポリアミド酸及び溶媒を含む溶液のことをいう。
The concentration of polyamic acid in the polyamic acid solution to be produced is within the range of 10 to 30% by mass based on the total mass of the polyamide solution, from the viewpoint of maintaining appropriate viscosity of the solution and facilitating handling in subsequent steps. It is preferable that
Note that the "produced polyamic acid solution" refers to a solution containing a polyamic acid and a solvent that is produced in the method for obtaining the polyamic acid described above.
 (1.1.1.3)化学イミド化反応
 得られたポリアミド酸溶液にイミド化剤を加えて、化学イミド化反応を行う。
(1.1.1.3) Chemical imidization reaction An imidization agent is added to the obtained polyamic acid solution to perform a chemical imidization reaction.
 イミド化剤としては、例えば、無水酢酸、無水プロピオン酸、無水コハク酸、無水フタル酸、無水安息香酸等のカルボン酸無水物が挙げられ、コストや反応後の除去のしやすさの観点から、無水酢酸であることが好ましい。イミド化剤の添加量は、化学イミド化反応を行うポリアミド酸のアミド結合の当量以上であることが好ましく、アミド結合の当量の1.1~5倍の範囲内であることが好ましく、1.5~4倍の範囲内であることがより好ましい。このように、アミド結合に対して少し過剰のイミド化剤を使用することにより、比較的低温でも効率的にイミド化反応を行うことができる。 Examples of imidizing agents include carboxylic anhydrides such as acetic anhydride, propionic anhydride, succinic anhydride, phthalic anhydride, and benzoic anhydride.From the viewpoint of cost and ease of removal after reaction, Acetic anhydride is preferred. The amount of the imidizing agent added is preferably at least the equivalent of the amide bond of the polyamic acid that undergoes the chemical imidization reaction, and is preferably in the range of 1.1 to 5 times the equivalent of the amide bond.1. More preferably, it is within the range of 5 to 4 times. In this way, by using a slightly excess amount of imidizing agent with respect to the amide bond, the imidizing reaction can be carried out efficiently even at a relatively low temperature.
 また、化学イミド化反応においては、イミド化促進剤として、ピリジン、ピコリン、キノリン、イソキノリン、トリメチルアミン、トリエチルアミン等の脂肪族、芳香族又は複素環式第三級アミン類を用いることができる。このようなアミン類を用いることにより、比較的低温で効率的にイミド化反応を行うことができ、その結果、イミド化反応時の着色が少なく透明性に優れたポリイミドを得ることができる。 In addition, in the chemical imidization reaction, aliphatic, aromatic, or heterocyclic tertiary amines such as pyridine, picoline, quinoline, isoquinoline, trimethylamine, and triethylamine can be used as an imidization promoter. By using such amines, the imidization reaction can be carried out efficiently at a relatively low temperature, and as a result, a polyimide with excellent transparency and less coloring during the imidization reaction can be obtained.
 化学イミド化反応における温度は、特に制限されないが、10℃以上、50℃未満の範囲内であることが好ましく、15℃以上、45℃未満の範囲内であることがより好ましい。10℃以上、50℃未満の範囲内で化学イミド化反応を行うことにより、イミド化反応時の着色が少なく透明性に優れたポリイミドを得ることができる。 The temperature in the chemical imidization reaction is not particularly limited, but is preferably in the range of 10°C or more and less than 50°C, more preferably in the range of 15°C or more and less than 45°C. By carrying out the chemical imidization reaction at a temperature of 10° C. or more and less than 50° C., a polyimide with excellent transparency and less coloring during the imidization reaction can be obtained.
 (1.1.1.4)生成ポリイミドの析出による粉体の形成
 化学イミド化反応により得られたポリイミド溶液に、ポリイミドの貧溶媒を加えてポリイミドを析出させ、ポリイミドの粉体の形成(析出・粉体化)を行う。
(1.1.1.4) Formation of powder by precipitation of produced polyimide A poor solvent for polyimide is added to the polyimide solution obtained by chemical imidization reaction to precipitate polyimide, forming polyimide powder (precipitation・Powderization).
 ポリイミドの析出・粉体化に使用する貧溶媒としては、ポリイミドを析出することができる貧溶媒であり、中でも、ポリイミド溶液の溶媒と混和性を有している貧溶媒であることが好ましく、例えば、水、メタノール、エタノール等が挙げられる。中でも、安定した平均粒子径を有するポリイミド粉体を得ることができる観点から、メタノールであることが好ましい。 The poor solvent used for precipitation and powderization of polyimide is a poor solvent that can precipitate polyimide, and is preferably a poor solvent that is miscible with the solvent of the polyimide solution, such as , water, methanol, ethanol and the like. Among these, methanol is preferable from the viewpoint of being able to obtain polyimide powder having a stable average particle diameter.
 貧溶媒は、ポリイミドの析出・粉体化に十分な量を投入する必要があり、貧溶媒の使用量は、ポリイミドの構造、ポリイミド溶液の溶媒、ポリイミドの溶液濃度(ポリイミド溶液の全質量に対するポリイミドの含有量)等を考慮して決定することができる。 It is necessary to use a sufficient amount of the poor solvent to precipitate and powderize the polyimide. It can be determined by taking into consideration the following:
 貧溶媒の使用量は、一般的には、ポリイミド溶液の全質量に対して、0.5倍以上であることが好ましく、0.8倍以上であることがより好ましく、1倍以上であることが更に好ましい。ポリイミド溶液の全質量に対して、0.5倍以上であることにより、安定した平均粒子径のポリイミド粉体を高収率で得ることができる。 Generally, the amount of the poor solvent used is preferably 0.5 times or more, more preferably 0.8 times or more, and 1 time or more relative to the total mass of the polyimide solution. is even more preferable. When the amount is 0.5 times or more with respect to the total mass of the polyimide solution, polyimide powder having a stable average particle diameter can be obtained in high yield.
 また、貧溶媒の使用量は、一般的には、ポリイミド溶液の全質量に対して、10倍以下であることが好ましく、7倍以下であることがより好ましく、5倍以下であることが更に好ましく、4倍以下であることが特に好ましい。 In addition, the amount of the poor solvent to be used is generally preferably 10 times or less, more preferably 7 times or less, and even more preferably 5 times or less with respect to the total mass of the polyimide solution. Preferably, it is particularly preferably 4 times or less.
 ポリイミドの析出・粉体化は、ポリイミド溶液を撹拌しながら、貧溶媒を滴下する方法で行うことが好ましい。貧溶媒が拡散しやすい観点から、ポリイミドの溶液濃度(ポリイミド溶液の全質量に対するポリイミドの含有量)は、5~30質量%の範囲内であることが好ましく、10~20質量%の範囲内であることがより好ましく、予め、ポリイミドの溶液濃度を上記範囲内に調整しておくことが好ましい。 Precipitation and powdering of polyimide is preferably carried out by dropping a poor solvent while stirring the polyimide solution. From the viewpoint of easy diffusion of the poor solvent, the polyimide solution concentration (polyimide content based on the total mass of the polyimide solution) is preferably within the range of 5 to 30% by mass, and preferably within the range of 10 to 20% by mass. More preferably, the concentration of the polyimide solution is adjusted within the above range in advance.
 また、得られるポリイミド粉体の平均粒子径が、0.02~0.80mmの範囲内であることが好ましい。平均粒子径は、ポリイミド溶液への貧溶媒の添加速度(毎分当たりの添加量)によりコントロールすることができる。 Furthermore, it is preferable that the average particle diameter of the obtained polyimide powder is within the range of 0.02 to 0.80 mm. The average particle diameter can be controlled by the addition rate (addition amount per minute) of the poor solvent to the polyimide solution.
 貧溶媒の好ましい添加速度は、ポリイミドの構造や溶液中のポリイミドの濃度により若干左右される。遅くともポリイミドの析出が起きる直前の時点において、析出しようとするポリイミド溶液の総量をXgとした場合、貧溶媒の毎分当たりの添加量を、好ましくはXの0.0005~0.1倍(g/分)の範囲内、より好ましくはXの0.001~0.05倍の範囲内、更に好ましくはXの0.001~0.04倍未満(g/分)の範囲内とし、その添加速度を、ポリイミドの析出・粉体化が完了するまで、この範囲内に維持することにより、安定した平均粒子径のポリイミド粉体を得ることができる。
 例えば、1000gのポリイミド溶液(ポリイミドの溶液濃度が15質量%)の、析出・粉体化を行う場合、貧溶媒の添加速度が、0.5~100g/分の範囲内であることが好ましい。
The preferable addition rate of the poor solvent depends somewhat on the structure of the polyimide and the concentration of polyimide in the solution. At the latest, immediately before precipitation of polyimide occurs, if the total amount of polyimide solution to be precipitated is Xg, the amount of poor solvent added per minute is preferably 0.0005 to 0.1 times X (g /min), more preferably within the range of 0.001 to 0.05 times of X, and even more preferably within the range of 0.001 to less than 0.04 times of X (g/min), and the addition By maintaining the speed within this range until the precipitation and pulverization of polyimide are completed, polyimide powder with a stable average particle size can be obtained.
For example, when precipitating and pulverizing 1000 g of a polyimide solution (polyimide solution concentration is 15% by mass), the addition rate of the poor solvent is preferably within the range of 0.5 to 100 g/min.
 貧溶媒の添加速度(毎分当たりの添加量)が、ポリイミド溶液の全質量の0.0005倍以上であることにより、析出・粉体化に要する時間が著しく大きくなりすぎず、生産性の低下を抑制できる。また、生成するポリイミド粉体の平均粒子径が、小さくなりすぎるのを抑制できる。 By setting the addition rate (addition amount per minute) of the poor solvent to at least 0.0005 times the total mass of the polyimide solution, the time required for precipitation and pulverization does not become too large, resulting in a decrease in productivity. can be suppressed. Moreover, the average particle diameter of the polyimide powder to be produced can be prevented from becoming too small.
 一方、貧溶媒の添加速度が、ポリイミド溶液の全質量の0.1倍以下であることにより、生成するポリイミド粉体の平均粒子径が大きくなりすぎず、この後に行う乾燥による揮発成分の除去を効率的に行うことができるため、ポリイミドの着色や耐熱性の低下を抑制できる。 On the other hand, by adding the poor solvent at a rate of 0.1 times or less of the total mass of the polyimide solution, the average particle size of the polyimide powder produced does not become too large, and the removal of volatile components by subsequent drying is prevented. Since it can be carried out efficiently, coloring of polyimide and deterioration of heat resistance can be suppressed.
 ポリイミドの析出・粉体化が起こる(生じる)時点においては、貧溶媒の添加速度を制御する必要があるが、ポリイミドの析出・粉体化が始まるまでは、特に制御する必要はない。したがって、貧溶媒を添加する初期の、析出・粉体化が起こる前までは、貧溶媒を高速で添加してもよい。そして、析出開始時点の直前、すなわち、ポリイミド溶液に濁りが見られ、ポリイミドの析出・粉体化が認められる時点の直前までに、添加速度を上記範囲内に制御しても良い。その後の添加速度は、析出・粉体化が完了するまで維持しなければならない。 Although it is necessary to control the addition rate of the poor solvent at the time when polyimide precipitation/powderization occurs, there is no particular need to control it until polyimide precipitation/powderization begins. Therefore, the poor solvent may be added at high speed in the initial stage of adding the poor solvent, before precipitation and pulverization occur. Then, the addition rate may be controlled within the above range immediately before the start of precipitation, that is, immediately before the polyimide solution becomes cloudy and precipitation and pulverization of polyimide are observed. Thereafter, the rate of addition must be maintained until precipitation/pulverization is complete.
 ポリイミドの析出・粉体化の温度は、特に制限されないが、使用する貧溶媒の蒸発を抑制し、析出を効率的に行うという観点から、50℃以下で行うことが好ましく、40℃以下で行うことがより好ましい。 The temperature for precipitation and powderization of polyimide is not particularly limited, but from the viewpoint of suppressing evaporation of the poor solvent used and performing precipitation efficiently, it is preferably carried out at 50 ° C. or lower, and it is preferably carried out at 40 ° C. or lower. It is more preferable.
 なお、ポリイミドの析出・粉体化を、過剰の貧溶媒に対してポリイミド溶液を添加する方法で行うこともできるが、ポリイミドが繊維状で析出してしまう場合がある。このため、ポリイミドを所望の粒子の形状で得る観点からは、上記の方法で、析出・粉体化を行うことが好ましい。 Note that the precipitation and powderization of polyimide can also be carried out by adding a polyimide solution to an excess of a poor solvent, but the polyimide may precipitate in the form of fibers. Therefore, from the viewpoint of obtaining polyimide in a desired particle shape, it is preferable to perform precipitation and pulverization using the above method.
 (1.1.1.5)粉体の乾燥
 析出したポリイミド粉体を濾別し、必要に応じて洗浄し、乾燥を行う。
 なお、上記方法で得られたポリイミド粉体は、更に粉砕する必要なく、洗浄及び乾燥を行うことができる。
(1.1.1.5) Drying of powder The precipitated polyimide powder is filtered, washed if necessary, and dried.
Note that the polyimide powder obtained by the above method can be washed and dried without the need for further pulverization.
 上記ポリイミド粉体の乾燥は、上記溶媒(ポリアミド酸への重合反応で添加した溶媒)、イミド化剤、イミド化促進剤、貧溶媒等の残渣を除去することができればよく、任意の温度で行うことができる。 The polyimide powder may be dried at any temperature as long as it can remove the residues of the solvent (solvent added in the polymerization reaction to polyamic acid), imidization agent, imidization accelerator, poor solvent, etc. be able to.
 ただし、上記貧溶媒として、メタノール、エタノール等のヒドロキシ基を有する貧溶媒を用いる場合、ポリイミド粉体中の揮発成分が、好ましくは5%未満、より好ましくは3%未満になるまで、100℃未満で乾燥を行った後に、好ましくは100~350℃の範囲内、より好ましくは150~300℃の範囲内で、0.1~24時間の範囲内で乾燥を行うことが好ましい。これにより、イミド化剤、イミド化促進剤等の揮発しづらい成分も除去できる。 However, when a poor solvent having a hydroxyl group such as methanol or ethanol is used as the poor solvent, the temperature is lower than 100°C until the volatile components in the polyimide powder are preferably less than 5%, more preferably less than 3%. After drying at a temperature of 100 to 350°C, more preferably 150 to 300°C, drying is preferably carried out for 0.1 to 24 hours. Thereby, components that are difficult to volatilize, such as imidization agents and imidization promoters, can also be removed.
 なお、一段階目の乾燥を、100℃未満で乾燥を行うことにより、ポリイミド中のカルボン酸基又はカルボン酸無水物基と上記貧溶媒が反応してエステル結合を形成するのを抑制できるため、ポリイミドの着色及び耐熱性の低下を抑制できる。 In addition, by performing the first stage drying at a temperature of less than 100 ° C., it is possible to suppress the formation of ester bonds due to the reaction of the poor solvent with the carboxylic acid group or carboxylic acid anhydride group in the polyimide. Coloring of polyimide and deterioration of heat resistance can be suppressed.
 二段階目の100℃以上の高温での乾燥は、ポリイミドの着色及び分子量の低下を抑制する観点から、不活性かつ水分量の少ない雰囲気下で行うことが好ましい。 The second step of drying at a high temperature of 100° C. or higher is preferably carried out in an inert and low-moisture atmosphere from the viewpoint of suppressing coloration of the polyimide and reduction in molecular weight.
 ポリイミドの乾燥は、常圧で行っても、減圧下で行ってもよい。
 また、ポリイミドの乾燥は、例えば、100℃未満の低温から100℃以上の高温まで、連続的に昇温しながら行ってもよい。この場合、乾燥温度が100℃を超える前に、ポリイミド粉体中に含まれる揮発成分が、5%未満になっていることが好ましい。
Drying of polyimide may be performed under normal pressure or under reduced pressure.
Further, polyimide may be dried, for example, while the temperature is continuously raised from a low temperature of less than 100°C to a high temperature of 100°C or more. In this case, it is preferable that the volatile components contained in the polyimide powder be less than 5% before the drying temperature exceeds 100°C.
 ここでいう100℃未満の温度での乾燥後の、ポリイミド粉体中の揮発成分量とは以下の式で定義されるものである。
 100℃未満の温度での乾燥後のポリイミド粉体の質量:Ag
 100℃以上の温度で行う最終的な乾燥後のポリイミド粉体の質量:Bg
 100℃未満の温度での乾燥後の残存揮発成分量:(A-B)/A×100%
The amount of volatile components in the polyimide powder after drying at a temperature of less than 100°C is defined by the following formula.
Mass of polyimide powder after drying at a temperature below 100°C: Ag
Mass of polyimide powder after final drying at a temperature of 100°C or higher: Bg
Amount of volatile components remaining after drying at a temperature below 100°C: (AB)/A x 100%
 (1.1.2)その他のポリイミド
 本発明に係るポリイミドは、上記の粉末のポリイミドのみに限定されず、市販品を用いてもよい。
 ポリイミドの市販品としては、「ネオプリム(登録商標)」シリーズ(三菱ガス化学株式会社製)、「スピクセリア(登録商標)」シリーズ(ソマール株式会社製)、「Q-PILON(登録商標)」シリーズ(ピーアイ技術研究所製)、「WINGO」シリーズ(ウィンゴーテクノロジー株式会社製)、「トーマイド(登録商標)」シリーズ(株式会社T&K TOKA製)、「KPI-MX」シリーズ(河村産業株式会社製)、「ユピア(登録商標)-AT」シリーズ(宇部興産株式会社製)等が挙げられる。
(1.1.2) Other polyimides The polyimide according to the present invention is not limited to the above powdered polyimide, and commercially available products may be used.
Commercially available polyimide products include the "Neoprim (registered trademark)" series (manufactured by Mitsubishi Gas Chemical Co., Ltd.), the "Spixeria (registered trademark)" series (manufactured by Somar Corporation), and the "Q-PILON (registered trademark)" series (manufactured by Somar Corporation). (manufactured by P.I. Technology Institute), "WINGO" series (manufactured by Wingo Technology Co., Ltd.), "Tomide (registered trademark)" series (manufactured by T&K TOKA Co., Ltd.), "KPI-MX" series (manufactured by Kawamura Sangyo Co., Ltd.), Examples include the "Yupia (registered trademark)-AT" series (manufactured by Ube Industries, Ltd.).
 (1.2)ポリアリレート
 本発明において、「ポリアリレート」とは、詳しくは、非晶ポリアリレートのことであり、2価のフェノールと、2塩基酸との重縮合体のことをいう。中でも、2塩基酸は、芳香族ジカルボン酸であることが好ましい。
(1.2) Polyarylate In the present invention, "polyarylate" specifically refers to amorphous polyarylate, and refers to a polycondensate of divalent phenol and dibasic acid. Among these, the dibasic acid is preferably an aromatic dicarboxylic acid.
 2価のフェノールとしては、ビスフェノール類が挙げられ、例えば、レゾルシノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン等が挙げられる。
 これらは、一種単独で用いても、二種以上を併用してもよい。
Examples of divalent phenols include bisphenols, such as resorcinol, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, , 2-bis(4-hydroxy-3-methylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane, 2,2-bis(4-hydroxy-3,5-dichlorophenyl) ) Propane, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxydiphenylmethane, 1,1- Examples include bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane and 1,1-bis(4-hydroxyphenyl)cyclohexane.
These may be used alone or in combination of two or more.
 これらのビスフェノール類を用いることにより、得られるポリアリレートは非晶質となり、耐熱性により優れる。中でも、2,2-ビス(4-ヒドロキシフェニル)プロパンを用いることが好ましく、これを一種単独で用いることがより好ましい。 By using these bisphenols, the resulting polyarylate becomes amorphous and has better heat resistance. Among them, it is preferable to use 2,2-bis(4-hydroxyphenyl)propane, and it is more preferable to use one type alone.
 芳香族ジカルボン酸としては、特に制限されないが、例えば、テレフタル酸、イソフタル酸、フタル酸、クロルフタル酸、ニトロフタル酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、メチルテレフタル酸、4,4’-ビフェニルジカルボン酸、2,2’-ビフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルスルフォンジカルボン酸、4,4’-ジフェニルイソプロピリデンジカルボン酸、1,2-ビス(4-カルボキシフェノキシ)エタン、5-ナトリウムスルホイソフタル酸、ジフェン酸及びこれらの誘導体等が挙げられる。 Aromatic dicarboxylic acids are not particularly limited, but include, for example, terephthalic acid, isophthalic acid, phthalic acid, chlorophthalic acid, nitrophthalic acid, 2,5-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, and 2,7-naphthalene. Dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, methyl terephthalic acid, 4,4'-biphenyl dicarboxylic acid, 2,2'-biphenyl dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenylmethane dicarboxylic acid , 4,4'-diphenylsulfone dicarboxylic acid, 4,4'-diphenylisopropylidene dicarboxylic acid, 1,2-bis(4-carboxyphenoxy)ethane, 5-sodium sulfoisophthalic acid, diphenic acid and derivatives thereof, etc. Can be mentioned.
 芳香族ジカルボン酸の誘導体としては、例えば、上記芳香族ジカルボン酸の炭素数1~3の範囲内のアルキルのエステル化物及び酸塩化物が挙げられる。
 これらは、一種単独で用いても、二種以上併用してもよい。
Examples of the derivatives of aromatic dicarboxylic acids include esters and acid chlorides of alkyls having 1 to 3 carbon atoms in the above-mentioned aromatic dicarboxylic acids.
These may be used alone or in combination of two or more.
 中でも、テレフタル酸、イソフタル酸又はこれらの誘導体であることが好ましい。
 また、耐熱性及びフィルム形成時の流動性の両立の観点から、テレフタル酸又はその誘導体とイソフタル酸又はその誘導体の両者を混合して用いることが、より好ましい。この場合、混合モル比率(テレフタル酸/イソフタル酸)は、特に制限されないが、90/10~10/90の範囲内であることが好ましく、70/30~30/70の範囲内であることがより好ましく、55/45~45/55の範囲内であることが更に好ましい。
 上記範囲内であることにより、得られるポリアリレートは非晶質となり、耐熱性により優れる。
Among these, terephthalic acid, isophthalic acid, or derivatives thereof are preferred.
Further, from the viewpoint of achieving both heat resistance and fluidity during film formation, it is more preferable to use a mixture of both terephthalic acid or a derivative thereof and isophthalic acid or a derivative thereof. In this case, the mixing molar ratio (terephthalic acid/isophthalic acid) is not particularly limited, but is preferably within the range of 90/10 to 10/90, and preferably within the range of 70/30 to 30/70. More preferably, it is within the range of 55/45 to 45/55.
By being within the above range, the polyarylate obtained will be amorphous and have better heat resistance.
 ポリアリレートは、流動性、耐熱性、耐加水分解性、及びフィルム化した際の機械的特性の向上の観点から、1,1,2,2-テトラクロロエタン100mlにポリアリレート試料1.0gを溶解した溶液の、温度25℃における対数粘度が、0.40~0.75dL/gの範囲内であることが好ましく、0.45~0.65dL/gの範囲内であることがより好ましい。 Polyarylate was prepared by dissolving 1.0 g of polyarylate sample in 100 ml of 1,1,2,2-tetrachloroethane from the viewpoint of improving fluidity, heat resistance, hydrolysis resistance, and mechanical properties when formed into a film. The logarithmic viscosity of the solution at a temperature of 25° C. is preferably within the range of 0.40 to 0.75 dL/g, more preferably within the range of 0.45 to 0.65 dL/g.
 ポリアリレートは、公知の方法により合成することができる。また、市販品を用いてもよい。
 ポリアリレート樹脂の市販品としては、例えば、「Uポリマー Uパウダー Dタイプ(対数粘度0.72)、Lタイプ(対数粘度0.54)」、「ユニファイナー(登録商標)M-2040」(いずれもユニチカ株式会社製)等が挙げられる。
Polyarylate can be synthesized by a known method. Alternatively, commercially available products may be used.
Commercially available polyarylate resins include, for example, "U Polymer U Powder D type (log viscosity 0.72), L type (log viscosity 0.54)" and "Unifiner (registered trademark) M-2040" (both (manufactured by Unitika Co., Ltd.).
 (1.3)その他の熱硬化性樹脂
 本発明に用いられるマレイミド化合物としては、例えば、特開2022-061729号公報の段落0047~0093に記載のマレイミド化合物等が挙げられる。
 また、本発明に用いられるシアネート樹脂としては、例えば、特開2022-009110号公報の段落0066~0079に記載のシアネート樹脂、特開2022-061729号公報の段落0046に記載のシアネート樹脂等が挙げられる。
(1.3) Other thermosetting resins Examples of the maleimide compound used in the present invention include the maleimide compounds described in paragraphs 0047 to 0093 of JP-A No. 2022-061729.
Examples of the cyanate resin used in the present invention include the cyanate resins described in paragraphs 0066 to 0079 of JP-A No. 2022-009110, and the cyanate resins described in paragraph 0046 of JP-A No. 2022-061729. It will be done.
 マレイミド化合物の市販品としては、例えば、「BMI」(ケイ・アイ化成株式会社製)、「BMI-4000」(大和化成工業株式会社製)、「MIR-3000」(日本化薬株式会社製)等が挙げられる。 Commercially available maleimide compounds include, for example, "BMI" (manufactured by K.I. Kasei Co., Ltd.), "BMI-4000" (manufactured by Daiwa Kasei Kogyo Co., Ltd.), and "MIR-3000" (manufactured by Nippon Kayaku Co., Ltd.). etc.
 (1.4)液晶ポリマー
 本発明において、「液晶ポリマー」とは、液晶ポリマーのうちサーモトロピック型に属するもののことをいい、溶融状態で分子の直鎖が規則正しく並んだ液晶様性質を示す熱可塑性樹脂のことをいう。
(1.4) Liquid crystal polymer In the present invention, "liquid crystal polymer" refers to a thermotropic type of liquid crystal polymer, which is a thermoplastic polymer that exhibits liquid crystal-like properties in which linear chains of molecules are regularly arranged in a molten state. Refers to resin.
 本発明に係る液晶ポリマーとしては、液晶ポリエステルが挙げられ、中でも、以下の式(a1)、式(a2)及び式(a3)で表される構造単位を含む液晶ポリエステルであることが好ましい。
 (a1) -O-Ar-CO-
 (a2) -CO-Ar-CO-
 (a3) -X-Ar-Y-
 〔ただし、式(a1)中、Arは、1,4-フェニレン基、2,6-ナフチレン基又は4,4’-ビフェニレン基を表し、式(a2)中、Arは、1,4-フェニレン基、1,3-フェニレン基又は2,6-ナフチレン基を表し、式(a3)中、Arは、1,4-フェニレン基又は1,3-フェニレン基を表し、Xは-NH-を表し、Yは、-O-又は-NH-を表す。〕
Examples of the liquid crystal polymer according to the present invention include liquid crystal polyesters, and among them, liquid crystal polyesters containing structural units represented by the following formulas (a1), (a2), and (a3) are preferable.
(a1) -O-Ar 1 -CO-
(a2) -CO-Ar 2 -CO-
(a3) -X-Ar 3 -Y-
[However, in formula (a1), Ar 1 represents a 1,4-phenylene group, 2,6-naphthylene group, or 4,4'-biphenylene group, and in formula (a2), Ar 2 represents 1,4 - represents a phenylene group, a 1,3-phenylene group or a 2,6-naphthylene group, in formula (a3), Ar 3 represents a 1,4-phenylene group or a 1,3-phenylene group, and X represents -NH -, and Y represents -O- or -NH-. ]
 液晶ポリエステルの全構造単位100モル%に対して、式(a1)で表される構造単位の含有量が、30~80モル%の範囲内、式(a2)で表される構造単位の含有量が、10~35モル%の範囲内、式(a3)で表される構造単位の含有量が、10~35モル%の範囲内であることが好ましい。 The content of the structural unit represented by formula (a1) is within the range of 30 to 80 mol% with respect to 100 mol% of the total structural units of the liquid crystal polyester, and the content of the structural unit represented by formula (a2) is within the range of 30 to 80 mol%. is preferably within the range of 10 to 35 mol%, and the content of the structural unit represented by formula (a3) is preferably within the range of 10 to 35 mol%.
 式(a1)で表される構造単位は、芳香族ヒドロキシカルボン酸由来の構造単位、式(a2)で表される構造単位は、芳香族ジカルボン酸由来の構造単位、式(a3)で表される構造単位は、芳香族ジアミン、フェノール性水酸基を有する芳香族アミン由来の構造単位である。 The structural unit represented by formula (a1) is a structural unit derived from an aromatic hydroxycarboxylic acid, and the structural unit represented by formula (a2) is a structural unit derived from an aromatic dicarboxylic acid, and the structural unit represented by formula (a3) is a structural unit derived from an aromatic dicarboxylic acid. The structural unit is derived from an aromatic diamine or an aromatic amine having a phenolic hydroxyl group.
 中でも、Arが、2,6-ナフチレン基であり、Arが、1,3-フェニレン基であり、Arが、1,4-フェニレン基であり、Yが、-O-であることが好ましい。 Among them, Ar 1 is a 2,6-naphthylene group, Ar 2 is a 1,3-phenylene group, Ar 3 is a 1,4-phenylene group, and Y is -O-. is preferred.
 式(a1)で表される構造単位としては、例えば、p-ヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸、4-ヒドロキシ-4’-ビフェニルカルボン酸等由来の構造単位が挙げられ、中でも、2-ヒドロキシ-6-ナフトエ酸由来の構造単位であることが好ましい。
 これらは、一種単独で用いても、二種以上を併用してもよい。
Examples of the structural unit represented by formula (a1) include structural units derived from p-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 4-hydroxy-4'-biphenylcarboxylic acid, etc. , is preferably a structural unit derived from 2-hydroxy-6-naphthoic acid.
These may be used alone or in combination of two or more.
 式(a1)で表される構造単位の含有量は、当該液晶ポリエステルの全構造単位100モル%に対して、30~80モル%の範囲内であることが好ましく、40~70モル%の範囲内であることがより好ましく、45~65モル%の範囲内であることが更に好ましい。 The content of the structural unit represented by formula (a1) is preferably in the range of 30 to 80 mol%, and preferably in the range of 40 to 70 mol%, based on 100 mol% of the total structural units of the liquid crystal polyester. It is more preferably within the range of 45 to 65 mol%.
 式(a2)で表される構造単位としては、例えば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等由来の構造単位が挙げられ、中でも、イソフタル酸由来の構造単位であることが好ましい。
 これらは、一種単独で用いても、二種以上を併用してもよい。
Examples of the structural unit represented by formula (a2) include structural units derived from terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, etc. Among them, structural units derived from isophthalic acid are preferred. .
These may be used alone or in combination of two or more.
 式(a2)で表される構造単位の含有量は、当該液晶ポリエステルの全構造単位100モル%に対して、10~35モル%の範囲内であることが好ましく、15~30モル%の範囲内であることがより好ましく、17.5~27.5モル%の範囲内であることが更に好ましい。 The content of the structural unit represented by formula (a2) is preferably in the range of 10 to 35 mol%, and preferably in the range of 15 to 30 mol%, based on 100 mol% of the total structural units of the liquid crystal polyester. It is more preferably within the range of 17.5 to 27.5 mol%.
 式(a3)で表される構造単位としては、例えば、3-アミノフェノール、4-アミノフェノール、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4-アミノ安息香酸等由来の構造単位が挙げられ、中でも、4-アミノフェノール由来の構造単位であることが好ましい。
 これらは、一種単独で用いても、二種以上を併用してもよい。
Examples of the structural unit represented by formula (a3) include structural units derived from 3-aminophenol, 4-aminophenol, 1,4-phenylenediamine, 1,3-phenylenediamine, 4-aminobenzoic acid, etc. Among them, a structural unit derived from 4-aminophenol is preferred.
These may be used alone or in combination of two or more.
 式(a3)で表される構造単位の含有量は、当該液晶ポリエステルの全構造単位100モル%に対して、10~35モル%の範囲内であることが好ましく、15~30モル%の範囲内であることがより好ましく、17.5~27.5モル%の範囲内であることが更に好ましい。 The content of the structural unit represented by formula (a3) is preferably in the range of 10 to 35 mol%, and preferably in the range of 15 to 30 mol%, based on 100 mol% of the total structural units of the liquid crystal polyester. It is more preferably within the range of 17.5 to 27.5 mol%.
 当該液晶ポリエステルは、例えば、特開2019-163431号公報に記載の方法により製造することができる。 The liquid crystal polyester can be produced, for example, by the method described in JP-A-2019-163431.
 (1.5)物性
 (1.5.1)誘電正接
 本発明に係る樹脂は、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、0.0150以下である。
 本発明において、「誘電正接」とは、誘電体における電気エネルギーの損失の度合いのことをいう。そのため、本発明に係る樹脂としては、誘電正接が低いほど(0に近い値であるほど)好ましい。
(1.5) Physical properties (1.5.1) Dielectric loss tangent The resin according to the present invention has a dielectric loss tangent of 0.0150 or less at a frequency of 28 GHz in an environment of 22° C. and 60% RH.
In the present invention, "dielectric loss tangent" refers to the degree of electrical energy loss in a dielectric. Therefore, for the resin according to the present invention, the lower the dielectric loss tangent (the closer the value is to 0), the more preferable it is.
 22℃、60%RH環境下での周波数28GHzにおける誘電正接は、低いほど好ましく、具体的には、0.0140以下であることがより好ましく、0.0100以下であることが更に好ましい。 The dielectric loss tangent at a frequency of 28 GHz in an environment of 22° C. and 60% RH is preferably as low as possible; specifically, it is more preferably 0.0140 or less, and even more preferably 0.0100 or less.
 誘電正接は、上記樹脂における、単量体の分子構造、重合比率等を適宜選択することにより、所望の数値に調整することができる。 The dielectric loss tangent can be adjusted to a desired value by appropriately selecting the molecular structure, polymerization ratio, etc. of the monomers in the resin.
 (誘電正接の測定方法)
 本発明に係る樹脂の誘電正接は、JIS R1641:2007に準拠して測定できる。
 樹脂(二種以上を併用する場合は、その混合樹脂)について、100mm×120mmサイズの試験片を作製し、測定前に、予め、温度22±1℃、湿度60±5%RH環境下で、90時間保存する。その後、円筒空洞共振器法により、周波数28GHzでの誘電正接を測定する。
(Measurement method of dielectric loss tangent)
The dielectric loss tangent of the resin according to the present invention can be measured in accordance with JIS R1641:2007.
A test piece of 100 mm x 120 mm in size was prepared for the resin (mixed resin when two or more types are used together), and before measurement, the test piece was prepared in advance at a temperature of 22 ± 1 ° C. and a humidity of 60 ± 5% RH in an environment. Store for 90 hours. Thereafter, the dielectric loss tangent at a frequency of 28 GHz is measured by the cylindrical cavity method.
 (1.5.2)ガラス転移温度
 本発明に係る樹脂は、ガラス転移温度が、200℃以上であることが好ましい。200℃以上であることにより、耐熱性を有するフィルムとすることができ、情報量の増加に伴い発熱量が増加すると考えられる5G対応通信機器において用いることができる。
(1.5.2) Glass transition temperature The resin according to the present invention preferably has a glass transition temperature of 200°C or higher. By being 200° C. or higher, the film can be made heat resistant and can be used in 5G-compatible communication equipment, which is expected to generate more heat as the amount of information increases.
 ガラス転移温度については、樹脂を併用する場合、各樹脂について、200℃以上であることが好ましく、上記樹脂における、単量体の分子構造、重合方法、重合比率等を適宜選択することにより、所望の数値に調整することができる。 Regarding the glass transition temperature, when resins are used together, it is preferable that each resin has a glass transition temperature of 200°C or higher, and the desired glass transition temperature can be achieved by appropriately selecting the molecular structure of the monomer, polymerization method, polymerization ratio, etc. in the resin. can be adjusted to the value of
 (ガラス転移温度の測定方法)
 樹脂(二種以上を併用する場合は、その混合樹脂)について、5mm×40mmサイズの試験片を作製し、当該試験片を、動的粘弾性装置「RSA-G2」(ティー・エイ・インスツルメント・ジャパン株式会社製)にセットする。窒素気流中、周波数1Hzで、試験片に歪みを与えながら、0℃から450℃まで昇温させ、引張貯蔵弾性率E′及び引張損失弾性率E″を測定し、損失正接(tanδ=E″/E′)を算出する。そして、損失正接のピークトップ時における温度を、当該樹脂のガラス転移温度(Tg)とする。
(Measurement method of glass transition temperature)
A test piece of 5 mm x 40 mm size was prepared for the resin (mixed resin when two or more types are used together), and the test piece was placed in a dynamic viscoelasticity device "RSA-G2" (T.A. Instruments). (manufactured by Mento Japan Co., Ltd.). While applying strain to the test piece in a nitrogen stream at a frequency of 1 Hz, the temperature was raised from 0°C to 450°C, the tensile storage modulus E' and the tensile loss modulus E'' were measured, and the loss tangent (tan δ = E''/E') is calculated. The temperature at the peak top of the loss tangent is defined as the glass transition temperature (Tg) of the resin.
 (2)フィラー
 本発明のフィルムは、フィラーを含有する。
 本発明に係るフィラーは、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、0.0150以下である。
 また、フィラーの含有量は、フィルムの全質量に対して、1.0~70.0質量%の範囲内である。
 本発明のフィルムは、誘電正接の低いフィラーを比較的多量に含有することにより、誘電損失を低減させることができる。
(2) Filler The film of the present invention contains a filler.
The filler according to the present invention has a dielectric loss tangent of 0.0150 or less at a frequency of 28 GHz in an environment of 22° C. and 60% RH.
Further, the filler content is within the range of 1.0 to 70.0% by mass based on the total mass of the film.
The film of the present invention can reduce dielectric loss by containing a relatively large amount of filler having a low dielectric loss tangent.
 本発明において、「フィラー」とは、フィルムの誘電損失の低減を目的として添加される微粒子、繊維、又は添加剤のことをいう。最終的にフィルム中で相分離して海島状に分布するようなものも含んで良い。
 すなわち、フィラーを含有しない樹脂(二種以上を併用する場合は、その混合樹脂)のフィルムと、フィラーを含有するフィルムとにおいて、上記(式3)で表される誘電損失を比較した際に、フィラーを含有するフィルムでは、誘電損失が低減する。
In the present invention, "filler" refers to fine particles, fibers, or additives added for the purpose of reducing dielectric loss of the film. It may also include those that eventually phase separate in the film and are distributed like islands in the sea.
That is, when comparing the dielectric loss expressed by the above (Formula 3) in a film of a resin that does not contain a filler (or a mixed resin when two or more types are used together) and a film that contains a filler, Dielectric loss is reduced in films containing fillers.
 前述のとおり、誘電損失を低減させる観点では、フィラーを比較的多量に含有させることが好ましいが、フィラーを多量に含有させると、フィルムの表面自由エネルギーを、上記(式1)及び(式2)を満たす範囲内に調整することが難しくなる。 As mentioned above, from the viewpoint of reducing dielectric loss, it is preferable to contain a relatively large amount of filler, but if a large amount of filler is contained, the surface free energy of the film will be reduced by the above (Formula 1) and (Formula 2) It becomes difficult to make adjustments within the range that satisfies the above.
 ただし、後述するフィルムの製造方法を用いることにより、フィルムの表面自由エネルギーを特定の範囲内に調整し、かつフィラーを比較的多量に含有させることができると考えられる。
 なお、本発明のフィルムを製造する方法は、特に制限されず、後述するフィルムの製造方法以外の方法を用いてもよい。
However, by using the film manufacturing method described below, it is considered that the surface free energy of the film can be adjusted within a specific range and the filler can be contained in a relatively large amount.
Note that the method for manufacturing the film of the present invention is not particularly limited, and methods other than the film manufacturing method described below may be used.
 フィラーの含有量は、フィルムの全質量に対して、1.0~70.0質量%の範囲内である。また、10.0~60.0質量%の範囲内であることが好ましく、15.0~50.0質量%の範囲内であることがより好ましい。 The content of the filler is within the range of 1.0 to 70.0% by mass based on the total mass of the film. Further, it is preferably within the range of 10.0 to 60.0% by mass, and more preferably within the range of 15.0 to 50.0% by mass.
 本発明に係るフィラーは、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、0.0150以下であれば、特に制限されず、例えば、フッ素樹脂、液晶ポリマー、変性ポリフェニレンエーテル等の微粒子が挙げられる。
 液晶ポリマーについては、上記樹脂における液晶ポリマーと同一のものを用いることができるが、フィラーとして用いる場合の物性等については、後述する。
The filler according to the present invention is not particularly limited as long as it has a dielectric loss tangent of 0.0150 or less at a frequency of 28 GHz in an environment of 22° C. and 60% RH. Examples include fine particles.
As for the liquid crystal polymer, the same one as the liquid crystal polymer in the above resin can be used, but the physical properties and the like when used as a filler will be described later.
 (2.1)フッ素樹脂微粒子
 本発明において、フッ素樹脂微粒子は、非水系分散体として上記樹脂と混合することが好ましい。
 フッ素樹脂分散体としては、フッ素樹脂微粒子と、少なくとも、含フッ素置換基及び疎水基を有するフッ素系添加剤とを含有し、カールフィッシャー法による水分量が、5000質量ppm以下であるものであれば、特に制限されない。
(2.1) Fluororesin fine particles In the present invention, the fluororesin fine particles are preferably mixed with the above resin as a non-aqueous dispersion.
The fluororesin dispersion contains fluororesin fine particles and at least a fluorine additive having a fluorine-containing substituent and a hydrophobic group, and has a water content of 5000 mass ppm or less by Karl Fischer method. , not particularly limited.
 フッ素樹脂分散体は、例えば、平均一次粒子径が1μm以下であるフッ素樹脂微粒子、含フッ素置換基及び疎水基を含有するフッ素系添加剤、溶媒等を用いて調製することができる。 The fluororesin dispersion can be prepared using, for example, fluororesin fine particles having an average primary particle diameter of 1 μm or less, a fluorine-based additive containing a fluorine-containing substituent and a hydrophobic group, a solvent, and the like.
 フッ素樹脂微粒子としては、例えば、ポリテトラフルオロエチレン(PTFE)、フッ化エチレン-プロピレン共重合体(FEP)、パーフルオロアルコキシ重合体(PFA)、クロロトリフルオロエチレン(CTFE)、テトラフルオロエチレン-クロロトリフルオロエチレン共重合体(TFE/CTFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)等が挙げられ、中でも、低誘電正接かつ低比誘電率である観点から、ポリテトラフルオロエチレン(PTFE、比誘電率2.1)であることが好ましい。
 これらは、一種単独で用いても、二種以上を併用してもよい。
Examples of fluororesin fine particles include polytetrafluoroethylene (PTFE), fluorinated ethylene-propylene copolymer (FEP), perfluoroalkoxy polymer (PFA), chlorotrifluoroethylene (CTFE), and tetrafluoroethylene-chloro. Examples include trifluoroethylene copolymer (TFE/CTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), etc. Among them, it has a low dielectric loss tangent and a low dielectric constant. From this point of view, polytetrafluoroethylene (PTFE, dielectric constant 2.1) is preferable.
These may be used alone or in combination of two or more.
 フッ素樹脂微粒子の作製方法は、特に制限されないが、乳化重合法であることが好ましく、例えば、ふっ素樹脂ハンドブック(里川孝臣編、日刊工業新聞社)に記載されている方法等、一般的に用いられる方法により作製することができる。
 そして、乳化重合法により作製されたフッ素樹脂微粒子は、凝集・乾燥し、一次粒子が凝集した二次粒子の状態で、微粉末として回収される。
The method for producing fluororesin fine particles is not particularly limited, but it is preferably an emulsion polymerization method, such as the method described in the Fluororesin Handbook (edited by Takaomi Satokawa, Nikkan Kogyo Shimbun), etc., which is commonly used. It can be produced by a method.
Then, the fluororesin fine particles produced by the emulsion polymerization method are aggregated and dried, and recovered as a fine powder in the form of secondary particles in which the primary particles are aggregated.
 フッ素樹脂微粒子の平均一次粒子径は、1μm以下であることが好ましく、0.5μm以下であることがより好ましく、0.3μm以下であることが更に好ましい。平均一次粒子径が、1μm以下であることにより、疎水性の高い溶媒中においても、沈降しづらく、安定して分散することができる。
 また、平均一次粒子径は、小さいほど好ましいが、製造のしやすさの観点から、0.05μm以上であることが好ましい。
The average primary particle diameter of the fluororesin fine particles is preferably 1 μm or less, more preferably 0.5 μm or less, and even more preferably 0.3 μm or less. Since the average primary particle diameter is 1 μm or less, it is difficult to sediment and can be stably dispersed even in a highly hydrophobic solvent.
Further, the average primary particle diameter is preferably as small as possible, but from the viewpoint of ease of manufacture, it is preferably 0.05 μm or more.
 なお、ここでの、「平均一次粒子径」とは、レーザー回折・散乱法、動的光散乱法、画像イメージング法等によって測定される体積基準の平均粒子径(50%体積径、メジアン径)のことをいう。 Note that the "average primary particle diameter" here refers to the volume-based average particle diameter (50% volume diameter, median diameter) measured by laser diffraction/scattering method, dynamic light scattering method, image imaging method, etc. It refers to
 フッ素樹脂微粒子の平均一次粒子径は、作製段階における、レーザー回折・散乱法、動的光散乱法等によって得られた値であることが好ましい。乾燥後の微粉末状態においては、フッ素樹脂微粒子は二次粒子の状態であり、一次粒子同士の凝集力が強く、容易に一次粒子径をレーザー回折・散乱法、動的光散乱法等によって測定することが難しいため、この場合、画像イメージング法によって得られた値であってもよい。 The average primary particle diameter of the fluororesin fine particles is preferably a value obtained by a laser diffraction/scattering method, a dynamic light scattering method, etc. in the production stage. In the fine powder state after drying, the fluororesin fine particles are in the state of secondary particles, and the cohesive force between the primary particles is strong, so the primary particle diameter can be easily measured by laser diffraction/scattering method, dynamic light scattering method, etc. In this case, it may be a value obtained by an image imaging method because it is difficult to do so.
 測定装置とその方法としては、例えば、濃厚系粒径アナライザー「FPAR-1000」(大塚電子株式会社製)による動的光散乱法、粒子径分布測定装置「マイクロトラック」(日機装株式会社製)によるレーザー回折・散乱法、画像解析式粒度分布測定ソフトウェア「マックビュー」(株式会社マウンテック製)による画像イメージング法等が挙げられる。 Measuring devices and methods include, for example, the dynamic light scattering method using a concentrated particle size analyzer “FPAR-1000” (manufactured by Otsuka Electronics Co., Ltd.), and the particle size distribution measuring device “Microtrack” (manufactured by Nikkiso Co., Ltd.). Examples include laser diffraction/scattering methods, and image imaging methods using image analysis particle size distribution measurement software "Macview" (manufactured by Mountec Co., Ltd.).
 フッ素樹脂分散体におけるフッ素樹脂の含有量は、フッ素樹脂分散体の全質量に対して、5~70質量%の範囲内であることが好ましく、10~50質量%の範囲内であることがより好ましい。 The content of fluororesin in the fluororesin dispersion is preferably within the range of 5 to 70% by mass, more preferably within the range of 10 to 50% by mass, based on the total mass of the fluororesin dispersion. preferable.
 フッ素樹脂分散体におけるフッ素樹脂の含有量が、5質量%以上であることにより、溶媒の量が多くなりすぎず、適度な粘度が保たれるため、フッ素樹脂微粒子が沈降しづらく、安定して分散することができる。また、70質量%以下であることにより、フッ素樹脂微粒子同士が凝集しづらく、安定して分散することができる。 By having a fluororesin content of 5% by mass or more in the fluororesin dispersion, the amount of solvent does not become too large and a suitable viscosity is maintained, making it difficult for the fluororesin fine particles to settle and stably. Can be dispersed. In addition, when the content is 70% by mass or less, the fluororesin fine particles are less likely to aggregate with each other and can be stably dispersed.
 フッ素樹脂分散体に用いることのできるフッ素系添加剤は、少なくとも、含フッ素置換基及び疎水基を有するものであれば、特に制限されず、さらに、親水基を有していてもよい。 The fluorine-based additive that can be used in the fluororesin dispersion is not particularly limited as long as it has at least a fluorine-containing substituent and a hydrophobic group, and may also have a hydrophilic group.
 フッ素系添加剤を用いることにより、分散媒である疎水性の高い溶媒の表面張力を低下させ、フッ素樹脂微粒子の表面に対する濡れ性を向上させて、フッ素樹脂微粒子の分散性を向上させることができる。また、フッ素系添加剤における含フッ素置換基が、フッ素樹脂微粒子の表面に吸着し、フッ素系添加剤における疎水基が、疎水性の高い溶媒中に伸長するため、当該疎水基の立体障害によりフッ素樹脂微粒子が凝集しづらく、更に安定して分散することができる。 By using a fluorine-based additive, it is possible to lower the surface tension of the highly hydrophobic solvent that is the dispersion medium, improve the wettability of the surface of the fluororesin particles, and improve the dispersibility of the fluororesin particles. . In addition, the fluorine-containing substituent in the fluorine-based additive is adsorbed on the surface of the fluororesin fine particles, and the hydrophobic group in the fluorine-based additive extends into a highly hydrophobic solvent. Resin fine particles are less likely to aggregate and can be more stably dispersed.
 フッ素系添加剤における含フッ素置換基としては、例えば、パーフルオロアルキル基、パーフルオロアルケニル基等が挙げられる。疎水基としては、例えば、アルキル基、フェニル基、シロキサン基等が挙げられ、これらは、一種単独で用いても、二種以上を併用してもよい。親水基としては、例えば、エチレンオキサイド、アミド基、ケトン基、カルボキシル基、スルホン基等が挙げられ、一種単独で用いても、二種以上を併用してもよい。 Examples of the fluorine-containing substituent in the fluorine-based additive include a perfluoroalkyl group and a perfluoroalkenyl group. Examples of the hydrophobic group include an alkyl group, a phenyl group, and a siloxane group, and these may be used alone or in combination of two or more. Examples of the hydrophilic group include ethylene oxide, amide group, ketone group, carboxyl group, and sulfone group, and one type may be used alone or two or more types may be used in combination.
 フッ素系添加剤の市販品としては、パーフルオロアルキル基含有のサーフロン(登録商標)S-611等の「サーフロン(登録商標)シリーズ」(AGCセイミケミカル株式会社製)、メガファック(登録商標)F-555、メガファック(登録商標)F-558、メガファック(登録商標)F-563等の「メガファック(登録商標)シリーズ」(DIC社製)、ユニダイン(登録商標)DS-403N等のユニダイン(ユニダイン)シリーズ(ダイキン工業社製)が挙げられる。
 これらは、一種単独で用いても、二種以上を併用してもよい。
Commercially available fluorine-based additives include the "Surflon (registered trademark) series" (manufactured by AGC Seimi Chemical Co., Ltd.) such as Surflon (registered trademark) S-611 containing perfluoroalkyl groups, and Megafac (registered trademark) F. -555, Megafac (registered trademark) F-558, Megafac (registered trademark) F-563, etc., "Megafac (registered trademark) series" (manufactured by DIC), Unidyne (registered trademark), such as Unidyne DS-403N, etc. (Unidyne) series (manufactured by Daikin Industries, Ltd.).
These may be used alone or in combination of two or more.
 フッ素樹脂分散体におけるフッ素系添加剤の含有量は、フッ素樹脂微粒子の全質量に対して、0.1~50質量%の範囲内であることが好ましく、5~35質量%の範囲内であることがより好ましく、15~25質量%の範囲内であることが更に好ましい。 The content of the fluorine-based additive in the fluororesin dispersion is preferably within the range of 0.1 to 50% by mass, and preferably within the range of 5 to 35% by mass, based on the total mass of the fluororesin fine particles. The content is more preferably within the range of 15 to 25% by mass.
 フッ素樹脂分散体におけるフッ素系添加剤の含有量が、0.1質量%以上であることにより、フッ素樹脂微粒子の表面を十分に溶媒で濡らすことができる。また、50質量%以下であることにより、分散体の泡立ちが強くなって分散の効率が低下するのを抑制できる。 When the content of the fluorine-based additive in the fluororesin dispersion is 0.1% by mass or more, the surface of the fluororesin fine particles can be sufficiently wetted with the solvent. Further, by setting the content to 50% by mass or less, it is possible to suppress the foaming of the dispersion from becoming strong and the efficiency of dispersion from decreasing.
 フッ素樹脂微粒子分散体において、本発明の効果を損なわない範囲で、上記フッ素系添加剤と組み合わせて、他の界面活性剤を用いてもよい。他の界面活性剤としては、特に制限されず、ノニオン系、アニオン系、カチオン系等の界面活性剤(詳しくは後述する。)を用いることができる。 In the fluororesin fine particle dispersion, other surfactants may be used in combination with the above-mentioned fluororesin additives to the extent that the effects of the present invention are not impaired. Other surfactants are not particularly limited, and nonionic, anionic, cationic, and other surfactants (details will be described later) can be used.
 フッ素樹脂微粒子分散体に用いられる溶媒としては、例えば、アセトン、メチルエチルケトン、ヘキサン、ヘプタン、オクタン、2-ヘプタノン、シクロヘプタノン、シクロヘキサノン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、メチル-n-ペンチルケトン、メチルイソブチルケトン、メチルイソペンチルケトン、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、エチレングリコールモノアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノアセテート、ジエチレングリコールジエチルエーテル、プロピレングリコールモノアセテート、ジプロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、シクロヘキシルアセテート、3-エトキシプロピオン酸エチル、ジオキサン、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、ベンゼン、エチルベンゼン、ジエチルベンゼン、ペンチルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン、メタノール、エタノール、イソプロパノール、ブタノール、メチルモノグリシジルエーテル、エチルモノグリシジルエーテル、ブチルモノグリシジルエーテル、フェニルモノグリシジルエーテル、メチルジグリシジルエーテル、エチルジグリシジルエーテル、ブチルジグリシジルエーテル、フェニルジグリシジルエーテル、メチルフェノールモノグリシジルエーテル、エチルフェノールモノグリシジルエーテル、ブチルフェノールモノグリシジルエーテル、ミネラルスピリット、2-ヒドロキシエチルアクリレート、テトラヒドロフルフリルアクリレート、4-ビニルピリジン、2-エチルヘキシルアクリレート、2-ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、グリシジルメタクリレート、ネオペンチルグリコールジアクリレート、ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレート、メタクリレート、メチルメタクリレート、スチレン、パーフルオロカーボン、ハイドロフルオロエーテル、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、パーフルオロポリエーテル、ジメチルイミダゾリン、テトラヒドロフラン、ピリジン、フォルムアミド、アセトアニリド、ジオキソラン、o-クレゾール、m-クレゾール、p-クレゾール、フェノール、N-メチル-2-ピロリドン,N-アセチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルスルホン、ジエチルスルホン、γ-ブチロラクトン、スルホラン、ハロゲン化フェノール類、各種シリコーンオイル等が挙げられる。
 これらは、一種単独で用いても、二種以上を併用してもよい。
Examples of the solvent used in the fluororesin fine particle dispersion include acetone, methyl ethyl ketone, hexane, heptane, octane, 2-heptanone, cycloheptanone, cyclohexanone, cyclohexane, methylcyclohexane, ethylcyclohexane, methyl-n-pentylketone, and methyl. Isobutyl ketone, methyl isopentyl ketone, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, ethylene glycol monoacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoacetate, diethylene glycol diethyl ether, propylene glycol monoacetate , dipropylene glycol monoacetate, propylene glycol diacetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, cyclohexyl acetate, ethyl 3-ethoxypropionate, dioxane, methyl lactate, ethyl lactate, methyl acetate , ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, anisole, ethyl benzyl ether, cresyl methyl ether, diphenyl ether, dibenzyl ether, phenethol, butylphenyl ether, benzene, Ethylbenzene, diethylbenzene, pentylbenzene, isopropylbenzene, toluene, xylene, cymene, mesitylene, methanol, ethanol, isopropanol, butanol, methyl monoglycidyl ether, ethyl monoglycidyl ether, butyl monoglycidyl ether, phenyl monoglycidyl ether, methyl diglycidyl ether , ethyl diglycidyl ether, butyl diglycidyl ether, phenyl diglycidyl ether, methylphenol monoglycidyl ether, ethylphenol monoglycidyl ether, butylphenol monoglycidyl ether, mineral spirit, 2-hydroxyethyl acrylate, tetrahydrofurfuryl acrylate, 4-vinyl Pyridine, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, glycidyl methacrylate, neopentyl glycol diacrylate, hexanediol diacrylate, trimethylolpropane triacrylate, methacrylate, methyl methacrylate, styrene, perfluorocarbon, hydrofluoroether , hydrochlorofluorocarbon, hydrofluorocarbon, perfluoropolyether, dimethylimidazoline, tetrahydrofuran, pyridine, formamide, acetanilide, dioxolane, o-cresol, m-cresol, p-cresol, phenol, N-methyl-2-pyrrolidone, N -Acetyl-2-pyrrolidone, N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, N,N-diethylacetamide, 1,3-dimethyl-2-imidazolidinone, dimethylsulfoxide, Examples include diethyl sulfoxide, dimethyl sulfone, diethyl sulfone, γ-butyrolactone, sulfolane, halogenated phenols, and various silicone oils.
These may be used alone or in combination of two or more.
 中でも、フォルムアミド、アセトアニリド、ジオキソラン、o-クレゾール、m-クレゾール、p-クレゾール、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、スルホラン、ハロゲン化フェノール類、キシレン、アセトンであることが好ましい。 Among them, formamide, acetanilide, dioxolane, o-cresol, m-cresol, p-cresol, N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide , dimethyl sulfoxide, γ-butyrolactone, sulfolane, halogenated phenols, xylene, and acetone.
 なお、溶媒の極性によっては水との相溶性が高いものが考えられるが、水分量が多すぎるとフッ素樹脂微粒子の溶媒中への分散性を阻害し、粘度上昇や粒子同士の凝集を引き起こす可能性がある。 Depending on the polarity of the solvent, it may be highly compatible with water, but if the water content is too large, it may inhibit the dispersibility of the fluororesin fine particles in the solvent, causing increased viscosity and aggregation of particles. There is sex.
 そのため、溶媒における、カールフィッシャー法による水分量が、0~5000質量ppmの範囲内であることが好ましい。カールフィッシャー法による水分量の測定は、JIS K 0068:2001に準拠するものであり、例えば、カールフィッシャー水分計「MCU-610」(京都電子工業社製)により測定できる。 Therefore, it is preferable that the water content of the solvent as determined by Karl Fischer method is within the range of 0 to 5000 ppm by mass. The moisture content is measured by the Karl Fischer method in accordance with JIS K 0068:2001, and can be measured using, for example, a Karl Fischer moisture meter "MCU-610" (manufactured by Kyoto Denshi Kogyo Co., Ltd.).
 溶媒における水分量が上記範囲内であることにより、更に微粒子径で低粘度、保存安定性に優れたフッ素樹脂微粒子分散体とすることができる。溶媒における水分量は、3000質量ppm以下であることが好ましく、2500質量ppm以下であることがより好ましく、2000質量ppm以下であることが更に好ましい。
 なお、溶媒における水分量の調整は、一般的に用いられている有機溶媒の脱水方法を用いることができ、例えば、モレキュラーシーブス等を用いることができる。
When the water content in the solvent is within the above range, it is possible to obtain a fluororesin fine particle dispersion having a finer particle size, lower viscosity, and excellent storage stability. The water content in the solvent is preferably 3000 mass ppm or less, more preferably 2500 mass ppm or less, and even more preferably 2000 mass ppm or less.
Note that the water content in the solvent can be adjusted by using a commonly used method for dehydrating organic solvents, for example, using molecular sieves or the like.
 溶媒には、消泡剤を更に含有させることができる。フッ素樹脂微粒子分散体に対するフッ素樹脂微粒子の含有量が比較的多い、又はフッ素樹脂微粒子に対するフッ素系添加剤の含有量が比較的多い場合には、消泡剤を用いることにより、分散体の泡立ちを抑制できる。 The solvent can further contain an antifoaming agent. When the content of fluororesin fine particles in the fluororesin fine particle dispersion is relatively high, or when the content of fluorine-based additives in the fluororesin fine particles is relatively high, foaming of the dispersion can be suppressed by using an antifoaming agent. It can be suppressed.
 消泡剤としては、シリコーン系のエマルジョン型、自己乳化型、オイル型、オイルコンパウンド型、溶液型、粉末型、固形型等が挙げられる。消泡剤は、溶媒とフッ素系添加剤との界面よりも、溶媒と空気との界面に存在させることが好ましく、親水性や水溶性を示す消泡剤であることが好ましい。
 消泡剤の含有量は、フッ素樹脂微粒子の含有量により適宜選択されるが、フッ素樹脂微粒子分散体の全質量に対して、1質量%以下であることが好ましい。
Examples of antifoaming agents include silicone emulsion type, self-emulsifying type, oil type, oil compound type, solution type, powder type, and solid type. The antifoaming agent is preferably present at the interface between the solvent and air rather than at the interface between the solvent and the fluorine-based additive, and is preferably an antifoaming agent that exhibits hydrophilicity or water solubility.
The content of the antifoaming agent is appropriately selected depending on the content of the fluororesin fine particles, but is preferably 1% by mass or less based on the total mass of the fluororesin fine particle dispersion.
 フッ素樹脂微粒子分散体中におけるフッ素樹脂微粒子の平均粒子径は、1μm以下であることが好ましい。なお、ここでの平均粒子径は、レーザー回折・散乱法又は動的光散乱法により測定される平均粒子径である。 The average particle diameter of the fluororesin fine particles in the fluororesin fine particle dispersion is preferably 1 μm or less. In addition, the average particle diameter here is an average particle diameter measured by a laser diffraction/scattering method or a dynamic light scattering method.
 平均一次粒子径が、1μm以下のフッ素樹脂微粒子を用いた場合であっても、分散体中においては、一次粒子が凝集して二次粒子を形成し、二次粒子の粒子径が、1μm超となる場合がある。分散体中において、一次粒子だけでなく、二次粒子においても、粒子径を1μm以下とすることにより、低粘度で、長期保存においても安定性を有する分散体とすることができる。 Even when using fluororesin fine particles with an average primary particle size of 1 μm or less, the primary particles aggregate to form secondary particles in the dispersion, and the particle size of the secondary particles exceeds 1 μm. In some cases, In the dispersion, not only the primary particles but also the secondary particles have a particle diameter of 1 μm or less, thereby making it possible to obtain a dispersion with low viscosity and stability even during long-term storage.
 なお、分散体中における一次粒子又は二次粒子の粒子径を、1μm以下に分散する方法としては、例えば、超音波分散機、3本ロール、湿式ボールミル、ビーズミル、湿式ジェットミル、高圧ホモジナイザー等を用いて分散する方法が挙げられる。 In addition, as a method for dispersing the particle size of the primary particles or secondary particles in the dispersion to 1 μm or less, for example, an ultrasonic dispersion machine, a three-roll mill, a wet ball mill, a bead mill, a wet jet mill, a high-pressure homogenizer, etc. can be used. An example is a method of dispersing using
 フッ素樹脂微粒子分散体は、カールフィッシャー法による水分量が、0~5000質量ppmの範囲内であることが好ましい。上記溶媒に含まれる水分量の他に、フッ素樹脂微粒子、フッ素系添加剤等の材料自体に含まれる水分や、フッ素樹脂微粒子を溶媒中に分散する製造工程において混入する水分等が考えられるが、最終的に、分散体における水分量を、5000質量ppm以下にすることにより、保存安定性を向上させることができる。
 分散体における水分量は、3000質量ppm以下であることが好ましく、2500質量ppm以下であることがより好ましく、2000質量ppm以下であることが更に好ましい。
The fluororesin fine particle dispersion preferably has a moisture content in the range of 0 to 5000 ppm by mass as measured by Karl Fischer method. In addition to the amount of water contained in the solvent, water contained in the materials themselves such as fluororesin particles and fluorocarbon additives, and moisture mixed in during the manufacturing process of dispersing fluororesin particles in the solvent can be considered. Finally, by controlling the water content in the dispersion to 5000 mass ppm or less, storage stability can be improved.
The water content in the dispersion is preferably 3000 mass ppm or less, more preferably 2500 mass ppm or less, and even more preferably 2000 mass ppm or less.
 フッ素樹脂微粒子、フッ素系添加剤等の材料における水分量の調整は、一般的に用いられている脱水方法を用いることができ、例えば、モレキュラーシーブス等を用いることができる。また、加熱や減圧による脱水を行ってもよい。
 さらに、フッ素樹脂微粒子分散体を調製した後に、モレキュラーシーブス、膜分離法等を用いて水分を除去してもよい。上記方法以外であっても、分散体における水分量を下げることができるものであれば、特に制限されず、用いることができる。
To adjust the moisture content in materials such as fluororesin fine particles and fluorine additives, commonly used dehydration methods can be used, for example, molecular sieves can be used. Further, dehydration may be performed by heating or reducing pressure.
Furthermore, after preparing the fluororesin fine particle dispersion, water may be removed using molecular sieves, membrane separation, or the like. Methods other than those described above can be used without particular limitation as long as they can reduce the amount of water in the dispersion.
 (2.2)物性
 (2.2.1)誘電正接
 本発明に係るフィラーは、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、0.0150以下である。
(2.2) Physical properties (2.2.1) Dielectric loss tangent The filler according to the present invention has a dielectric loss tangent of 0.0150 or less at a frequency of 28 GHz in an environment of 22° C. and 60% RH.
 22℃・60%RH環境下での周波数28GHzにおける誘電正接は、誘電損失を低減させる観点から、低いほど好ましく、具体的には、0.0140以下であることがより好ましく、0.0100以下であることが更に好ましい。 The dielectric loss tangent at a frequency of 28 GHz in an environment of 22° C. and 60% RH is preferably as low as possible from the viewpoint of reducing dielectric loss. Specifically, it is more preferably 0.0140 or less, and 0.0100 or less. It is even more preferable that there be.
 誘電正接は、上記フィラーにおける、単量体の分子構造、重合比率等を適宜選択することにより、所望の数値に調整することができる。 The dielectric loss tangent can be adjusted to a desired value by appropriately selecting the molecular structure, polymerization ratio, etc. of the monomer in the filler.
 (誘電正接の測定方法)
 本発明に係るフィラーの誘電正接は、JIS R1641:2007に準拠して測定できる。
 フィラー15gを、アルミナ坩堝に充填し、電気炉内温度1000℃にて4時間加熱処理をする。加熱処理後、炉内で200℃まで冷却し、さらに、デシケーター内(23℃、10%RH)で、室温(25℃)まで冷却する。その後、円筒空洞共振器法により、周波数28GHzでの誘電正接を測定する。なお、試料を室温まで冷却した後、測定評価を行うまでの間、アルミパック(PET/AL/PEラミネート袋、株式会社生産日本社製)のスタンドパック内で保存する。
(Measurement method of dielectric loss tangent)
The dielectric loss tangent of the filler according to the present invention can be measured in accordance with JIS R1641:2007.
15 g of filler is filled into an alumina crucible and heat treated at an electric furnace temperature of 1000° C. for 4 hours. After the heat treatment, it is cooled to 200° C. in a furnace, and further cooled to room temperature (25° C.) in a desiccator (23° C., 10% RH). Thereafter, the dielectric loss tangent at a frequency of 28 GHz is measured by the cylindrical cavity method. After the sample is cooled to room temperature, it is stored in a stand pack of an aluminum pack (PET/AL/PE laminate bag, manufactured by Seisaku Nippon Sha Co., Ltd.) until measurement and evaluation are performed.
 (2.2.2)ガラス転移温度
 本発明に係るフィラーは、ガラス転移温度が、260℃以上であることが好ましい。260℃以上であることにより、耐熱性を有するフィルムとすることができ、情報量の増加に伴い発熱量が増加すると考えられる5G対応通信機器において用いることができる。
(2.2.2) Glass transition temperature The filler according to the present invention preferably has a glass transition temperature of 260°C or higher. By being 260° C. or higher, the film can be made heat resistant and can be used in 5G-compatible communication equipment, which is expected to generate more heat as the amount of information increases.
 ガラス転移温度については、フィラーを併用する場合、各フィラーについて、260℃以上であることが好ましく、上記フィラーにおける、単量体の分子構造、重合方法、重合比率等を適宜選択することにより、所望の数値に調整することができる。 Regarding the glass transition temperature, when fillers are used in combination, it is preferable that each filler has a glass transition temperature of 260°C or higher, and the glass transition temperature can be adjusted to a desired temperature by appropriately selecting the molecular structure of the monomer, polymerization method, polymerization ratio, etc. in the filler. can be adjusted to the value of
 (ガラス転移温度の測定方法)
 示差走査熱量計「Q-100」(ティー・エイ・インスツルメント・ジャパン社製)を用いて、0.01~0.02gのフィラーの試料をアルミパンに計量し、200℃まで昇温し、その温度から降温速度10℃/minで0℃まで冷却する。次に、試料を昇温速度10℃/minで昇温し、吸熱ピークを測定する。吸熱の最高ピーク温度以下のベースラインの延長線とピークの立ち上がり部分からピークの頂点までの最大傾斜を示す接線との交点の温度をガラス転移温度とする。
(Measurement method of glass transition temperature)
Using a differential scanning calorimeter "Q-100" (manufactured by T.A. Instruments Japan), 0.01 to 0.02 g of filler sample was weighed into an aluminum pan and heated to 200°C. , and cooled from that temperature to 0°C at a cooling rate of 10°C/min. Next, the sample is heated at a heating rate of 10° C./min, and the endothermic peak is measured. The temperature at the intersection of the extension line of the baseline below the highest endothermic peak temperature and the tangent line showing the maximum slope from the rising part of the peak to the top of the peak is defined as the glass transition temperature.
 (2.3)形状
 本発明に係るフィラーは、本発明に係る樹脂と均一に混合する、すなわち、分散性の観点から、微粒子であることが好ましい。
(2.3) Shape The filler according to the present invention is preferably fine particles from the viewpoint of uniform mixing with the resin according to the present invention, that is, from the viewpoint of dispersibility.
 フィラーの形状は、特に制限されず、例えば、板状、球状、立方体に代表される多面体状等であってよい。なお、「板状」とは、フィラーの厚さが、平面部分の長径又は短径より十分に小さいもの、好ましくは1/2以下であるもののことをいい、更に細分化すると、例えば、扁平状、平板状、薄片状、鱗片状等が挙げられる。 The shape of the filler is not particularly limited, and may be, for example, plate-shaped, spherical, polyhedral-shaped such as a cube, etc. In addition, "plate-like" refers to one in which the thickness of the filler is sufficiently smaller than the major axis or the minor axis of the flat part, preferably 1/2 or less, and further subdivided into, for example, flat-shaped , plate-like, flaky-like, scale-like, etc.
 (3)界面活性剤
 本発明のフィルムは、更に界面活性剤を含有することが好ましい。
 界面活性剤を含有することにより、フィルムにおいて、フィラーをより均一に分散させることができる、すなわち、分散性を向上させることができる。
(3) Surfactant The film of the present invention preferably further contains a surfactant.
By containing the surfactant, the filler can be more uniformly dispersed in the film, that is, the dispersibility can be improved.
 界面活性剤としては、上記フィラーの分散性を向上させるものであれば、特に制限されず、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤等が挙げられる。また、ポリビニルアルコールやその誘導体のようなポリマー型の界面活性剤でもよい。中でも、フィルムの誘電正接を低減させる観点から、ノニオン性界面活性剤であることが好ましい。
 界面活性剤は、一種単独で用いても、二種以上を併用してもよい。
The surfactant is not particularly limited as long as it improves the dispersibility of the filler, and examples thereof include nonionic surfactants, anionic surfactants, cationic surfactants, and the like. Further, a polymer type surfactant such as polyvinyl alcohol or a derivative thereof may be used. Among these, nonionic surfactants are preferred from the viewpoint of reducing the dielectric loss tangent of the film.
The surfactants may be used alone or in combination of two or more.
 上記フィラーとしてフッ素樹脂微粒子を用いる場合には、界面活性剤は、少なくとも含フッ素基及び親水基を有するフッ素系界面活性剤であることが好ましい。フッ素系界面活性剤であることにより、分散媒である樹脂の表面張力を低下させ、フッ素樹脂微粒子の表面に対する濡れ性を向上させてフッ素樹脂微粒子の分散性を向上させる。また、含フッ素基がフッ素樹脂微粒子の表面に吸着し、さらに、親水基が分散媒となる樹脂中に伸長し、この親水基の立体障害によりフッ素樹脂微粒子の凝集を抑制し、分散安定性が更に向上する。 When using fluororesin fine particles as the filler, the surfactant is preferably a fluorine-based surfactant having at least a fluorine-containing group and a hydrophilic group. By being a fluorine-based surfactant, it lowers the surface tension of the resin as a dispersion medium, improves the wettability of the surface of the fluororesin fine particles, and improves the dispersibility of the fluororesin fine particles. In addition, the fluorine-containing groups are adsorbed on the surface of the fluororesin fine particles, and the hydrophilic groups extend into the resin that serves as the dispersion medium, and the steric hindrance of these hydrophilic groups suppresses aggregation of the fluororesin fine particles, improving dispersion stability. Further improvement.
 含フッ素基としては、例えば、パーフルオロアルキル基、パーフルオロアルケニル基等が挙げられる。
 また、親水基としては、例えば、エチレンオキサイド、プロピレンキサイド、アミノ基、ケトン基、カルボキシル基、スルホン基等が挙げられる。
 これらは、一種単独で用いても、二種以上を併用してもよい。
Examples of the fluorine-containing group include a perfluoroalkyl group and a perfluoroalkenyl group.
Examples of the hydrophilic group include ethylene oxide, propylene oxide, amino group, ketone group, carboxyl group, and sulfone group.
These may be used alone or in combination of two or more.
 フッ素系界面活性剤は、疎水基を更に有していてもよい。疎水基としては、例えば、アルキル基、フェニル基、シロキサン基等が挙げられる。
 これらは、一種単独で用いても、二種以上を併用してもよい。
The fluorosurfactant may further have a hydrophobic group. Examples of the hydrophobic group include an alkyl group, a phenyl group, and a siloxane group.
These may be used alone or in combination of two or more.
 フッ素系界面活性剤の市販品としては、例えば、「フタージェント(登録商標)シリーズ」(株式会社ネオス製)、「サーフロン(登録商標)シリーズ」(AGCセイミケミカル株式会社製)、「メガファック(登録商標)シリーズ」(DIC株式会社製)、「ユニダイン(登録商標)シリーズ」(ダイキン工業株式会社製)等が挙げられる。 Commercially available fluorosurfactants include, for example, the "Ftergent (registered trademark) series" (manufactured by Neos Co., Ltd.), the "Surflon (registered trademark) series" (manufactured by AGC Seimi Chemical Co., Ltd.), and the "Megafac (trademark) series" (manufactured by AGC Seimi Chemical Co., Ltd.). (registered trademark) series" (manufactured by DIC Corporation), "Unidyne (registered trademark) series" (manufactured by Daikin Industries, Ltd.), and the like.
 フッ素系界面活性剤は、用いる樹脂及びフィラーとしてのフッ素樹脂微粒子の種類によって、適宜最適なものを選択することが好ましく、一種単独で用いても、二種以上を併用してもよい。また、フッ素系界面活性剤以外の界面活性剤を組み合わせて用いてもよい。 It is preferable to select the most suitable fluorosurfactant depending on the resin used and the type of fluororesin fine particles used as a filler, and one type may be used alone or two or more types may be used in combination. Further, surfactants other than fluorosurfactants may be used in combination.
 また、上記フィラーとしてフッ素樹脂微粒子以外のものを用いる場合、界面活性剤としては、ポリオキシエチレンラウリルエーテル等を用いることができ、市販品としては、例えば、「エマルゲン(登録商標)シリーズ」(花王株式会社製)等が挙げられる。 In addition, when using something other than fluororesin fine particles as the filler, polyoxyethylene lauryl ether, etc. can be used as the surfactant, and commercially available products include, for example, "Emulgen (registered trademark) series" (Kao Co., Ltd.), etc.
 界面活性剤の含有量は、フィルムの全質量に対して、0.10~1.00質量%の範囲内であることが好ましく、0.20~0.50質量%の範囲内であることがより好ましい。 The content of the surfactant is preferably within the range of 0.10 to 1.00% by mass, and preferably within the range of 0.20 to 0.50% by mass, based on the total mass of the film. More preferred.
 界面活性剤の含有量が、0.10質量%以上であることにより、フィラーの分散をより均一化することができ(分散性の向上)、1.00質量%以下であることにより、フィルムの表面に当該界面活性剤がブリードアウトするのを抑制し、接着性を良好にすることができる。 When the content of the surfactant is 0.10% by mass or more, the dispersion of the filler can be made more uniform (improvement of dispersibility), and when the content is 1.00% by mass or less, the film It is possible to suppress the surfactant from bleeding out onto the surface and improve adhesion.
 (4)その他
 本発明のフィルムは、さらに、必要に応じて任意成分として、発明の効果を損なわない範囲で、無機微粒子、有機微粒子、可塑剤、硬化促進剤、カップリング剤、顔料、難燃剤などを適宜含有することができる。
(4) Others The film of the present invention may further contain inorganic fine particles, organic fine particles, plasticizers, curing accelerators, coupling agents, pigments, and flame retardants as optional ingredients as necessary to the extent that the effects of the invention are not impaired. etc. may be contained as appropriate.
 無機微粒子としては、例えば、酸化アルミニウム、酸化ベリリウム、酸化ニオブ、酸化チタン、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム、フッ化マグネシウム、ケイフッ化カリウム、ホスフィン酸金属塩等が挙げられる。
 これらは、一種単独で用いても、二種以上を併用してもよい。
Examples of inorganic fine particles include aluminum oxide, beryllium oxide, niobium oxide, titanium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, magnesium fluoride, potassium fluorosilicate, phosphinate metal salts, etc. Can be mentioned.
These may be used alone or in combination of two or more.
 3.フィルムの物性
 (1)表面自由エネルギー
 本発明のフィルムは、相対する二つの面において、表面自由エネルギーをそれぞれA[mJ/m]及びB[mJ/m]としたとき、下記式を満たす。
 (式1) A≦B
 (式2) 1≦B/A<1.30
3. Physical properties of the film (1) Surface free energy The film of the present invention satisfies the following formula when the surface free energies of the two opposing surfaces are A [mJ/m 2 ] and B [mJ/m 2 ], respectively. .
(Formula 1) A≦B
(Formula 2) 1≦B/A<1.30
 「表面自由エネルギー」とは、表面における単位面積当たりの自由エネルギーのことをいい、すなわち、表面が内部(バルク)に比べて過剰に有するエネルギーのことをいう。なお、表面自由エネルギーが大きいほど、気体や微粒子は表面に吸着されやすく、液体は表面において濡れやすい。 "Surface free energy" refers to the free energy per unit area on the surface, that is, the excess energy that the surface has compared to the interior (bulk). Note that the larger the surface free energy, the more easily gases and fine particles are adsorbed on the surface, and the easier it is for liquids to wet the surface.
 本発明のフィルムの「相対する二つの面」とは、有する面積の最も広い二つの面のことをいい、この二つの面は平行の関係にある。 The "two opposing surfaces" of the film of the present invention refer to the two surfaces with the largest area, and these two surfaces are in a parallel relationship.
 上記(式1)は、二つの面において測定される表面自由エネルギーのうち、相対的に低い方を、A[mJ/m]とし、相対的に高い方を、B[mJ/m]とすることを意味する。
 また、上記(式2)を満たす、すなわち、相対する二つの面において測定される表面自由エネルギーの比が、特定の範囲内であることにより、すなわち、相対する二つの面において測定される表面自由エネルギーの差異が、比較的小さいことにより、銅箔層との接着性に優れると考えられる。
In the above (Formula 1), of the surface free energies measured on two surfaces, the relatively lower one is A [mJ/m 2 ], and the relatively higher one is B [mJ/m 2 ]. means to do so.
In addition, if the above (Equation 2) is satisfied, that is, the ratio of the surface free energy measured on the two opposing surfaces is within a specific range, that is, the surface free energy measured on the two opposing surfaces It is thought that because the difference in energy is relatively small, the adhesion to the copper foil layer is excellent.
 本発明のフィルムは、銅箔層等の金属板に貼合して、金属張積層板として用いることが好ましい。この金属張積層板については、詳しくは後述するが、本発明のフィルムと金属板とを接着層を介して貼合して得られる。
 また、多層で構成される回路基板において、本発明のフィルムを用いる場合には、本発明のフィルムの二つの面の両面が、接着層を介して、他の材料と貼合されている。
The film of the present invention is preferably laminated to a metal plate such as a copper foil layer and used as a metal-clad laminate. This metal-clad laminate, which will be described in detail later, is obtained by laminating the film of the present invention and a metal plate via an adhesive layer.
Furthermore, when the film of the present invention is used in a multilayer circuit board, two surfaces of the film of the present invention are bonded to other materials via an adhesive layer.
 前述のとおり、表面自由エネルギーは、気体や微粒子の表面への吸着しやすさ、液体の表面への濡れやすさを表しており、フィルムの相対する二つの面において測定される表面自由エネルギーに大きな差異がある場合には、接着性の観点から、片面の接着層の形成に適した材料が、もう片面の接着層の形成には適さない場合がある。詳しくは、表面自由エネルギーに大きな差異がある場合、フィルムの両面において同一の材料で接着層を形成すると、硬化による収縮(硬化収縮)の程度に差異が生じ、フィルムと貼合した他の材料とが剥離する場合がある。 As mentioned above, surface free energy represents the ease with which gases and fine particles adsorb onto the surface, and the ease with which liquids wet the surface. If there is a difference, a material suitable for forming the adhesive layer on one side may not be suitable for forming the adhesive layer on the other side from the viewpoint of adhesion. Specifically, if there is a large difference in surface free energy, if an adhesive layer is formed using the same material on both sides of the film, the degree of shrinkage due to curing (curing shrinkage) will differ, causing a difference between the film and the other material bonded to it. may peel off.
 しかし、本発明のフィルムにおいては、上記表面自由エネルギーの比が、特定の範囲内であることにより、すなわち、二つの面において測定される表面自由エネルギーの差異が、比較的小さいことにより、フィルムの両面の接着層の形成に同一の材料を用いても、フィルムにおける硬化収縮が同程度であるため剥離しづらく、接着性に優れると考えられる。
 また、接着層の形成に、同一の材料を用いることができるため、生産性が向上すると考えられる。
However, in the film of the present invention, the ratio of the surface free energies is within a specific range, that is, the difference in the surface free energies measured on the two surfaces is relatively small. Even if the same material is used to form the adhesive layers on both sides, the curing shrinkage of the film is the same, so it is difficult to peel off and it is considered that the adhesive layer is excellent.
Furthermore, since the same material can be used to form the adhesive layer, productivity is thought to be improved.
 なお、本発明のフィルムは、フィルムの両面に銅箔層を接着する場合に、その効果が顕著であるが、フィルムの片面のみに銅箔層を接着する場合にも、十分な効果を示す。 Note that the film of the present invention has a remarkable effect when the copper foil layer is adhered to both sides of the film, but it also shows sufficient effect when the copper foil layer is adhered to only one side of the film.
 また、後述する金属張積層板において、接着層は必須ではなく、例えば、本発明のフィルムに直接銅を蒸着させ、銅箔層を形成してもよく、このようにして形成される銅箔層においても、フィルムとの密着性が優れると考えられる。 In addition, in the metal-clad laminate described below, the adhesive layer is not essential, and for example, copper may be deposited directly on the film of the present invention to form a copper foil layer, and the copper foil layer formed in this way Also, it is considered that the adhesion with the film is excellent.
 本発明のフィルムの、相対する二つの面において測定される表面自由エネルギーは、共に、25.00~75.00mJ/mの範囲内であることが好ましい。表面自由エネルギーが共に25.00mJ/m以上であることにより、銅箔層との接着性により優れ、共に75.00mJ/m以下であることにより、誘電損失をより低減できる。すなわち、フィルムの誘電損失の低減及びフィルムと銅箔層との接着性を両立できる。
 また、相対する二つの面において測定される表面自由エネルギーは、共に、35.00~65.00mJ/mの範囲内であることがより好ましい。
The surface free energies of the film of the present invention measured on two opposing surfaces are preferably both within the range of 25.00 to 75.00 mJ/m 2 . When both surface free energies are 25.00 mJ/m 2 or more, the adhesion with the copper foil layer is excellent, and when both are 75.00 mJ/m 2 or less, dielectric loss can be further reduced. That is, it is possible to achieve both reduction in dielectric loss of the film and adhesion between the film and the copper foil layer.
Further, it is more preferable that the surface free energies measured on the two opposing surfaces are both within the range of 35.00 to 65.00 mJ/m 2 .
 本発明のフィルムの、相対する二つの面において測定される表面自由エネルギーは、フィルムに用いられる材料の種類、含有量等を適宜選択することにより、所望の数値に調整することができる。また、後述するフィルムの製造方法により、フィルムを作製(製造)することにより、所望の数値に調整することができる。 The surface free energy measured on two opposing surfaces of the film of the present invention can be adjusted to a desired value by appropriately selecting the type, content, etc. of the material used in the film. Further, by producing (manufacturing) a film using the film manufacturing method described below, it is possible to adjust the value to a desired value.
 (表面自由エネルギーの測定方法)
 以下、固体表面に既知の液体を滴下し、接触角を測定することにより、固体の表面自由エネルギーを算出する方法について説明する。
(Method of measuring surface free energy)
Hereinafter, a method of calculating the surface free energy of a solid by dropping a known liquid onto the solid surface and measuring the contact angle will be described.
 図1に示す濡れの現象については、下記(式7)ヤング(Young)の式が成り立つ。
 (式7) γ=γ・cosθ+γSL (ヤングの式)
 ただし、各記号は、以下に表すとおりである。
 γ:固体の表面張力[N/m]
 γ:液体の表面張力[N/m]
 γSL:固体-液体間の界面張力[N/m]
 θ:液体の固体に対する接触角
Regarding the wetting phenomenon shown in FIG. 1, Young's equation (Equation 7) below holds true.
(Formula 7) γ S = γ L・cos θ+γ SL (Young's equation)
However, each symbol is as shown below.
γ S : Surface tension of solid [N/m]
γ L : Surface tension of liquid [N/m]
γ SL : Solid-liquid interfacial tension [N/m]
θ: contact angle of liquid to solid
 ここで、表面張力は、単位長さにはたらく張力(単位は、[N/m])と定義される。ただし、表面張力=力/長さ=(力×長さ)/(長さ×長さ)=エネルギー/面積、と表すことができ、固体の表面張力と固体の表面自由エネルギーは、単位は異なるもののその値は一致する。そのため、γを求めることにより、固体の表面自由エネルギーを求めることができる。
 なお、液体の表面張力と液体の表面自由エネルギー、及び固体-液体間の界面張力と固体-液体間の界面自由エネルギーについても、同様に考えることができる。
Here, the surface tension is defined as the tension acting on a unit length (unit: [N/m]). However, surface tension = force/length = (force x length)/(length x length) = energy/area, and the units of surface tension of a solid and surface free energy of a solid are different. The values of things match. Therefore, by determining γ S , the surface free energy of the solid can be determined.
Note that the surface tension of a liquid, the surface free energy of a liquid, and the interfacial tension between a solid and a liquid and the interfacial free energy between a solid and a liquid can also be considered in the same way.
 一方で、固体が液体で濡れている状態において、固体と液体をその界面で引き離すことを考える。
 固体-液体間の界面には、界面自由エネルギーγSLが存在する。また、この界面を引き離すのに必要なエネルギーを付着仕事WSLと表すと、図2に示すように、界面を引き離す前と後では、エネルギーの総和は等しいため、下記(式8)デュプレ(Dupre)の式が成り立つ。
 (式8) γ+γ=WSL+γSL (デュプレの式)
On the other hand, consider separating the solid and liquid at the interface when the solid is wet with a liquid.
An interfacial free energy γ SL exists at the solid-liquid interface. Furthermore, if the energy required to separate this interface is expressed as the adhesion work WSL , then as shown in Fig. 2, the sum of energy is equal before and after separating the interface, so the following (Equation 8) dupre (Dupre) ) holds true.
(Formula 8) γ S + γ L = W SL + γ SL (Dupré's equation)
 Youngの式とDupreの式より、下記(式9)を算出できる。
 (式9) WSL=γ(1+cosθ)
 したがって、表面自由エネルギーが既知である液体、すなわち、γが既知である液体を用いて、接触角θを測定することにより、付着仕事WSLを算出できる。
The following (Formula 9) can be calculated from Young's formula and Dupre's formula.
(Formula 9) W SLL (1+cosθ)
Therefore, the work of adhesion W SL can be calculated by measuring the contact angle θ using a liquid whose surface free energy is known, that is, a liquid whose γ L is known.
 付着仕事WSLの表し方については、いくつかの理論が存在し、本発明においては、北崎・畑の式を用いて、WSLを表す。 There are several theories on how to express the work of adhesion WSL , and in the present invention, WSL is expressed using the Kitazaki-Hata equation.
 北崎・畑によって提案された考え方では、表面自由エネルギーγは、分散成分γ、双極子成分γ及び水素結合成分γの三つの成分に分けられるとし、下記(式10)で表すことができる。
 (式10) γ=γ+γ+γ
 したがって、固体及び液体の表面自由エネルギーγ及びγは、下記(式11)及び(式12)で表すことができる。
 (式11) γ=γ +γ +γ
 (式12) γ=γ +γ +γ
According to the idea proposed by Kitazaki and Hata, the surface free energy γ is divided into three components: a dispersion component γ d , a dipole component γ p and a hydrogen bond component γ h , and can be expressed as the following (Equation 10). can.
(Formula 10) γ=γ d + γ p + γ h
Therefore, the surface free energies γ S and γ L of solids and liquids can be expressed by the following (Formula 11) and (Formula 12).
(Formula 11) γ S = γ S d + γ S p + γ S h
(Formula 12) γ L = γ L d + γ L p + γ L h
 また、北崎・畑によって提案された考え方では、付着仕事WSLは、下記(式13)で表すことができる。
 (式13) WSL=2×(γ ・γ 1/2+2×(γ ・γ 1/2+2×(γ ・γ 1/2
Further, according to the idea proposed by Kitazaki and Hata, the adhesion work WSL can be expressed by the following (Equation 13).
(Formula 13) W SL =2×(γ S d・γ L d ) 1/2 +2×(γ S p・γ L p ) 1/2 +2×(γ S h・γ L h ) 1/2
 上記(式9)と(式13)より、下記(式14)を算出できる。
 (式14) (γ ・γ 1/2+(γ ・γ 1/2+(γ ・γ 1/2=γ(1+cosθ)/2
From the above (Formula 9) and (Formula 13), the following (Formula 14) can be calculated.
(Formula 14) (γ S d・γ L d ) 1/2 + (γ S p・γ L p ) 1/2 + (γ S h・γ L h ) 1/2 = γ L (1+cosθ)/2
 表面自由エネルギーが既知である液体を用いて接触角θを測定し、固体の表面自由エネルギーにおける未知の成分(γ 、γ 、γ )による3元1次方程式を解き、(式11)に代入することにより、固体の表面自由エネルギーγを算出できる。 The contact angle θ is measured using a liquid whose surface free energy is known, and a three-dimensional linear equation with unknown components (γ S d , γ S p , γ S h ) in the surface free energy of the solid is solved, and ( By substituting into Equation 11), the surface free energy γ S of the solid can be calculated.
 具体的には、表面自由エネルギー及びその各成分(分散成分、双極子成分及び水素結合成分)の値が既知である液体として、水、ジヨードメタン及びヘキサデカンを用い、22℃・60%RH環境下で、接触角計「DropMasterDM501」(協和界面科学株式会社製)にて、本発明のフィルムにおける各液体の接触角を測定する。 Specifically, water, diiodomethane, and hexadecane were used as liquids whose surface free energy and the values of each component (dispersion component, dipole component, and hydrogen bond component) were known, and in an environment of 22°C and 60% RH. The contact angle of each liquid on the film of the present invention is measured using a contact angle meter "DropMaster DM501" (manufactured by Kyowa Interface Science Co., Ltd.).
 詳細な測定方法としては、フィルムのTD方向(製造されるフィルムにおける幅方向)において、フィルムの中央部、端部(両端からそれぞれ10cmの位置)、及び中央部と端部との中間点2点、の計5点で接触角を測定し、その算術平均値を接触角θの値とする。 The detailed measurement method includes two points in the TD direction of the film (the width direction of the film to be manufactured): the center of the film, the edges (positions 10 cm from both ends), and the midpoint between the center and the edges. The contact angle was measured at a total of five points, and the arithmetic mean value was taken as the value of the contact angle θ.
 (2)誘電正接
 本発明のフィルムは、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、0.0010~0.0150の範囲内であることが好ましい。
 本発明のフィルムとしては、誘電正接が低いほど(0に近い値であるほど)好ましい。ただし、0.0020以上であることにより、銅箔層との接着性が向上する。
(2) Dielectric loss tangent The film of the present invention preferably has a dielectric loss tangent in a range of 0.0010 to 0.0150 at a frequency of 28 GHz in an environment of 22° C. and 60% RH.
As for the film of the present invention, the lower the dielectric loss tangent (the closer the value is to 0), the more preferable it is. However, when it is 0.0020 or more, the adhesiveness with the copper foil layer is improved.
 22℃・60%RH環境下での周波数28GHzにおける誘電正接は、0.0010~0.0150の範囲内であることが好ましく、0.0010~0.0070の範囲内であることがより好ましい。 The dielectric loss tangent at a frequency of 28 GHz in an environment of 22° C. and 60% RH is preferably within the range of 0.0010 to 0.0150, more preferably within the range of 0.0010 to 0.0070.
 誘電正接は、フィルムに用いられる材料の種類、含有量等を適宜選択することにより、所望の数値に調整することができる。また、後述するフィルムの製造方法により、フィルムを作製(製造)することにより、所望の数値に調整することができる。 The dielectric loss tangent can be adjusted to a desired value by appropriately selecting the type, content, etc. of the material used for the film. Further, by producing (manufacturing) a film using the film manufacturing method described below, it is possible to adjust the value to a desired value.
 (誘電正接の測定方法)
 本発明のフィルムの誘電正接は、JIS R1641:2007に準拠して測定できる。
 本発明のフィルムについて、100mm×120mmサイズの試験片を作製し、測定前に、予め、温度22±1℃・湿度60±5%RH環境下で、90時間保存する。その後、円筒空洞共振器法により、周波数28GHzでの誘電正接を測定する。
(Measurement method of dielectric loss tangent)
The dielectric loss tangent of the film of the present invention can be measured in accordance with JIS R1641:2007.
Regarding the film of the present invention, a test piece with a size of 100 mm x 120 mm is prepared and stored for 90 hours in an environment with a temperature of 22±1° C. and a humidity of 60±5% RH before measurement. Thereafter, the dielectric loss tangent at a frequency of 28 GHz is measured by the cylindrical cavity method.
 (3)伝送損失
 本発明のフィルムは、23℃・65%RH環境下での周波数28GHzにおける伝送損失が、1.5dB/10mm以下であることが好ましく、0.5dB/10mm以下であることがより好ましい。伝送損失が、1.5dB/10mm以下であることにより、すなわち、回路基板上を流れる電気、光、音等の信号の劣化及び減衰が十分抑制されたフィルムであることにより、5G対応の通信機器においても、用いることができる。
(3) Transmission loss The transmission loss of the film of the present invention at a frequency of 28 GHz in an environment of 23° C. and 65% RH is preferably 1.5 dB/10 mm or less, and preferably 0.5 dB/10 mm or less. More preferred. Because the transmission loss is 1.5 dB/10 mm or less, in other words, the film sufficiently suppresses the deterioration and attenuation of electrical, light, sound, etc. signals flowing on the circuit board, making it suitable for 5G compatible communication equipment. It can also be used in
 (伝送損失の測定方法)
 フィルムの片面(二つの面における一方の面)と、接着シート等の接着成分と、厚さ2μmの銅板とを、接着シートが真ん中になるように積層し、例えば、熱プレスにて90℃、0.5MPa、0.5分の条件で熱圧着後、180℃、2.0MPa、5分、さらに、180℃、1時間のポストキュアの条件で、フィルム、接着シートの硬化物、銅板がこの順に積層されてなる積層体を得る。
(Method of measuring transmission loss)
One side of the film (one side of the two sides), an adhesive component such as an adhesive sheet, and a 2 μm thick copper plate are laminated with the adhesive sheet in the middle, and then heated at 90°C using a heat press, for example. After thermocompression bonding at 0.5 MPa for 0.5 minutes, the film, cured adhesive sheet, and copper plate were post-cured at 180°C, 2.0 MPa for 5 minutes, and then at 180°C for 1 hour. A laminate is obtained by sequentially laminating the layers.
 その後、特性インピーダンスが50Ωとなるよう銅箔層面に回路パターンとして配線幅140μm、長さ100mmのマイクロストリップラインを化学エッチング法により形成し、サンプルとする。当該サンプルを温度23℃・湿度65%RH環境下で24時間放置した直後に、ネットワークアナライザー「8722ES」(Agilent Technology株式会社製)、及びプローブ「ACP40-250」(カスケードマイクロテック株式会社製)を用いて、28GHzでの伝送損失(dB/10mm)を測定する。 Thereafter, a microstrip line with a wiring width of 140 μm and a length of 100 mm was formed as a circuit pattern on the surface of the copper foil layer by chemical etching so that the characteristic impedance was 50Ω, and this was used as a sample. Immediately after leaving the sample in an environment with a temperature of 23°C and a humidity of 65% RH for 24 hours, a network analyzer "8722ES" (manufactured by Agilent Technology Co., Ltd.) and a probe "ACP40-250" (manufactured by Cascade Microtech Co., Ltd.) were installed. The transmission loss (dB/10mm) at 28GHz is measured using
 (4)残留溶媒
 本発明のフィルムは、残留溶媒量が、200~3000質量ppmの範囲内であることが好ましい。
 本発明のフィルムの製造方法は、特に制限されないが、後述するフィルムの製造方法により、フィルムを作製(製造)する場合には、残留溶媒量が、上記範囲内であることが好ましい。上記範囲内であることにより、性能安定性及び生産効率を確保することができる。なお、ここでの、「性能」には、本発明の効果であるフィルムの誘電損失を低減し、かつフィルムと銅箔層との接着性が向上する点に加えて、フィルムとしての性能も含まれる。
(4) Residual Solvent The amount of residual solvent in the film of the present invention is preferably within the range of 200 to 3000 ppm by mass.
Although the method for producing the film of the present invention is not particularly limited, when producing (manufacturing) the film by the method for producing a film described below, it is preferable that the amount of residual solvent is within the above range. By being within the above range, performance stability and production efficiency can be ensured. Note that "performance" here includes the performance of the film in addition to the effects of the present invention, which reduce the dielectric loss of the film and improve the adhesion between the film and the copper foil layer. It will be done.
 残留溶媒量は、400~2000質量ppmの範囲内であることがより好ましく、500~1500質量ppmの範囲内であることが更に好ましい。溶媒種にもよるが電気特性への影響は残留溶媒量が少ないほど低減される一方、乾燥負荷が高すぎると生産性が悪くなることがあるため、性能と生産性のバランスを見ながら選定すればよい。 The amount of residual solvent is more preferably within the range of 400 to 2000 mass ppm, and even more preferably within the range of 500 to 1500 mass ppm. Although it depends on the type of solvent, the effect on electrical properties will be reduced as the amount of residual solvent is reduced, but if the drying load is too high, productivity may deteriorate, so select a solvent while looking at the balance between performance and productivity. Bye.
 残留溶媒量は、フィルムの製造方法における乾燥条件等を適宜選択することにより、所望の数値に調整することができる。 The amount of residual solvent can be adjusted to a desired value by appropriately selecting the drying conditions and the like in the film manufacturing method.
 (残留溶媒量の測定方法)
 本発明のフィルムにおける残留溶媒量の定性及び定量は、ヘッドスペースガスクロマトグラフィーにより行うことができる。ヘッドスペースガスクロマトグラフィーでは、試料を容器に封入して加熱し、容器中に揮発成分が充満した状態で速やかに容器中のガスをガスクロマトグラフに注入し、質量分析を行って化合物の同定を行いながら揮発成分の定量を行う。揮発成分の定量は、濃度が既知の試料を用いて検量線を予め作成しておき、測定で得られた揮発成分のピーク面積と検量線とを照合して行う。
(Method for measuring residual solvent amount)
The amount of residual solvent in the film of the present invention can be qualitatively and quantitatively determined by headspace gas chromatography. In headspace gas chromatography, a sample is sealed in a container, heated, and while the container is filled with volatile components, the gas in the container is immediately injected into a gas chromatograph, and the compounds are identified by mass spectrometry. Quantify volatile components while Quantification of volatile components is performed by preparing a calibration curve in advance using a sample whose concentration is known, and comparing the peak area of the volatile component obtained by measurement with the calibration curve.
 測定条件を以下に示す。
 ヘッドスペース装置:HP7694 Head Space Sampler(ヒューレットパッカード社製)
 温度条件:トランスファーライン140℃、ループ温度140℃
 サンプル量:0.8g/20mlバイアル
 GC:HP5890(ヒューレットパッカード社製)
 MS:HP5971(ヒューレットパッカード社製)
 カラム:HP-624(30m×内径0.25mm)
 オーブン温度:初期温度40℃(保持時間3分)、昇温速度10℃/分、到達温度140℃(保持時間30分)
 測定モード:SIM(セレクトイオンモニター)モード
The measurement conditions are shown below.
Head space device: HP7694 Head Space Sampler (manufactured by Hewlett-Packard)
Temperature conditions: Transfer line 140℃, loop temperature 140℃
Sample amount: 0.8g/20ml vial GC: HP5890 (manufactured by Hewlett-Packard)
MS: HP5971 (manufactured by Hewlett-Packard)
Column: HP-624 (30m x inner diameter 0.25mm)
Oven temperature: initial temperature 40°C (holding time 3 minutes), heating rate 10°C/min, final temperature 140°C (holding time 30 minutes)
Measurement mode: SIM (select ion monitor) mode
 (5)厚さ
 本発明のフィルムの厚さは、12.5~100.0μmの範囲内であることが好ましく、25.0~50.0μmの範囲内であることがより好ましい。上記範囲内であることにより、回路基板の薄型化及び伝送損失の低減を達成することができる。
(5) Thickness The thickness of the film of the present invention is preferably within the range of 12.5 to 100.0 μm, more preferably within the range of 25.0 to 50.0 μm. By being within the above range, it is possible to achieve thinning of the circuit board and reduction of transmission loss.
 4.フィルムの製造方法
 本発明のフィルムの製造方法は、上記フィルムの製造方法であって、樹脂、フィラー及び溶媒を含む塗布液を調製する工程、塗布液を支持体上に塗布し、塗布膜を形成する工程、及び塗布膜を乾燥させる工程、を有し、支持体における表面自由エネルギーが、30~80mJ/mの範囲内であることを特徴とする。
4. Film manufacturing method The film manufacturing method of the present invention is the above-mentioned film manufacturing method, which includes a step of preparing a coating liquid containing a resin, a filler, and a solvent, and coating the coating liquid on a support to form a coating film. and drying the coating film, and is characterized in that the surface free energy of the support is within the range of 30 to 80 mJ/m 2 .
 本発明のフィルムの製造方法は、支持体における表面自由エネルギーが、30~80mJ/mの範囲内であることにより、相対する二つの面において、表面自由エネルギーが、上記(式1)及び(式2)を満たすフィルムを製造できる。
 なお、本発明においては、支持体の表面自由エネルギーが、小数点以下第1位まで表される場合には、小数点以下第1位を四捨五入して判断する。
In the method for producing a film of the present invention, the surface free energy of the support is within the range of 30 to 80 mJ/m 2 , so that the surface free energy of the above (Formula 1) and ( A film that satisfies formula 2) can be manufactured.
In the present invention, when the surface free energy of the support is expressed to the first decimal place, the first decimal place is rounded off for determination.
 本発明のフィルムの製造方法は、下記工程を有していれば、特に制限されず、公知の溶液流延法によるフィルムの製造方法を適用することができる。
 1)塗布液を調製する工程
 2)塗布膜を形成する工程
 3)塗布膜を乾燥させる工程
The method for producing a film of the present invention is not particularly limited as long as it includes the following steps, and any known method for producing a film using a solution casting method can be applied.
1) Process of preparing the coating liquid 2) Process of forming the coating film 3) Process of drying the coating film
 1)塗布液を調製する工程
 塗布液を調製する工程では、樹脂、フィラー及び溶媒を含む塗布液を調製する。ここで、樹脂、フィラー及び溶媒の添加順は、特に制限されないが、フィラーを溶媒に溶解又は分散させた後、樹脂を添加し、塗布液を調製することが好ましい。フィルムが、更に界面活性剤やその他の成分を含有する場合には、フィラーと共に添加し、その後樹脂を添加して塗布液を調製することが好ましい。
1) Step of preparing a coating liquid In the step of preparing a coating liquid, a coating liquid containing a resin, a filler, and a solvent is prepared. Here, the order of addition of the resin, filler, and solvent is not particularly limited, but it is preferable to dissolve or disperse the filler in the solvent and then add the resin to prepare the coating liquid. When the film further contains a surfactant or other components, it is preferable to add them together with the filler and then add the resin to prepare the coating liquid.
 フィラー等(フィラーと、必要に応じて添加する界面活性剤やその他の成分)を溶媒に溶解又は分散させたフィラー含有液に樹脂を添加することにより、フィラー等を塗布液中に均一に溶解又は分散させることができる。 By adding resin to a filler-containing liquid in which filler, etc. (filler and surfactants and other ingredients added as necessary) are dissolved or dispersed in a solvent, filler, etc. can be uniformly dissolved or dispersed in the coating liquid. Can be dispersed.
 溶媒は、用いる樹脂及びフィラーが、溶解又は分散する溶媒であれば、特に制限されないが、用いる樹脂及びフィラーが、比較的沸点の低い(例えば、150℃以下)溶媒に溶解又は分散する場合には、低沸点溶媒を用いることが好ましい。低沸点溶媒を用いることにより、フィルムの製造プロセス温度(特に乾燥温度)を低減でき、熱収縮を低減できる。
 溶媒の沸点は、120℃以下であることがより好ましく、90℃以下であることが更に好ましく、70℃以下であることが特に好ましい。
The solvent is not particularly limited as long as the resin and filler used can be dissolved or dispersed, but if the resin and filler used are dissolved or dispersed in a solvent with a relatively low boiling point (for example, 150 ° C. or lower), , it is preferable to use a low boiling point solvent. By using a low boiling point solvent, the film manufacturing process temperature (particularly the drying temperature) can be reduced, and thermal shrinkage can be reduced.
The boiling point of the solvent is more preferably 120°C or lower, even more preferably 90°C or lower, and particularly preferably 70°C or lower.
 低沸点溶媒としては、例えば、トルエンなどの芳香族炭化水素類、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類、メチレンクロライドなどのハロゲン化炭化水素類等が挙げられる。
 これらは、一種単独で用いても、二種以上を併用してもよい。
Examples of low boiling point solvents include aromatic hydrocarbons such as toluene, alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether. Esters such as acetate, ethers such as diethyl ether, propylene glycol monomethyl ether, and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, ketones such as acetone, methyl ethyl ketone, acetylacetone, and cyclohexanone, and methylene chloride. Examples include halogenated hydrocarbons such as.
These may be used alone or in combination of two or more.
 樹脂を溶媒に溶解させる方法は、特に制限されず、溶媒に対して用いる樹脂を直接溶解させてもよいし、溶媒中でモノマーを重合させることにより溶媒に樹脂が溶解した状態としてもよい。 The method for dissolving the resin in the solvent is not particularly limited, and the resin used may be directly dissolved in the solvent, or the resin may be dissolved in the solvent by polymerizing monomers in the solvent.
 また、樹脂を溶媒に溶解させて得た溶液に、フィラー等を添加する方法は、特に制限されず、フィラー等を直接溶液に添加してもよいし、フィラー等の各集合体を調製した後、溶液へ添加してもよい。 In addition, the method of adding fillers, etc. to the solution obtained by dissolving the resin in a solvent is not particularly limited, and the fillers, etc. may be added directly to the solution, or after preparing each aggregate of fillers, etc. , may be added to the solution.
 フィラー、及び必要に応じて添加するその他の成分が、重合体からなる粒子(重合体粒子)である場合、重合体粒子の集合体を調製することが好ましい。当該集合体に、樹脂を添加しても、樹脂を溶解させた溶液に当該集合体を添加してもよい。重合体粒子の集合体は、重合体粒子、界面活性剤(ここでの界面活性剤とは、集合体を形成するために用いられる界面活性剤のことである。)、無機粉末及び水性媒体を含むスラリーを噴霧乾燥することで得られる。 When the filler and other components added as necessary are particles made of a polymer (polymer particles), it is preferable to prepare an aggregate of polymer particles. A resin may be added to the aggregate, or the aggregate may be added to a solution in which the resin is dissolved. Aggregates of polymer particles are made by combining polymer particles, a surfactant (surfactant here refers to a surfactant used to form an aggregate), an inorganic powder, and an aqueous medium. It can be obtained by spray drying a slurry containing
 なお、重合体粒子の集合体の調製は、例えば、特開2010-138365号公報に記載の方法で行うことができる。重合体粒子の集合体は、相互の連結(融着)が抑制された複数の重合体粒子から構成される。そのため、重合体粒子の集合体は、樹脂を溶媒に溶解させた溶液に分散させた際に、容易に重合体粒子に分かれることができ、取り扱い性や分散性に優れる。 Note that the polymer particle aggregate can be prepared, for example, by the method described in JP-A-2010-138365. The aggregate of polymer particles is composed of a plurality of polymer particles whose mutual connection (fusion) is suppressed. Therefore, the aggregate of polymer particles can be easily separated into polymer particles when dispersed in a solution in which a resin is dissolved in a solvent, and has excellent handling and dispersibility.
 塗布液における樹脂の含有量は、塗布液の全質量に対して、5~60質量%の範囲内であることが好ましく、10~40質量%の範囲内であることがより好ましく、10~30質量%の範囲内であることが更に好ましい。 The content of the resin in the coating liquid is preferably within the range of 5 to 60% by mass, more preferably within the range of 10 to 40% by mass, and 10 to 30% by mass, based on the total mass of the coating liquid. It is more preferable that the amount is within the range of % by mass.
 塗布液における樹脂の含有量が、5質量%以上であることにより、塗布液に十分な粘度が付与されるため、塗布膜を形成する際に、所望の厚さに調整することができる。また、60質量%以下であることにより、塗布膜を形成する際に、塗布膜の厚さのムラを抑制できる。 When the resin content in the coating liquid is 5% by mass or more, sufficient viscosity is imparted to the coating liquid, so that the thickness can be adjusted to a desired thickness when forming a coating film. Furthermore, by setting the content to 60% by mass or less, it is possible to suppress unevenness in the thickness of the coating film when forming the coating film.
 2)塗布膜を形成する工程
 塗布膜を形成する工程では、上記塗布液を支持体上に塗布し、塗布膜を形成する。
 また、用いられる支持体における表面自由エネルギーが、30~80mJ/mの範囲内である。
2) Step of forming a coating film In the step of forming a coating film, the above coating liquid is applied onto a support to form a coating film.
Further, the surface free energy of the support used is within the range of 30 to 80 mJ/m 2 .
 通常、支持体上に塗布液を塗布して塗布膜を形成した後、乾燥させてフィルムを製造する方法では、塗布膜の二つの面において、一方は支持体と接した状態で形成され、他方は大気と接した状態で形成される、すなわち、塗布膜の二つの面は異なる条件下で形成されるため、塗布膜を乾燥して得られるフィルムの相対する二つの面における表面自由エネルギーに比較的大きな差異が生じると考えられる。しかし、支持体の塗布膜と接する面において、表面自由エネルギーを、30~80mJ/mの範囲内に調整することにより、フィルムの相対する二つの面における表面自由エネルギーの差異を比較的小さくすることができると考えられる。 Normally, in the method of manufacturing a film by coating a coating solution on a support to form a coating film and then drying the coating, one side of the coating film is formed in contact with the support, and the other side is in contact with the support. is formed in contact with the atmosphere, that is, the two sides of the coating film are formed under different conditions, so the surface free energy of the two opposing sides of the film obtained by drying the coating film is compared. It is thought that there will be a large difference in terms of performance. However, by adjusting the surface free energy of the surface of the support in contact with the coating film within the range of 30 to 80 mJ/ m2 , the difference in surface free energy between the two opposing surfaces of the film can be made relatively small. It is thought that it is possible to do so.
 支持体における表面自由エネルギーは、35~70mJ/mの範囲内であることが好ましく、40~60mJ/mの範囲内であることがより好ましい。 The surface free energy of the support is preferably within the range of 35 to 70 mJ/m 2 , more preferably within the range of 40 to 60 mJ/m 2 .
 支持体としては、少なくとも、一方の面の表面自由エネルギーが、30~80mJ/mの範囲内であるフィルム状のものであれば、特に制限されない。
 支持体用フィルムの市販品としては、「セラピール(登録商標)PJ101、PJ271及びHP2」(東レ株式会社製)、「コスモシャイン(登録商標)A4160」(東洋紡株式会社等が挙げられる。
The support is not particularly limited as long as it is a film having a surface free energy of at least one side within the range of 30 to 80 mJ/m 2 .
Commercial products of the support film include "Therapel (registered trademark) PJ101, PJ271 and HP2" (manufactured by Toray Industries, Inc.), "Cosmoshine (registered trademark) A4160" (manufactured by Toyobo Co., Ltd., etc.).
 また、予め、支持体フィルムを作製し、そのフィルム上に本発明のフィルムを作製してもよい。 Alternatively, a support film may be prepared in advance, and the film of the present invention may be formed on the support film.
 塗布液を支持体上に塗布する方法は、特に制限されず、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン法等が挙げられる。 The method for applying the coating liquid onto the support is not particularly limited, and examples thereof include roll coating, rod bar coating, air knife coating, spray coating, curtain method, and the like.
 3)塗布膜を乾燥させる工程
 塗布膜を乾燥させる工程では、上記塗布膜を乾燥させてフィルム化する。
 塗布膜を乾燥させる方法は、特に制限されず、例えば、熱風、赤外線、加熱ロール、マイクロ波等が挙げられる。
3) Step of drying the coating film In the step of drying the coating film, the coating film is dried to form a film.
The method of drying the coating film is not particularly limited, and examples thereof include hot air, infrared rays, heated rolls, microwaves, and the like.
 本発明のフィルムは、残留溶媒量が、200~3000質量ppmの範囲内であることが好ましく、残留溶媒量が上記範囲内となるよう適宜乾燥方法及び乾燥条件を選択することが好ましい。残留溶媒量の測定方法は、前述のとおりである。 The amount of residual solvent in the film of the present invention is preferably within the range of 200 to 3000 ppm by mass, and it is preferable to appropriately select the drying method and drying conditions so that the amount of residual solvent is within the above range. The method for measuring the amount of residual solvent is as described above.
 また、得られたフィルムを更に延伸してもよい。
 フィルムの延伸は、一方向のみ(一軸延伸)に行ってもよく、直交する二方向(二軸延伸)に行ってもよい。好ましくは、フィルムの幅方向(TD方向)と幅方向に直交する搬送方向(MD方向)との二方向に延伸する二軸延伸である。
Further, the obtained film may be further stretched.
The film may be stretched in only one direction (uniaxial stretching) or in two orthogonal directions (biaxial stretching). Preferably, biaxial stretching is performed in which the film is stretched in two directions: the width direction (TD direction) of the film and the transport direction (MD direction) perpendicular to the width direction.
 延伸倍率は、例えば、[TD方向の延伸倍率/MD方向の延伸倍率]を、1.0~3.0の範囲内とすることが好ましい。TD方向とMD方向の延伸倍率は、それぞれ1.01~3.5倍の範囲内であることが好ましく、それぞれ1.01~1.3倍の範囲内であることがより好ましい。延伸倍率が高いほど、得られるフィルムの残留応力が大きくなりやすい。延伸倍率は、[(延伸後のフィルムの延伸方向大きさ)/(延伸前のフィルムの延伸方向大きさ)]として定義される。 As for the stretching ratio, for example, [stretching ratio in the TD direction/stretching ratio in the MD direction] is preferably within the range of 1.0 to 3.0. The stretching ratios in the TD direction and the MD direction are preferably in the range of 1.01 to 3.5 times, and more preferably in the range of 1.01 to 1.3 times, respectively. The higher the stretching ratio, the greater the residual stress of the resulting film tends to be. The stretching ratio is defined as [(stretching direction size of the film after stretching)/(stretching direction size of the film before stretching)].
 延伸温度は、フィルムに用いる樹脂のガラス転移温度をTgとした場合、(Tg-65)℃以上、(Tg+60)℃以下であることが好ましく、(Tg-50)℃以上、(Tg+50)℃以下であることがより好ましく、(Tg-30)℃以上、(Tg+50)℃以下であることが更に好ましい。 The stretching temperature is preferably (Tg-65)°C or higher and (Tg+60)°C or lower, and (Tg-50)°C or higher and (Tg+50)°C or lower, where Tg is the glass transition temperature of the resin used for the film. More preferably, the temperature is (Tg-30)°C or higher and (Tg+50)°C or lower.
 延伸温度が、(Tg-30)℃以上であることにより、フィルムが延伸に適した柔軟性を有しやすく、延伸時のフィルムに過剰な張力が加わりにくい。また、延伸温度が、(Tg+60)℃以下であることにより、延伸後のフィルムに適度な残留応力が残りやすく、また、フィルム中の溶媒の気化による気泡の発生を抑制できる。 By setting the stretching temperature to (Tg-30)°C or higher, the film tends to have flexibility suitable for stretching, and excessive tension is less likely to be applied to the film during stretching. Furthermore, by setting the stretching temperature to (Tg+60)° C. or lower, a suitable amount of residual stress tends to remain in the film after stretching, and the generation of bubbles due to vaporization of the solvent in the film can be suppressed.
 膜状物のMD方向の延伸は、例えば複数のロールに周速差をつけ、その間でロール周速差を利用する方法(ロール法)で行うことができる。フィルムのTD方向の延伸は、例えばフィルムの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げる方法(テンター法)で行うことができる。 Stretching of the film-like material in the MD direction can be carried out, for example, by a method (roll method) in which a plurality of rolls are provided with a difference in peripheral speed and the difference in peripheral speed between the rolls is utilized. Stretching of the film in the TD direction can be carried out, for example, by fixing both ends of the film with clips or pins and widening the interval between the clips or pins in the traveling direction (tenter method).
 5.金属張積層板
 本発明の金属張積層板は、本発明のフィルムを含むことを特徴とする。
 なお、本発明の金属張積層板は、前述の本発明のフィルム及び金属層以外の層を含んでいてもよい。以下、接着層を有する場合の一例を示すが、本発明において、接着層は必ずしも有していなくてもよい。
5. Metal-clad laminate The metal-clad laminate of the present invention is characterized by containing the film of the present invention.
Note that the metal-clad laminate of the present invention may contain layers other than the above-described film and metal layer of the present invention. An example of a case in which an adhesive layer is provided will be shown below, but in the present invention, the adhesive layer does not necessarily have to be provided.
 図3に、本発明の金属張積層板(片面)の一例の断面図を示す。金属張積層板100は、フィルム103の片側に、接着層102を介して金属層101が貼合されており、金属層が片面のみに設けられた片面金属張積層板である。なお、金属層、接着層及びフィルム以外の任意の層を含んでいてもよい。 FIG. 3 shows a cross-sectional view of an example of the metal-clad laminate (single-sided) of the present invention. The metal-clad laminate 100 is a single-sided metal-clad laminate in which a metal layer 101 is bonded to one side of a film 103 via an adhesive layer 102, and the metal layer is provided only on one side. Note that any layer other than the metal layer, adhesive layer, and film may be included.
 図4に、本発明の金属張積層板(両面)の一例の断面図を示す。金属張積層板110は、前述のフィルム103の両側に、接着層102又は104を介して、金属層101又は105が貼合されており、金属層が両面に設けられた両面金属張積層板である。なお、金属層、接着層及びフィルム以外の任意の層を含んでいてもよい。 FIG. 4 shows a cross-sectional view of an example of the metal-clad laminate (both sides) of the present invention. The metal-clad laminate 110 is a double-sided metal-clad laminate in which the metal layers 101 or 105 are bonded to both sides of the film 103 via the adhesive layer 102 or 104, and the metal layers are provided on both sides. be. Note that any layer other than the metal layer, adhesive layer, and film may be included.
 また、接着層102と104、金属層101と105は、それぞれ、同一であっても同一でなくてもよいが、本発明のフィルムは、相対する二つの面(両面)における表面自由エネルギーの差異が比較的小さいため、両面において同一の接着層及び金属層を用いても、硬化収縮の程度の差による剥離を抑制することができる。 Further, the adhesive layers 102 and 104 and the metal layers 101 and 105 may or may not be the same, respectively, but the film of the present invention has a difference in surface free energy between two opposing surfaces (both sides). is relatively small, so even if the same adhesive layer and metal layer are used on both sides, peeling due to differences in the degree of curing shrinkage can be suppressed.
 金属張積層板の厚さは、特に制限されないが、50~500μmの範囲内であることが好ましく、100~300μmの範囲内であることがより好ましい。50μm以上であることにより、回路基板としたときの伝送損失を十分に低減させることができ、500μm以下であることにより、回路基板としたときの屈曲性の低下や生産性の低下を抑制することができる。 The thickness of the metal-clad laminate is not particularly limited, but is preferably within the range of 50 to 500 μm, more preferably within the range of 100 to 300 μm. By being 50 μm or more, transmission loss can be sufficiently reduced when used as a circuit board, and by being 500 μm or less, a decrease in flexibility and productivity can be suppressed when used as a circuit board. Can be done.
 (金属層)
 金属層に用いられる金属としては、特に制限されず、例えば、銅、ステンレス、鉄、ニッケル、ベリリウム、アルミニウム、亜鉛、インジウム、銀、金、スズ、ジルコニウム、タンタル、チタン、鉛、マグネシウム、マンガン及びこれらの合金等が挙げられる。中でも、特に銅又は銅合金であることが好ましい。
(metal layer)
The metal used for the metal layer is not particularly limited, and examples thereof include copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese, and These alloys and the like can be mentioned. Among these, copper or a copper alloy is particularly preferred.
 金属層の厚さは、特に制限されず、例えば、銅箔等の金属箔を用いる場合、35μm以下であることが好ましく、5~25μmの範囲内であることがより好ましい。生産安定性及びハンドリング性の観点から、金属箔の厚さは、5μm以上であることが好ましい。 The thickness of the metal layer is not particularly limited, and for example, when using a metal foil such as copper foil, it is preferably 35 μm or less, and more preferably within the range of 5 to 25 μm. From the viewpoint of production stability and handling properties, the thickness of the metal foil is preferably 5 μm or more.
 銅箔を用いる場合は、圧延銅箔でも電解銅箔でもよく、市販品の銅箔を用いてもよい。また、金属箔は、例えば、防錆処理や、接着力の向上を目的として、例えば、サイディング、アルミニウムアルコラート、アルミニウムキレート、シランカップリング剤等による表面処理を施してもよい。 When using copper foil, rolled copper foil or electrolytic copper foil may be used, or commercially available copper foil may be used. Further, the metal foil may be subjected to a surface treatment using, for example, siding, aluminum alcoholate, aluminum chelate, a silane coupling agent, etc., for the purpose of antirust treatment or improvement of adhesive strength.
 また、金属箔として、二層以上の金属箔を含むキャリア付金属箔を使用してもよい。キャリア付金属箔としては、例えば、キャリア付銅箔(厚さ:10~35μm)と、剥離層を介してキャリア付銅箔上に積層された極薄銅箔(厚さ:2~5μm)とからなるキャリア付銅箔が挙げられる。当該キャリア付銅箔を使用することにより、MSAP(モディファイドセミアディティブプロセス)によるファインパターンの形成が可能である。なお、剥離層としては、ニッケル又はクロムを含む金属層、又はこの金属層を積層した多層金属層であることが好ましい。
 キャリア付金属箔としては、例えば、「FUTF-5DAF-2」(福田金属箔粉工業株式会社製)が挙げられる。
Further, as the metal foil, a carrier-attached metal foil containing two or more layers of metal foil may be used. Examples of the metal foil with a carrier include a copper foil with a carrier (thickness: 10 to 35 μm) and an ultra-thin copper foil (thickness: 2 to 5 μm) laminated on the copper foil with a carrier via a release layer. A carrier-attached copper foil consisting of: By using the carrier-attached copper foil, it is possible to form a fine pattern by MSAP (Modified Semi-Additive Process). Note that the release layer is preferably a metal layer containing nickel or chromium, or a multilayer metal layer in which these metal layers are laminated.
Examples of the carrier-attached metal foil include "FUTF-5DAF-2" (manufactured by Fukuda Metal Foil and Powder Industries Co., Ltd.).
 (接着層)
 接着層に用いられる接着成分としては、本発明のフィルムと金属との接着性が良好であれば特に制限されず、例えば、「SAFR-X3」(ニッカン工業株式会社製)、「LIOELM TSU(登録商標)500シリーズ」(トーヨーケム工業株式会社製)が挙げられる。
(Adhesive layer)
The adhesive component used in the adhesive layer is not particularly limited as long as it has good adhesion between the film of the present invention and metal. Trademark) 500 Series" (manufactured by Toyochem Industries Co., Ltd.).
 接着層の厚さは、特に制限されないが、例えば、10~50μmの範囲内であることが好ましく、15~30μmの範囲内であることがより好ましい。 The thickness of the adhesive layer is not particularly limited, but for example, it is preferably within the range of 10 to 50 μm, and more preferably within the range of 15 to 30 μm.
 (製造方法)
 本発明の金属張積層板の製造方法としては、例えば、本発明のフィルムに上記接着成分を介して金属箔を加熱圧着させる方法や、金属蒸着等により、本発明のフィルムに金属層を形成する方法が挙げられる。
(Production method)
The method for manufacturing the metal-clad laminate of the present invention includes, for example, forming a metal layer on the film of the present invention by heat-pressing a metal foil onto the film of the present invention via the adhesive component, or by metal vapor deposition. There are several methods.
 両面金属張積層板については、例えば、片面金属張積層板を形成した後、本発明のフィルムが向き合うように2枚の片面金属張積層板を重ね、加熱圧着させる方法や、片面金属張積層板を形成した後、本発明のフィルムの金属層とは反対の面に、上記接着成分を介して金属箔を加熱圧着させる方法が挙げられる。 For double-sided metal-clad laminates, for example, after forming a single-sided metal-clad laminate, two single-sided metal-clad laminates are stacked so that the films of the present invention face each other and bonded under heat. After forming the film, a method may be mentioned in which a metal foil is heat-pressed onto the surface of the film of the present invention opposite to the metal layer via the adhesive component.
 なお、加熱圧着は、温度90~250℃の範囲内、好ましくは150~190℃の範囲内、圧力0.5~5.0MPaの範囲内、好ましくは1.0~3.0MPaの範囲内、時間0.5~150分の範囲内、好ましくは5~60分の範囲内の条件下で行う。なお、硬化条件を変化させて多段階で行ってもよい。この加熱圧着工程は真空プレス工程とも呼ばれる。 In addition, heat compression bonding is carried out at a temperature of 90 to 250°C, preferably 150 to 190°C, a pressure of 0.5 to 5.0 MPa, preferably 1.0 to 3.0 MPa, The time is within the range of 0.5 to 150 minutes, preferably within the range of 5 to 60 minutes. Note that the curing may be performed in multiple stages by changing the curing conditions. This heat-pressing process is also called a vacuum press process.
 また、硬化を促進させるため、加熱圧着後に150~190℃の範囲内で5~90分間ポストキュアを行ってもよい。なお、硬化条件を変化させて多段階で行ってもよい。
 この加熱圧着工程とポストキュア工程とを併せて一体化工程とも呼ばれる。
Further, in order to accelerate curing, post-curing may be performed for 5 to 90 minutes at a temperature of 150 to 190° C. after heat and pressure bonding. Note that the curing may be performed in multiple stages by changing the curing conditions.
This heat-press bonding process and the post-cure process are collectively called an integration process.
 6.回路基板
 本発明の回路基板は、本発明の金属張積層板を具備することを特徴とする。
 詳しくは、前述の金属張積層板の一つ以上の金属層を、パターン状に加工して配線層(導体回路層)を形成することにより、柔軟性のあるフレキシブル基板を作製することができる。
6. Circuit Board The circuit board of the present invention is characterized by comprising the metal clad laminate of the present invention.
Specifically, a flexible substrate can be produced by processing one or more metal layers of the metal-clad laminate described above into a pattern to form a wiring layer (conductor circuit layer).
 フレキシブル基板(FPC:Flexible Printed Circuits)は、薄く柔軟性に優れているため、折り曲げが可能であり、機器内の三次元配線や稼働配線に用いることができるため、電子機器の薄型・小型・軽量化に寄与することができる。 Flexible Printed Circuits (FPC) are thin and highly flexible, so they can be bent and used for three-dimensional wiring and operational wiring within devices, making electronic devices thin, compact, and lightweight. can contribute to the development of
 フレキシブル基板の構造としては、片面金属張積層板を用いた片面構造、両面金属張積層板を用いた両面構造、金属張積層板を組み合わせて金属層を三層以上とした多層構造が挙げられる。以下、各構造について説明するが、本発明の回路基板は、金属層、接着層及びフィルム以外の任意の層を含んでいてもよい。また、便宜上、金属層201及び接着層202を合わせて配線層206ともいう。 Examples of the structure of the flexible substrate include a single-sided structure using a single-sided metal-clad laminate, a double-sided structure using a double-sided metal-clad laminate, and a multilayer structure in which three or more metal layers are formed by combining metal-clad laminates. Each structure will be described below, but the circuit board of the present invention may include any layer other than the metal layer, adhesive layer, and film. Further, for convenience, the metal layer 201 and the adhesive layer 202 are also collectively referred to as a wiring layer 206.
 図5に、本発明の回路基板(片面構造)の一例の断面図を示す。回路基板200は、金属張積層板100にパターン印刷を行い作製できる。なお、金属層201、接着層202及びフィルム203は、前述の金属層101、接着層102及びフィルム103と対応する。 FIG. 5 shows a cross-sectional view of an example of the circuit board (single-sided structure) of the present invention. The circuit board 200 can be manufactured by printing a pattern on the metal-clad laminate 100. Note that the metal layer 201, adhesive layer 202, and film 203 correspond to the metal layer 101, adhesive layer 102, and film 103 described above.
 図6に、本発明の回路基板(両面構造)の一例の断面図を示す。回路基板210は、金属張積層板110にパターン印刷を行い作製できる。なお、金属層201、205、接着層202、204及びフィルム203は、前述の金属層101、105、接着層102、104及びフィルム103と対応する。 FIG. 6 shows a cross-sectional view of an example of the circuit board (double-sided structure) of the present invention. The circuit board 210 can be manufactured by printing a pattern on the metal clad laminate 110. Note that the metal layers 201 and 205, the adhesive layers 202 and 204, and the film 203 correspond to the metal layers 101 and 105, the adhesive layers 102 and 104, and the film 103 described above.
 図7に、本発明の回路基板(多層構造)の一例の断面図を示す。回路基板220は、金属張積層板にパターン印刷を行い、接着層207を介して積層することにより作製できる。なお、金属層201、接着層202及びフィルム203は、前述の金属層101、接着層102及びフィルム103と対応する。 FIG. 7 shows a cross-sectional view of an example of the circuit board (multilayer structure) of the present invention. The circuit board 220 can be manufactured by printing a pattern on a metal-clad laminate and laminating them with the adhesive layer 207 interposed therebetween. Note that the metal layer 201, adhesive layer 202, and film 203 correspond to the metal layer 101, adhesive layer 102, and film 103 described above.
 (製造方法)
 本発明の回路基板の製造方法としては、例えば、金属箔をエッチング処理して所定の伝送回路に加工する方法や、金属箔を電解めっき法(セミアディティブプロセス法(SAP法)、モディファイドセミアディティブプロセス(MSAP法)等)によって、所定の伝送回路に加工する方法が挙げられる。
(Production method)
Methods for manufacturing the circuit board of the present invention include, for example, a method of etching metal foil to process it into a predetermined transmission circuit, an electrolytic plating method (semi-additive process method (SAP method), modified semi-additive process method) of metal foil, etc. (MSAP method), etc.) to form a predetermined transmission circuit.
 回路基板の製造では、最終的に不要なフォトレジスト層を剥離し、回路基板を洗浄する。ベースフィルムの相対する二つの面において、表面自由エネルギーの差異が比較的小さく、濡れ性が同程度、すなわち、二つの面において、同程度の洗浄性が得られるため、フォトレジスト層の残留を抑制でき、回路基板における伝送損失を抑制できると考えられる。 In the production of circuit boards, the unnecessary photoresist layer is finally removed and the circuit board is cleaned. The difference in surface free energy between the two opposing sides of the base film is relatively small, and the wettability is the same, meaning that the same level of cleanability can be obtained on the two sides, suppressing the remaining photoresist layer. It is thought that transmission loss in the circuit board can be suppressed.
 なお、本発明のフィルムを、ベースフィルムとしてだけでなく、カバーレイフィルムとして使用してもよい。カバーレイフィルムを用いることにより、回路を、電気的、機械的、化学的、熱的に保護することができる。 Note that the film of the present invention may be used not only as a base film but also as a coverlay film. By using a coverlay film, circuits can be protected electrically, mechanically, chemically, and thermally.
 7.電子機器
 本発明の電子機器は、本発明の回路基板を具備することを特徴とする。
7. Electronic Device The electronic device of the present invention is characterized by comprising the circuit board of the present invention.
 本発明の回路基板は、例えば、コンピューター、携帯電話、デジタルカメラ及びテレビ等の電子機器に好適に用いることができる。 The circuit board of the present invention can be suitably used, for example, in electronic devices such as computers, mobile phones, digital cameras, and televisions.
 ただし、本発明のフィルムは、上記回路基板の他に、トランジスタ、ダイオード等の能動素子、抵抗、キャパシタ、インダクタ等の受動デバイスを含む電子回路、圧力、温度、光、湿度などをセンシングするセンサー素子、発光素子、液晶表示、電気泳動表示、自発光表示等の画像表示素子、無線、有線による通信素子、演算素子、記憶素子、MEMS素子、太陽電池、薄膜トランジスタ等にも好適に用いることができ、これらは電子機器に具備されることが好ましい。 However, in addition to the above-mentioned circuit board, the film of the present invention can also be used for electronic circuits including active elements such as transistors and diodes, passive devices such as resistors, capacitors, and inductors, and sensor elements for sensing pressure, temperature, light, humidity, etc. It can also be suitably used for image display elements such as light emitting elements, liquid crystal displays, electrophoretic displays, and self-luminous displays, wireless and wired communication elements, arithmetic elements, memory elements, MEMS elements, solar cells, thin film transistors, etc. These are preferably included in electronic equipment.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
 また、下記実施例において、特記しない限り操作は室温(25℃)で行われた。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. In the examples, "parts" or "%" are used, but unless otherwise specified, "parts by mass" or "% by mass" are expressed.
In addition, in the following examples, operations were performed at room temperature (25° C.) unless otherwise specified.
 <実施例1>
 フィルム1を作製し、さらに、構成材料を変更して、フィルム2~15を作製した。
<Example 1>
Film 1 was produced, and films 2 to 15 were produced by changing the constituent materials.
 〔フィルム1の作製〕
 [フィルム1用塗布液の調製]
 フィルム用塗布液の調製の前に、フィラーF1のメタノール(MeOH)10質量%溶液(名古屋合成社製NS-08)100質量部に対し、適量のメチルエチルケトンを添加し、メタノールを減圧留去することで、メチルエチルケトンにフィラーを20質量%含有するフィラー分散液を調製した。
 下記成分を混合して、フィルム1用塗布液を得た。
 メチルエチルケトン(沸点80℃)        400.0質量部
 樹脂P1                     67.0質量部
 フィラーF1                   33.0質量部
 なお、フィラーF1は上記分散液の状態で投入しており、メチルエチルケトン全体の添加量が上記となるように別途メチルエチルケトンを追加する形で調整した。調整後、マントンゴーリンホモジナイザーによる分散処理を3回実施し、フィラーF1含有液とした。その後、メチルエチルケトンを投入した溶解釜に、フィラーF1含有液を投入して撹拌し、更に樹脂P1を投入して撹拌し、フィルム1用塗布液を得た。
[Preparation of film 1]
[Preparation of coating liquid for film 1]
Before preparing the film coating solution, add an appropriate amount of methyl ethyl ketone to 100 parts by mass of a 10% by mass solution of filler F1 in methanol (MeOH) (NS-08 manufactured by Nagoya Gosei Co., Ltd.), and distill off the methanol under reduced pressure. A filler dispersion containing 20% by mass of filler in methyl ethyl ketone was prepared.
A coating liquid for Film 1 was obtained by mixing the following components.
Methyl ethyl ketone (boiling point 80°C) 400.0 parts by mass Resin P1 67.0 parts by mass Filler F1 33.0 parts by mass Filler F1 was added in the form of the above dispersion, and the total amount of methyl ethyl ketone added was as above. It was adjusted by separately adding methyl ethyl ketone. After the adjustment, dispersion treatment using a Manton-Gorlin homogenizer was performed three times to obtain a filler F1-containing liquid. Thereafter, the filler F1-containing liquid was added to the dissolution pot containing methyl ethyl ketone and stirred, and then the resin P1 was added and stirred to obtain a coating liquid for film 1.
 [フィルム1の形成]
 支持体S1の離型層上に、フィルム1用塗布液を、バックコート法によりダイを用いて塗布し、塗布膜を120℃、30分乾燥させることにより、厚さ50μmのフィルムを形成し、フィルム1を得た。
 得られたフィルムの厚さは、「膜厚測定システム」F20-UV(フィルメトリクス株式会社製)を用いて計測した。
[Formation of film 1]
On the release layer of the support S1, the coating liquid for film 1 is applied using a die by a back coating method, and the coating film is dried at 120 ° C. for 30 minutes to form a film with a thickness of 50 μm, Film 1 was obtained.
The thickness of the obtained film was measured using a "Film Thickness Measurement System" F20-UV (manufactured by Filmetrics Co., Ltd.).
 〔フィルム2の作製〕
 樹脂及びフィラーの含有量を表IIに記載のとおりに変更した以外は、フィルム1の形成と同様にして、フィルム2を得た。
[Preparation of film 2]
Film 2 was obtained in the same manner as in the formation of Film 1, except that the contents of the resin and filler were changed as shown in Table II.
 〔フィルム3の作製〕
 [フィルム3用塗布液の調製]
 下記成分を混合して、フィルム3用塗布液を得た。
 トルエン(沸点111℃)            150.0質量部
 樹脂P2                     30.0質量部
 フィラーF1                   70.0質量部
 なお、フィラーF1は分散液(「NS-06」:名古屋合成株式会社製)の状態で投入しており、トルエン全体の添加量が上記となるように別途トルエンを追加する形で調整した。調整後、マントンゴーリンホモジナイザーによる分散処理を3回実施し、フィラーF1含有液とした。その後、トルエンを投入した溶解釜に、フィラーF1含有液を投入して撹拌し、更に樹脂P2を投入して撹拌し、フィルム3用塗布液を得た。
[Preparation of film 3]
[Preparation of coating liquid for film 3]
A coating liquid for film 3 was obtained by mixing the following components.
Toluene (boiling point 111°C) 150.0 parts by mass Resin P2 30.0 parts by mass Filler F1 70.0 parts by mass Filler F1 was added in the form of a dispersion ("NS-06": manufactured by Nagoya Gosei Co., Ltd.). The total amount of toluene added was adjusted as above by adding toluene separately. After the adjustment, dispersion treatment using a Manton-Gorlin homogenizer was performed three times to obtain a filler F1-containing liquid. Thereafter, the filler F1-containing liquid was added to a dissolution pot containing toluene and stirred, and the resin P2 was further added and stirred to obtain a coating liquid for film 3.
 〔フィルム3の形成〕
 フィルム1の形成と同様にして、フィルム3を得た。
[Formation of film 3]
Film 3 was obtained in the same manner as film 1 was formed.
 〔フィルム4~12、14~15の作製〕
 構成材料の種類及び含有量を表IIに記載のとおりに変更した以外は、フィルム3の形成と同様にして、フィルム4~12、14~15を得た。
[Preparation of films 4 to 12, 14 to 15]
Films 4 to 12 and 14 to 15 were obtained in the same manner as in the formation of film 3, except that the types and contents of the constituent materials were changed as shown in Table II.
 〔フィルム13の作製〕
 [フィルム13用塗布液の調製]
 フィルム用塗布液の調製の前に、フィラーF1のイソプロピルアルコール(IPA)20質量%溶液(名古屋合成社製NS-05)100質量部に対し、80質量部のジメチルホルムアミド(DMF)を添加し、イソプロピルアルコールを減圧留去することで、ジメチルホルムアミドにフィラーを20質量%含有するフィラー分散液を調製した。
 下記成分を混合して、フィルム13用塗布液を得た。
 ジメチルホルムアミド(沸点153℃)      150.0質量部
 樹脂P3                     67.0質量部
 フィラーF1                   33.0質量部
 なお、フィラーF1は上記分散液の状態で投入しており、ジメチルホルムアミド全体の添加量が上記となるように別途ジメチルホルムアミドを追加する形で調整した。調整後、マントンゴーリンホモジナイザーによる分散処理を3回実施し、フィラーF1含有液とした。その後、ジメチルホルムアミドを投入した溶解釜に、フィラーF1含有液を投入して撹拌し、更に樹脂P3を投入して撹拌し、フィルム13用塗布液を得た。
[Preparation of film 13]
[Preparation of coating liquid for film 13]
Before preparing the film coating solution, 80 parts by mass of dimethylformamide (DMF) was added to 100 parts by mass of a 20% by mass solution of filler F1 in isopropyl alcohol (IPA) (NS-05 manufactured by Nagoya Gosei Co., Ltd.), A filler dispersion containing 20% by mass of filler in dimethylformamide was prepared by distilling off isopropyl alcohol under reduced pressure.
A coating liquid for film 13 was obtained by mixing the following components.
Dimethylformamide (boiling point 153°C) 150.0 parts by mass Resin P3 67.0 parts by mass Filler F1 33.0 parts by mass Filler F1 was added in the form of the above dispersion, and the total amount of dimethylformamide added was the same as above. It was adjusted by separately adding dimethylformamide so that After the adjustment, dispersion treatment using a Manton-Gorlin homogenizer was performed three times to obtain a filler F1-containing liquid. Thereafter, the filler F1-containing liquid was added to a dissolution pot containing dimethylformamide and stirred, and the resin P3 was further added and stirred to obtain a coating liquid for film 13.
 〔フィルム13の形成〕
 フィルム1の形成と同様にして、フィルム13を得た。
[Formation of film 13]
Film 13 was obtained in the same manner as film 1 was formed.
 なお、実施例1及び2において、樹脂、フィラー、界面活性剤及び支持体は、以下のものを使用した。
 (樹脂)
 P1:「KPI-MX300F」(可溶性ポリイミド粉体、河村産業株式会社製)
 P2:「ユニファイナー(登録商標)M-2040」(ポリアリレート、ユニチカ株式会社製)
 P3:「ポリマーA」(公報番号特開2003―201461の比較例4に記載の通りに合成した)
In Examples 1 and 2, the following resins, fillers, surfactants, and supports were used.
(resin)
P1: "KPI-MX300F" (soluble polyimide powder, manufactured by Kawamura Sangyo Co., Ltd.)
P2: "Unifiner (registered trademark) M-2040" (polyarylate, manufactured by Unitika Co., Ltd.)
P3: "Polymer A" (synthesized as described in Comparative Example 4 of Publication No. JP-A-2003-201461)
 (フィラー)
 F1:「NSシリーズ」(ポリテトラフルオロエチレン、名古屋合成株式会社製)
 F2:「ユニファイナー(登録商標)V-575」(ポリアリレート、ユニチカ株式会社製)
(filler)
F1: "NS series" (polytetrafluoroethylene, manufactured by Nagoya Gosei Co., Ltd.)
F2: "Unifiner (registered trademark) V-575" (polyarylate, manufactured by Unitika Co., Ltd.)
 (界面活性剤)
 D1:「メガファック(登録商標)F-563」(フッ素系添加剤、DIC株式会社製)
 D2:「メガファック(登録商標)F-558」(フッ素系添加剤、DIC株式会社製)
(surfactant)
D1: "Megafac (registered trademark) F-563" (fluorine additive, manufactured by DIC Corporation)
D2: "Megafac (registered trademark) F-558" (fluorine additive, manufactured by DIC Corporation)
 (支持体)
 S1:「セラピール(登録商標)PJ101」(東レ株式会社製)
 S2:「コスモシャイン(登録商標)A4160」(東洋紡株式会社製)
 S3:「セラピール(登録商標)PJ271」(東レ株式会社製)
 S4:「ルミラー(登録商標) ATM1」(東レ株式会社製)
(Support)
S1: "Therapel (registered trademark) PJ101" (manufactured by Toray Industries, Inc.)
S2: "Cosmoshine (registered trademark) A4160" (manufactured by Toyobo Co., Ltd.)
S3: "Therapel (registered trademark) PJ271" (manufactured by Toray Industries, Inc.)
S4: "Lumirror (registered trademark) ATM1" (manufactured by Toray Industries, Inc.)
 フィラーF3は、以下の方法で調製したゴム粒子を用いた。
 内容積60Lの還流冷却器付反応器に、下記成分を投入し、250rpmの回転数で撹拌しながら、窒素雰囲気下75℃に昇温し、酸素の影響が事実上無い状態にした。
 イオン交換水                    38.20L
 ジオクチルスルホコハク酸ナトリウム        111.60g
As filler F3, rubber particles prepared by the following method were used.
The following components were charged into a reactor equipped with a reflux condenser having an internal volume of 60 L, and the temperature was raised to 75° C. under a nitrogen atmosphere while stirring at a rotation speed of 250 rpm, so that there was virtually no influence of oxygen.
Ion exchange water 38.20L
Sodium dioctyl sulfosuccinate 111.60g
 そして、下記成分を投入し、5分間撹拌した。
 過硫酸アンモニウム(APS)             0.36g
Then, the following ingredients were added and stirred for 5 minutes.
Ammonium persulfate (APS) 0.36g
 その後、下記成分からなるモノマー混合物(c1)を一括添加し、発熱ピークの検出後さらに20分間保持して最内硬質層の重合を完結させた。
 メタクリル酸メチル(MMA)          1657.00g
 アクリル酸ブチル(BA)              21.60g
 メタクリル酸アリル(ALMA)            1.68g
Thereafter, a monomer mixture (c1) consisting of the following components was added all at once, and after the exothermic peak was detected, the mixture was maintained for an additional 20 minutes to complete the polymerization of the innermost hard layer.
Methyl methacrylate (MMA) 1657.00g
Butyl acrylate (BA) 21.60g
Allyl methacrylate (ALMA) 1.68g
 次に、下記成分を投入し、5分間撹拌した。
 過硫酸アンモニウム(APS)             3.48g
Next, the following ingredients were added and stirred for 5 minutes.
Ammonium persulfate (APS) 3.48g
 そして、下記成分からなるモノマー混合物(a1)(BA/MMA=85/15質量比)を120分間かけて連続的に添加し、添加終了後さらに120分間保持して、軟質層の重合を完結させた。
 アクリル酸ブチル(BA)            1961.00g
 メタクリル酸メチル(MMA)           346.00g
 メタクリル酸アリル(ALMA)          264.00g
Then, a monomer mixture (a1) (BA/MMA=85/15 mass ratio) consisting of the following components was continuously added over 120 minutes, and after the addition was completed, the monomer mixture (a1) was maintained for an additional 120 minutes to complete the polymerization of the soft layer. Ta.
Butyl acrylate (BA) 1961.00g
Methyl methacrylate (MMA) 346.00g
Allyl methacrylate (ALMA) 264.00g
 次に、下記成分を投入し、5分間撹拌した。
 過硫酸アンモニウム(APS)             1.32g
Next, the following ingredients were added and stirred for 5 minutes.
Ammonium persulfate (APS) 1.32g
 そして、下記成分からなるモノマー混合物(b1)を20分間かけて連続的に添加し、添加終了後さらに20分間保持して硬質層1の重合を完結した。
 メタクリル酸メチル(MMA)          2106.00g
 アクリル酸ブチル(BA)             201.60g
Then, a monomer mixture (b1) consisting of the following components was continuously added over a period of 20 minutes, and after the addition was completed, the mixture was maintained for an additional 20 minutes to complete the polymerization of the hard layer 1.
Methyl methacrylate (MMA) 2106.00g
Butyl acrylate (BA) 201.60g
 次に、下記成分を投入し、5分間撹拌した。
 過硫酸アンモニウム(APS)             1.32g
Next, the following ingredients were added and stirred for 5 minutes.
Ammonium persulfate (APS) 1.32g
 そして、下記成分からなるモノマー混合物(b2)を20分間かけて連続的に添加し、添加終了後にさらに20分間保持した。ついで95℃に昇温し、60分間保持して、硬質層2の重合を完結させた。
 メタクリル酸メチル(MMA)          3148.00g
 アクリル酸ブチル(BA)             201.60g
 n-オクチルメルカプタン(n-OM)        10.10g
Then, a monomer mixture (b2) consisting of the following components was continuously added over a period of 20 minutes, and after the addition was completed, the mixture was maintained for an additional 20 minutes. Then, the temperature was raised to 95°C and held for 60 minutes to complete polymerization of the hard layer 2.
Methyl methacrylate (MMA) 3148.00g
Butyl acrylate (BA) 201.60g
n-octyl mercaptan (n-OM) 10.10g
 残りのラテックスを3質量%硫酸ナトリウム温水溶液中へ投入して、塩析・凝固させ、次いで、脱水・洗浄を繰り返した後、乾燥して、4層構造のアクリル粒子(ゴム粒子)を得た。 The remaining latex was poured into a 3% by mass sodium sulfate warm aqueous solution to salt out and coagulate, and then, after repeated dehydration and washing, it was dried to obtain acrylic particles (rubber particles) with a four-layer structure. .
 表Iに、樹脂、フィラー及び支持体の物性を示す。なお、各物性は、前述の測定方法で測定した。 Table I shows the physical properties of the resin, filler, and support. In addition, each physical property was measured by the above-mentioned measuring method.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [評価]
 得られたフィルム1~15について、以下の測定及び評価を行った。
[evaluation]
The following measurements and evaluations were performed on the obtained films 1 to 15.
 (1)誘電正接の測定
 各フィルムの誘電正接は、JIS R1641:2007に準拠して測定した。
 各フィルムについて、100mm×120mmサイズの試験片を作製し、測定前に、予め、温度22±1℃・湿度60±5%RH環境下で、90時間保存した。その後、円筒空洞共振器法により、周波数28GHzでの誘電正接を測定した。
(1) Measurement of dielectric loss tangent The dielectric loss tangent of each film was measured in accordance with JIS R1641:2007.
For each film, a test piece with a size of 100 mm x 120 mm was prepared and stored in advance for 90 hours at a temperature of 22±1° C. and a humidity of 60±5% RH environment before measurement. Thereafter, the dielectric loss tangent at a frequency of 28 GHz was measured by the cylindrical cavity method.
 (2)表面自由エネルギーの測定
 水、ジヨードメタン及びヘキサデカンを用い、22℃・60%RH環境下で、接触角計「DropMasterDM501」(協和界面科学株式会社製)にて、各フィルムにおける各液体の接触角を測定し、前述の方法で表面自由エネルギーを算出した。そして、各フィルムの相対する二つの面における表面自由エネルギーのうち、数値の小さい方をA、大きい方をBとし、A/Bで表される値を算出した。
(2) Measurement of surface free energy Using water, diiodomethane, and hexadecane, the contact of each liquid on each film was measured using a contact angle meter "DropMaster DM501" (manufactured by Kyowa Interface Science Co., Ltd.) in an environment of 22°C and 60% RH. The angle was measured and the surface free energy was calculated using the method described above. Then, among the surface free energies of the two opposing surfaces of each film, the smaller numerical value was defined as A, and the larger numerical value was defined as B, and a value expressed as A/B was calculated.
 なお、フィルムのTD方向(製造されるフィルムにおける幅方向)において、フィルムの中央部、端部(両端からそれぞれ10cmの位置)、及び中央部と端部との中間点2点、の計5点で接触角を測定し、その算術平均値を接触角θの値とした。 In addition, in the TD direction of the film (width direction of the film to be manufactured), a total of 5 points: the center of the film, the edges (positions 10 cm from both ends), and 2 points midway between the center and the edges. The contact angle was measured, and the arithmetic mean value was taken as the value of the contact angle θ.
 (3)銅箔層接着性
 各フィルムの片面(二つの面における一方の面)と、接着シート(「LIOELM TSU(登録商標)500シリーズ」(トーヨーケム工業株式会社製))と、厚さ2μmの銅板とを、接着シートが真ん中になるように積層し、熱プレスにて90℃、0.5MPa、0.5分の条件で熱圧着後、180℃、2.0MPa、5分、さらに、180℃、1時間のポストキュアの条件で、各フィルム、接着シートの硬化物、銅板がこの順に積層されてなる積層体を得た。そして、得られた積層体の銅板を剥離することで接着強度を測定した。なお、このサンプルから銅箔層を剥離する際の強度は、フォースゲージ「DPRS-2TR」(株式会社イマダ製)を用い、JPCA電気回路基板規格第3版第7項「性能試験」に準拠し、以下の条件で測定した。
 治具:90度剥離治具「P90-200N-BB」(株式会社イマダ製)
 引張速度:50mm/分
(3) Copper foil layer adhesion One side of each film (one of the two sides), an adhesive sheet (“LIOELM TSU (registered trademark) 500 series” (manufactured by Toyochem Industries Co., Ltd.)) and a 2 μm thick The copper plates were laminated with the adhesive sheet in the middle, and after thermo-compression bonding at 90°C, 0.5MPa, 0.5 minutes using a hot press, 180°C, 2.0MPa, 5 minutes, further 180°C. A laminate was obtained in which each film, the cured adhesive sheet, and the copper plate were laminated in this order under the conditions of post-curing at ℃ for 1 hour. Then, the adhesive strength was measured by peeling off the copper plate of the obtained laminate. The strength when peeling the copper foil layer from this sample was measured using a force gauge "DPRS-2TR" (manufactured by Imada Co., Ltd.) in accordance with Section 7 "Performance Test" of the JPCA Electrical Circuit Board Standards 3rd edition. , was measured under the following conditions.
Jig: 90 degree peeling jig “P90-200N-BB” (manufactured by Imada Co., Ltd.)
Tensile speed: 50mm/min
 得られた剥離強度について、以下の基準で評価した。なお、B以上を合格とした。
 A:剥離強度が、0.8N/mm以上である。
 B:剥離強度が、0.7N/mm以上、0.8N/mm未満である。
 C:剥離強度が、0.7N/mm未満である。
The obtained peel strength was evaluated based on the following criteria. Note that a score of B or higher was considered to be a pass.
A: Peel strength is 0.8 N/mm or more.
B: Peel strength is 0.7 N/mm or more and less than 0.8 N/mm.
C: Peel strength is less than 0.7 N/mm.
 (4)伝送損失
 各フィルムの片面(二つの面における一方の面)と、接着シート(「LIOELM TSU(登録商標)500シリーズ」(トーヨーケム工業株式会社製))と、厚さ2μmの銅板とを、接着シートが真ん中になるように積層し、熱プレスにて90℃、0.5MPa、0.5分の条件で熱圧着後、180℃、2.0MPa、5分、さらに、180℃、1時間のポストキュアの条件で、各フィルム、接着シートの硬化物、銅板がこの順に積層されてなる積層体を得た。
(4) Transmission loss One side of each film (one of the two sides), an adhesive sheet (“LIOELM TSU (registered trademark) 500 series” (manufactured by Toyochem Industries, Ltd.)), and a 2 μm thick copper plate , laminated so that the adhesive sheet is in the middle, heat-compressed at 90°C, 0.5 MPa, 0.5 minutes using a heat press, then 180°C, 2.0 MPa, 5 minutes, then 180°C, 1 A laminate was obtained in which each film, the cured adhesive sheet, and the copper plate were laminated in this order under post-curing conditions for a period of time.
 その後、特性インピーダンスが50Ωとなるよう銅箔層面に回路パターンとして配線幅140μm、長さ100mmのマイクロストリップラインを化学エッチング法により形成し、サンプルとした。当該サンプルを温度23℃・湿度65%RH環境下で24時間放置した直後に、ネットワークアナライザー「8722ES」(Agilent Technology株式会社製)、及びプローブ「ACP40-250」(カスケードマイクロテック株式会社製)を用いて、28GHzでの伝送損失(dB/10mm)を測定した。 Thereafter, a microstrip line with a wiring width of 140 μm and a length of 100 mm was formed as a circuit pattern on the surface of the copper foil layer by chemical etching so that the characteristic impedance was 50Ω, and a sample was prepared. Immediately after leaving the sample in an environment with a temperature of 23°C and a humidity of 65% RH for 24 hours, a network analyzer "8722ES" (manufactured by Agilent Technology Co., Ltd.) and a probe "ACP40-250" (manufactured by Cascade Microtech Co., Ltd.) were used. The transmission loss (dB/10mm) at 28 GHz was measured using the following.
 得られた伝送損失について、下記基準にて評価した。なお、B以上を合格とした。
 A:0.5dB/10mm未満である。
 B:0.5dB/10mm以上、1.5dB/10mm未満である。
 C:1.5dB/10mm以上である。
The obtained transmission loss was evaluated based on the following criteria. Note that a score of B or higher was considered to be a pass.
A: Less than 0.5 dB/10 mm.
B: 0.5 dB/10 mm or more and less than 1.5 dB/10 mm.
C: 1.5 dB/10 mm or more.
 (5)残留溶媒量
 前述の方法で残留溶媒量を測定した。
(5) Amount of residual solvent The amount of residual solvent was measured by the method described above.
 表II及び表IIIに、各フィルムの構成材料及び評価結果を示す。
 なお、表IIIにおいて、「表面自由エネルギー」の欄に記載の「A」及び「B」は、それぞれ表面自由エネルギーの値を意味する。「銅箔層密着性」及び「伝送損失」の欄に記載の「A」及び「B」は、それぞれ評価基準を意味する。
Table II and Table III show the constituent materials and evaluation results of each film.
In Table III, "A" and "B" in the "Surface Free Energy" column each mean the value of the surface free energy. "A" and "B" in the columns of "copper foil layer adhesion" and "transmission loss" respectively mean evaluation criteria.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <実施例2>
 構成材料及び製造条件を変更して、フィルム101~119を作製した。なお、フィルム109については、塗布液における樹脂とフィラーの添加順を変更して、フィルムを作製した。
<Example 2>
Films 101 to 119 were produced by changing the constituent materials and manufacturing conditions. In addition, regarding film 109, the film was produced by changing the order of addition of the resin and filler in the coating liquid.
 〔フィルム101の作製〕
 [フィルム101用塗布液の調製]
 下記成分を混合して、フィルム101用塗布液を得た。
 トルエン(沸点111℃)            150.0質量部
 樹脂P2                     67.0質量部
 フィラーF1                   33.0質量部
 なお、フィラーF1は分散液(「NS-06」:名古屋合成株式会社製)の状態で投入しており、トルエン全体の添加量が上記となるように別途トルエンを追加する形で調整した。調整後、マントンゴーリンホモジナイザーによる分散処理を3回実施し、フィラーF1含有液とした。その後、トルエンを投入した溶解釜に、フィラーF1含有液を投入して撹拌し、更に樹脂P1を投入して撹拌し、フィルム101用塗布液を得た。
[Preparation of film 101]
[Preparation of coating liquid for film 101]
A coating liquid for film 101 was obtained by mixing the following components.
Toluene (boiling point 111°C) 150.0 parts by mass Resin P2 67.0 parts by mass Filler F1 33.0 parts by mass Filler F1 was added in the form of a dispersion ("NS-06": manufactured by Nagoya Gosei Co., Ltd.). The total amount of toluene added was adjusted as above by adding toluene separately. After the adjustment, dispersion treatment using a Manton-Gorlin homogenizer was performed three times to obtain a filler F1-containing liquid. Thereafter, the filler F1-containing liquid was added to a dissolution pot containing toluene and stirred, and then the resin P1 was added and stirred to obtain a coating liquid for film 101.
 [フィルム101の形成]
 支持体S1の離型層上に、フィルム101用塗布液を、バックコート法によりダイを用いて塗布し、塗布膜を100℃、30分乾燥させることにより、厚さ50μmのフィルムを形成し、フィルム101を得た。
 得られたフィルムの厚さは、膜厚測定システム「F20-UV」(フィルメトリクス株式会社製)を用いて計測した。
[Formation of film 101]
On the release layer of the support S1, a coating solution for the film 101 is applied using a die by a back coating method, and the coating film is dried at 100 ° C. for 30 minutes to form a film with a thickness of 50 μm, Film 101 was obtained.
The thickness of the obtained film was measured using a film thickness measurement system "F20-UV" (manufactured by Filmetrics Co., Ltd.).
 〔フィルム102の作製〕
 乾燥条件を表IVに記載のとおりに変更した以外は、フィルム101の作製と同様にして、フィルム102を得た。
[Preparation of film 102]
Film 102 was obtained in the same manner as film 101 except that the drying conditions were changed as shown in Table IV.
 〔フィルム104の作製〕
 [フィルム104用塗布液の調製]
 下記成分を混合して、フィルム104用塗布液を得た。
 トルエン(沸点111℃)            150.0質量部
 樹脂P2                     66.7質量部
 フィラーF1                   33.0質量部
 界面活性剤D1                   0.5質量部
 なお、フィラーF1は分散液(「NS-06」:名古屋合成株式会社製)の状態で投入しており、トルエン全体の添加量が上記となるように別途トルエンを追加する形で調整した。調整後、マントンゴーリンホモジナイザーによる分散処理を3回実施し、フィラーF1含有液とした。その後、トルエンを投入した溶解釜に、フィラーF1含有液を投入して撹拌し、界面活性剤D1を投入して撹拌し、更に樹脂P2を投入して撹拌し、フィルム104用塗布液を得た。
[Preparation of film 104]
[Preparation of coating liquid for film 104]
A coating liquid for film 104 was obtained by mixing the following components.
Toluene (boiling point 111°C) 150.0 parts by mass Resin P2 66.7 parts by mass Filler F1 33.0 parts by mass Surfactant D1 0.5 parts by mass Filler F1 is a dispersion liquid ("NS-06": Nagoya Gosei Co., Ltd.), and the total amount of toluene added was adjusted by adding toluene separately so that the total amount added was as above. After the adjustment, dispersion treatment using a Manton-Gorlin homogenizer was performed three times to obtain a filler F1-containing liquid. Thereafter, the filler F1-containing solution was added to a dissolution pot containing toluene and stirred, surfactant D1 was added and stirred, and resin P2 was further added and stirred to obtain a coating liquid for film 104. .
 [フィルム104の形成]
 支持体S1の離型層上に、フィルム104用塗布液を、バックコート法によりダイを用いて塗布し、塗布膜を140℃、30分乾燥させることにより、厚さ50μmのフィルムを形成し、フィルム104を得た。
 得られたフィルムの厚さは、膜厚測定システム「F20-UV」(フィルメトリクス株式会社製)を用いて計測した。
[Formation of film 104]
On the release layer of the support S1, a coating liquid for the film 104 is applied using a die by a back coating method, and the coating film is dried at 140° C. for 30 minutes to form a film with a thickness of 50 μm, A film 104 was obtained.
The thickness of the obtained film was measured using a film thickness measurement system "F20-UV" (manufactured by Filmetrics Co., Ltd.).
 〔フィルム103、105、106、113及び114の作製〕
 構成材料の種類及び含有量を表IVに記載のとおりに変更した以外は、フィルム104の作製と同様にして、フィルム103、105、106、113及び114を得た。
[Production of films 103, 105, 106, 113 and 114]
Films 103, 105, 106, 113, and 114 were obtained in the same manner as in the production of film 104, except that the types and contents of the constituent materials were changed as shown in Table IV.
 〔フィルム107、108及び119の作製〕
 支持体の種類を表IVに記載のとおりに変更した以外は、フィルム104の作製と同様にして、フィルム107、108及び119を得た。
[Preparation of films 107, 108 and 119]
Films 107, 108, and 119 were obtained in the same manner as in the preparation of film 104, except that the type of support was changed as shown in Table IV.
 〔フィルム109の作製〕
 [フィルム109用塗布液の調製]
 下記成分を混合して、フィルム109用塗布液を得た。
 トルエン(沸点111℃)            150.0質量部
 樹脂P2                     66.7質量部
 フィラーF1                   33.0質量部
 界面活性剤D1                   0.5質量部
 なお、フィラーF1は分散液(「NS-06」:名古屋合成株式会社製)の状態で投入しており、トルエン全体の添加量が上記となるように別途トルエンを追加する形で調整した。調整後、マントンゴーリンホモジナイザーによる分散処理を3回実施し、フィラーF1含有液とした。その後、トルエンを投入した溶解釜に、樹脂P2を投入して撹拌し、フィラーF1含有液を投入して撹拌し、更に界面活性剤D1を投入して撹拌し、フィルム109用塗布液を得た。
[Preparation of film 109]
[Preparation of coating liquid for film 109]
A coating liquid for film 109 was obtained by mixing the following components.
Toluene (boiling point 111°C) 150.0 parts by mass Resin P2 66.7 parts by mass Filler F1 33.0 parts by mass Surfactant D1 0.5 parts by mass Filler F1 is a dispersion liquid ("NS-06": Nagoya Gosei Co., Ltd.), and the amount of toluene added was adjusted separately by adding toluene so that the total amount of toluene added was as above. After the adjustment, dispersion treatment using a Manton-Gorlin homogenizer was performed three times to obtain a filler F1-containing liquid. Thereafter, resin P2 was added to a dissolution pot containing toluene and stirred, filler F1-containing liquid was added and stirred, and surfactant D1 was further added and stirred to obtain a coating liquid for film 109. .
 [フィルム109の形成]
 支持体S1の離型層上に、フィルム109用塗布液を、バックコート法によりダイを用いて塗布し、塗布膜を140℃、30分乾燥させることにより、厚さ50μmのフィルムを形成し、フィルム109を得た。
 得られたフィルムの厚さは、膜厚測定システム「F20-UV」(フィルメトリクス株式会社製)を用いて計測した。
[Formation of film 109]
On the release layer of the support S1, a coating solution for the film 109 is applied using a die by a back coating method, and the coating film is dried at 140 ° C. for 30 minutes to form a film with a thickness of 50 μm, Film 109 was obtained.
The thickness of the obtained film was measured using a film thickness measurement system "F20-UV" (manufactured by Filmetrics Co., Ltd.).
 〔フィルム110の作製〕
 乾燥条件を以下のとおりに変更した以外は、フィルム101の作製と同様にして、フィルム110を得た。
 支持体S1の離型層上に、フィルム110用塗布液を、バックコート法によりダイを用いて塗布し、塗布膜を140℃、30分乾燥させた後、残留溶媒量が180質量ppmになるまで、100Paの真空度で加熱真空乾燥(HVCD)を行い、厚さ50μmのフィルムを形成し、フィルム110を得た。
[Preparation of film 110]
Film 110 was obtained in the same manner as film 101 except that the drying conditions were changed as follows.
On the release layer of the support S1, the coating solution for the film 110 is applied using a die by a back coating method, and after drying the coating film at 140° C. for 30 minutes, the amount of residual solvent becomes 180 mass ppm. Heat vacuum drying (HVCD) was performed at a vacuum degree of 100 Pa to form a film with a thickness of 50 μm, and a film 110 was obtained.
 〔フィルム111~112の作製〕
 乾燥条件を表IVに記載のとおりに変更した以外は、フィルム101の作製と同様にして、フィルム111~112を得た。
[Preparation of films 111 to 112]
Films 111 to 112 were obtained in the same manner as in the production of film 101, except that the drying conditions were changed as shown in Table IV.
 〔フィルム115~117の作製〕
 構成材料の種類及び含有量、支持体の種類、並びに乾燥条件を表IVに記載のとおりに変更した以外は、フィルム101の作製と同様にして、フィルム115~117を得た。
[Preparation of films 115 to 117]
Films 115 to 117 were obtained in the same manner as film 101, except that the types and contents of constituent materials, the types of supports, and drying conditions were changed as shown in Table IV.
 [評価]
 得られたフィルム101~119について、実施例1と同様の測定及び評価を行った。表IV及び表Vに各フィルムの構成材料、製造条件及び評価結果を示す。
 なお、表Vにおいて、「表面自由エネルギー」の欄に記載の「A」及び「B」は、それぞれ表面自由エネルギーの値を意味する。「銅箔層密着性」及び「伝送損失」の欄に記載の「A」及び「B」は、それぞれ評価基準を意味する。
[evaluation]
The obtained films 101 to 119 were subjected to the same measurements and evaluations as in Example 1. Table IV and Table V show the constituent materials, manufacturing conditions, and evaluation results of each film.
In Table V, "A" and "B" in the "Surface Free Energy" column each mean the value of the surface free energy. "A" and "B" in the columns of "copper foil layer adhesion" and "transmission loss" respectively mean evaluation criteria.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の実施例と比較例より、本発明のフィルムは、伝送損失を低減し、かつ銅箔層との接着性に優れることがわかる。 The Examples and Comparative Examples of the present invention show that the film of the present invention reduces transmission loss and has excellent adhesion to the copper foil layer.
 フィルム3、9及び13の比較から、フィルムの、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、0.0010~0.0150の範囲内であることにより、フィルムの誘電損失の低減及びフィルムと銅箔層との接着性を両立できる。 From a comparison of Films 3, 9, and 13, it was found that the dielectric loss tangent of the film at a frequency of 28 GHz in an environment of 22°C and 60% RH was within the range of 0.0010 to 0.0150. It is possible to achieve both reduction and adhesion between the film and the copper foil layer.
 フィルム3、6、10及び11の比較から、フィラーの含有量が、フィルムの全質量に対して、15.0~50.0質量%の範囲内であることにより、フィルムの誘電損失の低減及びフィルムと銅箔層との接着性を両立できる。 From a comparison of Films 3, 6, 10, and 11, it was found that the filler content was within the range of 15.0 to 50.0% by mass based on the total mass of the film, thereby reducing the dielectric loss of the film and It is possible to achieve both adhesion between the film and the copper foil layer.
 フィルム101及び110~112の比較から、フィルムの残留溶媒量が、200~3000質量ppmの範囲内であることにより、フィルムの誘電損失の低減及びフィルムと銅箔層との接着性を両立できる。 From a comparison of Films 101 and 110 to 112, it is possible to achieve both reduction in dielectric loss of the film and adhesion between the film and the copper foil layer by setting the amount of residual solvent in the film within the range of 200 to 3000 mass ppm.
 フィルム102、105、113及び114の比較から、フィルムが、更に界面活性剤を含有し、界面活性剤の含有量が、フィルムの全質量に対して、0.10~1.00質量%の範囲内であることにより、フィルムの誘電損失の低減及びフィルムと銅箔層との接着性を両立できる。 Comparison of films 102, 105, 113 and 114 shows that the film further contains a surfactant, and the content of the surfactant is in the range of 0.10 to 1.00% by mass based on the total mass of the film. By being within the range, it is possible to achieve both reduction in dielectric loss of the film and adhesion between the film and the copper foil layer.
 フィルム101~119の比較から、フィルムの相対する二つの面において、表面自由エネルギーが、共に、25.00~75.00mJ/mの範囲内であることにより、フィルムの誘電損失の低減及びフィルムと銅箔層との接着性を両立できる。 From the comparison of Films 101 to 119, it was found that the surface free energies of the two opposing sides of the film were both within the range of 25.00 to 75.00 mJ/m 2 , which resulted in a reduction in the dielectric loss of the film and a reduction in the film's dielectric loss. and adhesion to the copper foil layer.
 フィルム104、107、108及び119の比較から、フィルムの製造方法において、支持体における表面自由エネルギーが、30.00~80.00mJ/mの範囲内であることにより、相対する二つの面において、表面自由エネルギーが、上記(式1)及び(式2)を満たすフィルムを製造できる。 From a comparison of Films 104, 107, 108 and 119, it was found that in the film manufacturing method, the surface free energy of the support was within the range of 30.00 to 80.00 mJ/m 2 , so that , a film whose surface free energy satisfies the above (Formula 1) and (Formula 2) can be manufactured.
 フィルム104及び109の比較から、フィルムの製造方法の、塗布液を調製する工程において、フィラーを溶媒に溶解又は分散させたフィラー含有液に樹脂を添加することにより、フィルムの誘電損失を低減できる。 From the comparison of Films 104 and 109, the dielectric loss of the film can be reduced by adding a resin to the filler-containing liquid in which the filler is dissolved or dispersed in a solvent in the process of preparing the coating liquid in the film manufacturing method.
 本発明を用いることにより、誘電損失を低減し、かつ銅箔層との接着性に優れたフィルム等を提供できる。また、当該フィルム等を用いることにより、高周波数帯での使用に対応した通信機器等を提供できる。 By using the present invention, it is possible to provide a film, etc. that reduces dielectric loss and has excellent adhesiveness to a copper foil layer. Furthermore, by using the film, etc., it is possible to provide communication equipment and the like that are compatible with use in high frequency bands.
 100 金属張積層板(片面)
 101 金属層
 102 接着層
 103 フィルム
 104 接着層
 105 金属層
 110 金属張積層板(両面)
 200 回路基板(片面構造)
 201 金属層
 202 接着層
 203 フィルム
 204 接着層
 205 金属層
 206 配線層
 207 接着層
 210 回路基板(両面構造)
 220 回路基板(多層構造)
 γ  固体の表面張力
 γ  液体の表面張力
 γSL  固体-液体間の界面張力
 θ   液体の固体に対する接触角
 WSL  付着仕事
100 Metal clad laminate (single side)
101 Metal layer 102 Adhesive layer 103 Film 104 Adhesive layer 105 Metal layer 110 Metal-clad laminate (both sides)
200 Circuit board (single-sided structure)
201 Metal layer 202 Adhesive layer 203 Film 204 Adhesive layer 205 Metal layer 206 Wiring layer 207 Adhesive layer 210 Circuit board (double-sided structure)
220 Circuit board (multilayer structure)
γ S surface tension of solid γ L surface tension of liquid γ SL solid-liquid interfacial tension θ contact angle of liquid with solid W SL work of adhesion

Claims (14)

  1.  樹脂及びフィラーを含有するフィルムであって、
     前記樹脂及び前記フィラーの、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、共に、0.0150以下であり、
     前記フィラーの含有量が、当該フィルムの全質量に対して、1.0~70.0質量%の範囲内であり、
     当該フィルムの相対する二つの面において、表面自由エネルギーをそれぞれA[mJ/m]及びB[mJ/m]としたとき、下記式を満たす
     (式1) A≦B
     (式2) 1≦B/A<1.30
     ことを特徴とするフィルム。
    A film containing a resin and a filler,
    The dielectric loss tangents of the resin and the filler at a frequency of 28 GHz in an environment of 22° C. and 60% RH are both 0.0150 or less,
    The content of the filler is within the range of 1.0 to 70.0% by mass based on the total mass of the film,
    When the surface free energies of the two opposing surfaces of the film are respectively A [mJ/m 2 ] and B [mJ/m 2 ], the following formula is satisfied (Formula 1) A≦B
    (Formula 2) 1≦B/A<1.30
    A film characterized by
  2.  当該フィルムの、22℃・60%RH環境下での周波数28GHzにおける誘電正接が、0.0010~0.0150の範囲内である
     ことを特徴とする請求項1に記載のフィルム。
    The film according to claim 1, wherein the dielectric loss tangent of the film at a frequency of 28 GHz in an environment of 22° C. and 60% RH is within the range of 0.0010 to 0.0150.
  3.  前記フィラーの含有量が、当該フィルムの全質量に対して、15.0~50.0質量%の範囲内である
     ことを特徴とする請求項1又は請求項2に記載のフィルム。
    The film according to claim 1 or 2, wherein the content of the filler is within the range of 15.0 to 50.0% by mass based on the total mass of the film.
  4.  当該フィルムの残留溶媒量が、200~3000質量ppmの範囲内である
     ことを特徴とする請求項1又は請求項2に記載のフィルム。
    The film according to claim 1 or 2, wherein the amount of residual solvent in the film is within the range of 200 to 3000 ppm by mass.
  5.  当該フィルムが、更に界面活性剤を含有し、
     前記界面活性剤の含有量が、当該フィルムの全質量に対して、0.10~1.00質量%の範囲内である
     ことを特徴とする請求項1又は請求項2に記載のフィルム。
    The film further contains a surfactant,
    The film according to claim 1 or 2, wherein the content of the surfactant is within the range of 0.10 to 1.00% by mass based on the total mass of the film.
  6.  当該フィルムの相対する二つの面において、表面自由エネルギーが、共に、25.00~75.00mJ/mの範囲内である
     ことを特徴とする請求項1又は請求項2に記載のフィルム。
    The film according to claim 1 or 2, wherein the surface free energy of two opposing surfaces of the film are both within the range of 25.00 to 75.00 mJ/m 2 .
  7.  前記樹脂のガラス転移温度が、200℃以上である
     ことを特徴とする請求項1又は請求項2に記載のフィルム。
    The film according to claim 1 or 2, wherein the resin has a glass transition temperature of 200°C or higher.
  8.  前記樹脂及び前記フィラーが、沸点が150℃以下である溶媒に対して、可溶性又は分散性を有する
     ことを特徴とする請求項1又は請求項2に記載のフィルム。
    The film according to claim 1 or 2, wherein the resin and the filler are soluble or dispersible in a solvent having a boiling point of 150° C. or lower.
  9.  請求項1又は請求項2に記載のフィルムを製造するフィルムの製造方法であって、
     前記樹脂、前記フィラー及び溶媒を含む塗布液を調製する工程、
     前記塗布液を支持体上に塗布し、塗布膜を形成する工程、及び
     前記塗布膜を乾燥させる工程、を有し、
     前記支持体における表面自由エネルギーが、30~80mJ/mの範囲内である
     ことを特徴とするフィルムの製造方法。
    A film manufacturing method for manufacturing the film according to claim 1 or claim 2, comprising:
    preparing a coating liquid containing the resin, the filler, and a solvent;
    a step of applying the coating liquid onto a support to form a coating film, and a step of drying the coating film,
    A method for producing a film, characterized in that the surface free energy of the support is within a range of 30 to 80 mJ/m 2 .
  10.  前記塗布液を調製する工程において、前記フィラーを前記溶媒に溶解又は分散させたフィラー含有液に前記樹脂を添加する
     ことを特徴とする請求項9に記載のフィルムの製造方法。
    10. The method for producing a film according to claim 9, wherein in the step of preparing the coating liquid, the resin is added to a filler-containing liquid in which the filler is dissolved or dispersed in the solvent.
  11.  前記溶媒の沸点が、150℃以下である
     ことを特徴とする請求項9又は請求項10に記載のフィルムの製造方法。
    The method for producing a film according to claim 9 or 10, wherein the boiling point of the solvent is 150°C or less.
  12.  請求項1又は請求項2に記載のフィルムを含む
     ことを特徴とする金属張積層板。
    A metal-clad laminate comprising the film according to claim 1 or claim 2.
  13.  請求項12に記載の金属張積層板を具備する
     ことを特徴とする回路基板。
    A circuit board comprising the metal-clad laminate according to claim 12.
  14.  請求項13に記載の回路基板を具備する
     ことを特徴とする電子機器。
    An electronic device comprising the circuit board according to claim 13.
PCT/JP2023/021676 2022-06-30 2023-06-12 Film, method for producing same, metal clad laminated board, circuit board, and electronic device WO2024004604A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022105330 2022-06-30
JP2022-105330 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024004604A1 true WO2024004604A1 (en) 2024-01-04

Family

ID=89382857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021676 WO2024004604A1 (en) 2022-06-30 2023-06-12 Film, method for producing same, metal clad laminated board, circuit board, and electronic device

Country Status (1)

Country Link
WO (1) WO2024004604A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159060A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Multilayer adhesive film and flexible metal-clad laminate
JP2021161185A (en) * 2020-03-31 2021-10-11 日鉄ケミカル&マテリアル株式会社 Resin composition, method for producing the same, resin film and metal-clad laminate
JP2021195446A (en) * 2020-06-12 2021-12-27 日鉄ケミカル&マテリアル株式会社 Resin film and method for producing the same, metal-clad laminate and printed wiring board
JP2022126429A (en) * 2021-02-18 2022-08-30 富士フイルム株式会社 Polymer film and laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159060A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Multilayer adhesive film and flexible metal-clad laminate
JP2021161185A (en) * 2020-03-31 2021-10-11 日鉄ケミカル&マテリアル株式会社 Resin composition, method for producing the same, resin film and metal-clad laminate
JP2021195446A (en) * 2020-06-12 2021-12-27 日鉄ケミカル&マテリアル株式会社 Resin film and method for producing the same, metal-clad laminate and printed wiring board
JP2022126429A (en) * 2021-02-18 2022-08-30 富士フイルム株式会社 Polymer film and laminate

Similar Documents

Publication Publication Date Title
JP7469383B2 (en) Metal-clad laminates and circuit boards
JP5049784B2 (en) Metal-coated polyimide film
JP5235211B2 (en) Laminate for flexible substrate and thermally conductive polyimide film
WO2013036077A2 (en) Flexible metal laminate containing fluorocarbon resin
JP7446741B2 (en) Metal-clad laminates and circuit boards
WO2019131805A1 (en) Dispersion, metal laminate plate, and production method for printed board
JP2010163625A (en) Polyimide film with enhanced sliding property and substrate employing it
JP6403460B2 (en) Metal-clad laminate, circuit board and polyimide
JP2017165909A (en) Polyimide, resin film, and metal clad laminate
JP7371681B2 (en) Liquid composition, powder, and method for producing powder
JP2010201625A (en) Laminate for flexible substrate and thermally conductive polyimide film
JP6491947B2 (en) Fluorine-based resin-containing polyimide precursor solution composition, polyimide using the same, polyimide film, and production method thereof
KR20170006232A (en) Metal laminate with polyimide resin and method for manufaturing thereof
WO2021095662A1 (en) Nonaqueous dispersions, method for producing layered product, and molded object
JP6105724B2 (en) Polyimide metal-clad laminate
JP2021091858A (en) Liquid composition and method for producing laminate
TW202140622A (en) Resin film, metal-clad laminate and circuit board wherein the resin film includes a liquid crystal polymer layer, a first adhesive layer, and a second adhesive layer
JP5254752B2 (en) Multilayer polyimide film
TWI771500B (en) Polyimide film, metal-clad laminate and circuit substrate
JP2021195446A (en) Resin film and method for producing the same, metal-clad laminate and printed wiring board
JPWO2007083526A1 (en) Polyimide film and use thereof
JP7428646B2 (en) Metal-clad laminates and circuit boards
WO2024004604A1 (en) Film, method for producing same, metal clad laminated board, circuit board, and electronic device
US20220339920A1 (en) Polyimide composite film for use in flexible metal clad substrate
JP2015527220A (en) Polyimide metal-clad laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831053

Country of ref document: EP

Kind code of ref document: A1