WO2024004583A1 - Prediction device, prediction system, and prediction program - Google Patents

Prediction device, prediction system, and prediction program Download PDF

Info

Publication number
WO2024004583A1
WO2024004583A1 PCT/JP2023/021499 JP2023021499W WO2024004583A1 WO 2024004583 A1 WO2024004583 A1 WO 2024004583A1 JP 2023021499 W JP2023021499 W JP 2023021499W WO 2024004583 A1 WO2024004583 A1 WO 2024004583A1
Authority
WO
WIPO (PCT)
Prior art keywords
talbot
composite material
prediction
information
ray
Prior art date
Application number
PCT/JP2023/021499
Other languages
French (fr)
Japanese (ja)
Inventor
友香子 ▲高▼
茂 小島
みゆき 岡庭
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2024004583A1 publication Critical patent/WO2024004583A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather

Definitions

  • the present invention relates to a prediction device, a prediction system, and a prediction program.
  • the composite material includes, for example, a resin and a filler. By adding a filler to the resin, for example, it becomes possible to achieve high mechanical properties.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a prediction device, a prediction system, and a prediction program that can predict the mechanical strength of a composite material.
  • Talbot information obtained by measuring a composite material containing a filler and resin using an X-ray Talbot-Low device; and measurement information obtained by measuring the composite material by one or more measuring devices different from the X-ray Talbot-Low device. and a prediction unit that predicts the mechanical strength of the composite material based on the acquired Talbot information and the measurement information.
  • the one or more measuring devices measure at least one of the acoustic properties, atomic properties, electrical properties, magnetic properties, mechanical properties, optical properties, radiation properties, thermal properties, and surface state of the composite material.
  • the one or more measurement devices include a scanning electron microscope, an infrared spectrometer, an impedance spectrometer, a terahertz wave spectrometer, an ultrasonic measurement device, a Raman spectrometer, an X-ray diffraction device, and a differential scanning device.
  • the measurement information includes information regarding at least one of a filler diameter of the filler, a filler length of the filler, a content rate of the filler, and a degree of crystallinity of the resin.
  • the one or more measurement devices include at least one of a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, or an X-ray diffraction device.
  • the extraction unit further includes an extraction unit that extracts a feature amount from each of the acquired Talbot information and the measurement information, and the prediction unit receives the extracted feature amount as input and predicts the mechanical strength (11) above. ).
  • an X-ray Talbot-Low device that measures a composite material containing a filler and a resin; and one or more measuring devices that measure the composite material, unlike the X-ray Talbot-Low device;
  • a prediction system comprising the prediction device according to any one of (13) to (13).
  • step (a) The prediction program according to (15) above, wherein in step (a), the Talbot information and the measurement information including information on the same area in the composite material are acquired.
  • step (a) the composite material is measured by the measuring device including at least one of a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, or an X-ray diffraction device. prediction program.
  • a prediction device, a prediction system, and a prediction program according to the present invention acquire Talbot information obtained by measuring a composite material with an X-ray Talbot-Lau device and measurement information measured by another measurement device, and based on these, Predict the mechanical strength of materials. This makes it possible to predict the mechanical strength of the composite material.
  • FIG. 1 is a diagram showing the overall configuration of a prediction system.
  • FIG. 2 is a block diagram showing a schematic configuration of a prediction device.
  • FIG. 1 is an overall schematic diagram of an X-ray Talbot-Low apparatus.
  • FIG. 2 is a diagram explaining the principle of a Talbot interferometer.
  • FIG. 3 is a schematic plan view of a source grating, a first grating, and a second grating.
  • 2 is a diagram showing another example of the prediction system shown in FIG. 1.
  • FIG. 1 is a diagram showing the overall configuration of a prediction system.
  • the prediction system includes, for example, a prediction device 100, an X-ray Talbot-Lau device 200, and a measurement device 300.
  • This prediction system predicts the mechanical strength of composite materials.
  • mechanical strength is an index representing the durability of a composite material against physical external forces such as compression and tension, and in other words, it is the strength with which a composite material can withstand deformation and destruction.
  • the mechanical strength of a composite material is determined by fracture strength, fracture elongation, fracture toughness, elastic modulus, tensile modulus, flexural modulus, upper yield point stress, yield strength, plasticity, tensile strength, elongation, These include bending strength, fracture energy, and hardness.
  • the composite material contains filler and resin.
  • the resin contained in the composite material is, for example, a known thermosetting resin or thermoplastic resin.
  • polyolefin resins such as polyethylene resin (PE), polypropylene resin (PP), maleic anhydride-modified polypropylene (MAHPP), epoxy resins, phenol resins, unsaturated polyester resins, vinyl ester resins, polycarbonate resins, Polyester resin, polyamide (PA) resin, liquid crystal polymer resin, polyethersulfone resin, polyetheretherketone resin, polyarylate resin, polyphenylene ether resin, polyphenylene sulfide (PPS) resin, polyacetal resin, polysulfone resin, polyimide resin , polyetherimide resin, polystyrene resin, modified polystyrene resin, AS resin (copolymer of acrylonitrile and styrene), ABS resin (copolymer of acrylonitrile, butadiene and styrene), modified ABS
  • the filler contained in the composite material is added to the resin, for example, for the purpose of improving the strength of the composite material.
  • the filler is added to the resin at a concentration of 0.1% to 50% by volume, for example.
  • the filler has, for example, a fiber shape or a particle shape.
  • the fiber-shaped filler include glass fiber (GF), carbon fiber (CF), aramid fiber, alumina fiber, silicon carbide fiber, boron fiber, and silicon carbide fiber.
  • CF for example, polyacrylonitrile (PAN type), pitch type, cellulose type, hydrocarbon vapor growth type carbon fiber, graphite fiber, etc. can be used.
  • E glass and S glass can be used as the GF.
  • the composite material includes at least one of glass fiber (GF) and carbon fiber (CF).
  • GF glass fiber
  • CF carbon fiber
  • the orientation state of fillers can be easily measured using the X-ray Talbot-Low apparatus 200, making it possible to improve the accuracy of predicting mechanical strength. .
  • Particle-shaped fillers include, for example, calcium carbonate (CaCo 3 ), talc (Mg 3 Si 4 O 10 (OH) 2 ), barium sulfate (BaSO 4 ), mica (Si, Al, Mg, K), aluminum hydroxide. (Al(OH) 3 ), magnesium hydroxide (Mg(OH) 2 ), titanium oxide (TiO 2 ), zinc oxide (ZnO 2 ), antimony oxide (Sb 2 O 3 ), kaolin clay (Al 2 O 3 . 2SiO 2 .2H 2 O) and carbon black.
  • the filler contained in the composite resin material may be one type of these fillers, or two or more types may be mixed.
  • the composite material may contain a sensitivity modifier.
  • a sensitivity adjustment agent is a sample that functions like a contrast agent used in X-ray photography and enables measurements with higher accuracy and sensitivity when measuring composite materials.
  • the composite material containing the sensitivity modifier By measuring the composite material containing the sensitivity modifier using the X-ray Talbot-Lau apparatus 200 and the measuring device 300, it is possible to perform the measurement with higher accuracy.
  • the measurement device 300 is a Raman spectrometer
  • zirconium tungstate as a sensitivity modifier changes the Raman shift and generates information (measurement information described below) regarding the optical properties of the composite material with higher precision. It becomes possible to do so.
  • the measuring device 300 is a fluorescence microscope, if a fluorescent dye is used as the sensitivity adjusting agent, it becomes possible to generate measurement information of the composite material with higher accuracy.
  • the sensitivity modifier contained in the composite material has a small effect on the physical properties of the composite material. This allows the composite material measured by the X-ray Talbot-Lau apparatus 200 and the measuring device 300 to be used in molded products. For measurement with the X-ray Talbot-Lau apparatus 200 and the measuring device 300, a test piece of a composite material containing a sensitivity modifier may be prepared.
  • the prediction device 100 is, for example, a computer such as a PC, a smartphone, or a tablet terminal.
  • the prediction device 100 is configured to be connectable to the X-ray Talbot-Lau device 200 and the measurement device 300, and transmits and receives various information to and from each device.
  • FIG. 2 is a block diagram showing a schematic configuration of the prediction device 100.
  • the prediction device 100 includes a CPU (Central Processing Unit) 110, a ROM (Read Only Memory) 120, a RAM (Random Access Memory) 130, a storage 140, a communication interface 150, a display Section 160, and operation reception 170.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • storage 140 a storage 140
  • communication interface 150 a display Section 160
  • operation reception 170 Each configuration is communicably connected to each other via a bus.
  • the CPU 110 controls each of the above components and performs various calculation processes according to programs recorded in the ROM 120 and the storage 140.
  • the ROM 120 stores various programs and various data.
  • the RAM 130 temporarily stores programs and data as a work area.
  • the storage 140 stores various programs including an operating system and various data. For example, an application for predicting the mechanical strength of a composite material using a learned classifier is installed in the storage 140. Further, the storage 140 may store Talbot information and measurement information, which will be described later, acquired from the X-ray Talbot-Lau apparatus 200 and the measurement device 300. Furthermore, the storage 140 may store trained models used as classifiers and teacher data used for machine learning.
  • the communication interface 150 is an interface for communicating with other devices.
  • a wired or wireless communication interface according to various standards is used.
  • the communication interface 150 is used, for example, to receive Talbot information and measurement information from the X-ray Talbot-Lau apparatus 200 and the measurement device 300, and to send the predicted results of mechanical strength to a server or the like for storage. .
  • the display unit 160 includes an LCD (liquid crystal display), an organic EL display, etc., and displays various information.
  • the display unit 160 may be configured by viewer software, a printer, or the like.
  • the display section 160 functions as an output section.
  • the operation reception unit 170 includes a touch sensor, a pointing device such as a mouse, a keyboard, etc., and accepts various operations from the user.
  • the display section 160 and the operation reception section 170 may constitute a touch panel by superimposing a touch sensor as the operation reception section 170 on a display surface as the display section 160.
  • the X-ray Talbot-Lau device 200 measures the composite material and generates Talbot information.
  • the X-ray Talbot-Lau apparatus 200 measures the composite material and generates Talbot information.
  • the X-ray Talbot-Lau apparatus 200 measures the composite material and generates Talbot information.
  • Talbot information including information regarding the orientation of the filler in the composite material can be obtained.
  • the orientation of the filler likely affects the mechanical strength of the composite material.
  • the X-ray Talbot-Lau apparatus 200 makes it possible to acquire Talbot information on a wide range of composite materials in a short time. Therefore, by predicting the mechanical strength of the composite resin based on the Talbot information, it becomes possible to predict the mechanical strength with high accuracy.
  • the X-ray Talbot-Lau apparatus 200 uses, for example, a Talbot-Lau interferometer that includes a source grating (the source grating 12 in FIG. 3, which will be described later, is also referred to as a multi-grating, multi-slit, G0 grating, etc.). be.
  • the X-ray Talbot-Lau apparatus 200 does not need to have a source grating, for example, a first grating (also referred to as the first grating 14 in FIG.
  • a Talbot interferometer including only the second grating 15 (also referred to as G2 grating) in FIG. 3 may be used.
  • FIG. 3 is a diagram showing an example of the configuration of the X-ray Talbot-Lau apparatus 200.
  • the X-ray Talbot-Lau apparatus 200 includes an X-ray generator 11, the above-described source grating 12, an object stage 13, the above-described first grating 14, the above-described second grating 15, and an X-ray detector 16. , a support 17 , and a base portion 18 .
  • a moire image Mo (FIG. 4) of a composite material H placed at a predetermined position with respect to the subject stage 13 can be photographed using a method based on the principle of the fringe scanning method,
  • a Fourier transform method By analyzing the image Mo using a Fourier transform method, at least three types of images (two-dimensional images) can be reconstructed (referred to as reconstructed images). That is, an absorption image (same as a normal X-ray absorption image) that visualizes the average component of the moire fringe in the moire image Mo, a differential phase image that visualizes the phase information of the moire fringe, and a visibility (clear image) of the moire fringe.
  • absorption image (same as a normal X-ray absorption image) that visualizes the average component of the moire fringe in the moire image Mo
  • a differential phase image that visualizes the phase information of the moire fringe
  • a visibility (clear image) of the moire fringe These are three types of small-angle scattering images.
  • the fringe scanning method means that one of multiple gratings is 1/M of the slit period of the grating (M is a positive integer, M>2 for absorption images, M>3 for differential phase images and small-angle scattering images).
  • M is a positive integer, M>2 for absorption images, M>3 for differential phase images and small-angle scattering images.
  • reconstruction is performed using a moiré image Mo taken M times by moving each moiré image Mo in the slit period direction to obtain a high-definition reconstructed image.
  • the Fourier transform method is to take one moire image Mo with the X-ray Talbot-Lau apparatus 200 in the presence of the composite material H, and in image processing, perform Fourier transform on the moire image Mo to differentiate it. This is a method of reconstructing and generating images such as phase images.
  • FIG. 4 shows the case of a Talbot interferometer
  • the explanation is basically the same for the case of a Talbot-Lau interferometer.
  • the z direction in FIG. 4 corresponds to the vertical direction in the X-ray Talbot-Low apparatus 200 in FIG. 3, and the x and y directions in FIG. direction).
  • the first grating 14 and the second grating 15 (also the source grating 12 in the case of Talbot-Lau interferometer) have an A plurality of slits S are arranged and formed at a predetermined period d in the direction.
  • This arrangement of slits S is a one-dimensional lattice, and the arrangement of slits S in the x and y directions is a two-dimensional lattice.
  • the source grating 12, the first grating 14, and the second grating 15 are, for example, composed of one-dimensional gratings, but may also be composed of two-dimensional gratings.
  • the X-rays irradiated from the X-ray source 11a (in the case of the Talbot-Lau interferometer, the X-rays irradiated from the X-ray source 11a are multiplied by the source grating 12 (not shown in FIG. 4).
  • the source grating 12 (not shown in FIG. 4).
  • the transmitted X-rays form images at regular intervals in the z direction. This image is called a self-image (also called a lattice image, etc.), and the phenomenon in which self-images are formed at regular intervals in the z direction is called the Talbot effect.
  • the Talbot effect means that when coherent light passes through the first grating 14 in which slits S are provided at a constant period d as shown in FIG. It refers to the phenomenon of forming one's self-image at regular intervals.
  • a second grating 15 provided with slits S like the first grating 14 is placed at a position where the self-image of the first grating 14 focuses.
  • the extending direction of the slits S of the second grating 15 that is, the x-axis direction in FIG. 4
  • the second A moire image Mo is obtained on the grid 15.
  • the X-ray Talbot-Lau apparatus 200 for example as shown in FIG. It is set to be placed. Furthermore, as described above, if the second grating 15 and the X-ray detector 16 are separated, the moire image Mo (see FIG. 4) will become blurred, so the X-ray detector 16 should be placed directly below the second grating 15. is preferred.
  • the second grating 15 may be made of a light emitting material such as a scintillator or amorphous selenium, and the second grating 15 and the X-ray detector 16 may be integrated.
  • the second cover unit 180 is used to protect the X-ray detector 16, etc. by preventing people or objects from colliding with or touching the first grating 14, the second grating 15, the X-ray detector 16, etc. It is set in.
  • conversion elements that generate electrical signals according to irradiated X-rays are arranged in a two-dimensional form (matrix form), and the electrical signals generated by the conversion elements are converted into images. It is configured to be read as a signal.
  • the X-ray detector 16 is configured to capture, for example, the moire image Mo, which is an X-ray image formed on the second grating 15, as an image signal for each conversion element.
  • the pixel size of the X-ray detector 16 is 10 to 300 ( ⁇ m), more preferably 50 to 200 ( ⁇ m).
  • an FPD Felat Panel Detector
  • FPDs There are two types of FPDs: an indirect conversion type that converts detected X-rays into electrical signals via a photoelectric conversion element, and a direct conversion type that converts detected X-rays directly into electrical signals. Good too.
  • a photoelectric conversion element is arranged two-dimensionally together with a TFT (thin film transistor) under a scintillator plate such as CsI or Gd 2 O 2 S to form each pixel.
  • a scintillator plate such as CsI or Gd 2 O 2 S to form each pixel.
  • an amorphous selenium film with a thickness of 100 to 1000 ( ⁇ m) is formed on glass by thermal evaporation of amorphous selenium, and the amorphous selenium film and electrodes are placed on a two-dimensional array of TFTs. Deposited.
  • the amorphous selenium film absorbs X-rays, a voltage is liberated within the material in the form of electron-hole pairs, and the voltage signal between the electrodes is read by the TFT.
  • an imaging means such as a CCD (Charge Coupled Device) or an X-ray camera may be used as the X-ray detector 16.
  • the X-ray Talbot-Lau apparatus 200 is configured to take a plurality of moiré images Mo using, for example, a so-called fringe scanning method. That is, in this X-ray Talbot-Lau apparatus 200, the relative positions of the first grating 14 and the second grating 15 are set in the x-axis direction (that is, perpendicular to the extending direction (y-axis direction) of the slit S) in FIGS. A plurality of moiré images Mo are photographed while shifting the moiré images Mo in the direction of
  • the X-ray Talbot-Lau apparatus 200 reconstructs an absorption image, a differential phase image, a small-angle scattering image, etc. (that is, image reconstruction) based on a plurality of captured moiré images Mo. ing.
  • the reconstruction process may be performed by the prediction device 100.
  • the X-ray Talbot-Lau apparatus 200 is capable of moving the first grating 14 by a predetermined amount in the x-axis direction, for example, in order to capture a plurality of moiré images Mo using the fringe scanning method. Note that it is also possible to move the second grating 15 instead of moving the first grating 14, or to move both of them.
  • the X-ray Talbot-Lau device 200 captures only one moiré image Mo while fixing the relative positions of the first grating 14 and the second grating 15, and other devices (for example, an image processing device or a prediction device) In the image processing in 100), it is also possible to reconstruct an absorption image, a differential phase image, etc. by analyzing this moiré image Mo using a Fourier transform method or the like.
  • This X-ray Talbot-Lau apparatus 200 is of a so-called vertical type, and the X-ray generator 11, the source grating 12, the subject stage 13, the first grating 14, the second grating 15, and the X-ray detector 16 are arranged in this order. is placed in the z direction, which is the direction of gravity. That is, here, the z direction is the irradiation direction of the X-rays from the X-ray generator 11.
  • the X-ray generator 11 includes, as an X-ray source 11a, a Coolidge X-ray source, a rotating anode X-ray source, etc., which are widely used in medical settings, for example. It is also possible to use other X-ray sources.
  • the X-ray generator 11 is configured, for example, to emit X-rays from a focal point in the form of a cone beam. That is, as shown in FIG.
  • X-rays are irradiated with the X-ray irradiation axis Ca coinciding with the z direction as the central axis, and the X-rays are irradiated so as to spread further away from the X-ray generator 11 (that is, the X-ray irradiation range).
  • a source grating 12 is provided below the X-ray generator 11.
  • the source grating 12 is not attached to the X-ray generator 11 and is attached to a support. It is preferable to attach it to a fixing member 12a attached to a base part 18 provided at 17.
  • a buffer member 17a is provided between the X-ray generator 11 and the support column 17.
  • the fixed member 12a includes, for example, a filtration filter (also referred to as an additional filter) 192 for changing the quality of the X-rays transmitted through the source grating 12, and a filter for changing the quality of the X-rays transmitted through the source grating 12.
  • a filtration filter also referred to as an additional filter
  • An irradiation field aperture 193 for narrowing down the irradiation field, and an irradiation field lamp 194 for irradiating the subject with visible light instead of X-rays to perform positioning before irradiating the X-rays are attached.
  • a first cover unit 190 is arranged around the source grating 12 and the like to protect them.
  • the subject stage 13 is a stage on which the composite material H is placed, and can function as a rotation stage that rotates the composite material H around the z-axis.
  • the controller 19 (see FIG. 3) is composed of a computer in which a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input/output interface, etc. (not shown) are connected to a bus. has been done. Note that it is also possible to configure the controller 19 as a dedicated control device instead of a general-purpose computer as in this embodiment. Further, although not shown, the controller 19 is provided with appropriate means and devices such as an input means including an operation section, an output means, a storage means, and a communication means.
  • the output means includes a display unit (not shown) that displays information necessary for performing various operations of the X-ray Talbot-Lau apparatus 200 and generated reconstructed images.
  • the controller 19 is designed to perform general control over the X-ray Talbot-Low apparatus 200. That is, for example, the controller 19 is connected to the X-ray generator 11, and can set the tube voltage, tube current, irradiation time, etc. for the X-ray source 11a. Further, for example, it is also possible to configure the controller 19 to relay transmission and reception of signals and data between the X-ray detector 16 and an external device (for example, the prediction device 100). The prediction device 100 may function as the controller 19.
  • the X-ray Talbot-Lau apparatus 200 may perform orientation imaging to generate orientation images (amp images, ave images, and pha images, which will be described later).
  • orientation imaging refers to photography in which the relative angle between the grating and the sample (composite material H) is changed by rotating the subject stage 13 that functions as a rotation stage.
  • oriented imaging By oriented imaging, the direction in which the signal value is strongest for each pixel can be determined through calculation processing. Orientation photography will be explained below.
  • images are taken while changing the relative angle between the sample and the grid.
  • Prepare at least three types of relative angles eg, 0°, 60°, 120°.
  • a desired relative angle may be achieved by fixing the device and rotating the sample, or by fixing the sample and rotating the device.
  • two-dimensional imaging will be explained as an example, but it can also be extended to three-dimensional imaging.
  • an absorption image, differential phase image, or small-angle scattering image is acquired for each prepared relative angle.
  • a small-angle scattering image or a small-angle scattering image divided by an absorption image will be used.
  • the small-angle scattering image divided by the absorption image can be said to be an image in which thickness dependence is canceled in the case of a sample with unevenness. For convenience of explanation, both will be collectively referred to as a "small-angle scattering image.”
  • a sine wave graph is a graph in which the horizontal axis represents the relative angle between the sample and the grating, and the vertical axis represents the small-angle scattering signal value of a certain pixel.
  • the amplitude, average, and phase of the sine wave are obtained as fitting parameters.
  • An image showing the amplitude value of each pixel will be called an "amp image”
  • an image showing the average value of each pixel will be called an “ave image”
  • an image showing the phase of each pixel will be called a “pha image.”
  • the amp image, ave image, and pha image are collectively referred to as an "orientation image.”
  • the fitting method is not limited to sine waves; for example, an ellipse with the angle (phase) of the largest intensity as ⁇ 0 , the largest intensity as a, and the lowest intensity as b is expressed in polar coordinates as the position r( ⁇ ). It is also possible to fit the equation (1).
  • an image with a value (ab)/2 corresponding to the amplitude of each pixel is an "amp image”, and a value corresponding to the average value of each pixel (a+b) corresponds to the name used in sine wave fitting.
  • An image showing /2 may be called an "ave image”, and an image showing ⁇ 0 for each pixel may be called a "pha image”.
  • the orientation image may be created by simply assigning the major axis a, the minor axis b, and the phase ⁇ 0 of the signal intensity to each pixel.
  • Such an X-ray Talbot-Lau apparatus 200 generates a Talbot image containing information regarding the filler orientation of the composite material H. That is, the Talbot information generated by the X-ray Talbot-Lau apparatus 200 is information regarding Talbot images.
  • the Talbot image is an image generated by the Talbot effect described above when the X-ray Talbot-Lau device 200 photographs the composite material H. Images that have been subjected to image processing, such as the orientation image described above, are also included in the Talbot image. A reconstructed image reconstructed from the moire image Mo is also included in the Talbot image.
  • the measuring device 300 is a device for measuring a composite material and generating measurement information.
  • the measuring device 300 is a device that measures the chemical properties and physical properties of the composite material, such as acoustic properties, atomic properties, electrical properties, magnetic properties, mechanical properties, optical properties, and radiation properties. Measure properties, thermal properties, surface condition, etc.
  • This measuring device 300 differs from the X-ray Talbot-Low device 200.
  • the measuring device 300 is a device capable of non-destructively measuring composite materials. Thereby, the composite material measured by the measuring device 300 can be used in subsequent manufacturing steps and the like.
  • the measurement device 300 is, for example, a scanning electron microscope (SEM), an infrared spectrometer, an impedance spectrometer, a terahertz wave spectrometer, an ultrasound measurement device, a Raman spectrometer, an X-ray diffraction device, or It is a differential scanning calorimeter (DSC).
  • the measuring device 300 is preferably a device that can specify and measure a region in the composite resin, and is preferably a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, or an X-ray diffraction device, for example. By using such a measuring device 300, it becomes possible to measure a part or all of the same area of the composite resin as measured by the X-ray Talbot-Lau apparatus 200 using the measuring device 300.
  • a scanning electron microscope irradiates a composite material with an electron beam to observe the surface condition of the composite material.
  • An infrared spectrometer, a terahertz wave spectrometer, and a Raman spectrometer irradiate a composite material with electromagnetic waves to measure the response of the composite material to the electromagnetic waves, that is, the optical properties.
  • the ultrasonic measuring device applies ultrasonic waves to a composite material and measures the response of the composite material to the ultrasonic waves, that is, the acoustic characteristics.
  • An impedance spectrometer measures the electrical properties of a composite material as impedance at various frequencies.
  • An X-ray diffraction device measures the radiation characteristics of a composite material by irradiating the composite material with X-rays. Differential scanning calorimeters vary the temperature of a composite material to measure its heat capacity, or thermal properties.
  • the measurement information of the composite material generated by the measuring device 300 preferably includes information regarding at least one of the filler diameter of the filler, the filler length of the filler, the filler content, and the crystallinity of the resin in the composite material. This is because the filler diameter, filler length, filler content, resin crystallinity, etc. are highly likely to affect the mechanical strength of the composite material.
  • a composite material using an infrared spectrometer, it is possible to generate measurement information including information regarding the resin species, resin crystallinity, specific volume, and the like.
  • a terahertz wave spectrometer By measuring the composite material using a terahertz wave spectrometer, it is possible to generate measurement information including information regarding the interaction between the filler and the resin, the crystallinity of the resin, and the like.
  • measurement information including information regarding the specific volume, filler content, resin type, etc. can be generated.
  • impedance spectrometer it is possible to generate measurement information including information regarding the filler content, the interaction between the filler and the resin, and the like.
  • measurement information including information regarding the crystallinity of the resin, etc. can be generated. Further, by using an X-ray diffraction device, it is also possible to analyze the resin species based on the crystallinity of the resin.
  • Such a measuring device 300 generates, for example, a spectrum, an image, or a DSC curve that includes information regarding the filler diameter, filler length, filler content, or resin crystallinity. That is, the measurement information generated by the measurement device 300 is information regarding a spectrum, an image, a DSC curve, or the like.
  • FIG. 6 shows another example of the prediction system.
  • the prediction system may include a plurality of measurement devices (eg, measurement devices 300A and 300B in FIG. 6).
  • the measuring devices 300A and 300B are devices for measuring composite materials and generating measurement information. Measuring devices 300A and 300B are different devices. As the measurement devices 300A and 300B, devices similar to those described for the measurement device 300 above can be used.
  • FIG. 7 is a block diagram showing the functional configuration of the prediction device 100.
  • the prediction device 100 functions as an acquisition unit 111, an extraction unit 112, a prediction unit 113, and a control unit 114 when the CPU 110 reads a program stored in the storage 140 and executes the process.
  • the acquisition unit 111 acquires Talbot information generated by the X-ray Talbot-Lau apparatus 200 and measurement information generated by the measurement device 300. It is preferable that the Talbot information and measurement information acquired by the acquisition unit 111 include information regarding the same area of the composite resin. This makes it possible to predict the mechanical strength of a specific region of the composite resin with high accuracy. As will be described later, for example, by measuring the composite resin using the X-ray Talbot-Lau apparatus 200 and the measuring device 300 in this order, it is possible to obtain Talbot information and measurement information including information regarding the same area of the composite resin. becomes.
  • the extraction unit 112 extracts feature amounts from each of the Talbot information and measurement information acquired by the acquisition unit 111.
  • the feature amount is, for example, a numerical value extracted from a spectrum, an image, a DSC curve, or the like acquired by the acquisition unit 111, and linked to the physical properties of the composite material.
  • the feature amount extracted from the Talbot information may be the Talbot image itself, such as an orientation image (amp image, ave image, pha image), or may be an image signal value obtained from a specific region of the Talbot image. .
  • the feature amount extracted from the Talbot information may be an orientation degree, an orientation angle, or the like.
  • the feature extracted from the Talbot information may be the eccentricity ecc.
  • the orientation image may include an image (ecc image) showing the degree of eccentricity ecc for each pixel.
  • the extraction unit 112 extracts the main component from the measurement information.
  • the measurement information is information regarding the X-ray diffraction spectrum of the composite material
  • the extraction unit 112 extracts the main component, crystallinity, etc. from the measurement information.
  • the measurement information is information regarding the impedance spectrum of the composite material
  • the extraction unit 112 extracts capacitance, resistance, etc. from the measurement information.
  • the measurement information is information regarding an ultrasonic image of the composite material
  • the extraction unit 112 extracts the principal component, frequency characteristics, etc. from the measurement information.
  • the frequency characteristics include, for example, attenuation and sound speed.
  • the extraction unit 112 extracts the resistance value or capacitance at a specific frequency from the measurement information.
  • the measurement information is a SEM image of the composite material
  • the extraction unit 112 extracts a predetermined numerical value obtained by analyzing the image.
  • the extraction unit 112 may extract a plurality of feature amounts from each of the Talbot information and the measurement information. Further, the feature amount extracted from the measurement information may be a principal component obtained by principal component analysis of a spectrum. Further, the feature amount extracted from the measurement information may be a principal component obtained by principal component analysis of a measured waveform.
  • the acquisition unit 111 may acquire information from which feature amounts are extracted. That is, the Talbot information and the measurement information may be obtained by extracting feature amounts from information regarding the composite material measured by the X-ray Talbot-Lau apparatus 200 and the measuring device 300.
  • the prediction unit 113 predicts the mechanical strength of the composite material based on the Talbot information and measurement information acquired by the acquisition unit 111. Specifically, the prediction unit 113 uses a trained discriminator to input the feature amounts of the Talbot information and measurement information extracted by the extraction unit 112, and predicts the mechanical strength of the composite material. The prediction unit 113 predicts, for example, the elastic modulus, yield strength, plasticity, tensile strength, elongation, fracture energy, or hardness of the composite material.
  • the control unit 114 causes the display unit 160 to output information regarding the mechanical strength of the composite material predicted by the prediction unit 113.
  • FIG. 8 shows an example of information regarding the mechanical strength of the composite material output to the display unit 160.
  • the predicted mechanical strength tensile strength in FIG. 8 is displayed on the display unit 160 along with information regarding the composite material.
  • FIG. 9 is a flowchart showing the procedure of prediction processing executed by the prediction device 100.
  • the processing of the prediction device 100 shown in the flowchart of FIG. 9 is stored as a program in the storage 140 of the prediction device 100, and is executed by the CPU 110 controlling each part.
  • the prediction device 100 first acquires Talbot information obtained by measuring the composite material with the X-ray Talbot-Lau apparatus 200 (step S101). Next, the prediction device 100 acquires measurement information obtained by measuring the composite material with the measurement device 300 (step S102). The prediction device 100 may acquire Talbot information and measurement information at the same time, or may acquire Talbot information after acquiring measurement information.
  • the prediction device 100 obtains Talbot information from the X-ray Talbot-Lau device 200 and measurement information from the measurement device 300, for example.
  • the X-ray Talbot-Lau device 200 and the measurement device 300 may store Talbot information and measurement information in other devices such as a server, and the prediction device 100 may acquire Talbot information and measurement information from other devices. Good too.
  • the measurement of the composite resin by the X-ray Talbot-Lau apparatus 200 and the measuring device 300 be performed in the order of the X-ray Talbot-Lau apparatus 200 and the measuring device 300.
  • the prediction device 100 can acquire Talbot information and measurement information that include information regarding the same region of the composite resin, and can predict the mechanical strength of a specific region of the composite resin with high accuracy.
  • the measurement device 300 uses a device that can specify and measure a region of the composite resin, such as a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, or an X-ray diffraction device.
  • a device that can specify and measure a region of the composite resin such as a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, or an X-ray diffraction device.
  • Step S103 The prediction device 100 extracts feature amounts from each of the Talbot information and measurement information acquired in steps S101 and S102.
  • Step S104 The prediction device 100 inputs the feature amounts of each of the Talbot information and measurement information extracted in the process of step S103 to a discriminator that has undergone machine learning in advance, and predicts the mechanical strength of the composite material.
  • the discriminator is trained by a learning method such as the one described below to acquire feature quantities of each of the Talbot information and measurement information of a plurality of composite materials prepared in advance, and a measured value of mechanical strength of each of the plurality of composite materials.
  • Machine learning is performed using data.
  • the discriminator performs machine learning using the feature amounts of each of the Talbot information and measurement information regarding the plurality of composite materials as input data, and using the measured value of the mechanical strength of each of the plurality of composite materials as output data.
  • the prediction device 100 can predict the mechanical strength of the composite material by inputting the feature amounts extracted for each of the Talbot information and the measurement information into the discriminator.
  • Mechanical strength measurements of composite materials are obtained using, for example, a Tensilon universal testing machine.
  • the discriminator may undergo machine learning using Talbot information and measurement information regarding a plurality of composite materials as input data, and using measured values of mechanical strength of each of the plurality of composite materials as output data.
  • the information input to the discriminator is not limited to the respective feature amounts of Talbot information and measurement information.
  • information at the time of manufacture may be input to the discriminator and used as information for learning and prediction.
  • Step S105 The prediction device 100 generates a prediction result of the mechanical strength of the composite material based on the output from the discriminator in the process of step S104.
  • Step S106 The prediction device 100 outputs the prediction result generated in the process of step S105.
  • the prediction device 100 displays the value of the mechanical strength of the composite material predicted in the process of step S104 on the display unit 160 together with information regarding the composite material (FIG. 8).
  • FIG. 10 is a flowchart showing a machine learning method for a trained model.
  • a large number (i sets) of Talbot information and measurement information of a plurality of composite materials prepared in advance are input, and mechanical strength measurement values of each of the plurality of composite materials are output.
  • Machine learning is performed using the dataset as learning sample data.
  • a stand-alone high-performance computer using a CPU and a GPU processor or a cloud computer is used as a learning device (not shown) that functions as a discriminator.
  • a learning method using a neural network configured by combining perceptrons such as deep learning in a learning device will be described, but the method is not limited to this, and various methods may be applied. For example, random forest, decision tree, support vector machine (SVM), logistic regression, k-nearest neighbor method, topic model, etc. may be applied.
  • SVM support vector machine
  • Step S111 The learning device reads learning sample data that is teacher data. If it is the first time, the first set of learning sample data is read, and if it is the i-th time, the i-th set of learning sample data is read.
  • Step S112 The learning device inputs input data of the read learning sample data to the neural network.
  • Step S113 The learning device compares the prediction results of the neural network with the correct data.
  • Step S114 The learning device adjusts the parameters based on the comparison results.
  • the learning device adjusts the parameters so that the difference between the comparison results becomes smaller by, for example, executing processing based on back-propagation (error backpropagation method).
  • Step S115 If the learning device completes processing of all data from the 1st to the i-th set (YES), the process proceeds to step S116, and if not (NO), returns the process to step S111 and processes the next learning sample data. is read, and the processing from step S111 onwards is repeated.
  • Step S116 The learning device determines whether or not to continue learning, and when continuing (YES), returns the process to step S111, executes the processes from the 1st group to the i-th group again in steps S111 to S115, and continues. If not (NO), the process advances to step S117.
  • Step S117 The learning device stores the learned model constructed in the previous processing and ends (end).
  • the storage destination includes the internal memory of the prediction device 100.
  • the mechanical strength of the composite material is predicted using the learned model generated in this way.
  • the prediction device 100 and the prediction system of this embodiment acquire the Talbot information and measurement information of the composite material measured by the X-ray Talbot-Lau device 200 and the measurement device 300, and based on the acquired Talbot information and measurement information, Predict mechanical strength of composite materials. This makes it possible to predict the mechanical strength of the composite material. The effects will be explained below.
  • the mechanical strength of composite materials can be measured using, for example, a Tensilon universal testing machine, but this measurement is time-consuming and difficult to efficiently measure the mechanical strength of a large number of composite materials. It is. For example, measurements with a Tensilon universal testing machine require the creation of a dumbbell piece of composite material.
  • the mechanical strength of the composite material is predicted based on the Talbot information and measurement information of the composite material, so it is possible to predict the mechanical strength of the composite material using a Tensilon universal testing machine or the like. No need to measure mechanical strength.
  • For imaging a composite material using the X-ray Talbot-Lau apparatus 200 it is not necessary to create a dumbbell piece, and for example, a piece of a molded product of the composite material can be used for imaging. Therefore, it becomes possible to predict the mechanical strength of the composite material more easily.
  • the X-ray Talbot-Lau apparatus 200 since the X-ray Talbot-Lau apparatus 200 is used, information regarding the orientation of fillers in a composite material can be obtained in a short time and over a wide range. This makes it possible to predict mechanical strength with higher accuracy.
  • the mechanical strength of the composite material is predicted based on the measurement information generated by the measuring device 300 in addition to the Talbot information generated by the X-ray Talbot-Lau device 200, a single piece of information (e.g. Compared to predictions based on only Talbot information or only measurement information, it is possible to predict mechanical strength from multiple angles. Therefore, it becomes possible to predict mechanical strength with higher accuracy. Even if the types of resin, filler, etc. contained in the composite material are unknown, it is possible to predict the mechanical strength with high accuracy.
  • the measuring device 300 includes a device capable of specifying and measuring a predetermined region of the composite resin, such as a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, and an X-ray spectrometer.
  • a device capable of specifying and measuring a predetermined region of the composite resin such as a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, and an X-ray spectrometer.
  • the prediction device 100 and prediction system of this embodiment make it possible to predict the mechanical strength of a composite material.
  • Resin Polypropylene (Noblen (registered trademark) W101 manufactured by Sumitomo Chemical Co., Ltd.), polyamide 66 (Leona 1300S manufactured by Asahi Kasei Corporation), ABS (Toyolac700 314 manufactured by Toray Industries, Inc.), polycarbonate (Iupilon (registered trademark) manufactured by Mitsubishi Engineering Plastics Co., Ltd.) ) H-3000R); Filler: PAN (polyacrylonitrile) carbon fiber (CF-N manufactured by Nippon Polymer Sangyo Co., Ltd.), PAN carbon fiber (TC-33 manufactured by Taiwan Plastics Co., Ltd.), glass fiber (CS3J-960 manufactured by Nitto Boseki Co., Ltd.); Filler concentration: 5%, 20%; Injection pressure: 50MPa, 100MPa.
  • each of these 48 types of composite material samples was measured using the following X-ray Talbot-Lau device and measuring device, and the discriminator was made to learn the feature amounts. The measurement was performed near the center of the dumbbell-shaped test piece.
  • X-ray Talbot-Low device (device described in JP 2019-184450A); FTIR (Fourier Transform Infrared Spectroscopy) device (AVATAR370 manufactured by Thermo Fisher Scientific); Terahertz wave spectrometer (C12068-01 manufactured by Hamamatsu Photonics Co., Ltd.); Ultrasonic measuring device (Japan Denji Sokki Co., Ltd. UTS-101); Impedance spectrometer (Model 126096 manufactured by Solartron. Conductive tapes with a diameter of 5 mm were pasted on the sample at two locations 50 mm apart, and measurements were performed using these as electrodes.); X-ray diffraction device (Smart Lab manufactured by Rigaku Co., Ltd.).
  • feature quantities were extracted from the absorption image, differential phase image, and small-angle scattering image obtained by measurement, and information on the degree of orientation of the filler obtained from these images.
  • feature amounts were extracted from the spectra obtained by measurement.
  • the ultrasonic measuring device extracted feature amounts from the images obtained by measurement.
  • samples of four types of composite materials were produced. This sample was produced using a combination of two types of resins, two types of fillers, one condition of filler concentration (volume ratio), and one condition of injection pressure shown below. The samples were prepared in the same manner as for the training data described above.
  • Resin polypropylene (Noblen (registered trademark) W101 manufactured by Sumitomo Chemical Co., Ltd.), polyamide 66 (Leona 1300S manufactured by Asahi Kasei Co., Ltd.); Filler: PAN-based carbon fiber (CF-N manufactured by Nippon Polymer Sangyo Co., Ltd.), PAN-based carbon fiber (T700SC manufactured by Toray Industries, Inc.); Filler concentration: 10%; Injection pressure: 80MPa.
  • Example 1 samples of each of these four types of composite materials were measured using an X-ray Talbot-Lau apparatus and the measuring apparatus shown in Table 1 below.
  • the composite material was measured using the X-ray Talbot-Lau apparatus and the measuring device in this order, and the same area of the composite material was measured.
  • samples of each of the four types of composite materials were measured using only the X-ray Talbot-Lau apparatus.
  • the Talbot information generated by the X-ray Talbot-Lau apparatus and the feature quantities of the measurement information generated by the measuring device are input to a trained discriminator to determine the breaking strength (mechanical strength ) was calculated.
  • the comparative example only the feature amount of Talbot information generated by the X-ray Talbot-Lau device was input to a trained discriminator to obtain a predicted value of breaking strength (mechanical strength).
  • the breaking strength of each of the above four types of composite materials was measured using a Tensilon universal testing machine, and the measured values were determined.
  • the error between the predicted value and the measured value was calculated using the following equation (3), and then the average of the errors for the four types of composite materials was determined.
  • Table 1 below the average error of each of the four types of composite materials of Comparative Examples is set as 1, and the average error of Examples 1 to 8 is described as a relative value. That is, the smaller the value in the "error" column in Table 1, the higher the accuracy of the breaking strength predicted using the trained discriminator.
  • Example 1 to 8 in which the mechanical strength of the composite material was predicted based on the measurement information generated by the measuring device as well as the Talbot information generated by the X-ray Talbot-Lau device, the error was smaller than in the comparative example. Ta. Further, among Examples 1 to 8, in Examples 6 and 7, which used a plurality of measurement devices together with the X-ray Talbot-Rho measurement device, the error was able to be reduced compared to Examples 1 to 5. Furthermore, Example 8, in which the same area of the composite resin was measured using the X-ray Talbot-Lau apparatus and the measuring device, was also able to reduce the error compared to Example 1, in which the measurement was performed without specifying the area.
  • the configurations of the prediction device 100 and the prediction system described above are the main configurations described in explaining the features of the above embodiments and examples, and are not limited to the above configurations, but within the scope of the claims. Various modifications can be made. Moreover, the configuration provided in a general prediction system is not excluded.
  • the prediction device 100 may include components other than the above components, or may not include some of the above components.
  • the prediction device 100, the X-ray Talbot-Lau device 200, and the measurement device 300 may each be configured by a plurality of devices, or may be configured by a single device.
  • each configuration may be realized by other configurations.
  • the X-ray Talbot-Rho device 200 or the measurement device 300 is integrated into the prediction device 100, and some or all of the functions of the X-ray Talbot-Rho device 200 and the measurement device 300 are realized by the prediction device 100. Good too.
  • processing units in the flowchart in the above embodiment are divided according to the main processing contents in order to facilitate understanding of each process.
  • the present invention is not limited by how the processing steps are classified. Each process can also be divided into more process steps. Also, one processing step may perform more processing.
  • the means and methods for performing various processes in the system according to the embodiments described above can be realized by either a dedicated hardware circuit or a programmed computer.
  • the program may be provided on a computer-readable recording medium such as a flexible disk or CD-ROM, or may be provided online via a network such as the Internet.
  • the program recorded on the computer-readable recording medium is usually transferred and stored in a storage unit such as a hard disk.
  • the above program may be provided as a standalone application software, or may be incorporated into the software of the device as a function of the system.
  • 100 prediction device 110 CPU, 111 Acquisition Department; 112 Extraction part, 113 Prediction Department, 114 control unit, 120 ROM, 130 RAM, 140 storage, 150 communication interface, 160 display section, 170 Operation reception department, 200 X-ray Talbot-Low device, 300 (300A, 300B) Measuring device.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Provided are a prediction device, prediction system and prediction program with which it is possible to predict the mechanical strength of a composite material. This prediction device 100 includes: an acquisition unit 111 which acquires Talbot information, which is a measurement of a composite material containing a filler and a resin by an X-ray Talbot-Lau device, and measurement information, which is a measurement of the composite material by one or more measurement devices that are different from the X-ray Talbot-Lau device; and a prediction unit 113 which predicts the mechanical strength of the composite material on the basis of the acquired Talbot information and the measurement information.

Description

予測装置、予測システムおよび予測プログラムPrediction device, prediction system and prediction program
 本発明は、予測装置、予測システムおよび予測プログラムに関する。 The present invention relates to a prediction device, a prediction system, and a prediction program.
 近年、宇宙、航空機、自動車、船舶、釣り竿、電気部品、電子部品、家電部品、パラボナアンテナ、浴槽、床材、および屋根材等の様々な分野において、複合材料が注目されている(例えば、特許文献1等)。複合材料は、例えば、樹脂およびフィラーを含んでいる。樹脂にフィラーを添加することにより、例えば、高い機械特性を実現することが可能となる。 In recent years, composite materials have attracted attention in various fields such as space, aircraft, automobiles, ships, fishing rods, electrical parts, electronic parts, home appliance parts, parabolic antennas, bathtubs, flooring materials, and roofing materials (for example, patented Reference 1 etc.). The composite material includes, for example, a resin and a filler. By adding a filler to the resin, for example, it becomes possible to achieve high mechanical properties.
特開2019-184450号公報Japanese Patent Application Publication No. 2019-184450
 複合材料を用いる際には、その機械特性が重要となる。したがって、複合材料の機械強度を予測することが望まれている。 When using composite materials, their mechanical properties are important. Therefore, it is desirable to predict the mechanical strength of composite materials.
 本発明は、上記事情に鑑みてなされたものであり、複合材料の機械強度を予測することが可能な予測装置、予測システムおよび予測プログラムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a prediction device, a prediction system, and a prediction program that can predict the mechanical strength of a composite material.
 本発明の上記目的は、下記の手段によって達成される。 The above object of the present invention is achieved by the following means.
 (1)フィラーおよび樹脂を含む複合材料をX線タルボ・ロー装置により測定したタルボ情報と、前記X線タルボ・ロー装置とは異なる1または複数の測定装置により前記複合材料を測定した測定情報とを取得する取得部と、取得された前記タルボ情報および前記測定情報に基づいて、前記複合材料の機械強度を予測する予測部とを備える予測装置。 (1) Talbot information obtained by measuring a composite material containing a filler and resin using an X-ray Talbot-Low device; and measurement information obtained by measuring the composite material by one or more measuring devices different from the X-ray Talbot-Low device. and a prediction unit that predicts the mechanical strength of the composite material based on the acquired Talbot information and the measurement information.
 (2)1または複数の前記測定装置は、前記複合材料の音響特性、原子特性、電気的特性、磁気的特性、機械的特性、光学的特性、放射線特性、熱特性および表面状態の少なくともいずれかを測定する上記(1)に記載の予測装置。 (2) The one or more measuring devices measure at least one of the acoustic properties, atomic properties, electrical properties, magnetic properties, mechanical properties, optical properties, radiation properties, thermal properties, and surface state of the composite material. The prediction device according to (1) above, which measures .
 (3)1または複数の前記測定装置は、前記複合材料を非破壊で測定可能である上記(1)に記載の予測装置。 (3) The prediction device according to (1) above, wherein the one or more measuring devices are capable of non-destructively measuring the composite material.
 (4)1または複数の前記測定装置は、走査電子顕微鏡、赤外分光測定装置、インピーダンス分光測定装置、テラヘルツ波分光測定装置、超音波測定装置、ラマン分光測定装置、X線回折装置および示差走査熱量計の少なくともいずれかを含む上記(1)に記載の予測装置。 (4) The one or more measurement devices include a scanning electron microscope, an infrared spectrometer, an impedance spectrometer, a terahertz wave spectrometer, an ultrasonic measurement device, a Raman spectrometer, an X-ray diffraction device, and a differential scanning device. The prediction device according to (1) above, including at least one of a calorimeter.
 (5)前記測定情報は、前記フィラーのフィラー径、前記フィラーのフィラー長、前記フィラーの含有率および前記樹脂の結晶化度の少なくともいずれかに関する情報を含む上記(1)に記載の予測装置。 (5) The prediction device according to (1) above, wherein the measurement information includes information regarding at least one of a filler diameter of the filler, a filler length of the filler, a content rate of the filler, and a degree of crystallinity of the resin.
 (6)前記タルボ情報は、前記フィラーの配向に関する情報を含む上記(1)に記載の予測装置。 (6) The prediction device according to (1) above, wherein the Talbot information includes information regarding the orientation of the filler.
 (7)前記タルボ情報および前記測定情報は、前記複合材料における同一領域の情報を含む上記(1)に記載の予測装置。 (7) The prediction device according to (1) above, wherein the Talbot information and the measurement information include information on the same area in the composite material.
 (8)1または複数の前記測定装置は、走査電子顕微鏡、赤外分光測定装置、ラマン分光測定装置またはX線回折装置の少なくともいずれかを含む上記(7)に記載の予測装置。 (8) The prediction device according to (7) above, wherein the one or more measurement devices include at least one of a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, or an X-ray diffraction device.
 (9)前記フィラーは繊維形状を有する上記(1)に記載の予測装置。 (9) The prediction device according to (1) above, wherein the filler has a fiber shape.
 (10)予測された前記機械強度に関する情報を出力部に出力させる制御部をさらに含む上記(1)に記載の予測装置。 (10) The prediction device according to (1) above, further including a control unit that causes an output unit to output information regarding the predicted mechanical strength.
 (11)前記予測部は、学習済みの識別器を用いて前記機械強度を予測する上記(1)に記載の予測装置。 (11) The prediction device according to (1) above, wherein the prediction unit predicts the mechanical strength using a learned discriminator.
 (12)取得された前記タルボ情報および前記測定情報各々から特徴量を抽出する抽出部をさらに含み、前記予測部は、抽出された前記特徴量を入力とし、前記機械強度を予測する上記(11)に記載の予測装置。 (12) The extraction unit further includes an extraction unit that extracts a feature amount from each of the acquired Talbot information and the measurement information, and the prediction unit receives the extracted feature amount as input and predicts the mechanical strength (11) above. ).
 (13)前記識別器は、前記特徴量を入力データとし、前記機械強度を出力データとして機械学習される上記(12)に記載の予測装置。 (13) The prediction device according to (12), wherein the discriminator performs machine learning using the feature amount as input data and the mechanical strength as output data.
 (14)フィラーおよび樹脂を含む複合材料を測定するX線タルボ・ロー装置と、前記X線タルボ・ロー装置とは異なり、前記複合材料を測定する1または複数の測定装置と、上記(1)~(13)のいずれかに記載の予測装置とを備える予測システム。 (14) an X-ray Talbot-Low device that measures a composite material containing a filler and a resin; and one or more measuring devices that measure the composite material, unlike the X-ray Talbot-Low device; A prediction system comprising the prediction device according to any one of (13) to (13).
 (15)フィラーおよび樹脂を含む複合材料をX線タルボ・ロー装置により測定したタルボ情報と、前記X線タルボ・ロー装置とは異なる1または複数の測定装置により前記複合材料を測定した測定情報とを取得するステップ(a)と、ステップ(a)で取得された前記タルボ情報および前記測定情報に基づいて、前記複合材料の機械強度を予測するステップ(b)とを有する処理をコンピューターに実行させるための予測プログラム。 (15) Talbot information obtained by measuring a composite material containing a filler and resin using an X-ray Talbot-Low device; and measurement information obtained by measuring the composite material by one or more measuring devices different from the X-ray Talbot-Low device. and (b) predicting the mechanical strength of the composite material based on the Talbot information and the measurement information acquired in step (a). Prediction program for.
 (16)ステップ(a)では、前記複合材料における同一領域の情報を含む前記タルボ情報および前記測定情報を取得する上記(15)に記載の予測プログラム。 (16) The prediction program according to (15) above, wherein in step (a), the Talbot information and the measurement information including information on the same area in the composite material are acquired.
 (17)ステップ(a)では、走査電子顕微鏡、赤外分光測定装置、ラマン分光測定装置またはX線回折装置の少なくともいずれかを含む前記測定装置により前記複合材料を測定する上記(16)に記載の予測プログラム。 (17) In step (a), the composite material is measured by the measuring device including at least one of a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, or an X-ray diffraction device. prediction program.
 本発明に係る予測装置、予測システムおよび予測プログラムは、複合材料をX線タルボ・ロー装置により測定したタルボ情報と、他の測定装置により測定した測定情報とを取得し、これらに基づいて、複合材料の機械強度を予測する。これにより、複合材料の機械強度を予測することが可能となる。 A prediction device, a prediction system, and a prediction program according to the present invention acquire Talbot information obtained by measuring a composite material with an X-ray Talbot-Lau device and measurement information measured by another measurement device, and based on these, Predict the mechanical strength of materials. This makes it possible to predict the mechanical strength of the composite material.
予測システムの全体構成を示す図である。FIG. 1 is a diagram showing the overall configuration of a prediction system. 予測装置の概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of a prediction device. X線タルボ・ロー装置の全体概略図である。FIG. 1 is an overall schematic diagram of an X-ray Talbot-Low apparatus. タルボ干渉計の原理を説明する図である。FIG. 2 is a diagram explaining the principle of a Talbot interferometer. 線源格子や第1格子、第2格子の概略平面図である。FIG. 3 is a schematic plan view of a source grating, a first grating, and a second grating. 図1に示した予測システムの他の例を示す図である。2 is a diagram showing another example of the prediction system shown in FIG. 1. FIG. 予測装置の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a prediction device. 予測装置によって出力される情報の表示形態の一例を示す図である。It is a figure which shows an example of the display form of the information output by a prediction device. 予測装置において実行される予測処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the prediction process performed in a prediction device. 学習済みモデルの機械学習方法を示すフローチャートである。3 is a flowchart showing a machine learning method for a trained model.
 以下、添付した図面を参照して、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. In addition, in the description of the drawings, the same elements are given the same reference numerals, and redundant description will be omitted. Further, the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
 <予測システムの構成>
 図1は、予測システムの全体構成を示す図である。
<Prediction system configuration>
FIG. 1 is a diagram showing the overall configuration of a prediction system.
 図1に示すように、予測システムは、例えば、予測装置100、X線タルボ・ロー装置200および測定装置300を有する。この予測システムは、複合材料の機械強度を予測する。ここで機械強度は、複合材料が圧縮および引張等の物理的な外力に対して持つ耐久力を表す指標であり、換言すれば、複合材料が変形および破壊に耐え得る強度である。具体的には、複合材料の機械強度は、破断強度、破断伸度、破断靭性、弾性率、引張弾性率、曲げ弾性率、上降伏点応力、降伏強さ、塑性、引張強さ、伸び、曲げ強度、破壊エネルギーおよび硬度等である。 As shown in FIG. 1, the prediction system includes, for example, a prediction device 100, an X-ray Talbot-Lau device 200, and a measurement device 300. This prediction system predicts the mechanical strength of composite materials. Here, mechanical strength is an index representing the durability of a composite material against physical external forces such as compression and tension, and in other words, it is the strength with which a composite material can withstand deformation and destruction. Specifically, the mechanical strength of a composite material is determined by fracture strength, fracture elongation, fracture toughness, elastic modulus, tensile modulus, flexural modulus, upper yield point stress, yield strength, plasticity, tensile strength, elongation, These include bending strength, fracture energy, and hardness.
 複合材料は、フィラーおよび樹脂を含んでいる。複合材料に含まれる樹脂は、例えば、公知の熱硬化性樹脂および熱可塑性樹脂等である。具体的には、例えば、ポリエチレン樹脂(PE)、ポリプロピレン樹脂(PP)、無水マレイン酸変性ポリプロピレン(MAHPP)等のポリオレフィン樹脂、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド(PA)樹脂、液晶ポリマー樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルファイド(PPS)樹脂、ポリアセタール樹脂、ポリスルフォン樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、変性ポリスチレン樹脂、AS樹脂(アクリロニトリルとスチレンとのコポリマー)、ABS樹脂(アクリロニトリル、ブタジエン及びスチレンのコポリマー)、変性ABS樹脂、MBS樹脂(メチルメタクリレート、ブタジエン及びスチレンのコポリマー)、変性MBS樹脂、ポリメチルメタクリレート(PMMA)樹脂および変性ポリメチルメタクリレート樹脂等が挙げられる。複合材料に含まれる樹脂は、これらのうちの1種であってもよく、2種以上が混合されていてもよい。 The composite material contains filler and resin. The resin contained in the composite material is, for example, a known thermosetting resin or thermoplastic resin. Specifically, for example, polyolefin resins such as polyethylene resin (PE), polypropylene resin (PP), maleic anhydride-modified polypropylene (MAHPP), epoxy resins, phenol resins, unsaturated polyester resins, vinyl ester resins, polycarbonate resins, Polyester resin, polyamide (PA) resin, liquid crystal polymer resin, polyethersulfone resin, polyetheretherketone resin, polyarylate resin, polyphenylene ether resin, polyphenylene sulfide (PPS) resin, polyacetal resin, polysulfone resin, polyimide resin , polyetherimide resin, polystyrene resin, modified polystyrene resin, AS resin (copolymer of acrylonitrile and styrene), ABS resin (copolymer of acrylonitrile, butadiene and styrene), modified ABS resin, MBS resin (copolymer of methyl methacrylate, butadiene and styrene) copolymers), modified MBS resins, polymethyl methacrylate (PMMA) resins, and modified polymethyl methacrylate resins. The resin contained in the composite material may be one type of these resins, or two or more types may be mixed.
 複合材料に含まれるフィラーは、例えば、複合材料の強度を向上させる目的で、樹脂に添加される。フィラーは、例えば、体積比で0.1%~50%の濃度で樹脂に添加されている。フィラーは、例えば、繊維形状または粒子形状を有している。繊維形状のフィラーは、例えば、ガラスファイバー(GF)、カーボンファイバー(CF)、アラミドファイバー、アルミナファイバー、シリコンカーバイドファイバー、ボロンファイバーおよび炭化ケイ素ファイバー等である。CFには、例えば、ポリアクリロニトリル(PAN系)、ピッチ系、セルロース系、炭化水素による気相成長系炭素繊維および黒鉛繊維などを用いることができる。また、GFには、例えば、EガラスおよびSガラスなどを用いることができる。複合材料は、ガラスファイバー(GF)およびカーボンファイバー(CF)の少なくとも一方を含んでいることが好ましい。ガラスファイバー(GF)およびカーボンファイバーの少なくとも一方を含む複合樹脂では、X線タルボ・ロー装置200により、フィラーの配向状態が測定しやすくなるので、機械強度の予測精度を向上させることが可能となる。 The filler contained in the composite material is added to the resin, for example, for the purpose of improving the strength of the composite material. The filler is added to the resin at a concentration of 0.1% to 50% by volume, for example. The filler has, for example, a fiber shape or a particle shape. Examples of the fiber-shaped filler include glass fiber (GF), carbon fiber (CF), aramid fiber, alumina fiber, silicon carbide fiber, boron fiber, and silicon carbide fiber. As the CF, for example, polyacrylonitrile (PAN type), pitch type, cellulose type, hydrocarbon vapor growth type carbon fiber, graphite fiber, etc. can be used. Furthermore, for example, E glass and S glass can be used as the GF. Preferably, the composite material includes at least one of glass fiber (GF) and carbon fiber (CF). For composite resins containing at least one of glass fiber (GF) and carbon fiber, the orientation state of fillers can be easily measured using the X-ray Talbot-Low apparatus 200, making it possible to improve the accuracy of predicting mechanical strength. .
 粒子形状のフィラーは、例えば、炭酸カルシウム(CaCo)、タルク(MgSi10(OH))、硫酸バリウム(BaSO)、マイカ(Si,Al,Mg,K)、水酸化アルミニウム(Al(OH))、水酸化マグネシウム(Mg(OH))、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化アンチモン(Sb)、カオリンクレー(Al・2SiO・2HO)およびカーボンブラック等の無機粒子である。複合樹脂材料に含まれるフィラーは、これらのうちの1種であってもよく、2種以上が混合されていてもよい。 Particle-shaped fillers include, for example, calcium carbonate (CaCo 3 ), talc (Mg 3 Si 4 O 10 (OH) 2 ), barium sulfate (BaSO 4 ), mica (Si, Al, Mg, K), aluminum hydroxide. (Al(OH) 3 ), magnesium hydroxide (Mg(OH) 2 ), titanium oxide (TiO 2 ), zinc oxide (ZnO 2 ), antimony oxide (Sb 2 O 3 ), kaolin clay (Al 2 O 3 . 2SiO 2 .2H 2 O) and carbon black. The filler contained in the composite resin material may be one type of these fillers, or two or more types may be mixed.
 複合材料は、感度調整剤を含んでいてもよい。感度調整剤とは、X線撮影で使われる造影剤のように機能し、複合材料の測定時により高い精度、感度で測定を可能にする試料のことをいう。感度調整剤を含む複合材料をX線タルボ・ロー装置200および測定装置300により測定することにより、より高い精度で測定を行うことが可能となる。例えば、測定装置300がラマン分光測定装置であるとき、感度調整剤にタングステン酸ジルコニウムを用いると、ラマンシフトが変化し、より高い精度で複合材料の光学特性に関する情報(後述の測定情報)を生成することが可能となる。例えば、測定装置300が蛍光顕微鏡であるとき、感度調整剤に蛍光色素を用いると、より高い精度で複合材料の測定情報を生成することが可能となる。 The composite material may contain a sensitivity modifier. A sensitivity adjustment agent is a sample that functions like a contrast agent used in X-ray photography and enables measurements with higher accuracy and sensitivity when measuring composite materials. By measuring the composite material containing the sensitivity modifier using the X-ray Talbot-Lau apparatus 200 and the measuring device 300, it is possible to perform the measurement with higher accuracy. For example, when the measurement device 300 is a Raman spectrometer, using zirconium tungstate as a sensitivity modifier changes the Raman shift and generates information (measurement information described below) regarding the optical properties of the composite material with higher precision. It becomes possible to do so. For example, when the measuring device 300 is a fluorescence microscope, if a fluorescent dye is used as the sensitivity adjusting agent, it becomes possible to generate measurement information of the composite material with higher accuracy.
 複合材料に含まれる感度調整剤は、複合材料の物性への影響が小さいことが好ましい。これにより、X線タルボ・ロー装置200および測定装置300により測定された複合材料を、成形品に使用することが可能となる。X線タルボ・ロー装置200および測定装置300での測定用に、感度調整剤を含む複合材料の試験片を作製してもよい。 It is preferable that the sensitivity modifier contained in the composite material has a small effect on the physical properties of the composite material. This allows the composite material measured by the X-ray Talbot-Lau apparatus 200 and the measuring device 300 to be used in molded products. For measurement with the X-ray Talbot-Lau apparatus 200 and the measuring device 300, a test piece of a composite material containing a sensitivity modifier may be prepared.
 (予測装置100)
 予測装置100は、例えばPCやスマートフォン、タブレット端末等のコンピューターである。予測装置100は、X線タルボ・ロー装置200および測定装置300と接続可能に構成され、各装置との間で各種情報を送受信する。
(Prediction device 100)
The prediction device 100 is, for example, a computer such as a PC, a smartphone, or a tablet terminal. The prediction device 100 is configured to be connectable to the X-ray Talbot-Lau device 200 and the measurement device 300, and transmits and receives various information to and from each device.
 図2は、予測装置100の概略構成を示すブロック図である。 FIG. 2 is a block diagram showing a schematic configuration of the prediction device 100.
 図2に示すように、予測装置100は、CPU(Central Processing Unit)110、ROM(Read Only Memory)120、RAM(Random Access Memory)130、ストレージ140、通信インターフェース150、表示部160、および操作受付部170を有する。各構成は、バスを介して相互に通信可能に接続されている。 As shown in FIG. 2, the prediction device 100 includes a CPU (Central Processing Unit) 110, a ROM (Read Only Memory) 120, a RAM (Random Access Memory) 130, a storage 140, a communication interface 150, a display Section 160, and operation reception 170. Each configuration is communicably connected to each other via a bus.
 CPU110は、ROM120やストレージ140に記録されているプログラムにしたがって、上記各構成の制御や各種の演算処理を行う。 The CPU 110 controls each of the above components and performs various calculation processes according to programs recorded in the ROM 120 and the storage 140.
 ROM120は、各種プログラムや各種データを格納する。 The ROM 120 stores various programs and various data.
 RAM130は、作業領域として一時的にプログラムやデータを記憶する。 The RAM 130 temporarily stores programs and data as a work area.
 ストレージ140は、オペレーティングシステムを含む各種プログラムや、各種データを格納する。例えば、ストレージ140には、学習済みの識別器を用いて、複合材料の機械強度を予測するためのアプリケーションがインストールされている。また、ストレージ140には、X線タルボ・ロー装置200および測定装置300から取得された後述のタルボ情報および測定情報が記憶されてもよい。また、ストレージ140には、識別器として用いられる学習済みモデルや、機械学習に用いられる教師データが記憶されてもよい。 The storage 140 stores various programs including an operating system and various data. For example, an application for predicting the mechanical strength of a composite material using a learned classifier is installed in the storage 140. Further, the storage 140 may store Talbot information and measurement information, which will be described later, acquired from the X-ray Talbot-Lau apparatus 200 and the measurement device 300. Furthermore, the storage 140 may store trained models used as classifiers and teacher data used for machine learning.
 通信インターフェース150は、他の装置と通信するためのインターフェースである。通信インターフェース150としては、有線または無線の各種規格による通信インターフェースが用いられる。通信インターフェース150は、例えば、X線タルボ・ロー装置200および測定装置300からタルボ情報および測定情報を受信したり、保存のために機械強度の予測結果をサーバー等に送信したりする際に用いられる。 The communication interface 150 is an interface for communicating with other devices. As the communication interface 150, a wired or wireless communication interface according to various standards is used. The communication interface 150 is used, for example, to receive Talbot information and measurement information from the X-ray Talbot-Lau apparatus 200 and the measurement device 300, and to send the predicted results of mechanical strength to a server or the like for storage. .
 表示部160は、LCD(液晶ディスプレイ)や有機ELディスプレイ等を備え、各種情報を表示する。表示部160は、ビューワーソフトまたはプリンター等により構成されていてもよい。本実施形態において、表示部160は、出力部として機能する。 The display unit 160 includes an LCD (liquid crystal display), an organic EL display, etc., and displays various information. The display unit 160 may be configured by viewer software, a printer, or the like. In this embodiment, the display section 160 functions as an output section.
 操作受付部170は、タッチセンサーや、マウス等のポインティングデバイス、キーボード等を備え、ユーザーの各種操作を受け付ける。なお、表示部160および操作受付部170は、表示部160としての表示面に、操作受付部170としてのタッチセンサーを重畳することによって、タッチパネルを構成してもよい。 The operation reception unit 170 includes a touch sensor, a pointing device such as a mouse, a keyboard, etc., and accepts various operations from the user. Note that the display section 160 and the operation reception section 170 may constitute a touch panel by superimposing a touch sensor as the operation reception section 170 on a display surface as the display section 160.
 (X線タルボ・ロー装置200)
 X線タルボ・ロー装置200は、複合材料を測定してタルボ情報を生成する。X線タルボ・ロー装置200を用いて複合材料を測定することにより、複合材料中のフィラーの配向に関する情報を得ることが可能となる。換言すれば、X線タルボ・ロー装置200を用いて複合材料を測定することにより、複合材料中のフィラーの配向に関する情報を含むタルボ情報を取得することができる。フィラーの配向は、複合材料の機械強度に影響を及ぼしている可能性が高い。また、X線タルボ・ロー装置200では、短時間に、かつ、広範囲にわたる複合材料のタルボ情報を取得することが可能となる。このため、タルボ情報に基づいて複合樹脂の機械強度を予測することにより、高い精度で機械強度を予測することが可能となる。
(X-ray Talbot-Low device 200)
The X-ray Talbot-Lau device 200 measures the composite material and generates Talbot information. By measuring the composite material using the X-ray Talbot-Lau apparatus 200, it is possible to obtain information regarding the orientation of the filler in the composite material. In other words, by measuring the composite material using the X-ray Talbot-Lau apparatus 200, Talbot information including information regarding the orientation of the filler in the composite material can be obtained. The orientation of the filler likely affects the mechanical strength of the composite material. Furthermore, the X-ray Talbot-Lau apparatus 200 makes it possible to acquire Talbot information on a wide range of composite materials in a short time. Therefore, by predicting the mechanical strength of the composite resin based on the Talbot information, it becomes possible to predict the mechanical strength with high accuracy.
 X線タルボ・ロー装置200は、例えば、線源格子(後述の図3の線源格子12、マルチ格子やマルチスリット、G0格子等ともいう。)を含むタルボ・ロー干渉計を用いたものである。X線タルボ・ロー装置200は、線源格子を有していなくてもよく、例えば、第1格子(後述の図3の第1格子14、G1格子ともいう。)および第2格子(後述の図3の第2格子15、G2格子ともいう。)のみを含むタルボ干渉計を用いたものであってもよい。 The X-ray Talbot-Lau apparatus 200 uses, for example, a Talbot-Lau interferometer that includes a source grating (the source grating 12 in FIG. 3, which will be described later, is also referred to as a multi-grating, multi-slit, G0 grating, etc.). be. The X-ray Talbot-Lau apparatus 200 does not need to have a source grating, for example, a first grating (also referred to as the first grating 14 in FIG. A Talbot interferometer including only the second grating 15 (also referred to as G2 grating) in FIG. 3 may be used.
 図3は、X線タルボ・ロー装置200の構成の一例を表す図である。X線タルボ・ロー装置200は、X線発生装置11と、上記した線源格子12と、被写体台13と、上記した第1格子14と、上記した第2格子15と、X線検出器16と、支柱17と、基台部18と、を含んでいる。 FIG. 3 is a diagram showing an example of the configuration of the X-ray Talbot-Lau apparatus 200. The X-ray Talbot-Lau apparatus 200 includes an X-ray generator 11, the above-described source grating 12, an object stage 13, the above-described first grating 14, the above-described second grating 15, and an X-ray detector 16. , a support 17 , and a base portion 18 .
 このようなX線タルボ・ロー装置200によれば、被写体台13に対して所定位置にある複合材料Hのモアレ画像Mo(図4)を縞走査法の原理に基づく方法で撮影したり、モアレ画像Moをフーリエ変換法で解析したりすることで、少なくとも3種類の画像(二次元画像)を再構成することができる(再構成画像という)。すなわち、モアレ画像Moにおけるモアレ縞の平均成分を画像化した吸収画像(通常のX線の吸収画像と同じ)と、モアレ縞の位相情報を画像化した微分位相画像と、モアレ縞のVisibility(鮮明度)を画像化した小角散乱画像の3種類の画像である。なお、これらの3種類の再構成画像を再合成する等してさらに多くの種類の画像を生成することもできる。 According to such an X-ray Talbot-Lau apparatus 200, a moire image Mo (FIG. 4) of a composite material H placed at a predetermined position with respect to the subject stage 13 can be photographed using a method based on the principle of the fringe scanning method, By analyzing the image Mo using a Fourier transform method, at least three types of images (two-dimensional images) can be reconstructed (referred to as reconstructed images). That is, an absorption image (same as a normal X-ray absorption image) that visualizes the average component of the moire fringe in the moire image Mo, a differential phase image that visualizes the phase information of the moire fringe, and a visibility (clear image) of the moire fringe. These are three types of small-angle scattering images. Note that it is also possible to generate more types of images by recombining these three types of reconstructed images.
 なお、縞走査法とは、複数の格子のうちのひとつを格子のスリット周期の1/M(Mは正の整数、吸収画像はM>2、微分位相画像と小角散乱画像はM>3)ずつスリット周期方向に移動させてM回撮影したモアレ画像Moを用いて再構成を行い、高精細の再構成画像を得る方法である。 In addition, the fringe scanning method means that one of multiple gratings is 1/M of the slit period of the grating (M is a positive integer, M>2 for absorption images, M>3 for differential phase images and small-angle scattering images). In this method, reconstruction is performed using a moiré image Mo taken M times by moving each moiré image Mo in the slit period direction to obtain a high-definition reconstructed image.
 また、フーリエ変換法とは、複合材料Hが存在する状態で、X線タルボ・ロー装置200でモアレ画像Moを1枚撮影し、画像処理において、そのモアレ画像Moをフーリエ変換する等して微分位相画像等の画像を再構成して生成する方法である。 In addition, the Fourier transform method is to take one moire image Mo with the X-ray Talbot-Lau apparatus 200 in the presence of the composite material H, and in image processing, perform Fourier transform on the moire image Mo to differentiate it. This is a method of reconstructing and generating images such as phase images.
 ここで、まず、タルボ干渉計やタルボ・ロー干渉計に共通する原理について、図4を用いて説明する。 Here, first, the principle common to Talbot interferometers and Talbot-Lau interferometers will be explained using FIG. 4.
 なお、図4では、タルボ干渉計の場合が示されているが、タルボ・ロー干渉計の場合も基本的に同様に説明される。また、図4におけるz方向が図3のX線タルボ・ロー装置200における鉛直方向に対応し、図4におけるx、y方向が図3のX線タルボ・ロー装置200における水平方向(前後、左右方向)に対応する。 Although FIG. 4 shows the case of a Talbot interferometer, the explanation is basically the same for the case of a Talbot-Lau interferometer. Furthermore, the z direction in FIG. 4 corresponds to the vertical direction in the X-ray Talbot-Low apparatus 200 in FIG. 3, and the x and y directions in FIG. direction).
 また、図5に示すように、第1格子14や第2格子15には(タルボ・ロー干渉計の場合は線源格子12にも)、X線の照射方向であるz方向と直交するx方向に、所定の周期dで複数のスリットSが配列されて形成されている。このようなスリットSの配列は一次元格子とされており、x方向及びy方向にスリットSが配列されて形成されたものは二次元格子とされている。 In addition, as shown in FIG. 5, the first grating 14 and the second grating 15 (also the source grating 12 in the case of Talbot-Lau interferometer) have an A plurality of slits S are arranged and formed at a predetermined period d in the direction. This arrangement of slits S is a one-dimensional lattice, and the arrangement of slits S in the x and y directions is a two-dimensional lattice.
 線源格子12、第1格子14、第2格子15は、例えば、一次元格子により構成されているが、二次元格子により構成されていてもよい。 The source grating 12, the first grating 14, and the second grating 15 are, for example, composed of one-dimensional gratings, but may also be composed of two-dimensional gratings.
 図4に示すように、X線源11aから照射されたX線(タルボ・ロー干渉計の場合はX線源11aから照射されたX線が線源格子12(図4では図示省略)で多光源化されたX線)が第1格子14を透過すると、透過したX線がz方向に一定の間隔で像を結ぶ。この像を自己像(格子像等ともいう。)といい、このように自己像がz方向に一定の間隔をおいて形成される現象をタルボ効果という。 As shown in FIG. 4, the X-rays irradiated from the X-ray source 11a (in the case of the Talbot-Lau interferometer, the X-rays irradiated from the X-ray source 11a are multiplied by the source grating 12 (not shown in FIG. 4). When the X-rays (used as a light source) pass through the first grating 14, the transmitted X-rays form images at regular intervals in the z direction. This image is called a self-image (also called a lattice image, etc.), and the phenomenon in which self-images are formed at regular intervals in the z direction is called the Talbot effect.
 すなわち、タルボ効果とは、図5に示すように一定の周期dでスリットSが設けられた第1格子14を可干渉性(コヒーレント)の光が透過すると、上記のように光の進行方向に一定の間隔でその自己像を結ぶ現象をいう。 In other words, the Talbot effect means that when coherent light passes through the first grating 14 in which slits S are provided at a constant period d as shown in FIG. It refers to the phenomenon of forming one's self-image at regular intervals.
 そして、図4に示すように、第1格子14の自己像が像を結ぶ位置に、第1格子14と同様にスリットSが設けられた第2格子15を配置する。その際、第2格子15のスリットSの延在方向(すなわち図4ではx軸方向)が、第1格子14のスリットSの延在方向に対して略平行になるように配置すると、第2格子15上でモアレ画像Moが得られる。 Then, as shown in FIG. 4, a second grating 15 provided with slits S like the first grating 14 is placed at a position where the self-image of the first grating 14 focuses. At that time, if the extending direction of the slits S of the second grating 15 (that is, the x-axis direction in FIG. 4) is arranged to be approximately parallel to the extending direction of the slit S of the first grating 14, the second A moire image Mo is obtained on the grid 15.
 なお、図4では、モアレ画像Moを第2格子15上に記載するとモアレ縞とスリットSとが混在する状態になって分かりにくくなるため、モアレ画像Moを第2格子15から離して記載している。しかし、実際には第2格子15上およびその下流側でモアレ画像Moが形成される。そして、このモアレ画像Moが、第2格子15の直下に配置されるX線検出器16で撮影される。 In addition, in FIG. 4, if the moire image Mo is written on the second lattice 15, the moire fringes and slits S will be mixed and it will be difficult to understand, so the moire image Mo is shown separated from the second lattice 15. There is. However, in reality, the moire image Mo is formed on the second grating 15 and on the downstream side thereof. This moire image Mo is then photographed by an X-ray detector 16 placed directly below the second grating 15.
 また、図3および図4に示すように、X線源11aと第1格子14との間に複合材料Hが存在すると、複合材料HによってX線の位相がずれるため、モアレ画像Moのモアレ縞が複合材料Hの辺縁を境界に乱れる。一方、図示を省略するが、X線源11aと第1格子14との間に複合材料Hが存在しなければ、モアレ縞のみのモアレ画像Moが現れる。以上がタルボ干渉計やタルボ・ロー干渉計の原理である。 Furthermore, as shown in FIGS. 3 and 4, when the composite material H exists between the X-ray source 11a and the first grating 14, the phase of the X-rays is shifted by the composite material H, so moire fringes in the moire image Mo is disturbed around the edges of the composite material H. On the other hand, although not shown, if the composite material H does not exist between the X-ray source 11a and the first grating 14, a moire image Mo consisting of only moire fringes will appear. The above is the principle of Talbot interferometer and Talbot-Lau interferometer.
 この原理に基づいて、X線タルボ・ロー装置200は、例えば図3に示すように、第2のカバーユニット180内で、第1格子14の自己像が像を結ぶ位置に第2格子15が配置されるようになっている。また、前述したように、第2格子15とX線検出器16とを離すとモアレ画像Mo(図4参照)がぼやけるため、X線検出器16は第2格子15の直下に配置されることが好ましい。また、第2格子15をシンチレーターやアモルファスセレンなどの発光材料で構成し、第2格子15とX線検出器16とを一体化させてもよい。 Based on this principle, the X-ray Talbot-Lau apparatus 200, for example as shown in FIG. It is set to be placed. Furthermore, as described above, if the second grating 15 and the X-ray detector 16 are separated, the moire image Mo (see FIG. 4) will become blurred, so the X-ray detector 16 should be placed directly below the second grating 15. is preferred. Alternatively, the second grating 15 may be made of a light emitting material such as a scintillator or amorphous selenium, and the second grating 15 and the X-ray detector 16 may be integrated.
 なお、第2のカバーユニット180は、人や物が第1格子14や第2格子15、X線検出器16等にぶつかったり触れたりしないようにして、X線検出器16等を防護するために設けられている。 The second cover unit 180 is used to protect the X-ray detector 16, etc. by preventing people or objects from colliding with or touching the first grating 14, the second grating 15, the X-ray detector 16, etc. It is set in.
 図示を省略するが、X線検出器16は、照射されたX線に応じて電気信号を生成する変換素子が二次元状(マトリクス状)に配置され、変換素子により生成された電気信号を画像信号として読み取るように構成されている。X線検出器16は、例えば、第2格子15上に形成されるX線の像である上記のモアレ画像Moを変換素子ごとの画像信号として撮影するようになっている。X線検出器16の画素サイズは10~300(μm)であり、さらに好ましくは50~200(μm)である。 Although not shown, in the X-ray detector 16, conversion elements that generate electrical signals according to irradiated X-rays are arranged in a two-dimensional form (matrix form), and the electrical signals generated by the conversion elements are converted into images. It is configured to be read as a signal. The X-ray detector 16 is configured to capture, for example, the moire image Mo, which is an X-ray image formed on the second grating 15, as an image signal for each conversion element. The pixel size of the X-ray detector 16 is 10 to 300 (μm), more preferably 50 to 200 (μm).
 X線検出器16としては、FPD(Flat Panel Detector)を用いることができる。FPDには、検出されたX線を光電変換素子を介して電気信号に変換する間接変換型、検出されたX線を直接的に電気信号に変換する直接変換型があるが、何れを用いてもよい。 As the X-ray detector 16, an FPD (Flat Panel Detector) can be used. There are two types of FPDs: an indirect conversion type that converts detected X-rays into electrical signals via a photoelectric conversion element, and a direct conversion type that converts detected X-rays directly into electrical signals. Good too.
 間接変換型は、CsIやGdS等のシンチレータプレートの下に、光電変換素子がTFT(薄膜トランジスタ)とともに2次元状に配置されて各画素を構成する。X線検出器16に入射したX線がシンチレータプレートに吸収されると、シンチレータプレートが発光する。この発光した光により、各光電変換素子に電荷が蓄積され、蓄積された電荷は画像信号として読み出される。 In the indirect conversion type, a photoelectric conversion element is arranged two-dimensionally together with a TFT (thin film transistor) under a scintillator plate such as CsI or Gd 2 O 2 S to form each pixel. When the X-rays incident on the X-ray detector 16 are absorbed by the scintillator plate, the scintillator plate emits light. This emitted light causes charge to be accumulated in each photoelectric conversion element, and the accumulated charge is read out as an image signal.
 直接変換型は、アモルファスセレンの熱蒸着により、100~1000(μm)の膜厚のアモルファスセレン膜がガラス上に形成され、2次元状に配置されたTFTのアレイ上にアモルファスセレン膜と電極が蒸着される。アモルファスセレン膜がX線を吸収するとき、電子正孔対の形で物質内に電圧が遊離され、電極間の電圧信号がTFTにより読み取られる。なお、CCD(Charge Coupled Device)、X線カメラ等の撮影手段をX線検出器16として用いてもよい。 In the direct conversion type, an amorphous selenium film with a thickness of 100 to 1000 (μm) is formed on glass by thermal evaporation of amorphous selenium, and the amorphous selenium film and electrodes are placed on a two-dimensional array of TFTs. Deposited. When the amorphous selenium film absorbs X-rays, a voltage is liberated within the material in the form of electron-hole pairs, and the voltage signal between the electrodes is read by the TFT. Note that an imaging means such as a CCD (Charge Coupled Device) or an X-ray camera may be used as the X-ray detector 16.
 X線タルボ・ロー装置200は、例えば、いわゆる縞走査法を用いてモアレ画像Moを複数枚撮影するようになっている。すなわち、このX線タルボ・ロー装置200では、第1格子14と第2格子15との相対位置を図3~図5におけるx軸方向(すなわちスリットSの延在方向(y軸方向)に直交する方向)にずらしながらモアレ画像Moを複数枚撮影する。 The X-ray Talbot-Lau apparatus 200 is configured to take a plurality of moiré images Mo using, for example, a so-called fringe scanning method. That is, in this X-ray Talbot-Lau apparatus 200, the relative positions of the first grating 14 and the second grating 15 are set in the x-axis direction (that is, perpendicular to the extending direction (y-axis direction) of the slit S) in FIGS. A plurality of moiré images Mo are photographed while shifting the moiré images Mo in the direction of
 X線タルボ・ロー装置200は、例えば、撮影された複数枚分のモアレ画像Moに基づいて、吸収画像、微分位相画像および小角散乱画像等を再構成(すなわち、画像再構成)するようになっている。再構成の処理は、予測装置100により行われてもよい。 The X-ray Talbot-Lau apparatus 200, for example, reconstructs an absorption image, a differential phase image, a small-angle scattering image, etc. (that is, image reconstruction) based on a plurality of captured moiré images Mo. ing. The reconstruction process may be performed by the prediction device 100.
 X線タルボ・ロー装置200は、例えば、縞走査法によりモアレ画像Moを複数枚撮影するために、第1格子14をx軸方向に所定量ずつ移動させることが可能となっている。なお、第1格子14を移動させる代わりに第2格子15を移動させたり、或いは両方とも移動させたりするように構成することも可能である。 The X-ray Talbot-Lau apparatus 200 is capable of moving the first grating 14 by a predetermined amount in the x-axis direction, for example, in order to capture a plurality of moiré images Mo using the fringe scanning method. Note that it is also possible to move the second grating 15 instead of moving the first grating 14, or to move both of them.
 また、X線タルボ・ロー装置200で、第1格子14と第2格子15との相対位置を固定したままモアレ画像Moを1枚だけ撮影し、他の装置(例えば、画像処理装置または予測装置100)における画像処理で、このモアレ画像Moをフーリエ変換法等を用いて解析する等して吸収画像や微分位相画像等を再構成するように構成することも可能である。 Further, the X-ray Talbot-Lau device 200 captures only one moiré image Mo while fixing the relative positions of the first grating 14 and the second grating 15, and other devices (for example, an image processing device or a prediction device) In the image processing in 100), it is also possible to reconstruct an absorption image, a differential phase image, etc. by analyzing this moiré image Mo using a Fourier transform method or the like.
 X線タルボ・ロー装置200における他の部分の構成について説明する。このX線タルボ・ロー装置200は、いわゆる縦型であり、X線発生装置11、線源格子12、被写体台13、第1格子14、第2格子15、X線検出器16が、この順序に重力方向であるz方向に配置されている。すなわち、ここでは、z方向が、X線発生装置11からのX線の照射方向ということになる。 The configuration of other parts of the X-ray Talbot-Low apparatus 200 will be explained. This X-ray Talbot-Lau apparatus 200 is of a so-called vertical type, and the X-ray generator 11, the source grating 12, the subject stage 13, the first grating 14, the second grating 15, and the X-ray detector 16 are arranged in this order. is placed in the z direction, which is the direction of gravity. That is, here, the z direction is the irradiation direction of the X-rays from the X-ray generator 11.
 X線発生装置11は、X線源11aとして、例えば医療現場で広く一般に用いられているクーリッジX線源や回転陽極X線源等を備えている。また、それ以外のX線源を用いることも可能である。X線発生装置11は、例えば、焦点からX線をコーンビーム状に照射するようになっている。つまり、図3に示すように、z方向と一致するX線照射軸Caを中心軸としてX線発生装置11から離れるほどX線が広がるように照射される(すなわち、X線照射範囲)。 The X-ray generator 11 includes, as an X-ray source 11a, a Coolidge X-ray source, a rotating anode X-ray source, etc., which are widely used in medical settings, for example. It is also possible to use other X-ray sources. The X-ray generator 11 is configured, for example, to emit X-rays from a focal point in the form of a cone beam. That is, as shown in FIG. 3, X-rays are irradiated with the X-ray irradiation axis Ca coinciding with the z direction as the central axis, and the X-rays are irradiated so as to spread further away from the X-ray generator 11 (that is, the X-ray irradiation range).
 X線タルボ・ロー装置200では、例えば、X線発生装置11の下方に線源格子12が設けられている。X線源11aの陽極の回転等により生じるX線発生装置11の振動が線源格子12に伝わらないようにするために、線源格子12は、X線発生装置11には取り付けられず、支柱17に設けられた基台部18に取り付けられた固定部材12aに取り付けられていることが好ましい。 In the X-ray Talbot-Lau apparatus 200, for example, a source grating 12 is provided below the X-ray generator 11. In order to prevent vibrations of the X-ray generator 11 caused by rotation of the anode of the X-ray source 11a from being transmitted to the source grating 12, the source grating 12 is not attached to the X-ray generator 11 and is attached to a support. It is preferable to attach it to a fixing member 12a attached to a base part 18 provided at 17.
 X線タルボ・ロー装置200では、X線発生装置11の振動が支柱17等のX線タルボ・ロー装置200の他の部分に伝播しないようにするために(あるいは伝播する振動をより小さくするために)、例えば、X線発生装置11と支柱17との間に緩衝部材17aが設けられている。 In the X-ray Talbot-Low apparatus 200, in order to prevent the vibrations of the X-ray generator 11 from propagating to other parts of the X-ray Talbot-Low apparatus 200, such as the column 17 (or to make the propagating vibrations smaller). ), for example, a buffer member 17a is provided between the X-ray generator 11 and the support column 17.
 上記の固定部材12aには、線源格子12のほか、例えば、線源格子12を透過したX線の線質を変えるためのろ過フィルター(付加フィルターともいう。)192、照射されるX線の照射野を絞るための照射野絞り193、およびX線を照射する前にX線の代わりに可視光を被写体に照射して位置合わせを行うための照射野ランプ194等が取り付けられている。 In addition to the source grating 12, the fixed member 12a includes, for example, a filtration filter (also referred to as an additional filter) 192 for changing the quality of the X-rays transmitted through the source grating 12, and a filter for changing the quality of the X-rays transmitted through the source grating 12. An irradiation field aperture 193 for narrowing down the irradiation field, and an irradiation field lamp 194 for irradiating the subject with visible light instead of X-rays to perform positioning before irradiating the X-rays are attached.
 なお、線源格子12とろ過フィルター192と照射野絞り193とは、必ずしもこの順番に設けられる必要はない。線源格子12等の周囲には、それらを保護するための第1のカバーユニット190が配置されている。 Note that the source grating 12, filter filter 192, and irradiation field aperture 193 do not necessarily need to be provided in this order. A first cover unit 190 is arranged around the source grating 12 and the like to protect them.
 被写体台13は、複合材料Hが載置される台であるが、複合材料Hをz軸回りに回転させる回転ステージとして機能することができる。先述した縞走査法を用いてモアレ画像Moを複数枚撮影する場合、被写体台13を異なる角度に回転させつつ、モアレ画像Moを複数枚撮影することができる。 The subject stage 13 is a stage on which the composite material H is placed, and can function as a rotation stage that rotates the composite material H around the z-axis. When capturing a plurality of moire images Mo using the fringe scanning method described above, it is possible to capture a plurality of moire images Mo while rotating the subject stage 13 at different angles.
 コントローラ19(図3参照)は、本実施形態では、図示しないCPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)、入出力インターフェース等がバスに接続されたコンピューターで構成されている。なお、コントローラ19を、本実施形態のような汎用のコンピューターではなく、専用の制御装置として構成することも可能である。また、コントローラ19には、図示はしないが、操作部を含む入力手段や出力手段、記憶手段、通信手段等の適宜の手段や装置が設けられている。出力手段には、X線タルボ・ロー装置200の各種操作を行うために必要な情報や、生成された再構成画像を表示する表示部(図示省略)が含まれている。 In this embodiment, the controller 19 (see FIG. 3) is composed of a computer in which a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input/output interface, etc. (not shown) are connected to a bus. has been done. Note that it is also possible to configure the controller 19 as a dedicated control device instead of a general-purpose computer as in this embodiment. Further, although not shown, the controller 19 is provided with appropriate means and devices such as an input means including an operation section, an output means, a storage means, and a communication means. The output means includes a display unit (not shown) that displays information necessary for performing various operations of the X-ray Talbot-Lau apparatus 200 and generated reconstructed images.
 コントローラ19は、X線タルボ・ロー装置200に対する全般的な制御を行うようになっている。すなわち、例えば、コントローラ19は、X線発生装置11に接続されており、X線源11aに管電圧や管電流、照射時間等を設定することができるようになっている。また、例えば、コントローラ19が、X線検出器16と外部の装置(例えば、予測装置100)等との信号やデータの送受信を中継するように構成することも可能である。予測装置100が、コントローラ19として機能してもよい。 The controller 19 is designed to perform general control over the X-ray Talbot-Low apparatus 200. That is, for example, the controller 19 is connected to the X-ray generator 11, and can set the tube voltage, tube current, irradiation time, etc. for the X-ray source 11a. Further, for example, it is also possible to configure the controller 19 to relay transmission and reception of signals and data between the X-ray detector 16 and an external device (for example, the prediction device 100). The prediction device 100 may function as the controller 19.
 X線タルボ・ロー装置200は、配向撮影を行って配向画像(後述のamp画像、ave画像、pha画像)を生成してもよい。配向撮影は、回転ステージとして機能する被写体台13を回転させることによって、格子とサンプル(複合材料H)との相対的な角度を変えた撮影をいう。配向撮影により、画素ごとに最も信号値が強くなる方向を演算処理で求めることができる。以下、配向撮影について説明する。 The X-ray Talbot-Lau apparatus 200 may perform orientation imaging to generate orientation images (amp images, ave images, and pha images, which will be described later). Oriented photography refers to photography in which the relative angle between the grating and the sample (composite material H) is changed by rotating the subject stage 13 that functions as a rotation stage. By oriented imaging, the direction in which the signal value is strongest for each pixel can be determined through calculation processing. Orientation photography will be explained below.
 まず、サンプルと格子の相対角度を変えて撮影する。相対角度は、最低3種類以上用意する(例:0°、60°、120°)。例えば、装置側を固定してサンプルを回転させて所望の相対角度を実現してもよいし、サンプルを固定して装置側を回転させてもよい。以下では、2次元撮影を例に説明するが、3次元撮影に拡張することもできる。 First, images are taken while changing the relative angle between the sample and the grid. Prepare at least three types of relative angles (eg, 0°, 60°, 120°). For example, a desired relative angle may be achieved by fixing the device and rotating the sample, or by fixing the sample and rotating the device. In the following, two-dimensional imaging will be explained as an example, but it can also be extended to three-dimensional imaging.
 次に、用意した相対角度ごとに、吸収画像、微分位相画像または小角散乱画像を取得する。以降では、小角散乱画像、または、吸収画像で除算した小角散乱画像を用いる。吸収画像で除算した小角散乱画像は、凹凸のあるサンプルの場合に厚み依存性をキャンセルした画像といえる。説明の便宜上、両者を併せて「小角散乱画像」と呼ぶことにする。 Next, an absorption image, differential phase image, or small-angle scattering image is acquired for each prepared relative angle. Hereinafter, a small-angle scattering image or a small-angle scattering image divided by an absorption image will be used. The small-angle scattering image divided by the absorption image can be said to be an image in which thickness dependence is canceled in the case of a sample with unevenness. For convenience of explanation, both will be collectively referred to as a "small-angle scattering image."
 次に、用意した相対角度ごとの(3枚以上の)小角散乱画像の位置合わせをする。ここでは、サンプルが回転しているため、各画像を所定角度に戻す作業がなされる。 Next, align the prepared small-angle scattering images (three or more) for each relative angle. Here, since the sample is rotated, each image is returned to a predetermined angle.
 最後に、画素ごとに、正弦波でフィッティングを行い、フィッティングパラメータを抽出する。正弦波のグラフは、横軸をサンプルと格子の相対角度とし、縦軸をある画素の小角散乱信号値とするグラフである。フィッティングパラメータとして、正弦波の振幅、平均、位相が得られる。画素ごとの振幅値を表す画像を「amp画像」、画素ごとの平均値を示す画像を「ave画像」、画素ごとの位相を示す画像を「pha画像」と呼ぶことにする。amp画像、ave画像、pha画像をまとめて「配向画像」と呼ぶ。フィッティングの方法は正弦波に限定されず、例えば最も強度の大きな角度(位相)をθ、最も大きな強度をa、最も低い強度をbとした楕円を、位置r(θ)として極座標表示した以下の式(1)にフィッティングさせてもよい。この場合、正弦波フィッティングの際の呼称に対応して、画素ごとの振幅に相当する値(a-b)/2の画像を「amp画像」、画素ごとの平均値に相当する値(a+b)/2示す画像を「ave画像」、画素ごとのθを示す画像を「pha画像」としてもよい。単純に画素毎に、信号強度の長軸a、短軸b、位相θを割り当てて配向画像としてもよい。 Finally, fitting is performed using a sine wave for each pixel, and fitting parameters are extracted. A sine wave graph is a graph in which the horizontal axis represents the relative angle between the sample and the grating, and the vertical axis represents the small-angle scattering signal value of a certain pixel. The amplitude, average, and phase of the sine wave are obtained as fitting parameters. An image showing the amplitude value of each pixel will be called an "amp image," an image showing the average value of each pixel will be called an "ave image," and an image showing the phase of each pixel will be called a "pha image." The amp image, ave image, and pha image are collectively referred to as an "orientation image." The fitting method is not limited to sine waves; for example, an ellipse with the angle (phase) of the largest intensity as θ 0 , the largest intensity as a, and the lowest intensity as b is expressed in polar coordinates as the position r(θ). It is also possible to fit the equation (1). In this case, an image with a value (ab)/2 corresponding to the amplitude of each pixel is an "amp image", and a value corresponding to the average value of each pixel (a+b) corresponds to the name used in sine wave fitting. An image showing /2 may be called an "ave image", and an image showing θ 0 for each pixel may be called a "pha image". The orientation image may be created by simply assigning the major axis a, the minor axis b, and the phase θ 0 of the signal intensity to each pixel.
 このようなX線タルボ・ロー装置200は、複合材料Hのフィラー配向に関する情報を含むタルボ画像を生成する。即ち、X線タルボ・ロー装置200により生成されるタルボ情報は、タルボ画像に関する情報である。タルボ画像は、X線タルボ・ロー装置200が複合材料Hを撮影し、上記タルボ効果によって生成される画像である。上記配向画像などの画像処理が施された画像もタルボ画像に含まれる。モアレ画像Moから再構成した再構成画像もタルボ画像に含まれる。 Such an X-ray Talbot-Lau apparatus 200 generates a Talbot image containing information regarding the filler orientation of the composite material H. That is, the Talbot information generated by the X-ray Talbot-Lau apparatus 200 is information regarding Talbot images. The Talbot image is an image generated by the Talbot effect described above when the X-ray Talbot-Lau device 200 photographs the composite material H. Images that have been subjected to image processing, such as the orientation image described above, are also included in the Talbot image. A reconstructed image reconstructed from the moire image Mo is also included in the Talbot image.
 (測定装置300)
 測定装置300は、複合材料を測定して測定情報を生成するための装置である。ここで、測定装置300は、複合材料の化学的特性および物理的特性を測定する装置であり、例えば、音響特性、原子特性、電気的特性、磁気的特性、機械的特性、光学的特性、放射線特性、熱特性および表面状態等を測定する。この測定装置300は、X線タルボ・ロー装置200とは異なっている。測定装置300は、複合材料を非破壊で測定可能な装置であることが好ましい。これにより、測定装置300により測定した後の複合材料をその後の製造工程等に使用することが可能となる。
(Measuring device 300)
The measuring device 300 is a device for measuring a composite material and generating measurement information. Here, the measuring device 300 is a device that measures the chemical properties and physical properties of the composite material, such as acoustic properties, atomic properties, electrical properties, magnetic properties, mechanical properties, optical properties, and radiation properties. Measure properties, thermal properties, surface condition, etc. This measuring device 300 differs from the X-ray Talbot-Low device 200. Preferably, the measuring device 300 is a device capable of non-destructively measuring composite materials. Thereby, the composite material measured by the measuring device 300 can be used in subsequent manufacturing steps and the like.
 測定装置300は、例えば、走査電子顕微鏡(SEM:Scanning Electron Microscope)、赤外分光測定装置、インピーダンス分光測定装置、テラヘルツ波分光測定装置、超音波測定装置、ラマン分光測定装置、X線回折装置または示差走査熱量計(DSC:Differential scanning calorimetry)である。測定装置300は、複合樹脂における領域を特定して測定できる装置であることが好ましく、例えば、走査電子顕微鏡、赤外分光測定装置、ラマン分光測定装置またはX線回折装置であることが好ましい。このような測定装置300を用いることにより、X線タルボ・ロー装置200により測定された複合樹脂の領域の一部または全部と同じ領域を測定装置300により測定することが可能となる。 The measurement device 300 is, for example, a scanning electron microscope (SEM), an infrared spectrometer, an impedance spectrometer, a terahertz wave spectrometer, an ultrasound measurement device, a Raman spectrometer, an X-ray diffraction device, or It is a differential scanning calorimeter (DSC). The measuring device 300 is preferably a device that can specify and measure a region in the composite resin, and is preferably a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, or an X-ray diffraction device, for example. By using such a measuring device 300, it becomes possible to measure a part or all of the same area of the composite resin as measured by the X-ray Talbot-Lau apparatus 200 using the measuring device 300.
 走査電子顕微鏡は、複合材料に電子線を照射して複合材料の表面状態を観察する。赤外分光測定装置、テラヘルツ波分光測定装置およびラマン分光測定装置は、複合材料に電磁波を照射して複合材料の電磁波に対する応答、即ち光学特性を測定する。超音波測定装置は、複合材料に超音波をあて、複合材料の超音波に対する応答、即ち音響特性を測定する。インピーダンス分光測定装置は、複合材料の電気的特性を様々な周波数のインピーダンスとして測定する。X線回折装置は、複合材料にX線を照射して複合材料の放射線特性を測定する。示差走査熱量計は、複合材料の温度を変化させて、その熱容量、即ち、熱特性を測定する。 A scanning electron microscope irradiates a composite material with an electron beam to observe the surface condition of the composite material. An infrared spectrometer, a terahertz wave spectrometer, and a Raman spectrometer irradiate a composite material with electromagnetic waves to measure the response of the composite material to the electromagnetic waves, that is, the optical properties. The ultrasonic measuring device applies ultrasonic waves to a composite material and measures the response of the composite material to the ultrasonic waves, that is, the acoustic characteristics. An impedance spectrometer measures the electrical properties of a composite material as impedance at various frequencies. An X-ray diffraction device measures the radiation characteristics of a composite material by irradiating the composite material with X-rays. Differential scanning calorimeters vary the temperature of a composite material to measure its heat capacity, or thermal properties.
 測定装置300が生成する複合材料の測定情報は、複合材料におけるフィラーのフィラー径、フィラーのフィラー長、フィラーの含有率および樹脂の結晶化度の少なくともいずれかに関する情報を含んでいることが好ましい。フィラー径、フィラー長、フィラーの含有率および樹脂の結晶化度等は、複合材料の機械強度に影響を及ぼしている可能性が高いためである。 The measurement information of the composite material generated by the measuring device 300 preferably includes information regarding at least one of the filler diameter of the filler, the filler length of the filler, the filler content, and the crystallinity of the resin in the composite material. This is because the filler diameter, filler length, filler content, resin crystallinity, etc. are highly likely to affect the mechanical strength of the composite material.
 例えば、赤外分光測定装置を用いて複合材料を測定することにより、樹脂種、樹脂の結晶化度および比容積等に関する情報を含む測定情報を生成することができる。テラヘルツ波分光測定装置を用いて複合材料を測定することにより、フィラーと樹脂との相互作用および樹脂の結晶化度等に関する情報を含む測定情報を生成することができる。超音波測定装置を用いて複合材料を測定することにより、比容積、フィラーの含有率および樹脂種等に関する情報を含む測定情報を生成することができる。インピーダンス分光測定装置を用いて複合材料を測定することにより、フィラーの含有率およびフィラーと樹脂との相互作用等に関する情報を含む測定情報を生成することができる。X線回折装置を用いて複合材料を測定することにより、樹脂の結晶化度等に関する情報を含む測定情報を生成することができる。また、X線回折装置を用いることにより、樹脂の結晶化度から樹脂種の分析も可能となる。 For example, by measuring a composite material using an infrared spectrometer, it is possible to generate measurement information including information regarding the resin species, resin crystallinity, specific volume, and the like. By measuring the composite material using a terahertz wave spectrometer, it is possible to generate measurement information including information regarding the interaction between the filler and the resin, the crystallinity of the resin, and the like. By measuring the composite material using an ultrasonic measuring device, measurement information including information regarding the specific volume, filler content, resin type, etc. can be generated. By measuring the composite material using an impedance spectrometer, it is possible to generate measurement information including information regarding the filler content, the interaction between the filler and the resin, and the like. By measuring the composite material using an X-ray diffraction device, measurement information including information regarding the crystallinity of the resin, etc. can be generated. Further, by using an X-ray diffraction device, it is also possible to analyze the resin species based on the crystallinity of the resin.
 このような測定装置300は、例えば、上記フィラー径、フィラー長、フィラーの含有率または樹脂の結晶化度に関する情報を含むスペクトル、画像またはDSC曲線を生成する。即ち、測定装置300により生成される測定情報は、スペクトル、画像またはDSC曲線等に関する情報である。 Such a measuring device 300 generates, for example, a spectrum, an image, or a DSC curve that includes information regarding the filler diameter, filler length, filler content, or resin crystallinity. That is, the measurement information generated by the measurement device 300 is information regarding a spectrum, an image, a DSC curve, or the like.
 図6は、予測システムの他の例を表している。予測システムは、複数の測定装置(例えば、図6の測定装置300A,300B)を含んでいてもよい。測定装置300A,300Bは、複合材料を測定して測定情報を生成するための装置である。測定装置300A,300Bは、互いに異なる装置である。測定装置300A,300Bには、上記測定装置300で説明したのと同様の装置を用いることができる。 FIG. 6 shows another example of the prediction system. The prediction system may include a plurality of measurement devices (eg, measurement devices 300A and 300B in FIG. 6). The measuring devices 300A and 300B are devices for measuring composite materials and generating measurement information. Measuring devices 300A and 300B are different devices. As the measurement devices 300A and 300B, devices similar to those described for the measurement device 300 above can be used.
 <予測装置100の機能>
 図7は、予測装置100の機能構成を示すブロック図である。
<Function of prediction device 100>
FIG. 7 is a block diagram showing the functional configuration of the prediction device 100.
 図7に示すように、予測装置100は、CPU110がストレージ140に記憶されたプログラムを読み込んで処理を実行することによって、取得部111、抽出部112、予測部113および制御部114として機能する。 As shown in FIG. 7, the prediction device 100 functions as an acquisition unit 111, an extraction unit 112, a prediction unit 113, and a control unit 114 when the CPU 110 reads a program stored in the storage 140 and executes the process.
 取得部111は、X線タルボ・ロー装置200により生成されたタルボ情報と、測定装置300により生成された測定情報とを取得する。取得部111が取得するタルボ情報および測定情報は、複合樹脂の同一領域に関する情報を含んでいることが好ましい。これにより、複合樹脂のうち、特定の領域の機械強度を高い精度で予測することが可能となる。後述するように、例えば、X線タルボ・ロー装置200および測定装置300の順で複合樹脂の測定を行うことにより、複合樹脂の同一領域に関する情報を含むタルボ情報および測定情報を取得することが可能となる。 The acquisition unit 111 acquires Talbot information generated by the X-ray Talbot-Lau apparatus 200 and measurement information generated by the measurement device 300. It is preferable that the Talbot information and measurement information acquired by the acquisition unit 111 include information regarding the same area of the composite resin. This makes it possible to predict the mechanical strength of a specific region of the composite resin with high accuracy. As will be described later, for example, by measuring the composite resin using the X-ray Talbot-Lau apparatus 200 and the measuring device 300 in this order, it is possible to obtain Talbot information and measurement information including information regarding the same area of the composite resin. becomes.
 抽出部112は、取得部111により取得されたタルボ情報および測定情報各々から特徴量を抽出する。特徴量は、例えば、取得部111により取得されたスペクトル、画像またはDSC曲線などから抽出され、かつ、複合材料の物性に結び付けられる数値である。タルボ情報から抽出される特徴量は、配向画像(amp画像、ave画像、pha画像)などのタルボ画像そのものであってもよく、タルボ画像の特定領域から取得される画像信号値であってもよい。タルボ情報から抽出される特徴量は、配向度および配向角度等であってもよい。 The extraction unit 112 extracts feature amounts from each of the Talbot information and measurement information acquired by the acquisition unit 111. The feature amount is, for example, a numerical value extracted from a spectrum, an image, a DSC curve, or the like acquired by the acquisition unit 111, and linked to the physical properties of the composite material. The feature amount extracted from the Talbot information may be the Talbot image itself, such as an orientation image (amp image, ave image, pha image), or may be an image signal value obtained from a specific region of the Talbot image. . The feature amount extracted from the Talbot information may be an orientation degree, an orientation angle, or the like.
 また、タルボ情報から抽出される特徴量は偏心度eccであってもよい。偏心度eccは、例えば、配向画像から得られた信号値amp、aveを用いてσ1=ave+amp(小角信号値の最大値に相当)と、σ2=ave-amp(小角信号値の最小値に相当)を算出したとき、以下の式(2)により求められる。配向画像が、画素ごとに偏心度eccを示す画像(ecc画像)を含んでいてもよい。 Furthermore, the feature extracted from the Talbot information may be the eccentricity ecc. For example, the eccentricity ecc can be determined by using the signal values amp and ave obtained from the orientation image and calculating σ1=ave+amp (corresponding to the maximum value of the small-angle signal value) and σ2=ave-amp (corresponding to the minimum value of the small-angle signal value). ) is calculated using the following equation (2). The orientation image may include an image (ecc image) showing the degree of eccentricity ecc for each pixel.
 測定情報が例えば、複合材料の赤外吸収スペクトルまたはテラヘルツ帯の吸収スペクトルに関する情報であるとき、抽出部112は、測定情報から主成分を抽出する。測定情報が複合材料のX線回折スペクトルに関する情報であるとき、抽出部112は、測定情報から主成分または結晶化度等を抽出する。測定情報が複合材料のインピーダンス分光のスペクトルに関する情報であるとき、抽出部112は、測定情報から容量または抵抗等を抽出する。測定情報が複合材料の超音波画像に関する情報であるとき、抽出部112は、測定情報から主成分または周波数特性等を抽出する。周波数特性は、例えば、減衰および音速等である。 When the measurement information is, for example, information regarding the infrared absorption spectrum or terahertz band absorption spectrum of the composite material, the extraction unit 112 extracts the main component from the measurement information. When the measurement information is information regarding the X-ray diffraction spectrum of the composite material, the extraction unit 112 extracts the main component, crystallinity, etc. from the measurement information. When the measurement information is information regarding the impedance spectrum of the composite material, the extraction unit 112 extracts capacitance, resistance, etc. from the measurement information. When the measurement information is information regarding an ultrasonic image of the composite material, the extraction unit 112 extracts the principal component, frequency characteristics, etc. from the measurement information. The frequency characteristics include, for example, attenuation and sound speed.
 測定情報が複合材料のインピーダンススペクトルであるとき、抽出部112は、測定情報から特定周波数の抵抗値または容量などを抽出する。測定情報が複合材料のSEM画像であるとき、抽出部112は、画像解析をして得られる所定の数値を抽出する。抽出部112は、タルボ情報、測定情報各々から複数の特徴量を抽出してもよい。また、測定情報から抽出される特徴量は、スペクトルを主成分分析した主成分であってもよい。また、測定情報から抽出される特徴量は、測定された波形を主成分分析した主成分であってもよい。 When the measurement information is an impedance spectrum of the composite material, the extraction unit 112 extracts the resistance value or capacitance at a specific frequency from the measurement information. When the measurement information is a SEM image of the composite material, the extraction unit 112 extracts a predetermined numerical value obtained by analyzing the image. The extraction unit 112 may extract a plurality of feature amounts from each of the Talbot information and the measurement information. Further, the feature amount extracted from the measurement information may be a principal component obtained by principal component analysis of a spectrum. Further, the feature amount extracted from the measurement information may be a principal component obtained by principal component analysis of a measured waveform.
 取得部111は、特徴量が抽出された情報を取得してもよい。即ち、タルボ情報および測定情報は、X線タルボ・ロー装置200および測定装置300により測定された複合材料に関する情報から特徴量が抽出されたものであってもよい。 The acquisition unit 111 may acquire information from which feature amounts are extracted. That is, the Talbot information and the measurement information may be obtained by extracting feature amounts from information regarding the composite material measured by the X-ray Talbot-Lau apparatus 200 and the measuring device 300.
 予測部113は、取得部111により取得されたタルボ情報および測定情報に基づいて、複合材料の機械強度を予測する。具体的には、予測部113は、学習済みの識別器を用いて、抽出部112により抽出されたタルボ情報および測定情報各々の特徴量を入力とし、複合材料の機械強度を予測する。予測部113は、例えば、複合材料の弾性率、降伏強さ、塑性、引張強さ、伸び、破壊エネルギーまたは硬度を予測する。 The prediction unit 113 predicts the mechanical strength of the composite material based on the Talbot information and measurement information acquired by the acquisition unit 111. Specifically, the prediction unit 113 uses a trained discriminator to input the feature amounts of the Talbot information and measurement information extracted by the extraction unit 112, and predicts the mechanical strength of the composite material. The prediction unit 113 predicts, for example, the elastic modulus, yield strength, plasticity, tensile strength, elongation, fracture energy, or hardness of the composite material.
 制御部114は、予測部113により予測された複合材料の機械強度に関する情報を表示部160に出力させる。 The control unit 114 causes the display unit 160 to output information regarding the mechanical strength of the composite material predicted by the prediction unit 113.
 図8は、表示部160に出力された複合材料の機械強度に関する情報の一例を表している。表示部160には、例えば、複合材料に関する情報とともに、予測された機械強度(図8では、引張強度)の値が表示される。 FIG. 8 shows an example of information regarding the mechanical strength of the composite material output to the display unit 160. For example, the predicted mechanical strength (tensile strength in FIG. 8) is displayed on the display unit 160 along with information regarding the composite material.
 予測装置100において実行される処理について、以下に詳述する。 The processing executed in the prediction device 100 will be described in detail below.
 <処理概要>
 図9は、予測装置100において実行される予測処理の手順を示すフローチャートである。図9のフローチャートに示される予測装置100の処理は、予測装置100のストレージ140にプログラムとして記憶されており、CPU110が各部を制御することにより実行される。
<Processing overview>
FIG. 9 is a flowchart showing the procedure of prediction processing executed by the prediction device 100. The processing of the prediction device 100 shown in the flowchart of FIG. 9 is stored as a program in the storage 140 of the prediction device 100, and is executed by the CPU 110 controlling each part.
 (ステップS101,S102)
 予測装置100は、まず、複合材料をX線タルボ・ロー装置200により測定したタルボ情報を取得する(ステップS101)。次に、予測装置100は、複合材料を測定装置300により測定した測定情報を取得する(ステップS102)。予測装置100は、タルボ情報および測定情報を同時に取得してもよく、測定情報を取得した後、タルボ情報を取得してもよい。
(Steps S101, S102)
The prediction device 100 first acquires Talbot information obtained by measuring the composite material with the X-ray Talbot-Lau apparatus 200 (step S101). Next, the prediction device 100 acquires measurement information obtained by measuring the composite material with the measurement device 300 (step S102). The prediction device 100 may acquire Talbot information and measurement information at the same time, or may acquire Talbot information after acquiring measurement information.
 予測装置100は、例えば、X線タルボ・ロー装置200からタルボ情報、測定装置300から測定情報を各々取得する。X線タルボ・ロー装置200および測定装置300は、タルボ情報および測定情報をサーバー等の他の装置に記憶させてもよく、予測装置100は、他の装置からタルボ情報および測定情報を取得してもよい。 The prediction device 100 obtains Talbot information from the X-ray Talbot-Lau device 200 and measurement information from the measurement device 300, for example. The X-ray Talbot-Lau device 200 and the measurement device 300 may store Talbot information and measurement information in other devices such as a server, and the prediction device 100 may acquire Talbot information and measurement information from other devices. Good too.
 X線タルボ・ロー装置200および測定装置300による複合樹脂の測定は、X線タルボ・ロー装置200および測定装置300の順に行うことが好ましい。これにより、X線タルボ・ロー装置200による測定結果に基づき、測定された一部または全部の領域を特定した後、特定した領域を測定装置300により測定することが可能となる。即ち、予測装置100は、複合樹脂の同一領域に関する情報を含むタルボ情報および測定情報を取得することが可能となり、複合樹脂の特定領域の機械強度を高い精度で予測することができる。このとき、測定装置300には、複合樹脂の領域を特定して測定可能な装置、例えば、走査電子顕微鏡、赤外分光測定装置、ラマン分光測定装置またはX線回折装置等を用いる。 It is preferable that the measurement of the composite resin by the X-ray Talbot-Lau apparatus 200 and the measuring device 300 be performed in the order of the X-ray Talbot-Lau apparatus 200 and the measuring device 300. Thereby, after specifying a part or all of the measured area based on the measurement results by the X-ray Talbot-Lau apparatus 200, it becomes possible to measure the specified area using the measuring device 300. That is, the prediction device 100 can acquire Talbot information and measurement information that include information regarding the same region of the composite resin, and can predict the mechanical strength of a specific region of the composite resin with high accuracy. At this time, the measurement device 300 uses a device that can specify and measure a region of the composite resin, such as a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, or an X-ray diffraction device.
 (ステップS103)
 予測装置100は、ステップS101,S102の処理において取得されたタルボ情報および測定情報各々から特徴量を抽出する。
(Step S103)
The prediction device 100 extracts feature amounts from each of the Talbot information and measurement information acquired in steps S101 and S102.
 (ステップS104)
 予測装置100は、ステップS103の処理において抽出されたタルボ情報および測定情報各々の特徴量を、予め機械学習された識別器に入力して、複合材料の機械強度を予測する。例えば、識別器は、後述するような学習方法によって、予め多数準備された複数の複合材料のタルボ情報および測定情報各々の特徴量と、複数の複合材料各々の機械強度の測定値とを有する教師データを用いて機械学習される。具体的には、識別器は、複数の複合材料に関するタルボ情報および測定情報各々の特徴量を入力データとし、複数の複合材料各々の機械強度の測定値を出力データとして機械学習される。これにより、予測装置100は、タルボ情報および測定情報各々について抽出された特徴量を識別器に入力することによって、複合材料の機械強度を予測することができる。複合材料の機械強度の測定値は、例えば、テンシロン万能試験機を用いて取得される。
(Step S104)
The prediction device 100 inputs the feature amounts of each of the Talbot information and measurement information extracted in the process of step S103 to a discriminator that has undergone machine learning in advance, and predicts the mechanical strength of the composite material. For example, the discriminator is trained by a learning method such as the one described below to acquire feature quantities of each of the Talbot information and measurement information of a plurality of composite materials prepared in advance, and a measured value of mechanical strength of each of the plurality of composite materials. Machine learning is performed using data. Specifically, the discriminator performs machine learning using the feature amounts of each of the Talbot information and measurement information regarding the plurality of composite materials as input data, and using the measured value of the mechanical strength of each of the plurality of composite materials as output data. Thereby, the prediction device 100 can predict the mechanical strength of the composite material by inputting the feature amounts extracted for each of the Talbot information and the measurement information into the discriminator. Mechanical strength measurements of composite materials are obtained using, for example, a Tensilon universal testing machine.
 識別器は、複数の複合材料に関するタルボ情報および測定情報を入力データとし、複数の複合材料各々の機械強度の測定値を出力データとして機械学習されてもよい。また、識別器に入力する情報はタルボ情報および測定情報各々の特徴量に限定されない。例えば、タルボ情報および測定情報各々の特徴量に加えて、製造時の情報が識別器に入力され、学習および予測を行うための情報として用いられてもよい。 The discriminator may undergo machine learning using Talbot information and measurement information regarding a plurality of composite materials as input data, and using measured values of mechanical strength of each of the plurality of composite materials as output data. Furthermore, the information input to the discriminator is not limited to the respective feature amounts of Talbot information and measurement information. For example, in addition to the respective feature amounts of Talbot information and measurement information, information at the time of manufacture may be input to the discriminator and used as information for learning and prediction.
 (ステップS105)
 予測装置100は、ステップS104の処理における識別器による出力に基づいて、複合材料の機械強度の予測結果を生成する。
(Step S105)
The prediction device 100 generates a prediction result of the mechanical strength of the composite material based on the output from the discriminator in the process of step S104.
 (ステップS106)
 予測装置100は、ステップS105の処理において生成された予測結果を出力する。例えば、予測装置100は、ステップS104の処理において予測された複合材料の機械強度の値を、複合材料に関する情報とともに表示部160に表示する(図8)。
(Step S106)
The prediction device 100 outputs the prediction result generated in the process of step S105. For example, the prediction device 100 displays the value of the mechanical strength of the composite material predicted in the process of step S104 on the display unit 160 together with information regarding the composite material (FIG. 8).
 <学習処理について>
 次に、識別器において用いられる学習済みモデルの機械学習方法について説明する。
<About learning process>
Next, a machine learning method for trained models used in the classifier will be described.
 図10は、学習済みモデルの機械学習方法を示すフローチャートである。 FIG. 10 is a flowchart showing a machine learning method for a trained model.
 図10の処理においては、予め準備した複数の複合材料のタルボ情報および測定情報各々の特徴量を入力とし、複数の複合材料各々の機械強度の測定値を出力とする、多数(i組個)のデータセットを学習サンプルデータとして用いて機械学習が実行される。識別器として機能する学習器(図示せず)には、例えば、CPUおよびGPUのプロセッサを用いたスタンドアロンの高性能コンピューター、またはクラウドコンピューターが用いられる。以下においては、学習器において、ディープラーニング等のパーセプトロンを組み合わせて構成したニューラルネットワークを用いる学習方法について説明するが、これに限られず、種々の手法が適用され得る。例えば、ランダムフォレスト、決定木、サポートベクターマシン(SVM)、ロジスティック回帰、k近傍法、トピックモデル等が適用され得る。 In the process shown in FIG. 10, a large number (i sets) of Talbot information and measurement information of a plurality of composite materials prepared in advance are input, and mechanical strength measurement values of each of the plurality of composite materials are output. Machine learning is performed using the dataset as learning sample data. For example, a stand-alone high-performance computer using a CPU and a GPU processor or a cloud computer is used as a learning device (not shown) that functions as a discriminator. In the following, a learning method using a neural network configured by combining perceptrons such as deep learning in a learning device will be described, but the method is not limited to this, and various methods may be applied. For example, random forest, decision tree, support vector machine (SVM), logistic regression, k-nearest neighbor method, topic model, etc. may be applied.
 (ステップS111)
 学習器は、教師データである学習サンプルデータを読み込む。最初であれば1組目の学習サンプルデータを読み込み、i回目であれば、i組目の学習サンプルデータを読み込む。
(Step S111)
The learning device reads learning sample data that is teacher data. If it is the first time, the first set of learning sample data is read, and if it is the i-th time, the i-th set of learning sample data is read.
 (ステップS112)
 学習器は、読み込んだ学習サンプルデータのうち入力データをニューラルネットワークに入力する。
(Step S112)
The learning device inputs input data of the read learning sample data to the neural network.
 (ステップS113)
 学習器は、ニューラルネットワークの予測結果を、正解データと比較する。
(Step S113)
The learning device compares the prediction results of the neural network with the correct data.
 (ステップS114)
 学習器は、比較結果に基づいてパラメータを調整する。学習器は、例えば、バックプロパゲーション(Back-propagation、誤差逆伝搬法)に基づく処理を実行することにより、比較結果の差異が小さくなるようにパラメータを調整する。
(Step S114)
The learning device adjusts the parameters based on the comparison results. The learning device adjusts the parameters so that the difference between the comparison results becomes smaller by, for example, executing processing based on back-propagation (error backpropagation method).
 (ステップS115)
 学習器は、1~i組目まで全データの処理が完了すれば(YES)、処理をステップS116に進め、完了していなければ(NO)、処理をステップS111に戻し、次の学習サンプルデータを読み込み、ステップS111以下の処理を繰り返す。
(Step S115)
If the learning device completes processing of all data from the 1st to the i-th set (YES), the process proceeds to step S116, and if not (NO), returns the process to step S111 and processes the next learning sample data. is read, and the processing from step S111 onwards is repeated.
 (ステップS116)
 学習器は、学習を継続するか否かを判定し、継続する場合(YES)、処理をステップS111に戻し、ステップS111~S115において再度1組目~i組目までの処理を実行し、継続しない場合(NO)、処理をステップS117に進める。
(Step S116)
The learning device determines whether or not to continue learning, and when continuing (YES), returns the process to step S111, executes the processes from the 1st group to the i-th group again in steps S111 to S115, and continues. If not (NO), the process advances to step S117.
 (ステップS117)
 学習器は、これまでの処理で構築された学習済みモデルを記憶して終了する(エンド)。記憶先には、予測装置100の内部メモリが含まれる。上述の図9の処理では、このようにして生成された学習済みモデルを用いて複合材料の機械強度が予測される。
(Step S117)
The learning device stores the learned model constructed in the previous processing and ends (end). The storage destination includes the internal memory of the prediction device 100. In the process shown in FIG. 9 described above, the mechanical strength of the composite material is predicted using the learned model generated in this way.
 <予測装置100および予測システムの作用効果>
 本実施形態の予測装置100および予測システムは、X線タルボ・ロー装置200および測定装置300によって測定された複合材料のタルボ情報および測定情報を取得し、取得したタルボ情報および測定情報に基づいて、複合材料の機械強度を予測する。これにより、複合材料の機械強度を予測することが可能となる。以下、この作用効果について説明する。
<Effects of prediction device 100 and prediction system>
The prediction device 100 and the prediction system of this embodiment acquire the Talbot information and measurement information of the composite material measured by the X-ray Talbot-Lau device 200 and the measurement device 300, and based on the acquired Talbot information and measurement information, Predict mechanical strength of composite materials. This makes it possible to predict the mechanical strength of the composite material. The effects will be explained below.
 複合材料の機械強度は、例えば、テンシロン万能試験機等を用いて測定することが可能であるが、この測定には手間がかかり、効率的に多数の複合材料の機械強度を測定することは困難である。例えば、テンシロン万能試験機での測定には、複合材料のダンベル片の作成が必要となる。 The mechanical strength of composite materials can be measured using, for example, a Tensilon universal testing machine, but this measurement is time-consuming and difficult to efficiently measure the mechanical strength of a large number of composite materials. It is. For example, measurements with a Tensilon universal testing machine require the creation of a dumbbell piece of composite material.
 これに対し、本実施形態の予測システムおよび予測装置100では、複合材料のタルボ情報および測定情報に基づいて、複合材料の機械強度が予測されるので、テンシロン万能試験機等を用いた直接的な機械強度の測定が不要となる。X線タルボ・ロー装置200を用いた複合材料の撮影には、ダンベル片の作成は不要であり、例えば、複合材料の成形品のかけら等を用いて撮影することができる。よって、より簡便に複合材料の機械強度を予測することが可能となる。 In contrast, in the prediction system and prediction device 100 of the present embodiment, the mechanical strength of the composite material is predicted based on the Talbot information and measurement information of the composite material, so it is possible to predict the mechanical strength of the composite material using a Tensilon universal testing machine or the like. No need to measure mechanical strength. For imaging a composite material using the X-ray Talbot-Lau apparatus 200, it is not necessary to create a dumbbell piece, and for example, a piece of a molded product of the composite material can be used for imaging. Therefore, it becomes possible to predict the mechanical strength of the composite material more easily.
 また、X線タルボ・ロー装置200を用いるので、短時間で、かつ、広範囲にわたる複合材料のフィラーの配向に関する情報を取得することができる。これにより、より高い精度で機械強度を予測することが可能となる。 Furthermore, since the X-ray Talbot-Lau apparatus 200 is used, information regarding the orientation of fillers in a composite material can be obtained in a short time and over a wide range. This makes it possible to predict mechanical strength with higher accuracy.
 さらに、X線タルボ・ロー装置200により生成されるタルボ情報に加えて、測定装置300により生成される測定情報に基づいて、複合材料の機械強度が予測されるので、単一の情報(例えば、タルボ情報のみ、あるいは測定情報のみ)に基づいて予測される場合に比べて、多面的な機械強度の予測が可能となる。したがって、より高い精度で機械強度を予測することが可能となる。仮に、複合材料に含まれる樹脂およびフィラー等の種類が不明である場合にも、高い精度での機械強度の予測が可能となる。 Furthermore, since the mechanical strength of the composite material is predicted based on the measurement information generated by the measuring device 300 in addition to the Talbot information generated by the X-ray Talbot-Lau device 200, a single piece of information (e.g. Compared to predictions based on only Talbot information or only measurement information, it is possible to predict mechanical strength from multiple angles. Therefore, it becomes possible to predict mechanical strength with higher accuracy. Even if the types of resin, filler, etc. contained in the composite material are unknown, it is possible to predict the mechanical strength with high accuracy.
 加えて、測定装置300(または測定装置300A,300B)に、複合樹脂の所定の領域を特定して測定可能な装置、例えば、走査電子顕微鏡、赤外分光測定装置、ラマン分光測定装置およびX線回折装置等を用いることにより、複合樹脂における同一領域の情報を含むタルボ情報および測定情報を取得することが可能となる。これにより、仮に、位置によって複合樹脂の機械強度のバラつきがある場合であっても、特定の領域の機械強度を高い精度で予測することができる。 In addition, the measuring device 300 (or the measuring devices 300A, 300B) includes a device capable of specifying and measuring a predetermined region of the composite resin, such as a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, and an X-ray spectrometer. By using a diffraction device or the like, it is possible to obtain Talbot information and measurement information including information on the same area in the composite resin. Thereby, even if the mechanical strength of the composite resin varies depending on the position, the mechanical strength of a specific region can be predicted with high accuracy.
 以上説明したように、本実施形態の予測装置100および予測システムでは、複合材料の機械強度を予測することが可能となる。 As explained above, the prediction device 100 and prediction system of this embodiment make it possible to predict the mechanical strength of a composite material.
 本発明の効果を、以下の実施例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effects of the present invention will be explained using the following examples. However, the technical scope of the present invention is not limited only to the following examples.
 (学習済みの識別器の作成)
 まず、教師データを作成するための複数の複合材料のサンプルを作製した。このサンプルは、以下に示す4種類の樹脂、3種類のフィラー、2条件のフィラー濃度(体積比)および2条件の射出圧力の組み合わせにより作製した。樹脂およびフィラーは、事前に株式会社東洋精機製作所製ラボプラストミル(登録商標)押出機を用いて、所望の比率で混合させた。これにより、ペレットを作製した。48種類の複合材料のサンプルは、住友重機械工業製射出成形機SE50Dを用いて成形した。サンプル形状は、JIS K7139
に示される、ダンベル形試験片タイプA1とした。
(Creating a trained classifier)
First, we created multiple samples of composite materials to create training data. This sample was produced using a combination of four types of resin, three types of filler, two conditions of filler concentration (volume ratio), and two conditions of injection pressure shown below. The resin and filler were mixed in advance at a desired ratio using a Laboplastomill (registered trademark) extruder manufactured by Toyo Seiki Seisakusho Co., Ltd. This produced pellets. Samples of 48 types of composite materials were molded using an injection molding machine SE50D manufactured by Sumitomo Heavy Industries. The sample shape is JIS K7139
A dumbbell-shaped specimen type A1 was used as shown in .
 樹脂:ポリプロピレン(住友化学株式会社製ノーブレン(登録商標)W101)、ポリアミド66(旭化成株式会社製レオナ1300S)、ABS(東レ株式会社製Toyolac700 314)、ポリカーボネート(三菱エンジニアリングプラスチック株式会社製ユーピロン(登録商標)H-3000R);
 フィラー:PAN(ポリアクリロニトリル)系炭素繊維(日本ポリマー産業株式会社製CF-N)、PAN系炭素繊維(台湾プラスチックス社製TC-33)、ガラス繊維(日東紡績株式会社製CS3J-960);
 フィラー濃度:5%、20%;
 射出圧力:50MPa、100MPa。
Resin: Polypropylene (Noblen (registered trademark) W101 manufactured by Sumitomo Chemical Co., Ltd.), polyamide 66 (Leona 1300S manufactured by Asahi Kasei Corporation), ABS (Toyolac700 314 manufactured by Toray Industries, Inc.), polycarbonate (Iupilon (registered trademark) manufactured by Mitsubishi Engineering Plastics Co., Ltd.) ) H-3000R);
Filler: PAN (polyacrylonitrile) carbon fiber (CF-N manufactured by Nippon Polymer Sangyo Co., Ltd.), PAN carbon fiber (TC-33 manufactured by Taiwan Plastics Co., Ltd.), glass fiber (CS3J-960 manufactured by Nitto Boseki Co., Ltd.);
Filler concentration: 5%, 20%;
Injection pressure: 50MPa, 100MPa.
 次に、この48種類の複合材料のサンプル各々を以下のX線タルボ・ロー装置および測定装置を用いて測定してその特徴量を識別器に学習させた。測定はダンベル形試験片の中央付近で行った。 Next, each of these 48 types of composite material samples was measured using the following X-ray Talbot-Lau device and measuring device, and the discriminator was made to learn the feature amounts. The measurement was performed near the center of the dumbbell-shaped test piece.
 X線タルボ・ロー装置(特開2019-184450号公報に記載の装置);
 FTIR(Fourier Transform Infrared Spectroscopy)装置(Thermo Fisher Scientific社製AVATAR370);
 テラヘルツ波分光測定装置(浜松ホトニクス株式会社製C12068-01);
 超音波測定装置(日本電磁測器株式会社UTS-101);
 インピーダンス分光測定装置(Solartron社製126096型。サンプル上に、直径5mmの導電テープを、50mm離して2か所に貼り付け、これを電極として測定を行った。);
 X線回折装置(株式会社リガク製Smart Lab)。
X-ray Talbot-Low device (device described in JP 2019-184450A);
FTIR (Fourier Transform Infrared Spectroscopy) device (AVATAR370 manufactured by Thermo Fisher Scientific);
Terahertz wave spectrometer (C12068-01 manufactured by Hamamatsu Photonics Co., Ltd.);
Ultrasonic measuring device (Japan Denji Sokki Co., Ltd. UTS-101);
Impedance spectrometer (Model 126096 manufactured by Solartron. Conductive tapes with a diameter of 5 mm were pasted on the sample at two locations 50 mm apart, and measurements were performed using these as electrodes.);
X-ray diffraction device (Smart Lab manufactured by Rigaku Co., Ltd.).
 X線タルボ・ロー装置では、測定により得られた吸収画像、微分位相画像および小角散乱画像と、これらの画像から得られたフィラーの配向度の情報とから特徴量を抽出した。FTIR、テラヘルツ波分光測定装置、インピーダンス分光測定装置およびX線回折装置では、測定により得られたスペクトルから特徴量を抽出した。超音波測定装置では、測定により得られた画像から特徴量を抽出した。 In the X-ray Talbot-Lau apparatus, feature quantities were extracted from the absorption image, differential phase image, and small-angle scattering image obtained by measurement, and information on the degree of orientation of the filler obtained from these images. In the FTIR, the terahertz wave spectrometer, the impedance spectrometer, and the X-ray diffraction device, feature amounts were extracted from the spectra obtained by measurement. The ultrasonic measuring device extracted feature amounts from the images obtained by measurement.
 また、テンシロン万能試験機を用いて、上記48種類の複合材料のサンプル各々の機械強度を測定し、識別器に学習させた。 Additionally, using a Tensilon universal testing machine, the mechanical strength of each of the 48 types of composite material samples was measured and the discriminator was trained.
 (実施例1~8、比較例)
 まず、4種類の複合材料のサンプルを作製した。このサンプルは、以下に示す2種類の樹脂、2種類のフィラー、1条件のフィラー濃度(体積比)および1条件の射出圧力の組み合わせにより作製した。サンプルの作製は、上記教師データと同様に行った。
(Examples 1 to 8, comparative examples)
First, samples of four types of composite materials were produced. This sample was produced using a combination of two types of resins, two types of fillers, one condition of filler concentration (volume ratio), and one condition of injection pressure shown below. The samples were prepared in the same manner as for the training data described above.
 樹脂:ポリプロピレン(住友化学株式会社製ノーブレン(登録商標)W101)、ポリアミド66(旭化成株式会社製レオナ1300S);
 フィラー:PAN系炭素繊維(日本ポリマー産業株式会社製CF-N)、PAN系炭素繊維(東レ株式会社製T700SC);
 フィラー濃度:10%;
 射出圧力:80MPa。
Resin: polypropylene (Noblen (registered trademark) W101 manufactured by Sumitomo Chemical Co., Ltd.), polyamide 66 (Leona 1300S manufactured by Asahi Kasei Co., Ltd.);
Filler: PAN-based carbon fiber (CF-N manufactured by Nippon Polymer Sangyo Co., Ltd.), PAN-based carbon fiber (T700SC manufactured by Toray Industries, Inc.);
Filler concentration: 10%;
Injection pressure: 80MPa.
 この4種類の複合材料各々のサンプルを実施例1~8では、X線タルボ・ロー装置と、下記表1に示す測定装置とにより測定した。実施例8では、X線タルボ・ロー装置および測定装置の順に複合材料を測定し、複合材料の同一領域を測定した。比較例では、4種類の複合材料各々のサンプルをX線タルボ・ロー装置のみにより測定した。この後、実施例1~8では、このX線タルボ・ロー装置により生成されたタルボ情報および測定装置により生成された測定情報の特徴量を学習済みの識別器に入力して破断強度(機械強度)の予測値を求めた。また、比較例では、X線タルボ・ロー装置により生成されたタルボ情報の特徴量のみを学習済みの識別器に入力して破断強度(機械強度)の予測値を求めた。 In Examples 1 to 8, samples of each of these four types of composite materials were measured using an X-ray Talbot-Lau apparatus and the measuring apparatus shown in Table 1 below. In Example 8, the composite material was measured using the X-ray Talbot-Lau apparatus and the measuring device in this order, and the same area of the composite material was measured. In the comparative example, samples of each of the four types of composite materials were measured using only the X-ray Talbot-Lau apparatus. After this, in Examples 1 to 8, the Talbot information generated by the X-ray Talbot-Lau apparatus and the feature quantities of the measurement information generated by the measuring device are input to a trained discriminator to determine the breaking strength (mechanical strength ) was calculated. Furthermore, in the comparative example, only the feature amount of Talbot information generated by the X-ray Talbot-Lau device was input to a trained discriminator to obtain a predicted value of breaking strength (mechanical strength).
 また、テンシロン万能試験機を用いて上記4種類の複合材料各々の破断強度を測定し、測定値を求めた。次に、予測値と測定値との誤差を下記の式(3)を用いて算出した後、4種類の複合材料の誤差の平均を求めた。下記表1には、比較例の4種類の複合材料各々の誤差の平均を1として、実施例1~8の誤差の平均を相対値として記載した。即ち、表1中の「誤差」の欄の値が小さいほど、学習済みの識別器を用いて予測した破断強度の精度が高いことを表す。 Furthermore, the breaking strength of each of the above four types of composite materials was measured using a Tensilon universal testing machine, and the measured values were determined. Next, the error between the predicted value and the measured value was calculated using the following equation (3), and then the average of the errors for the four types of composite materials was determined. In Table 1 below, the average error of each of the four types of composite materials of Comparative Examples is set as 1, and the average error of Examples 1 to 8 is described as a relative value. That is, the smaller the value in the "error" column in Table 1, the higher the accuracy of the breaking strength predicted using the trained discriminator.
 X線タルボ・ロー装置により生成されたタルボ情報とともに、測定装置により生成された測定情報に基づいて複合材料の機械強度を予測した実施例1~8は、比較例に比べて、誤差が小さくなった。また、実施例1~8の中でも、X線タルボ・ロー測定装置とともに複数の測定装置を用いた実施例6、7では、実施例1~5に比べて誤差を小さくすることができた。さらに、X線タルボ・ロー装置および測定装置により複合樹脂の同一領域を測定した実施例8も、領域を特定せずに測定を行った実施例1に比べて誤差を小さくすることができた。 In Examples 1 to 8, in which the mechanical strength of the composite material was predicted based on the measurement information generated by the measuring device as well as the Talbot information generated by the X-ray Talbot-Lau device, the error was smaller than in the comparative example. Ta. Further, among Examples 1 to 8, in Examples 6 and 7, which used a plurality of measurement devices together with the X-ray Talbot-Rho measurement device, the error was able to be reduced compared to Examples 1 to 5. Furthermore, Example 8, in which the same area of the composite resin was measured using the X-ray Talbot-Lau apparatus and the measuring device, was also able to reduce the error compared to Example 1, in which the measurement was performed without specifying the area.
 以上に説明した予測装置100および予測システムの構成は、上述の実施形態および実施例の特徴を説明するにあたって主要構成を説明したのであって、上述の構成に限られず、特許請求の範囲内において、種々改変することができる。また、一般的な予測システムが備える構成を排除するものではない。 The configurations of the prediction device 100 and the prediction system described above are the main configurations described in explaining the features of the above embodiments and examples, and are not limited to the above configurations, but within the scope of the claims. Various modifications can be made. Moreover, the configuration provided in a general prediction system is not excluded.
 例えば、予測装置100は、それぞれ上記の構成要素以外の構成要素を含んでいてもよく、あるいは、上記の構成要素のうちの一部が含まれていなくてもよい。 For example, the prediction device 100 may include components other than the above components, or may not include some of the above components.
 また、予測装置100、X線タルボ・ロー装置200、および測定装置300は、それぞれ複数の装置によって構成されてもよく、あるいは単一の装置によって構成されてもよい。 Further, the prediction device 100, the X-ray Talbot-Lau device 200, and the measurement device 300 may each be configured by a plurality of devices, or may be configured by a single device.
 また、各構成が有する機能は、他の構成によって実現されてもよい。例えば、X線タルボ・ロー装置200または測定装置300は、予測装置100に統合され、X線タルボ・ロー装置200および測定装置300が有する各機能の一部または全部が予測装置100によって実現されてもよい。 Furthermore, the functions of each configuration may be realized by other configurations. For example, the X-ray Talbot-Rho device 200 or the measurement device 300 is integrated into the prediction device 100, and some or all of the functions of the X-ray Talbot-Rho device 200 and the measurement device 300 are realized by the prediction device 100. Good too.
 また、上記の実施形態におけるフローチャートの処理単位は、各処理の理解を容易にするために、主な処理内容に応じて分割したものである。処理ステップの分類の仕方によって、本願発明が制限されることはない。各処理は、さらに多くの処理ステップに分割することもできる。また、1つの処理ステップが、さらに多くの処理を実行してもよい。 Furthermore, the processing units in the flowchart in the above embodiment are divided according to the main processing contents in order to facilitate understanding of each process. The present invention is not limited by how the processing steps are classified. Each process can also be divided into more process steps. Also, one processing step may perform more processing.
 上述した実施形態に係るシステムにおける各種処理を行う手段および方法は、専用のハードウェア回路、またはプログラムされたコンピューターのいずれによっても実現することが可能である。上記プログラムは、例えば、フレキシブルディスクおよびCD-ROM等のコンピューター読み取り可能な記録媒体によって提供されてもよいし、インターネット等のネットワークを介してオンラインで提供されてもよい。この場合、コンピューター読み取り可能な記録媒体に記録されたプログラムは、通常、ハードディスク等の記憶部に転送され記憶される。また、上記プログラムは、単独のアプリケーションソフトとして提供されてもよいし、システムの一機能としてその装置のソフトウエアに組み込まれてもよい。 The means and methods for performing various processes in the system according to the embodiments described above can be realized by either a dedicated hardware circuit or a programmed computer. The program may be provided on a computer-readable recording medium such as a flexible disk or CD-ROM, or may be provided online via a network such as the Internet. In this case, the program recorded on the computer-readable recording medium is usually transferred and stored in a storage unit such as a hard disk. Further, the above program may be provided as a standalone application software, or may be incorporated into the software of the device as a function of the system.
 本出願は、2022年6月30日に出願された日本特許出願(特願2022-105567)に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on a Japanese patent application (Japanese Patent Application No. 2022-105567) filed on June 30, 2022, the disclosure content of which is incorporated by reference in its entirety.
100 予測装置、
110 CPU、
111 取得部、
112 抽出部、
113 予測部、
114 制御部、
120 ROM、
130 RAM、
140 ストレージ、
150 通信インターフェース、
160 表示部、
170 操作受付部、
200 X線タルボ・ロー装置、
300(300A,300B) 測定装置。
100 prediction device,
110 CPU,
111 Acquisition Department;
112 Extraction part,
113 Prediction Department,
114 control unit,
120 ROM,
130 RAM,
140 storage,
150 communication interface,
160 display section,
170 Operation reception department,
200 X-ray Talbot-Low device,
300 (300A, 300B) Measuring device.

Claims (17)

  1.  フィラーおよび樹脂を含む複合材料をX線タルボ・ロー装置により測定したタルボ情報と、前記X線タルボ・ロー装置とは異なる1または複数の測定装置により前記複合材料を測定した測定情報とを取得する取得部と、
     取得された前記タルボ情報および前記測定情報に基づいて、前記複合材料の機械強度を予測する予測部と
     を備える予測装置。
    Obtaining Talbot information obtained by measuring a composite material containing a filler and resin using an X-ray Talbot-Lau device, and measurement information obtained by measuring the composite material by one or more measuring devices different from the X-ray Talbot-Lau device. an acquisition department;
    A prediction device comprising: a prediction unit that predicts mechanical strength of the composite material based on the acquired Talbot information and the measurement information.
  2.  1または複数の前記測定装置は、前記複合材料の音響特性、原子特性、電気的特性、磁気的特性、機械的特性、光学的特性、放射線特性、熱特性および表面状態の少なくともいずれかを測定する請求項1に記載の予測装置。 The one or more measuring devices measure at least one of acoustic properties, atomic properties, electrical properties, magnetic properties, mechanical properties, optical properties, radiation properties, thermal properties, and surface conditions of the composite material. The prediction device according to claim 1.
  3.  1または複数の前記測定装置は、前記複合材料を非破壊で測定可能である請求項1に記載の予測装置。 The prediction device according to claim 1, wherein the one or more measuring devices are capable of non-destructively measuring the composite material.
  4.  1または複数の前記測定装置は、走査電子顕微鏡、赤外分光測定装置、インピーダンス分光測定装置、テラヘルツ波分光測定装置、超音波測定装置、ラマン分光測定装置、X線回折装置および示差走査熱量計の少なくともいずれかを含む請求項1に記載の予測装置。 One or more of the measurement devices include a scanning electron microscope, an infrared spectrometer, an impedance spectrometer, a terahertz wave spectrometer, an ultrasonic measurement device, a Raman spectrometer, an X-ray diffraction device, and a differential scanning calorimeter. The prediction device according to claim 1, comprising at least one of the following.
  5.  前記測定情報は、前記フィラーのフィラー径、前記フィラーのフィラー長、前記フィラーの含有率および前記樹脂の結晶化度の少なくともいずれかに関する情報を含む請求項1に記載の予測装置。 The prediction device according to claim 1, wherein the measurement information includes information regarding at least one of a filler diameter of the filler, a filler length of the filler, a content rate of the filler, and a degree of crystallinity of the resin.
  6.  前記タルボ情報は、前記フィラーの配向に関する情報を含む請求項1に記載の予測装置。 The prediction device according to claim 1, wherein the Talbot information includes information regarding the orientation of the filler.
  7.  前記タルボ情報および前記測定情報は、前記複合材料における同一領域の情報を含む請求項1に記載の予測装置。 The prediction device according to claim 1, wherein the Talbot information and the measurement information include information on the same area in the composite material.
  8.  1または複数の前記測定装置は、走査電子顕微鏡、赤外分光測定装置、ラマン分光測定装置またはX線回折装置の少なくともいずれかを含む請求項7に記載の予測装置。 The prediction device according to claim 7, wherein the one or more measurement devices include at least one of a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, or an X-ray diffraction device.
  9.  前記フィラーは繊維形状を有する請求項1に記載の予測装置。 The prediction device according to claim 1, wherein the filler has a fiber shape.
  10.  予測された前記機械強度に関する情報を出力部に出力させる制御部をさらに含む請求項1に記載の予測装置。 The prediction device according to claim 1, further comprising a control unit that causes an output unit to output information regarding the predicted mechanical strength.
  11.  前記予測部は、学習済みの識別器を用いて前記機械強度を予測する請求項1に記載の予測装置。 The prediction device according to claim 1, wherein the prediction unit predicts the mechanical strength using a learned discriminator.
  12.  取得された前記タルボ情報および前記測定情報各々から特徴量を抽出する抽出部をさらに含み、
     前記予測部は、抽出された前記特徴量を入力とし、前記機械強度を予測する請求項11に記載の予測装置。
    further comprising an extraction unit that extracts a feature amount from each of the acquired Talbot information and the measurement information,
    The prediction device according to claim 11, wherein the prediction unit receives the extracted feature amount as input and predicts the mechanical strength.
  13.  前記識別器は、前記特徴量を入力データとし、前記機械強度を出力データとして機械学習される請求項12に記載の予測装置。 The prediction device according to claim 12, wherein the discriminator performs machine learning using the feature amount as input data and the mechanical strength as output data.
  14.  フィラーおよび樹脂を含む複合材料を測定するX線タルボ・ロー装置と、
     前記X線タルボ・ロー装置とは異なり、前記複合材料を測定する1または複数の測定装置と、
     請求項1~13のいずれかに記載の予測装置と
     を備える予測システム。
    an X-ray Talbot-Lau device for measuring composite materials containing fillers and resins;
    one or more measurement devices for measuring the composite material, different from the X-ray Talbot-Low device;
    A prediction system comprising: the prediction device according to any one of claims 1 to 13.
  15.  フィラーおよび樹脂を含む複合材料をX線タルボ・ロー装置により測定したタルボ情報と、前記X線タルボ・ロー装置とは異なる1または複数の測定装置により前記複合材料を測定した測定情報とを取得するステップ(a)と、
     ステップ(a)で取得された前記タルボ情報および前記測定情報に基づいて、前記複合材料の機械強度を予測するステップ(b)と
     を有する処理をコンピューターに実行させるための予測プログラム。
    Talbot information obtained by measuring a composite material containing a filler and resin using an X-ray Talbot-Lau device, and measurement information obtained by measuring the composite material by one or more measuring devices different from the X-ray Talbot-Lau device. step (a);
    A prediction program for causing a computer to execute a process comprising: (b) predicting the mechanical strength of the composite material based on the Talbot information and the measurement information acquired in step (a).
  16.  ステップ(a)では、前記複合材料における同一領域の情報を含む前記タルボ情報および前記測定情報を取得する請求項15に記載の予測プログラム。 The prediction program according to claim 15, wherein in step (a), the Talbot information and the measurement information including information on the same area in the composite material are acquired.
  17.  ステップ(a)では、走査電子顕微鏡、赤外分光測定装置、ラマン分光測定装置またはX線回折装置の少なくともいずれかを含む前記測定装置により前記複合材料を測定する請求項16に記載の予測プログラム。 The prediction program according to claim 16, wherein in step (a), the composite material is measured by the measuring device including at least one of a scanning electron microscope, an infrared spectrometer, a Raman spectrometer, or an X-ray diffraction device.
PCT/JP2023/021499 2022-06-30 2023-06-09 Prediction device, prediction system, and prediction program WO2024004583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-105567 2022-06-30
JP2022105567 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024004583A1 true WO2024004583A1 (en) 2024-01-04

Family

ID=89382015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021499 WO2024004583A1 (en) 2022-06-30 2023-06-09 Prediction device, prediction system, and prediction program

Country Status (1)

Country Link
WO (1) WO2024004583A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299700A (en) * 1988-10-05 1990-04-11 Toyota Motor Corp Production of formed article of short fiber
JP2008096340A (en) * 2006-10-13 2008-04-24 Seikow Chemical Engineering & Machinery Ltd Diagnostic method for deterioration of fiber reinforced composite material
JP2015049096A (en) * 2013-08-30 2015-03-16 独立行政法人物質・材料研究機構 Polarization sensitivity terahertz wave detector
JP2017223546A (en) * 2016-06-15 2017-12-21 日本電信電話株式会社 Method for evaluating degradation in resin concrete
JP2020125694A (en) * 2019-02-01 2020-08-20 トヨタ自動車株式会社 Internal combustion engine control device, on-vehicle electronic control unit, machine learning system, internal combustion engine control method, electronic control unit manufacturing method and output parameter calculation device
JP2020160814A (en) * 2019-03-27 2020-10-01 沖電気工業株式会社 Recognition device, recognition method and program
JP2020169821A (en) * 2019-04-01 2020-10-15 セイコー化工機株式会社 Frp deterioration diagnosis method
JP2022052102A (en) * 2020-09-23 2022-04-04 コニカミノルタ株式会社 Information processing device, learning device, information processing system, information processing method, program, and recording medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299700A (en) * 1988-10-05 1990-04-11 Toyota Motor Corp Production of formed article of short fiber
JP2008096340A (en) * 2006-10-13 2008-04-24 Seikow Chemical Engineering & Machinery Ltd Diagnostic method for deterioration of fiber reinforced composite material
JP2015049096A (en) * 2013-08-30 2015-03-16 独立行政法人物質・材料研究機構 Polarization sensitivity terahertz wave detector
JP2017223546A (en) * 2016-06-15 2017-12-21 日本電信電話株式会社 Method for evaluating degradation in resin concrete
JP2020125694A (en) * 2019-02-01 2020-08-20 トヨタ自動車株式会社 Internal combustion engine control device, on-vehicle electronic control unit, machine learning system, internal combustion engine control method, electronic control unit manufacturing method and output parameter calculation device
JP2020160814A (en) * 2019-03-27 2020-10-01 沖電気工業株式会社 Recognition device, recognition method and program
JP2020169821A (en) * 2019-04-01 2020-10-15 セイコー化工機株式会社 Frp deterioration diagnosis method
JP2022052102A (en) * 2020-09-23 2022-04-04 コニカミノルタ株式会社 Information processing device, learning device, information processing system, information processing method, program, and recording medium

Similar Documents

Publication Publication Date Title
US11150202B2 (en) X-ray imaging system
US10267753B2 (en) Multi-energy spectrum X-ray grating-based imaging system and imaging method
CN106471415B (en) Use the imaging device and method of the illumination based on diffraction
Bidola et al. Application of sensitive, high‐resolution imaging at a commercial lab‐based X‐ray micro‐CT system using propagation‐based phase retrieval
RU2585801C2 (en) Device for x-ray tomography
Zhang et al. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour
Peterson et al. Nanoscale Fresnel coherent diffraction imaging tomography using ptychography
CN105852895B (en) The information extracting method of the hard X ray grating interferometer of single exposure
Zan et al. High-resolution multicontrast tomography with an X-ray microarray anode–structured target source
Altapova et al. Phase contrast laminography based on Talbot interferometry
Mao et al. 3D strain mapping of opaque materials using an improved digital volumetric speckle photography technique with X-ray microtomography
Park et al. High-precision noncontact guided wave tomographic imaging of plate structures using a DHB algorithm
WO2024004583A1 (en) Prediction device, prediction system, and prediction program
US20210170635A1 (en) Molding support apparatus and molding support method
Vijayakumar et al. Characterization of pharmaceutical tablets by X-ray tomography
Kim et al. Fast acquisition protocol for X-ray scattering tensor tomography
Wagermaier et al. Understanding Hierarchy and Functions of Bone Using Scanning X‐ray Scattering Methods
Wu et al. A hyperspectral X-ray computed tomography system for enhanced material identification
WO2023116582A1 (en) X-ray phase quantitative imaging technology and measurement method
Lauraux et al. Simultaneous multi-Bragg peak coherent X-ray diffraction imaging
WO2023181935A1 (en) Prediction device, prediction system, and prediction program
Patera et al. Micro-and nano-scales three-dimensional characterisation of softwood
JP2022093509A (en) X-ray imaging system
Elarnaut et al. Sporadic absorption tomography using a conical shell X-ray beam
JP2021143958A (en) X-ray phase imaging system, X-ray image processing device, and X-ray image processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831033

Country of ref document: EP

Kind code of ref document: A1