JP2020169821A - Frp deterioration diagnosis method - Google Patents

Frp deterioration diagnosis method Download PDF

Info

Publication number
JP2020169821A
JP2020169821A JP2019069663A JP2019069663A JP2020169821A JP 2020169821 A JP2020169821 A JP 2020169821A JP 2019069663 A JP2019069663 A JP 2019069663A JP 2019069663 A JP2019069663 A JP 2019069663A JP 2020169821 A JP2020169821 A JP 2020169821A
Authority
JP
Japan
Prior art keywords
frp
sample
surface temperature
deteriorated
control sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019069663A
Other languages
Japanese (ja)
Other versions
JP6592754B1 (en
Inventor
健一 杉本
Kenichi Sugimoto
健一 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikow Chemical Eng & Machinery Ltd
Seikow Chemical Engr and Machinery Ltd
Original Assignee
Seikow Chemical Eng & Machinery Ltd
Seikow Chemical Engr and Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikow Chemical Eng & Machinery Ltd, Seikow Chemical Engr and Machinery Ltd filed Critical Seikow Chemical Eng & Machinery Ltd
Priority to JP2019069663A priority Critical patent/JP6592754B1/en
Application granted granted Critical
Publication of JP6592754B1 publication Critical patent/JP6592754B1/en
Publication of JP2020169821A publication Critical patent/JP2020169821A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

To provide a method for diagnosing deterioration of FRP, which can non-destructively and accurately inspect whether or not mechanical strength is reduced due to deterioration of FRP.SOLUTION: To an FRP control sample 3 and an FRP deteriorated sample 4, light is radiated using a pulse light source 2a as a heat source, and a surface temperature change is measured using an infrared thermography 1. Then, the mechanical strength of the FRP control sample and the FRP deteriorated sample is measured. As a negative correlation is there between a surface temperature rise ratio and the mechanical strength of the FRP samples, it is possible to estimate the mechanical strength of an FRP test sample and diagnose the progress of deterioration by calculating the surface temperature rise ratio of the FRP test sample.SELECTED DRAWING: Figure 3

Description

本発明は、アクティブサーモグラフィを用いてFRP(繊維強化プラスチック/Fiber-Reinforced Plastics)の劣化を診断する方法に関する。 The present invention relates to a method for diagnosing deterioration of FRP (Fiber-Reinforced Plastics) using active thermography.

近年、非破壊検査技術の発展には目を見張るものがあるが、現場レベルで比較的容易に実施できる手法としては超音波探傷法が主流となっている。超音波探傷法は、ほとんどが接触式による試験であり、その測定範囲もプローブの大きさ程度ということになる。また、接触式ということで、プローブの接触面は平滑である必要があり、表面が平滑でない物体の検査には不向きである。 In recent years, the development of non-destructive inspection technology has been remarkable, but the ultrasonic flaw detection method has become the mainstream as a method that can be relatively easily implemented at the field level. Most of the ultrasonic flaw detection methods are contact tests, and the measurement range is about the size of a probe. Further, since it is a contact type, the contact surface of the probe needs to be smooth, which is not suitable for inspection of an object whose surface is not smooth.

一方、赤外線カメラを利用するアクティブサーモグラフィも注目されている。アクティブサーモグラフィは、赤外線カメラにより被検体表面温度の時間変化を測定し、内部の損傷を検知する試験法である。健全部分と損傷部分では熱の移動に違いを生じるため、温度分布の違いとして内部損傷又は欠陥を検出する手法である。 On the other hand, active thermography using an infrared camera is also attracting attention. Active thermography is a test method that detects internal damage by measuring the time change of the surface temperature of a subject with an infrared camera. Since there is a difference in heat transfer between the healthy part and the damaged part, this is a method of detecting internal damage or defects as a difference in temperature distribution.

アクティブサーモグラフィは、非接触方式の検査方法であり、赤外線カメラの撮影範囲が一度に検査できる領域となるため、超音波探傷法と比較して遥かに優位性が高いといえる非破壊検査手法である。 Active thermography is a non-contact inspection method, and since the imaging range of an infrared camera is an area that can be inspected at once, it is a non-destructive inspection method that can be said to be far superior to the ultrasonic flaw detection method. ..

特許文献1は、下部赤外線ランプ及び上部赤外線ランプによって被検査体を裏面側及び表面側からそれぞれ加熱したときの被検査体表面の熱放射分布を赤外線カメラによって検出し、裏面側加熱と裏面側加熱の場合の熱放射分布の経時変化データをデータ処理手段によって比較し、両データの差又は比に基づいて層間剥離を特定することによる、積層体の欠陥検査方法を開示している。 In Patent Document 1, the heat radiation distribution on the surface of the inspected object when the inspected object is heated from the back surface side and the front surface side by the lower infrared lamp and the upper infrared lamp is detected by an infrared camera, and the back surface side heating and the back surface side heating are performed. Disclosed is a method for inspecting defects in a laminated body by comparing the time-dependent change data of the thermal radiation distribution in the case of the above case by a data processing means and specifying delamination based on the difference or ratio between the two data.

特許文献2は、加熱照射装置と赤外線カメラを用いて肉厚を求め、これにより配管腐食劣化状態を診断するための赤外線配管診断方法を開示している。 Patent Document 2 discloses an infrared pipe diagnosis method for determining a wall thickness by using a heating irradiation device and an infrared camera, and diagnosing a state of corrosion deterioration of the pipe.

特許文献3は、ベルトコンベアのフレーム構造部のような構造物の劣化度を診断する劣化度診断方法として、構造物に衝撃的な力を加え、加えられた衝撃による前記構造物の振動強度の時間波形を計測するステップと、計測された振動強度の時間波形から構造物の固有振動数を求めるステップと、求められた固有振動数から構造物に加わる応力レベルを求めるステップと、構造物に周期的な力を加え、加えられた力による熱弾性効果で生ずる構造物の温度変化を赤外線カメラで計測するステップと、計測された温度変化から構造物に加わる応力の分布を求めるステップと、求められた応力レベルおよび応力分布から構造物に加わる最大応力を算出するステップと、算出された最大応力から前記構造物の劣化度を診断するステップとを含む劣化診断方法を開示している。 Patent Document 3 describes, as a method for diagnosing the degree of deterioration of a structure such as a frame structure of a belt conveyor, an impact force is applied to the structure and the vibration intensity of the structure due to the applied impact is determined. The step of measuring the time waveform, the step of obtaining the natural frequency of the structure from the time waveform of the measured vibration intensity, the step of finding the stress level applied to the structure from the obtained natural frequency, and the period of the structure. A step of measuring the temperature change of the structure caused by the thermoelastic effect due to the applied force with an infrared camera, and a step of finding the distribution of the stress applied to the structure from the measured temperature change. A deterioration diagnosis method including a step of calculating the maximum stress applied to a structure from the stress level and the stress distribution and a step of diagnosing the degree of deterioration of the structure from the calculated maximum stress is disclosed.

特許文献4は、繊維強化複合材の劣化診断方法であって、該繊維複合材の表面から超音波を照射して、前記繊維複合材を通過した後の減衰後の超音波エコーの強度を測定し、該超音波エコーの減衰の大きさに基づいて、該繊維複合材の劣化の程度を判断する繊維強化複合材の劣化診断方法を開示している。 Patent Document 4 is a method for diagnosing deterioration of a fiber-reinforced composite material, in which ultrasonic waves are irradiated from the surface of the fiber-reinforced composite material and the intensity of ultrasonic echo after attenuation after passing through the fiber composite material is measured. However, a method for diagnosing deterioration of a fiber-reinforced composite material for determining the degree of deterioration of the fiber composite material based on the magnitude of attenuation of the ultrasonic echo is disclosed.

特開2005−164428号公報Japanese Unexamined Patent Publication No. 2005-164428 特開2008−134221号公報Japanese Unexamined Patent Publication No. 2008-134221 特開2008−232708号公報Japanese Unexamined Patent Publication No. 2008-232708 特開2008−96340号公報Japanese Unexamined Patent Publication No. 2008-96340

FRPは、貯水槽又は反応槽のような構造物の材質としてよく利用されている。FRPは、金属と異なり錆びることがないが、太陽光(紫外線)の照射、水との接触による加水分解又は上水道水中に含有される塩素等によって徐々に劣化が進行し、機械的強度が低下する。しかし、FRPは、表面の凹凸が顕著である製品も多く、超音波エコーによる探傷検査(劣化診断)には適さない材質である。 FRP is often used as a material for structures such as water tanks or reaction tanks. Unlike metals, FRP does not rust, but it gradually deteriorates due to irradiation with sunlight (ultraviolet rays), hydrolysis due to contact with water, chlorine contained in tap water, etc., and its mechanical strength decreases. .. However, many products have remarkable surface irregularities, and FRP is a material that is not suitable for flaw detection inspection (deterioration diagnosis) by ultrasonic echo.

土木又は建築分野においては、ハンマー等を利用して建築物を叩いたときの音で劣化を診断する打音法が一般的であったが、近年では、赤外線サーモグラフィーを利用した劣化診断方法が推奨されてきている。しかし、土木又は建築分野における検査対象は、コンクリート製構造体であり、FRPを検査対象とした実用的な研究はなされていないのが現状である。 In the field of civil engineering or construction, the tapping method that diagnoses deterioration by the sound of hitting a building with a hammer or the like was common, but in recent years, the deterioration diagnosis method using infrared thermography is recommended. Has been done. However, the inspection target in the civil engineering or construction field is a concrete structure, and the current situation is that no practical research has been conducted on FRP as an inspection target.

本発明は、FRPの劣化による機械的強度の低下の有無を、非破壊的、かつ、正確に検査し得るFRPの劣化診断方法の提供を目的とする。 An object of the present invention is to provide a method for diagnosing deterioration of FRP, which can non-destructively and accurately inspect the presence or absence of a decrease in mechanical strength due to deterioration of FRP.

本発明者は、構造物の材質として汎用されるFRPの劣化に伴う機械的強度の低下を、正確に診断し得る非破壊検査方法について鋭意検討を重ねた結果、新品のFRPと、劣化したFRPは、同じ条件で熱源としての光を照射された場合であっても、表面の温度変化が異なることが確認された。そして、本発明者は、劣化により機械的強度が低下しているFRPは、新品のFRPと比較して温度上昇が大きくなることを見出し、本発明を完成させるに至った。 As a result of diligent studies on a non-destructive inspection method capable of accurately diagnosing a decrease in mechanical strength due to deterioration of FRP, which is widely used as a material for structures, the present inventor has found new FRP and deteriorated FRP. It was confirmed that the temperature change on the surface was different even when the light was irradiated as a heat source under the same conditions. Then, the present inventor has found that the temperature rise of FRP whose mechanical strength is lowered due to deterioration is larger than that of new FRP, and has completed the present invention.

具体的に、本発明は、
FRP被験サンプル表面温度を赤外線カメラによって測定しながら、前記FRP被験サンプルにパルス光源から光を照射し、その後照射を停止し、前記FRP被験サンプルの表面温度変化を算出する工程Aと、
FRP対照サンプル表面温度を赤外線カメラによって測定しながら、前記FRP対照サンプルにパルス光源から光を照射し、その後照射を停止し、前記FRP対照サンプルの表面温度変化を算出する工程Bと、
前記FRP対照サンプルを劣化させたn枚(nは複数)のFRP劣化サンプルについて、前記工程Aと同様にして前記FRP劣化サンプルの表面温度変化を算出する工程Cと、
前記FRP被験サンプルの最大表面温度差ΔTSmaxと前記FRP対照サンプルの最大表面温度差ΔTBmaxとから表面昇温比ΔTSmax/ΔTBmax値を算出する工程Dと、
前記FRP劣化サンプルの最大表面温度差ΔTDmaxと前記FRP対照サンプルの最大表面温度差ΔTBmaxとから表面昇温比ΔTDmax/ΔTBmax値を算出する工程Eと、
n枚の前記FRP劣化サンプルと前記対照サンプルの機械的強度を測定する工程Fと、
前記表面昇温比ΔTDmax/ΔTBmax値と前記機械的強度との関係式を算出する工程Gと、
前記表面昇温比P/ΔTBmax値を前記関係式の表面昇温比として代入し、
算出される前記FRP被験サンプルの機械的強度が一定基準未満であれば、前記FRP被験サンプルは劣化が進行していると判断し、
算出される前記FRP被験サンプルの機械的強度が一定基準以上であれば、前記FRP被験サンプルは劣化が進行していないと判断する工程Hと、
を有する、FRPの劣化診断方法に関する。
Specifically, the present invention
Step A of irradiating the FRP test sample with light from a pulse light source while measuring the surface temperature of the FRP test sample with an infrared camera, then stopping the irradiation, and calculating the surface temperature change of the FRP test sample.
Step B of irradiating the FRP control sample with light from a pulse light source while measuring the surface temperature of the FRP control sample with an infrared camera, then stopping the irradiation, and calculating the surface temperature change of the FRP control sample.
For n (plural n) FRP deteriorated samples obtained by deteriorating the FRP control sample, a step C of calculating the surface temperature change of the FRP deteriorated sample in the same manner as in the step A, and a step C.
Step D for calculating the surface temperature rise ratio ΔT Smax / ΔT Bmax value from the maximum surface temperature difference ΔT Smax of the FRP test sample and the maximum surface temperature difference ΔT Bmax of the FRP control sample.
Step E of calculating the surface temperature rise ratio ΔT Dmax / ΔT Bmax value from the maximum surface temperature difference ΔT Dmax of the FRP deteriorated sample and the maximum surface temperature difference ΔT Bmax of the FRP control sample.
Step F for measuring the mechanical strength of n sheets of the FRP deteriorated sample and the control sample, and
Step G for calculating the relational expression between the surface temperature rise ratio ΔT Dmax / ΔT Bmax value and the mechanical strength, and
Substituting the surface temperature rise ratio P / ΔT Bmax value as the surface temperature rise ratio of the relational expression,
If the calculated mechanical strength of the FRP test sample is less than a certain standard, it is judged that the FRP test sample is deteriorating.
If the calculated mechanical strength of the FRP test sample is equal to or higher than a certain standard, the step H in which it is determined that the deterioration of the FRP test sample has not progressed,
The present invention relates to a method for diagnosing deterioration of FRP.

FRPサンプルが劣化すると、劣化のない新品FRPサンプルよりも光の照射によって表面温度が上昇しやすい傾向がある。酸又はアルカリ浸漬のような方法によって化学的に劣化させたFRPサンプルは、新品のFRPと比較して曲げ強度のような機械的強度が低下するが、赤外線照射による温度上昇と機械的強度との間には、相関性が確認された。 When the FRP sample deteriorates, the surface temperature tends to rise more easily due to light irradiation than a new FRP sample without deterioration. FRP samples chemically deteriorated by methods such as acid or alkali immersion have lower mechanical strength such as bending strength compared to new FRP, but the temperature rise due to infrared irradiation and the mechanical strength In the meantime, a correlation was confirmed.

FRPに使用されている樹脂及びガラス繊維の種類等によって、光の照射による温度上昇は影響される。そのため、本発明では、複数のFRP劣化サンプルを作成し、新品のFRPサンプル(FRP対照サンプル)との表面温度変化を測定し、複数のFRP劣化サンプル及びFRP対照サンプルについて、曲げ強度試験のような破壊試験(機械的強度試験)を行い、FRP劣化サンプルとFRP対照サンプルについて表面昇温比と機械的強度との関係式(近似式)を確認する。そうすれば、FRP被験サンプルの表面昇温比を近似式に代入することにより、FRP被験サンプルの機械的強度を判定することが可能である。 The temperature rise due to light irradiation is affected by the types of resin and glass fiber used in FRP. Therefore, in the present invention, a plurality of FRP deteriorated samples are prepared, the surface temperature change with a new FRP sample (FRP control sample) is measured, and the plurality of FRP deteriorated samples and the FRP control sample are subjected to a bending strength test. A fracture test (mechanical strength test) is performed to confirm the relational expression (approximate expression) between the surface temperature rise ratio and the mechanical strength of the FRP deteriorated sample and the FRP control sample. Then, by substituting the surface temperature rise ratio of the FRP test sample into the approximate expression, it is possible to determine the mechanical strength of the FRP test sample.

本発明において、工程A〜Hを順次実行する必要はない。例えば、新設されたFRP構造物を診断対象とする場合には、工程A、工程D及び工程Hは、すぐには実行できない。そのため、残りの工程を先に実行し、工程A、工程D及び工程Hを定期的に実行することが好ましい。一方、既設のFRP構造物を診断対象とする場合には、工程A、工程D及び工程Hをすぐに実行し得るため、FRPの劣化を早期に診断することが好ましい。 In the present invention, it is not necessary to sequentially execute steps A to H. For example, when a newly constructed FRP structure is to be diagnosed, steps A, D and H cannot be performed immediately. Therefore, it is preferable that the remaining steps are executed first, and steps A, D, and H are periodically executed. On the other hand, when the existing FRP structure is to be diagnosed, the deterioration of FRP is preferably diagnosed at an early stage because the steps A, D and H can be executed immediately.

FRP被験サンプルは、機械的強度を予測すべき対象サンプルであり、通常は、貯水槽又は反応槽のような構造物の外表面の一部分となる。この場合、赤外線サーモグラフィーの測定対象として好適な部分について、本発明を実施する。すなわち、構造物の外表面に対して光を照射し、赤外線カメラを使用して外表面の温度変化を測定する。一方、FRP対照サンプル及びFRP劣化サンプルは、それぞれFRP被験サンプルと同じFRPの新品サンプル及び当該新品サンプルを化学的に劣化させたサンプルである。そして、FRP対照サンプル及びFRP劣化サンプルと同じ測定条件で、FRP構造物の外表面の一部分の温度変化を測定する。 The FRP test sample is a target sample whose mechanical strength should be predicted, and is usually a part of the outer surface of a structure such as a water tank or a reaction tank. In this case, the present invention is carried out for a portion suitable as a measurement target for infrared thermography. That is, the outer surface of the structure is irradiated with light, and the temperature change of the outer surface is measured using an infrared camera. On the other hand, the FRP control sample and the FRP deteriorated sample are a new sample of FRP same as the FRP test sample and a sample obtained by chemically deteriorating the new sample, respectively. Then, the temperature change of a part of the outer surface of the FRP structure is measured under the same measurement conditions as the FRP control sample and the FRP deteriorated sample.

FRP構造物の一部分が取り外し可能である場合には、測定誤差を小さくする観点からは、FRP対照サンプルとFRP被験サンプル(取り外された構造物一部分)とを並べ、同時に赤外線サーモグラフィーによって温度変化を観察することが好ましい。 When a part of the FRP structure is removable, from the viewpoint of reducing the measurement error, the FRP control sample and the FRP test sample (part of the removed structure) are arranged side by side, and at the same time, the temperature change is observed by infrared thermography. It is preferable to do so.

FRP構造物は、定期的に劣化の有無を診断することが好ましい。そのため、FRP対照サンプル及びFRP劣化サンプルについて温度変化測定及び機械的強度を測定しておき、FRP被験サンプルの測定結果が機械的強度の許容範囲内であることを定期的に確認することが好ましい。 It is preferable to periodically diagnose the presence or absence of deterioration of the FRP structure. Therefore, it is preferable to measure the temperature change and the mechanical strength of the FRP control sample and the FRP deteriorated sample, and periodically confirm that the measurement result of the FRP test sample is within the allowable range of the mechanical strength.

新設されるFRP構造物の場合、赤外線サーモグラフィーの測定対象として好適な部分について温度変化を測定し、当該部分について定期的に温度変化を測定することが好ましい。FRP劣化サンプルは、赤外線サーモグラフィーの測定対象として好適な部分と同一FRPの試験片サンプルを化学的に劣化させたサンプルとなる。一方、既設のFRP構造物の劣化の有無を本発明によって診断する場合には、赤外線サーモグラフィーの測定対象として好適な部分と同一FRPの試験片サンプルを対照サンプルとすることが好ましい。 In the case of a newly installed FRP structure, it is preferable to measure the temperature change in a portion suitable as a measurement target for infrared thermography, and periodically measure the temperature change in the portion. The FRP deteriorated sample is a sample obtained by chemically deteriorating a test piece sample having the same FRP as a portion suitable for measurement of infrared thermography. On the other hand, when diagnosing the presence or absence of deterioration of the existing FRP structure according to the present invention, it is preferable to use a test piece sample of the same FRP as the portion suitable for measurement of infrared thermography as a control sample.

本発明において、FRP劣化サンプル及びFRP対照サンプルの機械的強度は、公知の強度試験である曲げ試験、引張試験又は圧縮試験を採用し得る。
In the present invention, the mechanical strength of the FRP deteriorated sample and the FRP control sample may employ a known strength test such as a bending test, a tensile test or a compression test.

FRP対照サンプル及び60℃の1%水酸化ナトリウム水溶液に6ヶ月間浸漬させたFRP劣化サンプルの外観写真を示す。The appearance photograph of the FRP control sample and the FRP deteriorated sample immersed in 1% sodium hydroxide aqueous solution of 60 degreeC for 6 months is shown. 65℃の32%硫酸に6ヶ月間浸漬させたFRP劣化サンプル、60℃の10%硫酸に6ヶ月間浸漬させたFRP劣化サンプル及び60℃の37%塩酸に6ヶ月間浸漬させたFRP劣化サンプルの外観写真を示す。FRP deteriorated sample immersed in 32% sulfuric acid at 65 ° C for 6 months, FRP deteriorated sample immersed in 10% sulfuric acid at 60 ° C for 6 months, and FRP deteriorated sample immersed in 37% hydrochloric acid at 60 ° C for 6 months. The appearance photograph of is shown. 赤外線サーモグラフィーを利用した表面温度変化の測定における装置構成の一例を示す。An example of the device configuration in the measurement of surface temperature change using infrared thermography is shown. 65℃で10%硫酸に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルに対して5秒間フラッシュランプを照射した直後の赤外線サーモグラフィーを示す。Infrared thermography is shown of an FRP-deteriorated sample immersed in 10% sulfuric acid at 65 ° C. for 6 months and an FRP control sample immediately after being irradiated with a flash lamp for 5 seconds. 65℃で10%硫酸に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルの表面温度変化を示すグラフである。It is a graph which shows the surface temperature change of the FRP deteriorated sample which was immersed in 10% sulfuric acid at 65 degreeC for 6 months, and the FRP control sample. 65℃で32%硫酸に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルに対して5秒間フラッシュランプを照射した直後の赤外線サーモグラフィーを示す。Infrared thermography is shown of an FRP-deteriorated sample immersed in 32% sulfuric acid at 65 ° C. for 6 months and an FRP control sample immediately after being irradiated with a flash lamp for 5 seconds. 65℃で32%硫酸に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルの表面温度変化を示すグラフである。It is a graph which shows the surface temperature change of the FRP deteriorated sample and the FRP control sample which were immersed in 32% sulfuric acid at 65 degreeC for 6 months. 65℃で37%塩酸に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルに対して5秒間フラッシュランプを照射した直後の赤外線サーモグラフィーを示す。Infrared thermography is shown of an FRP-deteriorated sample immersed in 37% hydrochloric acid at 65 ° C. for 6 months and an FRP control sample immediately after being irradiated with a flash lamp for 5 seconds. 65℃で37%塩酸に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルの表面温度変化を示すグラフである。It is a graph which shows the surface temperature change of the FRP deteriorated sample which was immersed in 37% hydrochloric acid at 65 degreeC for 6 months, and the FRP control sample. 65℃で精製水に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルの表面温度変化を示すグラフである。It is a graph which shows the surface temperature change of the FRP deteriorated sample which was immersed in purified water at 65 degreeC for 6 months, and the FRP control sample. 60℃で10%塩酸に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルの表面温度変化を示すグラフである。It is a graph which shows the surface temperature change of the FRP deteriorated sample which was immersed in 10% hydrochloric acid at 60 degreeC for 6 months, and the FRP control sample. 60℃で1%水酸化ナトリウム水溶液に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルの表面温度変化を示すグラフである。It is a graph which shows the surface temperature change of the FRP deteriorated sample which was immersed in the 1% sodium hydroxide aqueous solution at 60 degreeC for 6 months, and the FRP control sample. FRP対照サンプル及びFRP劣化サンプルの最大表面温度を説明するグラフである。It is a graph explaining the maximum surface temperature of the FRP control sample and the FRP deteriorated sample. 複数のFRP劣化サンプルについて、表面昇温比と曲げ強度保持率との関係をプロットしたグラフである。It is a graph which plotted the relationship between the surface temperature rise ratio and the bending strength retention rate for a plurality of FRP deteriorated samples. 3種類のFRP劣化サンプルについて、表面昇温比、エコー強度比及び曲げ強度保持率を示すグラフである。It is a graph which shows the surface temperature rise ratio, the echo intensity ratio and the bending strength retention ratio for three kinds of FRP deterioration samples.

本発明の実施形態について、適宜図面を参照しながら説明する。本発明は、以下の記載に限定されない。 An embodiment of the present invention will be described with reference to the drawings as appropriate. The present invention is not limited to the following description.

(FRP対照サンプル)
FRP対照サンプルとして、ビニルエステル樹脂で(昭和電工株式会社、リポキシ(登録商標)、型番R806)サーフェイスマット(セントラルグラスファイバー株式会社、FC-30C)、チョップドストランドマット(日東紡績株式会社、MC450A-104SS)を挟持させた試験片を使用した(板厚約3mm)。試験片は、8×10cmの長方形にカットされている。
(FRP control sample)
As an FRP control sample, vinyl ester resin (Showa Denko KK, Lipoxy (registered trademark), model number R806) surface mat (Central Glass Fiber KK, FC-30C), chopped strand mat (Nitto Boseki KK, MC450A-104SS) ) Was sandwiched between the test pieces (plate thickness: about 3 mm). The test piece is cut into a rectangle of 8 x 10 cm.

(FRP劣化サンプルの作製(工程C)/酸処理による劣化)
FRP対照サンプルと同じFRP試験片を複数枚用意した。精製水、10%塩酸、37%塩酸、10硫酸%又は32%硫酸をプラスチック製容器内に用意した。37%塩酸についてはFRP試験片を4枚ずつ、それ以外については6枚ずつ浸漬させて密封した後、精製水又は32%硫酸については65℃、それ以外については60℃の恒温槽内で静置させた。37%塩酸については1、2、3、6ヶ月経過毎、それ以外については1ヶ月経過毎に、FRP試験片1枚を容器内から取り出した。静置終了後、容器内からFRP試験片を取り出し、精製水を用いて洗浄し、室温で1日以上静置することにより乾燥させた。このような操作によって得られたFRP試験片を、酸処理によるFRP劣化サンプルとした。
(Preparation of FRP deteriorated sample (step C) / deterioration due to acid treatment)
Multiple FRP test pieces, the same as the FRP control sample, were prepared. Purified water, 10% hydrochloric acid, 37% hydrochloric acid, 10% sulfuric acid or 32% sulfuric acid was prepared in a plastic container. After immersing 4 FRP test pieces for 37% hydrochloric acid and 6 for the other, and sealing, keep in a constant temperature bath at 65 ° C for purified water or 32% sulfuric acid, and 60 ° C for other parts. I let you put it. One FRP test piece was taken out of the container every 1, 2, 3 and 6 months for 37% hydrochloric acid, and every 1 month for other cases. After the completion of the standing, the FRP test piece was taken out from the container, washed with purified water, and dried by standing at room temperature for 1 day or more. The FRP test piece obtained by such an operation was used as an FRP deteriorated sample by acid treatment.

(FRP劣化サンプルの作製(工程C)/アルカリ処理による劣化)
FRP対照サンプルと同じFRP試験片を6枚用意した。1%水酸化ナトリウム水溶液をプラスチック製容器内に用意し、FRP試験片を浸漬させて密封した後、60℃の恒温槽内で静置させた。1ヶ月経過毎に、FRP試験片1枚を容器内から取り出した。取り出されたFRP試験片は、精製水を用いて洗浄し、室温で1日以上静置することにより乾燥させた。このような操作によって得られたFRP試験片を、アルカリ処理によるFRP劣化サンプルとした。
(Preparation of FRP deteriorated sample (process C) / deterioration due to alkaline treatment)
Six FRP test pieces, which are the same as the FRP control sample, were prepared. A 1% aqueous sodium hydroxide solution was prepared in a plastic container, and the FRP test piece was immersed and sealed, and then allowed to stand in a constant temperature bath at 60 ° C. Every month, one FRP test piece was taken out of the container. The removed FRP test piece was washed with purified water and allowed to stand at room temperature for 1 day or longer to dry. The FRP test piece obtained by such an operation was used as an FRP deteriorated sample by alkali treatment.

なお、FRP劣化サンプルは、FRP試験片を酸化剤に浸漬したり、紫外線を照射したりすることによって作製してもよく、FRP構造物の使用状況に応じて適宜選択し得る。 The FRP deteriorated sample may be prepared by immersing the FRP test piece in an oxidizing agent or irradiating it with ultraviolet rays, and may be appropriately selected depending on the usage situation of the FRP structure.

(FRP劣化サンプルの外観)
図1は、FRP対照サンプル及び60℃の1%水酸化ナトリウム水溶液に6ヶ月間浸漬させたFRP劣化サンプルの外観写真を示す。図2は、65℃の32%硫酸に6ヶ月間浸漬させたFRP劣化サンプル、60℃の10%硫酸に6ヶ月間浸漬させたFRP劣化サンプル及び60℃の37%塩酸に6ヶ月間浸漬させたFRP劣化サンプルの外観写真を示す。酸又はアルカリに浸漬した場合、サンプル端部の断面から浸透した薬品により樹脂が劣化又は消失することによる白化が見られた。端部以外の平滑部において、1%水酸化ナトリウムは内部への浸透によるガラス繊維と樹脂のはく離に伴う白化、10%硫酸は表面樹脂の劣化によるサーフェイス繊維の露出、37%塩酸は全体の変色と表面の膨れといった変化が生じた。32%硫酸については10%硫酸と同様であるが、比較的程度の低い変化が見られた。
(Appearance of FRP deteriorated sample)
FIG. 1 shows an external photograph of an FRP control sample and an FRP deteriorated sample immersed in a 1% sodium hydroxide aqueous solution at 60 ° C. for 6 months. Figure 2 shows an FRP-deteriorated sample immersed in 32% sulfuric acid at 65 ° C for 6 months, an FRP-deteriorated sample immersed in 10% sulfuric acid at 60 ° C for 6 months, and a 37% hydrochloric acid at 60 ° C for 6 months. The appearance photograph of the FRP deteriorated sample is shown. When immersed in an acid or alkali, whitening was observed due to deterioration or disappearance of the resin due to the chemicals permeating from the cross section of the sample end. In smooth parts other than the edges, 1% sodium hydroxide is whitening due to peeling of glass fiber and resin due to penetration into the inside, 10% sulfuric acid is exposure of surface fibers due to deterioration of surface resin, and 37% hydrochloric acid is discoloration of the whole. And changes such as swelling of the surface occurred. 32% sulfuric acid was similar to 10% sulfuric acid, but with a relatively low degree of change.

(赤外線サーモグラフィーを利用した表面温度変化の測定(工程B及び工程C))
図3に示すような装置構成によって、FRP対照サンプル3及びFRP劣化サンプル4の表面温度変化を測定した。装置は、すべてAT-Automation Technology GmbH製である。赤外線カメラ1として、マイクロボロメータ非冷却赤外線カメラ(IRS640S)を使用した。パルス光源2a及び2bとして、出力1.5kWのフラッシュランプを使用した。赤外線カメラ2、パルス光源2a及び2bは、インターフェースハードウェア5に接続されており、制御・解析ソフトウェア6によってパルス光源2a及び2bの照射時間の制御、赤外線カメラ1の撮影した画像の解析等が行われる。
(Measurement of surface temperature change using infrared thermography (step B and step C))
The surface temperature changes of the FRP control sample 3 and the FRP deteriorated sample 4 were measured by the apparatus configuration as shown in FIG. All equipment is manufactured by AT-Automation Technology GmbH. As the infrared camera 1, a microbolometer uncooled infrared camera (IRS640S) was used. As the pulse light sources 2a and 2b, a flash lamp having an output of 1.5 kW was used. The infrared camera 2 and the pulse light sources 2a and 2b are connected to the interface hardware 5, and the control / analysis software 6 controls the irradiation time of the pulse light sources 2a and 2b, analyzes the image taken by the infrared camera 1, and the like. It is said.

パルス光源2a及び2bは、赤外線カメラ1の両脇に設置し、その間隔は20cmとした。パルス光源2a及び2bの向きは、FRP対照サンプル3及びFRP劣化サンプル4、並びに赤外線カメラ1の中心になるように合わせた。 The pulse light sources 2a and 2b were installed on both sides of the infrared camera 1, and the distance between them was 20 cm. The directions of the pulse light sources 2a and 2b were adjusted so as to be centered on the FRP control sample 3, the FRP deteriorated sample 4, and the infrared camera 1.

パルス光源2a及び2bの照射時間は、5秒間に設定された。パルス光源2a及び2bの照射開始から15秒間の間の赤外線カメラ1によるFRP対照サンプル3及びFRP劣化サンプル4の表面温度測定データを取得し、照射前の表面温度と、照射後の最大温度との差を解析した。赤外線カメラ1の測定分解能は、0.01℃であった。 The irradiation time of the pulse light sources 2a and 2b was set to 5 seconds. The surface temperature measurement data of the FRP control sample 3 and the FRP deteriorated sample 4 by the infrared camera 1 for 15 seconds from the start of irradiation of the pulse light sources 2a and 2b were acquired, and the surface temperature before irradiation and the maximum temperature after irradiation were obtained. The difference was analyzed. The measurement resolution of the infrared camera 1 was 0.01 ° C.

ここでは、FRP対照サンプルとFRP劣化サンプルとを併置してパルス光源を照射し、両者の表面温度変化を同時に測定したが、これは測定誤差を可能な限り小さくするためである。測定条件が同じであれば、FRP対照サンプルとFRP劣化サンプルについて、それぞれ別個にパルス光源を照射し、表面温度変化を独立して測定してもよい。 Here, the FRP control sample and the FRP deteriorated sample were juxtaposed and irradiated with a pulse light source, and the surface temperature changes of both were measured at the same time in order to minimize the measurement error. If the measurement conditions are the same, the FRP control sample and the FRP deteriorated sample may be irradiated with a pulse light source separately and the surface temperature change may be measured independently.

(曲げ試験(工程F))
表面温度変化を測定後のFRP対照サンプル及びFRP劣化サンプルについて、JISK7017に基づく曲げ試験を行った。試験片として、浸漬サンプルの一部(長さ80mm、幅15mm)を切り取って使用した。曲げ試験における支点間距離は60mm、試験速度は2mm/min.とした。
(Bending test (step F))
A bending test based on JIS K7017 was performed on the FRP control sample and the FRP deteriorated sample after measuring the surface temperature change. As a test piece, a part of the immersion sample (length 80 mm, width 15 mm) was cut out and used. The distance between the fulcrums in the bending test was 60 mm, and the test speed was 2 mm / min.

[FRPサンプルの表面温度測定結果]
図4は、60℃で10%硫酸に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルに対して5秒間上記フラッシュランプを照射した直後の赤外線サーモグラフィーを示す。一方、図5は、このFRP劣化サンプルと、FRP対照サンプルの表面温度変化を示すグラフである。縦軸のΔTは、パルス光源照射前から上昇した温度を表している。このFRP劣化サンプルは、FRP対照サンプルよりもΔTが最大0.3℃程度高い数値を示した。
[Results of surface temperature measurement of FRP sample]
FIG. 4 shows an infrared thermography of an FRP deteriorated sample immersed in 10% sulfuric acid at 60 ° C. for 6 months and an infrared thermography immediately after irradiating the FRP control sample with the flash lamp for 5 seconds. On the other hand, FIG. 5 is a graph showing the surface temperature changes of the FRP deteriorated sample and the FRP control sample. ΔT on the vertical axis represents the temperature that has risen since before irradiation with the pulse light source. This FRP-degraded sample showed a value of ΔT higher than that of the FRP control sample by up to 0.3 ° C.

図6は、65℃で32%硫酸に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルに対して5秒間上記フラッシュランプを照射した直後の赤外線サーモグラフィーを示す。一方、図7は、このFRP劣化サンプルと、FRP対照サンプルの表面温度変化を示すグラフである。縦軸のΔTは、パルス光源照射前から上昇した温度を表している。このFRP劣化サンプルは、FRP対照サンプルとのΔTの差が小さかった。 FIG. 6 shows an infrared thermography of an FRP deteriorated sample immersed in 32% sulfuric acid at 65 ° C. for 6 months and an infrared thermography immediately after irradiating the FRP control sample with the flash lamp for 5 seconds. On the other hand, FIG. 7 is a graph showing the surface temperature changes of the FRP deteriorated sample and the FRP control sample. ΔT on the vertical axis represents the temperature that has risen since before irradiation with the pulse light source. This FRP-degraded sample had a small difference in ΔT from the FRP control sample.

図8は、60℃で37%塩酸に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルに対して5秒間上記フラッシュランプを照射した直後の赤外線サーモグラフィーを示す。一方、図9は、このFRP劣化サンプルと、FRP対照サンプルの表面温度変化を示すグラフである。縦軸のΔTは、パルス光源照射前から上昇した温度を表している。このFRP劣化サンプルは、FRP対照サンプルよりもΔTが最大1.0℃程度高い数値を示した。 FIG. 8 shows an infrared thermography of an FRP-deteriorated sample immersed in 37% hydrochloric acid at 60 ° C. for 6 months and an infrared thermography immediately after irradiating the FRP control sample with the flash lamp for 5 seconds. On the other hand, FIG. 9 is a graph showing the surface temperature changes of the FRP deteriorated sample and the FRP control sample. ΔT on the vertical axis represents the temperature that has risen since before irradiation with the pulse light source. This FRP-degraded sample showed a value in ΔT about 1.0 ° C higher than that of the FRP control sample.

図10は、65℃で精製水に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルの表面温度変化を示すグラフである。縦軸のΔTは、パルス光源照射前から上昇した温度を表している。このFRP劣化サンプルは、FRP対照サンプルよりもΔTが最大0.05℃程度高い数値を示した。 FIG. 10 is a graph showing changes in surface temperature of an FRP deteriorated sample and an FRP control sample immersed in purified water at 65 ° C. for 6 months. ΔT on the vertical axis represents the temperature that has risen since before irradiation with the pulse light source. This FRP-degraded sample showed a value of ΔT higher than that of the FRP control sample by a maximum of about 0.05 ° C.

図11は、60℃で10%塩酸に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルの表面温度変化を示すグラフである。このFRP劣化サンプルは、FRP対照サンプルよりもΔTが最大0.15℃程度高い数値を示した。 FIG. 11 is a graph showing changes in surface temperature of an FRP deteriorated sample immersed in 10% hydrochloric acid at 60 ° C. for 6 months and an FRP control sample. This FRP-degraded sample showed a value of ΔT up to 0.15 ° C higher than that of the FRP control sample.

図12は、60℃で1%水酸化ナトリウム水溶液に6ヶ月間浸漬させたFRP劣化サンプルと、FRP対照サンプルの表面温度変化を示すグラフである。このFRP劣化サンプルは、FRP対照サンプルよりもΔTが最大0.15℃程度高い数値を示した。 FIG. 12 is a graph showing changes in surface temperature of an FRP-deteriorated sample and an FRP control sample immersed in a 1% sodium hydroxide aqueous solution at 60 ° C. for 6 months. This FRP-degraded sample showed a value of ΔT up to 0.15 ° C higher than that of the FRP control sample.

表1は、酸処理によるFRP劣化サンプルの外観、曲げ強度及びΔTの測定結果を示す。37%塩酸に浸漬させたFRP劣化サンプルは、機械的強度の低下率が最も大きく、ΔTも最大であった。10%硫酸に浸漬させたFRP劣化サンプルは、37%塩酸に浸漬させた場合に次いで機械的強度の低下率及びΔTが大きかった。その他のFRP劣化サンプルについては、機械的強度の低下率が2割以下におけるΔTは、0.2℃未満となっていた。 Table 1 shows the appearance, bending strength, and ΔT measurement results of the FRP-deteriorated sample by acid treatment. The FRP-deteriorated sample immersed in 37% hydrochloric acid had the largest decrease in mechanical strength and the largest ΔT. The FRP-deteriorated sample immersed in 10% sulfuric acid had the second largest decrease in mechanical strength and ΔT after immersion in 37% hydrochloric acid. For other FRP-deteriorated samples, ΔT was less than 0.2 ° C when the rate of decrease in mechanical strength was 20% or less.

[表面昇温比の算出(工程D及び工程E)]
FRP対照サンプル及びFRP劣化サンプルについて、表面昇温比を算出した。図13は、FRP対照サンプル及びFRP劣化サンプルの最大表面温度を説明するグラフである。図13では、FRP劣化サンプル及びFRP対照サンプル共に、フラッシュランプ照射開始後5秒後に表面温度が最高値を示し、それ以降は表面温度が下降している。そのため、それぞれのサンプルについて、ΔTの最高値を算出する。ここでは、FRP対照サンプルの最高ΔTはΔTBmaxで示され、FRP劣化サンプルのΔT最高値はΔTDmaxで示されている。ΔTDmaxをΔTBmaxで除した値を表面昇温比とした。
[Calculation of surface temperature rise ratio (step D and step E)]
The surface temperature rise ratio was calculated for the FRP control sample and the FRP deteriorated sample. FIG. 13 is a graph illustrating the maximum surface temperature of the FRP control sample and the FRP deteriorated sample. In FIG. 13, the surface temperature of both the FRP deteriorated sample and the FRP control sample showed the maximum value 5 seconds after the start of flash lamp irradiation, and the surface temperature decreased thereafter. Therefore, the maximum value of ΔT is calculated for each sample. Here, the maximum ΔT of the FRP control sample is indicated by ΔT Bmax , and the maximum value of ΔT of the FRP degraded sample is indicated by ΔT Dmax . The value obtained by dividing ΔT Dmax by ΔT Bmax was defined as the surface temperature rise ratio.

[表面昇温比と機械的強度との相関性(工程G)]
図14は、複数のFRP劣化サンプルについて、表面昇温比と曲げ強度保持率との関係をプロットしたグラフである。曲げ強度保持率とは、FRP対照サンプルの曲げ強度を「1」とした場合の、各FRP劣化サンプルの曲げ強度の相対値である。図14より、FRP劣化サンプルの表面昇温比と曲げ強度保持率との間には、負の相関性が認められた。
[Correlation between surface temperature rise ratio and mechanical strength (step G)]
FIG. 14 is a graph plotting the relationship between the surface temperature rise ratio and the bending strength retention rate for a plurality of FRP deteriorated samples. The bending strength retention rate is a relative value of the bending strength of each FRP deteriorated sample when the bending strength of the FRP control sample is “1”. From FIG. 14, a negative correlation was observed between the surface temperature rise ratio of the FRP deteriorated sample and the bending strength retention rate.

(工程A)
被験対象となるFRP構造物に使用されているFRPと同一FRPについて、FRP対照サンプル又はFRP劣化サンプルと同様にして表面の温度変化を測定する。FRP被験サンプルとしてFRP構造体の一部を直接利用する場合には、FRP対照サンプルとFRP被験サンプルの表面温度変化を同時に測定することが困難である。そのため、FRP対照サンプル及びFRP劣化サンプルは、別個に表面温度変化を測定しておくことが好ましい。
(Step A)
For the same FRP as the FRP used in the FRP structure to be tested, the surface temperature change is measured in the same manner as the FRP control sample or the FRP deteriorated sample. When a part of the FRP structure is directly used as the FRP test sample, it is difficult to measure the surface temperature change of the FRP control sample and the FRP test sample at the same time. Therefore, it is preferable to measure the surface temperature change of the FRP control sample and the FRP deteriorated sample separately.

FRP被験サンプルとしてFRP構造体の一部を取り外して利用する場合には、測定誤差を小さくする観点から、FRP対照サンプルとFRP被験サンプルの表面温度変化を同時に測定することが好ましい。 When a part of the FRP structure is removed and used as the FRP test sample, it is preferable to measure the surface temperature change of the FRP control sample and the FRP test sample at the same time from the viewpoint of reducing the measurement error.

図14のようなグラフを得ていれば、貯水槽又は反応槽のようなFRP構造物の外表面の一部分について、表面昇温比を算出することにより、温度測定部分のFRPの曲げ強度(物理的強度)を非破壊的に正確に予測することが可能である。すなわち、FRP被験サンプルについて、FRP対照サンプル及びFRP劣化サンプルと同様にしてΔT最高値(ΔTSmax)を求め、ΔTSmaxをΔTBmaxで除した値を表面昇温比として算出する。このFRP被験サンプルの表面昇温比と図14のグラフとから、FRP被験サンプルの曲げ強度を予測することが可能である。 If a graph as shown in FIG. 14 is obtained, the bending strength (physical) of the FRP of the temperature measuring portion can be calculated by calculating the surface temperature rise ratio for a part of the outer surface of the FRP structure such as a water tank or a reaction tank. It is possible to predict the target strength) non-destructively and accurately. That is, for the FRP test sample, the maximum value of ΔT (ΔT Smax ) is obtained in the same manner as in the FRP control sample and the FRP deteriorated sample, and the value obtained by dividing ΔT Smax by ΔT Bmax is calculated as the surface temperature rise ratio. From the surface temperature rise ratio of the FRP test sample and the graph of FIG. 14, it is possible to predict the bending strength of the FRP test sample.

[FRP被験サンプルの劣化診断(工程H)]
例えば、今回使用したFRPの場合、曲げ強度保持率が0.6以下になれば交換時期と判断されるのであれば、表面昇温比が1.7以上であるFRP被験サンプルは、新品のFRPと交換する必要があるほど劣化が進行していると診断され得る。一方、表面昇温比が1.1程度であれば、新品FRPの9割程度の強度を保持しているため、劣化は進行していないと診断され得る。曲げ強度保持率の基準は、FRP構造物又は使用されているFRPの種類に応じて、適宜設定され得る。
[Deterioration diagnosis of FRP test sample (step H)]
For example, in the case of the FRP used this time, if it is judged that it is time to replace the FRP if the bending strength retention rate is 0.6 or less, it is necessary to replace the FRP test sample with a surface temperature rise ratio of 1.7 or more with a new FRP. It can be diagnosed that the deterioration is progressing as much as possible. On the other hand, if the surface temperature rise ratio is about 1.1, the strength of about 90% of the new FRP is maintained, so that it can be diagnosed that the deterioration has not progressed. The standard of bending strength retention rate can be appropriately set depending on the type of FRP structure or FRP used.

なお、60℃で10%硫酸に6ヶ月間浸漬させたFRP劣化サンプルと、65℃で32%硫酸に6ヶ月間浸漬させたFRP劣化サンプルとを比較すると、酸処理条件は32%硫酸の方がシビアであったにも拘わらず、10%硫酸の方が表面昇温比は大きく、曲げ強度保持率も低い結果が得られた。このことからも、本発明の劣化診断方法は、FRPの劣化による機械的強度の低下を正確に診断することが可能である。 Comparing the FRP deteriorated sample immersed in 10% sulfuric acid at 60 ° C for 6 months and the FRP deteriorated sample immersed in 32% sulfuric acid at 65 ° C for 6 months, the acid treatment condition is 32% sulfuric acid. Although it was severe, 10% sulfuric acid had a larger surface temperature rise ratio and a lower bending strength retention rate. From this, the deterioration diagnosis method of the present invention can accurately diagnose the decrease in mechanical strength due to the deterioration of FRP.

[本発明と超音波探傷法との比較]
表1に示されるFRP劣化サンプルのうち、10%硫酸、37%硫酸及び1%水酸化ナトリウム水溶液に浸漬して作製されたFRP劣化サンプルについて、超音波探傷法によるエコー減衰を以下の方法によって測定した。
[Comparison between the present invention and the ultrasonic flaw detection method]
Of the FRP deteriorated samples shown in Table 1, the echo attenuation by the ultrasonic flaw detection method was measured for the FRP deteriorated samples prepared by immersing them in 10% sulfuric acid, 37% sulfuric acid and 1% sodium hydroxide aqueous solution by the following method. did.

超音波エコーの測定には、可搬型超音波探傷器(菱電湘南エレクトロニクス株式会社、UI25S)、探傷プローブには5MHz狭帯域型垂直探触子(ジャパンプローブ株式会社、HC10K5N)を使用した。設定条件としての音速は実測に基づいて2150m/sとし、ゲインはピークが飽和しない程度として9dBとした。FRP対照サンプル及びFRP劣化サンプルについて、測定点はランダムに20点を抽出し、その平均値、最大値、最小値を記録した。 A portable ultrasonic flaw detector (Ryoden Shonan Electronics Co., Ltd., UI25S) was used for ultrasonic echo measurement, and a 5 MHz narrow band vertical probe (Japan Probe Co., Ltd., HC10K5N) was used for the flaw detection probe. The speed of sound as a setting condition was set to 2150 m / s based on the actual measurement, and the gain was set to 9 dB so that the peak would not be saturated. For the FRP control sample and the FRP deteriorated sample, 20 measurement points were randomly extracted, and the average value, the maximum value, and the minimum value were recorded.

図15は、3種類のFRP劣化サンプルについて、表面昇温比、エコー強度比及び曲げ強度保持率を示すグラフである。エコー強度比は、FRP対照サンプルのエコー強度を「1」とした場合の相対値を示す。10%硫酸及び1%水酸化ナトリウム水溶液に浸漬して作製されたFRP劣化サンプルについては、曲げ強度保持率が低下したサンプルの場合のエコー強度は低くなっており、曲げ強度保持率とエコー強度に相関性が認められた。 FIG. 15 is a graph showing the surface temperature rise ratio, echo intensity ratio, and bending strength retention rate for three types of FRP deteriorated samples. The echo intensity ratio indicates a relative value when the echo intensity of the FRP control sample is set to "1". For FRP-deteriorated samples prepared by immersing them in 10% sulfuric acid and 1% sodium hydroxide aqueous solution, the echo strength of the sample with reduced bending strength retention rate is low, and the bending strength retention rate and echo strength are improved. Correlation was observed.

ところが、37%塩酸に浸漬して作製されたFRP劣化サンプルについては、曲げ強度保持率約0.3にまで機械的強度が減少して劣化が進行しているにも拘わらず、エコー強度は「1」であり減衰が認められなかった。すなわち、超音波探傷法によっては、37%塩酸に浸漬して作製されたFRP劣化サンプルの劣化による機械的強度の低下を全く判断できなかった。 However, for the FRP deteriorated sample prepared by immersing it in 37% hydrochloric acid, the echo strength is "1" even though the mechanical strength has decreased to about 0.3 and the deterioration is progressing. No attenuation was observed. That is, by the ultrasonic flaw detection method, it was not possible to judge at all the decrease in mechanical strength due to the deterioration of the FRP deteriorated sample prepared by immersing it in 37% hydrochloric acid.

一方、本発明では、37%塩酸に浸漬して作製されたFRP劣化サンプルの表面昇温比は、約2にまで上昇しており、FRPサンプルが劣化して機械的強度が低下していることを診断し得ることが確認された。 On the other hand, in the present invention, the surface temperature rise ratio of the FRP deteriorated sample prepared by immersing it in 37% hydrochloric acid has risen to about 2, and the FRP sample has deteriorated and the mechanical strength has decreased. It was confirmed that it can be diagnosed.

硫酸及び水酸化ナトリウムは、FRP内部に浸透せず、主として表面を劣化させる一方、塩酸はFRP内部に浸透して超音波の媒質として作用するため、エコー強度の減衰が小さかったと推測された。このように、超音波探傷法では全く対応できない劣化系がFRPサンプルにあることが確認された。 Sulfuric acid and sodium hydroxide did not penetrate into the FRP and mainly deteriorated the surface, while hydrochloric acid penetrated into the FRP and acted as a medium for ultrasonic waves, so it was speculated that the attenuation of echo intensity was small. In this way, it was confirmed that the FRP sample has a deterioration system that cannot be dealt with by the ultrasonic flaw detection method at all.

本発明のFRPの劣化診断方法は、FRP構造物の機械的強度の低下を非破壊的に正確に診断し得る方法として、設計、化学工業等の技術分野において有用である。 The method for diagnosing deterioration of FRP of the present invention is useful in technical fields such as design and chemical industry as a method capable of non-destructively and accurately diagnosing a decrease in mechanical strength of an FRP structure.

1:赤外線カメラ
2a,2b:パルス光源(フラッシュランプ)
3:FRP対照サンプル
4:FRP劣化サンプル
5:インターフェースハードウェア
6:制御・解析ソフトウェア
1: Infrared camera 2a, 2b: Pulse light source (flash lamp)
3: FRP control sample 4: FRP deterioration sample 5: Interface hardware 6: Control / analysis software

具体的に、本発明は、
FRP被験サンプル表面温度を赤外線カメラによって測定しながら、前記FRP被験サンプルにパルス光源から光を照射し、その後照射を停止し、前記FRP被験サンプルの表面温度変化を算出する工程Aと、
FRP対照サンプル表面温度を赤外線カメラによって測定しながら、前記FRP対照サンプルにパルス光源から光を照射し、その後照射を停止し、前記FRP対照サンプルの表面温度変化を算出する工程Bと、
前記FRP対照サンプルを劣化させたn枚(nは複数)のFRP劣化サンプルについて、前記工程Aと同様にして前記FRP劣化サンプルの表面温度変化を算出する工程Cと、
前記FRP被験サンプルの最大表面温度差ΔTSmaxと前記FRP対照サンプルの最大表面温度差ΔTBmaxとから表面昇温比ΔTSmax/ΔTBmax値を算出する工程Dと、
前記FRP劣化サンプルの最大表面温度差ΔTDmaxと前記FRP対照サンプルの最大表面温度差ΔTBmaxとから表面昇温比ΔTDmax/ΔTBmax値を算出する工程Eと、
n枚の前記FRP劣化サンプルと前記対照サンプルの機械的強度を測定する工程Fと、
前記表面昇温比ΔTDmax/ΔTBmax値と前記機械的強度との関係式を算出する工程Gと、
前記表面昇温比ΔT Smax /ΔTBmax値を前記関係式の表面昇温比として代入し、
算出される前記FRP被験サンプルの機械的強度が一定基準未満であれば、前記FRP被験サンプルは劣化が進行していると判断し、
算出される前記FRP被験サンプルの機械的強度が一定基準以上であれば、前記FRP被験サンプルは劣化が進行していないと判断する工程Hと、
を有する、FRPの劣化診断方法に関する。
Specifically, the present invention
Step A of irradiating the FRP test sample with light from a pulse light source while measuring the surface temperature of the FRP test sample with an infrared camera, then stopping the irradiation, and calculating the surface temperature change of the FRP test sample.
Step B of irradiating the FRP control sample with light from a pulse light source while measuring the surface temperature of the FRP control sample with an infrared camera, then stopping the irradiation, and calculating the surface temperature change of the FRP control sample.
For n (plural n) FRP deteriorated samples obtained by deteriorating the FRP control sample, a step C of calculating the surface temperature change of the FRP deteriorated sample in the same manner as in the step A, and a step C.
Step D for calculating the surface temperature rise ratio ΔT Smax / ΔT Bmax value from the maximum surface temperature difference ΔT Smax of the FRP test sample and the maximum surface temperature difference ΔT Bmax of the FRP control sample.
Step E of calculating the surface temperature rise ratio ΔT Dmax / ΔT Bmax value from the maximum surface temperature difference ΔT Dmax of the FRP deteriorated sample and the maximum surface temperature difference ΔT Bmax of the FRP control sample.
Step F for measuring the mechanical strength of n sheets of the FRP deteriorated sample and the control sample, and
Step G for calculating the relational expression between the surface temperature rise ratio ΔT Dmax / ΔT Bmax value and the mechanical strength, and
Substituting the surface temperature rise ratio ΔT Smax / ΔT Bmax value as the surface temperature rise ratio of the relational expression,
If the calculated mechanical strength of the FRP test sample is less than a certain standard, it is judged that the FRP test sample is deteriorating.
If the calculated mechanical strength of the FRP test sample is equal to or higher than a certain standard, the step H in which it is determined that the deterioration of the FRP test sample has not progressed,
The present invention relates to a method for diagnosing deterioration of FRP.

Claims (1)

FRP被験サンプル表面温度を赤外線カメラによって測定しながら、前記FRP被験サンプルにパルス光源から熱源として光を照射し、その後照射を停止し、前記FRP被験サンプルの表面温度変化を算出する工程Aと、
FRP対照サンプル表面温度を赤外線カメラによって測定しながら、前記FRP対照サンプルにパルス光源から熱源として光を照射し、その後照射を停止し、前記FRP対照サンプルの表面温度変化を算出する工程Bと、
前記FRP対照サンプルを劣化させたn枚(nは複数)のFRP劣化サンプルについて、前記工程Aと同様にして前記FRP劣化サンプルの表面温度変化を算出する工程Cと、
前記FRP被験サンプルの最大表面温度差ΔTSmaxと前記FRP対照サンプルの最大表面温度差ΔTBmaxとから表面昇温比ΔTSmax/ΔTBmax値を算出する工程Dと、
前記FRP劣化サンプルの最大表面温度差ΔTDmaxと前記FRP対照サンプルの最大表面温度差ΔTBmaxとから表面昇温比ΔTDmax/ΔTBmax値を算出する工程Eと、
n枚の前記FRP劣化サンプルと前記対照サンプルの機械的強度を測定する工程Fと、
前記表面昇温比ΔTDmax/ΔTBmax値と前記機械的強度との関係式を算出する工程Gと、
前記表面昇温比P/ΔTBmax値を前記関係式の表面昇温比として代入し、
算出される前記FRP被験サンプルの機械的強度が一定基準未満であれば、前記FRP被験サンプルは劣化が進行していると判断し、
算出される前記FRP被験サンプルの機械的強度が一定基準以上であれば、前記FRP被験サンプルは劣化が進行していないと判断する工程Hと、
を有する、FRPの劣化診断方法。
Step A of irradiating the FRP test sample with light as a heat source from a pulse light source while measuring the surface temperature of the FRP test sample with an infrared camera, then stopping the irradiation, and calculating the surface temperature change of the FRP test sample.
Step B of irradiating the FRP control sample with light as a heat source from a pulse light source while measuring the surface temperature of the FRP control sample with an infrared camera, then stopping the irradiation, and calculating the surface temperature change of the FRP control sample.
For n (plural n) FRP deteriorated samples obtained by deteriorating the FRP control sample, a step C of calculating the surface temperature change of the FRP deteriorated sample in the same manner as in the step A, and a step C.
Step D for calculating the surface temperature rise ratio ΔT Smax / ΔT Bmax value from the maximum surface temperature difference ΔT Smax of the FRP test sample and the maximum surface temperature difference ΔT Bmax of the FRP control sample.
Step E of calculating the surface temperature rise ratio ΔT Dmax / ΔT Bmax value from the maximum surface temperature difference ΔT Dmax of the FRP deteriorated sample and the maximum surface temperature difference ΔT Bmax of the FRP control sample.
Step F for measuring the mechanical strength of n sheets of the FRP deteriorated sample and the control sample, and
Step G for calculating the relational expression between the surface temperature rise ratio ΔT Dmax / ΔT Bmax value and the mechanical strength, and
Substituting the surface temperature rise ratio P / ΔT Bmax value as the surface temperature rise ratio of the relational expression,
If the calculated mechanical strength of the FRP test sample is less than a certain standard, it is judged that the FRP test sample is deteriorating.
If the calculated mechanical strength of the FRP test sample is equal to or higher than a certain standard, the step H in which it is determined that the deterioration of the FRP test sample has not progressed,
A method for diagnosing deterioration of FRP.
JP2019069663A 2019-04-01 2019-04-01 FRP degradation diagnosis method Active JP6592754B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019069663A JP6592754B1 (en) 2019-04-01 2019-04-01 FRP degradation diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019069663A JP6592754B1 (en) 2019-04-01 2019-04-01 FRP degradation diagnosis method

Publications (2)

Publication Number Publication Date
JP6592754B1 JP6592754B1 (en) 2019-10-23
JP2020169821A true JP2020169821A (en) 2020-10-15

Family

ID=68314018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019069663A Active JP6592754B1 (en) 2019-04-01 2019-04-01 FRP degradation diagnosis method

Country Status (1)

Country Link
JP (1) JP6592754B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031710A1 (en) * 2021-08-31 2023-03-09 Ricoh Company, Ltd. Thermographic inspection apparatus and inspection method
WO2023031704A1 (en) * 2021-08-31 2023-03-09 Ricoh Company, Ltd. Image acquisition apparatus, inspection apparatus, and image acquisition method
WO2024004583A1 (en) * 2022-06-30 2024-01-04 コニカミノルタ株式会社 Prediction device, prediction system, and prediction program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455097B (en) * 2022-04-13 2022-06-21 中国飞机强度研究所 Infrared light source equivalent-based solar radiation test system and method for airplane test

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874948A (en) * 1986-12-29 1989-10-17 Canadian Patents And Development Limited Method and apparatus for evaluating the degree of cure in polymeric composites
JP2005274202A (en) * 2004-03-23 2005-10-06 Takahide Sakagami Flaw inspection method and its device
JP2012175422A (en) * 2011-02-22 2012-09-10 Nec Corp Antenna device
US20150260667A1 (en) * 2014-03-12 2015-09-17 Agency For Science, Technology And Research Method of detecting defects in an object based on active thermography and a system thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874948A (en) * 1986-12-29 1989-10-17 Canadian Patents And Development Limited Method and apparatus for evaluating the degree of cure in polymeric composites
JP2005274202A (en) * 2004-03-23 2005-10-06 Takahide Sakagami Flaw inspection method and its device
JP2012175422A (en) * 2011-02-22 2012-09-10 Nec Corp Antenna device
US20150260667A1 (en) * 2014-03-12 2015-09-17 Agency For Science, Technology And Research Method of detecting defects in an object based on active thermography and a system thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031710A1 (en) * 2021-08-31 2023-03-09 Ricoh Company, Ltd. Thermographic inspection apparatus and inspection method
WO2023031704A1 (en) * 2021-08-31 2023-03-09 Ricoh Company, Ltd. Image acquisition apparatus, inspection apparatus, and image acquisition method
WO2024004583A1 (en) * 2022-06-30 2024-01-04 コニカミノルタ株式会社 Prediction device, prediction system, and prediction program

Also Published As

Publication number Publication date
JP6592754B1 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
JP6592754B1 (en) FRP degradation diagnosis method
US11255825B2 (en) Wrinkle characterization and performance prediction for composite structures
US7757558B2 (en) Method and apparatus for inspecting a workpiece with angularly offset ultrasonic signals
US11754529B2 (en) System and method for evaluating defects in a material
US20210349058A1 (en) Ultrasonic system and method for evaluating a material
US11650183B2 (en) System and method for real-time degree of cure evaluation in a material
US20210302379A1 (en) System and method for real-time visualization of defects in a curved material
Dolati et al. Identifying NDT methods for damage detection in concrete elements reinforced or strengthened with FRP
KR101769243B1 (en) System and Method for non­contact and non­destructive inspection of composite material
Chongcong et al. Fatigue life prediction of GFRP laminates using averaged Bayesian predictive distribution and Lamb wave velocity
JP6818287B1 (en) Deterioration diagnosis method for plastic materials
WO2003095942A3 (en) System and method for control of paint thickness by using an optoacoustic technique
JP2008014959A (en) Method for inspecting coating member for interface defects
AU2021390451A1 (en) System and method for evaluating defects in a material
Berketis et al. Impact damage detection and degradation monitoring of wet GFRP composites using noncontact ultrasonics
DO HAENG et al. Influence of signal-to-noise ratio on eddy current signals of cracks in steam generator tubes
Mouritz Non-destructive evaluation of damage accumulation AP Mouritz, RMIT University, Australia
TW201111774A (en) Non-destructive strength testing method for refractory materials
JP4839177B2 (en) Degradation diagnosis method for fiber reinforced composite materials
JPS6350661B2 (en)
Smagulova et al. High quality process of ultrasonic nondestructive testing of adhesively bonded dissimilar materials
JPH09304358A (en) Defect detecting method for lead sheath pipe for electric wire
Chen et al. Acoustography as a means of monitoring damage in composites during static or fatigue loading
US20240044845A1 (en) Ultrasonic system and method for detecting and characterizing contact delaminations
Ghiassi et al. Assessment of the bond quality degradation in FRP-strengthened masonry using IR thermography technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190401

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190828

R150 Certificate of patent or registration of utility model

Ref document number: 6592754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250