WO2023181935A1 - Prediction device, prediction system, and prediction program - Google Patents

Prediction device, prediction system, and prediction program Download PDF

Info

Publication number
WO2023181935A1
WO2023181935A1 PCT/JP2023/008748 JP2023008748W WO2023181935A1 WO 2023181935 A1 WO2023181935 A1 WO 2023181935A1 JP 2023008748 W JP2023008748 W JP 2023008748W WO 2023181935 A1 WO2023181935 A1 WO 2023181935A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
measurement
measurement information
fiber composite
composite material
Prior art date
Application number
PCT/JP2023/008748
Other languages
French (fr)
Japanese (ja)
Inventor
茂 小島
友香子 ▲高▼
一磨 小田
みゆき 岡庭
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2023181935A1 publication Critical patent/WO2023181935A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation

Definitions

  • the present invention relates to a prediction device, a prediction system, and a prediction program.
  • a fiber composite material containing resin and fibers has a three-dimensional structure due to fiber orientation and the like, and its characteristics are easily influenced by fiber orientation, fiber density, and the like.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a prediction device, a prediction system, and a prediction program that can predict the residual stress of a fiber composite material.
  • First measurement information obtained by measuring the material properties of the fiber composite material using a first measuring device; and second measurement information obtained by measuring the material properties of the fiber composite material by a second measuring device different from the first measuring device. and a prediction unit that predicts residual stress of the fiber composite material based on the acquired first measurement information and second measurement information.
  • the second measurement information includes information regarding at least one of the resin type, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fibers and resin, and fiber length of the fiber composite material.
  • the prediction device according to any one of (1) to (4) above.
  • the second measurement device is an infrared spectrometer, an impedance spectrometer, a terahertz wave spectrometer, an ultrasonic measurement device, a Raman spectrometer, an X-ray diffraction device, or a fluorescence microscope (1) above.
  • the prediction device according to any one of (5) to (5).
  • the acquisition unit further acquires third measurement information measured by a third measurement device different from the first measurement device and the second measurement device, and the prediction unit , the prediction device according to any one of (1) to (6) above, which predicts the residual stress based on the second measurement information and the third measurement information.
  • the prediction unit further includes an extraction unit that extracts feature quantities from each of the acquired first measurement information and second measurement information, and the prediction unit receives the extracted feature quantities as input and predicts the residual stress.
  • the prediction device according to (9) above.
  • a first measuring device that measures the material properties of the fiber composite material
  • a second measuring device that measures the material properties of the fiber composite material and is different from the first measuring device
  • a prediction system comprising the prediction device according to any one of item 11).
  • a prediction device, a prediction system, and a prediction program according to the present invention acquire first measurement information and second measurement information that measure material properties of a fiber composite material, and based on the acquired first measurement information and second measurement information, , predicting residual stress in fiber composite materials. This makes it possible to predict the residual stress in the fiber composite material.
  • FIG. 1 is a diagram showing the overall configuration of a prediction system.
  • FIG. 2 is a block diagram showing a schematic configuration of a prediction device.
  • FIG. 1 is an overall schematic diagram of an X-ray Talbot-Low apparatus.
  • FIG. 2 is a diagram explaining the principle of a Talbot interferometer.
  • FIG. 3 is a schematic plan view of a source grating, a first grating, and a second grating.
  • FIG. 1 is a diagram showing the overall configuration of a prediction system.
  • the prediction system includes, for example, a prediction device 100, a first measurement device 200, and a second measurement device 300.
  • This prediction system predicts residual stress in fiber composite materials. Residual stress is stress that exists within a material.
  • Fiber composite materials are used as components of a variety of products, including space and aircraft-related products, automobiles, ships, fishing rods, electrical/electronic/home appliance parts, parabolic antennas, bathtubs, flooring materials, roofing materials, etc. It will be done.
  • fiber composite materials include CFRP (Carbon-Fiber-Reinforced Plastics) using carbon fiber or glass fiber as reinforcing fibers, and CFRTP (Carbon Fiber Reinforced Thermo Plastics). reinforced thermoplastic) and Examples include FRP (Fiber-Reinforced Plastics) represented by GFRP (Glass-Fiber-Reinforced Plastics).
  • CFRTP is excellent in terms of lightweight and recyclability.
  • the resin contained in the fiber composite material is, for example, plastic such as general-purpose plastic, engineering plastic, and super engineering plastic, but is not limited to these.
  • plastics include polypropylene, polyamide, ABS, polycarbonate resin, nylon, polyphenylene sulfide (PPS), polyacetal (POM), and the like.
  • the fibers included in the fiber composite material are, for example, carbon fibers, glass fibers, or aramid fibers.
  • the fiber composite material may contain a sensitivity modifier.
  • a sensitivity adjustment agent refers to a sample that functions like a contrast agent used in X-ray photography and enables measurements of fiber composite materials with higher accuracy and sensitivity.
  • the fiber composite material containing the sensitivity modifier By measuring the fiber composite material containing the sensitivity modifier using the first measuring device 200 and the second measuring device 300, it becomes possible to perform the measurement with higher accuracy.
  • the second measuring device 300 is a Raman spectrometer, using zirconium tungstate as the sensitivity modifier changes the Raman shift, making it possible to generate information regarding the material properties of the fiber composite material with higher accuracy. It becomes possible.
  • the second measuring device 300 is a fluorescence microscope, if a fluorescent dye is used as the sensitivity adjusting agent, it becomes possible to generate information regarding the fiber length with higher accuracy.
  • the sensitivity modifier contained in the fiber composite material has a small effect on the physical properties of the fiber composite material.
  • the fiber composite material measured by the first measuring device 200 and the second measuring device 300 can be used for molded products.
  • a test piece of a fiber composite material containing a sensitivity modifier may be created.
  • the prediction device 100 is a computer such as a PC, a smartphone, or a tablet terminal, and functions as a prediction device in this embodiment.
  • the prediction device 100 is configured to be connectable to the first measurement device 200 and the second measurement device 300, and transmits and receives various information to and from each device.
  • FIG. 2 is a block diagram showing a schematic configuration of the information processing device.
  • the prediction device 100 includes a CPU (Central Processing Unit) 110, a ROM (Read Only Memory) 120, a RAM (Random Access Memory) 130, a storage 140, and a communication interface 150. , display section 160, and operation reception 170. Each configuration is communicably connected to each other via a bus.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 110 controls each of the above components and performs various calculation processes according to programs recorded in the ROM 120 and the storage 140.
  • the ROM 120 stores various programs and various data.
  • the RAM 130 temporarily stores programs and data as a work area.
  • the storage 140 stores various programs including an operating system and various data.
  • the storage 140 is installed with an application for predicting residual stress in a fiber composite material using a learned discriminator.
  • the first measurement information and the second measurement information acquired from the first measurement device 200 and the second measurement device 300 may be stored in the storage 140.
  • the storage 140 may store trained models used as classifiers and teacher data used for machine learning.
  • the communication interface 150 is an interface for communicating with other devices.
  • a wired or wireless communication interface according to various standards is used.
  • the communication interface 150 is used, for example, to receive first measurement information and second measurement information from the first measurement device 200 and the second measurement device 300, and to send prediction results to a server or the like for storage. It will be done.
  • the display unit 160 includes an LCD (liquid crystal display), an organic EL display, etc., and displays various information.
  • the display unit 160 may be configured by viewer software, a printer, or the like.
  • the display section 160 functions as an output section.
  • the operation reception unit 170 includes a touch sensor, a pointing device such as a mouse, a keyboard, etc., and accepts various operations from the user.
  • the display section 160 and the operation reception section 170 may constitute a touch panel by superimposing a touch sensor as the operation reception section 170 on a display surface as the display section 160.
  • the first measurement device 200 is a device for measuring material properties of a fiber composite material and acquiring first measurement information.
  • material properties are chemical and physical properties of fiber composite materials, such as acoustic properties, atomic properties, electrical properties, magnetic properties, mechanical properties, optical properties, radiation properties and thermal properties. Characteristics, etc.
  • the first measurement information includes information regarding fiber orientation of the fiber composite material. This is because fiber orientation is highly likely to affect residual stress.
  • the first measurement device 200 is preferably an X-ray Talbot-Low device or an X-ray CT (Computed Tomography) measurement device. This is because such a first measurement device 200 can generate first measurement information including information regarding fiber orientation.
  • the first measuring device 200 is preferably an X-ray Talbot-Low device.
  • the X-ray Talbot-Low apparatus makes it possible to obtain information on a wide range of fiber composite materials in a short time.
  • the first measuring device 200 may be a transmission type X-ray device or an X-ray diffraction device.
  • the X-ray Talbot-Lau apparatus uses, for example, a Talbot-Lau interferometer that includes a source grating (the source grating 12 in FIG. 3, which will be described later, is also referred to as a multi-grating, multi-slit, G0 grating, etc.). .
  • the X-ray Talbot-Lau apparatus does not need to have a source grating, for example, a first grating (first grating 14 in FIG. 3 described later, also referred to as G1 grating) and a second grating (described later in FIG.
  • a Talbot interferometer including only the second grating 15 also referred to as G2 grating may be used.
  • FIG. 3 is a diagram showing an example of the configuration of the X-ray Talbot-Low apparatus 1.
  • the X-ray Talbot-Lau apparatus 1 includes an X-ray generator 11, the above-described source grating 12, an object stage 13, the above-described first grating 14, the above-described second grating 15, and an X-ray detector 16. , a support 17 , and a base portion 18 .
  • a moiré image Mo (FIG. 4) of the fiber composite material H located at a predetermined position with respect to the object stage 13 is photographed by a method based on the principle of the fringe scanning method,
  • a Fourier transform method By analyzing the moire image Mo using a Fourier transform method, at least three types of images (two-dimensional images) can be reconstructed (referred to as reconstructed images). That is, an absorption image (same as a normal X-ray absorption image) that visualizes the average component of the moire fringe in the moire image Mo, a differential phase image that visualizes the phase information of the moire fringe, and a These are three types of small-angle scattering images. Note that it is also possible to generate more types of images by recombining these three types of reconstructed images.
  • the fringe scanning method means that one of multiple gratings is 1/M of the slit period of the grating (M is a positive integer, M>2 for absorption images, M>3 for differential phase images and small-angle scattering images).
  • M is a positive integer, M>2 for absorption images, M>3 for differential phase images and small-angle scattering images.
  • reconstruction is performed using a moiré image Mo taken M times by moving each moiré image Mo in the slit period direction to obtain a high-definition reconstructed image.
  • the Fourier transform method is a method in which one moire image Mo is photographed using the X-ray Talbot-Lau apparatus 1 in the presence of the fiber composite material H, and the moire image Mo is subjected to Fourier transform in image processing. This is a method of reconstructing and generating images such as differential phase images.
  • FIG. 4 shows the case of a Talbot interferometer
  • the explanation is basically the same for the case of a Talbot-Lau interferometer.
  • the z direction in FIG. 4 corresponds to the vertical direction in the X-ray Talbot-Low apparatus 1 in FIG. 3, and the x and y directions in FIG. direction).
  • the first grating 14 and the second grating 15 (also the source grating 12 in the case of Talbot-Lau interferometer) have an A plurality of slits S are arranged and formed at a predetermined period d in the direction.
  • This arrangement of slits S is a one-dimensional lattice, and the arrangement of slits S in the x and y directions is a two-dimensional lattice.
  • the source grating 12, the first grating 14, and the second grating 15 are, for example, composed of one-dimensional gratings, but may also be composed of two-dimensional gratings.
  • the X-rays irradiated from the X-ray source 11a (in the case of the Talbot-Lau interferometer, the X-rays irradiated from the X-ray source 11a are multiplied by the source grating 12 (not shown in FIG. 4).
  • the source grating 12 (not shown in FIG. 4).
  • the transmitted X-rays form images at regular intervals in the z direction. This image is called a self-image (also called a lattice image, etc.), and the phenomenon in which self-images are formed at regular intervals in the z direction is called the Talbot effect.
  • the Talbot effect means that when coherent light passes through the first grating 14 in which slits S are provided at a constant period d as shown in FIG. It refers to the phenomenon of forming one's self-image at regular intervals.
  • a second grating 15 provided with slits S like the first grating 14 is placed at a position where the self-image of the first grating 14 focuses.
  • the extending direction of the slits S of the second grating 15 that is, the x-axis direction in FIG. 4
  • the second A moire image Mo is obtained on the grid 15.
  • the X-ray Talbot-Lau apparatus 1 has a second grating 15 in the second cover unit 180 at a position where the self-image of the first grating 14 focuses, as shown in FIG. 3, for example. It is set to be placed. Furthermore, as described above, if the second grating 15 and the X-ray detector 16 are separated, the moire image Mo (see FIG. 4) will become blurred, so the X-ray detector 16 should be placed directly below the second grating 15. is preferred.
  • the second grating 15 may be made of a light emitting material such as a scintillator or amorphous selenium, and the second grating 15 and the X-ray detector 16 may be integrated.
  • the second cover unit 180 is used to protect the X-ray detector 16, etc. by preventing people or objects from colliding with or touching the first grating 14, the second grating 15, the X-ray detector 16, etc. It is set in.
  • conversion elements that generate electrical signals according to irradiated X-rays are arranged in a two-dimensional form (matrix form), and the electrical signals generated by the conversion elements are converted into images. It is configured to be read as a signal.
  • the X-ray detector 16 is configured to capture, for example, the moire image Mo, which is an X-ray image formed on the second grating 15, as an image signal for each conversion element.
  • the pixel size of the X-ray detector 16 is 10 to 300 ( ⁇ m), more preferably 50 to 200 ( ⁇ m).
  • an FPD Felat Panel Detector
  • FPDs There are two types of FPDs: an indirect conversion type that converts detected X-rays into electrical signals via a photoelectric conversion element, and a direct conversion type that converts detected X-rays directly into electrical signals. Good too.
  • a photoelectric conversion element is arranged two-dimensionally with a TFT (thin film transistor) under a scintillator plate such as CsI or Gd2O2S to form each pixel.
  • a scintillator plate such as CsI or Gd2O2S to form each pixel.
  • an amorphous selenium film with a film thickness of 100 to 1000 ( ⁇ m) is formed on glass by thermal evaporation of amorphous selenium, and the amorphous selenium film and electrodes are placed on a two-dimensional array of TFTs. Deposited.
  • the amorphous selenium film absorbs X-rays, a voltage is liberated within the material in the form of electron-hole pairs, and the voltage signal between the electrodes is read by the TFT.
  • an imaging means such as a CCD (Charge Coupled Device) or an X-ray camera may be used as the X-ray detector 16.
  • the X-ray Talbot-Lau apparatus 1 is configured to take a plurality of moiré images Mo using, for example, a so-called fringe scanning method. That is, in this X-ray Talbot-Lau apparatus 1, the relative positions of the first grating 14 and the second grating 15 are set in the x-axis direction (that is, perpendicular to the extending direction (y-axis direction) of the slit S) in FIGS. A plurality of moiré images Mo are photographed while shifting the moiré images Mo in the direction of
  • the X-ray Talbot-Lau apparatus 1 reconstructs (that is, image reconstruction) an absorption image, a differential phase image, a small-angle scattering image, etc. based on a plurality of captured moiré images Mo. ing.
  • the reconstruction process may be performed by the prediction device 100.
  • the X-ray Talbot-Lau apparatus 1 is capable of moving the first grating 14 by a predetermined amount in the x-axis direction, for example, in order to capture a plurality of moiré images Mo using the fringe scanning method. Note that it is also possible to move the second grating 15 instead of moving the first grating 14, or to move both of them.
  • the X-ray Talbot-Lau apparatus 1 captures only one moire image Mo while fixing the relative positions of the first grating 14 and the second grating 15, and other apparatuses (for example, an image processing apparatus or a prediction apparatus) In the image processing in 100), it is also possible to reconstruct an absorption image, a differential phase image, etc. by analyzing this moiré image Mo using a Fourier transform method or the like.
  • This X-ray Talbot-Lau apparatus 1 is of a so-called vertical type, and includes an X-ray generator 11, a source grating 12, an object stage 13, a first grating 14, a second grating 15, and an X-ray detector 16 in this order. is placed in the z direction, which is the direction of gravity. That is, here, the z direction is the irradiation direction of the X-rays from the X-ray generator 11.
  • the X-ray generator 11 includes, as an X-ray source 11a, a Coolidge X-ray source, a rotating anode X-ray source, etc., which are widely used in medical settings, for example. It is also possible to use other X-ray sources.
  • the X-ray generator 11 is configured, for example, to emit X-rays from a focal point in the form of a cone beam. That is, as shown in FIG.
  • X-rays are irradiated with the X-ray irradiation axis Ca coinciding with the z direction as the central axis, and the X-rays are irradiated so as to spread further away from the X-ray generator 11 (that is, the X-ray irradiation range).
  • a source grating 12 is provided below the X-ray generator 11.
  • the source grating 12 is not attached to the X-ray generator 11 and is attached to a support. It is preferable to attach it to a fixing member 12a attached to a base part 18 provided at 17.
  • a buffer member 17a is provided between the X-ray generator 11 and the support column 17.
  • the fixed member 12a includes, for example, a filtration filter (also referred to as an additional filter) 192 for changing the quality of the X-rays transmitted through the source grating 12, and a filter for changing the quality of the X-rays transmitted through the source grating 12.
  • a filtration filter also referred to as an additional filter
  • An irradiation field aperture 193 for narrowing down the irradiation field, and an irradiation field lamp 194 for irradiating the subject with visible light instead of X-rays to perform positioning before irradiating the X-rays are attached.
  • a first cover unit 190 is arranged around the source grating 12 and the like to protect them.
  • the subject table 13 is a table on which the fiber composite material H is placed, and can function as a rotation stage that rotates the fiber composite material H around the z-axis.
  • the controller 19 (see FIG. 3) is composed of a computer in which a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input/output interface, etc. (not shown) are connected to a bus. has been done. Note that it is also possible to configure the controller 19 as a dedicated control device instead of a general-purpose computer as in this embodiment. Further, although not shown, the controller 19 is provided with appropriate means and devices such as an input means including an operation section, an output means, a storage means, and a communication means.
  • the output means includes a display unit (not shown) that displays information necessary for performing various operations of the X-ray Talbot-Lau apparatus 1 and generated reconstructed images.
  • the controller 19 is designed to perform general control over the X-ray Talbot-Low apparatus 1. That is, for example, the controller 19 is connected to the X-ray generator 11, and can set the tube voltage, tube current, irradiation time, etc. for the X-ray source 11a. Further, for example, it is also possible to configure the controller 19 to relay transmission and reception of signals and data between the X-ray detector 16 and an external device (for example, the prediction device 100). The prediction device 100 may function as the controller 19.
  • the X-ray Talbot-Lau apparatus 1 may perform orientation imaging to generate orientation images (amp images, ave images, and pha images, which will be described later).
  • orientation imaging refers to photography in which the relative angle between the grating and the sample (fiber composite material H) is changed by rotating the subject table 13 that functions as a rotation stage. By oriented imaging, the direction in which the signal value is strongest for each pixel can be determined through calculation processing. Orientation photography will be explained below.
  • images are taken while changing the relative angle between the sample and the grid.
  • Prepare at least three types of relative angles eg, 0°, 60°, 120°.
  • a desired relative angle may be achieved by fixing the device and rotating the sample, or by fixing the sample and rotating the device.
  • two-dimensional imaging will be explained as an example, but it can also be extended to three-dimensional imaging.
  • an absorption image, differential phase image, or small-angle scattering image is acquired for each prepared relative angle.
  • a small-angle scattering image or a small-angle scattering image divided by an absorption image will be used.
  • the small-angle scattering image divided by the absorption image can be said to be an image in which thickness dependence is canceled in the case of a sample with unevenness. For convenience of explanation, both will be collectively referred to as a "small-angle scattering image.”
  • a sine wave graph is a graph in which the horizontal axis represents the relative angle between the sample and the grating, and the vertical axis represents the small-angle scattering signal value of a certain pixel.
  • the amplitude, average, and phase of the sine wave are obtained as fitting parameters.
  • An image showing the amplitude value of each pixel will be called an "amp image”
  • an image showing the average value of each pixel will be called an “ave image”
  • an image showing the phase of each pixel will be called a “pha image.”
  • the amp image, ave image, and pha image are collectively referred to as an "orientation image.”
  • the fitting method is not limited to sine waves; for example, an ellipse with the angle (phase) of the largest intensity as ⁇ 0 , the largest intensity as a, and the lowest intensity as b is expressed in polar coordinates as the position r( ⁇ ). It is also possible to fit the equation (1).
  • an image with a value (ab)/2 corresponding to the amplitude of each pixel is an "amp image”, and a value corresponding to the average value of each pixel (a+b) corresponds to the name used in sine wave fitting.
  • An image showing /2 may be called an "ave image”, and an image showing ⁇ 0 for each pixel may be called a "pha image”.
  • the orientation image may be created by simply assigning the major axis a, the minor axis b, and the phase ⁇ 0 of the signal intensity to each pixel.
  • Such an X-ray Talbot-Lau apparatus 1 generates a Talbot image containing information regarding the fiber orientation of the fiber composite material H. That is, the first measurement information generated by the X-ray Talbot-Lau apparatus 1 is information regarding the Talbot image.
  • the Talbot image is an image generated by the Talbot effect described above when the fiber composite material H is photographed by the X-ray Talbot-Lau apparatus 1. Images that have been subjected to image processing, such as the orientation image described above, are also included in the Talbot image. A reconstructed image reconstructed from the moire image Mo is also included in the Talbot image.
  • the second measurement device 300 is a device for measuring the material properties of the fiber composite material and generating second measurement information. This second measuring device 300 is different from the first measuring device 200.
  • the second measurement information preferably includes information regarding at least one of the resin species, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fibers and resin, and fiber length of the fiber composite material. Resin type, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fiber and resin, fiber type, fiber diameter, and fiber length of fiber-reinforced resin may influence residual stress. This is because it has a high level of quality.
  • the second measurement device 300 is preferably an infrared spectrometer, an impedance spectrometer, a terahertz wave spectrometer, an ultrasonic measurement device, a Raman spectrometer, an X-ray diffraction device, or a fluorescence microscope. Such a second measurement device 300 is capable of obtaining second measurement information including information regarding the resin type, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fibers and resin, or fiber length of the fiber composite material. This is because it can generate .
  • the material properties of the fiber composite material using an infrared spectrometer, it is possible to generate second measurement information including information regarding the resin type, the degree of crystallinity by the resin type, the specific volume, etc.
  • the material properties of the fiber composite material using a terahertz wave spectrometer, it is possible to generate second measurement information including information regarding the interaction between the fibers and the resin, the degree of crystallinity, and the like.
  • the material properties of the fiber composite material using an ultrasonic measuring device it is possible to generate second measurement information including information regarding the specific volume, fiber amount, resin type, and the like.
  • Such a second measurement device 300 measures each wavelength, including information regarding, for example, the resin type, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fibers and resin, or fiber length of the fiber composite material. generate spectral or fluorescence microscopy images. That is, the second measurement information generated by the second measurement device 300 is information regarding the spectrum of each wavelength or the fluorescence microscopic image.
  • the prediction system may further include a third measuring device, or a third measuring device and a fourth measuring device.
  • the third measurement device and the fourth measurement device are devices for measuring the material properties of the fiber composite material and generating third measurement information and fourth measurement information.
  • the third measuring device and the fourth measuring device are different from the first measuring device 200 and the second measuring device 300.
  • the third measuring device and the fourth measuring device may be the same measuring device as explained in the second measuring device 300 above.
  • the third measurement information and the fourth measurement information include information regarding at least one of the resin type, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fibers and resin, and fiber length of the fiber composite material. It is preferable to include.
  • the third measuring device and the fourth measuring device each include information regarding, for example, the resin type, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fibers and resin, or fiber length of the fiber composite material. Generate a spectrum of wavelengths or fluorescence microscopy images. That is, the third measurement information and the fourth measurement information generated by the third measurement device and the fourth measurement device are information regarding the spectrum of each wavelength or the fluorescence microscopic image.
  • FIG. 6 is a block diagram showing the functional configuration of the prediction device 100.
  • the prediction device 100 functions as an acquisition unit 111, an extraction unit 112, a prediction unit 113, and a control unit 114 when the CPU 110 reads a program stored in the storage 140 and executes the process.
  • the acquisition unit 111 acquires the first measurement information generated by the first measurement device 200 and the second measurement information generated by the second measurement device 300.
  • the first measurement information and the second measurement information are information obtained by measuring the material properties of the fiber composite material using the first measurement device 200 and the second measurement device 300, respectively.
  • the first measurement information preferably includes information regarding fiber orientation, and is preferably information regarding Talbot images.
  • the extraction unit 112 extracts feature amounts from each of the first measurement information and the second measurement information acquired by the acquisition unit 111.
  • the feature amount is, for example, a numerical value extracted from the spectrum or image acquired by the acquisition unit 111, and linked to the physical properties of the fiber composite material.
  • the feature amount extracted from the first measurement information may be the Talbot image itself such as an orientation image (amp image, ave image, pha image), or the Talbot image itself. It may be an image signal value obtained from a specific area of .
  • the feature amount extracted from the first measurement information may be eccentricity ecc.
  • the orientation image may include an image (ecc image) showing the degree of eccentricity ecc for each pixel.
  • the feature amount extracted from the second measurement information is, for example, the peak wavelength.
  • the feature amount extracted from the second measurement information is a peak position, peak intensity, half-value width, or the like. Further, the feature amount extracted from the second measurement information may be a principal component obtained by principal component analysis of the spectrum.
  • the feature amount extracted from the second measurement information is an impedance spectrum
  • the feature amount extracted from the second measurement information is a resistance value or capacitance at a specific frequency.
  • the second measurement information is an X-ray CT image
  • the feature amount extracted from the second measurement information is the fiber length or fiber orientation obtained by image analysis.
  • the feature amount extracted from the second measurement information is the fiber length etc. obtained by image analysis.
  • the feature amount extracted from the second measurement information is the speed of sound, reflection on the front surface, reflection on the back surface, or the like.
  • the feature amount extracted from the second measurement information may be a principal component obtained by principal component analysis of the measured waveform.
  • the acquisition unit 111 may acquire information from which feature amounts are extracted. That is, the first measurement information and the second measurement information may have feature amounts extracted from information regarding the fiber composite material measured by the first measurement device 200 and the second measurement device 300.
  • the prediction unit 113 predicts the residual stress of the fiber composite material based on the first measurement information and the second measurement information acquired by the acquisition unit 111. Specifically, the prediction unit 113 inputs the feature amounts of the first measurement information and the second measurement information extracted by the extraction unit 112 using a learned classifier, and calculates the residual stress of the fiber composite material. Predict.
  • the control unit 114 causes the display unit 160 to output information regarding the residual stress of the fiber composite material predicted by the prediction unit 113.
  • FIG. 7 shows an example of information regarding the residual stress of the fiber composite material output to the display section 160.
  • the predicted residual stress value is displayed on the display unit 160 along with information regarding the fiber composite material.
  • FIG. 8 is a flowchart showing the procedure of the prediction process executed by the prediction device 100.
  • the processing of the prediction device 100 shown in the flowchart of FIG. 8 is stored as a program in the storage 140 of the prediction device 100, and is executed by the CPU 110 controlling each part.
  • the prediction device 100 first acquires first measurement information obtained by measuring the material properties of the fiber composite material by the first measurement device 200 and second measurement information measured by the second measurement device 300.
  • the prediction device 100 obtains first measurement information from the first measurement device 200 and second measurement information from the second measurement device 300, for example.
  • the first measurement device 200 and the second measurement device 300 may store the first measurement information and the second measurement information in another device such as a server, and the prediction device 100 may store the first measurement information and the second measurement information in another device such as a server.
  • Second measurement information may also be acquired.
  • Step S102 The prediction device 100 extracts feature amounts from each of the first measurement information and the second measurement information acquired in the process of step S101.
  • Step S103 The prediction device 100 inputs the feature amounts of each of the first measurement information and the second measurement information extracted in the process of step S102 to a discriminator that has undergone machine learning in advance, and predicts the residual stress of the fiber composite material.
  • the discriminator uses the learning method described below to determine the feature values of each of the first measurement information and second measurement information of a plurality of fiber composite materials prepared in advance, and the residual stress of each of the plurality of fiber composite materials.
  • Machine learning is performed using training data with measured values.
  • the discriminator uses the feature quantities of each of the first measurement information and the second measurement information regarding the plurality of fiber composite materials as input data, and uses the measured value of residual stress of each of the plurality of fiber composite materials as output data. be learned.
  • the prediction device 100 can predict the residual stress of the fiber composite material by inputting the feature amounts extracted for each of the first measurement information and the second measurement information into the discriminator. Measurements of residual stress in fiber composite materials are obtained using, for example, a perforation method.
  • the discriminator may perform machine learning using the first measurement information and second measurement information regarding the plurality of fiber composite materials as input data, and using the measured values of residual stress of each of the plurality of fiber composite materials as output data.
  • the information input to the discriminator is not limited to the feature amounts of each of the first measurement information and the second measurement information.
  • information at the time of manufacture may be input to the discriminator and used as information for learning and prediction.
  • Step S104 The prediction device 100 generates a prediction result of the residual stress of the fiber composite material based on the output from the discriminator in the process of step S103.
  • Step S105 The prediction device 100 outputs the prediction result generated in the process of step S104.
  • the prediction device 100 displays the value of the residual stress of the fiber composite material predicted in the process of step S103 on the display unit 160 together with information regarding the fiber composite material (FIG. 7).
  • FIG. 9 is a flowchart showing a machine learning method for a trained model.
  • Machine learning is performed using a large number (i sets) of data sets as learning sample data.
  • a stand-alone high-performance computer using a CPU and a GPU processor or a cloud computer is used as a learning device (not shown) that functions as a discriminator.
  • a learning method using a neural network configured by combining perceptrons such as deep learning in a learning device will be described, but the method is not limited to this, and various methods can be applied. For example, random forest, decision tree, support vector machine (SVM), logistic regression, k-nearest neighbor method, topic model, etc. may be applied.
  • Step S111 The learning device reads learning sample data that is teacher data. If it is the first time, the first set of learning sample data is read, and if it is the i-th time, the i-th set of learning sample data is read.
  • Step S112 The learning device inputs input data from the read learning sample data to the neural network.
  • Step S113 The learning device compares the prediction results of the neural network with the correct data.
  • Step S114 The learning device adjusts the parameters based on the comparison results.
  • the learning device adjusts the parameters so that the difference between the comparison results becomes smaller by, for example, executing processing based on back-propagation (error backpropagation method).
  • Step S115 If the learning device completes processing of all data from the 1st to the i-th set (YES), the process proceeds to step S116, and if not (NO), returns the process to step S111 and processes the next learning sample data. is read, and the processing from step S111 onwards is repeated.
  • Step S116 The learning device determines whether or not to continue learning, and when continuing (YES), returns the process to step S111, executes the processes from the 1st group to the i-th group again in steps S111 to S115, and continues. If not (NO), the process advances to step S117.
  • Step S117 The learning device stores the learned model constructed in the previous processing and ends (end).
  • the storage destination includes the internal memory of the prediction device 100.
  • the residual stress of the fiber composite material is predicted using the learned model generated in this way.
  • the prediction device 100 and the prediction system of this embodiment acquire first measurement information and second measurement information that measured the material properties of a fiber composite material, and based on the acquired first measurement information and second measurement information, Predicting residual stresses in composite materials. This makes it possible to predict the residual stress in the fiber composite material. The effects will be explained below.
  • residual stress can affect the occurrence of cracks when a molded product made of fiber composite material is used for a long period of time. For this reason, it is desirable to understand the residual stress of the fiber composite material at least before long-term use.
  • the drilling method is mainly used to measure the residual stress in fiber composite materials, but since the drilling method requires precise measurement control, it is possible to efficiently measure the residual stress in a large number of fiber composite materials. It is difficult to do so.
  • the residual stress of the fiber composite material is predicted based on the first measurement information and the second measurement information that measured the material properties of the fiber composite material. There is no need to directly measure residual stress using a drilling method or the like.
  • the residual stress of the fiber composite material is predicted based on the measurement information of multiple measurement devices (the first measurement device 200 and the second measurement device 300), the residual stress can be predicted based on the measurement information of a single measurement device. This makes it possible to predict residual stress from multiple angles. Therefore, it becomes possible to predict residual stress with higher accuracy.
  • the first measuring device 200 Furthermore, by using an X-ray Talbot-Lau apparatus as the first measuring device 200, information regarding the fiber orientation of the fiber composite material can be obtained in a short time and over a wide range. This makes it possible to predict residual stress with higher accuracy.
  • the prediction device 100 and the prediction system of this embodiment make it possible to predict the residual stress of the fiber composite material.
  • Resin polypropylene (Noblen W101 manufactured by Sumitomo Chemical Co., Ltd.), polyamide 66 (Leona 1300S manufactured by Asahi Kasei Corporation), ABS (Toyolac 700 314 manufactured by Toray Industries, Inc.), polycarbonate (Iupilon H-3000R manufactured by Mitsubishi Engineering Plastics Co., Ltd.); Fiber: PAN (polyacrylonitrile) carbon fiber (CF-N manufactured by Nippon Polymer Sangyo Co., Ltd.), PAN carbon fiber (TC-33 manufactured by Taiwan Plastics Co., Ltd.), glass fiber (CS3J-960 manufactured by Nitto Boseki Co., Ltd.); Fiber concentration: 5%, 20%; Injection pressure: 50MPa, 100MPa.
  • each of these 48 types of fiber composite material samples was measured using the following measuring device, and the discriminator was made to learn the feature amounts. The measurement was performed near the center of the dumbbell-shaped test piece.
  • FTIR Fast Fourier Transform Infrared Spectroscopy
  • AWATAR370 manufactured by Thermo Fisher Scientific
  • Terahertz wave spectrometer C12068-01 manufactured by Hamamatsu Photonics Co., Ltd.
  • UVM-2 Ultrasonic measuring device
  • Impedance spectrometer Model 126096 manufactured by Solartron.
  • Conductive tapes with a diameter of 5 mm were pasted on the sample at two locations 50 mm apart, and measurements were performed using these as electrodes.); X-ray diffraction device (Smart Lab manufactured by Rigaku Co., Ltd.); X-ray Talbot-Low device (device described in JP 2019-184450); X-ray CT device (SKYSCAN1272 manufactured by Bruker Japan); Fluorescence microscope (Used with mirror unit U-MWU2 attached to BX51 manufactured by Olympus Corporation. As a sensitivity adjuster, fluorescent dye 2,5-thiophenediylbis (5-tert-butyl-1,3-benzoxazole) was used at 0.1 weight % and prepared the sample).
  • the residual stress of each of the 48 types of fiber composite material samples was measured using the perforation method, and the discriminator was trained.
  • the drilling method was performed as follows. First, a bending test was performed on the test piece to determine the Young's modulus. Next, a commercially available rosette strain gauge is attached to the measurement location, a hole with a diameter of 2 mm and a depth of 1 mm is made using a commercially available drill, and the residual stress is calculated using the amount of displacement and the Young's modulus determined in advance. I asked for it.
  • Examples 1 to 11, Comparative Examples 1 to 7 First, samples of four types of fiber composite materials were produced. This sample was produced using the following combinations of two types of resin, two types of fibers, one condition of fiber concentration (volume ratio), and one condition of injection pressure. The samples were prepared in the same manner as for the training data described above.
  • Resin polypropylene (Noblen W101 manufactured by Sumitomo Chemical Co., Ltd.), polyamide 66 (Leona 1300S manufactured by Asahi Kasei Corporation); Fiber: PAN-based carbon fiber (CF-N manufactured by Nippon Polymer Sangyo Co., Ltd.), PAN-based carbon fiber (TC-33 manufactured by Taiwan Plastics Co., Ltd.); Fiber concentration: 10%; Injection pressure: 80MPa.
  • the residual stress of each of the above four types of fiber composite materials was measured using a perforation method, and the measured values were determined.
  • the average of the errors for the four types of fiber composite materials was determined.
  • Table 1 below the average error of each of the four types of fiber composite materials of Comparative Example 1 is set as 1, and the average error of Examples 1 to 11 and Comparative Examples 1 to 7 is listed as a relative value. That is, the smaller the value in the "error" column in Table 1, the higher the accuracy of the residual stress predicted using the learned discriminator.
  • Examples 1 to 11 in which spectra or image feature quantities measured by multiple measurement devices were input to the discriminator, had smaller errors than Comparative Examples 1 to 7. Further, among Examples 1 to 11, in Examples 1 and 4 to 11 using the X-ray Talbot-Rho measuring device, the error was able to be made smaller than in Examples 2 and 3. Furthermore, by effectively combining various types of measuring devices, it was possible to predict residual stress with higher accuracy (Examples 8 to 11).
  • the configurations of the prediction device 100 and the prediction system described above are the main configurations explained in explaining the features of the above-mentioned embodiments and examples, and are not limited to the above-mentioned configurations, but within the scope of the claims. Various modifications can be made. Moreover, the configuration provided in a general prediction system is not excluded.
  • the prediction device 100 may include components other than the above components, or may not include some of the above components.
  • the prediction device 100, the first measuring device 200, and the second measuring device 300 may each be configured by a plurality of devices, or may be configured by a single device.
  • each configuration may be realized by other configurations.
  • the first measurement device 200 or the second measurement device 300 is integrated into the prediction device 100, and some or all of the functions of the first measurement device 200 and the second measurement device 300 are realized by the prediction device 100. Good too.
  • processing units in the flowchart in the above embodiment are divided according to the main processing contents in order to facilitate understanding of each process.
  • the present invention is not limited by how the processing steps are classified. Each process can also be divided into more process steps. Also, one processing step may perform more processing.
  • the means and methods for performing various processes in the system according to the embodiments described above can be realized by either a dedicated hardware circuit or a programmed computer.
  • the program may be provided on a computer-readable recording medium such as a flexible disk or CD-ROM, or may be provided online via a network such as the Internet.
  • the program recorded on the computer-readable recording medium is usually transferred and stored in a storage unit such as a hard disk.
  • the above program may be provided as a standalone application software, or may be incorporated into the software of the device as a function of the system.
  • 100 prediction device 110 CPU, 111 Acquisition Department; 112 Extraction part, 113 Prediction Department, 114 control unit, 120 ROM, 130 RAM, 140 storage, 150 communication interface, 160 display section, 170 Operation reception department, 200 first measuring device, 300 Second measuring device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computing Systems (AREA)
  • Pulmonology (AREA)
  • Toxicology (AREA)
  • Textile Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Provided are a prediction device, a prediction system, and a prediction program capable of predicting a residual stress of a fiber composite material. The prediction device 100 comprises: an acquisition unit 111 that acquires first measurement information obtained by measuring material properties of a fiber composite material with a first measurement device, and second measurement information obtained by measuring the material properties of the fiber composite material with a second measurement device different from the first measurement device; and a prediction unit 113 that predicts a residual stress of the fiber composite material, on the basis of the acquired first measurement information and second measurement information.

Description

予測装置、予測システムおよび予測プログラムPrediction device, prediction system and prediction program
 本発明は、予測装置、予測システムおよび予測プログラムに関する。 The present invention relates to a prediction device, a prediction system, and a prediction program.
 近年、電気自動車の普及および空飛ぶ車の実用化等に向けて、繊維複合材料等の軽量な部材が注目されている(例えば、特許文献1等)。樹脂および繊維を含む繊維複合材料は、繊維配向等により3次元的な構造を持っており、その特性は、繊維配向性および繊維密度等の影響を受けやすい。 In recent years, lightweight members such as fiber composite materials have been attracting attention in order to popularize electric vehicles and put flying cars into practical use (for example, Patent Document 1). A fiber composite material containing resin and fibers has a three-dimensional structure due to fiber orientation and the like, and its characteristics are easily influenced by fiber orientation, fiber density, and the like.
 繊維複合材料の重要な特性の一つとして、残留応力が挙げられる。残留応力は、繊維複合材料の長期使用の際に、クラック発生などに影響を及ぼし得るためである。 One of the important properties of fiber composite materials is residual stress. This is because residual stress can affect the occurrence of cracks during long-term use of the fiber composite material.
特開2021-89195号公報JP 2021-89195 Publication
 このような繊維複合材料の残留応力を予測することが望まれている。 It is desired to predict the residual stress of such fiber composite materials.
 本発明は、上記事情に鑑みてなされたものであり、繊維複合材料の残留応力を予測することが可能な予測装置、予測システムおよび予測プログラムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a prediction device, a prediction system, and a prediction program that can predict the residual stress of a fiber composite material.
 本発明の上記目的は、下記の手段によって達成される。 The above object of the present invention is achieved by the following means.
 (1)繊維複合材料の材料特性を第1測定装置により測定した第1測定情報と、前記第1測定装置とは異なる第2測定装置により前記繊維複合材料の材料特性を測定した第2測定情報とを取得する取得部と、取得された前記第1測定情報および前記第2測定情報に基づいて、前記繊維複合材料の残留応力を予測する予測部とを備える予測装置。 (1) First measurement information obtained by measuring the material properties of the fiber composite material using a first measuring device; and second measurement information obtained by measuring the material properties of the fiber composite material by a second measuring device different from the first measuring device. and a prediction unit that predicts residual stress of the fiber composite material based on the acquired first measurement information and second measurement information.
 (2)予測された前記残留応力に関する情報を出力部に出力させる制御部をさらに含む上記(1)に記載の予測装置。 (2) The prediction device according to (1) above, further including a control unit that causes an output unit to output information regarding the predicted residual stress.
 (3)前記第1測定情報は、前記繊維複合材料の繊維配向に関する情報を含む上記(1)または(2)に記載の予測装置。 (3) The prediction device according to (1) or (2) above, wherein the first measurement information includes information regarding fiber orientation of the fiber composite material.
 (4)前記第1測定装置は、X線タルボ・ロー装置またはX線CT測定装置である上記(3)に記載の予測装置。 (4) The prediction device according to (3) above, wherein the first measurement device is an X-ray Talbot-Lau device or an X-ray CT measurement device.
 (5)前記第2測定情報は、前記繊維複合材料の樹脂種、分子配向、結晶化度、比容積、繊維量、繊維と樹脂との相互作用および繊維の長さの少なくともいずれかに関する情報を含む上記(1)~(4)のいずれかに記載の予測装置。 (5) The second measurement information includes information regarding at least one of the resin type, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fibers and resin, and fiber length of the fiber composite material. The prediction device according to any one of (1) to (4) above.
 (6)前記第2測定装置は、赤外分光測定装置、インピーダンス分光測定装置、テラヘルツ波分光測定装置、超音波測定装置、ラマン分光測定装置、X線回折装置または蛍光顕
微鏡である上記(1)~(5)のいずれかに記載の予測装置。
(6) The second measurement device is an infrared spectrometer, an impedance spectrometer, a terahertz wave spectrometer, an ultrasonic measurement device, a Raman spectrometer, an X-ray diffraction device, or a fluorescence microscope (1) above. The prediction device according to any one of (5) to (5).
 (7)前記取得部は、前記第1測定装置および前記第2測定装置と異なる第3測定装置により測定した第3測定情報をさらに取得し、前記予測部は、取得された前記第1測定情報、前記第2測定情報および前記第3測定情報に基づいて、前記残留応力を予測する上記(1)~(6)のいずれかに記載の予測装置。 (7) The acquisition unit further acquires third measurement information measured by a third measurement device different from the first measurement device and the second measurement device, and the prediction unit , the prediction device according to any one of (1) to (6) above, which predicts the residual stress based on the second measurement information and the third measurement information.
 (8)前記繊維複合材料は感度調整剤を含む上記(1)~(7)のいずれかに記載の予測装置。 (8) The prediction device according to any one of (1) to (7) above, wherein the fiber composite material contains a sensitivity regulator.
 (9)前記予測部は、学習済みの識別器を用いて前記残留応力を予測する上記(1)~(8)のいずれかに記載の予測装置。 (9) The prediction device according to any one of (1) to (8), wherein the prediction unit predicts the residual stress using a learned discriminator.
 (10)取得された前記第1測定情報および前記第2測定情報各々から特徴量を抽出する抽出部をさらに含み、前記予測部は、抽出された前記特徴量を入力とし、前記残留応力を予測する上記(9)に記載の予測装置。 (10) The prediction unit further includes an extraction unit that extracts feature quantities from each of the acquired first measurement information and second measurement information, and the prediction unit receives the extracted feature quantities as input and predicts the residual stress. The prediction device according to (9) above.
 (11)前記識別器は、前記特徴量を入力データとし、前記残留応力を出力データとして機械学習される上記(10)に記載の予測装置。 (11) The prediction device according to (10), wherein the discriminator performs machine learning using the feature amount as input data and the residual stress as output data.
 (12)繊維複合材料の材料特性を測定する第1測定装置と、前記繊維複合材料の材料特性を測定するとともに、前記第1測定装置とは異なる第2測定装置と、上記(1)~(11)のいずれかに記載の予測装置とを備える予測システム。 (12) A first measuring device that measures the material properties of the fiber composite material; a second measuring device that measures the material properties of the fiber composite material and is different from the first measuring device; 11) A prediction system comprising the prediction device according to any one of item 11).
 (13)繊維複合材料の材料特性を第1測定装置により測定した第1測定情報と、前記第1測定装置とは異なる第2測定装置により前記繊維複合材料の材料特性を測定した第2測定情報とを取得するステップ(a)と、ステップ(a)で取得された前記第1測定情報および前記第2測定情報に基づいて、前記繊維複合材料の残留応力を予測するステップ(b)とを有する処理をコンピューターに実行させるための予測プログラム。 (13) First measurement information obtained by measuring the material properties of the fiber composite material using a first measuring device; and second measurement information obtained by measuring the material properties of the fiber composite material by a second measuring device different from the first measuring device. and (b) predicting the residual stress of the fiber composite material based on the first measurement information and the second measurement information obtained in step (a). A prediction program that allows a computer to perform processing.
 本発明に係る予測装置、予測システムおよび予測プログラムは、繊維複合材料の材料特性を測定した第1測定情報および第2測定情報を取得し、取得した第1測定情報および第2測定情報に基づいて、繊維複合材料の残留応力を予測する。これにより、繊維複合材料の残留応力を予測することが可能となる。 A prediction device, a prediction system, and a prediction program according to the present invention acquire first measurement information and second measurement information that measure material properties of a fiber composite material, and based on the acquired first measurement information and second measurement information, , predicting residual stress in fiber composite materials. This makes it possible to predict the residual stress in the fiber composite material.
予測システムの全体構成を示す図である。FIG. 1 is a diagram showing the overall configuration of a prediction system. 予測装置の概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of a prediction device. X線タルボ・ロー装置の全体概略図である。FIG. 1 is an overall schematic diagram of an X-ray Talbot-Low apparatus. タルボ干渉計の原理を説明する図である。FIG. 2 is a diagram explaining the principle of a Talbot interferometer. 線源格子や第1格子、第2格子の概略平面図である。FIG. 3 is a schematic plan view of a source grating, a first grating, and a second grating. 予測装置の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a prediction device. 予測装置によって出力される情報の表示形態の一例を示す図である。It is a figure which shows an example of the display form of the information output by a prediction device. 予測装置において実行される予測処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the prediction process performed in a prediction device. 学習済みモデルの機械学習方法を示すフローチャートである。3 is a flowchart showing a machine learning method for a trained model.
 以下、添付した図面を参照して、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. In addition, in the description of the drawings, the same elements are given the same reference numerals, and redundant description will be omitted. Furthermore, the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
 <予測システムの構成>
 図1は、予測システムの全体構成を示す図である。
<Prediction system configuration>
FIG. 1 is a diagram showing the overall configuration of a prediction system.
 図1に示すように、予測システムは、例えば、予測装置100、第1測定装置200および第2測定装置300を有する。この予測システムは、繊維複合材料の残留応力を予測する。残留応力は、材料内部に存在する応力である。 As shown in FIG. 1, the prediction system includes, for example, a prediction device 100, a first measurement device 200, and a second measurement device 300. This prediction system predicts residual stress in fiber composite materials. Residual stress is stress that exists within a material.
 繊維複合材料は、例えば宇宙・航空機関係、自動車、船舶、つり竿の他、電気・電子・家電部品、パラボラアンテナ、浴槽、床材、屋根材等を始め、様々な製品等の構成部材として用いられる。繊維複合材料としては、例えば、炭素繊維またはガラス繊維を強化繊維として用いたCFRP(Carbon-Fiber-Reinforced Plastics:炭素繊維強化プラスチック)、CFRTP(Carbon Fiber Reinforced Thermo Plastics:炭素繊維強化熱可塑性プラスチック)およびGFRP(Glass-Fiber-Reinforced Plastics:ガラス繊維強化プラスチック)に代表されるFRP(Fiber-Reinforced Plastics:繊維強化プラスチック)等が挙げられる。特に、CFRTPは、軽量性およびリサイクル性の点で優れている。 Fiber composite materials are used as components of a variety of products, including space and aircraft-related products, automobiles, ships, fishing rods, electrical/electronic/home appliance parts, parabolic antennas, bathtubs, flooring materials, roofing materials, etc. It will be done. Examples of fiber composite materials include CFRP (Carbon-Fiber-Reinforced Plastics) using carbon fiber or glass fiber as reinforcing fibers, and CFRTP (Carbon Fiber Reinforced Thermo Plastics). reinforced thermoplastic) and Examples include FRP (Fiber-Reinforced Plastics) represented by GFRP (Glass-Fiber-Reinforced Plastics). In particular, CFRTP is excellent in terms of lightweight and recyclability.
 繊維複合材料に含まれる樹脂は、例えば、汎用プラスチック、エンジニアリングプラスチックおよびスーパーエンジニアリングプラスチック等のプラスチックであるがこれらに限定されない。例えば、プラスチックには、ポリプロピレン、ポリアミド、ABS、ポリカーボネート樹脂、ナイロン、ポリフェニレンサルファイド(PPS)またはポリアセタール(POM)等が含まれる。繊維複合材料に含まれる繊維は、例えば、炭素繊維、ガラス繊維またはアラミド繊維等である。 The resin contained in the fiber composite material is, for example, plastic such as general-purpose plastic, engineering plastic, and super engineering plastic, but is not limited to these. For example, plastics include polypropylene, polyamide, ABS, polycarbonate resin, nylon, polyphenylene sulfide (PPS), polyacetal (POM), and the like. The fibers included in the fiber composite material are, for example, carbon fibers, glass fibers, or aramid fibers.
 繊維複合材料は、感度調整剤を含んでいてもよい。感度調整剤とは、X線撮影で使われる造影剤のように機能し、繊維複合材料の測定時により高い精度、感度で測定を可能にする試料のことをいう。感度調整剤を含む繊維複合材料を第1測定装置200および第2測定装置300により測定することにより、より高い精度で測定を行うことが可能となる。例えば、第2測定装置300がラマン分光測定装置であるとき、感度調整剤にタングステン酸ジルコニウムを用いると、ラマンシフトが変化し、より高い精度で繊維複合材料の材料特性に関する情報を生成することが可能となる。例えば、第2測定装置300が蛍光顕微鏡であるとき、感度調整剤に蛍光色素を用いると、より高い精度で繊維長に関する情報を生成することが可能となる。 The fiber composite material may contain a sensitivity modifier. A sensitivity adjustment agent refers to a sample that functions like a contrast agent used in X-ray photography and enables measurements of fiber composite materials with higher accuracy and sensitivity. By measuring the fiber composite material containing the sensitivity modifier using the first measuring device 200 and the second measuring device 300, it becomes possible to perform the measurement with higher accuracy. For example, when the second measuring device 300 is a Raman spectrometer, using zirconium tungstate as the sensitivity modifier changes the Raman shift, making it possible to generate information regarding the material properties of the fiber composite material with higher accuracy. It becomes possible. For example, when the second measuring device 300 is a fluorescence microscope, if a fluorescent dye is used as the sensitivity adjusting agent, it becomes possible to generate information regarding the fiber length with higher accuracy.
 繊維複合材料に含まれる感度調整剤は、繊維複合材料の物性への影響が小さいことが好ましい。これにより、第1測定装置200および第2測定装置300により測定された繊維複合材料を、成形品に使用することが可能となる。第1測定装置200および第2測定装置300での測定用に、感度調整剤を含む繊維複合材料の試験片を作成してもよい。 It is preferable that the sensitivity modifier contained in the fiber composite material has a small effect on the physical properties of the fiber composite material. Thereby, the fiber composite material measured by the first measuring device 200 and the second measuring device 300 can be used for molded products. For measurement with the first measuring device 200 and the second measuring device 300, a test piece of a fiber composite material containing a sensitivity modifier may be created.
 (予測装置100)
 予測装置100は、例えばPCやスマートフォン、タブレット端末等のコンピューターであり、本実施形態においては予測装置として機能する。予測装置100は、第1測定装置200および第2測定装置300と接続可能に構成され、各装置との間で各種情報を送受信する。
(Prediction device 100)
The prediction device 100 is a computer such as a PC, a smartphone, or a tablet terminal, and functions as a prediction device in this embodiment. The prediction device 100 is configured to be connectable to the first measurement device 200 and the second measurement device 300, and transmits and receives various information to and from each device.
 図2は、情報処理装置の概略構成を示すブロック図である。 FIG. 2 is a block diagram showing a schematic configuration of the information processing device.
 図2に示すように、予測装置100は、CPU(Central Processing Unit)110、ROM(Read Only Memory)120、RAM(Random Access Memory)130、ストレージ140、通信インターフェース150、表示部160、および操作受付部170を有する。各構成は、バスを介して相互に通信可能に接続されている。 As shown in FIG. 2, the prediction device 100 includes a CPU (Central Processing Unit) 110, a ROM (Read Only Memory) 120, a RAM (Random Access Memory) 130, a storage 140, and a communication interface 150. , display section 160, and operation reception 170. Each configuration is communicably connected to each other via a bus.
 CPU110は、ROM120やストレージ140に記録されているプログラムにしたがって、上記各構成の制御や各種の演算処理を行う。 The CPU 110 controls each of the above components and performs various calculation processes according to programs recorded in the ROM 120 and the storage 140.
 ROM120は、各種プログラムや各種データを格納する。 The ROM 120 stores various programs and various data.
 RAM130は、作業領域として一時的にプログラムやデータを記憶する。 The RAM 130 temporarily stores programs and data as a work area.
 ストレージ140は、オペレーティングシステムを含む各種プログラムや、各種データを格納する。例えば、ストレージ140には、学習済みの識別器を用いて、繊維複合材料の残留応力を予測するためのアプリケーションがインストールされている。また、ストレージ140には、第1測定装置200および第2測定装置300から取得された第1測定情報および第2測定情報が記憶されてもよい。また、ストレージ140には、識別器として用いられる学習済みモデルや、機械学習に用いられる教師データが記憶されてもよい。 The storage 140 stores various programs including an operating system and various data. For example, the storage 140 is installed with an application for predicting residual stress in a fiber composite material using a learned discriminator. Moreover, the first measurement information and the second measurement information acquired from the first measurement device 200 and the second measurement device 300 may be stored in the storage 140. Furthermore, the storage 140 may store trained models used as classifiers and teacher data used for machine learning.
 通信インターフェース150は、他の装置と通信するためのインターフェースである。通信インターフェース150としては、有線または無線の各種規格による通信インターフェースが用いられる。通信インターフェース150は、例えば、第1測定装置200および第2測定装置300から第1測定情報および第2測定情報を受信したり、保存のために予測結果をサーバー等に送信したりする際に用いられる。 The communication interface 150 is an interface for communicating with other devices. As the communication interface 150, a wired or wireless communication interface according to various standards is used. The communication interface 150 is used, for example, to receive first measurement information and second measurement information from the first measurement device 200 and the second measurement device 300, and to send prediction results to a server or the like for storage. It will be done.
 表示部160は、LCD(液晶ディスプレイ)や有機ELディスプレイ等を備え、各種情報を表示する。表示部160は、ビューワーソフトまたはプリンター等により構成されていてもよい。本実施形態において、表示部160は、出力部として機能する。 The display unit 160 includes an LCD (liquid crystal display), an organic EL display, etc., and displays various information. The display unit 160 may be configured by viewer software, a printer, or the like. In this embodiment, the display section 160 functions as an output section.
 操作受付部170は、タッチセンサーや、マウス等のポインティングデバイス、キーボード等を備え、ユーザーの各種操作を受け付ける。なお、表示部160および操作受付部170は、表示部160としての表示面に、操作受付部170としてのタッチセンサーを重畳することによって、タッチパネルを構成してもよい。 The operation reception unit 170 includes a touch sensor, a pointing device such as a mouse, a keyboard, etc., and accepts various operations from the user. Note that the display section 160 and the operation reception section 170 may constitute a touch panel by superimposing a touch sensor as the operation reception section 170 on a display surface as the display section 160.
 (第1測定装置200)
 第1測定装置200は、繊維複合材料の材料特性を測定して第1測定情報を取得するための装置である。ここで、材料特性とは、繊維複合材料の化学的特性および物理的特性であり、たとえば、音響特性、原子特性、電気的特性、磁気的特性、機械的特性、光学的特性、放射線特性および熱特性等である。第1測定情報は、繊維複合材料の繊維配向に関する情報を含むことが好ましい。繊維配向は、残留応力に影響を及ぼしている可能性が高いためである。
(First measuring device 200)
The first measurement device 200 is a device for measuring material properties of a fiber composite material and acquiring first measurement information. Here, material properties are chemical and physical properties of fiber composite materials, such as acoustic properties, atomic properties, electrical properties, magnetic properties, mechanical properties, optical properties, radiation properties and thermal properties. Characteristics, etc. Preferably, the first measurement information includes information regarding fiber orientation of the fiber composite material. This is because fiber orientation is highly likely to affect residual stress.
 第1測定装置200は、X線タルボ・ロー装置またはX線CT(Computed Tomography)測定装置であることが好ましい。このような第1測定装置200では、繊維配向に関する情報を含む第1測定情報を生成することができるためである。特に、第1測定装置200は、X線タルボ・ロー装置であることが好ましい。X線タルボ・ロー装置では、短時間に、かつ、広範囲にわたる繊維複合材料の情報を取得することが可能となる。第1測定装置200は、透過型X線装置またはX線回折装置であってもよい。 The first measurement device 200 is preferably an X-ray Talbot-Low device or an X-ray CT (Computed Tomography) measurement device. This is because such a first measurement device 200 can generate first measurement information including information regarding fiber orientation. In particular, the first measuring device 200 is preferably an X-ray Talbot-Low device. The X-ray Talbot-Low apparatus makes it possible to obtain information on a wide range of fiber composite materials in a short time. The first measuring device 200 may be a transmission type X-ray device or an X-ray diffraction device.
 X線タルボ・ロー装置は、例えば、線源格子(後述の図3の線源格子12、マルチ格子やマルチスリット、G0格子等ともいう。)を含むタルボ・ロー干渉計を用いたものである。X線タルボ・ロー装置は、線源格子を有していなくてもよく、例えば、第1格子(後述の図3の第1格子14、G1格子ともいう。)および第2格子(後述の図3の第2格子15、G2格子ともいう。)のみを含むタルボ干渉計を用いたものであってもよい。 The X-ray Talbot-Lau apparatus uses, for example, a Talbot-Lau interferometer that includes a source grating (the source grating 12 in FIG. 3, which will be described later, is also referred to as a multi-grating, multi-slit, G0 grating, etc.). . The X-ray Talbot-Lau apparatus does not need to have a source grating, for example, a first grating (first grating 14 in FIG. 3 described later, also referred to as G1 grating) and a second grating (described later in FIG. A Talbot interferometer including only the second grating 15 (also referred to as G2 grating) may be used.
 図3は、X線タルボ・ロー装置1の構成の一例を表す図である。X線タルボ・ロー装置1は、X線発生装置11と、上記した線源格子12と、被写体台13と、上記した第1格子14と、上記した第2格子15と、X線検出器16と、支柱17と、基台部18と、を含んでいる。 FIG. 3 is a diagram showing an example of the configuration of the X-ray Talbot-Low apparatus 1. The X-ray Talbot-Lau apparatus 1 includes an X-ray generator 11, the above-described source grating 12, an object stage 13, the above-described first grating 14, the above-described second grating 15, and an X-ray detector 16. , a support 17 , and a base portion 18 .
 このようなX線タルボ・ロー装置1によれば、被写体台13に対して所定位置にある繊維複合材料Hのモアレ画像Mo(図4)を縞走査法の原理に基づく方法で撮影したり、モアレ画像Moをフーリエ変換法で解析したりすることで、少なくとも3種類の画像(二次元画像)を再構成することができる(再構成画像という)。すなわち、モアレ画像Moにおけるモアレ縞の平均成分を画像化した吸収画像(通常のX線の吸収画像と同じ)と、モアレ縞の位相情報を画像化した微分位相画像と、モアレ縞のVisibility(鮮明度)を画像化した小角散乱画像の3種類の画像である。なお、これらの3種類の再構成画像を再合成する等してさらに多くの種類の画像を生成することもできる。 According to such an X-ray Talbot-Lau apparatus 1, a moiré image Mo (FIG. 4) of the fiber composite material H located at a predetermined position with respect to the object stage 13 is photographed by a method based on the principle of the fringe scanning method, By analyzing the moire image Mo using a Fourier transform method, at least three types of images (two-dimensional images) can be reconstructed (referred to as reconstructed images). That is, an absorption image (same as a normal X-ray absorption image) that visualizes the average component of the moire fringe in the moire image Mo, a differential phase image that visualizes the phase information of the moire fringe, and a These are three types of small-angle scattering images. Note that it is also possible to generate more types of images by recombining these three types of reconstructed images.
 なお、縞走査法とは、複数の格子のうちのひとつを格子のスリット周期の1/M(Mは正の整数、吸収画像はM>2、微分位相画像と小角散乱画像はM>3)ずつスリット周期方向に移動させてM回撮影したモアレ画像Moを用いて再構成を行い、高精細の再構成画像を得る方法である。 In addition, the fringe scanning method means that one of multiple gratings is 1/M of the slit period of the grating (M is a positive integer, M>2 for absorption images, M>3 for differential phase images and small-angle scattering images). In this method, reconstruction is performed using a moiré image Mo taken M times by moving each moiré image Mo in the slit period direction to obtain a high-definition reconstructed image.
 また、フーリエ変換法とは、繊維複合材料Hが存在する状態で、X線タルボ・ロー装置1でモアレ画像Moを1枚撮影し、画像処理において、そのモアレ画像Moをフーリエ変換する等して微分位相画像等の画像を再構成して生成する方法である。 Furthermore, the Fourier transform method is a method in which one moire image Mo is photographed using the X-ray Talbot-Lau apparatus 1 in the presence of the fiber composite material H, and the moire image Mo is subjected to Fourier transform in image processing. This is a method of reconstructing and generating images such as differential phase images.
 ここで、まず、タルボ干渉計やタルボ・ロー干渉計に共通する原理について、図4を用いて説明する。 Here, first, the principle common to Talbot interferometers and Talbot-Lau interferometers will be explained using FIG. 4.
 なお、図4では、タルボ干渉計の場合が示されているが、タルボ・ロー干渉計の場合も基本的に同様に説明される。また、図4におけるz方向が図3のX線タルボ・ロー装置1における鉛直方向に対応し、図4におけるx、y方向が図3のX線タルボ・ロー装置1における水平方向(前後、左右方向)に対応する。 Although FIG. 4 shows the case of a Talbot interferometer, the explanation is basically the same for the case of a Talbot-Lau interferometer. Furthermore, the z direction in FIG. 4 corresponds to the vertical direction in the X-ray Talbot-Low apparatus 1 in FIG. 3, and the x and y directions in FIG. direction).
 また、図5に示すように、第1格子14や第2格子15には(タルボ・ロー干渉計の場合は線源格子12にも)、X線の照射方向であるz方向と直交するx方向に、所定の周期dで複数のスリットSが配列されて形成されている。このようなスリットSの配列は一次元格子とされており、x方向及びy方向にスリットSが配列されて形成されたものは二次元格子とされている。 In addition, as shown in FIG. 5, the first grating 14 and the second grating 15 (also the source grating 12 in the case of Talbot-Lau interferometer) have an A plurality of slits S are arranged and formed at a predetermined period d in the direction. This arrangement of slits S is a one-dimensional lattice, and the arrangement of slits S in the x and y directions is a two-dimensional lattice.
 線源格子12、第1格子14、第2格子15は、例えば、一次元格子により構成されているが、二次元格子により構成されていてもよい。 The source grating 12, the first grating 14, and the second grating 15 are, for example, composed of one-dimensional gratings, but may also be composed of two-dimensional gratings.
 図4に示すように、X線源11aから照射されたX線(タルボ・ロー干渉計の場合はX線源11aから照射されたX線が線源格子12(図4では図示省略)で多光源化されたX線)が第1格子14を透過すると、透過したX線がz方向に一定の間隔で像を結ぶ。この像を自己像(格子像等ともいう。)といい、このように自己像がz方向に一定の間隔をお
いて形成される現象をタルボ効果という。
As shown in FIG. 4, the X-rays irradiated from the X-ray source 11a (in the case of the Talbot-Lau interferometer, the X-rays irradiated from the X-ray source 11a are multiplied by the source grating 12 (not shown in FIG. 4). When the X-rays (which have been converted into a light source) pass through the first grating 14, the transmitted X-rays form images at regular intervals in the z direction. This image is called a self-image (also called a lattice image, etc.), and the phenomenon in which self-images are formed at regular intervals in the z direction is called the Talbot effect.
 すなわち、タルボ効果とは、図5に示すように一定の周期dでスリットSが設けられた第1格子14を可干渉性(コヒーレント)の光が透過すると、上記のように光の進行方向に一定の間隔でその自己像を結ぶ現象をいう。 In other words, the Talbot effect means that when coherent light passes through the first grating 14 in which slits S are provided at a constant period d as shown in FIG. It refers to the phenomenon of forming one's self-image at regular intervals.
 そして、図4に示すように、第1格子14の自己像が像を結ぶ位置に、第1格子14と同様にスリットSが設けられた第2格子15を配置する。その際、第2格子15のスリットSの延在方向(すなわち図4ではx軸方向)が、第1格子14のスリットSの延在方向に対して略平行になるように配置すると、第2格子15上でモアレ画像Moが得られる。 Then, as shown in FIG. 4, a second grating 15 provided with slits S like the first grating 14 is placed at a position where the self-image of the first grating 14 focuses. At that time, if the extending direction of the slits S of the second grating 15 (that is, the x-axis direction in FIG. 4) is arranged to be approximately parallel to the extending direction of the slit S of the first grating 14, the second A moire image Mo is obtained on the grid 15.
 なお、図4では、モアレ画像Moを第2格子15上に記載するとモアレ縞とスリットSとが混在する状態になって分かりにくくなるため、モアレ画像Moを第2格子15から離して記載している。しかし、実際には第2格子15上およびその下流側でモアレ画像Moが形成される。そして、このモアレ画像Moが、第2格子15の直下に配置されるX線検出器16で撮影される。 In addition, in FIG. 4, if the moire image Mo is written on the second lattice 15, the moire fringes and slits S will be mixed and it will be difficult to understand, so the moire image Mo is shown separated from the second lattice 15. There is. However, in reality, the moire image Mo is formed on the second grating 15 and on the downstream side thereof. This moire image Mo is then photographed by an X-ray detector 16 placed directly below the second grating 15.
 また、図3および図4に示すように、X線源11aと第1格子14との間に繊維複合材料Hが存在すると、繊維複合材料HによってX線の位相がずれるため、モアレ画像Moのモアレ縞が繊維複合材料Hの辺縁を境界に乱れる。一方、図示を省略するが、X線源11aと第1格子14との間に繊維複合材料Hが存在しなければ、モアレ縞のみのモアレ画像Moが現れる。以上がタルボ干渉計やタルボ・ロー干渉計の原理である。 Furthermore, as shown in FIGS. 3 and 4, when the fiber composite material H exists between the X-ray source 11a and the first grating 14, the phase of the X-rays is shifted by the fiber composite material H, so that the moire image Mo is Moiré fringes are disturbed along the edges of the fiber composite material H. On the other hand, although not shown, if the fiber composite material H does not exist between the X-ray source 11a and the first grating 14, a moire image Mo consisting of only moire fringes will appear. The above is the principle of Talbot interferometer and Talbot-Lau interferometer.
 この原理に基づいて、X線タルボ・ロー装置1は、例えば図3に示すように、第2のカバーユニット180内で、第1格子14の自己像が像を結ぶ位置に第2格子15が配置されるようになっている。また、前述したように、第2格子15とX線検出器16とを離すとモアレ画像Mo(図4参照)がぼやけるため、X線検出器16は第2格子15の直下に配置されることが好ましい。また、第2格子15をシンチレーターやアモルファスセレンなどの発光材料で構成し、第2格子15とX線検出器16とを一体化させてもよい。 Based on this principle, the X-ray Talbot-Lau apparatus 1 has a second grating 15 in the second cover unit 180 at a position where the self-image of the first grating 14 focuses, as shown in FIG. 3, for example. It is set to be placed. Furthermore, as described above, if the second grating 15 and the X-ray detector 16 are separated, the moire image Mo (see FIG. 4) will become blurred, so the X-ray detector 16 should be placed directly below the second grating 15. is preferred. Alternatively, the second grating 15 may be made of a light emitting material such as a scintillator or amorphous selenium, and the second grating 15 and the X-ray detector 16 may be integrated.
 なお、第2のカバーユニット180は、人や物が第1格子14や第2格子15、X線検出器16等にぶつかったり触れたりしないようにして、X線検出器16等を防護するために設けられている。 The second cover unit 180 is used to protect the X-ray detector 16, etc. by preventing people or objects from colliding with or touching the first grating 14, the second grating 15, the X-ray detector 16, etc. It is set in.
 図示を省略するが、X線検出器16は、照射されたX線に応じて電気信号を生成する変換素子が二次元状(マトリクス状)に配置され、変換素子により生成された電気信号を画像信号として読み取るように構成されている。X線検出器16は、例えば、第2格子15上に形成されるX線の像である上記のモアレ画像Moを変換素子ごとの画像信号として撮影するようになっている。X線検出器16の画素サイズは10~300(μm)であり、さらに好ましくは50~200(μm)である。 Although not shown, in the X-ray detector 16, conversion elements that generate electrical signals according to irradiated X-rays are arranged in a two-dimensional form (matrix form), and the electrical signals generated by the conversion elements are converted into images. It is configured to be read as a signal. The X-ray detector 16 is configured to capture, for example, the moire image Mo, which is an X-ray image formed on the second grating 15, as an image signal for each conversion element. The pixel size of the X-ray detector 16 is 10 to 300 (μm), more preferably 50 to 200 (μm).
 X線検出器16としては、FPD(Flat Panel Detector)を用いることができる。FPDには、検出されたX線を光電変換素子を介して電気信号に変換する間接変換型、検出されたX線を直接的に電気信号に変換する直接変換型があるが、何れを用いてもよい。 As the X-ray detector 16, an FPD (Flat Panel Detector) can be used. There are two types of FPDs: an indirect conversion type that converts detected X-rays into electrical signals via a photoelectric conversion element, and a direct conversion type that converts detected X-rays directly into electrical signals. Good too.
 間接変換型は、CsIやGd2O2S等のシンチレータプレートの下に、光電変換素子がTFT(薄膜トランジスタ)とともに2次元状に配置されて各画素を構成する。X線検出器16に入射したX線がシンチレータプレートに吸収されると、シンチレータプレートが発光する。この発光した光により、各光電変換素子に電荷が蓄積され、蓄積された電荷は画像信号として読み出される。 In the indirect conversion type, a photoelectric conversion element is arranged two-dimensionally with a TFT (thin film transistor) under a scintillator plate such as CsI or Gd2O2S to form each pixel. When the X-rays incident on the X-ray detector 16 are absorbed by the scintillator plate, the scintillator plate emits light. This emitted light causes charge to be accumulated in each photoelectric conversion element, and the accumulated charge is read out as an image signal.
 直接変換型は、アモルファスセレンの熱蒸着により、100~1000(μm)の膜圧のアモルファスセレン膜がガラス上に形成され、2次元状に配置されたTFTのアレイ上にアモルファスセレン膜と電極が蒸着される。アモルファスセレン膜がX線を吸収するとき、電子正孔対の形で物質内に電圧が遊離され、電極間の電圧信号がTFTにより読み取られる。なお、CCD(Charge Coupled Device)、X線カメラ等の撮影手段をX線検出器16として用いてもよい。 In the direct conversion type, an amorphous selenium film with a film thickness of 100 to 1000 (μm) is formed on glass by thermal evaporation of amorphous selenium, and the amorphous selenium film and electrodes are placed on a two-dimensional array of TFTs. Deposited. When the amorphous selenium film absorbs X-rays, a voltage is liberated within the material in the form of electron-hole pairs, and the voltage signal between the electrodes is read by the TFT. Note that an imaging means such as a CCD (Charge Coupled Device) or an X-ray camera may be used as the X-ray detector 16.
 X線タルボ・ロー装置1は、例えば、いわゆる縞走査法を用いてモアレ画像Moを複数枚撮影するようになっている。すなわち、このX線タルボ・ロー装置1では、第1格子14と第2格子15との相対位置を図3~図5におけるx軸方向(すなわちスリットSの延在方向(y軸方向)に直交する方向)にずらしながらモアレ画像Moを複数枚撮影する。 The X-ray Talbot-Lau apparatus 1 is configured to take a plurality of moiré images Mo using, for example, a so-called fringe scanning method. That is, in this X-ray Talbot-Lau apparatus 1, the relative positions of the first grating 14 and the second grating 15 are set in the x-axis direction (that is, perpendicular to the extending direction (y-axis direction) of the slit S) in FIGS. A plurality of moiré images Mo are photographed while shifting the moiré images Mo in the direction of
 X線タルボ・ロー装置1は、例えば、撮影された複数枚分のモアレ画像Moに基づいて、吸収画像、微分位相画像および小角散乱画像等を再構成(すなわち、画像再構成)するようになっている。再構成の処理は、予測装置100により行われてもよい。 For example, the X-ray Talbot-Lau apparatus 1 reconstructs (that is, image reconstruction) an absorption image, a differential phase image, a small-angle scattering image, etc. based on a plurality of captured moiré images Mo. ing. The reconstruction process may be performed by the prediction device 100.
 X線タルボ・ロー装置1は、例えば、縞走査法によりモアレ画像Moを複数枚撮影するために、第1格子14をx軸方向に所定量ずつ移動させることが可能となっている。なお、第1格子14を移動させる代わりに第2格子15を移動させたり、或いは両方とも移動させたりするように構成することも可能である。 The X-ray Talbot-Lau apparatus 1 is capable of moving the first grating 14 by a predetermined amount in the x-axis direction, for example, in order to capture a plurality of moiré images Mo using the fringe scanning method. Note that it is also possible to move the second grating 15 instead of moving the first grating 14, or to move both of them.
 また、X線タルボ・ロー装置1で、第1格子14と第2格子15との相対位置を固定したままモアレ画像Moを1枚だけ撮影し、他の装置(例えば、画像処理装置または予測装置100)における画像処理で、このモアレ画像Moをフーリエ変換法等を用いて解析する等して吸収画像や微分位相画像等を再構成するように構成することも可能である。 Further, the X-ray Talbot-Lau apparatus 1 captures only one moire image Mo while fixing the relative positions of the first grating 14 and the second grating 15, and other apparatuses (for example, an image processing apparatus or a prediction apparatus) In the image processing in 100), it is also possible to reconstruct an absorption image, a differential phase image, etc. by analyzing this moiré image Mo using a Fourier transform method or the like.
 X線タルボ・ロー装置1における他の部分の構成について説明する。このX線タルボ・ロー装置1は、いわゆる縦型であり、X線発生装置11、線源格子12、被写体台13、第1格子14、第2格子15、X線検出器16が、この順序に重力方向であるz方向に配置されている。すなわち、ここでは、z方向が、X線発生装置11からのX線の照射方向ということになる。 The configuration of other parts of the X-ray Talbot-Lau apparatus 1 will be explained. This X-ray Talbot-Lau apparatus 1 is of a so-called vertical type, and includes an X-ray generator 11, a source grating 12, an object stage 13, a first grating 14, a second grating 15, and an X-ray detector 16 in this order. is placed in the z direction, which is the direction of gravity. That is, here, the z direction is the irradiation direction of the X-rays from the X-ray generator 11.
 X線発生装置11は、X線源11aとして、例えば医療現場で広く一般に用いられているクーリッジX線源や回転陽極X線源等を備えている。また、それ以外のX線源を用いることも可能である。X線発生装置11は、例えば、焦点からX線をコーンビーム状に照射するようになっている。つまり、図3に示すように、z方向と一致するX線照射軸Caを中心軸としてX線発生装置11から離れるほどX線が広がるように照射される(すなわち、X線照射範囲)。 The X-ray generator 11 includes, as an X-ray source 11a, a Coolidge X-ray source, a rotating anode X-ray source, etc., which are widely used in medical settings, for example. It is also possible to use other X-ray sources. The X-ray generator 11 is configured, for example, to emit X-rays from a focal point in the form of a cone beam. That is, as shown in FIG. 3, X-rays are irradiated with the X-ray irradiation axis Ca coinciding with the z direction as the central axis, and the X-rays are irradiated so as to spread further away from the X-ray generator 11 (that is, the X-ray irradiation range).
 X線タルボ・ロー装置1では、例えば、X線発生装置11の下方に線源格子12が設けられている。X線源11aの陽極の回転等により生じるX線発生装置11の振動が線源格子12に伝わらないようにするために、線源格子12は、X線発生装置11には取り付けられず、支柱17に設けられた基台部18に取り付けられた固定部材12aに取り付けられていることが好ましい。 In the X-ray Talbot-Lau apparatus 1, for example, a source grating 12 is provided below the X-ray generator 11. In order to prevent vibrations of the X-ray generator 11 caused by rotation of the anode of the X-ray source 11a from being transmitted to the source grating 12, the source grating 12 is not attached to the X-ray generator 11 and is attached to a support. It is preferable to attach it to a fixing member 12a attached to a base part 18 provided at 17.
 X線タルボ・ロー装置1では、X線発生装置11の振動が支柱17等のX線タルボ・ロー装置1の他の部分に伝播しないようにするために(あるいは伝播する振動をより小さくするために)、例えば、X線発生装置11と支柱17との間に緩衝部材17aが設けられ
ている。
In the X-ray Talbot-Low apparatus 1, in order to prevent the vibrations of the X-ray generator 11 from propagating to other parts of the X-ray Talbot-Low apparatus 1, such as the column 17 (or to reduce the propagated vibrations), ), for example, a buffer member 17a is provided between the X-ray generator 11 and the support column 17.
 上記の固定部材12aには、線源格子12のほか、例えば、線源格子12を透過したX線の線質を変えるためのろ過フィルター(付加フィルターともいう。)192、照射されるX線の照射野を絞るための照射野絞り193、およびX線を照射する前にX線の代わりに可視光を被写体に照射して位置合わせを行うための照射野ランプ194等が取り付けられている。 In addition to the source grating 12, the fixed member 12a includes, for example, a filtration filter (also referred to as an additional filter) 192 for changing the quality of the X-rays transmitted through the source grating 12, and a filter for changing the quality of the X-rays transmitted through the source grating 12. An irradiation field aperture 193 for narrowing down the irradiation field, and an irradiation field lamp 194 for irradiating the subject with visible light instead of X-rays to perform positioning before irradiating the X-rays are attached.
 なお、線源格子12とろ過フィルター192と照射野絞り193とは、必ずしもこの順番に設けられる必要はない。線源格子12等の周囲には、それらを保護するための第1のカバーユニット190が配置されている。 Note that the source grating 12, filter filter 192, and irradiation field aperture 193 do not necessarily need to be provided in this order. A first cover unit 190 is arranged around the source grating 12 and the like to protect them.
 被写体台13は、繊維複合材料Hが載置される台であるが、繊維複合材料Hをz軸回りに回転させる回転ステージとして機能することができる。先述した縞走査法を用いてモアレ画像Moを複数枚撮影する場合、被写体台13を異なる角度に回転させつつ、モアレ画像Moを複数枚撮影することができる。 The subject table 13 is a table on which the fiber composite material H is placed, and can function as a rotation stage that rotates the fiber composite material H around the z-axis. When capturing a plurality of moire images Mo using the fringe scanning method described above, it is possible to capture a plurality of moire images Mo while rotating the subject stage 13 at different angles.
 コントローラ19(図3参照)は、本実施形態では、図示しないCPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)、入出力インターフェース等がバスに接続されたコンピューターで構成されている。なお、コントローラ19を、本実施形態のような汎用のコンピューターではなく、専用の制御装置として構成することも可能である。また、コントローラ19には、図示はしないが、操作部を含む入力手段や出力手段、記憶手段、通信手段等の適宜の手段や装置が設けられている。出力手段には、X線タルボ・ロー装置1の各種操作を行うために必要な情報や、生成された再構成画像を表示する表示部(図示省略)が含まれている。 In this embodiment, the controller 19 (see FIG. 3) is composed of a computer in which a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input/output interface, etc. (not shown) are connected to a bus. has been done. Note that it is also possible to configure the controller 19 as a dedicated control device instead of a general-purpose computer as in this embodiment. Further, although not shown, the controller 19 is provided with appropriate means and devices such as an input means including an operation section, an output means, a storage means, and a communication means. The output means includes a display unit (not shown) that displays information necessary for performing various operations of the X-ray Talbot-Lau apparatus 1 and generated reconstructed images.
 コントローラ19は、X線タルボ・ロー装置1に対する全般的な制御を行うようになっている。すなわち、例えば、コントローラ19は、X線発生装置11に接続されており、X線源11aに管電圧や管電流、照射時間等を設定することができるようになっている。また、例えば、コントローラ19が、X線検出器16と外部の装置(例えば、予測装置100)等との信号やデータの送受信を中継するように構成することも可能である。予測装置100が、コントローラ19として機能してもよい。 The controller 19 is designed to perform general control over the X-ray Talbot-Low apparatus 1. That is, for example, the controller 19 is connected to the X-ray generator 11, and can set the tube voltage, tube current, irradiation time, etc. for the X-ray source 11a. Further, for example, it is also possible to configure the controller 19 to relay transmission and reception of signals and data between the X-ray detector 16 and an external device (for example, the prediction device 100). The prediction device 100 may function as the controller 19.
 X線タルボ・ロー装置1は、配向撮影を行って配向画像(後述のamp画像、ave画像、pha画像)を生成してもよい。配向撮影は、回転ステージとして機能する被写体台13を回転させることによって、格子とサンプル(繊維複合材料H)との相対的な角度を変えた撮影をいう。配向撮影により、画素ごとに最も信号値が強くなる方向を演算処理で求めることができる。以下、配向撮影について説明する。 The X-ray Talbot-Lau apparatus 1 may perform orientation imaging to generate orientation images (amp images, ave images, and pha images, which will be described later). Oriented photography refers to photography in which the relative angle between the grating and the sample (fiber composite material H) is changed by rotating the subject table 13 that functions as a rotation stage. By oriented imaging, the direction in which the signal value is strongest for each pixel can be determined through calculation processing. Orientation photography will be explained below.
 まず、サンプルと格子の相対角度を変えて撮影する。相対角度は、最低3種類以上用意する(例:0°、60°、120°)。例えば、装置側を固定してサンプルを回転させて所望の相対角度を実現してもよいし、サンプルを固定して装置側を回転させてもよい。以下では、2次元撮影を例に説明するが、3次元撮影に拡張することもできる。 First, images are taken while changing the relative angle between the sample and the grid. Prepare at least three types of relative angles (eg, 0°, 60°, 120°). For example, a desired relative angle may be achieved by fixing the device and rotating the sample, or by fixing the sample and rotating the device. In the following, two-dimensional imaging will be explained as an example, but it can also be extended to three-dimensional imaging.
 次に、用意した相対角度ごとに、吸収画像、微分位相画像または小角散乱画像を取得する。以降では、小角散乱画像、または、吸収画像で除算した小角散乱画像を用いる。吸収画像で除算した小角散乱画像は、凹凸のあるサンプルの場合に厚み依存性をキャンセルした画像といえる。説明の便宜上、両者を併せて「小角散乱画像」と呼ぶことにする。 Next, an absorption image, differential phase image, or small-angle scattering image is acquired for each prepared relative angle. Hereinafter, a small-angle scattering image or a small-angle scattering image divided by an absorption image will be used. The small-angle scattering image divided by the absorption image can be said to be an image in which thickness dependence is canceled in the case of a sample with unevenness. For convenience of explanation, both will be collectively referred to as a "small-angle scattering image."
 次に、用意した相対角度ごとの(3枚以上の)小角散乱画像の位置合わせをする。ここでは、サンプルが回転しているため、各画像を所定角度に戻す作業がなされる。 Next, align the prepared small-angle scattering images (three or more) for each relative angle. Here, since the sample is rotated, each image is returned to a predetermined angle.
 最後に、画素ごとに、正弦波でフィッティングを行い、フィッティングパラメータを抽出する。正弦波のグラフは、横軸をサンプルと格子の相対角度とし、縦軸をある画素の小角散乱信号値とするグラフである。フィッティングパラメータとして、正弦波の振幅、平均、位相が得られる。画素ごとの振幅値を表す画像を「amp画像」、画素ごとの平均値を示す画像を「ave画像」、画素ごとの位相を示す画像を「pha画像」と呼ぶことにする。amp画像、ave画像、pha画像をまとめて「配向画像」と呼ぶ。フィッティングの方法は正弦波に限定されず、例えば最も強度の大きな角度(位相)をθ、最も大きな強度をa、最も低い強度をbとした楕円を、位置r(θ)として極座標表示した以下の式(1)にフィッティングさせてもよい。この場合、正弦波フィッティングの際の呼称に対応して、画素ごとの振幅に相当する値(a-b)/2の画像を「amp画像」、画素ごとの平均値に相当する値(a+b)/2示す画像を「ave画像」、画素ごとのθを示す画像を「pha画像」としてもよい。単純に画素毎に、信号強度の長軸a、短軸b、位相θを割り当てて配向画像としてもよい。 Finally, fitting is performed using a sine wave for each pixel, and fitting parameters are extracted. A sine wave graph is a graph in which the horizontal axis represents the relative angle between the sample and the grating, and the vertical axis represents the small-angle scattering signal value of a certain pixel. The amplitude, average, and phase of the sine wave are obtained as fitting parameters. An image showing the amplitude value of each pixel will be called an "amp image," an image showing the average value of each pixel will be called an "ave image," and an image showing the phase of each pixel will be called a "pha image." The amp image, ave image, and pha image are collectively referred to as an "orientation image." The fitting method is not limited to sine waves; for example, an ellipse with the angle (phase) of the largest intensity as θ 0 , the largest intensity as a, and the lowest intensity as b is expressed in polar coordinates as the position r(θ). It is also possible to fit the equation (1). In this case, an image with a value (ab)/2 corresponding to the amplitude of each pixel is an "amp image", and a value corresponding to the average value of each pixel (a+b) corresponds to the name used in sine wave fitting. An image showing /2 may be called an "ave image", and an image showing θ 0 for each pixel may be called a "pha image". The orientation image may be created by simply assigning the major axis a, the minor axis b, and the phase θ 0 of the signal intensity to each pixel.
 このようなX線タルボ・ロー装置1は、繊維複合材料Hの繊維配向に関する情報を含むタルボ画像を生成する。即ち、X線タルボ・ロー装置1により生成される第1測定情報は、タルボ画像に関する情報である。タルボ画像は、X線タルボ・ロー装置1が繊維複合材料Hを撮影し、上記タルボ効果によって生成される画像である。上記配向画像などの画像処理が施された画像もタルボ画像に含まれる。モアレ画像Moから再構成した再構成画像もタルボ画像に含まれる。 Such an X-ray Talbot-Lau apparatus 1 generates a Talbot image containing information regarding the fiber orientation of the fiber composite material H. That is, the first measurement information generated by the X-ray Talbot-Lau apparatus 1 is information regarding the Talbot image. The Talbot image is an image generated by the Talbot effect described above when the fiber composite material H is photographed by the X-ray Talbot-Lau apparatus 1. Images that have been subjected to image processing, such as the orientation image described above, are also included in the Talbot image. A reconstructed image reconstructed from the moire image Mo is also included in the Talbot image.
 (第2測定装置300)
 第2測定装置300は、繊維複合材料の材料特性を測定して第2測定情報を生成するための装置である。この第2測定装置300は、第1測定装置200とは異なっている。第2測定情報は、繊維複合材料の樹脂種、分子配向、結晶化度、比容積、繊維量、繊維と樹脂との相互作用および繊維の長さの少なくともいずれかに関する情報を含むことが好ましい。維強化樹脂の樹脂種、分子配向、結晶化度、比容積、繊維量、繊維と樹脂との相互作用、繊維種、繊維径、および繊維の長さは、残留応力に影響を及ぼしている可能性が高いためである。
(Second measuring device 300)
The second measurement device 300 is a device for measuring the material properties of the fiber composite material and generating second measurement information. This second measuring device 300 is different from the first measuring device 200. The second measurement information preferably includes information regarding at least one of the resin species, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fibers and resin, and fiber length of the fiber composite material. Resin type, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fiber and resin, fiber type, fiber diameter, and fiber length of fiber-reinforced resin may influence residual stress. This is because it has a high level of quality.
 第2測定装置300は、赤外分光測定装置、インピーダンス分光測定装置、テラヘルツ波分光測定装置、超音波測定装置、ラマン分光測定装置、X線回折装置または蛍光顕微鏡であることが好ましい。このような第2測定装置300は、繊維複合材料の樹脂種、分子配向、結晶化度、比容積、繊維量、繊維と樹脂との相互作用または繊維の長さに関する情報を含む第2測定情報を生成することができるためである。 The second measurement device 300 is preferably an infrared spectrometer, an impedance spectrometer, a terahertz wave spectrometer, an ultrasonic measurement device, a Raman spectrometer, an X-ray diffraction device, or a fluorescence microscope. Such a second measurement device 300 is capable of obtaining second measurement information including information regarding the resin type, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fibers and resin, or fiber length of the fiber composite material. This is because it can generate .
 例えば、赤外分光測定装置を用いて繊維複合材料の材料特性を測定することにより、樹脂種、樹脂種による結晶化度および比容積等に関する情報を含む第2測定情報を生成することができる。テラヘルツ波分光測定装置を用いて繊維複合材料の材料特性を測定することにより、繊維と樹脂との相互作用および結晶化度等に関する情報を含む第2測定情報を生成することができる。超音波測定装置を用いて繊維複合材料の材料特性を測定することにより、比容積、繊維量および樹脂種等に関する情報を含む第2測定情報を生成することができる。インピーダンス分光測定装置を用いて繊維複合材料の材料特性を測定することにより、繊維量および繊維と樹脂との相互作用等に関する情報を含む第2測定情報を生成することができる。X線回折装置を用いて繊維複合材料の材料特性を測定することにより、結晶化度等に関する情報を含む第2測定情報を生成することができる。また、X線回折装置を用いることにより、結晶化度から樹脂種の分析も可能となる。 For example, by measuring the material properties of the fiber composite material using an infrared spectrometer, it is possible to generate second measurement information including information regarding the resin type, the degree of crystallinity by the resin type, the specific volume, etc. By measuring the material properties of the fiber composite material using a terahertz wave spectrometer, it is possible to generate second measurement information including information regarding the interaction between the fibers and the resin, the degree of crystallinity, and the like. By measuring the material properties of the fiber composite material using an ultrasonic measuring device, it is possible to generate second measurement information including information regarding the specific volume, fiber amount, resin type, and the like. By measuring the material properties of the fiber composite material using an impedance spectrometer, it is possible to generate second measurement information including information regarding the amount of fibers, the interaction between the fibers and the resin, and the like. By measuring the material properties of the fiber composite material using an X-ray diffraction device, it is possible to generate second measurement information including information regarding the degree of crystallinity and the like. Furthermore, by using an X-ray diffraction device, it is also possible to analyze the resin species based on the degree of crystallinity.
 このような第2測定装置300は、例えば、繊維複合材料の樹脂種、分子配向、結晶化度、比容積、繊維量、繊維と樹脂との相互作用または繊維の長さに関する情報を含む各波長のスペクトルまたは蛍光顕微画像を生成する。即ち、第2測定装置300により生成される第2測定情報は、各波長のスペクトルまたは蛍光顕微画像に関する情報である。 Such a second measurement device 300 measures each wavelength, including information regarding, for example, the resin type, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fibers and resin, or fiber length of the fiber composite material. generate spectral or fluorescence microscopy images. That is, the second measurement information generated by the second measurement device 300 is information regarding the spectrum of each wavelength or the fluorescence microscopic image.
 予測システムは、さらに、第3測定装置、あるいは、第3測定装置および第4測定装置を含んでいてもよい。この第3測定装置および第4測定装置は、繊維複合材料の材料特性を測定して第3測定情報および第4測定情報を生成するための装置である。第3測定装置および第4測定装置は、第1測定装置200および第2測定装置300と異なっている。第3測定装置および第4測定装置は、上記第2測定装置300で説明したのと同様の測定装置であってもよい。 The prediction system may further include a third measuring device, or a third measuring device and a fourth measuring device. The third measurement device and the fourth measurement device are devices for measuring the material properties of the fiber composite material and generating third measurement information and fourth measurement information. The third measuring device and the fourth measuring device are different from the first measuring device 200 and the second measuring device 300. The third measuring device and the fourth measuring device may be the same measuring device as explained in the second measuring device 300 above.
 第3測定情報および第4測定情報は、繊維複合材料の樹脂種、分子配向、結晶化度、比容積、繊維量、繊維と樹脂との相互作用および繊維の長さの少なくともいずれかに関する情報を含むことが好ましい。第3測定装置および第4測定装置は、例えば、繊維複合材料の樹脂種、分子配向、結晶化度、比容積、繊維量、繊維と樹脂との相互作用または繊維の長さに関する情報を含む各波長のスペクトルまたは蛍光顕微画像を生成する。即ち、第3測定装置および第4測定装置により生成される第3測定情報および第4測定情報は、各波長のスペクトルまたは蛍光顕微画像に関する情報である。 The third measurement information and the fourth measurement information include information regarding at least one of the resin type, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fibers and resin, and fiber length of the fiber composite material. It is preferable to include. The third measuring device and the fourth measuring device each include information regarding, for example, the resin type, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fibers and resin, or fiber length of the fiber composite material. Generate a spectrum of wavelengths or fluorescence microscopy images. That is, the third measurement information and the fourth measurement information generated by the third measurement device and the fourth measurement device are information regarding the spectrum of each wavelength or the fluorescence microscopic image.
 <予測装置100の機能>
 図6は、予測装置100の機能構成を示すブロック図である。
<Function of prediction device 100>
FIG. 6 is a block diagram showing the functional configuration of the prediction device 100.
 図6に示すように、予測装置100は、CPU110がストレージ140に記憶されたプログラムを読み込んで処理を実行することによって、取得部111、抽出部112、予測部113および制御部114として機能する。 As shown in FIG. 6, the prediction device 100 functions as an acquisition unit 111, an extraction unit 112, a prediction unit 113, and a control unit 114 when the CPU 110 reads a program stored in the storage 140 and executes the process.
 取得部111は、第1測定装置200により生成された第1測定情報と、第2測定装置300により生成された第2測定情報とを取得する。第1測定情報および第2測定情報は、繊維複合材料の材料特性を第1測定装置200、第2測定装置300各々で測定した情報である。第1測定情報は、繊維配向に関する情報を含んでいることが好ましく、タルボ画像に関する情報であることが好ましい。 The acquisition unit 111 acquires the first measurement information generated by the first measurement device 200 and the second measurement information generated by the second measurement device 300. The first measurement information and the second measurement information are information obtained by measuring the material properties of the fiber composite material using the first measurement device 200 and the second measurement device 300, respectively. The first measurement information preferably includes information regarding fiber orientation, and is preferably information regarding Talbot images.
 抽出部112は、取得部111により取得された第1測定情報および第2測定情報各々から特徴量を抽出する。特徴量は、たとえば、取得部111により取得されたスペクトルまたは画像などから抽出され、かつ、繊維複合材料の物性に結び付けられる数値である。第1測定情報がタルボ画像に関する情報であるとき、第1測定情報から抽出される特徴量は、配向画像(amp画像、ave画像、pha画像)などのタルボ画像そのものであってもよく、タルボ画像の特定領域から取得される画像信号値であってもよい。 The extraction unit 112 extracts feature amounts from each of the first measurement information and the second measurement information acquired by the acquisition unit 111. The feature amount is, for example, a numerical value extracted from the spectrum or image acquired by the acquisition unit 111, and linked to the physical properties of the fiber composite material. When the first measurement information is information related to the Talbot image, the feature amount extracted from the first measurement information may be the Talbot image itself such as an orientation image (amp image, ave image, pha image), or the Talbot image itself. It may be an image signal value obtained from a specific area of .
 また、第1測定情報がタルボ画像に関する情報であるとき、第1測定情報から抽出される特徴量は偏心度eccであってもよい。偏心度eccは、例えば、配向画像から得られ
た信号値amp、aveを用いてσ1=ave+amp(小角信号値の最大値に相当)と、σ2=ave-amp(小角信号値の最小値に相当)を算出したとき、以下の式(2)により求められる。配向画像が、画素ごとに偏心度eccを示す画像(ecc画像)を含んでいてもよい。
Further, when the first measurement information is information regarding the Talbot image, the feature amount extracted from the first measurement information may be eccentricity ecc. For example, the eccentricity ecc can be determined by using the signal values amp and ave obtained from the orientation image and calculating σ1=ave+amp (corresponding to the maximum value of the small-angle signal value) and σ2=ave-amp (corresponding to the minimum value of the small-angle signal value). ) is calculated using the following equation (2). The orientation image may include an image (ecc image) showing the degree of eccentricity ecc for each pixel.
 第2測定情報が、各波長のスペクトルに関する情報であるとき、第2測定情報から抽出される特徴量は、例えば、ピーク波長等である。第2測定情報が、FTIRスペクトル、インピーダンス分光スペクトルまたはX線回折スペクトルであるとき、第2測定情報から抽出される特徴量は、ピーク位置、ピーク強度または半値幅等である。また、第2測定情報から抽出される特徴量は、スペクトルを主成分分析した主成分であってもよい。第2測定情報が、インピーダンススペクトルであるとき、第2測定情報から抽出される特徴量は、特定周波数の抵抗値または容量などである。第2測定情報がX線CT画像であるとき、第2測定情報から抽出される特徴量は、画像解析をして得られる繊維長または繊維配向などである。第2測定情報が蛍光顕微鏡画像であるとき、第2測定情報から抽出される特徴量は、画像解析をして得られる繊維長などである。第2測定情報が超音波測定であるとき、第2測定情報から抽出される特徴量は、音速、表面の反射または裏面の反射などである。また、第2測定情報から抽出される特徴量は、測定された波形を主成分分析した主成分であってもよい。取得部111は、特徴量が抽出された情報を取得してもよい。即ち、第1測定情報および第2測定情報は、第1測定装置200および第2測定装置300により測定された繊維複合材料に関する情報から特徴量が抽出されたものであってもよい。 When the second measurement information is information regarding the spectrum of each wavelength, the feature amount extracted from the second measurement information is, for example, the peak wavelength. When the second measurement information is an FTIR spectrum, an impedance spectroscopic spectrum, or an X-ray diffraction spectrum, the feature amount extracted from the second measurement information is a peak position, peak intensity, half-value width, or the like. Further, the feature amount extracted from the second measurement information may be a principal component obtained by principal component analysis of the spectrum. When the second measurement information is an impedance spectrum, the feature amount extracted from the second measurement information is a resistance value or capacitance at a specific frequency. When the second measurement information is an X-ray CT image, the feature amount extracted from the second measurement information is the fiber length or fiber orientation obtained by image analysis. When the second measurement information is a fluorescence microscope image, the feature amount extracted from the second measurement information is the fiber length etc. obtained by image analysis. When the second measurement information is ultrasonic measurement, the feature amount extracted from the second measurement information is the speed of sound, reflection on the front surface, reflection on the back surface, or the like. Further, the feature amount extracted from the second measurement information may be a principal component obtained by principal component analysis of the measured waveform. The acquisition unit 111 may acquire information from which feature amounts are extracted. That is, the first measurement information and the second measurement information may have feature amounts extracted from information regarding the fiber composite material measured by the first measurement device 200 and the second measurement device 300.
 予測部113は、取得部111により取得された第1測定情報および第2測定情報に基づいて、繊維複合材料の残留応力を予測する。具体的には、予測部113は、学習済みの識別器を用いて、抽出部112により抽出された第1測定情報および第2測定情報各々の特徴量を入力とし、繊維複合材料の残留応力を予測する。 The prediction unit 113 predicts the residual stress of the fiber composite material based on the first measurement information and the second measurement information acquired by the acquisition unit 111. Specifically, the prediction unit 113 inputs the feature amounts of the first measurement information and the second measurement information extracted by the extraction unit 112 using a learned classifier, and calculates the residual stress of the fiber composite material. Predict.
 制御部114は、予測部113により予測された繊維複合材料の残留応力に関する情報を表示部160に出力させる。 The control unit 114 causes the display unit 160 to output information regarding the residual stress of the fiber composite material predicted by the prediction unit 113.
 図7は、表示部160に出力された繊維複合材料の残留応力に関する情報の一例を表している。表示部160には、例えば、繊維複合材料に関する情報とともに、予測された残留応力の値が表示される。 FIG. 7 shows an example of information regarding the residual stress of the fiber composite material output to the display section 160. For example, the predicted residual stress value is displayed on the display unit 160 along with information regarding the fiber composite material.
 予測装置100において実行される処理について、以下に詳述する。 The processing executed in the prediction device 100 will be described in detail below.
 <処理概要>
 図8は、予測装置100において実行される予測処理の手順を示すフローチャートである。図8のフローチャートに示される予測装置100の処理は、予測装置100のストレージ140にプログラムとして記憶されており、CPU110が各部を制御することにより実行される。
<Processing overview>
FIG. 8 is a flowchart showing the procedure of the prediction process executed by the prediction device 100. The processing of the prediction device 100 shown in the flowchart of FIG. 8 is stored as a program in the storage 140 of the prediction device 100, and is executed by the CPU 110 controlling each part.
 (ステップS101)
 予測装置100は、まず、繊維複合材料の材料特性を第1測定装置200により測定した第1測定情報と、第2測定装置300により測定した第2測定情報とを取得する。予測装置100は、例えば、第1測定装置200から第1測定情報、第2測定装置300から第2測定情報を各々取得する。第1測定装置200および第2測定装置300は、第1測定情報および第2測定情報をサーバー等の他の装置に記憶させてもよく、予測装置100は、他の装置から第1測定情報および第2測定情報を取得してもよい。
(Step S101)
The prediction device 100 first acquires first measurement information obtained by measuring the material properties of the fiber composite material by the first measurement device 200 and second measurement information measured by the second measurement device 300. The prediction device 100 obtains first measurement information from the first measurement device 200 and second measurement information from the second measurement device 300, for example. The first measurement device 200 and the second measurement device 300 may store the first measurement information and the second measurement information in another device such as a server, and the prediction device 100 may store the first measurement information and the second measurement information in another device such as a server. Second measurement information may also be acquired.
 (ステップS102)
 予測装置100は、ステップS101の処理において取得された第1測定情報および第2測定情報各々から特徴量を抽出する。
(Step S102)
The prediction device 100 extracts feature amounts from each of the first measurement information and the second measurement information acquired in the process of step S101.
 (ステップS103)
 予測装置100は、ステップS102の処理において抽出された第1測定情報および第2測定情報各々の特徴量を、予め機械学習された識別器に入力して、繊維複合材料の残留応力を予測する。例えば、識別器は、後述するような学習方法によって、予め多数準備された複数の繊維複合材料の第1測定情報および第2測定情報各々の特徴量と、複数の繊維複合材料各々の残留応力の測定値とを有する教師データを用いて機械学習される。具体的には、識別器は、複数の繊維複合材料に関する第1測定情報および第2測定情報各々の特徴量を入力データとし、複数の繊維複合材料各々の残留応力の測定値を出力データとして機械学習される。これにより、予測装置100は、第1測定情報および第2測定情報各々について抽出された特徴量を識別器に入力することによって、繊維複合材料の残留応力を予測することができる。繊維複合材料の残留応力の測定値は、例えば、穿孔法を用いて取得される。
(Step S103)
The prediction device 100 inputs the feature amounts of each of the first measurement information and the second measurement information extracted in the process of step S102 to a discriminator that has undergone machine learning in advance, and predicts the residual stress of the fiber composite material. For example, the discriminator uses the learning method described below to determine the feature values of each of the first measurement information and second measurement information of a plurality of fiber composite materials prepared in advance, and the residual stress of each of the plurality of fiber composite materials. Machine learning is performed using training data with measured values. Specifically, the discriminator uses the feature quantities of each of the first measurement information and the second measurement information regarding the plurality of fiber composite materials as input data, and uses the measured value of residual stress of each of the plurality of fiber composite materials as output data. be learned. Thereby, the prediction device 100 can predict the residual stress of the fiber composite material by inputting the feature amounts extracted for each of the first measurement information and the second measurement information into the discriminator. Measurements of residual stress in fiber composite materials are obtained using, for example, a perforation method.
 識別器は、複数の繊維複合材料に関する第1測定情報および第2測定情報を入力データとし、複数の繊維複合材料各々の残留応力の測定値を出力データとして機械学習されてもよい。また、識別器に入力する情報は第1測定情報および第2測定情報各々の特徴量に限定されない。例えば、第1測定情報および第2測定情報各々の特徴量に加えて、製造時の情報が識別器に入力され、学習および予測を行うための情報として用いられてもよい。 The discriminator may perform machine learning using the first measurement information and second measurement information regarding the plurality of fiber composite materials as input data, and using the measured values of residual stress of each of the plurality of fiber composite materials as output data. Further, the information input to the discriminator is not limited to the feature amounts of each of the first measurement information and the second measurement information. For example, in addition to the feature amounts of each of the first measurement information and the second measurement information, information at the time of manufacture may be input to the discriminator and used as information for learning and prediction.
 (ステップS104)
 予測装置100は、ステップS103の処理における識別器による出力に基づいて、繊維複合材料の残留応力の予測結果を生成する。
(Step S104)
The prediction device 100 generates a prediction result of the residual stress of the fiber composite material based on the output from the discriminator in the process of step S103.
 (ステップS105)
 予測装置100は、ステップS104の処理において生成された予測結果を出力する。例えば、予測装置100は、ステップS103の処理において予測された繊維複合材料の残留応力の値を、繊維複合材料に関する情報とともに表示部160に表示する(図7)。
(Step S105)
The prediction device 100 outputs the prediction result generated in the process of step S104. For example, the prediction device 100 displays the value of the residual stress of the fiber composite material predicted in the process of step S103 on the display unit 160 together with information regarding the fiber composite material (FIG. 7).
 <学習処理について>
 次に、識別器において用いられる学習済みモデルの機械学習方法について説明する。
<About learning process>
Next, a machine learning method for trained models used in the classifier will be described.
 図9は、学習済みモデルの機械学習方法を示すフローチャートである。 FIG. 9 is a flowchart showing a machine learning method for a trained model.
 図9の処理においては、予め準備した複数の繊維複合材料の第1測定情報および第2測定情報各々の特徴量を入力とし、複数の繊維複合材料各々の残留応力の測定値を出力とする、多数(i組個)のデータセットを学習サンプルデータとして用いて機械学習が実行される。識別器として機能する学習器(図示せず)には、例えば、CPUおよびGPUのプロセッサを用いたスタンドアロンの高性能コンピューター、またはクラウドコンピューターが用いられる。以下においては、学習器において、ディープラーニング等のパーセプトロンを組み合わせて構成したニューラルネットワークを用いる学習方法について説明するが、これに限られず、種種の手法が適用され得る。例えば、ランダムフォレスト、決定木、サポートベクターマシン(SVM)、ロジスティック回帰、k近傍法、トピックモデル等が適用され得る。 In the process of FIG. 9, the feature amounts of each of the first measurement information and second measurement information of a plurality of fiber composite materials prepared in advance are input, and the measured value of residual stress of each of the plurality of fiber composite materials is output. Machine learning is performed using a large number (i sets) of data sets as learning sample data. For example, a stand-alone high-performance computer using a CPU and a GPU processor or a cloud computer is used as a learning device (not shown) that functions as a discriminator. In the following, a learning method using a neural network configured by combining perceptrons such as deep learning in a learning device will be described, but the method is not limited to this, and various methods can be applied. For example, random forest, decision tree, support vector machine (SVM), logistic regression, k-nearest neighbor method, topic model, etc. may be applied.
 (ステップS111)
 学習器は、教師データである学習サンプルデータを読み込む。最初であれば1組目の学習サンプルデータを読み込み、i回目であれば、i組目の学習サンプルデータを読み込む。
(Step S111)
The learning device reads learning sample data that is teacher data. If it is the first time, the first set of learning sample data is read, and if it is the i-th time, the i-th set of learning sample data is read.
 (ステップS112)
 学習器は、読み込んだ学習サンプルデータのうち入力データをニューラルネットワークに入力する。
(Step S112)
The learning device inputs input data from the read learning sample data to the neural network.
 (ステップS113)
 学習器は、ニューラルネットワークの予測結果を、正解データと比較する。
(Step S113)
The learning device compares the prediction results of the neural network with the correct data.
 (ステップS114)
 学習器は、比較結果に基づいてパラメータを調整する。学習器は、例えば、バックプロパゲーション(Back-propagation、誤差逆伝搬法)に基づく処理を実行することにより、比較結果の差異が小さくなるようにパラメータを調整する。
(Step S114)
The learning device adjusts the parameters based on the comparison results. The learning device adjusts the parameters so that the difference between the comparison results becomes smaller by, for example, executing processing based on back-propagation (error backpropagation method).
 (ステップS115)
 学習器は、1~i組目まで全データの処理が完了すれば(YES)、処理をステップS116に進め、完了していなければ(NO)、処理をステップS111に戻し、次の学習サンプルデータを読み込み、ステップS111以下の処理を繰り返す。
(Step S115)
If the learning device completes processing of all data from the 1st to the i-th set (YES), the process proceeds to step S116, and if not (NO), returns the process to step S111 and processes the next learning sample data. is read, and the processing from step S111 onwards is repeated.
 (ステップS116)
 学習器は、学習を継続するか否かを判定し、継続する場合(YES)、処理をステップS111に戻し、ステップS111~S115において再度1組目~i組目までの処理を実行し、継続しない場合(NO)、処理をステップS117に進める。
(Step S116)
The learning device determines whether or not to continue learning, and when continuing (YES), returns the process to step S111, executes the processes from the 1st group to the i-th group again in steps S111 to S115, and continues. If not (NO), the process advances to step S117.
 (ステップS117)
 学習器は、これまでの処理で構築された学習済みモデルを記憶して終了する(エンド)。記憶先には、予測装置100の内部メモリが含まれる。上述の図8の処理では、このようにして生成された学習済みモデルを用いて繊維複合材料の残留応力が予測される。
(Step S117)
The learning device stores the learned model constructed in the previous processing and ends (end). The storage destination includes the internal memory of the prediction device 100. In the process shown in FIG. 8 described above, the residual stress of the fiber composite material is predicted using the learned model generated in this way.
 <予測装置100および予測システムの作用効果>
 本実施形態の予測装置100および予測システムは、繊維複合材料の材料特性を測定した第1測定情報および第2測定情報を取得し、取得した第1測定情報および第2測定情報に基づいて、繊維複合材料の残留応力を予測する。これにより、繊維複合材料の残留応力を予測することが可能となる。以下、この作用効果について説明する。
<Effects of prediction device 100 and prediction system>
The prediction device 100 and the prediction system of this embodiment acquire first measurement information and second measurement information that measured the material properties of a fiber composite material, and based on the acquired first measurement information and second measurement information, Predicting residual stresses in composite materials. This makes it possible to predict the residual stress in the fiber composite material. The effects will be explained below.
 上記のように、残留応力は、繊維複合材料の成型品を長期使用する際にクラックの発生に影響を及ぼし得る。このため、少なくとも、長期使用の前には繊維複合材料の残留応力を把握しておくことが望ましい。しかし、残留応力の測定手法は多くなく、繊維複合材料の残留応力では、さらに限定される。繊維複合材料の残留応力の測定には、主に、穿孔法が用いられるが、穿孔法では、測定に精密な制御が必要とされるので、効率的に多数の繊維複合材料の残留応力を測定することは困難である。 As mentioned above, residual stress can affect the occurrence of cracks when a molded product made of fiber composite material is used for a long period of time. For this reason, it is desirable to understand the residual stress of the fiber composite material at least before long-term use. However, there are not many methods for measuring residual stress, and the method for measuring residual stress in fiber composite materials is even more limited. The drilling method is mainly used to measure the residual stress in fiber composite materials, but since the drilling method requires precise measurement control, it is possible to efficiently measure the residual stress in a large number of fiber composite materials. It is difficult to do so.
 これに対し、本実施形態の予測システムおよび予測装置100では、繊維複合材料の材料特性を測定した第1測定情報および第2測定情報に基づいて、繊維複合材料の残留応力
が予測されるので、穿孔法等の直接的な残留応力の測定が不要となる。
On the other hand, in the prediction system and prediction device 100 of the present embodiment, the residual stress of the fiber composite material is predicted based on the first measurement information and the second measurement information that measured the material properties of the fiber composite material. There is no need to directly measure residual stress using a drilling method or the like.
 また、複数の測定装置(第1測定装置200および第2測定装置300)の測定情報に基づいて、繊維複合材料の残留応力が予測されるので、単一の測定装置の測定情報に基づいて予測される場合に比べて、多面的な残留応力の予測が可能となる。したがって、より高い精度で残留応力を予測することが可能となる。 In addition, since the residual stress of the fiber composite material is predicted based on the measurement information of multiple measurement devices (the first measurement device 200 and the second measurement device 300), the residual stress can be predicted based on the measurement information of a single measurement device. This makes it possible to predict residual stress from multiple angles. Therefore, it becomes possible to predict residual stress with higher accuracy.
 さらに、第1測定装置200として、X線タルボ・ロー装置を用いることにより、短時間で、かつ、広範囲にわたる繊維複合材料の繊維配向に関する情報を取得することができる。これにより、より高い精度で残留応力を予測することが可能となる。 Furthermore, by using an X-ray Talbot-Lau apparatus as the first measuring device 200, information regarding the fiber orientation of the fiber composite material can be obtained in a short time and over a wide range. This makes it possible to predict residual stress with higher accuracy.
 以上説明したように、本実施形態の予測装置100および予測システムでは、繊維複合材料の残留応力を予測することが可能となる。 As explained above, the prediction device 100 and the prediction system of this embodiment make it possible to predict the residual stress of the fiber composite material.
 本発明の効果を、以下の実施例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effects of the present invention will be explained using the following examples. However, the technical scope of the present invention is not limited only to the following examples.
 (学習済みの識別器の作成)
 まず、教師データを作成するための複数の繊維複合材料のサンプルを作製した。このサンプルは、以下に示す4種類の樹脂、3種類の繊維、2条件の繊維濃度(体積比)および2条件の射出圧力の組み合わせにより作製した。樹脂および繊維は、事前に株式会社東洋精機製作所製ラボプラストミル(登録商標)押出機を用いて、所望の比率で混合させた。これにより、ペレットを作製した。48種類の繊維複合材料のサンプルは、住友重機製射出成型機SE50Dを用いて成型した。サンプル形状は、JIS K7139に示される、ダンベル形試験片タイプA1とした。
(Creating a trained classifier)
First, we created multiple samples of fiber composite materials to create training data. This sample was produced using the following combinations of four types of resin, three types of fibers, two conditions of fiber concentration (volume ratio), and two conditions of injection pressure. The resin and fibers were mixed in advance at a desired ratio using a Laboplastomill (registered trademark) extruder manufactured by Toyo Seiki Seisakusho Co., Ltd. This produced pellets. Samples of 48 types of fiber composite materials were molded using an injection molding machine SE50D manufactured by Sumitomo Heavy Industries. The sample shape was a dumbbell-shaped test piece type A1 shown in JIS K7139.
 樹脂:ポリプロピレン(住友化学株式会社製ノーブレンW101)、ポリアミド66(旭化成株式会社製レオナ1300S)、ABS(東レ株式会社製Toyolac700 314)、ポリカーボネート(三菱エンジニアリングプラスチック株式会社製ユーピロンH-3000R);
 繊維:PAN(ポリアクリロニトリル)系炭素繊維(日本ポリマー産業株式会社製CF-N)、PAN系炭素繊維(台湾プラスチックス社製TC-33)、ガラス繊維(日東紡績株式会社製CS3J-960);
 繊維濃度:5%、20%;
 射出圧力:50MPa、100MPa。
Resin: polypropylene (Noblen W101 manufactured by Sumitomo Chemical Co., Ltd.), polyamide 66 (Leona 1300S manufactured by Asahi Kasei Corporation), ABS (Toyolac 700 314 manufactured by Toray Industries, Inc.), polycarbonate (Iupilon H-3000R manufactured by Mitsubishi Engineering Plastics Co., Ltd.);
Fiber: PAN (polyacrylonitrile) carbon fiber (CF-N manufactured by Nippon Polymer Sangyo Co., Ltd.), PAN carbon fiber (TC-33 manufactured by Taiwan Plastics Co., Ltd.), glass fiber (CS3J-960 manufactured by Nitto Boseki Co., Ltd.);
Fiber concentration: 5%, 20%;
Injection pressure: 50MPa, 100MPa.
 次に、この48種類の繊維複合材料のサンプル各々を以下の測定装置を用いて測定してその特徴量を識別器に学習させた。測定はダンベル形試験片の中央付近で行った。 Next, each of these 48 types of fiber composite material samples was measured using the following measuring device, and the discriminator was made to learn the feature amounts. The measurement was performed near the center of the dumbbell-shaped test piece.
 FTIR(Fourier Transform Infrared Spectroscopy)装置(Thermo Fisher Scientific社製AVATAR370);
 テラヘルツ波分光測定装置(浜松ホトニクス株式会社製C12068-01);
 超音波測定装置(超音波工業株式会社製UVM-2。反射モードで測定を行った。);
 インピーダンス分光測定装置(Solartron社製126096型。サンプル上に、直径5mmの導電テープを、50mm離して2か所に貼り付け、これを電極として測定を行った。);
 X線回折装置(株式会社リガク製Smart Lab);
 X線タルボ・ロー装置(特開2019-184450号に記載の装置);
 X線CT装置(ブルカージャパン社製SKYSCAN1272);
 蛍光顕微鏡(オリンパス株式会社製BX51にミラーユニットU-MWU2を取り付けて使用。感度調整剤として、蛍光色素2,5-thiophenediylbis(5-tert-butyl-1,3-benzoxazole)を、0.1重量%添加し、サンプルを調製した。)。
FTIR (Fourier Transform Infrared Spectroscopy) device (AVATAR370 manufactured by Thermo Fisher Scientific);
Terahertz wave spectrometer (C12068-01 manufactured by Hamamatsu Photonics Co., Ltd.);
Ultrasonic measuring device (UVM-2 manufactured by Ultrasonic Industry Co., Ltd. Measurement was performed in reflection mode);
Impedance spectrometer (Model 126096 manufactured by Solartron. Conductive tapes with a diameter of 5 mm were pasted on the sample at two locations 50 mm apart, and measurements were performed using these as electrodes.);
X-ray diffraction device (Smart Lab manufactured by Rigaku Co., Ltd.);
X-ray Talbot-Low device (device described in JP 2019-184450);
X-ray CT device (SKYSCAN1272 manufactured by Bruker Japan);
Fluorescence microscope (Used with mirror unit U-MWU2 attached to BX51 manufactured by Olympus Corporation. As a sensitivity adjuster, fluorescent dye 2,5-thiophenediylbis (5-tert-butyl-1,3-benzoxazole) was used at 0.1 weight % and prepared the sample).
 また、穿孔法を用いて、上記48種類の繊維複合材料のサンプル各々の残留応力を測定し、識別器に学習させた。穿孔法は、以下のように行った。まず、試験片の曲げ試験を行い、ヤング率を求めておいた。次に、測定箇所に市販のロゼットひずみゲージを貼り付け、市販のドリルにて、直径2mm、深さ1mmの穿孔を行い、変位量と、事前に求めたヤング率とを用いて、残留応力を求めた。 Additionally, the residual stress of each of the 48 types of fiber composite material samples was measured using the perforation method, and the discriminator was trained. The drilling method was performed as follows. First, a bending test was performed on the test piece to determine the Young's modulus. Next, a commercially available rosette strain gauge is attached to the measurement location, a hole with a diameter of 2 mm and a depth of 1 mm is made using a commercially available drill, and the residual stress is calculated using the amount of displacement and the Young's modulus determined in advance. I asked for it.
 (実施例1~11、比較例1~7)
 まず、4種類の繊維複合材料のサンプルを作製した。このサンプルは、以下に示す2種類の樹脂、2種類の繊維、1条件の繊維濃度(体積比)および1条件の射出圧力の組み合わせにより作製した。サンプルの作製は、上記教師データと同様に行った。
(Examples 1 to 11, Comparative Examples 1 to 7)
First, samples of four types of fiber composite materials were produced. This sample was produced using the following combinations of two types of resin, two types of fibers, one condition of fiber concentration (volume ratio), and one condition of injection pressure. The samples were prepared in the same manner as for the training data described above.
 樹脂:ポリプロピレン(住友化学株式会社製ノーブレンW101)、ポリアミド66(旭化成株式会社製レオナ1300S);
 繊維:PAN系炭素繊維(日本ポリマー産業株式会社製CF-N)、PAN系炭素繊維(台湾プラスチックス社製TC-33);
 繊維濃度:10%;
 射出圧力:80MPa。
Resin: polypropylene (Noblen W101 manufactured by Sumitomo Chemical Co., Ltd.), polyamide 66 (Leona 1300S manufactured by Asahi Kasei Corporation);
Fiber: PAN-based carbon fiber (CF-N manufactured by Nippon Polymer Sangyo Co., Ltd.), PAN-based carbon fiber (TC-33 manufactured by Taiwan Plastics Co., Ltd.);
Fiber concentration: 10%;
Injection pressure: 80MPa.
 この4種類の繊維複合材料各々のサンプルを実施例1~11では下記表1に示す複数の測定装置により測定した。比較例1~7では、4種類の繊維複合材料各々のサンプルを下記表1に示す単一の測定装置により測定した。この後、その測定装置により測定されたスペクトルまたは画像の特徴量を学習済みの識別器に入力して残留応力の予測値を求めた。 In Examples 1 to 11, samples of each of these four types of fiber composite materials were measured using a plurality of measuring devices shown in Table 1 below. In Comparative Examples 1 to 7, samples of each of the four types of fiber composite materials were measured using a single measuring device shown in Table 1 below. Thereafter, the spectra or image features measured by the measuring device were input into a trained discriminator to obtain predicted values of residual stress.
 また、穿孔法を用いて上記4種類の繊維複合材料各々の残留応力を測定し、測定値を求めた。次に、予測値と測定値との誤差を下記の式(3)を用いて算出した後、4種類の繊維複合材料の誤差の平均を求めた。下記表1には、比較例1の4種類の繊維複合材料各々の誤差の平均を1として、実施例1~11および比較例1~7の誤差の平均を相対値として記載した。即ち、表1中の「誤差」の欄の値が小さいほど、学習済みの識別器を用いて予測した残留応力の精度が高いことを表す。 Additionally, the residual stress of each of the above four types of fiber composite materials was measured using a perforation method, and the measured values were determined. Next, after calculating the error between the predicted value and the measured value using the following formula (3), the average of the errors for the four types of fiber composite materials was determined. In Table 1 below, the average error of each of the four types of fiber composite materials of Comparative Example 1 is set as 1, and the average error of Examples 1 to 11 and Comparative Examples 1 to 7 is listed as a relative value. That is, the smaller the value in the "error" column in Table 1, the higher the accuracy of the residual stress predicted using the learned discriminator.
 複数の測定装置で測定されたスペクトルまたは画像の特徴量を識別器に入力した実施例1~11は、比較例1~7に比べて、誤差が小さくなった。また、実施例1~11の中でも、X線タルボ・ロー測定装置を用いた実施例1、4~11では、実施例2、3に比べて誤差を小さくすることができた。さらに、様々な種類の測定装置を効果的に組み合わせることにより、より高い精度で残留応力を予測することができた(実施例8~11)。 Examples 1 to 11, in which spectra or image feature quantities measured by multiple measurement devices were input to the discriminator, had smaller errors than Comparative Examples 1 to 7. Further, among Examples 1 to 11, in Examples 1 and 4 to 11 using the X-ray Talbot-Rho measuring device, the error was able to be made smaller than in Examples 2 and 3. Furthermore, by effectively combining various types of measuring devices, it was possible to predict residual stress with higher accuracy (Examples 8 to 11).
 以上に説明した予測装置100および予測システムの構成は、上述の実施形態および実施例の特徴を説明するにあたって主要構成を説明したのであって、上述の構成に限られず、特許請求の範囲内において、種々改変することができる。また、一般的な予測システムが備える構成を排除するものではない。 The configurations of the prediction device 100 and the prediction system described above are the main configurations explained in explaining the features of the above-mentioned embodiments and examples, and are not limited to the above-mentioned configurations, but within the scope of the claims. Various modifications can be made. Moreover, the configuration provided in a general prediction system is not excluded.
 例えば、予測装置100は、それぞれ上記の構成要素以外の構成要素を含んでいてもよく、あるいは、上記の構成要素のうちの一部が含まれていなくてもよい。 For example, the prediction device 100 may include components other than the above components, or may not include some of the above components.
 また、予測装置100、第1測定装置200、および第2測定装置300は、それぞれ複数の装置によって構成されてもよく、あるいは単一の装置によって構成されてもよい。 Furthermore, the prediction device 100, the first measuring device 200, and the second measuring device 300 may each be configured by a plurality of devices, or may be configured by a single device.
 また、各構成が有する機能は、他の構成によって実現されてもよい。例えば、第1測定装置200または第2測定装置300は、予測装置100に統合され、第1測定装置200および第2測定装置300が有する各機能の一部または全部が予測装置100によって実現されてもよい。 Furthermore, the functions of each configuration may be realized by other configurations. For example, the first measurement device 200 or the second measurement device 300 is integrated into the prediction device 100, and some or all of the functions of the first measurement device 200 and the second measurement device 300 are realized by the prediction device 100. Good too.
 また、上記の実施形態におけるフローチャートの処理単位は、各処理の理解を容易にするために、主な処理内容に応じて分割したものである。処理ステップの分類の仕方によって、本願発明が制限されることはない。各処理は、さらに多くの処理ステップに分割することもできる。また、1つの処理ステップが、さらに多くの処理を実行してもよい。 Furthermore, the processing units in the flowchart in the above embodiment are divided according to the main processing contents in order to facilitate understanding of each process. The present invention is not limited by how the processing steps are classified. Each process can also be divided into more process steps. Also, one processing step may perform more processing.
 上述した実施形態に係るシステムにおける各種処理を行う手段および方法は、専用のハードウェア回路、またはプログラムされたコンピューターのいずれによっても実現することが可能である。上記プログラムは、例えば、フレキシブルディスクおよびCD-ROM等のコンピューター読み取り可能な記録媒体によって提供されてもよいし、インターネット等のネットワークを介してオンラインで提供されてもよい。この場合、コンピューター読み取り可能な記録媒体に記録されたプログラムは、通常、ハードディスク等の記憶部に転送され記憶される。また、上記プログラムは、単独のアプリケーションソフトとして提供されてもよいし、システムの一機能としてその装置のソフトウエアに組み込まれてもよい。 The means and methods for performing various processes in the system according to the embodiments described above can be realized by either a dedicated hardware circuit or a programmed computer. The program may be provided on a computer-readable recording medium such as a flexible disk or CD-ROM, or may be provided online via a network such as the Internet. In this case, the program recorded on the computer-readable recording medium is usually transferred and stored in a storage unit such as a hard disk. Further, the above program may be provided as a standalone application software, or may be incorporated into the software of the device as a function of the system.
 本出願は、2022年3月24日に出願された日本特許出願(特願2022-47924)に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on a Japanese patent application (Japanese Patent Application No. 2022-47924) filed on March 24, 2022, the disclosure content of which is incorporated by reference in its entirety.
100 予測装置、
110 CPU、
 111 取得部、
 112 抽出部、
 113 予測部、
 114 制御部、
120 ROM、
130 RAM、
140 ストレージ、
150 通信インターフェース、
160 表示部、
170 操作受付部、
200 第1測定装置、
300 第2測定装置。
 
100 prediction device,
110 CPU,
111 Acquisition Department;
112 Extraction part,
113 Prediction Department,
114 control unit,
120 ROM,
130 RAM,
140 storage,
150 communication interface,
160 display section,
170 Operation reception department,
200 first measuring device,
300 Second measuring device.

Claims (13)

  1.  繊維複合材料の材料特性を第1測定装置により測定した第1測定情報と、前記第1測定装置とは異なる第2測定装置により前記繊維複合材料の材料特性を測定した第2測定情報とを取得する取得部と、
     取得された前記第1測定情報および前記第2測定情報に基づいて、前記繊維複合材料の残留応力を予測する予測部と
     を備える予測装置。
    Obtain first measurement information obtained by measuring the material properties of the fiber composite material with a first measurement device, and second measurement information obtained by measuring the material properties of the fiber composite material with a second measurement device different from the first measurement device. an acquisition unit to
    A prediction device comprising: a prediction unit that predicts residual stress of the fiber composite material based on the acquired first measurement information and second measurement information.
  2.  予測された前記残留応力に関する情報を出力部に出力させる制御部をさらに含む請求項1に記載の予測装置。 The prediction device according to claim 1, further comprising a control unit that causes an output unit to output information regarding the predicted residual stress.
  3.  前記第1測定情報は、前記繊維複合材料の繊維配向に関する情報を含む請求項1または2に記載の予測装置。 The prediction device according to claim 1 or 2, wherein the first measurement information includes information regarding fiber orientation of the fiber composite material.
  4.  前記第1測定装置は、X線タルボ・ロー装置またはX線CT測定装置である請求項3に記載の予測装置。 The prediction device according to claim 3, wherein the first measurement device is an X-ray Talbot-Lau device or an X-ray CT measurement device.
  5.  前記第2測定情報は、前記繊維複合材料の樹脂種、分子配向、結晶化度、比容積、繊維量、繊維と樹脂との相互作用、繊維種、繊維径および繊維の長さの少なくともいずれかに関する情報を含む請求項1~4のいずれかに記載の予測装置。 The second measurement information includes at least one of the resin type, molecular orientation, crystallinity, specific volume, fiber amount, interaction between fiber and resin, fiber type, fiber diameter, and fiber length of the fiber composite material. The prediction device according to any one of claims 1 to 4, comprising information regarding.
  6.  前記第2測定装置は、赤外分光測定装置、インピーダンス分光測定装置、テラヘルツ波分光測定装置、超音波測定装置、ラマン分光測定装置、X線回折装置または蛍光顕微鏡である請求項1~5のいずれかに記載の予測装置。 Any one of claims 1 to 5, wherein the second measurement device is an infrared spectrometer, an impedance spectrometer, a terahertz wave spectrometer, an ultrasonic measurement device, a Raman spectrometer, an X-ray diffraction device, or a fluorescence microscope. A prediction device described in .
  7.  前記取得部は、前記第1測定装置および前記第2測定装置と異なる第3測定装置により測定した第3測定情報をさらに取得し、
     前記予測部は、取得された前記第1測定情報、前記第2測定情報および前記第3測定情報に基づいて、前記残留応力を予測する請求項1~6のいずれかに記載の予測装置。
    The acquisition unit further acquires third measurement information measured by a third measurement device different from the first measurement device and the second measurement device,
    7. The prediction device according to claim 1, wherein the prediction unit predicts the residual stress based on the acquired first measurement information, second measurement information, and third measurement information.
  8.  前記繊維複合材料は感度調整剤を含む請求項1~7のいずれかに記載の予測装置。 The prediction device according to any one of claims 1 to 7, wherein the fiber composite material contains a sensitivity adjuster.
  9.  前記予測部は、学習済みの識別器を用いて前記残留応力を予測する請求項1~8のいずれかに記載の予測装置。 The prediction device according to any one of claims 1 to 8, wherein the prediction unit predicts the residual stress using a learned discriminator.
  10.  取得された前記第1測定情報および前記第2測定情報各々から特徴量を抽出する抽出部をさらに含み、
     前記予測部は、抽出された前記特徴量を入力とし、前記残留応力を予測する請求項9に記載の予測装置。
    further comprising an extraction unit that extracts a feature amount from each of the acquired first measurement information and second measurement information,
    The prediction device according to claim 9, wherein the prediction unit receives the extracted feature amount as input and predicts the residual stress.
  11.  前記識別器は、前記特徴量を入力データとし、前記残留応力を出力データとして機械学習される請求項10に記載の予測装置。 The prediction device according to claim 10, wherein the discriminator performs machine learning using the feature amount as input data and the residual stress as output data.
  12.  繊維複合材料の材料特性を測定する第1測定装置と、
     前記繊維複合材料の材料特性を測定するとともに、前記第1測定装置とは異なる第2測定装置と、
     請求項1~11のいずれかに記載の予測装置と
     を備える予測システム。
    a first measuring device that measures material properties of the fiber composite material;
    a second measuring device that measures material properties of the fiber composite material and is different from the first measuring device;
    A prediction system comprising: the prediction device according to any one of claims 1 to 11.
  13.  繊維複合材料の材料特性を第1測定装置により測定した第1測定情報と、前記第1測定装置とは異なる第2測定装置により前記繊維複合材料の材料特性を測定した第2測定情報とを取得するステップ(a)と、
     ステップ(a)で取得された前記第1測定情報および前記第2測定情報に基づいて、前記繊維複合材料の残留応力を予測するステップ(b)と
     を有する処理をコンピューターに実行させるための予測プログラム。
    Obtain first measurement information obtained by measuring the material properties of the fiber composite material with a first measurement device, and second measurement information obtained by measuring the material properties of the fiber composite material with a second measurement device different from the first measurement device. step (a) of
    A prediction program for causing a computer to execute a process comprising a step (b) of predicting the residual stress of the fiber composite material based on the first measurement information and the second measurement information acquired in step (a). .
PCT/JP2023/008748 2022-03-24 2023-03-08 Prediction device, prediction system, and prediction program WO2023181935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-047924 2022-03-24
JP2022047924 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023181935A1 true WO2023181935A1 (en) 2023-09-28

Family

ID=88101259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008748 WO2023181935A1 (en) 2022-03-24 2023-03-08 Prediction device, prediction system, and prediction program

Country Status (1)

Country Link
WO (1) WO2023181935A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959548A (en) * 1989-05-02 1990-09-25 The United States Of America As Represented By The United States Department Of Energy Neutron apparatus for measuring strain in composites
JP2017058349A (en) * 2015-09-18 2017-03-23 株式会社リガク Stress analysis device, method, and program
JP2020087446A (en) * 2018-11-16 2020-06-04 東レエンジニアリング株式会社 Resin molding analysis method, program, and recording medium
WO2020239618A1 (en) * 2019-05-24 2020-12-03 Multimaterial-Welding Ag Ultrasonic setting of a connector to an object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959548A (en) * 1989-05-02 1990-09-25 The United States Of America As Represented By The United States Department Of Energy Neutron apparatus for measuring strain in composites
JP2017058349A (en) * 2015-09-18 2017-03-23 株式会社リガク Stress analysis device, method, and program
JP2020087446A (en) * 2018-11-16 2020-06-04 東レエンジニアリング株式会社 Resin molding analysis method, program, and recording medium
WO2020239618A1 (en) * 2019-05-24 2020-12-03 Multimaterial-Welding Ag Ultrasonic setting of a connector to an object

Similar Documents

Publication Publication Date Title
US11150202B2 (en) X-ray imaging system
Tapfer et al. Experimental results from a preclinical X-ray phase-contrast CT scanner
JP5818909B2 (en) Method and system for image integration using constrained optimization for phase contrast imaging with a grating device
Zanette et al. X-ray microtomography using correlation of near-field speckles for material characterization
Hanke et al. X-ray microtomography for materials characterization
WO1996042066A1 (en) Methods and apparatus for image reconstruction
Ludwig et al. Non-destructive testing of archaeological findings by grating-based X-ray phase-contrast and dark-field imaging
Peterson et al. Nanoscale Fresnel coherent diffraction imaging tomography using ptychography
Bayer et al. Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures
Yu et al. X-ray source translation based computed tomography (STCT)
Zan et al. High-resolution multicontrast tomography with an X-ray microarray anode–structured target source
Van Rooij et al. Polarization contrast optical diffraction tomography
Altapova et al. Phase contrast laminography based on Talbot interferometry
Navarrete-León et al. X-ray phase-contrast microtomography of soft tissues using a compact laboratory system with two-directional sensitivity
Koskela et al. Gaussian light model in brightfield optical projection tomography
WO2023181935A1 (en) Prediction device, prediction system, and prediction program
Briguglio et al. Changing investigation perspectives: methods and applications of computed tomography on larger benthic foraminifera
Wang et al. Ptychographical intensity interferometry imaging with incoherent light
Wu et al. A hyperspectral X-ray computed tomography system for enhanced material identification
Anastasio et al. Image reconstruction in spherical-wave intensity diffraction tomography
Felsner et al. A 3-d projection model for x-ray dark-field imaging
WO2024004583A1 (en) Prediction device, prediction system, and prediction program
Ma et al. Digital holographic microtomography with few angle data-sets
CN101616627A (en) Be used for assessing the optical device of the optical depth of sample
Murad et al. Periodic-net: an end-to-end data driven framework for diffuse optical imaging of breast cancer from noisy boundary data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774534

Country of ref document: EP

Kind code of ref document: A1