WO2024004266A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2024004266A1
WO2024004266A1 PCT/JP2023/005823 JP2023005823W WO2024004266A1 WO 2024004266 A1 WO2024004266 A1 WO 2024004266A1 JP 2023005823 W JP2023005823 W JP 2023005823W WO 2024004266 A1 WO2024004266 A1 WO 2024004266A1
Authority
WO
WIPO (PCT)
Prior art keywords
power module
casing
power
flat plate
heat
Prior art date
Application number
PCT/JP2023/005823
Other languages
French (fr)
Japanese (ja)
Inventor
浩輝 松田
努 川水
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2024004266A1 publication Critical patent/WO2024004266A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power conversion device.
  • This application claims priority to Japanese Patent Application No. 2022-104478 filed in Japan on June 29, 2022, the contents of which are incorporated herein.
  • Patent Document 1 discloses a semiconductor device (power conversion device) in which a power module is covered with a heat shielding member.
  • a control board on which a circuit for controlling a power module is mounted is placed above a heat shielding member.
  • the heat shielding member has a flat part that covers the upper surface of the power module, and a pair of support legs that hang down from both ends of the flat part and cover the sides of the power module.
  • the lower end of the base plate is fixed in contact with the surface of the base plate. This suppresses heat from being transmitted from the power module to the control board, and when heat is transmitted to the heat shielding member, it is radiated to the outside from the lower end of the support leg via the base plate.
  • the present disclosure has been made in order to solve the above problems, and an object of the present disclosure is to provide a power conversion device that can better block heat transmitted from a power module to a control board.
  • a power conversion device includes a casing, a capacitor housed in the casing, and a power module housed in the casing that converts a DC voltage from the capacitor into an AC voltage.
  • a cooler that cools the power module;
  • a control board that is housed in the casing with a gap between the power module and the control board that controls driving of the power module;
  • a heat shield section that partitions a space in which a power module is arranged and a space in which the control board is arranged, and a heat radiation section arranged in the heat shield section, and the heat shield section is arranged in a space where the power module and the control board are arranged.
  • a flat plate portion disposed in the gap between the control board and a plurality of side walls surrounding the power module from an in-plane direction of the flat plate portion by connecting an outer edge of the flat plate portion and the cooler;
  • a plurality of the heat radiating parts are arranged in one or more of the in-plane direction of the flat plate part and the in-plane direction of the side wall plate part.
  • FIG. 1 is a perspective view showing a schematic configuration of a power conversion device according to an embodiment of the present disclosure.
  • FIG. 2 is a plan view of the power module according to the embodiment of the present disclosure in the II-II line direction shown in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line III-III shown in FIG. 2.
  • FIG. 3 is a diagram showing a direction in which heat is conducted in a heat shield according to an embodiment of the present disclosure.
  • 4 is a cross-sectional view of a power conversion device according to another embodiment of the present disclosure, and is a diagram corresponding to the portion shown in FIG. 3.
  • FIG. 4 is a cross-sectional view of a power conversion device according to another embodiment of the present disclosure, and is a diagram corresponding to the portion shown in FIG. 3.
  • FIG. 4 is a cross-sectional view of a power conversion device according to another embodiment of the present disclosure, and is a diagram corresponding to the portion shown in FIG. 3.
  • FIG. 4 is a
  • a power converter is a device that converts DC power into three-phase AC power or the like.
  • the power conversion device of this embodiment includes, for example, an inverter used in a system such as a power plant, an inverter used to drive a motor of an electric vehicle, etc.
  • the power converter 100 includes a casing 1, an external input conductor 2, a capacitor 3, a power converter 4, a cooler 5, a control board 6, a heat shield 7, and a heat dissipator. 8 (see FIG. 3).
  • the casing 1, the cooler 5, the control board 6, and the heat shield part 7 are shown by two-dot chain lines due to space limitations.
  • the casing 1 forms the outer shell of the power converter 100.
  • the casing 1 in this embodiment is made of metal such as aluminum or synthetic resin, and has a rectangular parallelepiped shape.
  • the casing 1 has two side surfaces arranged back to back to each other.
  • the side facing one side will be referred to as the “input side side 1a”, and the side facing the other side will be referred to as the “output side side 1b".
  • An external input conductor 2 for inputting DC power is drawn out from the input side surface 1a.
  • the external input conductors 2 are a pair of electric conductors (bus bars) that supply DC power supplied from a power system or the like external to the power converter 100 to the capacitor 3.
  • the external input conductor 2 in this embodiment is made of metal containing copper or the like.
  • One end of the external input conductor 2 is connected to the capacitor 3, and the other end of the external input conductor 2 extends in a direction intersecting the input side surface 1a of the casing 1.
  • the capacitor 3 is a smoothing capacitor that stores charges input from the external input conductor 2 and suppresses voltage fluctuations associated with power conversion. Capacitor 3 is housed in casing 1. The DC voltage input from the external input conductor 2 is supplied to the power converter 4 via the capacitor 3. The capacitor 3 has a main body portion 3a and a connecting conductor 3b.
  • the main body portion 3a is a portion that primarily functions as the smoothing capacitor described above.
  • the connecting conductor 3b is an electric conductor (bus bar) for transmitting power from the main body 3a to the power converter 4.
  • the connection conductor 3b is made of metal such as copper.
  • the connecting conductor 3b has a positive terminal 3p and a negative terminal 3n.
  • the positive terminal 3p constitutes the positive electrode of the capacitor 3, and is a current path connecting the main body portion 3a and the positive electrode of the power module 40.
  • the negative terminal 3n constitutes the negative electrode of the capacitor 3, and is a current path connecting the main body 3a and the negative electrode of the power module 40.
  • positive terminals 3p and negative terminals 3n are arranged side by side with an interval between them.
  • One end of each of the positive terminal 3p and the negative terminal 3n is connected to the main body 3a. Note that detailed illustration of the connection state between the positive terminal 3p and the negative terminal 3n and the main body portion 3a is omitted.
  • the other ends of the positive terminal 3p and the negative terminal 3n are connected to the power module 40.
  • the power converter 4 converts the voltage input from the capacitor 3.
  • Power converter 4 is housed in casing 1 .
  • the power converter 4 in this embodiment has three power modules 40 each responsible for outputting U-phase, V-phase, and W-phase output in order to output three-phase AC power. Therefore, the power conversion device 100 in this embodiment is a three-phase inverter including three power modules 40.
  • the power module 40 is a device that converts input power and outputs the converted power. As shown in FIGS. 2 and 3, the power module 40 includes a base plate 41, a circuit board 42, an external output conductor 43, a case 44, an insulating section 45, and a bonding wire Wb.
  • the base plate 41 is a flat member.
  • the base plate 41 has a front surface 41a and a back surface 41b located on the back side of the front surface 41a. That is, the front surface 41a and the back surface 41b of the base plate 41 are parallel to each other and are placed back to back.
  • the back surface 41b of the base plate 41 is fixed to the cooler 5 via a bonding material or the like (not shown).
  • copper is used for the base plate 41 in this embodiment.
  • the base plate 41 may be made of metal such as aluminum.
  • the circuit board 42 has an insulating plate 421, a front pattern 422, a power semiconductor element 423, and a back pattern 424.
  • the insulating plate 421 has a flat plate shape.
  • the insulating plate 421 has a first surface 421a and a second surface 421b located on the back side of the first surface 421a. That is, the first surface 421a and the second surface 421b of the insulating plate 421 are parallel to each other and back to back.
  • a back pattern 424 which is a pattern of copper foil or the like, is formed over one surface.
  • the back pattern 424 is fixed to the center of the front surface 41a of the base plate 41 via a bonding material S.
  • the insulating plate 421 in this embodiment is made of an insulating material such as ceramic, for example.
  • insulating material such as ceramic
  • paper phenol, paper epoxy, glass composite, glass epoxy, glass polyimide, fluororesin, etc. can be used as the insulating material forming the insulating plate 421.
  • the surface pattern 422 is a pattern of copper foil or the like that is formed on the first surface 421a of the insulating plate 421 and spreads in a plane.
  • the surface pattern 422 is formed, for example, by being fixed to the first surface 421a of the insulating plate 421 by bonding or the like and then etching or the like.
  • a plurality of surface patterns 422 are arranged on the first surface 421a of the insulating plate 421. These plurality of surface patterns 422 are arranged adjacent to each other with a gap in the direction in which the insulating plate 421 spreads.
  • a case will be described as an example in which three surface patterns 422 are arranged on the first surface 421a of the insulating plate 421.
  • these three surface patterns 422 will be referred to as a first surface pattern 422a, a second surface pattern 422b, and a third surface pattern 422c.
  • the first surface pattern 422a and the second surface pattern 422b are patterns for exchanging input and output of DC current with the capacitor 3, and correspond to an inlet portion or an outlet portion of a loop between PNs formed in the surface pattern 422. .
  • the other end of the positive terminal 3p of the capacitor 3 is connected to the first surface pattern 422a, and the other end of the negative terminal 3n of the capacitor 3 is connected to the second surface pattern 422b.
  • An external output conductor 43 for outputting the alternating current converted by the power semiconductor element 423 to a load (not shown) provided outside the power conversion device 100 is connected to the third surface pattern 422c.
  • the power semiconductor element 423 is a circuit element that converts power through a switching operation that turns on and off voltage and current.
  • the power semiconductor element 423 is, for example, a switching element such as an IGBT or a MOSFET. This embodiment shows, as an example, a case where a MOSFET is applied to a power semiconductor.
  • These four power semiconductor elements 423 are connected to the surface pattern 422 of the circuit board 42. Note that when an IGBT is used as the power semiconductor element 423, a diode that allows current to flow in the opposite direction to the IGBT needs to be arranged in parallel.
  • the four power semiconductor elements 423 in this embodiment are comprised of two first power semiconductor elements 423a and two second power semiconductor elements 423b.
  • the first power semiconductor element 423a is connected to the first surface pattern 422a.
  • the second power semiconductor element 423b is connected to the third surface pattern 422c.
  • the power semiconductor element 423 When the power semiconductor element 423 is a MOSFET, the power semiconductor element 423 has an input surface on which an input terminal (not shown) corresponding to a drain is formed, and an output surface on which an output terminal (not shown) corresponding to a source is formed. and a gate (not shown) corresponding to a control signal input terminal for controlling switching of the power semiconductor element 423.
  • the input surface of the power semiconductor element 423 is electrically connected to the surface pattern 422 via a bonding material.
  • One end of a bonding wire Wb serving as a conducting wire is electrically connected to the output surface of the power semiconductor element 423.
  • the bonding wire Wb is made of metal such as aluminum. That is, the surface patterns 422 formed on the first surface 421a are electrically connected to each other by wire bonding.
  • the input surface of the first power semiconductor element 423a is connected to the first surface pattern 422a.
  • One end of the bonding wire Wb is connected to the output surface of the first power semiconductor element 423a, and the other end of the bonding wire Wb is connected to the third surface pattern 422c.
  • the input surface of the second power semiconductor element 423b is connected to the third surface pattern 422c.
  • One end of the bonding wire Wb is connected to the output surface of the second power semiconductor element 423b, and the other end of the bonding wire Wb is connected to the second surface pattern 422b.
  • DC power is input to the first power semiconductor element 423a via the first surface pattern 422a, and the second power semiconductor element 423b has a second surface pattern 422b and a second surface pattern 422b and a second power semiconductor.
  • DC power is input through the bonding wire Wb that connects the element 423b.
  • a control signal generated by a gate driving circuit board (not shown) provided outside the circuit board 42 is input to the power semiconductor element 423.
  • the power semiconductor element 423 performs switching according to this control signal. Note that when the power semiconductor element 423 is an IGBT, the power semiconductor element 423 has an input surface corresponding to a collector, an output surface corresponding to an emitter, and a gate corresponding to a control signal input terminal.
  • the bonding between the front surface 41a of the base plate 41 and the back surface pattern 424 formed on the second surface 421b of the insulating plate 421, the bonding between the power semiconductor element 423 and the front surface pattern 422, and the bonding between the back surface 41b of the base plate 41 and the cooler 5 As the bonding material used for bonding, for example, solder, sintered material (powder of metal, etc.), etc. can be used.
  • the external output conductor 43 is an electric conductor (bus bar) for outputting the AC power converted by the power semiconductor element 423 to the outside of the power conversion device 100.
  • the external output conductor 43 is made of metal containing copper or the like.
  • One end of the external output conductor 43 is connected to the third surface pattern 422c on the circuit board 42.
  • the other end of the external output conductor 43 extends outward from the output side surface 1b of the casing 1.
  • the other end of the external output conductor 43 is connected to, for example, a current output wiring (not shown) connected to a load such as a motor.
  • the case 44 surrounds the circuit board 42 from the outside while covering the positive terminal 3p and negative terminal 3n of the connection conductor 3b and the external output conductor 43 from the outside. As shown in FIGS. 2 and 3, the case 44 surrounds the circuit board 42 in a direction along the surface 41a of the base plate 41. As shown in FIGS. Therefore, the case 44 defines a space in which the circuit board 42 is housed together with the base plate 41. In this embodiment, for convenience of explanation, this space in which the circuit board 42 is accommodated is referred to as a "potting space Rp.”
  • the insulating portion 45 is formed of this potting material.
  • the insulating section 45 in the potting space Rp is arranged to cover each surface 41a of the circuit board 42, the bonding wire Wb, the external output conductor 43, and the connection conductor 3b of the capacitor 3.
  • the cooler 5 is a device that mainly cools the power module 40 of the power converter 4.
  • the cooler 5 is provided so as to be stacked on the casing 1, and is fixed and integrated with the casing 1.
  • the cooler 5 has a base 51 and radiation fins 52.
  • the base 51 and the radiation fins 52 are shown by dotted lines.
  • the base 51 has a plate shape.
  • the base portion 51 has a bonding surface 51a that is bonded to the back surface 41b of the base plate 41 in the power module 40 via a bonding material, and a heat dissipation surface 51b that faces opposite to the bonding surface 51a.
  • the joint surface 51a and the heat radiation surface 51b are parallel to each other and are placed back to back.
  • the radiation fins 52 are columnar members arranged in plural on the radiation surface 51b of the base 51. Each heat radiation fin 52 projects from the heat radiation surface 51b toward the side opposite to the power module 40 with the base 51 as the center.
  • a liquid refrigerant W such as water is introduced into the cooler 5 from the outside.
  • the heat radiation surface 51b of the base 51 and the radiation fins 52 are cooled by contacting with the liquid refrigerant W introduced from the outside.
  • the liquid refrigerant W is warmed by exchanging heat with the heat conducted from the power module 40 to the base 51 and the radiation fins 52, and at the same time cools the power module 40.
  • the heat shield 7 suppresses heat from being transferred from the power module 40 to the control board 6.
  • the heat shield 7 is housed in the casing 1.
  • the heat shielding part 7 has a box shape that divides the inside of the casing 1 into a first space R1 where the power module 40 is placed and a second space R2 where the control board 6 is placed.
  • the heat shielding part 7 in this embodiment has a flat plate part 71 and a plurality of side wall plate parts 72.
  • the flat plate portion 71 has a plate shape.
  • the flat plate portion 71 is arranged in a gap between the power module 40 and the control board 6.
  • the flat plate portion 71 has an outer edge portion 71a as a surface corresponding to the thickness of the flat plate portion 71.
  • the side wall plate portion 72 has a plate shape.
  • the side wall plate part 72 in this embodiment is fixed to the joint surface 51a of the base 51 of the cooler 5 while being connected to each of the four outer edges 71a of the flat plate part 71 so as to be integral with the flat plate part 71. has been done.
  • the outer edge portion 72a of the side wall plate portion 72 is in contact with the joint surface 51a. Therefore, the four side wall plate parts 72 are housed in the casing 1 integrally with the flat plate part 71, and connect the flat plate part 71 and the joint surface 51a of the cooler 5.
  • first space R1 where the power module 40 is placed
  • second space R2 where the control board 6 is placed.
  • the volume of the first space R1 in this embodiment is smaller than the volume of the second space R2.
  • the flat plate portion 71 is formed with holes, for example, through which the bolts B mentioned above that connect the base plate 41 and the control board 6 in the power module 40 are inserted. Further, although detailed illustrations are omitted, holes and recesses through which the connection conductor 3b of the capacitor 3 and the external output conductor 43 of the power module 40 can be inserted, for example, are formed in the side wall plate part 72. The portion 72 is arranged within the casing 1 so as not to interfere with the connection conductor 3b and the external output conductor 43.
  • the flat plate portion 71 is formed of a thermally conductive material having higher thermal conductivity in the in-plane direction of the flat plate portion 71 than in the thickness direction of the flat plate portion 71.
  • the side wall plate portion 72 is formed of a thermally conductive material having higher thermal conductivity in the in-plane direction of the side wall plate portion 72 than in the thickness direction of the side wall plate portion 72 .
  • the flat plate part 71 and the side wall plate part 72 in this embodiment are formed of graphene.
  • FIG. 4 the direction in which the heat moves in the heat shield part 7 when heat is transferred from the power module 40 to the heat shield part 7 in this embodiment will be explained.
  • solid arrows indicate how heat moves.
  • the heat in the heat shield part 7 moves in the in-plane direction of the flat plate part 71 and the side wall plate part 72 of the heat shield part 7, and is cooled through the outer edge part 72a of the side wall plate part 72 in contact with the joint surface 51a. Move to the base 51 and radiation fins 52 of the container 5. That is, the heat transmitted from the first space R1 side where the power module 40 is arranged to the heat shielding part 7 is suppressed from moving to the second space R2 side by the flat plate part 71 and the side wall plate part 72. Further, this heat does not remain in the flat plate portion 71 and the side wall plate portion 72, but is conducted from the side wall plate portion 72 to the base portion 51 and the radiation fins 52 in the cooler 5.
  • the heat dissipation section 8 suppresses heat from remaining in the heat shield section 7.
  • the heat radiation part 8 is arranged on the flat plate part 71 and the side wall plate part 72 of the heat shield part 7.
  • the heat radiation part 8 in this embodiment is a plurality of holes 81 arranged at equal intervals in the in-plane direction of the flat plate part 71 and the side wall plate part 72. That is, each hole 81 penetrates the flat plate part 71 and the side wall plate part 72 in the thickness direction, and opens into both the first space R1 and the second space R2.
  • the opening diameter of the hole 81 in this embodiment is such that the area of the entire surface 41a of the flat plate part 71 and the side wall plate part 72 does not decrease because the hole 81 is formed in the flat plate part 71 and the side wall plate part 72. It is set as follows. That is, the area of the inner peripheral surface of the hole 81 is larger than twice the opening area of the hole 81.
  • the flat plate part 71 and the side wall plate part 72 of the heat shielding part 7 are formed of a thermally conductive material having higher thermal conductivity in the in-plane direction than in the thickness direction. Therefore, it is possible to further suppress the heat from moving from the first space R1 to the second space R2, and to further suppress the heat from remaining in the heat shielding part 7.
  • the heat dissipation part 8 described in the first embodiment is not limited to the hole 81 that penetrates the flat plate part 71 and the side wall plate part 72 of the heat shield part 7 in the thickness direction.
  • the heat radiation part 8 may be a dimple 82 that opens only toward the first space R1 side where the power module 40 is arranged.
  • the dimple 82 is a groove recessed from the first space R1 side to the second space R2 side in the plate thickness direction, and the inner surface 10 has a spherical shape. This also allows the heat radiating section 8 to achieve the functions and effects described in the above embodiment.
  • the dimple 82 may be opened only on the second space R2 side where the control board 6 is arranged.
  • the heat radiation section 8 may be realized by, for example, a combination of a dimple 82 that opens only to the first space R1 side and a dimple 82 that opens only to the second space R2 side.
  • the heat dissipation section 8 may be a fin 83 that protrudes only toward the first space R1 side where the power module 40 is arranged.
  • the fins 83 are formed integrally with the heat shield 7 and may be made of the same material as the heat shield 7.
  • the fins 83 have, for example, a rectangular parallelepiped shape. This also allows the heat radiating section 8 to achieve the functions and effects described in the above embodiment.
  • the heat dissipation section 8 may be arranged only on one of the flat plate section 71 of the heat shield section 7 or the side wall plate section 72 of the heat shield section 7. That is, a plurality of heat radiating parts 8 may be arranged in the in-plane direction of one or more of the flat plate part 71 and the side wall plate part 72.
  • the flat plate part 71 and the side wall plate part 72 of the heat shielding part 7 described in the above embodiment are not limited to the structure formed of graphene, and may be formed of a material such as borophene, for example. . Therefore, the flat plate part 71 and the side wall plate part 72 described in the above embodiments may be formed of a thermally conductive material having higher thermal conductivity in the in-plane direction than in the thickness direction.
  • the side wall plate portion 72 described in the above embodiment may be configured to abut (surface contact) with the side surface 12 of the inner surface 10 of the casing 1.
  • the inner surface 10 has four side surfaces 12 and a top surface 11 that connects these four side surfaces while facing the joint surface 51a of the base 51 of the cooler 5.
  • the power conversion device 100 described above further includes a gate driving substrate (not shown) that is disposed between the flat plate portion 71 of the heat shielding portion 7 and the power module 40 and is capable of controlling switching of the power semiconductor element 423. It's okay.
  • the gate driving substrate is electrically connected to, for example, the gate of the power semiconductor element 423 and the control substrate 6 by a signal line or the like.
  • the gate drive board is formed with a hole 81 through which the bolt B described above is inserted, and by inserting the bolt B into the hole 81, the gate drive board is inserted into the power module 40 within the casing 1. It may also be supported from the side. Therefore, the heat shielding section 7 may have any configuration as long as it thermally protects the above-described control circuit from the power module 40 within the casing 1.
  • the power conversion device 100 may further include a current sensor 9 that is housed in the casing 1 and can detect the value of the current flowing through the external output conductor 43.
  • the current sensor 9 is a through-type current sensor (current transformer) that can measure a current value without contacting the external output conductor 43.
  • the current sensor 9 is arranged so as to surround a part of the outer surface of the external output conductor 43 while being in contact with the joint surface 51 a of the base 51 of the cooler 5 .
  • the side wall plate portion 72 of the heat shielding portion 7 described in the above embodiment may, for example, come into contact with the current sensor 9 (surface contact).
  • the power conversion device 100 may be a device that performs power conversion using the power semiconductor element 423, such as a converter or a combination of an inverter and a converter.
  • the power conversion device 100 is a converter
  • an AC voltage is input from an external input power source (not shown) to the external output conductor 43
  • the power semiconductor element 423 on the circuit board 42 converts this AC voltage into a DC voltage, and generates power.
  • the structure may be such that the DC voltage from the semiconductor element 423 is output to the outside of the power conversion device 100 through the connection conductor 3b.
  • the power conversion device 100 includes a casing 1, a capacitor 3 housed in the casing 1, and a capacitor 3 housed in the casing 1, which converts a DC voltage from the capacitor 3 into an AC voltage.
  • a power module 40 a cooler 5 that cools the power module 40, a control board 6 that is housed in the casing 1 with a gap between the power module 40 and the control board 6 that controls the drive of the power module 40;
  • a heat shielding section 7 accommodated in the casing 1 and dividing the inside of the casing 1 into a space where the power module 40 is arranged and a space where the control board 6 is arranged; and a heat radiation disposed in the heat shielding section 7.
  • the heat shielding part 7 includes a flat plate part 71 disposed in the gap between the power module 40 and the control board 6, and an outer edge part 71a of the flat plate part 71 and the cooler. 5, and a plurality of side wall plate parts 72 that surround the power module 40 from the in-plane direction of the flat plate part 71; A plurality of them are arranged in one or more in-plane directions of the side wall plate portion 72.
  • the power conversion device 100 according to the second aspect is the power conversion device 100 according to the first aspect, in which the heat radiation section 8 includes one of the flat plate section 71 and the side wall plate section 72. A hole 81 passing through the above in the thickness direction may be used.
  • the power conversion device 100 according to the third aspect is the power conversion device 100 according to the first aspect, in which the heat radiation section 8 opens toward the space side where the power module 40 is arranged. Dimples 82 may also be used.
  • the power conversion device 100 according to the fourth aspect is the power conversion device 100 according to the first aspect, in which the heat radiation section 8 protrudes toward the space side in which the power module 40 is arranged. It may also be the fin 83.
  • the power conversion device 100 according to a fifth aspect is the power conversion device 100 according to any one of the first to fourth aspects, and includes the flat plate portion 71 and the side wall plate.
  • the portion 72 is formed of a thermally conductive material having a higher thermal conductivity in the in-plane direction of the flat plate portion 71 and the side wall plate portion 72 than that of the flat plate portion 71 and the side wall plate portion 72 in the thickness direction. may have been done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A power conversion device according to the present disclosure is provided with: a casing; a capacitor housed in the casing; a power module that is housed in the casing and converts a DC voltage from the capacitor into an AC voltage; a cooling device that cools the power module; a control substrate that is housed in the casing with a gap interposed between said substrate and the power module and controls the driving of the power module; a heat insulation part that is housed in the casing and divides the interior of the casing into a space in which the power module is disposed and a space in which the control substrate is disposed; and heat dissipation parts disposed to the heat insulation part. The heat insulation part has: a flat plate portion disposed in the gap between the power module and the control substrate; and a plurality of side wall plate portions that, by connecting the outer edge portions of the flat plate portion with the cooling device, surround the power module from the extending directions of the flat plate portion. The plurality of heat dissipation parts are disposed in the in-plane direction in at least one of the flat plate portion and the side wall plate portions.

Description

電力変換装置power converter
 本開示は、電力変換装置に関する。
 本願は、2022年6月29日に日本に出願された特願2022-104478号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to a power conversion device.
This application claims priority to Japanese Patent Application No. 2022-104478 filed in Japan on June 29, 2022, the contents of which are incorporated herein.
 例えば特許文献1には、パワーモジュールが熱遮断部材によって覆われている半導体装置(電力変換装置)が開示されている。この半導体装置では、パワーモジュールを制御する回路を搭載した制御基板が熱遮断部材の上部に配置されている。 For example, Patent Document 1 discloses a semiconductor device (power conversion device) in which a power module is covered with a heat shielding member. In this semiconductor device, a control board on which a circuit for controlling a power module is mounted is placed above a heat shielding member.
 熱遮断部材は、パワーモジュールの上面を覆う平坦部と、この平坦部の両端部からそれぞれ垂下してパワーモジュールの側面を覆う一対の支持脚部とを有しており、これら一対の支持脚部の下端部がベース板の表面に接触して固定されている。これにより、パワーモジュールから制御基板へ熱が伝わることを抑制するとともに、熱が熱遮断部材に伝わった際、支持脚部の下端部からベース板を介して外部へ放散されている。 The heat shielding member has a flat part that covers the upper surface of the power module, and a pair of support legs that hang down from both ends of the flat part and cover the sides of the power module. The lower end of the base plate is fixed in contact with the surface of the base plate. This suppresses heat from being transmitted from the power module to the control board, and when heat is transmitted to the heat shielding member, it is radiated to the outside from the lower end of the support leg via the base plate.
特開2005-333074号公報Japanese Patent Application Publication No. 2005-333074
 近年、パワーモジュールを有する電力変換装置の分野では、付加価値向上のためにパワー半導体素子の高電圧化・大電流化・高周波化・高速スイッチング化の機運が高まっている。それに伴って、パワーモジュールがより高温化する場合がある。そのため、パワーモジュールから制御基板へ伝わる熱を遮断する部材には、より高い遮熱性能が要求される。 In recent years, in the field of power converters with power modules, there has been an increasing trend toward higher voltage, larger current, higher frequency, and faster switching of power semiconductor elements in order to improve added value. As a result, the power module may become even hotter. Therefore, a member that blocks heat transmitted from the power module to the control board is required to have higher heat shielding performance.
 本開示は、上記課題を解決するためになされたものであって、パワーモジュールから制御基板へ伝わる熱をより遮断することができる電力変換装置を提供することを目的とする。 The present disclosure has been made in order to solve the above problems, and an object of the present disclosure is to provide a power conversion device that can better block heat transmitted from a power module to a control board.
 上記課題を解決するために、本開示に係る電力変換装置は、ケーシングと、前記ケーシングに収容されたコンデンサと、前記ケーシングに収容され、前記コンデンサからの直流電圧を交流電圧に変換するパワーモジュールと、前記パワーモジュールを冷却する冷却器と、前記パワーモジュールと隙間を介した状態で前記ケーシングに収容され、前記パワーモジュールの駆動を制御する制御基板と、前記ケーシングに収容され、前記ケーシング内を前記パワーモジュールが配置された空間と前記制御基板が配置された空間とに区画する遮熱部と、前記遮熱部に配置された放熱部と、を備え、前記遮熱部は、前記パワーモジュールと前記制御基板との間の前記隙間に配置された平板部と、前記平板部の外縁部と前記冷却器とを接続することで、前記パワーモジュールを前記平板部の面内方向から囲む複数の側壁板部と、を有し、前記放熱部は、前記平板部の面内方向及び前記側壁板部の面内方向のうち一つ以上の面内方向に複数配置されている。 In order to solve the above problems, a power conversion device according to the present disclosure includes a casing, a capacitor housed in the casing, and a power module housed in the casing that converts a DC voltage from the capacitor into an AC voltage. a cooler that cools the power module; a control board that is housed in the casing with a gap between the power module and the control board that controls driving of the power module; A heat shield section that partitions a space in which a power module is arranged and a space in which the control board is arranged, and a heat radiation section arranged in the heat shield section, and the heat shield section is arranged in a space where the power module and the control board are arranged. a flat plate portion disposed in the gap between the control board and a plurality of side walls surrounding the power module from an in-plane direction of the flat plate portion by connecting an outer edge of the flat plate portion and the cooler; A plurality of the heat radiating parts are arranged in one or more of the in-plane direction of the flat plate part and the in-plane direction of the side wall plate part.
 本開示によれば、パワーモジュールから制御基板へ伝わる熱をより遮断することができる電力変換装置を提供することができる。 According to the present disclosure, it is possible to provide a power conversion device that can further block heat transmitted from the power module to the control board.
本開示の実施形態に係る電力変換装置の概略構成を示す斜視図である。1 is a perspective view showing a schematic configuration of a power conversion device according to an embodiment of the present disclosure. 本開示の実施形態に係るパワーモジュールを図1に示すII-II線方向で平面視した時の図である。FIG. 2 is a plan view of the power module according to the embodiment of the present disclosure in the II-II line direction shown in FIG. 1. FIG. 図2で示したIII-III線方向の断面図である。3 is a cross-sectional view taken along line III-III shown in FIG. 2. FIG. 本開示の実施形態に係る遮熱部の熱が伝導する方向を示した図である。FIG. 3 is a diagram showing a direction in which heat is conducted in a heat shield according to an embodiment of the present disclosure. 本開示のその他の実施形態に係る電力変換装置の断面図であり、図3で示した部分に対応した図である。4 is a cross-sectional view of a power conversion device according to another embodiment of the present disclosure, and is a diagram corresponding to the portion shown in FIG. 3. FIG. 本開示のその他の実施形態に係る電力変換装置の断面図であり、図3で示した部分に対応した図である。4 is a cross-sectional view of a power conversion device according to another embodiment of the present disclosure, and is a diagram corresponding to the portion shown in FIG. 3. FIG. 本開示のその他の実施形態に係る電力変換装置の断面図であり、図3で示した部分に対応した図である。4 is a cross-sectional view of a power conversion device according to another embodiment of the present disclosure, and is a diagram corresponding to the portion shown in FIG. 3. FIG.
 以下、添付図面を参照して、本開示による電力変換装置を実施するための形態を説明する。 Hereinafter, embodiments for implementing a power conversion device according to the present disclosure will be described with reference to the accompanying drawings.
[電力変換装置]
 電力変換装置は、直流電力を三相交流電力等に変換する装置である。本実施形態の電力変換装置には、例えば、発電所等の系統で用いられるインバータや、電気自動車等の電動機の駆動に用いられるインバータ等が挙げられる。
[Power converter]
A power converter is a device that converts DC power into three-phase AC power or the like. The power conversion device of this embodiment includes, for example, an inverter used in a system such as a power plant, an inverter used to drive a motor of an electric vehicle, etc.
 図1に示すように、電力変換装置100は、ケーシング1と、外部入力導体2と、コンデンサ3と、電力変換部4と、冷却器5と、制御基板6と、遮熱部7と、放熱部8(図3参照)とを備えている。なお、図1中では、紙面の都合上、ケーシング1、冷却器5、制御基板6、及び遮熱部7は、二点鎖線で示されている。 As shown in FIG. 1, the power converter 100 includes a casing 1, an external input conductor 2, a capacitor 3, a power converter 4, a cooler 5, a control board 6, a heat shield 7, and a heat dissipator. 8 (see FIG. 3). In addition, in FIG. 1, the casing 1, the cooler 5, the control board 6, and the heat shield part 7 are shown by two-dot chain lines due to space limitations.
(ケーシング)
 ケーシング1は、電力変換装置100の外殻を成している。本実施形態におけるケーシング1は、アルミ等の金属又は合成樹脂等により形成されており、直方体状を成している。ケーシング1は、互いに背合わせとなるように配置されている二つの側面を有している。
(casing)
The casing 1 forms the outer shell of the power converter 100. The casing 1 in this embodiment is made of metal such as aluminum or synthetic resin, and has a rectangular parallelepiped shape. The casing 1 has two side surfaces arranged back to back to each other.
 以下、説明の便宜上、これら二つの側面のうち、一方側を向く側面を「入力側側面1a」と称し、他方側を向く側面を「出力側側面1b」と称する。入力側側面1aからは、直流電力を入力するための外部入力導体2が引き出されている。 Hereinafter, for convenience of explanation, of these two side surfaces, the side facing one side will be referred to as the "input side side 1a", and the side facing the other side will be referred to as the "output side side 1b". An external input conductor 2 for inputting DC power is drawn out from the input side surface 1a.
(外部入力導体)
 外部入力導体2は、電力変換装置100の外部の電力系統等から供給される直流電力をコンデンサ3へ供給する一対の電気導体(バスバー)である。本実施形態における外部入力導体2は、銅等を含む金属により形成されている。外部入力導体2の一端は、コンデンサ3に接続されており、外部入力導体2の他端は、ケーシング1の入力側側面1aと交差する方向に延びている。
(External input conductor)
The external input conductors 2 are a pair of electric conductors (bus bars) that supply DC power supplied from a power system or the like external to the power converter 100 to the capacitor 3. The external input conductor 2 in this embodiment is made of metal containing copper or the like. One end of the external input conductor 2 is connected to the capacitor 3, and the other end of the external input conductor 2 extends in a direction intersecting the input side surface 1a of the casing 1.
(コンデンサ)
 コンデンサ3は、外部入力導体2から入力された電荷を蓄えるとともに、電力変換に伴う電圧変動を抑えるための平滑コンデンサである。コンデンサ3は、ケーシング1に収容されている。外部入力導体2から入力された直流電圧は、コンデンサ3を経由して電力変換部4へ供給される。コンデンサ3は、本体部3aと、接続導体3bとを有している。
(capacitor)
The capacitor 3 is a smoothing capacitor that stores charges input from the external input conductor 2 and suppresses voltage fluctuations associated with power conversion. Capacitor 3 is housed in casing 1. The DC voltage input from the external input conductor 2 is supplied to the power converter 4 via the capacitor 3. The capacitor 3 has a main body portion 3a and a connecting conductor 3b.
 本体部3aは、主として上述した平滑コンデンサの機能を発揮する部分である。接続導体3bは、本体部3aから電力変換部4へ電力を伝えるための電気導体(バスバー)である。接続導体3bは、銅等の金属によって形成されている。接続導体3bは、正極側端子3pと、負極側端子3nとを有している。 The main body portion 3a is a portion that primarily functions as the smoothing capacitor described above. The connecting conductor 3b is an electric conductor (bus bar) for transmitting power from the main body 3a to the power converter 4. The connection conductor 3b is made of metal such as copper. The connecting conductor 3b has a positive terminal 3p and a negative terminal 3n.
 正極側端子3pは、コンデンサ3における正極を成しており、本体部3aとパワーモジュール40における正極とを接続する電流経路である。負極側端子3nは、コンデンサ3における負極を成しており、本体部3aとパワーモジュール40における負極とを接続する電流経路である。 The positive terminal 3p constitutes the positive electrode of the capacitor 3, and is a current path connecting the main body portion 3a and the positive electrode of the power module 40. The negative terminal 3n constitutes the negative electrode of the capacitor 3, and is a current path connecting the main body 3a and the negative electrode of the power module 40.
 これら正極側端子3p及び負極側端子3nは、間隔をあけて並んで配置されている。正極側端子3p及び負極側端子3nのそれぞれの一端は、本体部3aに接続されている。なお、正極側端子3p及び負極側端子3nと、本体部3aとの接続状態の詳細な図示は省略する。正極側端子3p及び負極側端子3nのそれぞれの他端は、パワーモジュール40に接続されている。 These positive terminals 3p and negative terminals 3n are arranged side by side with an interval between them. One end of each of the positive terminal 3p and the negative terminal 3n is connected to the main body 3a. Note that detailed illustration of the connection state between the positive terminal 3p and the negative terminal 3n and the main body portion 3a is omitted. The other ends of the positive terminal 3p and the negative terminal 3n are connected to the power module 40.
(電力変換部)
 電力変換部4は、コンデンサ3から入力された電圧を変換する。電力変換部4は、ケーシング1に収容されている。本実施形態における電力変換部4は、三相交流電力を出力するために、U相、V相、及びW相用の出力をそれぞれ担当する三つのパワーモジュール40を有している。したがって、本実施形態における電力変換装置100は、三つのパワーモジュール40を備える三相インバータである。
(Power conversion section)
The power converter 4 converts the voltage input from the capacitor 3. Power converter 4 is housed in casing 1 . The power converter 4 in this embodiment has three power modules 40 each responsible for outputting U-phase, V-phase, and W-phase output in order to output three-phase AC power. Therefore, the power conversion device 100 in this embodiment is a three-phase inverter including three power modules 40.
 (パワーモジュール)
 パワーモジュール40は、入力された電力を変換して出力する装置である。図2及び図3に示すように、パワーモジュール40は、ベースプレート41と、回路基板42と、外部出力導体43と、ケース44と、絶縁部45と、ボンディングワイヤWbとを備えている。
(power module)
The power module 40 is a device that converts input power and outputs the converted power. As shown in FIGS. 2 and 3, the power module 40 includes a base plate 41, a circuit board 42, an external output conductor 43, a case 44, an insulating section 45, and a bonding wire Wb.
 ベースプレート41は、平板状を成す部材である。ベースプレート41は、表面41aと、この表面41aの裏側に位置する裏面41bを有している。即ち、ベースプレート41の表面41aと裏面41bとは互いに平行をなした状態で背合わせになっている。ベースプレート41の裏面41bは、接合材等(図示省略)を介して、冷却器5に固定されている。本実施形態におけるベースプレート41には、例えば銅が採用される。なお、ベースプレート41には、アルミニウム等の金属が採用されてもよい。 The base plate 41 is a flat member. The base plate 41 has a front surface 41a and a back surface 41b located on the back side of the front surface 41a. That is, the front surface 41a and the back surface 41b of the base plate 41 are parallel to each other and are placed back to back. The back surface 41b of the base plate 41 is fixed to the cooler 5 via a bonding material or the like (not shown). For example, copper is used for the base plate 41 in this embodiment. Note that the base plate 41 may be made of metal such as aluminum.
 回路基板42は、絶縁板421と、表面パターン422と、パワー半導体素子423と、裏面パターン424とを有している。 The circuit board 42 has an insulating plate 421, a front pattern 422, a power semiconductor element 423, and a back pattern 424.
 絶縁板421は、平板状を成している。絶縁板421は、第一面421aと、この第一面421aの裏側に位置する第二面421bとを有している。即ち、絶縁板421の第一面421aと第二面421bとは互いに平行をなした状態で背合わせになっている。絶縁板421の第二面421bには、銅箔等のパターンである裏面パターン424が一面に形成されている。当該裏面パターン424は、接合材Sを介してベースプレート41の表面41aの中央に固定されている。 The insulating plate 421 has a flat plate shape. The insulating plate 421 has a first surface 421a and a second surface 421b located on the back side of the first surface 421a. That is, the first surface 421a and the second surface 421b of the insulating plate 421 are parallel to each other and back to back. On the second surface 421b of the insulating plate 421, a back pattern 424, which is a pattern of copper foil or the like, is formed over one surface. The back pattern 424 is fixed to the center of the front surface 41a of the base plate 41 via a bonding material S.
 本実施形態における絶縁板421は、例えばセラミック等の絶縁材料により形成されている。なお、絶縁板421を形成する絶縁材料としては、セラミック以外にも、紙フェノール、紙エポキシ、ガラスコンポジット、ガラスエポキシ、ガラスポリイミド、フッ素樹脂等を採用することができる。 The insulating plate 421 in this embodiment is made of an insulating material such as ceramic, for example. Note that as the insulating material forming the insulating plate 421, in addition to ceramics, paper phenol, paper epoxy, glass composite, glass epoxy, glass polyimide, fluororesin, etc. can be used.
 表面パターン422は、絶縁板421の第一面421aに形成された平面状に広がる銅箔等のパターンである。表面パターン422は、例えば、絶縁板421の第一面421aに接合等で固定された後、エッチング等がなされることにより形成される。 The surface pattern 422 is a pattern of copper foil or the like that is formed on the first surface 421a of the insulating plate 421 and spreads in a plane. The surface pattern 422 is formed, for example, by being fixed to the first surface 421a of the insulating plate 421 by bonding or the like and then etching or the like.
 表面パターン422は、絶縁板421の第一面421a上に複数配置されている。これら複数の表面パターン422は、絶縁板421が広がる方向で隙間を介して互いに隣接配置されている。本実施形態では、三つの表面パターン422が絶縁板421の第一面421a上に配置されている場合を一例として説明する。以下、説明の便宜上、これら三つの表面パターン422を第一表面パターン422a、第二表面パターン422b、及び第三表面パターン422cと称する。 A plurality of surface patterns 422 are arranged on the first surface 421a of the insulating plate 421. These plurality of surface patterns 422 are arranged adjacent to each other with a gap in the direction in which the insulating plate 421 spreads. In this embodiment, a case will be described as an example in which three surface patterns 422 are arranged on the first surface 421a of the insulating plate 421. Hereinafter, for convenience of explanation, these three surface patterns 422 will be referred to as a first surface pattern 422a, a second surface pattern 422b, and a third surface pattern 422c.
 第一表面パターン422a及び第二表面パターン422bは、コンデンサ3と直流電流の入出力をやり取りするためのパターンであり、表面パターン422に形成されるPN間のループにおける入口部分もしくは出口部分に相当する。本実施形態では、第一表面パターン422aにコンデンサ3における正極側端子3pの他端が接続されており、第二表面パターン422bにコンデンサ3における負極側端子3nの他端が接続されている。第三表面パターン422cには、パワー半導体素子423によって変換された交流電流を電力変換装置100の外部に設けられた負荷(図示省略)へ出力するための外部出力導体43が接続されている。 The first surface pattern 422a and the second surface pattern 422b are patterns for exchanging input and output of DC current with the capacitor 3, and correspond to an inlet portion or an outlet portion of a loop between PNs formed in the surface pattern 422. . In this embodiment, the other end of the positive terminal 3p of the capacitor 3 is connected to the first surface pattern 422a, and the other end of the negative terminal 3n of the capacitor 3 is connected to the second surface pattern 422b. An external output conductor 43 for outputting the alternating current converted by the power semiconductor element 423 to a load (not shown) provided outside the power conversion device 100 is connected to the third surface pattern 422c.
 パワー半導体素子423は、電圧や電流をオンオフするスイッチング動作により電力を変換する回路素子である。パワー半導体素子423は、例えば、IGBTやMOSFET等のスイッチング素子である。本実施形態では、一例として、パワー半導体にMOSFETを適用した場合を示している。これら四つのパワー半導体素子423は、回路基板42の表面パターン422に接続されている。なお、パワー半導体素子423にIGBTを使用する場合は、IGBTとは逆方向へ電流を流すダイオードを並列配置する必要がある。 The power semiconductor element 423 is a circuit element that converts power through a switching operation that turns on and off voltage and current. The power semiconductor element 423 is, for example, a switching element such as an IGBT or a MOSFET. This embodiment shows, as an example, a case where a MOSFET is applied to a power semiconductor. These four power semiconductor elements 423 are connected to the surface pattern 422 of the circuit board 42. Note that when an IGBT is used as the power semiconductor element 423, a diode that allows current to flow in the opposite direction to the IGBT needs to be arranged in parallel.
 本実施形態における四つのパワー半導体素子423は、二つの第一パワー半導体素子423aと、二つの第二パワー半導体素子423bとによって構成されている。第一パワー半導体素子423aは、第一表面パターン422aに接続されている。第二パワー半導体素子423bは、第三表面パターン422cに接続されている。 The four power semiconductor elements 423 in this embodiment are comprised of two first power semiconductor elements 423a and two second power semiconductor elements 423b. The first power semiconductor element 423a is connected to the first surface pattern 422a. The second power semiconductor element 423b is connected to the third surface pattern 422c.
 パワー半導体素子423がMOSFETの場合、パワー半導体素子423は、ドレインに相当する入力用端子(図示省略)が形成された入力面と、ソースに相当する出力用端子(図示省略)が形成された出力面と、パワー半導体素子423のスイッチングを制御するための制御信号入力用端子に相当するゲート(図示省略)とを有する。 When the power semiconductor element 423 is a MOSFET, the power semiconductor element 423 has an input surface on which an input terminal (not shown) corresponding to a drain is formed, and an output surface on which an output terminal (not shown) corresponding to a source is formed. and a gate (not shown) corresponding to a control signal input terminal for controlling switching of the power semiconductor element 423.
 パワー半導体素子423の入力面は、表面パターン422に接合材を介して電気的に接続されている。パワー半導体素子423の出力面には、導線としてのボンディングワイヤWbの一端が電気的に接続されている。ボンディングワイヤWbは、アルミニウム等の金属によって形成されている。即ち、第一面421aに形成された表面パターン422同士は、ワイヤボンディングによって電気的に接続されている。 The input surface of the power semiconductor element 423 is electrically connected to the surface pattern 422 via a bonding material. One end of a bonding wire Wb serving as a conducting wire is electrically connected to the output surface of the power semiconductor element 423. The bonding wire Wb is made of metal such as aluminum. That is, the surface patterns 422 formed on the first surface 421a are electrically connected to each other by wire bonding.
 第一パワー半導体素子423aの入力面は、第一表面パターン422aに接続されている。一端が第一パワー半導体素子423aの出力面に接続されたボンディングワイヤWbの他端は、第三表面パターン422cに接続されている。第二パワー半導体素子423bの入力面は、第三表面パターン422cに接続されている。一端が第二パワー半導体素子423bの出力面に接続されたボンディングワイヤWbの他端は、第二表面パターン422bに接続されている。 The input surface of the first power semiconductor element 423a is connected to the first surface pattern 422a. One end of the bonding wire Wb is connected to the output surface of the first power semiconductor element 423a, and the other end of the bonding wire Wb is connected to the third surface pattern 422c. The input surface of the second power semiconductor element 423b is connected to the third surface pattern 422c. One end of the bonding wire Wb is connected to the output surface of the second power semiconductor element 423b, and the other end of the bonding wire Wb is connected to the second surface pattern 422b.
 第一パワー半導体素子423aには、第一表面パターン422aを介して直流電力が入力され、第二パワー半導体素子423bには、第二表面パターン422b、及びこの第二表面パターン422bと第二パワー半導体素子423bとを接続するボンディングワイヤWbを介して直流電力が入力される。第一パワー半導体素子423aと第二パワー半導体素子423bとがスイッチング動作を行うことにより、上記の直流電力が交流電力へ変換され第三表面パターン422cへ出力される。 DC power is input to the first power semiconductor element 423a via the first surface pattern 422a, and the second power semiconductor element 423b has a second surface pattern 422b and a second surface pattern 422b and a second power semiconductor. DC power is input through the bonding wire Wb that connects the element 423b. When the first power semiconductor element 423a and the second power semiconductor element 423b perform a switching operation, the above DC power is converted to AC power and output to the third surface pattern 422c.
 パワー半導体素子423には、回路基板42の外部に設けられたゲート駆動用回路基板(図示省略)によって生成された制御信号が入力される。パワー半導体素子423は、この制御信号に従ってスイッチングを行う。なお、パワー半導体素子423がIGBTの場合、パワー半導体素子423は、コレクタに相当する入力面と、エミッタに相当する出力面と、制御信号入力用端子に相当するゲートとを有する。 A control signal generated by a gate driving circuit board (not shown) provided outside the circuit board 42 is input to the power semiconductor element 423. The power semiconductor element 423 performs switching according to this control signal. Note that when the power semiconductor element 423 is an IGBT, the power semiconductor element 423 has an input surface corresponding to a collector, an output surface corresponding to an emitter, and a gate corresponding to a control signal input terminal.
 なお、ベースプレート41の表面41aと絶縁板421の第二面421bに形成された裏面パターン424との接合、パワー半導体素子423と表面パターン422との接合、及び、ベースプレート41の裏面41bと冷却器5との接合に用いられる接合材には、例えば、半田や焼結材(金属等の粉末)等を採用することができる。 Note that the bonding between the front surface 41a of the base plate 41 and the back surface pattern 424 formed on the second surface 421b of the insulating plate 421, the bonding between the power semiconductor element 423 and the front surface pattern 422, and the bonding between the back surface 41b of the base plate 41 and the cooler 5 As the bonding material used for bonding, for example, solder, sintered material (powder of metal, etc.), etc. can be used.
 外部出力導体43は、パワー半導体素子423によって変換された後の交流電力を電力変換装置100の外部へ出力するための電気導体(バスバー)である。外部出力導体43は、銅等を含む金属により形成されている。外部出力導体43の一端は、回路基板42における第三表面パターン422cに接続されている。図1に示すように外部出力導体43の他端は、ケーシング1の出力側側面1bよりも外側に延びている。外部出力導体43の他端には、例えば、モータ等の負荷につながる電流出力用の配線(図示省略)が接続される。 The external output conductor 43 is an electric conductor (bus bar) for outputting the AC power converted by the power semiconductor element 423 to the outside of the power conversion device 100. The external output conductor 43 is made of metal containing copper or the like. One end of the external output conductor 43 is connected to the third surface pattern 422c on the circuit board 42. As shown in FIG. 1, the other end of the external output conductor 43 extends outward from the output side surface 1b of the casing 1. The other end of the external output conductor 43 is connected to, for example, a current output wiring (not shown) connected to a load such as a motor.
 ケース44は、ベースプレート41の表面41aに固定された状態で、外部出力導体43、及びコンデンサ3の接続導体3bを機械的に補強する部材である。ケース44は、例えば、合成樹脂材料(絶縁材料)等により形成されている。本実施形態におけるケース44を形成する材料には、例えば、PPS(ポリフェニレンサルファイド)を採用することができる。なお、PPS以外の合成樹脂材料を、ケース44に採用してもよい。ケース44は、ベースプレート41の表面41aに、例えば接着剤等によって固定されている。 The case 44 is a member that mechanically reinforces the external output conductor 43 and the connecting conductor 3b of the capacitor 3 while being fixed to the surface 41a of the base plate 41. The case 44 is made of, for example, a synthetic resin material (insulating material). For example, PPS (polyphenylene sulfide) can be used as the material for forming the case 44 in this embodiment. Note that the case 44 may be made of a synthetic resin material other than PPS. The case 44 is fixed to the surface 41a of the base plate 41 using, for example, adhesive.
 ケース44は、接続導体3bの正極側端子3p及び負極側端子3n、並びに外部出力導体43を外側から覆った状態で、回路基板42を外側から囲っている。図2及び図3に示すように、ケース44は、ベースプレート41の表面41aに沿う方向で、回路基板42を周囲から囲むケース44を成している。したがって、ケース44は、ベースプレート41とともに回路基板42が収容される空間を画成している。本実施形態では、説明の便宜上、回路基板42が収容されるこの空間を「ポッティング空間Rp」と称する。 The case 44 surrounds the circuit board 42 from the outside while covering the positive terminal 3p and negative terminal 3n of the connection conductor 3b and the external output conductor 43 from the outside. As shown in FIGS. 2 and 3, the case 44 surrounds the circuit board 42 in a direction along the surface 41a of the base plate 41. As shown in FIGS. Therefore, the case 44 defines a space in which the circuit board 42 is housed together with the base plate 41. In this embodiment, for convenience of explanation, this space in which the circuit board 42 is accommodated is referred to as a "potting space Rp."
 絶縁部45は、ポッティング空間Rp内に配置されている絶縁部45材である。ポッティング空間Rpには、外部から液状のポッティング材が充填され(ポッティング)、ポッティング空間Rp内で露出する部材を封止する。ポッティング空間Rp内に充填されたポッティング材は、所定の時間がかけられることで硬化し、ポッティング空間Rp内における各部材間、及び各部材とパワーモジュール40外部の空間とを電気的に絶縁する。 The insulating portion 45 is an insulating portion 45 material placed within the potting space Rp. The potting space Rp is filled with a liquid potting material from the outside (potting) to seal the members exposed within the potting space Rp. The potting material filled in the potting space Rp hardens over a predetermined period of time, and electrically insulates each member in the potting space Rp and between each member and the space outside the power module 40.
 本実施形態におけるポッティング材には、例えばシリコンゲルやエポキシ樹脂を用いることができる。なお、ポッティング材には、シリコンゲルやエポキシ樹脂以外の合成樹脂を採用してもよい。したがって、絶縁部45は、このポッティング材によって形成されている。ポッティング空間Rp内における絶縁部45は、回路基板42、ボンディングワイヤWb、外部出力導体43、及びコンデンサ3の接続導体3bのそれぞれの表面41aを覆うように配置されている。 For example, silicon gel or epoxy resin can be used as the potting material in this embodiment. Note that synthetic resins other than silicone gel and epoxy resin may be used as the potting material. Therefore, the insulating portion 45 is formed of this potting material. The insulating section 45 in the potting space Rp is arranged to cover each surface 41a of the circuit board 42, the bonding wire Wb, the external output conductor 43, and the connection conductor 3b of the capacitor 3.
(冷却器)
 図1に示すように、冷却器5は、主として電力変換部4のパワーモジュール40を冷却する装置である。冷却器5は、ケーシング1に積層されるように設けられており、ケーシング1に固定され一体化されている。冷却器5は、基部51と、放熱フィン52とを有している。なお、図3中では、基部51及び放熱フィン52は、点線で示されている。
(Cooler)
As shown in FIG. 1, the cooler 5 is a device that mainly cools the power module 40 of the power converter 4. The cooler 5 is provided so as to be stacked on the casing 1, and is fixed and integrated with the casing 1. The cooler 5 has a base 51 and radiation fins 52. In addition, in FIG. 3, the base 51 and the radiation fins 52 are shown by dotted lines.
 基部51は、板状を成している。基部51は、接合材を介して、パワーモジュール40におけるベースプレート41の裏面41bに接合される接合面51aと、この接合面51aとは反対側を向く放熱面51bとを有している。 The base 51 has a plate shape. The base portion 51 has a bonding surface 51a that is bonded to the back surface 41b of the base plate 41 in the power module 40 via a bonding material, and a heat dissipation surface 51b that faces opposite to the bonding surface 51a.
 接合面51aと放熱面51bとは、互いに平行を成した状態で背合わせになっている。放熱フィン52は、基部51の放熱面51bに複数配置されている柱状を成す部材である。各放熱フィン52は、基部51を中心に、パワーモジュール40とは反対の側へ放熱面51bから突出している。 The joint surface 51a and the heat radiation surface 51b are parallel to each other and are placed back to back. The radiation fins 52 are columnar members arranged in plural on the radiation surface 51b of the base 51. Each heat radiation fin 52 projects from the heat radiation surface 51b toward the side opposite to the power module 40 with the base 51 as the center.
 冷却器5には、例えば、外部から水等の液冷媒Wが導入される。基部51の放熱面51bと、放熱フィン52は、この外部から導入された液冷媒Wと接触することで冷却される。液冷媒Wは、パワーモジュール40から基部51及び放熱フィン52へ伝導した熱と熱交換して温められると同時に、パワーモジュール40を冷却する。 For example, a liquid refrigerant W such as water is introduced into the cooler 5 from the outside. The heat radiation surface 51b of the base 51 and the radiation fins 52 are cooled by contacting with the liquid refrigerant W introduced from the outside. The liquid refrigerant W is warmed by exchanging heat with the heat conducted from the power module 40 to the base 51 and the radiation fins 52, and at the same time cools the power module 40.
(制御基板)
 制御基板6は、パワーモジュール40におけるパワー半導体素子423等の駆動を制御する基板である。制御基板6は、パワーモジュール40と隙間を介した状態でケーシング1に収容されている。図2及び図3に示すように、制御基板6は、例えば、パワーモジュール40におけるベースプレート41に固定されたボルトB等によってパワーモジュール40側から支持されている。本実施形態では、このボルトBがベースプレート41及び制御基板6に締結されることで、制御基板6がケーシング1内でパワーモジュール40と隙間を介した状態で位置決めされている。なお、制御基板6とパワー半導体素子423とは、信号線等(図示省略)によって電気的に接続されている。
(control board)
The control board 6 is a board that controls the driving of the power semiconductor element 423 and the like in the power module 40. The control board 6 is housed in the casing 1 with a gap interposed between the control board 6 and the power module 40 . As shown in FIGS. 2 and 3, the control board 6 is supported from the power module 40 side by, for example, bolts B fixed to the base plate 41 of the power module 40. In this embodiment, the bolts B are fastened to the base plate 41 and the control board 6, so that the control board 6 is positioned within the casing 1 with a gap between it and the power module 40. Note that the control board 6 and the power semiconductor element 423 are electrically connected by a signal line or the like (not shown).
(遮熱部)
 遮熱部7は、パワーモジュール40から制御基板6へ熱が伝わることを抑制する。遮熱部7は、ケーシング1に収容されている。遮熱部7は、ケーシング1内をパワーモジュール40が配置された第一空間R1と、制御基板6が配置された第二空間R2とに区画する箱形形状を成している。本実施形態における遮熱部7は、平板部71と、複数の側壁板部72とを有している。
(heat shield)
The heat shield 7 suppresses heat from being transferred from the power module 40 to the control board 6. The heat shield 7 is housed in the casing 1. The heat shielding part 7 has a box shape that divides the inside of the casing 1 into a first space R1 where the power module 40 is placed and a second space R2 where the control board 6 is placed. The heat shielding part 7 in this embodiment has a flat plate part 71 and a plurality of side wall plate parts 72.
 平板部71は、板状を成している。平板部71は、パワーモジュール40と制御基板6との間の隙間に配置されている。平板部71は、この平板部71の厚みの部分に相当する面としての外縁部71aを有している。側壁板部72は、板状を成している。本実施形態における側壁板部72は、平板部71と一体を成すようにこの平板部71における四つの外縁部71aのそれぞれに接続された状態で、冷却器5の基部51の接合面51aに固定されている。側壁板部72の外縁部72aは、接合面51aに当接している。したがって、四つの側壁板部72は、平板部71と一体にケーシング1に収容されており、この平板部71と冷却器5における接合面51aとを接続している。 The flat plate portion 71 has a plate shape. The flat plate portion 71 is arranged in a gap between the power module 40 and the control board 6. The flat plate portion 71 has an outer edge portion 71a as a surface corresponding to the thickness of the flat plate portion 71. The side wall plate portion 72 has a plate shape. The side wall plate part 72 in this embodiment is fixed to the joint surface 51a of the base 51 of the cooler 5 while being connected to each of the four outer edges 71a of the flat plate part 71 so as to be integral with the flat plate part 71. has been done. The outer edge portion 72a of the side wall plate portion 72 is in contact with the joint surface 51a. Therefore, the four side wall plate parts 72 are housed in the casing 1 integrally with the flat plate part 71, and connect the flat plate part 71 and the joint surface 51a of the cooler 5.
 四つの側壁板部72のうち、隣り合う側壁板部72同士は一体に接続されている。したがって、ケーシング1内の空間は、これら平板部71と四つの側壁板部72とによって、パワーモジュール40が配置された第一空間R1と、制御基板6が配置された第二空間R2とに区画されている。本実施形態における第一空間R1の容積は、第二空間R2の容積よりも小さい。 Among the four side wall plate portions 72, adjacent side wall plate portions 72 are integrally connected to each other. Therefore, the space inside the casing 1 is divided by the flat plate portion 71 and the four side wall plate portions 72 into a first space R1 where the power module 40 is placed and a second space R2 where the control board 6 is placed. has been done. The volume of the first space R1 in this embodiment is smaller than the volume of the second space R2.
 四つの側壁板部72は、平板部71の広がる方向からパワーモジュール40を囲っている。即ち、四つの側壁板部72は、平板部71の面内方向からパワーモジュール40を囲っている。図3中では、紙面の都合上、四つの側壁板部72のうち、制御基板6を間に挟んだ状態で対向する二つの側壁板部72の断面のみが示されている。 The four side wall plate parts 72 surround the power module 40 from the direction in which the flat plate part 71 extends. That is, the four side wall plate parts 72 surround the power module 40 from the in-plane direction of the flat plate part 71. In FIG. 3, due to space limitations, only the cross sections of two of the four side wall plate parts 72 facing each other with the control board 6 sandwiched therebetween are shown.
 なお、詳細な図示は省略するが、平板部71には、例えば、パワーモジュール40におけるベースプレート41と制御基板6とを接続する上記のボルトBが挿通する孔等が形成されている。また、詳細な図示は省略するが、側壁板部72には、例えば、コンデンサ3の接続導体3b及びパワーモジュール40における外部出力導体43が挿通可能な孔や凹部等が形成されており、側壁板部72は、これら接続導体3b及び外部出力導体43と干渉しないようにケーシング1内に配置されている。 Although detailed illustrations are omitted, the flat plate portion 71 is formed with holes, for example, through which the bolts B mentioned above that connect the base plate 41 and the control board 6 in the power module 40 are inserted. Further, although detailed illustrations are omitted, holes and recesses through which the connection conductor 3b of the capacitor 3 and the external output conductor 43 of the power module 40 can be inserted, for example, are formed in the side wall plate part 72. The portion 72 is arranged within the casing 1 so as not to interfere with the connection conductor 3b and the external output conductor 43.
 平板部71は、この平板部71の板厚方向への熱伝導率よりも平板部71の面内方向への熱伝導率が高い熱伝導材によって形成されている。また、側壁板部72は、この側壁板部72の板厚方向への熱伝導率よりも側壁板部72の面内方向への熱伝導率が高い熱伝導材によって形成されている。本実施形態における平板部71及び側壁板部72は、グラフェンによって形成されている。 The flat plate portion 71 is formed of a thermally conductive material having higher thermal conductivity in the in-plane direction of the flat plate portion 71 than in the thickness direction of the flat plate portion 71. Further, the side wall plate portion 72 is formed of a thermally conductive material having higher thermal conductivity in the in-plane direction of the side wall plate portion 72 than in the thickness direction of the side wall plate portion 72 . The flat plate part 71 and the side wall plate part 72 in this embodiment are formed of graphene.
 ここで、図4を参照して、本実施形態における遮熱部7にパワーモジュール40から熱が伝わった際、この遮熱部7における熱が移動する方向を説明する。図4中では、熱が移動する様子を実線の矢印で示している。遮熱部7中の熱は、この遮熱部7の平板部71及び側壁板部72それぞれの面内方向に移動するとともに、接合面51aに当接した側壁板部72の外縁部72aを通じて冷却器5の基部51及び放熱フィン52に移動する。つまり、パワーモジュール40が配置された第一空間R1側から遮熱部7に伝わった熱は、平板部71及び側壁板部72によって第二空間R2側へ移動することが抑制される。また、この熱は、これら平板部71及び側壁板部72に留まることがなく、側壁板部72から冷却器5における基部51及び放熱フィン52に伝導する。 Here, with reference to FIG. 4, the direction in which the heat moves in the heat shield part 7 when heat is transferred from the power module 40 to the heat shield part 7 in this embodiment will be explained. In FIG. 4, solid arrows indicate how heat moves. The heat in the heat shield part 7 moves in the in-plane direction of the flat plate part 71 and the side wall plate part 72 of the heat shield part 7, and is cooled through the outer edge part 72a of the side wall plate part 72 in contact with the joint surface 51a. Move to the base 51 and radiation fins 52 of the container 5. That is, the heat transmitted from the first space R1 side where the power module 40 is arranged to the heat shielding part 7 is suppressed from moving to the second space R2 side by the flat plate part 71 and the side wall plate part 72. Further, this heat does not remain in the flat plate portion 71 and the side wall plate portion 72, but is conducted from the side wall plate portion 72 to the base portion 51 and the radiation fins 52 in the cooler 5.
(放熱部)
 放熱部8は、遮熱部7中に熱が留まることを抑制する。放熱部8は、遮熱部7の平板部71及び側壁板部72に配置されている。本実施形態における放熱部8は、平板部71及び側壁板部72の面内方向に等間隔をあけて複数配置されている孔81である。つまり、各孔81は、これら平板部71及び側壁板部72を板厚方向に貫通し、第一空間R1及び第二空間R2の両方に開口している。
(heat dissipation part)
The heat dissipation section 8 suppresses heat from remaining in the heat shield section 7. The heat radiation part 8 is arranged on the flat plate part 71 and the side wall plate part 72 of the heat shield part 7. The heat radiation part 8 in this embodiment is a plurality of holes 81 arranged at equal intervals in the in-plane direction of the flat plate part 71 and the side wall plate part 72. That is, each hole 81 penetrates the flat plate part 71 and the side wall plate part 72 in the thickness direction, and opens into both the first space R1 and the second space R2.
 ここで、本実施形態における孔81の開口径は、この孔81が平板部71及び側壁板部72に形成されることでこれら平板部71及び側壁板部72の全体の表面41a積が低下しないように設定されている。即ち、孔81の内周面の面積は、孔81の開口面積の二倍よりも大きい。 Here, the opening diameter of the hole 81 in this embodiment is such that the area of the entire surface 41a of the flat plate part 71 and the side wall plate part 72 does not decrease because the hole 81 is formed in the flat plate part 71 and the side wall plate part 72. It is set as follows. That is, the area of the inner peripheral surface of the hole 81 is larger than twice the opening area of the hole 81.
(作用・効果)
 上記構成によれば、ケーシング1内の第一空間R1から第二空間R2へ熱の移動が抑制されるとともに、遮熱部7の平板部71及び側壁板部72に伝わった熱は、冷却器5へ移動する。また、孔81である放熱部8が平板部71及び側壁板部72に複数配置されているため、遮熱部7に熱が留まることを抑制することができる。したがって、放熱部8が配置されていない遮熱部7と比較して、遮熱部7に伝わった熱を遮熱部7に留まらせずに、この熱を冷却器5へ逃がすことができる。その結果、パワーモジュール40から制御基板6へ伝わる熱をより遮断することができる。
(action/effect)
According to the above configuration, the movement of heat from the first space R1 to the second space R2 in the casing 1 is suppressed, and the heat transmitted to the flat plate part 71 and the side wall plate part 72 of the heat shield part 7 is transferred to the cooler. Move to 5. Further, since a plurality of heat dissipating parts 8, which are holes 81, are arranged in the flat plate part 71 and the side wall plate part 72, it is possible to suppress heat from remaining in the heat shield part 7. Therefore, compared to the heat shield part 7 in which the heat radiation part 8 is not arranged, the heat transmitted to the heat shield part 7 can be released to the cooler 5 without being retained in the heat shield part 7. As a result, heat transmitted from the power module 40 to the control board 6 can be further blocked.
 また、上記構成によれば、遮熱部7の平板部71及び側壁板部72が、板厚方向への熱伝導率よりも面内方向への熱伝導率が高い熱伝導材によって形成されているため、第一空間R1から第二空間R2へ熱が移動することをより抑制しつつ、遮熱部7に熱が留まることをより抑制することができる。 Further, according to the above configuration, the flat plate part 71 and the side wall plate part 72 of the heat shielding part 7 are formed of a thermally conductive material having higher thermal conductivity in the in-plane direction than in the thickness direction. Therefore, it is possible to further suppress the heat from moving from the first space R1 to the second space R2, and to further suppress the heat from remaining in the heat shielding part 7.
(その他の実施形態)
 以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成は実施形態の構成に限られるものではなく、本開示の要旨を逸脱しない範囲内での構成の付加、省略、置換、及びその他の変更が可能である。
(Other embodiments)
Although the embodiments of the present disclosure have been described above in detail with reference to the drawings, the specific configurations are not limited to those of the embodiments, and additions and omissions of configurations may be made within the scope of the gist of the present disclosure. , substitutions, and other changes are possible.
 なお、第一実施形態で説明した放熱部8は、遮熱部7の平板部71及び側壁板部72を板厚方向に貫通する孔81であることに限定されない。図5に示すように、放熱部8は、パワーモジュール40が配置された第一空間R1側にのみ開口するディンプル82であってもよい。ディンプル82は、板厚方向で第一空間R1側から第二空間R2側へ凹む凹溝であり、内面10が球面状を成している。これによっても、放熱部8は、上記実施形態で説明した作用・効果を奏することができる。なお、ディンプル82は、制御基板6が配置された第二空間R2側にのみ開口してもよい。また、放熱部8は、例えば、第一空間R1側にのみ開口するディンプル82と、第二空間R2側にのみ開口するディンプル82との組合せによって実現されてもよい。 Note that the heat dissipation part 8 described in the first embodiment is not limited to the hole 81 that penetrates the flat plate part 71 and the side wall plate part 72 of the heat shield part 7 in the thickness direction. As shown in FIG. 5, the heat radiation part 8 may be a dimple 82 that opens only toward the first space R1 side where the power module 40 is arranged. The dimple 82 is a groove recessed from the first space R1 side to the second space R2 side in the plate thickness direction, and the inner surface 10 has a spherical shape. This also allows the heat radiating section 8 to achieve the functions and effects described in the above embodiment. Note that the dimple 82 may be opened only on the second space R2 side where the control board 6 is arranged. Further, the heat radiation section 8 may be realized by, for example, a combination of a dimple 82 that opens only to the first space R1 side and a dimple 82 that opens only to the second space R2 side.
 また、図6に示すように、放熱部8は、パワーモジュール40が配置された第一空間R1側にのみ突出するフィン83であってもよい。フィン83は、遮熱部7と一体に形成されており、遮熱部7と同一の材料によって形成されていてもよい。このフィン83は、例えば、直方体形状を成している。これによっても、放熱部8は、上記実施形態で説明した作用・効果を奏することができる。 Furthermore, as shown in FIG. 6, the heat dissipation section 8 may be a fin 83 that protrudes only toward the first space R1 side where the power module 40 is arranged. The fins 83 are formed integrally with the heat shield 7 and may be made of the same material as the heat shield 7. The fins 83 have, for example, a rectangular parallelepiped shape. This also allows the heat radiating section 8 to achieve the functions and effects described in the above embodiment.
 また、放熱部8は、遮熱部7の平板部71、または遮熱部7の側壁板部72の一方にのみ配置される構成であってもよい。即ち、放熱部8は、平板部71及び側壁板部72のうち一つ以上の面内方向に複数配置されていればよい。 Furthermore, the heat dissipation section 8 may be arranged only on one of the flat plate section 71 of the heat shield section 7 or the side wall plate section 72 of the heat shield section 7. That is, a plurality of heat radiating parts 8 may be arranged in the in-plane direction of one or more of the flat plate part 71 and the side wall plate part 72.
 また、上記実施形態で説明された遮熱部7の平板部71及び側壁板部72は、グラフェンによって形成される構成に限定されることはなく、例えば、ボロフェン等の材料によって形成されてもよい。したがって、上記実施形態で説明した平板部71及び側壁板部72は、板厚方向への熱伝導率よりも面内方向への熱伝導率が高い熱伝導材によって形成されていればよい。 Moreover, the flat plate part 71 and the side wall plate part 72 of the heat shielding part 7 described in the above embodiment are not limited to the structure formed of graphene, and may be formed of a material such as borophene, for example. . Therefore, the flat plate part 71 and the side wall plate part 72 described in the above embodiments may be formed of a thermally conductive material having higher thermal conductivity in the in-plane direction than in the thickness direction.
 また、上記実施形態で説明された側壁板部72は、ケーシング1の内面10における側面12に当接(面接触)する構成であってもよい。なお、内面10は四つの側面12と、冷却器5の基部51における接合面51aと対向した状態でこれら四つの側面を接続する天面11を有している。 Furthermore, the side wall plate portion 72 described in the above embodiment may be configured to abut (surface contact) with the side surface 12 of the inner surface 10 of the casing 1. Note that the inner surface 10 has four side surfaces 12 and a top surface 11 that connects these four side surfaces while facing the joint surface 51a of the base 51 of the cooler 5.
 また、上述した電力変換装置100は、遮熱部7の平板部71とパワーモジュール40との間に配置され、パワー半導体素子423のスイッチングを制御可能なゲート駆動用基板(図示省略)を更に備えてもよい。ゲート駆動用基板は、例えば、パワー半導体素子423におけるゲート、及び制御基板6と信号線等によって電気的に接続されている。また、ゲート駆動用基板には、例えば、上記のボルトBが挿通する孔81が形成されており、この孔81にボルトBが挿通することによって、ゲート駆動用基板がケーシング1内でパワーモジュール40側から支持されてもよい。
 したがって、遮熱部7は、上述した制御回路をケーシング1内でパワーモジュール40から熱的に保護する構成であればよい。
Further, the power conversion device 100 described above further includes a gate driving substrate (not shown) that is disposed between the flat plate portion 71 of the heat shielding portion 7 and the power module 40 and is capable of controlling switching of the power semiconductor element 423. It's okay. The gate driving substrate is electrically connected to, for example, the gate of the power semiconductor element 423 and the control substrate 6 by a signal line or the like. Further, the gate drive board is formed with a hole 81 through which the bolt B described above is inserted, and by inserting the bolt B into the hole 81, the gate drive board is inserted into the power module 40 within the casing 1. It may also be supported from the side.
Therefore, the heat shielding section 7 may have any configuration as long as it thermally protects the above-described control circuit from the power module 40 within the casing 1.
 また、図7に示すように、電力変換装置100は、ケーシング1に収容され、外部出力導体43を流れる電流値を検出可能な電流センサ9を更に備えてもよい。電流センサ9は、外部出力導体43と非接触状態で電流値を測定可能な貫通型電流センサ(カレントトランス)である。電流センサ9は、冷却器5における基部51の接合面51aに当接した状態で、外部出力導体43の一部の外面を取り囲むように配置されている。電力変換装置100が電流センサ9を備えている場合、上記実施形態で説明した遮熱部7の側壁板部72は、例えば、この電流センサ9に当接(面接触)してもよい。 Furthermore, as shown in FIG. 7, the power conversion device 100 may further include a current sensor 9 that is housed in the casing 1 and can detect the value of the current flowing through the external output conductor 43. The current sensor 9 is a through-type current sensor (current transformer) that can measure a current value without contacting the external output conductor 43. The current sensor 9 is arranged so as to surround a part of the outer surface of the external output conductor 43 while being in contact with the joint surface 51 a of the base 51 of the cooler 5 . When the power conversion device 100 includes the current sensor 9, the side wall plate portion 72 of the heat shielding portion 7 described in the above embodiment may, for example, come into contact with the current sensor 9 (surface contact).
 なお、上記実施形態では、電力変換装置100としてインバータを一例にして説明したが、電力変換装置100はインバータに限定されることはない。電力変換装置100は、例えば、コンバータや、インバータとコンバータとを組み合わせたもの等、パワー半導体素子423により電力変換を行う装置であってもよい。電力変換装置100がコンバータの場合は、外部の入力電源(図示省略)から外部出力導体43に交流電圧が入力されて回路基板42におけるパワー半導体素子423がこの交流電圧を直流電圧に変換し、パワー半導体素子423からの直流電圧が接続導体3bを通じて電力変換装置100の外部へ出力される構成であってもよい。 Note that in the embodiment described above, an inverter is used as an example of the power conversion device 100, but the power conversion device 100 is not limited to an inverter. The power conversion device 100 may be a device that performs power conversion using the power semiconductor element 423, such as a converter or a combination of an inverter and a converter. When the power conversion device 100 is a converter, an AC voltage is input from an external input power source (not shown) to the external output conductor 43, and the power semiconductor element 423 on the circuit board 42 converts this AC voltage into a DC voltage, and generates power. The structure may be such that the DC voltage from the semiconductor element 423 is output to the outside of the power conversion device 100 through the connection conductor 3b.
[付記]
 実施形態に記載の電力変換装置は、例えば以下のように把握される。
[Additional notes]
The power conversion device described in the embodiment can be understood, for example, as follows.
(1)第1の態様に係る電力変換装置100は、ケーシング1と、前記ケーシング1に収容されたコンデンサ3と、前記ケーシング1に収容され、前記コンデンサ3からの直流電圧を交流電圧に変換するパワーモジュール40と、前記パワーモジュール40を冷却する冷却器5と、前記パワーモジュール40と隙間を介した状態で前記ケーシング1に収容され、前記パワーモジュール40の駆動を制御する制御基板6と、前記ケーシング1に収容され、前記ケーシング1内を前記パワーモジュール40が配置された空間と前記制御基板6が配置された空間とに区画する遮熱部7と、前記遮熱部7に配置された放熱部8と、を備え、前記遮熱部7は、前記パワーモジュール40と前記制御基板6との間の前記隙間に配置された平板部71と、前記平板部71の外縁部71aと前記冷却器5とを接続することで、前記パワーモジュール40を前記平板部71の面内方向から囲む複数の側壁板部72と、を有し、前記放熱部8は、前記平板部71の面内方向及び前記側壁板部72の面内方向のうち一つ以上の面内方向に複数配置されている。 (1) The power conversion device 100 according to the first aspect includes a casing 1, a capacitor 3 housed in the casing 1, and a capacitor 3 housed in the casing 1, which converts a DC voltage from the capacitor 3 into an AC voltage. a power module 40, a cooler 5 that cools the power module 40, a control board 6 that is housed in the casing 1 with a gap between the power module 40 and the control board 6 that controls the drive of the power module 40; A heat shielding section 7 accommodated in the casing 1 and dividing the inside of the casing 1 into a space where the power module 40 is arranged and a space where the control board 6 is arranged; and a heat radiation disposed in the heat shielding section 7. The heat shielding part 7 includes a flat plate part 71 disposed in the gap between the power module 40 and the control board 6, and an outer edge part 71a of the flat plate part 71 and the cooler. 5, and a plurality of side wall plate parts 72 that surround the power module 40 from the in-plane direction of the flat plate part 71; A plurality of them are arranged in one or more in-plane directions of the side wall plate portion 72.
 これにより、ケーシング1内におけるパワーモジュール40が配置された空間から制御基板6が配置された空間への熱の移動が抑制されるとともに、遮熱部7の平板部71及び側壁板部72に伝わった熱は、冷却器5へ移動する。また、放熱部8が平板部71及び側壁板部72に複数配置されているため、遮熱部7に熱が留まることを抑制することができる。 As a result, heat transfer from the space in the casing 1 where the power module 40 is arranged to the space where the control board 6 is arranged is suppressed, and the heat is not transferred to the flat plate part 71 and the side wall plate part 72 of the heat shield part 7. The heat is transferred to the cooler 5. Further, since a plurality of heat dissipating parts 8 are arranged on the flat plate part 71 and the side wall plate part 72, it is possible to suppress heat from remaining in the heat shielding part 7.
(2)第2の態様に係る電力変換装置100は、前記第1の態様に係る電力変換装置100であって、前記放熱部8は、前記平板部71及び前記側壁板部72のうち一つ以上を板厚方向に貫通する孔81であってもよい。 (2) The power conversion device 100 according to the second aspect is the power conversion device 100 according to the first aspect, in which the heat radiation section 8 includes one of the flat plate section 71 and the side wall plate section 72. A hole 81 passing through the above in the thickness direction may be used.
 これにより、遮熱部7に熱が留まることをより高精度に抑制することができる。 Thereby, it is possible to suppress heat from remaining in the heat shielding part 7 with higher precision.
(3)第3の態様に係る電力変換装置100は、前記第1の態様に係る電力変換装置100であって、前記放熱部8は、前記パワーモジュール40が配置された前記空間側に開口するディンプル82であってもよい。 (3) The power conversion device 100 according to the third aspect is the power conversion device 100 according to the first aspect, in which the heat radiation section 8 opens toward the space side where the power module 40 is arranged. Dimples 82 may also be used.
 これにより、遮熱部7に熱が留まることをより高精度に抑制することができる。 Thereby, it is possible to suppress heat from remaining in the heat shielding part 7 with higher precision.
(4)第4の態様に係る電力変換装置100は、前記第1の態様に係る電力変換装置100であって、前記放熱部8は、前記パワーモジュール40が配置された前記空間側に突出するフィン83であってもよい。 (4) The power conversion device 100 according to the fourth aspect is the power conversion device 100 according to the first aspect, in which the heat radiation section 8 protrudes toward the space side in which the power module 40 is arranged. It may also be the fin 83.
 これにより、遮熱部7に熱が留まることをより高精度に抑制することができる。 Thereby, it is possible to suppress heat from remaining in the heat shielding part 7 with higher precision.
 (5)第5の態様に係る電力変換装置100は、前記第1の態様から前記第4の態様のうちいずれか1つに係る電力変換装置100であって、前記平板部71及び前記側壁板部72は、これら平板部71及び側壁板部72の板厚方向への熱伝導率よりもこれら平板部71及び側壁板部72の前記面内方向への熱伝導率が高い熱伝導材によって形成されていてもよい。 (5) The power conversion device 100 according to a fifth aspect is the power conversion device 100 according to any one of the first to fourth aspects, and includes the flat plate portion 71 and the side wall plate. The portion 72 is formed of a thermally conductive material having a higher thermal conductivity in the in-plane direction of the flat plate portion 71 and the side wall plate portion 72 than that of the flat plate portion 71 and the side wall plate portion 72 in the thickness direction. may have been done.
 これにより、遮熱部7によって区画されるケーシング1内の空間同士で熱が移動することをより抑制しつつ、遮熱部7の平板部71及び側壁板部72に熱が留まることをより抑制することができる。 This further suppresses heat transfer between the spaces in the casing 1 divided by the heat shielding part 7, and further suppresses heat staying in the flat plate part 71 and side wall plate part 72 of the heat shield part 7. can do.
 本開示によれば、パワーモジュールから制御基板へ伝わる熱をより遮断することができる電力変換装置を提供することができる。 According to the present disclosure, it is possible to provide a power conversion device that can further block heat transmitted from the power module to the control board.
 1…ケーシング 1a…入力側側面 1b…出力側側面 2…外部入力導体 3…コンデンサ 3a…本体部 3b…接続導体 3p…正極側端子 3n…負極側端子 4…電力変換部 5…冷却器 6…制御基板 7…遮熱部 8…放熱部 9…電流センサ 10…内面 11…天面 12…側面 40…パワーモジュール 41…ベースプレート 41a…表面 41b…裏面 42…回路基板 43…外部出力導体 44…ケース 45…絶縁部 51…基部 51a…接合面 51b…放熱面 52…放熱フィン 70…遮熱板 71a,72a…外縁部 71…平板部 72…側壁板部 81…孔 82…ディンプル 83…フィン 100…電力変換装置 421…絶縁板 421a…第一面 421b…第二面 422…表面パターン 422a…第一表面パターン 422b…第二表面パターン 422c…第三表面パターン 423…パワー半導体素子 423a…第一パワー半導体素子 423b…第二パワー半導体素子 424…裏面パターン B…ボルト R1…第一空間 R2…第二空間 Rp…ポッティング空間 S…接合材 W…液冷媒 Wb…ボンディングワイヤ 1...Casing 1a...Input side side 1b...Output side side 2...External input conductor 3...Capacitor 3a...Body part 3b...Connecting conductor 3p...Positive side terminal 3n...Negative side terminal 4...Power converter section 5...Cooler 6... Control board 7...Heat shield part 8...Heat radiation part 9...Current sensor 10...Inner surface 11...Top surface 12...Side surface 40...Power module 41...Base plate 41a...Front surface 41b...Back surface 42...Circuit board 43...External output conductor 44...Case 45... Insulating part 51... Base 51a... Joint surface 51b... Heat radiation surface 52... Heat radiation fin 70... Heat shield plate 71a, 72a... Outer edge part 71... Flat plate part 72... Side wall plate part 81... Hole 82... Dimple 83... Fin 100... Power conversion device 421...Insulating plate 421a...First surface 421b...Second surface 422...Surface pattern 422a...First surface pattern 422b...Second surface pattern 422c...Third surface pattern 423...Power semiconductor element 423a...First power semiconductor Element 423b... Second power semiconductor element 424... Back pattern B... Bolt R1... First space R2... Second space Rp... Potting space S... Bonding material W... Liquid refrigerant Wb... Bonding wire

Claims (5)

  1.  ケーシングと、
     前記ケーシングに収容されたコンデンサと、
     前記ケーシングに収容され、前記コンデンサからの直流電圧を交流電圧に変換するパワーモジュールと、
     前記パワーモジュールを冷却する冷却器と、
     前記パワーモジュールと隙間を介した状態で前記ケーシングに収容され、前記パワーモジュールの駆動を制御する制御基板と、
     前記ケーシングに収容され、前記ケーシング内を前記パワーモジュールが配置された空間と前記制御基板が配置された空間とに区画する遮熱部と、
     前記遮熱部に配置された放熱部と、
     を備え、
     前記遮熱部は、
     前記パワーモジュールと前記制御基板との間の前記隙間に配置された平板部と、
     前記平板部の外縁部と前記冷却器とを接続することで、前記パワーモジュールを前記平板部の面内方向から囲む複数の側壁板部と、
     を有し、
     前記放熱部は、前記平板部の面内方向及び前記側壁板部の面内方向のうち一つ以上の面内方向に複数配置されている
     電力変換装置。
    casing and
    a capacitor housed in the casing;
    a power module housed in the casing and converting DC voltage from the capacitor into AC voltage;
    a cooler that cools the power module;
    a control board that is housed in the casing with a gap in between the power module and controls the drive of the power module;
    a heat shield part that is housed in the casing and partitions the inside of the casing into a space where the power module is placed and a space where the control board is placed;
    a heat radiating section disposed in the heat shielding section;
    Equipped with
    The heat shield part is
    a flat plate portion disposed in the gap between the power module and the control board;
    a plurality of side wall plate parts surrounding the power module from an in-plane direction of the flat plate part by connecting an outer edge part of the flat plate part and the cooler;
    has
    A plurality of the heat radiating parts are arranged in one or more of the in-plane direction of the flat plate part and the in-plane direction of the side wall plate part. The power conversion device.
  2.  前記放熱部は、前記平板部及び前記側壁板部のうち一つ以上を板厚方向に貫通する孔である
     請求項1に記載の電力変換装置。
    The power conversion device according to claim 1, wherein the heat dissipation section is a hole that penetrates one or more of the flat plate section and the side wall plate section in the thickness direction.
  3.  前記放熱部は、前記パワーモジュールが配置された前記空間側に開口するディンプルである
     請求項1に記載の電力変換装置。
    The power conversion device according to claim 1, wherein the heat radiation section is a dimple that opens toward the space in which the power module is arranged.
  4.  前記放熱部は、前記パワーモジュールが配置された前記空間側に突出するフィンである
     請求項1に記載の電力変換装置。
    The power conversion device according to claim 1, wherein the heat radiation section is a fin that protrudes toward the space in which the power module is arranged.
  5.  前記平板部及び前記側壁板部は、これら平板部及び側壁板部の板厚方向への熱伝導率よりもこれら平板部及び側壁板部の前記面内方向への熱伝導率が高い熱伝導材によって形成されている
     請求項1から請求項4のうちいずれか一項に記載の電力変換装置。
    The flat plate portion and the side wall plate portion are made of a thermally conductive material having a higher thermal conductivity in the in-plane direction of the flat plate portion and the side wall plate portion than in the thickness direction of the flat plate portion and the side wall plate portion. The power converter device according to any one of claims 1 to 4, formed by.
PCT/JP2023/005823 2022-06-29 2023-02-17 Power conversion device WO2024004266A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-104478 2022-06-29
JP2022104478A JP2024004714A (en) 2022-06-29 2022-06-29 Power conversion device

Publications (1)

Publication Number Publication Date
WO2024004266A1 true WO2024004266A1 (en) 2024-01-04

Family

ID=89381917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005823 WO2024004266A1 (en) 2022-06-29 2023-02-17 Power conversion device

Country Status (2)

Country Link
JP (1) JP2024004714A (en)
WO (1) WO2024004266A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259787A (en) * 2004-03-09 2005-09-22 Nissan Motor Co Ltd Semiconductor device
JP2006339352A (en) * 2005-06-01 2006-12-14 Toyota Industries Corp Semiconductor device
JP2008085258A (en) * 2006-09-29 2008-04-10 Kyocera Corp Solar power generation device, and building comprising same
JP2013149748A (en) * 2012-01-18 2013-08-01 Taiyo Kagaku Kogyo Kk Photovoltaic power generation apparatus
JP2017055650A (en) * 2015-09-11 2017-03-16 株式会社日立産機システム Electric power conversion system
WO2021166256A1 (en) * 2020-02-21 2021-08-26 三菱電機株式会社 Outdoor unit for air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259787A (en) * 2004-03-09 2005-09-22 Nissan Motor Co Ltd Semiconductor device
JP2006339352A (en) * 2005-06-01 2006-12-14 Toyota Industries Corp Semiconductor device
JP2008085258A (en) * 2006-09-29 2008-04-10 Kyocera Corp Solar power generation device, and building comprising same
JP2013149748A (en) * 2012-01-18 2013-08-01 Taiyo Kagaku Kogyo Kk Photovoltaic power generation apparatus
JP2017055650A (en) * 2015-09-11 2017-03-16 株式会社日立産機システム Electric power conversion system
WO2021166256A1 (en) * 2020-02-21 2021-08-26 三菱電機株式会社 Outdoor unit for air conditioner

Also Published As

Publication number Publication date
JP2024004714A (en) 2024-01-17

Similar Documents

Publication Publication Date Title
KR101748639B1 (en) Power conversion apparatus
JP6349275B2 (en) Power converter
US8686601B2 (en) Power conversion apparatus for vehicle use
JP5206822B2 (en) Semiconductor device
WO2013018343A1 (en) Semiconductor module and inverter having semiconductor module mounted thereon
JP5664472B2 (en) Power converter
CN114446643B (en) Power conversion device
JP2004040900A (en) Semiconductor module and power converter
JP7208124B2 (en) Power converter and motor-integrated power converter
WO2024004266A1 (en) Power conversion device
WO2024004259A1 (en) Power conversion device
JP4038455B2 (en) Semiconductor device
WO2024004267A1 (en) Power module capacitor and power conversion device provided with same
WO2019142543A1 (en) Power semiconductor device
WO2023210099A1 (en) Power module and power conversion device
WO2013140703A1 (en) Power conversion device
WO2023286479A1 (en) Power conversion device
WO2023243207A1 (en) Semiconductor module and power conversion device
JP2020014278A (en) Power conversion device
JP7088094B2 (en) Semiconductor equipment
JP7343026B1 (en) power converter
JP7151582B2 (en) power converter
JP7267412B2 (en) POWER CONVERTER AND METHOD FOR MANUFACTURING POWER CONVERTER
WO2022215352A1 (en) Power module
WO2023032844A1 (en) Power conversion device and drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830722

Country of ref document: EP

Kind code of ref document: A1