WO2024004242A1 - 熱伝導性組成物、熱伝導性グリース及び熱伝導性シート - Google Patents

熱伝導性組成物、熱伝導性グリース及び熱伝導性シート Download PDF

Info

Publication number
WO2024004242A1
WO2024004242A1 PCT/JP2023/001993 JP2023001993W WO2024004242A1 WO 2024004242 A1 WO2024004242 A1 WO 2024004242A1 JP 2023001993 W JP2023001993 W JP 2023001993W WO 2024004242 A1 WO2024004242 A1 WO 2024004242A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
hydrocarbon group
conductive particles
group
resin composition
Prior art date
Application number
PCT/JP2023/001993
Other languages
English (en)
French (fr)
Inventor
岩井亮
服部真和
Original Assignee
富士高分子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士高分子工業株式会社 filed Critical 富士高分子工業株式会社
Priority to JP2023517994A priority Critical patent/JP7289023B1/ja
Publication of WO2024004242A1 publication Critical patent/WO2024004242A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a thermally conductive composition, a thermally conductive grease, and a thermally conductive sheet suitable for interposing between a heat-generating part of an electric/electronic component and a heat radiator.
  • thermally conductive sheets are used to improve the adhesion between the semiconductor and the heat radiator.
  • thermally conductive sheets are required to be soft and have high thermal conductivity.
  • patent documents 1 to 4 have been proposed as thermally conductive sheets.
  • thermally conductive compositions have a problem in that viscosity decreases in compositions containing thermally conductive particles whose surface has been treated with a surface treatment agent containing an aliphatic hydrocarbon functional group; Compositions containing thermally conductive particles whose surface has been treated with a surface treatment agent containing a functional group have too high a viscosity; Although it was possible to prevent the steady-state value of the compressive load from decreasing, there was a problem in that the viscosity increased.
  • the present invention provides a thermally conductive composition, a thermally conductive grease, and a thermally conductive sheet that have high thermal conductivity, suppress the decrease in steady-state compressive load value, and have an appropriate viscosity.
  • the thermally conductive composition of the present invention is a thermally conductive resin composition containing a matrix resin and thermally conductive particles, wherein the thermally conductive particles are surface-treated in advance with a surface treatment agent having an aromatic hydrocarbon group.
  • This is a thermally conductive resin composition containing thermally conductive particles A that have been treated with a heat-conducting material, and thermally conductive particles B that have been surface-treated in advance with a surface treatment agent having an aliphatic hydrocarbon group.
  • the thermally conductive grease of the present invention is a grease made from the aforementioned thermally conductive composition.
  • the thermally conductive sheet of the present invention is obtained by molding the aforementioned thermally conductive composition into a sheet.
  • the present invention includes thermally conductive particles A that include a matrix resin and thermally conductive particles, and that are surface-treated with a surface treatment agent having an aromatic hydrocarbon group, and that are surface-treated with a surface treatment agent that has an aliphatic hydrocarbon group.
  • thermally conductive particles B By containing the thermally conductive particles B, it is possible to provide a thermally conductive composition, a thermally conductive grease, and a thermally conductive sheet that have high thermal conductivity, suppress a decrease in the steady-state compressive load value, and have an appropriate viscosity.
  • FIG. 1 is a schematic cross-sectional view showing a method of using a thermally conductive sheet in an embodiment of the present invention.
  • FIG. 2 is a scanning electron micrograph (5,000x magnification) of plate-like particles (boron nitride) in an embodiment of the present invention.
  • FIG. 3 is a scanning electron micrograph (3,000x magnification) of a polyhedron (alumina) in an embodiment of the present invention.
  • FIG. 4 is a scanning electron micrograph (1,000x magnification) of molten spherical (alumina) in an embodiment of the present invention.
  • FIG. 5 is a scanning electron micrograph (10,000x magnification) of round fine particles (alumina) in an embodiment of the present invention.
  • the present invention is a thermally conductive composition containing a matrix resin and thermally conductive particles.
  • the matrix resin is preferably a thermosetting resin such as silicone rubber, silicone gel, acrylic rubber, fluororubber, epoxy resin, phenol resin, unsaturated polyester resin, melamine resin, acrylic resin, silicone resin, or fluororesin.
  • silicone is preferred, and elastomer, gel, putty, grease, etc. are preferred.
  • the elastomer and gel may be formed into sheets.
  • any curing method such as peroxide curing reaction, addition curing reaction, condensation curing reaction, etc. may be used. Silicone resin is preferred because it has high heat resistance.
  • the addition reaction type is preferable because it is not corrosive to the surrounding area, there are few by-products released outside the system, and it reliably hardens deep.
  • At least one of the thermally conductive particles A and B is preferably at least one inorganic particle selected from the group consisting of plate-like and polyhedral-like particles. It is further preferred that the thermally conductive particles A and B are both at least one inorganic particle selected from the group consisting of plate-like and polyhedral-like particles. This provides high thermal conductivity.
  • the thermal conductivity of the thermally conductive composition of the present invention is preferably 0.5 to 20 W/mK, more preferably 1 to 15 W/mK.
  • the thermally conductive particles are surface-treated in advance with a surface treatment agent, and the thermally conductive particles A are surface-treated with a surface treatment agent having an aromatic hydrocarbon group, and the surface treatment agent has an aliphatic hydrocarbon group.
  • Thermal conductive particles B are surface-treated.
  • the amount of thermally conductive particles A is 50 to 1,500 parts by weight, more preferably 100 to 1,200 parts by weight, and even more preferably 150 to 1,000 parts by weight based on 100 parts by weight of the matrix resin.
  • the amount of thermally conductive particles B is 50 to 1,500 parts by weight, more preferably 100 to 1,200 parts by weight, and still more preferably 150 to 1,000 parts by weight based on 100 parts by weight of the matrix resin. This provides favorable thermal conductivity.
  • the surface treatment agent having an aromatic hydrocarbon group has the chemical formula: R 21 SiR 22 x (OR 23 ) 3-x (However, R 11 is a monovalent aromatic hydrocarbon group having 1 to 18 carbon atoms that may contain a double bond, and is represented by the following chemical formula (1), chemical formula (2), chemical formula (3), or chemical formula (4 ) is a monovalent substituent represented by however, R 22 is a methyl group.
  • R 23 is a hydrocarbon group having 1 to 4 carbon atoms, and may be the same or different.
  • R 24 is a hydrocarbon group having 1 to 4 carbon atoms or a phenyl group, and may contain a double bond.
  • R 25 is (R 26 2 SiO) m divalent polysiloxane.
  • R 26 is a divalent aromatic hydrocarbon group having 6 to 30 carbon atoms, and may include a divalent aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • x 1 to 2
  • y 1 to 3
  • z 0 to 3
  • n integer of 1 to 4
  • An organic silane compound or an organic siloxane-containing organic silane compound represented by the following is preferable.
  • the surface treatment agent having an aromatic hydrocarbon group includes phenyltrimethoxysilane, benzyltriethoxysilane, phenylethyltriethoxysilane, phenylpropyltrimethoxylane, naphthyltrimethoxysilane, anthracenyltrimethoxylane, bis(trimethoxysilyl) ) benzene, bis(trimethoxysilylethyl)benzene, trimethoxysilylpolymethylphenylsiloxane oligomer at both ends, trimethoxysilylpolymethylphenylsiloxane oligomer at one end, trimethoxysilylethylpolymethylphenylsiloxane oligomer at one end Preferably, it is at least one compound.
  • the thermally conductive particles A preferably have an aromatic hydrocarbon group-containing surface treatment agent applied in an amount of 0.01 to 10.0 parts by mass, more preferably 100 parts by mass of the thermally conductive particles. is 0.05 to 8.0 parts by mass, more preferably 0.1 to 6 parts by mass.
  • the surface treatment agent having an aliphatic hydrocarbon group has the chemical formula: R 11 SiR 12 x (OR 13 ) 3-x (However, R 11 is an aliphatic carbon hydrogen group having 1 to 18 carbon atoms that may contain a monovalent double bond, and is represented by the following chemical formula (5), chemical formula (6), chemical formula (7), or chemical formula (8 ) is a monovalent substituent represented by however, R 12 is a methyl group.
  • R 13 is an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and may be the same or different.
  • R 14 is an aliphatic hydrocarbon group having 1 to 4 carbon atoms and may contain a double bond.
  • R 15 is (R 12 2 SiO) m divalent polysiloxane.
  • R 15 is an aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • R 16 is a divalent aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • x 1 to 2
  • y 1 to 3
  • z 0 to 3
  • n integer of 1 to 4
  • An organic silane compound or an organic siloxane-containing organic silane compound represented by the following is preferable.
  • the surface treatment agent having an aliphatic hydrocarbon group includes methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane (including n- and iso-), and butyltrimethoxysilane (including n- and iso-).
  • the amount of surface treatment agent having an aliphatic hydrocarbon group applied is preferably 0.01 to 10.0 parts by mass, more preferably 100 parts by mass of the thermally conductive particles.
  • the amount is 0.05 to 8.0 parts by weight, more preferably 0.1 to 6 parts by weight.
  • the amount of thermally conductive particles A is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and even more preferably 30 to 70% by mass.
  • the amount of thermally conductive particles B is preferably 90 to 10% by mass, more preferably 80 to 20% by mass, and still more preferably 70 to 30% by mass. .
  • the thermally conductive grease of the present invention is made of the aforementioned thermally conductive resin composition.
  • the thermally conductive sheet of the present invention is obtained by molding the aforementioned thermally conductive resin composition into a sheet.
  • a compound having the following composition is preferable.
  • a Thermal conductive particles surface treated with a surface treatment agent having an aromatic hydrocarbon group 50 to 1500 parts by mass based on 100 parts by mass of matrix resin
  • B Surface treated with a surface treatment agent having an aliphatic hydrocarbon group
  • Thermal conductive particles 50 to 1500 parts by mass C based on 100 parts by mass of matrix resin
  • the matrix resin component includes the following (C1) and (C2). (C1)+(C2) is 100% by mass.
  • (C2) Crosslinking component Containing at least two silicon-bonded hydrogen atoms in one molecule Even if the organohydrogenpolysiloxane contains an organopolysiloxane having no reactive groups other than the (C1) and (C2) components in an amount less than 1 mol per 1 mol of the silicon-bonded alkenyl group in the component A. good.
  • Other additives Curing retardant, coloring agent, etc.; arbitrary amount, silane coupling agent
  • the base polymer component is an organopolysiloxane containing two or more alkenyl groups bonded to a silicon atom in one molecule, and the organopolysiloxane containing two or more alkenyl groups is the main component ( base polymer component).
  • This organopolysiloxane has two silicon-bonded alkenyl groups each having 2 to 8, particularly 2 to 6 carbon atoms, such as a vinyl group or an allyl group, as alkenyl groups.
  • the viscosity at 25° C. is preferably 10 to 1,000,000 mPa ⁇ s, particularly 100 to 100,000 mPa ⁇ s from the viewpoint of workability and curing properties.
  • an organopolysiloxane represented by the following chemical formula (Chemical Formula 9) containing two or more alkenyl groups bonded to the silicon atom at the end of the molecular chain in one molecule is used.
  • the side chains are linear organopolysiloxanes capped with alkyl groups.
  • the viscosity at 25° C. is preferably 10 to 1,000,000 mPa ⁇ s from the viewpoint of workability, hardenability, etc.
  • this linear organopolysiloxane may contain a small amount of branched structure (trifunctional siloxane unit) in its molecular chain.
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bonds that are the same or different from each other
  • R 2 is an alkenyl group
  • k is 0 or a positive integer.
  • the unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond for R 1 preferably has 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, and specifically, , methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, alkyl group such as decyl group, phenyl group aryl groups such as tolyl, xylyl, and naphthyl groups; aralkyl groups such as benzyl, phenylethyl, and phenylpropyl; and some or all of the hydrogen atoms of these groups may be substituted with fluorine, bromine, chlorine, etc.
  • Examples include those substituted with a halogen atom, a cyano group, etc., such as a halogen-substituted alkyl group such as a chloromethyl group, a chloropropyl group, a bromoethyl group, and a trifluoropropyl group, and a cyanoethyl group.
  • the alkenyl group for R 2 is preferably one having 2 to 6 carbon atoms, particularly 2 to 3 carbon atoms, and specifically includes a vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, and hexenyl group.
  • k is generally 0 or a positive integer satisfying 0 ⁇ k ⁇ 10000, preferably 5 ⁇ k ⁇ 2000, more preferably an integer satisfying 10 ⁇ k ⁇ 1200. be.
  • the C1 component organopolysiloxane has 3 or more, usually 3 to 30 alkenyl groups bonded to silicon atoms having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms, such as vinyl groups and allyl groups in one molecule. , preferably an organopolysiloxane having about 3 to 20 atoms.
  • the molecular structure may be linear, cyclic, branched, or three-dimensional network.
  • it is a straight chain whose main chain is composed of repeating diorganosiloxane units, both ends of the molecular chain are blocked with triorganosiloxy groups, and whose viscosity at 25°C is 10 to 1,000,000 mPa ⁇ s, particularly 100 to 100,000 mPa ⁇ s. It is an organopolysiloxane.
  • the alkenyl group may be bonded to any part of the molecule.
  • it may include those bonded to a silicon atom at the end of the molecular chain or at a non-terminal (in the middle of the molecular chain) of the molecular chain.
  • the chemical formula (Chemical formula 10) below has 1 to 3 alkenyl groups on each silicon atom at both ends of the molecular chain (however, the alkenyl groups bonded to the silicon atoms at the ends of the molecular chain are If the total number of terminals is less than 3, it is a straight chain having at least one alkenyl group bonded to a silicon atom at a non-terminus (in the middle of the molecular chain) (for example, as a substituent in a diorganosiloxane unit).
  • a linear organopolysiloxane with a viscosity of 10 to 1,000,000 mPa ⁇ s at 25°C is desirable from the viewpoint of workability and curability. It may contain a structure (trifunctional siloxane unit) in the molecular chain.
  • R 3 is the same or different unsubstituted or substituted monovalent hydrocarbon groups, and at least one of them is an alkenyl group.
  • R 4 is an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bonds that are the same or different from each other,
  • R 5 is an alkenyl group, and l and m are 0 or a positive integer.
  • the monovalent hydrocarbon group R 3 preferably has 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, and specifically includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Alkyl groups such as isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group, aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group, benzyl group groups, aralkyl groups such as phenylethyl and phenylpropyl groups, alkenyl groups such as vinyl, allyl, propenyl, isopropenyl, butenyl, hexenyl, cyclohexenyl and octeny
  • the monovalent hydrocarbon group of R 4 preferably has 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, and may be exemplified by the same examples as the above-mentioned R 1 , but does not include an alkenyl group. .
  • the alkenyl group for R 5 is preferably one having 2 to 6 carbon atoms, particularly 2 to 3 carbon atoms, and specifically, the same as R 2 in the above chemical formula (Chemical formula 9) is exemplified, and preferably a vinyl group. It is. l, m are generally 0 or positive integers satisfying 0 ⁇ l+m ⁇ 10000, preferably 5 ⁇ l+m ⁇ 2000, more preferably 10 ⁇ l+m ⁇ 1200, and 0 ⁇ l/(l+m ) ⁇ 0.2, preferably an integer satisfying 0.0011 ⁇ l/(l+m) ⁇ 0.1.
  • Crosslinking component (C2 component)
  • the organohydrogenpolysiloxane of the C2 component of the present invention acts as a crosslinking agent, and a cured product is formed by an addition reaction (hydrosilylation) between the SiH group in this component and the alkenyl group in the C1 component. It is something.
  • Such organohydrogenpolysiloxane may be any one having two or more silicon-bonded hydrogen atoms (i.e., SiH groups) in one molecule, and the molecular structure of this organohydrogenpolysiloxane is as follows: may have a linear, cyclic, branched, or three-dimensional network structure, but the number of silicon atoms in one molecule (i.e., degree of polymerization) is about 2 to 1000, especially about 2 to 300. can be used.
  • the silicon atom to which the hydrogen atom is bonded there are no particular restrictions on the position of the silicon atom to which the hydrogen atom is bonded, and it may be at the end of the molecular chain or at the non-terminus of the molecular chain (in the middle of the molecular chain).
  • examples of the organic group bonded to a silicon atom other than a hydrogen atom include an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond similar to R 1 in the chemical formula (Chemical formula 9).
  • organohydrogenpolysiloxane as the C2 component examples include those having the following structure.
  • R 6 is the same or different alkyl group, phenyl group, epoxy group, acryloyl group, methacryloyl group, alkoxy group, or hydrogen atom, and at least two of them are hydrogen atoms.
  • L is an integer from 0 to 1,000, especially an integer from 0 to 300, and M is an integer from 1 to 200.
  • Catalyst component (D component) As the catalyst component of component D, a catalyst used in a hydrosilylation reaction can be used.
  • a catalyst used in a hydrosilylation reaction can be used.
  • platinum black platinum black, platinum chloride, chloroplatinic acid, reaction products of chloroplatinic acid and monohydric alcohol, complexes of chloroplatinic acid and olefins or vinyl siloxanes, platinum-based catalysts such as platinum bisacetoacetate, palladium-based catalysts, etc.
  • platinum-based catalysts such as platinum bisacetoacetate, palladium-based catalysts, etc.
  • platinum group metal catalysts such as catalysts and rhodium-based catalysts.
  • the thermally conductive particles of components A and B are preferably alumina, zinc oxide, magnesium oxide, aluminum nitride, boron nitride, aluminum hydroxide, silicon carbide, silica, or the like.
  • Various shapes can be used, such as spherical, scale-like, plate-like, and polyhedral shapes.
  • the specific surface area of the thermally conductive filler is preferably in the range of 0.06 to 15 m 2 /g.
  • the specific surface area is a BET specific surface area, and the measurement method follows JIS R1626 (1996). When using the average particle diameter, it is preferably in the range of 0.1 to 100 ⁇ m.
  • the particle size is measured by measuring the D50 (median diameter) of the volume-based cumulative particle size distribution using a laser diffraction light scattering method.
  • this measuring device for example, there is a laser diffraction/scattering type particle distribution measuring device LA-950S2 manufactured by Horiba, Ltd.
  • LA-950S2 laser diffraction/scattering type particle distribution measuring device
  • plate-like alumina, plate-like boron nitride, polyhedral alumina, polyhedral aluminum nitride, fused spherical alumina, fine rounded alumina, etc. are preferable.
  • Thermally conductive particles are also referred to as thermally conductive fillers or simply fillers.
  • the surface treatment of the thermally conductive particles with a silane coupling agent is preferably a dry treatment in which the thermally conductive particles are placed in a container using a high-speed stirring device such as a Henschel mixer, and then the surface treatment agent is added and mixed.
  • This surface treatment can also be carried out by a wet treatment method in which a surface treatment agent is mixed in a slurry form using a solvent, and the solvent is removed by volatilization. Dry processing is preferred because the processing operations are simple. In surface treatment by high-speed rotation, heating and depressurization operations may be performed simultaneously. Furthermore, in order to complete the treatment reaction, a step of heating at 80 to 180° C. for 1 to 24 hours may be included.
  • the amount of silane required to treat the surface of thermally conductive inorganic particles can be calculated using the following formula.
  • Amount of silane (g) Amount of thermally conductive inorganic powder (g) x Specific surface area of thermally conductive inorganic powder (m 2 /g) / Minimum coverage area of silane (m 2 /g)
  • the "minimum silane coverage area" is calculated using the following formula.
  • Minimum coverage area of silane (m 2 /g) (6.02 x 10 23 ) x (13 x 10 -20 ) / molecular weight of silane
  • 6.02 x 10 23 Avogadro's constant 13 x 10 -20 : Area covered by one molecule of silane (0.13 nm 2 )
  • the required amount of silane is preferably 0.5 times or more and 10 times or less, more preferably 0.8 times or more and 5 times or less of the "minimum silane coverage area" (hereinafter also referred to as Amin).
  • composition of the present invention may be added to the composition of the present invention as necessary.
  • heat resistance improvers such as red iron oxide, titanium oxide, and cerium oxide
  • flame retardant aids such as flame retardant aids, and hardening retarders
  • Organic or inorganic pigments may be added for the purpose of coloring or toning.
  • the aforementioned silane coupling agent may be added.
  • FIG. 1 is a schematic cross-sectional view of a heat dissipating structure 10 incorporating a thermally conductive sheet according to an embodiment of the present invention.
  • Thermal conductive sheet 11b is for dissipating heat generated by electronic components 13 such as semiconductor elements, and is fixed to main surface 12a of heat spreader 12 facing electronic component 13, and is placed between electronic component 13 and heat spreader 2. Being pinched. Further, the thermally conductive sheet 11a is sandwiched between the heat spreader 12 and the heat sink 15. The heat conductive sheets 11a and 11b together with the heat spreader 2 constitute a heat radiating member that radiates heat from the electronic component 13.
  • the heat spreader 12 is formed into a rectangular plate shape, for example, and has a main surface 12a facing the electronic component 13, and a side wall 12b erected along the outer periphery of the main surface 12a.
  • a heat conductive sheet 11b is provided on a main surface 12a surrounded by side walls 12b, and a heat sink 15 is provided on the other surface 12c opposite to the main surface 12a via the heat conductive sheet 11a.
  • the electronic component 13 is, for example, a semiconductor element such as a BGA, and is mounted on the wiring board 14.
  • Thermal conductive filler F1 Plate alumina (trade name AP-10: average particle size 9 ⁇ m, BET specific surface area 1.5 m 2 /g, aspect ratio 15, manufactured by DIC Corporation) - F2: Plate boron nitride (trade name HSL: average particle size 35 ⁇ m, BET specific surface area 2 m 2 /g, aspect ratio 38, manufactured by Dandong Chemical Engineering Institute), illustrated in FIG.
  • ⁇ F3 Polyhedral alumina (trade name AH40S: average particle size 32 ⁇ m, BET specific surface area 0.1 m 2 /g or less, manufactured by DIC Corporation)
  • ⁇ F4 Polyhedral aluminum nitride (trade name HF-20: average particle size 19 ⁇ m, BET specific surface area 0.2 m 2 /g, manufactured by Tokuyama Co., Ltd.)
  • - F5 Polyhedral alumina (trade name AA-3: average particle size 3.5 ⁇ m, BET specific surface area 0.6 m 2 /g, manufactured by Sumitomo Chemical Co., Ltd.), illustrated in FIG. 3.
  • - F6 Fused spherical alumina (trade name AZ35-75R: average particle size 38 ⁇ m, BET specific surface area 0.2 m 2 /g, manufactured by Nippon Steel Chemical & Materials Co., Ltd.), illustrated in FIG. 4.
  • - F7 Fine rounded alumina (trade name AKP-30: average particle size 0.3 ⁇ m, BET specific surface area 7.4 m 2 /g, manufactured by Sumitomo Chemical Co., Ltd.), illustrated in FIG.
  • thermally conductive compounds were manufactured and evaluated.
  • a thermally conductive compound was obtained by mixing the composition shown in Tables 3 and 4 using a rotation-revolution mixer (Maserstar KK-400W, manufactured by Kurabo Industries, Ltd.). Ta. The viscosity and thermal conductivity of the obtained thermally conductive resin compound were measured.
  • the silicone polymer (matrix resin) used in each Example and Comparative Example is as follows. CY52-276A/B: 2-component addition-curing dimethyl polysiloxane resin (dimethyl silicone) manufactured by Dow Toray Industries, Inc.
  • SH510-500CS Methylphenylpolysiloxane oil (methylphenyl silicone) manufactured by Dow Toray Industries, Inc.
  • SH200-110CS Dimethylpolysiloxane oil (dimethylsilicone) manufactured by Dow Toray Industries, Inc. The above conditions and results are shown in Tables 3 and 4.
  • Example 1 had high thermal conductivity and no decrease in viscosity was observed. Furthermore, when comparing Examples 2 to 3 in which the matrix resin was methylphenyl silicone and Comparative Example 3, the compositions of Examples 2 to 3 had high thermal conductivity and no decrease in viscosity was observed. Further, when comparing Example 4 with a filler ratio of 60 wt% and Comparative Examples 4 to 5, the composition of Example 4 had high thermal conductivity and no decrease in viscosity was observed. Furthermore, when comparing Example 5 with Comparative Examples 6 and 7, the composition of Example 5 had high thermal conductivity and no decrease in viscosity was observed.
  • thermally conductive sheets were manufactured and evaluated.
  • a two-component heat-curable silicone polymer was used as the matrix resin component.
  • a component (1A) to which a base polymer component and a platinum-based metal catalyst were added in advance, and a component (1B) to which a base polymer component and a crosslinking component were added in advance were used.
  • a plate-shaped thermally conductive filler and a non-plate-shaped inorganic filler were mixed with these base polymers using an autorotation-revolution mixer, and after defoaming, the sample was sandwiched between polyester (PET) films and rolled to a thickness of 2.0 mm. It was held for 15 minutes to perform heat curing.
  • Table 5 shows the hardness (Asker-C), instantaneous value/steady value change of compressive load, and thermal conductivity of the obtained thermally conductive silicone sheet.
  • thermally conductive composition and thermally conductive sheet of the present invention are suitable for interposing between a heat generating part and a heat radiator of an electric/electronic component or the like.

Abstract

マトリックス樹脂と熱伝導性粒子を含む熱伝導性樹脂組成物であって、前記熱伝導性粒子は、芳香族炭化水素基を有する表面処理剤で予め表面処理された熱伝導性粒子Aと、脂肪族炭化水素基を有する表面処理剤で予め表面処理された熱伝導性粒子Bを含む組成物である。前記熱伝導性粒子A及びBの少なくとも一方は、板状及び多面体状からなる群から選ばれる少なくとも一つの無機粒子であるのが好ましい。これにより、高熱伝導度で圧縮荷重定常値の低下が抑えられ、適度な粘度を有する熱伝導性組成物、熱伝導性グリース及び熱伝導性シートを提供する。

Description

熱伝導性組成物、熱伝導性グリース及び熱伝導性シート
 本発明は、電気・電子部品等の発熱部と放熱体の間に介在させるのに好適な熱伝導性組成物、熱伝導性グリース及び熱伝導性シートに関する。
 近年のCPU等の半導体の性能向上はめざましくそれに伴い発熱量も膨大になっている。そのため発熱するような電子部品には放熱体が取り付けられ、半導体と放熱部との密着性を改善する為に熱伝導性シートが使われている。機器の小型化、高性能化、高集積化に伴い熱伝導性シートには柔らかさ、高熱伝導性が求められている。従来、熱伝導性シートとして特許文献1~4等が提案されている。
特表2021-518466号公報 再表2020-137970号公報 再表2018-088416号公報 特開2016-216523号公報
 しかし、従来の熱伝導性組成物は、脂肪族炭化水素官能基を含む表面処理剤で表面処理された熱伝導性粒子を含む組成物では、粘度が低下する問題があり、芳香族炭化水素系官能基を含む表面処理剤で表面処理された熱伝導性粒子を含む組成物では粘度が高くなりすぎ、
圧縮荷重の定常値低下は防げるが、粘度が上昇するという問題があった。
 本発明は前記従来の問題を解決するため、高熱伝導度で圧縮荷重定常値の低下が抑えられ、適度な粘度を有する熱伝導性組成物、熱伝導性グリース及び熱伝導性シートを提供する。
 本発明の熱伝導性組成物は、マトリックス樹脂と熱伝導性粒子を含む熱伝導性樹脂組成物であって、前記熱伝導性粒子は、芳香族炭化水素基を有する表面処理剤で予め表面処理された熱伝導性粒子Aと、脂肪族炭化水素基を有する表面処理剤で予め表面処理された熱伝導性粒子Bを含む熱伝導性樹脂組成物である。
 本発明の熱伝導性グリースは、前記の熱伝導性組成物をグリースとしたものである。
 本発明の熱伝導性シートは、前記の熱伝導性組成物がシートに成形されている。
 本発明は、マトリックス樹脂と熱伝導性粒子を含み、芳香族炭化水素基を有する表面処理剤で表面処理された熱伝導性粒子Aと、脂肪族炭化水素基を有する表面処理剤で表面処理された熱伝導性粒子Bを含むことにより、高熱伝導度で圧縮荷重定常値の低下が抑えられ、適度な粘度を有する熱伝導性組成物、熱伝導性グリース及び熱伝導性シートを提供できる。
図1は本発明の一実施形態における熱伝導性シートの使用方法を示す模式的断面図である。 図2は本発明の一実施形態における板状粒子(窒化ホウ素)の走査型電子顕微鏡写真(倍率5,000倍)である。 図3は本発明の一実施形態における多面体状(アルミナ)の走査型電子顕微鏡写真(倍率3,000倍)である。 図4は本発明の一実施形態における溶融球状(アルミナ)の走査型電子顕微鏡写真(倍率1,000倍)である。 図5は本発明の一実施形態における微粒丸み状(アルミナ)の走査型電子顕微鏡写真(倍率10,000倍)である。
 本発明は、マトリックス樹脂と熱伝導性粒子を含む熱伝導性組成物である。マトリックス樹脂は、シリコーンゴム、シリコーンゲル、アクリルゴム、フッ素ゴム、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、メラミン樹脂、アクリル樹脂、シリコーン樹脂、フッ素樹脂等の熱硬化性樹脂が好ましい。この中でもシリコーンが好ましく、エラストマー、ゲル、パテ又はグリースなどが好ましい。エラストマー及びゲルはシート成形されていてもよい。シリコーン樹脂の硬化システムは過酸化物硬化反応、付加硬化反応、縮合硬化反応等いかなる硬化方法を用いてもよい。シリコーン樹脂は耐熱性が高いことから好ましい。また、周辺への腐食性がないこと、系外に放出される副生成物が少ないこと、深部まで確実に硬化することなどの理由により付加反応型であることが好ましい。
 前記熱伝導性粒子A及びBの少なくとも一方は、板状及び多面体状からなる群から選ばれる少なくとも一つの無機粒子であることが好ましい。前記熱伝導性粒子A及びBがともに板状及び多面体状からなる群から選ばれる少なくとも一つの無機粒子であることがさらに好ましい。これにより、高い熱伝導性が得られる。本発明の熱伝導性組成物の好ましい熱伝導度は、0.5~20W/mKであり、より好ましくは1~15W/mKである。
 前記熱伝導性粒子は、予め表面処理剤で表面処理されており、芳香族炭化水素基を有する表面処理剤で表面処理された熱伝導性粒子Aと、脂肪族炭化水素基を有する表面処理剤で表面処理された熱伝導性粒子Bを含む。マトリックス樹脂100質量部に対して熱伝導性粒子Aは50~1500質量部であり、より好ましくは100~1200質量部、さらに好ましくは150~1000質量部である。熱伝導性粒子Bはマトリックス樹脂100質量部に対して50~1500質量部であり、より好ましくは100~1200質量部、さらに好ましくは150~1000質量部である。これにより、好ましい熱伝導性が得られる。
 前記芳香族炭化水素基を有する表面処理剤は、化学式:R21SiR22 (OR233-x
(但し、R11は炭素数1~18の2重結合を含んでも良い1価の芳香族炭化水素基であり、下記化学式(1)、化学式(2)、化学式(3)、又は化学式(4)で表される1価の置換基である。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
但し、
22はメチル基である。
23は炭素数1~4の炭化水素基であり、同じであっても異なっていても良い。
24は炭素数1~4の炭化水素基またはフェニル基であり、2重結合を含んでも良い。
25は(R26 SiO)の2価のポリシロキサンであり。
26は炭素数6~30の2価の芳香族炭化水素基であり、炭素数1~4の2価の脂肪族炭素水素基を含んでも良い。
x=1~2、y=1~3、z=0~3、n=1~4の整数、m=1~20の整数、p=0又は1)
で表される有機シラン化合物または有機シロキサン含有有機シラン化合物であることが好ましい。
 前記芳香族炭化水素基を有する表面処理剤は、フェニルトリメトキシシラン、ベンジルトリエトキシシラン、フェニルエチルトリエトキシシラン、フェニルプロピルトリメトキシラン、ナフチルトリメトキシシラン、アントラセニルトリメトキシラン、ビス(トリメトキシシリル)ベンゼン、ビス(トリメトキシシリルエチル)ベンゼン、両末端トリメトキシシリルポリメチルフェニルシロキサンオリゴマー、片末端トリメトキシシリルポリメチルフェニルシロキサンオリゴマー、片末端トリメトキシシリルエチルポリメチルフェニルシロキサンオリゴマーなる群から選ばれる少なくとも一つの化合物であることが好ましい。
 前記熱伝導性粒子Aは、熱伝導性粒子100質量部に対して、芳香族炭化水素基を有する表面処理剤の付与量は0.01~10.0質量部であることが好ましく、より好ましくは0.05~8.0質量部であり、さらに好ましくは0.1~6質量部である。
 前記脂肪族炭化水素基を有する表面処理剤は、化学式:R11SiR12 (OR133-x
(但し、R11は炭素数1~18の1価の2重結合を含んでも良い脂肪族炭素水素基であり、下記化学式(5)、化学式(6)、化学式(7)、又は化学式(8)で表される1価の置換基である。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
但し、
12はメチル基である。
13は炭素数1~4の脂肪族炭化水素基であり、同じであっても異なっていても良い。
14は炭素数1~4の脂肪族炭化水素基であり、2重結合を含んでも良い。
15は(R12 SiO)の2価のポリシロキサンであり。
15は炭素数1~4の脂肪族炭化水素基である。
16は炭素数1~4の2価の脂肪族炭素水素基である。
x=1~2、y=1~3、z=0~3、n=1~4の整数、m=1~20の整数、p=0又は1)
で表される有機シラン化合物または有機シロキサン含有有機シラン化合物であるのが好ましい。
 前記脂肪族炭化水素基を有する表面処理剤は、メチルトリメトキシシラン,エチルトリメトキシシラン,プロピルトリメトキシシラン(n-,iso-を含む),ブチルトリメトキシシラン(n-,iso-を含む),へキシルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、オクタデシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、メチルトリイソプロポキシシラン、ビス(トリメトキシシリル)エタン、ビス(トリメトキシシリル)オクタン、両末端トリメトキシシリルポリシロキサンオリゴマー、片末端トリメトキシシリルポリジメチルシロキサンオリゴマー、片末端トリメトキシシリルエチルポリジメチルシロキサンオリゴマーなる群から選ばれる少なくとも一つの化合物であるのが好ましい。
 熱伝導性粒子Bは、熱伝導性粒子100質量部に対して、脂肪族炭化水素基を有する表面処理剤の付与量は0.01~10.0質量部であることが好ましく、より好ましくは0.05~8.0質量部であり、さらに好ましくは0.1~6質量部である。
 熱伝導性粒子100質量%に対して、熱伝導性粒子Aは10~90質量%であることが好ましく、より好ましくは20~80質量%であり、さらに好ましくは30~70質量%である。また熱伝導性粒子100質量%に対して、熱伝導性粒子Bは90~10質量%であることが好ましく、より好ましくは80~20質量%であり、さらに好ましくは70~30質量%である。
 本発明の熱伝導性グリースは前記の熱伝導性樹脂組成物からなるものである。また、本発明の熱伝導性シートは、前記の熱伝導性樹脂組成物をシートに成形したものである。
 本発明の一例として、付加反応型シリコーン組成物(未硬化組成物)の場合は、下記組成のコンパウンドが好ましい。
A 芳香族炭化水素基を有する表面処理剤で表面処理された熱伝導性粒子:マトリックス樹脂100質量部に対して50~1500質量部
B 脂肪族炭化水素基を有する表面処理剤で表面処理された熱伝導性粒子:マトリックス樹脂100質量部に対して50~1500質量部
C マトリックス樹脂成分
 マトリックス樹脂成分は、下記(C1)(C2)を含む。(C1)+(C2)で100質量%とする。
(C1)1分子中に少なくとも2個のケイ素原子に結合したアルケニル基を含有する直鎖状オルガノポリシロキサン
(C2)架橋成分:1分子中に少なくとも2個のケイ素原子に結合した水素原子を含有するオルガノハイドロジェンポリシロキサンが、前記A成分中のケイ素原子結合アルケニル基1モルに対して、1モル未満の量
 前記(C1)(C2)成分以外に反応基を持たないオルガノポリシロキサンを含んでもよい。
D 白金系金属触媒:マトリックス樹脂成分に対して質量単位で0.01~1000ppmの量
E その他添加剤:硬化遅延剤、着色剤等;任意量、シランカップリング剤
 以下、各成分について説明する。
(1)ベースポリマー成分(C1成分)
 ベースポリマー成分は、一分子中にケイ素原子に結合したアルケニル基を2個以上含有するオルガノポリシロキサンであり、アルケニル基を2個以上含有するオルガノポリシロキサンは本発明のシリコーンゴム組成物における主剤(ベースポリマー成分)である。このオルガノポリシロキサンは、アルケニル基として、ビニル基、アリル基等の炭素原子数2~8、特に2~6の、ケイ素原子に結合したアルケニル基を一分子中に2個有する。粘度は25℃で10~1000000mPa・s、特に100~100000mPa・sであることが作業性、硬化性などから望ましい。
 具体的には、下記化学式(化9)で表される1分子中に2個以上かつ分子鎖末端のケイ素原子に結合したアルケニル基を含有するオルガノポリシロキサンを使用する。側鎖はアルキル基で封鎖された直鎖状オルガノポリシロキサンである。25℃における粘度は10~1000000mPa・sのものが作業性、硬化性などから望ましい。なお、この直鎖状オルガノポリシロキサンは少量の分岐状構造(三官能性シロキサン単位)を分子鎖中に含有するものであってもよい。
Figure JPOXMLDOC01-appb-C000017
 式中、R1は互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基であり、Rはアルケニル基であり、kは0又は正の整数である。ここで、R1の脂肪族不飽和結合を有さない非置換又は置換の一価炭化水素基としては、例えば、炭素原子数1~10、特に1~6のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、並びに、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基、シアノエチル基等が挙げられる。Rのアルケニル基としては、例えば炭素原子数2~6、特に2~3のものが好ましく、具体的にはビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられ、好ましくはビニル基である。化学式(9)において、kは、一般的には0≦k≦10000を満足する0又は正の整数であり、好ましくは5≦k≦2000、より好ましくは10≦k≦1200を満足する整数である。
 C1成分のオルガノポリシロキサンとしては一分子中に例えばビニル基、アリル基等の炭素原子数2~8、特に2~6のケイ素原子に結合したアルケニル基を3個以上、通常、3~30個、好ましくは、3~20個程度有するオルガノポリシロキサンを併用しても良い。分子構造は直鎖状、環状、分岐状、三次元網状のいずれの分子構造のものであってもよい。好ましくは、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された、25℃での粘度が10~1000000mPa・s、特に100~100000mPa・sの直鎖状オルガノポリシロキサンである。
 アルケニル基は分子のいずれかの部分に結合していればよい。例えば、分子鎖末端、あるいは分子鎖非末端(分子鎖途中)のケイ素原子に結合しているものを含んでも良い。なかでも下記化学式(化10)で表される分子鎖両末端のケイ素原子上にそれぞれ1~3個のアルケニル基を有し(但し、この分子鎖末端のケイ素原子に結合したアルケニル基が、両末端合計で3個未満である場合には、分子鎖非末端(分子鎖途中)のケイ素原子に結合したアルケニル基を、(例えばジオルガノシロキサン単位中の置換基として)、少なくとも1個有する直鎖状オルガノポリシロキサンであって、上記でも述べた通り25℃における粘度が10~1,000,000mPa・sのものが作業性、硬化性などから望ましい。なお、この直鎖状オルガノポリシロキサンは少量の分岐状構造(三官能性シロキサン単位)を分子鎖中に含有するものであってもよい。
Figure JPOXMLDOC01-appb-C000018
 式中、Rは互いに同一又は異種の非置換又は置換一価炭化水素基であって、少なくとも1個がアルケニル基である。Rは互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基であり、Rはアルケニル基であり、l,mは0又は正の整数である。ここで、Rの一価炭化水素基としては、炭素原子数1~10、特に1~6のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、オクテニル基等のアルケニル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基やシアノエチル基等が挙げられる。
 また、Rの一価炭化水素基としても、炭素原子数1~10、特に1~6のものが好ましく、上記R1の具体例と同様のものが例示できるが、但しアルケニル基は含まない。Rのアルケニル基としては、例えば炭素数2~6、特に炭素数2~3のものが好ましく、具体的には前記化学式(化9)のRと同じものが例示され、好ましくはビニル基である。l,mは、一般的には0<l+m≦10000を満足する0又は正の整数であり、好ましくは5≦l+m≦2000、より好ましくは10≦l+m≦1200で、かつ0<l/(l+m)≦0.2、好ましくは、0.0011≦l/(l+m)≦0.1を満足する整数である。
(2)架橋成分(C2成分)
 本発明のC2成分のオルガノハイドロジェンポリシロキサンは架橋剤として作用するものであり、この成分中のSiH基とC1成分中のアルケニル基とが付加反応(ヒドロシリル化)することにより硬化物を形成するものである。かかるオルガノハイドロジェンポリシロキサンは、一分子中にケイ素原子に結合した水素原子(即ち、SiH基)を2個以上有するものであればいずれのものでもよく、このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよいが、一分子中のケイ素原子の数(即ち、重合度)は2~1000、特に2~300程度のものを使用することができる。
 水素原子が結合するケイ素原子の位置は特に制約はなく、分子鎖の末端でも分子鎖非末端(分子鎖途中)でもよい。また、水素原子以外のケイ素原子に結合した有機基としては、前記化学式(化9)のRと同様の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基が挙げられる。
 C2成分のオルガノハイドロジェンポリシロキサンとしては下記構造のものが例示できる。
Figure JPOXMLDOC01-appb-C000019
 上記の式中、Rは互いに同一又は異種のアルキル基、フェニル基、エポキシ基、アクリロイル基、メタアクリロイル基、アルコキシ基、水素原子であり、少なくとも2つは水素原子である。Lは0~1,000の整数、特には0~300の整数であり、Mは1~200の整数である。
(3)触媒成分(D成分)
 D成分の触媒成分はヒドロシリル化反応に用いられる触媒を用いることができる。例えば白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類やビニルシロキサンとの錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。
(4)熱伝導性粒子(A及びB成分)
 A及びB成分の熱伝導性粒子は、アルミナ,酸化亜鉛,酸化マグネシウム、窒化アルミニウム、窒化ホウ素、水酸化アルミニウム、炭化ケイ素又はシリカなどが好ましい。形状は球状、鱗片状、板状、多面体状等様々なものを使用できる。熱伝導性充填剤の比表面積は0.06~15m/gの範囲が好ましい。比表面積はBET比表面積であり、測定方法はJIS R1626(1996)にしたがう。平均粒子径を用いる場合は、0.1~100μmの範囲が好ましい。粒子径の測定はレーザー回折光散乱法により、体積基準による累積粒度分布のD50(メジアン径)を測定する。この測定器としては、例えば堀場製作所社製のレーザー回折/散乱式粒子分布測定装置LA-950S2がある。この中でも板状アルミナ、板状窒化ホウ素、多面体状アルミナ、多面体状窒化アルミニウム、溶融球状アルミナ、微粒丸み状アルミナなどが好ましい。熱伝導性粒子は熱伝導性フィラー、又は単にフィラーともいう。
 熱伝導性粒子のシランカップリング剤による表面処理は、ヘンシェルミキサー等の高速撹拌装置を用いて、容器に熱伝導性粒子を入れた後、表面処理剤を投入混合する乾式処理が望ましい。この表面処理は溶剤を用いて表面処理剤をスラリー状で混合し、溶剤を揮発させて除去する湿式処理で行う方法も可能である。処理操作が単純であることから、乾式処理が好ましい。高速回転による表面処理において加熱、減圧操作を同時に行っても良い。さらに処理反応を完結する目的で、80~180℃で1~24時間加熱する工程を含んでもよい。
  熱伝導性無機粒子の表面を処理するのに必要なシラン量は次式で計算することができる。
シラン量(g)=熱伝導性無機粉体の量(g)×熱伝導性無機粉体の比表面積(m/g)/シランの最小被覆面積(m/g)
「シランの最小被覆面積」は次の計算式で求める。
シランの最小被覆面積(m/g)=(6.02×1023)×(13×10-20)/シランの分子量
前記式中、6.02×1023:アボガドロ定数
13×10-20:1分子のシランが覆う面積(0.13nm
  必要なシラン量は「シランの最小被覆面積」(以下Aminともいう。)の0.5倍以上10倍以下が好ましく、より好ましくは0.8倍以上5倍以下である。これにより、マトリックス樹脂への熱伝導性無機粒子の充填性を向上できる。
(5)その他添加剤
 本発明の組成物には、必要に応じて前記以外の成分を配合することができる。例えばベンガラ、酸化チタン、酸化セリウムなどの耐熱向上剤、難燃助剤、硬化遅延剤などを添加してもよい。着色、調色の目的で有機或いは無機顔料を添加しても良い。前記のシランカップリング剤を添加してもよい。
 以下図面を用いて説明する。以下の図面において、同一符号は同一物を示す。図1は本発明の一実施形態における熱伝導性シートを放熱構造体10に組み込んだ模式的断面図である。熱伝導性シート11bは、半導体素子等の電子部品13の発する熱を放熱するものであり、ヒートスプレッダ12の電子部品13と対峙する主面12aに固定され、電子部品13とヒートスプレッダ2との間に挟持される。また、熱伝導シート11aは、ヒートスプレッダ12とヒートシンク15との間に挟持される。そして、熱 伝導シート11a,11bは、ヒートスプレッダ2とともに、電子部品13の熱を放熱する放熱部材を構成する。ヒートスプレッダ12は、例えば方形板状に形成され、電子部品13と対峙する主面12aと、主面12aの外周に沿って立設された側壁12bとを有する。ヒートスプレッダ2は、側壁12bに囲まれた主面12aに熱伝導シート11bが設けられ、また主面12aと反対側の他面12cに熱伝導シート11aを介してヒートシンク15が設けられる。電子部品13は、例えば、BGA等の半導体素子であり、配線基板14へ実装されている。
 以下実施例を用いて説明する。本発明は実施例に限定されるものではない。実施例及び比較例における各種測定方法は次のとおりである。
<熱伝導率>
(1)グリース:DYNTIM装置(Siemens社製)を使用し、ASTM D5470:2017に準拠して測定した。
(2)シート:Hotdisk装置(京都電子工業株式会社製)ISO-22007-2:2008に準拠して測定した。
<粘度>HAAKE MARSレオメーター(Thermo Scientific社製)を用いて、ASTMD1824-95:2010に準拠して測定した。
<圧縮荷重>
 タテ15mm、ヨコ15mm、厚さ2mmのシートを使用し、加圧速度5.0mm/分でASTMD575-91:2012に準拠して測定した。
<硬さ>
 熱伝導性シリコーンシートの硬さは、JIS K7312:1996に規定のAsker-Cとした。
1 原料
(1)熱伝導性フィラー
・F1:板状アルミナ(商品名AP-10:平均粒径9μm、BET比表面積1.5m/g、アスペクト比15、DIC株式会社製)
・F2:板状窒化ホウ素(商品名HSL:平均粒径35μm、BET比表面積2m/g、アスペクト比38、Dandong Chemical Engineering Institute社製)、図2に図示。
・F3:多面体状アルミナ(商品名AH40S:平均粒径32μm、BET比表面積0.1m/g以下、DIC株式会社製)
・F4:多面体状窒化アルミニウム(商品名HF-20:平均粒径19μm、BET比表面積0.2m/g、株式会社トクヤマ製)
・F5:多面体状アルミナ(商品名AA-3:平均粒径3.5μm、BET比表面積0.6m/g、住友化学株式会社製)、図3に図示。
・F6:溶融球状アルミナ(商品名AZ35-75R:平均粒径38μm、BET比表面積0.2m/g、日鉄ケミカル&マテリアル株式会社製)、図4に図示。
・F7:微粒丸み状アルミナ(商品名AKP-30:平均粒径0.3μm、BET比表面積7.4m/g、住友化学株式会社製)、図5に図示。
(2)表面処理剤
<芳香族炭化水素基を有する表面処理剤>
・S1:フェニルトリメトキシシラン(商品名KBM-103:化学式CSi(OCH、分子量198.3、信越化学工業株式会社製)
・S2:ベンジルトリエトキシシラン(商品名SIB0971.0:化学式CCHSi(OC、分子量254.4、Gelest社製)
<脂肪族炭化水素基を有する表面処理剤>
・S3:デシルトリメトキシラン(商品名OFS-6210:化学式n-C1021Si(OCH、分子量262.5、ダウ東レ株式会社製)
・S4:イソブチルトリエトキシシラン(商品名OFS-6403:化学式iso-CSi(OC、分子量178.3、ダウ東レ株式会社製)
・S5:α-トリエトキシシリルエチル,β-n-ブチル(ポリジメチルシロキサン)(商品名MCR-XT11:化学式C(CHSiO-(Si(CHO)-Si(CH-C-Si(OC、粘度:16-24cSt、Gelest社製)
・S6:メチルトリメトキシシラン(商品名:OFS-6070:化学式CHSi(OCH、分子量136.2、ダウ東レ株式会社製)
2 フィラーの表面処理
 板状熱伝導性フィラー(例えば前記F1)を100.0g、表面処理剤としてフェニルトリメトキシシラン(分子量=198.3)(例えば前記S1)0.35gを用いて、ワンダークラッシャーWC-3(大阪ケミカル株式会社製)を用いて乾式表面処理を行った。さらに120℃、12時間加熱処理を行って表面処理熱伝導性フィラーを得た。
 そのほかのフィラーについても、表1~2に示した組成で同様の処理を行った。
 熱重量分析を用いてそれぞれの表面処理剤の付着量を求めた。加熱処理により添加した表面処理剤(シラン化合物)の一部は揮発するので、残存する表面処理剤の付着量を熱重量分析で確認した。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 
(実施例1~5、比較例1~7)
 本実施例及び比較例は、熱伝導性コンパウンドを製造し、評価をした。
 上記に従い調整した熱伝導性フィラーを使用し、表3~4に示す組成で、自転公転ミキサー(マゼルスターKK-400W、クラボウ(株)製)を用いて混合することにより、熱伝導性コンパウンドを得た。得られた熱伝導性樹脂コンパウンドの粘度及び熱伝導率を測定した。
 各実施例、比較例で使用したシリコーンポリマー(マトリックス樹脂)は次のとおりである。
CY52-276A/B:ダウ・東レ株式会社製の2液付加硬化型ジメチルポリシロキサン樹脂(ジメチルシリコーン)
SH510-500CS:ダウ・東レ株式会社製のメチルフェニルポリシロキサンオイル(メチルフェニルシリコーン)
SH200-110CS:ダウ・東レ株式会社製のジメチルポリシロキサンオイル(ジメチルシリコーン)
 以上の条件と結果を表3~4に示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 表3~4から明らかなとおり、マトリックス樹脂がジメチルシリコーンである実施例1と比較例1~2を比較すると、実施例1の組成物は高熱伝導度で、粘度の低下も見られなかった。また、マトリックス樹脂がメチルフェニルシリコーンである実施例2~3と比較例3を比較すると、実施例2~3の組成物は高熱伝導度で、粘度の低下も見られなかった。
 また、フィラーの割合が60wt%の実施例4と比較例4~5を比較すると、実施例4の組成物は高熱伝導度で、粘度の低下も見られなかった。さらに、実施例5と比較例6~7を比較すると、実施例5の組成物は高熱伝導度で、粘度の低下も見られなかった。
(実施例6~8、比較例8~10)
 本実施例及び比較例は、熱伝導性シートを製造し、評価をした。
 マトリックス樹脂成分として二液加熱硬化型シリコーンポリマーを使用した。ベースポリマー成分と白金系金属触媒が予め添加されている成分(1A)、及びベースポリマー成分と架橋成分が予め添加されている成分(1B)を用いた。これらのベースポリマーに板状の熱伝導性フィラーおよび板状でない無機フィラーを自転公転ミキサーで混合し、脱泡後、ポリエステル(PET)フィルムに挟んで厚み2.0mmに圧延した試料を、100℃で15分間保持して加熱硬化を行った。
 得られた熱伝導性シリコーンシートの硬さ(Asker-C)、圧縮荷重の瞬間値/定常値変化、および熱伝導率について表5に示す。
Figure JPOXMLDOC01-appb-T000024
 表5から明らかなとおり、各実施例は比較例に比べて熱伝導率は高く、かつ圧縮荷重定常値の低下率は小さかった。圧縮荷重定常値の低下率が小さいと、放熱シートとしてデバイスに組み込んだ際の熱源と放熱フィンとのそれぞれの間隙の圧力低下が抑えられることにより、放熱特性が維持される。
 本発明の熱伝導性組成物及び熱伝導性シートは、電気・電子部品等の発熱部と放熱体の間に介在させるのに好適である。
10 放熱構造体
11a,11b 熱伝導性シート
12 ヒートスプレッダ
13 電子部品
14 配線基板
15 ヒートシンク
 

Claims (12)

  1.  マトリックス樹脂と熱伝導性粒子を含む熱伝導性樹脂組成物であって、
     前記熱伝導性粒子は、芳香族炭化水素基を有する表面処理剤で予め表面処理された熱伝導性粒子Aと、
     脂肪族炭化水素基を有する表面処理剤で予め表面処理された熱伝導性粒子Bを含むことを特徴とする熱伝導性樹脂組成物。
  2.  前記熱伝導性粒子A及びBの少なくとも一方は、板状及び多面体状からなる群から選ばれる少なくとも一つの無機粒子である請求項1に記載の熱伝導性樹脂組成物。
  3.  前記マトリックス樹脂100質量部に対して熱伝導性粒子Aは50~1500質量部であり、熱伝導性粒子Bは50~1500質量部である請求項1又は2に記載の熱伝導性樹脂組成物。
  4.  前記芳香族炭化水素基を有する表面処理剤は、化学式:R21SiR22 (OR233-x
    (但し、R11は炭素数1~18の2重結合を含んでも良い1価の芳香族炭化水素基であり、下記化学式(1)、化学式(2)、化学式(3)、又は化学式(4)で表される1価の置換基である。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    但し、
    22はメチル基である。
    23は炭素数1~4の炭化水素基であり、同じであっても異なっていても良い。
    24は炭素数1~4の炭化水素基またはフェニル基であり、2重結合を含んでも良い。
    25は(R26 SiO)の2価のポリシロキサンであり。
    26は炭素数6~30の2価の芳香族炭化水素基であり、炭素数1~4の2価の脂肪族炭素水素基を含んでも良い。
    x=1~2、y=1~3、z=0~3、n=1~4の整数、m=1~20の整数、p=0又は1)
    で表される有機シラン化合物または有機シロキサン含有有機シラン化合物である請求項1~3のいずれか1項に記載の熱伝導性樹脂組成物。
  5.  前記芳香族炭化水素基を有する表面処理剤は、フェニルトリメトキシシラン、ベンジルトリエトキシシラン、フェニルエチルトリエトキシシラン、フェニルプロピルトリメトキシラン、ナフチルトリメトキシシラン、アントラセニルトリメトキシラン、ビス(トリメトキシシリル)ベンゼン、ビス(トリメトキシシリルエチル)ベンゼン、両末端トリメトキシシリルポリメチルフェニルシロキサンオリゴマー、片末端トリメトキシシリルポリメチルフェニルシロキサンオリゴマー、片末端トリメトキシシリルエチルポリメチルフェニルシロキサンオリゴマーなる群から選ばれる少なくとも一つの化合物である請求項1~4のいずれか1項に記載の熱伝導性樹脂組成物。
  6.  前記熱伝導性粒子Aは、熱伝導性粒子100質量部に対して、芳香族炭化水素基を有する表面処理剤の付与量は0.01~10.0質量部である請求項1~5のいずれか1項に記載の熱伝導性樹脂組成物。
  7.  前記脂肪族炭化水素基を有する表面処理剤は、化学式:R11SiR12 (OR133-x
    (但し、R11は炭素数1~18の1価の2重結合を含んでも良い脂肪族炭素水素基であり、下記化学式(5)、化学式(6)、化学式(7)、又は化学式(8)で表される1価の置換基である。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    但し、
    12はメチル基である。
    13は炭素数1~4の脂肪族炭化水素基であり、同じであっても異なっていても良い。
    14は炭素数1~4の脂肪族炭化水素基であり、2重結合を含んでも良い。
    15は(R12 SiO)の2価のポリシロキサンであり。
    15は炭素数1~4の脂肪族炭化水素基である。
    16は炭素数1~4の2価の脂肪族炭素水素基である。
    x=1~2、y=1~3、z=0~3、n=1~4の整数、m=1~20の整数、p=0又は1)
    で表される有機シラン化合物または有機シロキサン含有有機シラン化合物である請求項1~6のいずれか1項に記載の熱伝導性樹脂組成物。
  8.  前記脂肪族炭化水素基を有する表面処理剤は、メチルトリメトキシシラン,エチルトリメトキシシラン,プロピルトリメトキシシラン(n-,iso-を含む),ブチルトリメトキシシラン(n-,iso-を含む),へキシルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、オクタデシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、メチルトリイソプロポキシシラン、ビス(トリメトキシシリル)エタン、ビス(トリメトキシシリル)オクタン、両末端トリメトキシシリルポリシロキサンオリゴマー、片末端トリメトキシシリルポリジメチルシロキサンオリゴマー、片末端トリメトキシシリルエチルポリジメチルシロキサンオリゴマーなる群から選ばれる少なくとも一つの化合物である請求項1~7のいずれか1項に記載の熱伝導性樹脂組成物。
  9.  前記熱伝導性粒子Bは、熱伝導性粒子100質量部に対して、脂肪族炭化水素基を有する表面処理剤の付与量は0.01~10.0質量部である請求項1~8のいずれか1項に記載の熱伝導性樹脂組成物。
  10.  前記熱伝導性粒子100質量%に対して、前記熱伝導性粒子Aは10~90質量%であり、前記熱伝導性粒子Bは90~10質量%の割合である請求項1~9のいずれか1項に記載の熱伝導性樹脂組成物。
  11.  請求項1~10のいずれか1項に記載の熱伝導性樹脂組成物からなる熱伝導性グリース。
  12.  請求項1~10のいずれか1項に記載の熱伝導性樹脂組成物を成形した熱伝導性シート。
     
PCT/JP2023/001993 2022-06-27 2023-01-24 熱伝導性組成物、熱伝導性グリース及び熱伝導性シート WO2024004242A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023517994A JP7289023B1 (ja) 2022-06-27 2023-01-24 熱伝導性組成物、熱伝導性グリース及び熱伝導性シート

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022102791 2022-06-27
JP2022-102791 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024004242A1 true WO2024004242A1 (ja) 2024-01-04

Family

ID=89381834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001993 WO2024004242A1 (ja) 2022-06-27 2023-01-24 熱伝導性組成物、熱伝導性グリース及び熱伝導性シート

Country Status (2)

Country Link
TW (1) TW202400706A (ja)
WO (1) WO2024004242A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209618A (ja) * 1998-01-27 1999-08-03 Matsushita Electric Works Ltd 熱伝導性シリコーンゴム組成物
JP2021021047A (ja) * 2019-07-30 2021-02-18 富士高分子工業株式会社 熱伝導性組成物及びその製造方法
JP6988023B1 (ja) * 2020-09-03 2022-01-05 富士高分子工業株式会社 熱伝導性シリコーン放熱材料
WO2022049816A1 (ja) * 2020-09-03 2022-03-10 富士高分子工業株式会社 熱伝導性シリコーン組成物及びその製造方法
WO2022049817A1 (ja) * 2020-09-03 2022-03-10 富士高分子工業株式会社 熱伝導性シリコーン組成物及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209618A (ja) * 1998-01-27 1999-08-03 Matsushita Electric Works Ltd 熱伝導性シリコーンゴム組成物
JP2021021047A (ja) * 2019-07-30 2021-02-18 富士高分子工業株式会社 熱伝導性組成物及びその製造方法
JP6988023B1 (ja) * 2020-09-03 2022-01-05 富士高分子工業株式会社 熱伝導性シリコーン放熱材料
WO2022049816A1 (ja) * 2020-09-03 2022-03-10 富士高分子工業株式会社 熱伝導性シリコーン組成物及びその製造方法
WO2022049817A1 (ja) * 2020-09-03 2022-03-10 富士高分子工業株式会社 熱伝導性シリコーン組成物及びその製造方法

Also Published As

Publication number Publication date
TW202400706A (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
KR102509813B1 (ko) 열전도성 조성물 및 이것을 사용한 열전도성 시트
JP5233325B2 (ja) 熱伝導性硬化物及びその製造方法
KR102255123B1 (ko) 열 전도성 복합 시트
KR102132243B1 (ko) 열전도성 실리콘 조성물 및 경화물, 및 복합 시트
KR20170075744A (ko) 방열 시트
JP7055255B1 (ja) 熱伝導性シリコーン組成物の製造方法
JP7285231B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP6692512B1 (ja) 熱伝導組成物及びこれを用いた熱伝導性シート
JP7289023B1 (ja) 熱伝導性組成物、熱伝導性グリース及び熱伝導性シート
JP7055254B1 (ja) 熱伝導性シリコーン組成物の製造方法
JP2018053260A (ja) 熱伝導性シリコーン組成物及び硬化物並びに複合シート
EP3310142A1 (en) Device heat dissipation method
WO2024004242A1 (ja) 熱伝導性組成物、熱伝導性グリース及び熱伝導性シート
KR102570407B1 (ko) 내열성 열전도성 조성물 및 내열성 열전도성 시트
WO2023135857A1 (ja) 熱伝導性組成物及びこれを用いた熱伝導性シートとその製造方法
WO2023162323A1 (ja) 熱伝導性組成物、熱伝導性シート及びその製造方法
JP7217079B1 (ja) 熱伝導性組成物及びこれを用いた熱伝導性シートとその製造方法
WO2023188491A1 (ja) 熱伝導性シリコーン組成物、熱伝導性シリコーンシート及びその製造方法
WO2021140694A1 (ja) 熱伝導性シリコーンゲル組成物
WO2023153233A1 (ja) 熱伝導性組成物およびその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830698

Country of ref document: EP

Kind code of ref document: A1