WO2024004078A1 - 負荷分散装置、負荷分散システム、負荷分散方法、および、負荷分散プログラム - Google Patents

負荷分散装置、負荷分散システム、負荷分散方法、および、負荷分散プログラム Download PDF

Info

Publication number
WO2024004078A1
WO2024004078A1 PCT/JP2022/025967 JP2022025967W WO2024004078A1 WO 2024004078 A1 WO2024004078 A1 WO 2024004078A1 JP 2022025967 W JP2022025967 W JP 2022025967W WO 2024004078 A1 WO2024004078 A1 WO 2024004078A1
Authority
WO
WIPO (PCT)
Prior art keywords
session
gateway
load balancing
upf
pdu session
Prior art date
Application number
PCT/JP2022/025967
Other languages
English (en)
French (fr)
Inventor
剛史 山田
健太 篠原
奨 中澤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/025967 priority Critical patent/WO2024004078A1/ja
Publication of WO2024004078A1 publication Critical patent/WO2024004078A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/2539Hiding addresses; Keeping addresses anonymous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1001Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
    • H04L67/1004Server selection for load balancing

Definitions

  • the present invention relates to a load distribution device, a load distribution system, a load distribution method, and a load distribution program.
  • Load balancing technology is a technology in which a load balancing device such as a load balancer improves integrated processing capacity by distributing the load to one of a plurality of processing servers to which the load is distributed. After processing the load for which the processing server is responsible, it will process another load. Therefore, in order to sequentially process a large number of loads, processing servers generally adopt a stateless method in which the state of the processed results does not need to be maintained after the processing results are returned. Below, stateless load balancing technology will be illustrated.
  • Non-Patent Document 1 describes a method for achieving load balancing on a service-by-service basis using a container orchestrator such as Kubernetes for web protocols such as HTTP (Hypertext Transfer Protocol) and HTTPS (Hytertext Transfer Protocol Secure). ing.
  • Non-Patent Document 2 describes a mechanism for executing load balancing on the appliance of a load balancer manufacturer for a relatively popular protocol used in public communication networks such as SIP (Session Initiation Protocol). has been done.
  • SIP Session Initiation Protocol
  • 5GC 5th Generation Core network
  • 5G 5th generation communication standard
  • 5G 5th generation communication standard
  • UPF User Plane Function
  • FIG. 13 is a configuration diagram showing an example of a 5GC system.
  • the 5GC system includes a DN (Data Network) 11, a UPF (User Plane Function) 21-23, a gNB (next Generation NodeB) 31, and an AMF (Access and Mobility Management Function) 32 as network functions (NF).
  • An SMF (Session Management Function) 33 and a UE (User Equipment) 41 are connected via a network.
  • the DN 11 is a variety of networks other than 5G, such as the Internet or a system equivalent to a telephone exchange such as IMS (IP Multimedia Subsystems).
  • the UPF 21-23 is a user plane function that transfers data (U plane) transferred from users, and operates as a processing server to which load is distributed.
  • the AMF 32 is an access and movement management function, and manages terminal location information and authentication information.
  • the SMF 33 is a load balancing device having a session management function, and manages PDU sessions in 5G.
  • gNB31 is a 5G base station that provides NR (New Radio) and accommodates UE41.
  • UE41 is a user terminal operated by a user, and is used to transmit and receive communication data to and from UPF21.
  • the IP address information of the UPF 21-23 will be disclosed to the outside (UE 41 side) if there is no terminal device between the gNB 31 and the UPF 21-23 (requirement 1).
  • FIG. 14 is a configuration diagram in which a NAT (Network Address Translation) device 34 is added to the 5GC system of FIG. 13.
  • the NAT device 34 discloses one global IP address to the UE 41 side, and executes address translation by NAT between the gNB 31 and the UPF 21-23.
  • the IP address information of the UPFs 21-23 satisfies (requirement 1) because the NAT device 34 hides the information.
  • (requirement 2) is not satisfied.
  • FIG. 15 is a configuration diagram in which a 4G (4th Generation Mobile Communication System) system is connected to the 5GC system of FIG. 13.
  • 4G systems also coexist.
  • an eNB (evolved Node B) 35 accommodating the UE 42 is connected to the UPF 21-23 similarly to the gNB 31.
  • the UPF 21-23 functions as an S-GW (Serving Gateway) and a P-GW (Packet data network Gateway) for 4G.
  • S-GW Serving Gateway
  • P-GW Packet data network Gateway
  • FIG. 16 is a configuration diagram in which C-plane signals and U-plane signals are added to the system of FIG. 15.
  • the C-plane indicated by a broken arrow notifies the UE 41 of the selection result (load distribution destination) of the UPF 21 that is in charge of the U-plane as a session partner through the illustrated route.
  • the U-plane indicated by the solid arrow is communication between the UE 41 and the DN 11 through the PDU session via the UPF 21 notified via the U-plane.
  • the C-plane and U-plane are separated, and the stateful C-plane and U-plane work together to establish call control processing for PDU sessions. Therefore, even if an attempt is made to distribute the load on the U-plane via the UPF 21 selected on the C-plane, it cannot be achieved using only the session information of the U-plane. For example, assume that the amount of communication between the UE 41 and the DN 11 increases. When the U-plane session information is associated with a fixed UPF 21, it is difficult to load-distribute part of the communication amount processed by the UPF 21 to the other UPFs 22 and 23. In other words, a load distribution mechanism that takes both the C-plane and the U-plane into consideration is required.
  • the main objective of the present invention is to realize stateful load distribution while concealing the internal network information of the load distribution destination.
  • the present invention is a load balancing device that manages information including session IDs, receiving a session establishment request including the session ID from a user terminal, selecting a processing server as a load distribution destination from a plurality of processing servers; responding to the user terminal with address information of a gateway that relays the session; By notifying the gateway of the ID of the session and the correspondence information with the selected processing server,
  • the present invention is characterized in that data signals that arrive from the user terminal to the gateway via a session are controlled to be transferred to the selected processing server.
  • stateful load distribution can be realized while concealing internal network information of load distribution destinations.
  • FIG. 1 is a configuration diagram showing a 5GC system according to the present embodiment.
  • FIG. 2 is a configuration diagram in which a proxy is added to the 5GC system of FIG. 1 according to the present embodiment.
  • 5 is a first sequence diagram in which the 5GC system executes a PDU session establishment procedure;
  • FIG. 5 is a second sequence diagram in which the 5GC system executes a PDU session establishment procedure;
  • FIG. 5 is a third sequence diagram in which the 5GC system executes a PDU session establishment procedure;
  • FIG. FIG. 2 is a configuration diagram emphasizing the C-plane path flowing from the UE to the UPF in the 5GC system of FIG. 1 according to the present embodiment.
  • FIG. 3 is a configuration diagram emphasizing the C-plane path flowing from the UE to the UPF in the 5GC system of FIG. 2 according to the present embodiment.
  • FIG. 7 is a configuration diagram emphasizing the return route of the C plane in FIG. 6 according to the present embodiment.
  • 8 is a configuration diagram emphasizing the return route of the C plane in FIG. 7 according to the present embodiment.
  • FIG. FIG. 9 is a configuration diagram emphasizing the route of the U plane transmitted after the C plane of FIG. 8 according to the present embodiment.
  • FIG. 9 is a configuration diagram emphasizing the route of the U plane transmitted after the C plane of FIG. 8 according to the present embodiment. It is a hardware configuration diagram of each device of the 5GC system of this embodiment regarding this embodiment.
  • FIG. 1 is a configuration diagram showing an example of a 5GC system.
  • FIG. 14 is a configuration diagram in which a NAT (Network Address Translation) device is added to the 5GC system of FIG. 13.
  • FIG. 14 is a configuration diagram in which a 4G (4th Generation Mobile Communication System) system is connected to the 5GC system of FIG. 13.
  • 16 is a configuration diagram in which a C-plane signal and a U-plane signal are added to the system of FIG. 15.
  • FIG. 1 is a configuration diagram showing the 5GC system of this embodiment.
  • the 5GC system in FIG. 1 differs from the 5GC system in FIG. 13 in that the SMF 33 is replaced with an SMF 33X, and a gateway 36 is added between the gNB 31 and the UPF 21-23. Thereby, the gateway 36 hides the configuration of the UPF 21-23, which is a group of containers targeted for load distribution, from the external UE 41.
  • the SMF 33X is provided with a function of linking (notifying) C-plane state information to the gateway 36.
  • the state information of the C-plane is the adjustment result of the PDU session, and is, for example, "correspondence information between the UPF 21 selected as the load distribution destination and the PDU session ID (TE-ID)", which will be described later.
  • the gateway 36 can perform load balancing on the U-plane by considering both the C-plane and the U-plane.
  • the SMF 33X manages information including PDU session IDs.
  • the SMF 33X controls the data signal that has arrived from the UE 41 to the gateway 36 via the PDU session to be transferred to the selected UPF (hereinafter, it will be explained assuming that the UPF 21 has been selected) by the following procedure. do.
  • the SMF 33X receives a PDU session establishment request including the PDU session ID from the UE 41, and selects the UPF 21 from the plurality of UPFs 21, 22, and 23 as a load distribution destination.
  • the SMF 33X responds to the UE 41 with address information of the gateway 36 that relays the PDU session.
  • the SMF 33X notifies the gateway 36 of the ID of the PDU session and the correspondence information with the selected UPF 21.
  • the gateway 36 converts the destination of the data signal received from the UE 41 via the PDU session from its own address information to the address information of the UPF 21 selected by referring to the corresponding information based on the ID of the PDU session.
  • FIG. 2 is a configuration diagram in which a proxy 37 is added to the 5GC system of FIG. 1.
  • Proxy 37 is connected between SMF 33X and UPF 21-23.
  • the function of notifying the C-plane state information to the gateway 36 is provided in the SMF 33X in FIG. 1, but is provided in the proxy 37 in FIG.
  • the proxy 37 receives a PDU session establishment request from the UE 41, transfers the establishment request to the SMF 33X, and notifies the gateway 36, instead of the SMF 33X, of the correspondence information between the PDU session ID and the UPF 21 selected by the SMF 33X. .
  • the influence on the existing SMF 33 can be reduced, and the amount of implementation changes to the existing SMF 33 can be reduced.
  • PDU session establishment procedure (standard sequence) as an example.
  • the PDU session establishment procedure is specified in Section 4.3.2.2 "UE Requested PDU Session Establishment" of the standardization specification "ETSI TS 123 502" published by the European Telecommunications Standards Institute (ETSI).
  • ETSI TS 123 502 published by the European Telecommunications Standards Institute (ETSI).
  • ETSI TS 123 502 published by the European Telecommunications Standards Institute
  • FIG. 3 is a first sequence diagram in which the 5GC system executes a PDU session establishment procedure.
  • the following configuration is further added to the 5GC system of FIG. 13.
  • - RAN Radio Access Network
  • PCF Policy Control Function
  • - UDM Unified Data Management
  • S101 is a process in which the UE 41 requests the AMF 32 to set up a PDU session including a PDU session ID (TE-ID) (PDU Session Establishment Request).
  • S102 is a process in which the AMF 32 selects the SMF 33X (SMF selection).
  • S103 is a process in which the AMF 32 requests the SMF 33X to perform session management for the request in S101 (Nsmf_PDUSession_CreateSMContext Request).
  • S104 is a process for causing the SMF 33X to read subscriber information corresponding to the session management requested in S103 and respond to the UDM 53 (Subscription retrieval/Subscription for updates).
  • S105 is a process in which the SMF 33X responds to the request in S103, including the subscriber information in S104, from the SMF 33X to the AMF 32 (Nsmf_PDUSession_CreateSMContext Response).
  • S106 is a process in which each device of the 5GC system performs authentication and authorization of PDU session settings (PDU Session authentication/authorization).
  • S107a is a process in which the SMF 33X selects the PCF 52 to be processed in S107b (PCF selection).
  • S107b is a process of setting an SM policy association from the SMF 33X to the PCF 52 (SM Policy Association Establishment) or a process of changing the SM policy association started by the SMF 33X (SMF initiated SM Policy Association Modification).
  • S108 is a process in which the SMF 33X selects the UPF 21 to be processed in S110a of FIG. 4 (UPF selection).
  • S109 is a process of changing the SM Policy Association Modification initiated by the SMF 33X from the SMF 33X to the PCF 52 (SMF initiated SM Policy Association Modification). After the process in S109, the process in FIG. 4 continues.
  • FIG. 4 is a second sequence diagram in which the 5GC system executes the PDU session establishment procedure.
  • S110a is a process in which the SMF 33X requests the UPF 21 to set up and change the N4 session (N4 Session Establishment/Modification Request).
  • S110b is a process of transmitting the response of S110a from the UPF 21 to the SMF 33X (N4 Session Establishment/Modification Response).
  • S111 is a process of transmitting an ACK to the PDU setting request from the SMF 33X to the AMF 32 (Namf_Communication_N1N2MessageTransfer). This ACK includes the IP address of the UPF 21 assigned to the PDU session ID.
  • S112 is a process of transmitting an N2 PDU session request (NAS message) from the AMF 32 to the RAN 51 (N2 PDU Session Request (NAS msg)).
  • NAS message N2 PDU Session Request
  • S113 is a process of setting the resources of the RAN 51 from the RAN 51 to the UE 41 (AN-specific resource setup (PDU Session Establishment Accept)).
  • S114 is a process of transmitting the response of S112 from the RAN 51 to the AMF 32 (N2 PDU Session Request Ack).
  • S114b is a process of transmitting first uplink data from the UE 41 to the UPF 21.
  • S115 is a process in which the AMF 32 requests the SMF 33X to update the PDU session (Nsmf_PDUSession_UpdateSMContext Request).
  • S116a is a process in which the SMF 33X requests the UPF 21 to modify the N4 session (N4 Session Modification Request).
  • S116b is a process of transmitting the response of S116a from the UPF 21 to the SMF 33X (N4 Session Modification Response).
  • FIG. 5 is a third sequence diagram in which the 5GC system executes the PDU session establishment procedure.
  • S116c is a process of registering a PDU session from the SMF 33X to the UDM 53 (Registration).
  • S116d is a process of transmitting first return data (First Downlink Data) from the UPF 21 to the UE 41.
  • S117 is a process in which the SMF 33X responds to S115 to the AMF 32 (Nsmf_PDUSession_UpdateSMContext Response).
  • S118 is a process in which the SMF 33X notifies the AMF 32 of the status of the PDU session (Nsmf_PDUSession_SMContextStatusNotify).
  • S119 is a process of setting an IPv6 address from the SMF 33X to the UPF 21 and the UE 41 (IPv6 Address Configuration).
  • S120 is a process of changing the SM Policy Association Modification initiated by the SMF 33X from the SMF 33X to the PCF 52 (SMF initiated SM Policy Association Modification).
  • S121 is a process of unsubscribing S116c from the SMF 33X to the UDM 53.
  • the PDU session establishment procedure of this embodiment differs from the standardized specifications in the following three points.
  • (Difference 1) A procedure is added in which the SMF 33X notifies the gateway 36 of the correspondence information between the UPF 21 selected as the load distribution destination and the PDU session ID (TE-ID).
  • (Difference 2) A procedure is added in which the SMF 33X notifies the UE 41 of the IP address of the gateway 36.
  • (Difference 3) The gateway 36 transfers the U-plane data to the UPF 21 corresponding to the PDU session ID.
  • the load balancing system of this embodiment completes preparations for data transfer by executing the process (difference 2) after the process (difference 1). After the preparation, the load balancing system of this embodiment executes the process of (difference 3).
  • a PDU session load distribution implementation method is realized in which the C-plane and the U-plane are linked while concealing the UPF 21 configuration.
  • FIG. 6 is a configuration diagram emphasizing the C-plane path flowing from the UE 41 to the UPF 21 in the 5GC system of FIG.
  • the C plane flows in the following order.
  • - UE41 ⁇ gNB31 ⁇ AMF32 A signal of S101 flows (requesting PDU session setting).
  • - AMF32 ⁇ SMF33X Signal S103 flows (requests session management for request S101).
  • the SMF 33X selects the UPF 21 (load distribution destination) in charge of the U plane (S108).
  • the SMF 33X may refer to the current load status of the UPFs 21-23 and change the previously determined load distribution destination UPF 21 to the UPF 22 or the UPF 23.
  • - SMF33X ⁇ UPF21 S110a signal flows (requests N4 session setting and change).
  • FIG. 7 is a configuration diagram emphasizing the C-plane path flowing from the UE 41 to the UPF 21 in the 5GC system of FIG.
  • the signal of S110a in FIG. 6 (SMF 33X ⁇ UPF 21) flows along the route of SMF 33X ⁇ proxy 37 ⁇ UPF 21 in FIG.
  • the other signal flows are the same in FIGS. 6 and 7.
  • FIG. 8 is a configuration diagram emphasizing the return route of the C plane in FIG. 6.
  • the C plane flows in the following order.
  • - UPF21 ⁇ SMF33X S110b signal flows (sends S110a response).
  • - SMF33X ⁇ AMF32 Signal S111 flows (sends ACK to PDU setting request).
  • the signal of S111 of the standard sequence included the IP address of the UPF 21 in charge of the U-plane for the PDU session ID.
  • the load balancing system of this embodiment includes the IP address information of the gateway 36 in the signal of S111 instead of the IP address of the UPF 21 (difference 2).
  • the IP address information of the gateway 36 is, for example, the IP address of an interface adjacent to the gNB 31 of the gateway 36 that aggregates the UPF 21. Thereby, the IP address information of the gateway 36 is notified to the UE 41 by being included in the subsequent signals of S112 and S113. Moreover, since the IP address of the UPF 21 is not notified to the UE 41, the configuration of the UPF 21 is hidden.
  • - SMF 33X ⁇ Gateway 36 A procedure for notifying the correspondence information between the UPF 21 selected to be in charge of the U-plane and the PDU session ID (TE-ID) is added to the standard sequence (difference 1). This procedure (difference 1) is preferably executed between S110b and S111, and completed before S113 at the latest.
  • - AMF32 ⁇ gNB31 (RAN51) S112 signal flows (transmits N2PDU session request).
  • - gNB31 (RAN51) ⁇ UE41 Signal of S113 flows (resources of RAN51 are set).
  • FIG. 9 is a configuration diagram emphasizing the return route of the C plane in FIG. The following are the differences between FIG. 8 and FIG. 9, and the other signal flows are the same between FIG. 8 and FIG. 9.
  • the signal of S110b in FIG. 8 (UPF21 ⁇ SMF33X) flows through the path of UPF21 ⁇ proxy 37 ⁇ SMF33X in FIG. -
  • the device that executes the procedure (difference 1) of notifying the gateway 36 of the correspondence information between the UPF 21 selected as the load distribution destination and the PDU session ID (TE-ID) is replaced by the proxy 37 from the SMF 33X.
  • FIG. 10 is a configuration diagram emphasizing the route of the U plane that is transmitted after the C plane in FIG. First, S114b (First Uplink Data) of the standard sequence is directly notified from the UE 41 to the UPF 21.
  • outbound data such as the first outbound data in S114b is transmitted in the order of UE41 ⁇ gNB31 ⁇ gateway 36 ⁇ UPF21 ⁇ DN11.
  • the gateway 36 receives the U-plane data from the UE 41 via the PDU session, it determines the UPF 21 to which the U-plane data is transferred (load distribution destination) through address translation processing (NAT: Network Address Translation). Then, the U-plane data is transferred to the UPF 21 (difference 3).
  • the address conversion process is a process in which the gateway 36 refers to the correspondence information notified in (difference 1) and converts the PDU session ID (TE-ID) into the IP address of the corresponding UPF 21. Thereby, the configuration of the UPF 21 is hidden from the UE 41.
  • the standard sequence S116d (First Downlink Data) is also sent via the gateway 36 in the order of DN 11 ⁇ UPF 21 ⁇ gateway 36 ⁇ gNB 31 ⁇ UE 41, instead of being directly notified from UPF 21 to UE 41. Therefore, the gateway 36 is notified of PDU session information for return data (Downlink Data) from the SMF 33X after S116b. This establishes a PDU session for return data.
  • FIG. 11 is a configuration diagram emphasizing the route of the U-plane transmitted after the C-plane in FIG. 8. Regardless of the presence or absence of the proxy 37, each data in FIG. 11 is also transmitted through the same route as in FIG. 10.
  • FIG. 12 is a hardware configuration diagram of each device (SMF 33X, gateway 36, etc.) of the 5GC system of this embodiment.
  • Each device of the 5GC system is configured as a computer 900 having a CPU 901, a RAM 902, a ROM 903, an HDD 904, a communication I/F 905, an input/output I/F 906, and a media I/F 907.
  • Communication I/F 905 is connected to external communication device 915.
  • the input/output I/F 906 is connected to the input/output device 916.
  • the media I/F 907 reads and writes data from the recording medium 917.
  • the CPU 901 controls each unit by executing a program (also called an application or an abbreviated application) read into the RAM 902 .
  • This program can also be distributed via a communication line or recorded on a recording medium 917 such as a CD-ROM.
  • the present invention is an SMF33X that manages information including PDU session ID, Upon receiving a PDU session establishment request including the PDU session ID from the UE 41, selects the UPF 21 as a load distribution destination from the plurality of UPFs 21, Responding to the UE 41 with address information of the gateway 36 that relays the PDU session, By notifying the gateway 36 of the ID of the PDU session and the correspondence information with the selected UPF 21, It is characterized in that it controls so that the data signal that reaches the gateway 36 from the UE 41 via the PDU session is transferred to the selected UPF 21.
  • the external UE 41 is not notified of the address information of the selected UPF 21, but is notified of the address information of the relaying gateway 36. Therefore, in an architecture in which the C-plane and the U-plane are separated, stateful load distribution can be realized while concealing internal network information of load distribution destinations.
  • the present invention is a load distribution system having an SMF 33X and a gateway 36,
  • the gateway 36 converts the destination of the data signal received from the UE 41 via the PDU session from its own address information to the address information of the UPF 21 selected by referring to the corresponding information based on the ID of the PDU session. It is characterized by
  • the load balancing system further includes a proxy 37,
  • the proxy 37 receives a PDU session establishment request from the UE 41, transfers the establishment request to the SMF 33X, and notifies the gateway 36 instead of the SMF 33X of the correspondence information between the PDU session ID and the UPF 21 selected by the SMF 33X. It is characterized by

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

SMF(33)は、UE(41)からPDUセッションのIDを含むPDUセッションの確立要求を受け、複数のUPF(21)から負荷分散先としてUPF(21)を選定し、PDUセッションを中継するゲートウェイ(36)のアドレス情報をUE(41)に応答し、PDUセッションのIDと、選定したUPF(21)との対応情報をゲートウェイ(36)に通知することで、UE(41)からPDUセッションを介してゲートウェイ(36)に届いたデータ信号が、選定したUPF(21)に転送されるように制御する。

Description

負荷分散装置、負荷分散システム、負荷分散方法、および、負荷分散プログラム
 本発明は、負荷分散装置、負荷分散システム、負荷分散方法、および、負荷分散プログラムに関する。
 負荷分散技術は、ロードバランサなどの負荷分散装置が、負荷分散先となる複数の処理サーバのいずれかに負荷を分散させることで、統合的な処理能力を向上させる技術である。処理サーバは、担当する負荷を処理した後、別の負荷を処理することとなる。よって、処理サーバは、多くの負荷を順次処理するために、処理した結果を返却した後はその結果の状態を保持しなくてもよいステートレスな方式を採用することが一般的である。以下、ステートレスな負荷分散技術を例示する。
 非特許文献1には、HTTP(Hypertext Transfer Protocol)や、HTTPS(Hytertext Transfer Protocol Secure)などのWeb系プロトコルにおいてはKubernetesなどのコンテナオーケストレータで、サービス単位などで負荷分散を実現する方式が記載されている。
 非特許文献2には、SIP(Session Initiation Protocol)の様な公衆通信網で用いられるプロトコルの中では比較的ポピュラーなプロトコルについては、ロードバランサメーカのアプライアンス機にて負荷分散を実行する仕組みが記載されている。
Kubernetes、"Ingress"、[online]、[2022年6月24日検索]、インターネット〈URL:https://kubernetes.io/ja/docs/concepts/services-networking/ingress/〉、2021/10/8公開。 radware、"Alteon仮想ロードバランサ&アプライアンス"、[online]、[2022年6月24日検索]、インターネット〈URL:https://jp.radware.com/products/alteon-va/〉
 携帯電話などの無線通信の5世代目の通信規格(5G:5th Generation)に対応するネットワークシステムとして、5GC(5th Generation Core network)が提案されている。負荷分散先の処理サーバをUPF(User Plane Function)というコンテナ型アプリケーションとして、5GC内で構築することを検討する。このとき、以下の要件を満たすことが要求される。
 (要件1)5GCのセキュリティ対策のために、内部ネットワーク構成を隠蔽するという観点で、UPFの構成を隠蔽する必要がある。
 (要件2)5GにおいてはCプレーン(制御信号)とUプレーン(ユーザーデータ)が分離している。よって、5Gでの通信接続であるPDU(Protocol Data Unit)セッションの呼制御処理においては、それぞれステートフルなCプレーンとUプレーンとを連携させた負荷分散が必要となる。
 以下、(要件1)について、図13および図14を参照して説明する。
 図13は、5GCシステムの一例を示す構成図である。
 5GCシステムは、ネットワークファンクション(NF)として、DN(Data Network)11と、UPF(User Plane Function)21-23と、gNB(next Generation NodeB)31と、AMF(Access and Mobility Management Function)32と、SMF(Session Management Function)33と、UE(User Equipment)41とがネットワークで接続されて構成される。
 DN11は、5G外の各種ネットワークであり、例えば、インターネットや、IMS(IP Multimedia Subsystems)などの電話交換機相当のシステムである。
 UPF21-23は、ユーザからの転送されてくるデータ(Uプレーン)を転送するユーザープレーン機能であり、負荷分散先の処理サーバとして動作する。
 AMF32は、アクセスおよび移動管理機能であり、端末位置情報や認証情報を管理する。
 SMF33は、セッション管理機能を有する負荷分散装置であり、5GにおけるPDUセッションを管理する。
 gNB31は、NR(New Radio)を提供する5Gの基地局であり、UE41を収容する。
 UE41は、ユーザによって操作されるユーザ端末であり、UPF21に対して通信データを送受信するために用いられる。
 ここで、UPF21-23のIPアドレス情報は、gNB31とUPF21-23との間に何も終端装置が無ければ、外部(UE41側)に公開されてしまい(要件1)を満たさない。
 図14は、図13の5GCシステムにNAT(Network Address Translation)装置34を追加した構成図である。
 NAT装置34は、UE41側にはグローバルIPアドレスを1つ公開し、gNB31とUPF21-23との間でNATによるアドレス変換を実行する。これにより、UPF21-23のIPアドレス情報は、NAT装置34が情報を隠蔽することで、(要件1)を満たす。しかし、NAT装置34は負荷分散を実行しないので、(要件2)は満たさない。
 (要件2)について、図15および図16を参照して説明する。
 まず、公衆通信サービスで用いられる通信プロトコルは多岐にわたる。以下の代表的なプロトコルに対しては、既存のロードバランサ製品で負荷分散を実行できる。
 ・HTTPやHTTPSなどの従来の一般的なWeb系プロトコル
 ・SIPなどのVoIP(Voiceover IP)のプロトコル
 一方、5Gの様にNF毎に存在する多岐にわたるプロトコルに対応可能な既存のロードバランサ製品は、存在しない。つまり、5GのステートフルなCプレーンとUプレーンとを連携させた負荷分散は存在しない。仮に、多岐にわたるプロトコルに対応可能なロードバランサ製品をコンテナで実現する場合、各コンテナが固有のIPを持ち対向装置と通信を行うようにする必要があり、コストがかかる。
 図15は、図13の5GCシステムに4G(4th Generation Mobile Communication System)のシステムを接続された構成図である。
 非スタンドアローンな5GCにおいては、4Gのシステムも共存する。4Gのシステムとして、UE42を収容するeNB(evolved Node B)35が、gNB31と同様に、UPF21-23と接続される。なお、UPF21-23は、4Gに対してはS-GW(Serving Gateway)およびP-GW(Packet data network Gateway)として機能する。
 図16は、図15のシステムに対して、Cプレーンの信号と、Uプレーンの信号を追加した構成図である。
 破線矢印で示すCプレーンは、UE41からのPDUセッション確立要求に対して、セッション相手としてUプレーンを担当するUPF21の選定結果(負荷分散先)を、図示した経路でUE41に通知する。
 実線矢印で示すUプレーンは、Uプレーンで通知されたUPF21を介したPDUセッションによる、UE41とDN11との通信である。
 5GにおいてはCプレーンとUプレーンとが分離していており、それぞれステートフルなCプレーンとUプレーンが連携することで、PDUセッションの呼制御処理を成立させている。そのため、Cプレーンで選定されたUPF21を経由するUプレーンを負荷分散しようとしても、Uプレーンのセッション情報だけでは実現できない。例えば、UE41とDN11との通信量が増大したとする。Uプレーンのセッション情報が固定のUPF21に対応付けられると、UPF21が処理していた一部の通信量を他のUPF22,23にも負荷分散させることは困難である。つまり、CプレーンとUプレーンとの両者を考慮した負荷分散の仕組みが必要となる。
 そこで、本発明は、負荷分散先の内部ネットワーク情報を隠蔽しつつ、ステートフルな負荷分散を実現することを主な課題とする。
 前記課題を解決するために、本発明の負荷分散装置は、以下の特徴を有する。
 本発明は、セッションのIDを含む情報を管理する負荷分散装置であって、
 ユーザ端末から前記セッションのIDを含むセッションの確立要求を受け、複数の処理サーバから負荷分散先としての処理サーバを選定し、
 セッションを中継するゲートウェイのアドレス情報を前記ユーザ端末に応答し、
 前記セッションのIDと、選定した前記処理サーバとの対応情報を前記ゲートウェイに通知することで、
 前記ユーザ端末からセッションを介して前記ゲートウェイに届いたデータ信号が、選定した前記処理サーバに転送されるように制御することを特徴とする。
 本発明によれば、負荷分散先の内部ネットワーク情報を隠蔽しつつ、ステートフルな負荷分散を実現することができる。
本実施形態に関する5GCシステムを示す構成図である。 本実施形態に関する図1の5GCシステムに、プロキシを追加した構成図である。 5GCシステムがPDUセッションの確立手順を実行する第1のシーケンス図である。 5GCシステムがPDUセッションの確立手順を実行する第2のシーケンス図である。 5GCシステムがPDUセッションの確立手順を実行する第3のシーケンス図である。 本実施形態に関する図1の5GCシステムに対して、UEからUPFまでに流れるCプレーンの経路を強調した構成図である。 本実施形態に関する図2の5GCシステムに対して、UEからUPFまでに流れるCプレーンの経路を強調した構成図である。 本実施形態に関する図6のCプレーンの帰りの経路を強調した構成図である。以下の順序でCプレーンが流れる。 本実施形態に関する図7のCプレーンの帰りの経路を強調した構成図である。 本実施形態に関する図8のCプレーンの後に伝送されるUプレーンの経路を強調した構成図である。 本実施形態に関する図8のCプレーンの後に伝送されるUプレーンの経路を強調した構成図である。 本実施形態に関する本実施形態の5GCシステムの各装置のハードウェア構成図である。 5GCシステムの一例を示す構成図である。 図13の5GCシステムにNAT(Network Address Translation)装置を追加した構成図である。 図13の5GCシステムに4G(4th Generation Mobile Communication System)のシステムを接続された構成図である。 図15のシステムに対して、Cプレーンの信号と、Uプレーンの信号を追加した構成図である。
 以下、本発明の一実施形態について、図面を参照して詳細に説明する。
 図1は、本実施形態の5GCシステムを示す構成図である。
 図1の5GCシステムは、図13の5GCシステムに対して、SMF33をSMF33Xに置き換えるとともに、gNB31とUPF21-23との間にゲートウェイ36を追加した。これにより、ゲートウェイ36は、負荷分散のターゲットとするコンテナ群であるUPF21-23の構成を、外部のUE41に対して隠蔽する。
 さらに、SMF33Xは、Cプレーンのステート情報をゲートウェイ36に連携(通知)する機能を設ける。Cプレーンのステート情報とは、PDUセッションの調整結果であり、例えば、後記する「負荷分散先として選定されたUPF21と、PDUセッションID(TE-ID)との対応情報」である。これにより、ゲートウェイ36は、CプレーンとUプレーンとの両方を考慮して、Uプレーンの負荷分散を実行できる。
 SMF33Xは、PDUセッションのIDを含む情報を管理する。つまり、SMF33Xは、以下の手順により、UE41からPDUセッションを介してゲートウェイ36に届いたデータ信号が、選定したUPF(以下、UPF21が選定されたものとして説明する。)に転送されるように制御する。
 ・SMF33Xは、UE41からPDUセッションのIDを含むPDUセッションの確立要求を受け、複数のUPF21,22,23から負荷分散先としてUPF21を選定する。
 ・SMF33Xは、PDUセッションを中継するゲートウェイ36のアドレス情報をUE41に応答する。
 ・SMF33Xは、PDUセッションのIDと、選定したUPF21との対応情報をゲートウェイ36に通知する。ゲートウェイ36は、UE41からPDUセッションを介して受信したデータ信号の送信先を、自身のアドレス情報から、PDUセッションのIDをもとに対応情報を参照して選定したUPF21のアドレス情報に変換する。
 図2は、図1の5GCシステムに、プロキシ37を追加した構成図である。
 プロキシ37は、SMF33XとUPF21-23との間に接続される。そして、Cプレーンのステート情報をゲートウェイ36に通知する機能は、図1ではSMF33Xに設けられていたが、図2ではプロキシ37に設けられる。
 プロキシ37は、UE41からのPDUセッションの確立要求を受け、その確立要求をSMF33Xに転送するとともに、PDUセッションのIDとSMF33Xが選定したUPF21との対応情報を、SMF33Xの代わりにゲートウェイ36に通知する。
 これにより、既存のSMF33への影響を低減し、既存のSMF33に対する実装の変更量を削減できる。
 以下、標準化仕様のPDUセッションの確立手順(標準シーケンス)を例に、図1および図2の5GCシステムの具体的な処理を示す。
 なお、PDUセッションの確立手順は、ヨーロッパ電気通信標準化協会(ETSI:European Telecommunications Standards Institute)が公開する標準化仕様「ETSI TS 123 502」の4.3.2.2節「UE Requested PDU Session Establishment」で規定されている。
 以下、図3-図5は、標準シーケンスを示すシーケンス図である。図3→図4→図5の順に実行されることで、CプレーンでPDUセッションが確立され、そのPDUセッションを介してUプレーンが流れる。
 図3は、5GCシステムがPDUセッションの確立手順を実行する第1のシーケンス図である。
 なお、図3では、図13の5GCシステムに対して、さらに、以下の構成が追加されている。
 ・RAN(Radio Access Network)51は、基地局などに配置のアクセス網装置である。
 ・PCF(Policy Control Function)52は、ポリシ制御装置である。
 ・UDM(Unified Data Management)53は、加入者関連情報を保持する装置である。
 S101は、UE41からAMF32に、PDUセッションID(TE-ID)を含むPDUセッションの設定を要求する(PDU Session Establishment Request)処理である。
 S102は、AMF32がSMF33Xを選択する(SMF selection)処理である。
 S103は、AMF32からSMF33Xに、S101の要求のためのセッション管理を要求する(Nsmf_PDUSession_CreateSMContext Request)処理である。
 S104は、SMF33XからUDM53に、S103で要求されたセッション管理に対応する加入者情報を読み出して応答するようにする(Subscription retrieval / Subsucription for updates)処理である。
 S105は、SMF33XからAMF32に、S104の加入者情報を含めてS103の要求に応答する(Nsmf_PDUSession_CreateSMContext Response)処理である。
 S106は、5GCシステムの各装置で、PDUセッション設定の認証および承認を実行する(PDU Session authentication/authorization)処理である。
 S107aは、SMF33XがS107bで処理対象となるPCF52を選択する(PCF selection)処理である。
 S107bは、SMF33XからPCF52に、SMポリシアソシエーションを設定する(SM Policy Association Establishment)処理、または、SMF33Xが開始したSMポリシアソシエーションを変更する(SMF initiated SM Policy Association Modification)処理である。
 S108は、SMF33Xが図4のS110aで処理対象となるUPF21を選択する(UPF selection)処理である。
 S109は、SMF33XからPCF52に、SMF33Xが開始したSMポリシアソシエーションを変更する(SMF initiated SM Policy Association Modification)処理である。
 S109の処理の後は、図4の処理に続く。
 図4は、5GCシステムがPDUセッションの確立手順を実行する第2のシーケンス図である。
 S110aは、SMF33XからUPF21に、N4セッションの設定および変更を要求する(N4 Session Establishment/Modification Request)処理である。
 S110bは、UPF21からSMF33Xに、S110aの応答を送信する(N4 Session Establishment/Modification Response)処理である。
 S111は、SMF33XからAMF32に、PDU設定要求へのACKを送信する(Namf_Communication_N1N2MessageTransfer)処理である。このACKには、PDUセッションIDに対して割り当てられたUPF21のIPアドレスが含まれる。
 S112は、AMF32からRAN51に、N2PDUセッション要求(NASメッセージ)を送信する(N2 PDU Session Request(NAS msg))処理である。
 S113は、RAN51からUE41に、RAN51のリソースを設定する(AN-specific resource setup (PDU Session Establishment Accept))処理である。
 S114は、RAN51からAMF32に、S112の応答を送信する(N2 PDU Session Request Ack)処理である。
 S114bは、UE41からUPF21に、最初の行きデータ(First Uplink Data)を送信する処理である。
 S115は、AMF32からSMF33Xに、PDUセッションの更新を要求する(Nsmf_PDUSession_UpdateSMContext Request)処理である。
 S116aは、SMF33XからUPF21に、N4セッションの変更を要求する(N4 Session Modification Request)処理である。
 S116bは、UPF21からSMF33Xに、S116aの応答を送信する(N4 Session Modification Response)処理である。
 図5は、5GCシステムがPDUセッションの確立手順を実行する第3のシーケンス図である。
 S116cは、SMF33XからUDM53に、PDUセッションを登録する(Registration)処理である。
 S116dは、UPF21からUE41に、最初の帰りデータ(First Downlink Data)を送信する処理である。
 S117は、SMF33XからAMF32に、S115に応答する(Nsmf_PDUSession_UpdateSMContext Response)処理である。
 S118は、SMF33XからAMF32に、PDUセッションの状態を通知する(Nsmf_PDUSession_SMContextStatusNotify)処理である。
 S119は、SMF33XからUPF21およびUE41に、IPv6アドレスを設定する(IPv6 Address Configuration)処理である。
 S120は、SMF33XからPCF52に、SMF33Xが開始したSMポリシアソシエーションを変更する(SMF initiated SM Policy Association Modification)処理である。
 S121は、SMF33XからUDM53に、S116cの登録を解除する(Unsubscription)処理である。
 本実施形態のPDUセッションの確立手順は、標準化仕様との主な相違点は、以下の3点である。
 (相違点1)SMF33Xが、負荷分散先として選定されたUPF21と、PDUセッションID(TE-ID)との対応情報を、ゲートウェイ36へ通知する手順を追加する。
 (相違点2)SMF33Xが、ゲートウェイ36のIPアドレスを、UE41へ通知する手順を追加する。
 (相違点3)ゲートウェイ36がUプレーンデータをPDUセッションIDに対応するUPF21へ転送する。
 本実施形態の負荷分散システムは、(相違点1)の処理の後に、(相違点2)の処理を実行することで、データ転送の準備を完了させる。その準備後に、本実施形態の負荷分散システムは、(相違点3)の処理を実行する。これにより、UPF21構成を隠蔽しつつ、CプレーンとUプレーンとを連携させたPDUセッションの負荷分散実現方式が実現される。
 図6は、図1の5GCシステムに対して、UE41からUPF21までに流れるCプレーンの経路を強調した構成図である。以下の順序でCプレーンが流れる。
 ・UE41→gNB31→AMF32:S101の信号が流れる(PDUセッションの設定を要求)。
 ・AMF32→SMF33X:S103の信号が流れる(S101の要求のためのセッション管理を要求)。
 ここで、SMF33Xは、Uプレーンを担当する(負荷分散先の)UPF21を選択する(S108)。なお、SMF33Xは、UPF21-23の現在の負荷状況を参照し、前回決定した負荷分散先のUPF21を、UPF22またはUPF23に変更してもよい。
 ・SMF33X→UPF21:S110aの信号が流れる(N4セッションの設定および変更を要求)。
 図7は、図2の5GCシステムに対して、UE41からUPF21までに流れるCプレーンの経路を強調した構成図である。
 図6のS110aの信号(SMF33X→UPF21)が、図7ではSMF33X→プロキシ37→UPF21の経路で流れる。その他の信号の流れは、図6と図7とで同じである。
 図8は、図6のCプレーンの帰りの経路を強調した構成図である。以下の順序でCプレーンが流れる。
 ・UPF21→SMF33X:S110bの信号が流れる(S110aの応答を送信)。
 ・SMF33X→AMF32:S111の信号が流れる(PDU設定要求へのACKを送信)。標準シーケンスのS111の信号には、PDUセッションIDに対して、Uプレーンを担当するUPF21のIPアドレスが含まれていた。本実施形態の負荷分散システムは、UPF21のIPアドレスの代わりに、ゲートウェイ36のIPアドレス情報をS111の信号に含める(相違点2)。
 ゲートウェイ36のIPアドレス情報とは、例えば、UPF21を集約するゲートウェイ36のgNB31と隣接するインタフェースのIPアドレスである。これにより、ゲートウェイ36のIPアドレス情報は、後続のS112,S113の信号にも含まれることで、UE41に通知される。また、UE41には、UPF21のIPアドレスが通知されないので、UPF21の構成は隠蔽される。
 ・SMF33X→ゲートウェイ36:Uプレーンを担当するものとして選定されたUPF21と、PDUセッションID(TE-ID)との対応情報を通知する手順を、標準シーケンスに追加する(相違点1)。この(相違点1)の手順は、S110bとS111との間に実行されることが望ましく、遅くともS113の前には完了しておく。
 ・AMF32→gNB31(RAN51):S112の信号が流れる(N2PDUセッション要求を送信)。
 ・gNB31(RAN51)→UE41:S113の信号が流れる(RAN51のリソースを設定)。
 図9は、図7のCプレーンの帰りの経路を強調した構成図である。以下が、図8と図9との相違点であり、その他の信号の流れは、図8と図9とで同じである。
 ・図8のS110bの信号(UPF21→SMF33X)が、図9ではUPF21→プロキシ37→SMF33Xの経路で流れる。
 ・負荷分散先として選定されたUPF21と、PDUセッションID(TE-ID)との対応情報を、ゲートウェイ36へ通知する手順(相違点1)を実行する装置が、SMF33Xからプロキシ37に置き換わる。
 図10は、図8のCプレーンの後に伝送されるUプレーンの経路を強調した構成図である。
 まず、標準シーケンスのS114b(First Uplink Data)は、UE41からUPF21に直接通知されていた。一方、図10では、UE41→gNB31→ゲートウェイ36→UPF21→DN11の順に、S114bの最初の行きデータなどの行きデータが送信される。
 ここで、ゲートウェイ36は、UE41からPDUセッションを介してUプレーンデータを受信した際に、アドレス変換処理(NAT:Network Address Translation)により、Uプレーンデータの転送先(負荷分散先)のUPF21を決定し、そのUPF21にUプレーンデータを転送する(相違点3)。
 アドレス変換処理とは、(相違点1)で通知された対応情報を参照したゲートウェイ36が、PDUセッションID(TE-ID)を、対応するUPF21のIPアドレスに変換する処理である。これにより、UE41には、UPF21の構成は隠蔽される。
 また、標準シーケンスのS116d(First Downlink Data)も同様に、UPF21からUE41に直接通知される代わりに、DN11→UPF21→ゲートウェイ36→gNB31→UE41の順に、ゲートウェイ36を経由する。
 そのため、ゲートウェイ36は、帰りデータ(Downlink Data)用のPDUセッション情報が、S116bの後にSMF33Xから通知される。これにより、帰りデータ用のPDUセッションが確立される。
 図11は、図8のCプレーンの後に伝送されるUプレーンの経路を強調した構成図である。
 プロキシ37の有無にかかわらず、図10と同じ経路で図11の各データも送信される。
 図12は、本実施形態の5GCシステムの各装置(SMF33X、ゲートウェイ36など)のハードウェア構成図である。
 5GCシステムの各装置は、CPU901と、RAM902と、ROM903と、HDD904と、通信I/F905と、入出力I/F906と、メディアI/F907とを有するコンピュータ900として構成される。
 通信I/F905は、外部の通信装置915と接続される。入出力I/F906は、入出力装置916と接続される。メディアI/F907は、記録媒体917からデータを読み書きする。さらに、CPU901は、RAM902に読み込んだプログラム(アプリケーションや、その略のアプリとも呼ばれる)を実行することにより、各部を制御する。そして、このプログラムは、通信回線を介して配布したり、CD-ROM等の記録媒体917に記録して配布したりすることも可能である。
[効果]
 本発明は、PDUセッションのIDを含む情報を管理するSMF33Xであって、
 UE41からPDUセッションのIDを含むPDUセッションの確立要求を受け、複数のUPF21から負荷分散先としてUPF21を選定し、
 PDUセッションを中継するゲートウェイ36のアドレス情報をUE41に応答し、
 PDUセッションのIDと、選定したUPF21との対応情報をゲートウェイ36に通知することで、
 UE41からPDUセッションを介してゲートウェイ36に届いたデータ信号が、選定したUPF21に転送されるように制御することを特徴とする。
 これにより、外部のUE41には、選定したUPF21のアドレス情報が通知されずに、中継するゲートウェイ36のアドレス情報が通知される。よって、CプレーンとUプレーンとが分離しているアーキテクチャにおいて、負荷分散先の内部ネットワーク情報を隠蔽しつつ、ステートフルな負荷分散を実現できる。
 本発明は、SMF33Xと、ゲートウェイ36とを有する負荷分散システムであって、
 ゲートウェイ36が、UE41からPDUセッションを介して受信したデータ信号の送信先を、自身のアドレス情報から、PDUセッションのIDをもとに対応情報を参照して選定したUPF21のアドレス情報に変換することを特徴とする。
 これにより、UPF21のスケールアウト時などにおけるネットワーク構成変更の影響を、対向装置であるUE41に与えずに済む。
 本発明は、負荷分散システムが、さらに、プロキシ37を有しており、
 プロキシ37が、UE41からのPDUセッションの確立要求を受け、その確立要求をSMF33Xに転送するとともに、PDUセッションのIDとSMF33Xが選定したUPF21との対応情報を、SMF33Xの代わりにゲートウェイ36に通知することを特徴とする。
 これにより、既存のSMF33Xが担当する処理が軽減され、既存のSMF33Xを変更する開発コストを削減できる。
 11  DN
 21-23 UPF(処理サーバ)
 31  gNB
 32  AMF
 33,33X SMF(負荷分散装置)
 34  NAT装置
 35  eNB
 36  ゲートウェイ
 37  プロキシ
 41,42 UE(ユーザ端末)
 51  RAN
 52  PCF
 53  UDM
 

Claims (5)

  1.  セッションのIDを含む情報を管理する負荷分散装置であって、
     ユーザ端末から前記セッションのIDを含むセッションの確立要求を受け、複数の処理サーバから負荷分散先としての処理サーバを選定し、
     セッションを中継するゲートウェイのアドレス情報を前記ユーザ端末に応答し、
     前記セッションのIDと、選定した前記処理サーバとの対応情報を前記ゲートウェイに通知することで、
     前記ユーザ端末からセッションを介して前記ゲートウェイに届いたデータ信号が、選定した前記処理サーバに転送されるように制御することを特徴とする
     負荷分散装置。
  2.  請求項1に記載の負荷分散装置と、前記ゲートウェイとを有する負荷分散システムであって、
     前記ゲートウェイは、前記ユーザ端末からセッションを介して受信したデータ信号の送信先を、自身のアドレス情報から、前記セッションのIDをもとに前記対応情報を参照して選定した前記処理サーバのアドレス情報に変換することを特徴とする
     負荷分散システム。
  3.  前記負荷分散システムは、さらに、プロキシを有しており、
     前記プロキシは、前記ユーザ端末からの前記セッションの確立要求を受け、その確立要求を前記負荷分散装置に転送するとともに、前記セッションのIDと前記負荷分散装置が選定した前記処理サーバとの前記対応情報を、前記負荷分散装置の代わりに前記ゲートウェイに通知することを特徴とする
     請求項2に記載の負荷分散システム。
  4.  セッションのIDを含む情報を管理する負荷分散装置が実行する負荷分散方法であって、
     負荷分散装置は、
     ユーザ端末から前記セッションのIDを含むセッションの確立要求を受け、複数の処理サーバから負荷分散先としての処理サーバを選定し、
     セッションを中継するゲートウェイのアドレス情報を前記ユーザ端末に応答し、
     前記セッションのIDと、選定した前記処理サーバとの対応情報を前記ゲートウェイに通知することで、
     前記ユーザ端末からセッションを介して前記ゲートウェイに届いたデータ信号が、選定した前記処理サーバに転送されるように制御することを特徴とする
     負荷分散方法。
  5.  コンピュータを、請求項1に記載の負荷分散装置として機能させるための負荷分散プログラム。
PCT/JP2022/025967 2022-06-29 2022-06-29 負荷分散装置、負荷分散システム、負荷分散方法、および、負荷分散プログラム WO2024004078A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025967 WO2024004078A1 (ja) 2022-06-29 2022-06-29 負荷分散装置、負荷分散システム、負荷分散方法、および、負荷分散プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025967 WO2024004078A1 (ja) 2022-06-29 2022-06-29 負荷分散装置、負荷分散システム、負荷分散方法、および、負荷分散プログラム

Publications (1)

Publication Number Publication Date
WO2024004078A1 true WO2024004078A1 (ja) 2024-01-04

Family

ID=89382392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025967 WO2024004078A1 (ja) 2022-06-29 2022-06-29 負荷分散装置、負荷分散システム、負荷分散方法、および、負荷分散プログラム

Country Status (1)

Country Link
WO (1) WO2024004078A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041006A (ja) * 2009-08-11 2011-02-24 Fujitsu Ltd 負荷分散装置、負荷分散方法および負荷分散プログラム
US20200404733A1 (en) * 2018-05-31 2020-12-24 Huawei Technologies Co., Ltd. Session management method, device, and system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041006A (ja) * 2009-08-11 2011-02-24 Fujitsu Ltd 負荷分散装置、負荷分散方法および負荷分散プログラム
US20200404733A1 (en) * 2018-05-31 2020-12-24 Huawei Technologies Co., Ltd. Session management method, device, and system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HORIUCHI, KAHORI: "Learn the basics of networking with fun illustrations to improve your level, The 4th load balancing device", NIKKEI NETWORK, NIKKEI BPSHA, TOKYO, JP, no. 123, 28 June 2010 (2010-06-28), JP , pages 102 - 105, XP009551991, ISSN: 1345-482X *

Similar Documents

Publication Publication Date Title
US8499083B2 (en) Relay device and communication system
EP1334639B1 (en) Optimal gateway discovery while roaming
CN100356815C (zh) 用于在移动网络与无线网络之间漫游的方法和系统
EP2077024B1 (en) Communication system
JP7434590B2 (ja) エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ
WO2006075685A1 (ja) ルータ選択方法、ホームエージェント装置、移動ルータ、および移動ネットワークシステム
EP3954098B1 (en) Optimization of services applied to data packet sessions
EP2374244B1 (en) Communications system and method
KR20110039564A (ko) 통신 제어 시스템, 통신 시스템, 및 통신 제어 방법
JP4940335B2 (ja) 電話交換装置及び電話端末及び電話システムで使用される制御方法
EP1380182A1 (en) One-to-one communication, where the system having different control plane and user plane logical entities
JP2004235778A (ja) 応答処理制御方法
CN102984186A (zh) 会话建立方法及装置
US20090282155A1 (en) Providing peer-to-peer media
US7260644B1 (en) Apparatus and method for re-directing a client session
WO2024004078A1 (ja) 負荷分散装置、負荷分散システム、負荷分散方法、および、負荷分散プログラム
KR102641949B1 (ko) 비프록시 기반 다중 경로 전송 시스템, 그리고 이의 세션 연결을 위한 시그널링 방법
KR101080383B1 (ko) 브이오아이피 호설정 방법 및 이를 수행하는 브이오아이피 통신 시스템
JP4854035B2 (ja) Ims/mmdシステムにおける複数のポリシー制御サーバを用いた呼接続方法及びシステム
AU736987B2 (en) Proxy server supporting IP quality of service
JP3682439B2 (ja) データ通信システム及び方法、サーバ装置、クライアント装置、並びにプログラム
JP4437452B2 (ja) 通信制御装置、通信端末、及び通信制御方法
CN101741807B (zh) 一种sip会话刷新过程中协商更新时间的方法
JP5135257B2 (ja) ホームゲートウェイ及びセッション制御サーバによって異なる経路の複数のセッションを確立する方法及びシステム
WO2024169468A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949353

Country of ref document: EP

Kind code of ref document: A1