WO2024003996A1 - 無線通信システム、無線通信方法及び無線局 - Google Patents

無線通信システム、無線通信方法及び無線局 Download PDF

Info

Publication number
WO2024003996A1
WO2024003996A1 PCT/JP2022/025619 JP2022025619W WO2024003996A1 WO 2024003996 A1 WO2024003996 A1 WO 2024003996A1 JP 2022025619 W JP2022025619 W JP 2022025619W WO 2024003996 A1 WO2024003996 A1 WO 2024003996A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
wireless
wireless communication
quality
rainfall
Prior art date
Application number
PCT/JP2022/025619
Other languages
English (en)
French (fr)
Inventor
耕一 原田
順一 阿部
史洋 山下
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/025619 priority Critical patent/WO2024003996A1/ja
Publication of WO2024003996A1 publication Critical patent/WO2024003996A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present invention relates to a wireless communication system, a wireless communication method, and a wireless station.
  • Super coverage refers to expanding the service area to places where it is expensive to install existing base stations or where it is difficult to install base stations, such as in the mountains, at sea, and in the air. There is also a need to strengthen national resilience against natural disasters, and it is hoped that a communication system that can withstand ground disasters will emerge.
  • geostationary satellites In order to realize such a wireless communication system, geostationary satellites, medium earth orbit satellites (MEO), low earth orbit satellites (LEO), high altitude pseudosatellites (HAPS), Unmanned aerial vehicles (UAVs) and non-terrestrial networks (NTNs) using drones and other devices are attracting attention.
  • MEO medium earth orbit satellites
  • LEO low earth orbit satellites
  • HAPS high altitude pseudosatellites
  • UAVs Unmanned aerial vehicles
  • NTNs non-terrestrial networks
  • the above-mentioned satellites, HAPS, etc. connect communication links to each other to form a network, and are further connected to a terrestrial mobile network via a terrestrial base station. Satellites and HAPS are equipped with mobile base station functionality.
  • the communication line in HAPS consists of a feeder link (FL) between HAPS and a terrestrial gateway station (ground station) on the terrestrial communication network side, and a service link (SL) between a communication relay device and a terminal.
  • FL feeder link
  • ground station terrestrial gateway station
  • SL service link
  • HAPS is located at an altitude of approximately 20 km, and the ground area (cell) radius is approximately 50 km.
  • the HAPS service link is expected to use a frequency of 2 GHz, but the use of millimeter waves in a higher frequency band (eg, 38 GHz band) is being considered for the feeder link.
  • the traffic packets transmitted by the terminal are forwarded to the HAPS connected to the ground station by the routing function, and sent to the Internet network. Similar processing is performed on packets sent from the Internet network to other terminals by the routing function.
  • NTN uses radio waves in a high frequency band, and it is assumed that the quality of wireless communication will deteriorate due to the influence of rain. For example, if there is an influence of rain, there is a risk that the service of NTN's FL (feeder link), which uses a high frequency band, may be cut off due to the rain.
  • NTN's FL feeder link
  • Patent Document 1 For example, in order to improve communication reliability in the event of a disaster, there is a known technology for monitoring and controlling by installing active and backup equipment at each base station, control station, and control station (for example, Patent Document 1).
  • Non-Patent Documents 2 and 3 precipitation observation using a weather radar and a rainfall prediction method using a weather radar to take into account the influence of rainfall are known (for example, Non-Patent Documents 2 and 3).
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a wireless communication system, a wireless communication method, and a wireless station that make it possible to prevent interruption of wireless communication due to the influence of weather. .
  • a wireless communication system includes a wireless station in which a propagation path between a node station that relays wireless communication can be affected by weather, and wherein the wireless station is equipped with a a weather radar antenna that receives a weather radar signal transmitted from a wireless station toward the node station and reflected; and a communication between the wireless station and the node station based on the weather radar signal received by the weather radar antenna.
  • a quality prediction unit that predicts the quality of wireless communication between the wireless station and the node station based on the rainfall predicted by the rainfall prediction unit; If the quality of wireless communication predicted by the quality prediction unit is less than a predetermined threshold, the line connecting the node station and the wireless station is connected to the node station before the line is cut off. It is characterized by comprising a switching control unit that controls switching to another line for connecting to another communication station.
  • a wireless communication method is a wireless communication method performed by a wireless communication system having a wireless station whose propagation path between a node station that relays wireless communication can be affected by weather.
  • the communication between the wireless station and the node station is based on the weather radar signal received by a weather radar antenna that is provided in the wireless station and receives the weather radar signal transmitted from the wireless station toward the node station and reflected.
  • the method is characterized in that it includes a switching control step of controlling switching to a line.
  • the wireless station is a wireless station where a propagation path between a node station that relays wireless communication can be affected by weather, and transmits data toward the node station and is reflected.
  • a weather radar antenna that receives a weather radar signal received by the weather radar antenna;
  • a rainfall prediction unit that predicts a rainfall amount between the wireless station and the node station based on the weather radar signal received by the weather radar antenna;
  • a quality prediction unit that predicts the quality of wireless communication between the wireless station and the node station based on the amount of rainfall predicted by the rainfall amount prediction unit; and a modem that superimposes quality information indicating that the quality of wireless communication is less than a predetermined threshold on a control signal that the wireless station transmits to the node station when the quality of the wireless communication is less than a predetermined threshold. It is characterized by
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to an embodiment.
  • FIG. 2 is a block diagram illustrating a configuration example and functions of a wireless station.
  • FIG. 2 is a block diagram illustrating functions included in a control station.
  • 1 is a flowchart illustrating an example of the operation of a wireless communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of a wireless station according to an embodiment.
  • 1 is a diagram illustrating a configuration example of a wireless communication system.
  • FIG. 6 is a diagram showing a configuration example of the wireless communication system 1.
  • the wireless communication system 1 is configured such that, for example, a plurality of wireless stations 2-1 to 2-3 can each perform wireless communication via a communication satellite 3.
  • the radio stations 2-1 to 2-3 are, for example, earth stations each having a function as a base station, and are connected to a mobile network (not shown).
  • the communication satellite 3 is a node station that relays wireless communication with each of the wireless stations 2-1 to 2-3.
  • the wireless station 2-1 monitors the quality of wireless communication with the communication satellite 3 in real time, and if the quality of wireless communication deteriorates, for example, the wireless station 2-2 Perform site diversity by switching to communication.
  • Site diversity in the wireless communication system 1 is triggered by deterioration of actual communication quality after rainfall occurs, and switches wireless stations when, for example, the communication quality falls below a predetermined threshold. Therefore, in the wireless communication system 1, depending on the rainy situation, there is a possibility that communication may be interrupted before the wireless station is switched.
  • the wireless communication system predicts rainfall using weather information observed by a plurality of wireless stations each equipped with a weather radar, predicts deterioration in communication quality, and interrupts wireless communication. It is configured to improve the availability rate by switching wireless stations in advance.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system 10 according to an embodiment.
  • the wireless communication system 10 includes, for example, a plurality of wireless stations 20-1 to 20-3, a communication satellite 30, and a control station 40, and constitutes an NTN. Note that when one of the plurality of configurations, such as the wireless stations 20-1 to 20-3, is not specified, it is simply abbreviated as the wireless station 20 or the like.
  • the wireless stations 20 are, for example, earth stations each equipped with a base station function and a weather radar, and are connected to a mobile network (not shown).
  • the communication satellite 30 is a node station that relays wireless communication with each of the wireless stations 20 using a communication line.
  • the control station 40 controls each device (including communication stations such as the wireless station 20) making up the wireless communication system 10 using control signals.
  • the wireless communication system 10 uses rainfall prediction based on meteorological data acquired by the wireless station 20-1, for example, when the wireless station 20-1 is communicating wirelessly with the wireless station 20-3 via the communication satellite 30. If it is predicted that the quality of wireless communication will be lower than a predetermined threshold (required C/N, etc.), the wireless communication route is switched.
  • the wireless communication system 10 predicts that the quality of wireless communication between the wireless station 20-1 and the communication satellite 30 will deteriorate due to rain (rain attenuation of radio waves) and fall below a predetermined threshold, the wireless communication system 10 -1 and the communication satellite 30 before the quality of the wireless communication between the wireless station 20-1 and the communication satellite 30 actually deteriorates and falls below a predetermined threshold.
  • a switch is made to wireless communication between the unforeseen wireless station 20-2 and the communication satellite 30.
  • FIG. 2 is a block diagram illustrating a configuration example and functions of the wireless station 20.
  • the radio station 20 includes, for example, a communication system including a communication antenna 21, a transmitting/receiving device 22, a modem 23, and a transmission device 24, a weather radar antenna 25, a signal processing device 26, and an analyzing device 27. It has a weather observation system.
  • the wireless station 20 is connected to the control station 40 via, for example, a mobile network 100 or another network not shown.
  • the communication antenna 21 is a communication antenna for performing wireless communication with the communication satellite 30.
  • the transmitting and receiving device 22 is a device that transmits and receives signals to and from the communication satellite 30 via the communication antenna 21.
  • the modem 23 is a device that modulates and demodulates signals transmitted and received by the wireless station 20 and outputs the modulated signals to the transmitting/receiving device 22 (and the transmitting device 24).
  • the modem 23 also has a function of superimposing a signal output by the analysis device 27 (for example, quality information to be described later) on a signal transmitted to the communication satellite 30 (or control station 40).
  • the modem 23 responds to the control signal transmitted from the wireless station 20 to the communication satellite 30 by quality information indicating that the quality of the image is less than a predetermined threshold.
  • the transmission device 24 is a device that is connected to the mobile network 100 and transmits and receives signals to and from the mobile network 100.
  • the weather radar antenna 25 transmits a weather radar signal in the direction of the communication partner (for example, toward the communication satellite 30), receives the weather radar signal reflected back from the communication satellite 30, rain clouds, and rainfall, and transmits the signal. It is output to the processing device 26.
  • the weather radar antenna 25 is provided in the wireless station 20 and transmits data from the wireless station 20 to the communication satellite 30. Receive reflected weather radar signals.
  • the signal processing device 26 includes an extraction unit 260, performs signal processing on the weather radar signal output by the weather radar antenna 25, and outputs the signal processing result to the analysis device 27.
  • the extraction unit 260 extracts data necessary for rainfall prediction, such as radar reflection factor Z (dBZ) and rainfall intensity R (mm/h), from the weather radar signal received by the weather radar antenna 25, and analyzes the extracted data. Output to device 27.
  • the analysis device 27 includes, for example, a storage section 270, a rainfall prediction section 272, and a quality prediction section 274, and analyzes the data output by the signal processing device 26 using parameters such as frequency, and obtains quality information, etc., which will be described later.
  • the analysis result (processing result) is output to the modem 23.
  • the storage unit 270 stores and accumulates, for example, data extracted by the extraction unit 260 and information (described later) indicating the quality of wireless communication predicted by the quality prediction unit 274.
  • the rainfall prediction unit 272 predicts the rainfall between the wireless station 20 and the communication satellite 30 based on the weather radar signal received by the weather radar antenna 25, and sends information indicating the predicted rainfall to the quality prediction unit 274. Output for. More specifically, based on the data stored in the storage unit 270, the rainfall prediction unit 272 calculates the amount of rain between the wireless station 20 and the communication satellite 30 using a short-time rainfall prediction method using, for example, 20 minutes of data. Predict future rainfall.
  • the quality prediction unit 274 predicts the quality (deterioration, rainfall attenuation, etc.) of the wireless communication between the radio station 20 and the communication satellite 30 based on the parameters such as the rainfall and frequency predicted by the rainfall prediction unit 272. , and outputs information (quality information) indicating the predicted quality of wireless communication to, for example, the storage unit 270 (and modem 23).
  • the quality information may include C/N and information indicating whether the quality of wireless communication is less than a predetermined threshold.
  • the analysis device 27 outputs the quality information stored in the storage unit 270 to the modem 23 in response to access from the modem 23, for example.
  • FIG. 3 is a block diagram illustrating functions included in the control station 40.
  • the control station 40 includes, for example, a transmitting/receiving section 41, a determining section 42, and a switching control section 43.
  • the transmitting/receiving unit 41 transmits and receives control signals and the like to and from each of the wireless station 20 and the communication satellite 30 by wireless communication.
  • the determining unit 42 determines the switching destination of the wireless station 20 based on the control signal received by the transmitting/receiving unit 41 (for example, the control signal on which quality information transmitted by the wireless station 20 is superimposed). For example, if there is a wireless station 20 whose quality of wireless communication with respect to the communication satellite 30 is less than a predetermined threshold, the determination unit 42 determines whether the quality of wireless communication with respect to the communication satellite 30 is higher than or equal to a predetermined threshold. 20 as the line switching destination, and outputs the determined result to the switching control unit 43.
  • the switching control unit 43 switches the line connecting the communication satellite 30 and the wireless station 20 to the line. Before the communication satellite 30 is cut off, control is performed via the transmitting/receiving unit 41 to switch to another line connecting the communication satellite 30 and another communication station (for example, another radio station 20).
  • control station 40 controls the switching control unit 43 to switch the line when the transmitting/receiving unit 41 receives the quality information superimposed by the modem 23 of the wireless station 20. Specifically, the control station 40 transmits a control signal to both the wireless station 20 whose wireless communication quality is less than the threshold value and the wireless station 20 whose wireless communication quality is equal to or higher than the threshold value.
  • control station 40 communicates the line with the wireless station 20 whose wireless communication quality is equal to or higher than the threshold value. Control is performed to switch to the line with the satellite 30.
  • FIG. 4 is a flowchart illustrating an example of the operation of the wireless communication system 10 according to one embodiment.
  • the wireless station 20 transmits a weather radar signal using the weather radar antenna 25 (S100), and the weather radar antenna 25 receives the weather radar signal reflected by rain clouds and rainfall. (S102).
  • the signal processing device 26 performs signal processing on the weather radar signal received by the weather radar antenna 25, and outputs, for example, the data necessary for rainfall prediction extracted by the extraction unit 260 to the analysis device 27 (S104).
  • the analysis device 27 analyzes the data output by the signal processing device 26 (S106). Specifically, the quality prediction unit 274 predicts the quality (deterioration, etc.) of wireless communication between the wireless station 20 and the communication satellite 30 based on the rainfall predicted by the rainfall prediction unit 272. For example, the information (quality information) indicating the quality of wireless communication predicted by the quality prediction unit 274 includes information indicating whether the quality of wireless communication is less than a predetermined threshold.
  • the analysis device 27 determines whether the wireless communication between the wireless station 20 and the communication satellite 30 is below a predetermined quality threshold based on the quality information predicted by the quality prediction unit 274 (S108). If the analysis device 27 determines that the quality of the wireless communication between the wireless station 20 and the communication satellite 30 is below the predetermined quality threshold (S108: Yes), the analysis device 27 proceeds to the process of S110, and determines that the quality of the wireless communication between the radio station 20 and the communication satellite 30 does not fall below the predetermined quality threshold. If it is determined (S108: No), the process returns to S100.
  • step 110 the wireless station 20 uses the modem 23 to superimpose quality information indicating that the quality of wireless communication is less than a predetermined threshold on the transmission signal, and transmits the transmission signal with the quality information superimposed to the transmission signal. It is transmitted to the control station 40 via the satellite 30 (or directly).
  • the wireless station 20 performs rainfall prediction based on the weather radar signal received by the weather radar antenna 25, and when it predicts that the quality of wireless communication will fall below a predetermined threshold, the wireless station 20 superimposes quality information on the control signal and controls the transmit to station 40.
  • step 112 the control station 40 switches the wireless station 20. Specifically, before the line between the wireless station 20 whose wireless communication quality is less than a threshold value and the communication satellite 30 is cut off, the control station 40 connects the line to a wireless station whose wireless communication quality is equal to or higher than the threshold value. 20 and the communication satellite 30.
  • the wireless communication system 10 changes the line connecting the communication satellite 30 and the wireless station 20 to the line. Since the communication satellite 30 is switched to another line connecting the communication satellite 30 and another communication station (for example, another radio station 20) before it is cut off, it is possible to prevent the radio communication from being cut off due to the influence of weather. .
  • the wireless communication system 10 has been described with reference to a case where the communication satellite 3 serving as a node station is provided, but the wireless communication system 10 may be equipped with a communication satellite other than the communication satellite 3, for example, located on the ground. It may also be a fixed micro-radio system equipped with a node station whose propagation path may be affected by the weather.
  • the wireless communication system 10 may be configured to include one or more wireless stations 20 and one or more other wireless stations 20 or communication stations that perform wired communication. Furthermore, in the wireless communication system 10, one or more wireless stations 20 may include all of the functions provided by the control station 40.
  • the respective functions of the wireless station 20 and the control station 40 may be partially or entirely configured by hardware such as a PLD (Programmable Logic Device) or an FPGA (Field Programmable Gate Array), or may be configured by a CPU, etc.
  • the program may be configured as a program executed by a processor.
  • the wireless station 20 and the control station 40 can be realized using a computer and a program, respectively, and the program can be recorded on a storage medium or provided through a network.
  • FIG. 5 is a diagram showing an example of the hardware configuration of the wireless station 20 according to an embodiment.
  • the wireless station 20 has an input section 50, an output section 51, a communication section 52, a CPU 53, a memory 54, and an HDD 55 connected to each other via a bus 56, and has a function as a computer. Furthermore, the wireless station 20 is capable of inputting and outputting data to and from a computer-readable storage medium 57.
  • the input unit 50 is, for example, a keyboard and a mouse.
  • the output unit 51 is, for example, a display device such as a display. Further, the input section 50 and the output section 51 may be configured as a touch panel or the like.
  • the communication unit 52 is a communication interface that performs wireless communication.
  • the CPU 53 controls each part of the wireless station 20 and performs predetermined processing.
  • the memory 54 and HDD 55 store data and the like.
  • the storage medium 57 is capable of storing programs and the like that cause the wireless station 20 to execute functions. Note that the architecture configuring the wireless station 20 is not limited to the example shown in FIG. 5. Furthermore, the control station 40 may include hardware similar to that of the wireless station 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)

Abstract

一実施形態にかかる無線通信システムは、無線局に備えられ、無線局からノード局に向けて送信して反射された気象レーダ信号を受信する気象レーダアンテナと、気象レーダアンテナが受信した気象レーダ信号に基づいて、無線局とノード局との間の降雨量を予測する降雨量予測部と、降雨量予測部が予測した降雨量に基づいて、無線局とノード局との間の無線通信の品質を予測する品質予測部と、品質予測部が予測した無線通信の品質が予め定められた閾値未満である場合、ノード局と無線局とが接続している回線を、当該回線が遮断となる前に、ノード局と他の通信局とを接続する他の回線に切替える制御を行う切替制御部とを有することを特徴とする。

Description

無線通信システム、無線通信方法及び無線局
 本発明は、無線通信システム、無線通信方法及び無線局に関する。
 近年では、モバイル通信システムが発展し、地上の大部分においてモバイルサービスを享受することができるようになっている。また、今後に商用化が期待される第5世代(Beyond 5G)又は第6世代のモバイル通信システムにおける要求条件の1つとして、超カバレッジ化がある。
 超カバレッジ化とは、山岳、海上、及び空中など、既存の基地局を敷設するコストが高価である場合、又は基地局の敷設が困難な場所などへサービスエリアを拡大することである。また、自然災害などに対する国土強靭化も必要とされており、地上災害に強い通信システムの登場が望まれている。
 このような無線通信システムを実現するために、静止衛星・中軌道衛星(MEO:Medium Earth Orbit)・低軌道衛星(LEO:Low Earth Orbit)・高高度疑似衛星(HAPS:High Altitude Platform Station)、無人飛行体(UAV:Unmanned Aerial Vehicle )、及びドローンなどを用いた非地上系ネットワーク(NTN:Non Terrestrial Network)が脚光を浴びている。
 NTNでは、上述の衛星及びHAPSなどは、互いに通信リンクを接続してネットワークを形成し、さらに地上基地局を介して地上のモバイルネットワークと接続している。衛星及びHAPSは、モバイル基地局機能を搭載している。
 HAPSにおける通信回線は、HAPSと地上通信網側の地上ゲートウェイ局(地上局)との間のフィーダリンク(FL)と、通信中継装置と端末との間のサービスリンク(SL)とにより構成されている。例えば、HAPSは高度約20kmに位置し、地上エリア(セル)半径は50km程度となる。HAPSのサービスリンクでは、2GHzの周波数利用が想定されるが、フィーダリンクではより高い周波数帯のミリ波の利用(例えば38GHz帯)が検討されている。
 そして、端末が送信したトラフィックのパケットは、ルーティング機能によって地上局と接続しているHAPSにパケット転送され、インターネット網に送られる。インターネット網から他の端末へ送信されるパケットも、ルーティング機能によって同様な処理が行われる。
 NTNにおいては、高い周波数帯の電波が用いられており、降雨の影響による無線通信品質の劣化が想定されている。例えば、降雨の影響がある場合には、高い周波数帯を利用するNTNのFL(フィーダリンク)では降雨によってサービスが切断されるおそれがある。
 また、人口密度の低い郊外や、ルーラルエリアなどで用いられる固定マイクロ無線システムにおいても、比較的周波数が高い電波が用いられており、伝搬路上の降雨により通信品質が劣化することが考えられる。
 そのため、降雨などの気象の影響を考慮して無線通信システムの稼働率を向上させる構成が必要となっている。
 例えば、災害発生時などに対する通信の高信頼性化のために、基地局、制御局及び統制局それぞれに現用と予備の装置を設置して監視制御を行う技術が知られている(例えば、非特許文献1)。
 また、降雨の影響を考慮するための気象レーダを用いた降水観測や、気象レーダを用いた降雨予測手法が知られている(例えば、非特許文献2,3)。
松下章、外7名、「災害対策サービスに適用するインフラ衛星通信システム」、NTT技術ジャーナル、2005年09月、pp.14-17 「気象レーダを用いた降雨予測手法-降雨量算定手法と移流モデルの検討-」、研究報告:U00050、電力中央研究所報告、財団法人 電力中央研究所、平成13年4月 「気象レーダーを用いた降水観測および短時間降雨予測の研究現状に関する調査」、調査報告:U99041、電力中央研究所報告、財団法人 電力中央研究所、平成12年3月
 本発明は、上述した課題を鑑みてなされたものであり、気象の影響による無線通信の遮断を防止することを可能にする無線通信システム、無線通信方法及び無線局を提供することを目的とする。
 本発明の一実施形態にかかる無線通信システムは、無線通信を中継するノード局との間の伝搬路が気象の影響を受け得る無線局を有する無線通信システムにおいて、前記無線局に備えられ、前記無線局から前記ノード局に向けて送信して反射された気象レーダ信号を受信する気象レーダアンテナと、前記気象レーダアンテナが受信した気象レーダ信号に基づいて、前記無線局と前記ノード局との間の降雨量を予測する降雨量予測部と、前記降雨量予測部が予測した降雨量に基づいて、前記無線局と前記ノード局との間の無線通信の品質を予測する品質予測部と、前記品質予測部が予測した無線通信の品質が予め定められた閾値未満である場合、前記ノード局と前記無線局とが接続している回線を、当該回線が遮断となる前に、前記ノード局と他の通信局とを接続する他の回線に切替える制御を行う切替制御部とを有することを特徴とする。
 また、本発明の一実施形態にかかる無線通信方法は、無線通信を中継するノード局との間の伝搬路が気象の影響を受け得る無線局を有する無線通信システムが行う無線通信方法において、前記無線局に備えられ、前記無線局から前記ノード局に向けて送信して反射された気象レーダ信号を受信する気象レーダアンテナが受信した気象レーダ信号に基づいて、前記無線局と前記ノード局との間の降雨量を予測する降雨量予測工程と、予測した降雨量に基づいて、前記無線局と前記ノード局との間の無線通信の品質を予測する品質予測工程と、予測した無線通信の品質が予め定められた閾値未満である場合、前記ノード局と前記無線局とが接続している回線を、当該回線が遮断となる前に、前記ノード局と他の通信局とを接続する他の回線に切替える制御を行う切替制御工程とを含むことを特徴とする。
 また、本発明の一実施形態にかかる無線局は、無線通信を中継するノード局との間の伝搬路が気象の影響を受け得る無線局おいて、前記ノード局に向けて送信して反射された気象レーダ信号を受信する気象レーダアンテナと、前記気象レーダアンテナが受信した気象レーダ信号に基づいて、前記無線局と前記ノード局との間の降雨量を予測する降雨量予測部と、前記降雨量予測部が予測した降雨量に基づいて、前記無線局と前記ノード局との間の無線通信の品質を予測する品質予測部と、前記品質予測部が予測した無線通信の品質が予め定められた閾値未満である場合に、当該無線局が前記ノード局へ送信する制御信号に対して、無線通信の品質が予め定められた閾値未満であることを示す品質情報を重畳するモデムとを有することを特徴とする。
 本発明によれば、気象の影響による無線通信の遮断を防止することを可能にすることができる。
一実施形態にかかる無線通信システムの構成例を示す図である。 無線局の構成例及び機能を例示するブロック図である。 制御局が備える機能を例示するブロック図である。 一実施形態にかかる無線通信システムの動作例を示すフローチャートである。 一実施形態にかかる無線局が有するハードウェア構成例を示す図である。 無線通信システムの構成例を示す図である。
 まず、本発明がなされるに至った背景について説明する。図6は、無線通信システム1の構成例を示す図である。図6に示すように、無線通信システム1は、例えば複数の無線局2-1~2-3がそれぞれ通信衛星3を介して無線通信を行うことができるように構成されている。
 無線局2-1~2-3は、例えばそれぞれ基地局としての機能を備えた地球局であり、図示しないモバイルネットワークに接続されている。通信衛星3は、無線局2-1~2-3それぞれとの間で無線通信を中継するノード局である。
 例えば、無線通信システム1において、無線局2-1と通信衛星3との間に降雨が発生したとする。無線局2-1は、通信衛星3との間の無線通信の品質をリアルタイムで観測し、無線通信の品質が劣化した場合には、例えば無線局2-2が通信衛星3との間で無線通信を行うように切替えるサイトダイバーシティを行う。
 無線通信システム1におけるサイトダイバーシティは、降雨が発生してから実際の通信品質が劣化したことをトリガとして、例えば通信品質が所定の閾値を下回ったときに無線局を切替えることとなる。そのため、無線通信システム1は、降雨の状況によっては無線局の切替前に通信断となる恐れがある。
 そこで、一実施形態にかかる無線通信システムは、例えば気象レーダをそれぞれ備えた複数の無線局が観測した気象情報を用いて降雨予測し、通信品質の劣化を予測して、無線通信が遮断される前に無線局を切替えることにより、稼働率を向上させるように構成されている。
 図1は、一実施形態にかかる無線通信システム10の構成例を示す図である。図1に示すように、無線通信システム10は、例えば複数の無線局20-1~20-3、通信衛星30及び制御局40を有し、NTNを構成する。なお、無線局20-1~20-3のように複数ある構成のいずれかを特定しない場合には、単に無線局20などと略記する。
 無線局20は、例えばそれぞれ基地局としての機能及び気象レーダを備えた地球局であり、図示しないモバイルネットワークに接続されている。通信衛星30は、無線局20それぞれとの間で通信回線を用いて無線通信を中継するノード局である。制御局40は、制御信号を用いて無線通信システム10を構成する各装置(無線局20などの通信局を含む)を制御する。
 無線通信システム10は、例えば無線局20-1が通信衛星30を介して無線局20-3と無線通信を行っているときに、無線局20-1が取得した気象データに基づく降雨予測を用いて無線通信の品質が所定の閾値(所要C/Nなど)を下回ると予測した場合、無線通信の経路を切替える。
 例えば、無線通信システム10は、無線局20-1と通信衛星30との間の無線通信の品質が降雨により劣化(電波の降雨減衰)して所定の閾値を下回ると予測した場合、無線局20-1と通信衛星30との間の無線通信の品質が実際に劣化して所定の閾値を下回る前に、無線局20-1と通信衛星30との間の無線通信を、通信品質の劣化を予測されていない無線局20-2と通信衛星30との間の無線通信に切替える。
 次に、無線局20の具体的な構成例及び機能について説明する。図2は、無線局20の構成例及び機能を例示するブロック図である。図2に示すように、無線局20は、例えば通信アンテナ21、送受信装置22、モデム23及び伝送装置24を備えた通信系と、気象レーダアンテナ25、信号処理装置26及び分析装置27を備えた気象観測系とを有する。
 また、無線局20は、例えばモバイルネットワーク100又は図示しないその他のネットワークを介して制御局40に接続されている。
 通信アンテナ21は、通信衛星30との間で無線通信を行うための通信用アンテナである。送受信装置22は、通信アンテナ21を介して通信衛星30との間で信号を送受信する装置である。
 モデム23は、無線局20が送受信する信号を変復調し、送受信装置22(及び伝送装置24)に対して出力する装置である。また、モデム23は、分析装置27が出力した信号(例えば後述する品質情報)を通信衛星30(又は制御局40)に対する送信信号に重畳する機能を備える。
 例えば、モデム23は、後述する品質予測部274が予測した無線通信の品質が予め定められた閾値未満である場合に、当該無線局20が通信衛星30へ送信する制御信号に対して、無線通信の品質が予め定められた閾値未満であることを示す品質情報を重畳する。
 伝送装置24は、モバイルネットワーク100に接続され、モバイルネットワーク100との間で信号を送受信する装置である。
 気象レーダアンテナ25は、気象レーダ信号を通信相手方向(例えば通信衛星30に向けた方向)に送信し、通信衛星30や雨雲及び降雨により反射されて戻ってくる気象レーダ信号を受信して、信号処理装置26に対して出力する。
 すなわち、気象レーダアンテナ25は、無線局20と通信衛星30との間の伝搬路が気象の影響を受け得るため、無線局20に備えられ、無線局20から通信衛星30に向けて送信して反射された気象レーダ信号を受信する。
 信号処理装置26は、抽出部260を備えて、気象レーダアンテナ25が出力した気象レーダ信号に対する信号処理を行い、信号処理した結果を分析装置27に対して出力する。例えば、抽出部260は、気象レーダアンテナ25が受信した気象レーダ信号から、例えばレーダ反射因子Z(dBZ)、降雨強度R(mm/h)などの降雨量予測に必要なデータを抽出し、分析装置27に対して出力する。
 分析装置27は、例えば記憶部270、降雨量予測部272及び品質予測部274を有し、信号処理装置26が出力したデータを、周波数などのパラメータを用いて分析し、後述する品質情報などの分析結果(処理結果)をモデム23に対して出力する。
 例えば、記憶部270は、例えば抽出部260が抽出したデータ、及び品質予測部274が予測した無線通信の品質を示す情報(後述)を記憶し蓄積する。
 降雨量予測部272は、気象レーダアンテナ25が受信した気象レーダ信号に基づいて、無線局20と通信衛星30との間の降雨量を予測し、予測した降雨量を示す情報を品質予測部274に対して出力する。より具体的には、降雨量予測部272は、記憶部270が記憶したデータに基づいて、例えば20分間のデータを用いた短時間降雨予測手法などにより無線局20と通信衛星30との間の未来の降雨量を予測する。
 品質予測部274は、降雨量予測部272が予測した降雨量及び周波数などパラメータに基づいて、無線局20と通信衛星30との間の無線通信の品質(劣化・降雨減衰量など)を予測し、予測した無線通信の品質を示す情報(品質情報)を例えば記憶部270(及びモデム23)に対して出力する。
 なお、品質情報には、C/Nや、無線通信の品質が予め定められた閾値未満であるか否かを示す情報が含まれていてもよい。
 そして、分析装置27は、記憶部270が蓄積している品質情報を、例えばモデム23からのアクセスに応じてモデム23へ出力する。
 次に、制御局40が備える具体的な機能について説明する。図3は、制御局40が備える機能を例示するブロック図である。図3に示すように、制御局40は、例えば、送受信部41、決定部42及び切替制御部43を有する。
 送受信部41は、無線局20及び通信衛星30それぞれとの間で無線通信などによる制御信号などの送受信を行う。
 決定部42は、送受信部41が受信した制御信号(例えば無線局20が送信した品質情報を重畳された制御信号)に基づいて、無線局20の切替先を決定する。例えば、決定部42は、通信衛星30に対する無線通信の品質が予め定められた閾値未満である無線局20がある場合、通信衛星30に対する無線通信の品質が予め定められた閾値以上である無線局20を回線の切替先として決定し、決定した結果を切替制御部43に対して出力する。
 切替制御部43は、無線局20の品質予測部274が予測した無線通信の品質が予め定められた閾値未満である場合、通信衛星30と無線局20とが接続している回線を、当該回線が遮断となる前に、通信衛星30と他の通信局(例えば他の無線局20)とを接続する他の回線に切替える制御を、送受信部41を介して行う。
 例えば、制御局40は、無線局20のモデム23が重畳した品質情報を送受信部41が受信したときに、切替制御部43が回線を切替える制御を行うように制御を行う。具体的には、制御局40は、無線通信の品質が閾値未満である無線局20と、無線通信の品質が閾値以上である無線局20の両方に対して制御信号を送信する。
 そして、制御局40は、無線通信の品質が閾値未満である無線局20と通信衛星30との回線が遮断される前に、当該回線を無線通信の品質が閾値以上である無線局20と通信衛星30との回線に切替える制御を行う。
 次に、無線通信システム10の動作例について説明する。図4は、一実施形態にかかる無線通信システム10の動作例を示すフローチャートである。図4に示すように、無線通信システム10は、無線局20が気象レーダアンテナ25により気象レーダ信号を送信し(S100)、気象レーダアンテナ25が雨雲や降雨により反射されて戻ってくる気象レーダ信号を受信する(S102)。
 信号処理装置26は、気象レーダアンテナ25が受信した気象レーダ信号に対する信号処理を行い、例えば抽出部260が抽出した降雨量予測に必要なデータを分析装置27に対して出力する(S104)。
 分析装置27は、信号処理装置26が出力したデータを分析する(S106)。具体的には、降雨量予測部272が予測した降雨量に基づいて、品質予測部274が無線局20と通信衛星30との間の無線通信の品質(劣化など)を予測する。例えば、品質予測部274が予測した無線通信の品質を示す情報(品質情報)には、無線通信の品質が予め定められた閾値未満であるか否かを示す情報が含まれている。
 そして、分析装置27は、品質予測部274が予測した品質情報に基づいて、無線局20と通信衛星30との間の無線通信が所定の品質閾値を下回るか否かを判定する(S108)。分析装置27は、無線局20と通信衛星30との間の無線通信が所定の品質閾値を下回ると判定した場合(S108:Yes)にはS110の処理に進み、所定の品質閾値を下回らないと判定した場合(S108:No)にはS100の処理に戻る。
 ステップ110(S110)において、無線局20は、モデム23により無線通信の品質が予め定められた閾値未満であることを示す品質情報を送信信号に重畳し、品質情報を重畳した送信信号を、通信衛星30を介して(又は直接)制御局40へ送信する。
 つまり、無線局20は、気象レーダアンテナ25が受信した気象レーダ信号に基づく降雨予測を行い、無線通信の品質が所定の閾値を下回ることを予測した場合、制御信号に品質情報を重畳させて制御局40へ送信する。
 ステップ112(S112)において、制御局40は、無線局20の切替えを行う。具体的には、制御局40は、無線通信の品質が閾値未満である無線局20と通信衛星30との回線が遮断される前に、当該回線を無線通信の品質が閾値以上である無線局20と通信衛星30との回線に切替える制御を行う。
 このように、無線通信システム10は、品質予測部274が予測した無線通信の品質が予め定められた閾値未満である場合、通信衛星30と無線局20とが接続している回線を、当該回線が遮断となる前に、通信衛星30と他の通信局(例えば他の無線局20)とを接続する他の回線に切替えるので、気象の影響による無線通信の遮断を防止することを可能にする。
 なお、上述した一実施形態にかかる無線通信システム10では、ノード局となる通信衛星3を備えている場合を例に説明したが、無線通信システム10は、通信衛星3以外の例えば地上に配置されて伝搬路が気象の影響を受け得るノード局を備えた固定マイクロ無線システムなどであってもよい。
 また、無線通信システム10は、1つ以上の無線局20と、1つ以上の他の無線局20又は有線通信を行う通信局とを備える構成であってもよい。また、無線通信システム10は、制御局40が備える機能の全てを1つ以上の無線局20が備えていてもよい。
 なお、無線局20及び制御局40がそれぞれ有する各機能は、それぞれ一部又は全部がPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアによって構成されてもよいし、CPU等のプロセッサが実行するプログラムとして構成されてもよい。
 例えば、無線局20及び制御局40は、それぞれコンピュータとプログラムを用いて実現することができ、プログラムを記憶媒体に記録することも、ネットワークを通して提供することも可能である。
 図5は、一実施形態にかかる無線局20が有するハードウェア構成例を示す図である。図5に示すように、無線局20は、入力部50、出力部51、通信部52、CPU53、メモリ54及びHDD55がバス56を介して接続され、コンピュータとしての機能を備える。また、無線局20は、コンピュータ読み取り可能な記憶媒体57との間でデータを入出力することができるようにされている。
 入力部50は、例えばキーボード及びマウス等である。出力部51は、例えばディスプレイなどの表示装置である。また、入力部50及び出力部51は、タッチパネルなどとして構成されてもよい。
 通信部52は、無線通信を行う通信インターフェースである。
 CPU53は、無線局20を構成する各部を制御し、所定の処理等を行う。メモリ54及びHDD55は、データ等を記憶する。
 記憶媒体57は、無線局20が有する機能を実行させるプログラム等を記憶可能にされている。なお、無線局20を構成するアーキテクチャは図5に示した例に限定されない。また、無線局20と同様のハードウェアを制御局40が備えていてもよい。
 1,10・・・無線通信システム、2-1~2-3,20-1~20-3・・・無線局、21・・・通信アンテナ、22・・・送受信装置、23・・・モデム、24・・・伝送装置、25・・・気象レーダアンテナ、26・・・信号処理装置、27・・・分析装置、3,30・・・通信衛星、40・・・制御局、41・・・送受信部、42・・・決定部、43・・・切替制御部、50・・・入力部、51・・・出力部、52・・・通信部、53・・・CPU、54・・・メモリ、55・・・HDD、56・・・バス、57・・・記憶媒体、100・・・モバイルネットワーク、260・・・抽出部、270・・・記憶部、272・・・降雨量予測部、274・・・品質予測部

Claims (8)

  1.  無線通信を中継するノード局との間の伝搬路が気象の影響を受け得る無線局を有する無線通信システムにおいて、
     前記無線局に備えられ、前記無線局から前記ノード局に向けて送信して反射された気象レーダ信号を受信する気象レーダアンテナと、
     前記気象レーダアンテナが受信した気象レーダ信号に基づいて、前記無線局と前記ノード局との間の降雨量を予測する降雨量予測部と、
     前記降雨量予測部が予測した降雨量に基づいて、前記無線局と前記ノード局との間の無線通信の品質を予測する品質予測部と、
     前記品質予測部が予測した無線通信の品質が予め定められた閾値未満である場合、前記ノード局と前記無線局とが接続している回線を、当該回線が遮断となる前に、前記ノード局と他の通信局とを接続する他の回線に切替える制御を行う切替制御部と
     を有することを特徴とする無線通信システム。
  2.  前記気象レーダアンテナが受信した気象レーダ信号から、降雨量予測に必要なデータを抽出する抽出部と、
     前記抽出部が抽出したデータを記憶する記憶部
     をさらに有し、
     前記降雨量予測部は、
     前記記憶部が記憶したデータに基づいて、前記無線局と前記ノード局との間の降雨量を予測すること
     を特徴とする請求項1に記載の無線通信システム。
  3.  前記無線局及び前記通信局を制御する制御局
     をさらに有し、
     前記無線局は、
     前記品質予測部が予測した無線通信の品質が予め定められた閾値未満である場合に、当該無線局が前記ノード局へ送信する制御信号に対して、無線通信の品質が予め定められた閾値未満であることを示す品質情報を重畳するモデムを有し、
     前記制御局は、
     前記モデムが重畳した品質情報を受信したときに、前記切替制御部が回線を切替える制御を行うように制御すること
     を特徴とする請求項1又は2に記載の無線通信システム。
  4.  無線通信を中継するノード局との間の伝搬路が気象の影響を受け得る無線局を有する無線通信システムが行う無線通信方法において、
     前記無線局に備えられ、前記無線局から前記ノード局に向けて送信して反射された気象レーダ信号を受信する気象レーダアンテナが受信した気象レーダ信号に基づいて、前記無線局と前記ノード局との間の降雨量を予測する降雨量予測工程と、
     予測した降雨量に基づいて、前記無線局と前記ノード局との間の無線通信の品質を予測する品質予測工程と、
     予測した無線通信の品質が予め定められた閾値未満である場合、前記ノード局と前記無線局とが接続している回線を、当該回線が遮断となる前に、前記ノード局と他の通信局とを接続する他の回線に切替える制御を行う切替制御工程と
     を含むことを特徴とする無線通信方法。
  5.  前記気象レーダアンテナが受信した気象レーダ信号から、降雨量予測に必要なデータを抽出する抽出工程と、
     抽出したデータを記憶部が記憶する記憶工程と
     をさらに含み、
     前記降雨量予測工程では、
     前記記憶部が記憶したデータに基づいて、前記無線局と前記ノード局との間の降雨量を予測すること
     を特徴とする請求項4に記載の無線通信方法。
  6.  無線通信を中継するノード局との間の伝搬路が気象の影響を受け得る無線局おいて、
     前記ノード局に向けて送信して反射された気象レーダ信号を受信する気象レーダアンテナと、
     前記気象レーダアンテナが受信した気象レーダ信号に基づいて、前記無線局と前記ノード局との間の降雨量を予測する降雨量予測部と、
     前記降雨量予測部が予測した降雨量に基づいて、前記無線局と前記ノード局との間の無線通信の品質を予測する品質予測部と、
     前記品質予測部が予測した無線通信の品質が予め定められた閾値未満である場合に、当該無線局が前記ノード局へ送信する制御信号に対して、無線通信の品質が予め定められた閾値未満であることを示す品質情報を重畳するモデムと
     を有することを特徴とする無線局。
  7.  前記気象レーダアンテナが受信した気象レーダ信号から、降雨量予測に必要なデータを抽出する抽出部と、
     前記抽出部が抽出したデータを記憶する記憶部
     をさらに有し、
     前記降雨量予測部は、
     前記記憶部が記憶したデータに基づいて、前記無線局と前記ノード局との間の降雨量を予測すること
     を特徴とする請求項6に記載の無線局。
  8.  前記品質予測部が予測した無線通信の品質が予め定められた閾値未満である場合、前記ノード局と前記無線局とが接続している回線を、当該回線が遮断となる前に、前記ノード局と他の通信局とを接続する他の回線に切替える制御を行う切替制御部
     をさらに有することを特徴とする請求項6又は7に記載の無線局。
PCT/JP2022/025619 2022-06-27 2022-06-27 無線通信システム、無線通信方法及び無線局 WO2024003996A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025619 WO2024003996A1 (ja) 2022-06-27 2022-06-27 無線通信システム、無線通信方法及び無線局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025619 WO2024003996A1 (ja) 2022-06-27 2022-06-27 無線通信システム、無線通信方法及び無線局

Publications (1)

Publication Number Publication Date
WO2024003996A1 true WO2024003996A1 (ja) 2024-01-04

Family

ID=89382154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025619 WO2024003996A1 (ja) 2022-06-27 2022-06-27 無線通信システム、無線通信方法及び無線局

Country Status (1)

Country Link
WO (1) WO2024003996A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190550A (ja) * 1996-10-21 1998-07-21 Globalstar Lp 多重衛星フェード減衰制御システム
WO2015005020A1 (ja) * 2013-07-11 2015-01-15 古野電気株式会社 気象情報処理装置、気象レーダシステムおよび気象情報処理方法
US9026042B1 (en) * 2011-10-14 2015-05-05 Vt Idirect, Inc. Method and apparatus for satellite communication with baseband switching over an IP network
JP2020167539A (ja) * 2019-03-29 2020-10-08 Hapsモバイル株式会社 Haps通信システムにおけるマルチフィーダリンク構成及びその制御

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190550A (ja) * 1996-10-21 1998-07-21 Globalstar Lp 多重衛星フェード減衰制御システム
US9026042B1 (en) * 2011-10-14 2015-05-05 Vt Idirect, Inc. Method and apparatus for satellite communication with baseband switching over an IP network
WO2015005020A1 (ja) * 2013-07-11 2015-01-15 古野電気株式会社 気象情報処理装置、気象レーダシステムおよび気象情報処理方法
JP2020167539A (ja) * 2019-03-29 2020-10-08 Hapsモバイル株式会社 Haps通信システムにおけるマルチフィーダリンク構成及びその制御

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROMU KITANOZOO, JUN SUZUKI, YOSHIHISA KISHIYAMA, YUKI HOKAZONO, TAKAYUKI SOTOYAMA, MIKIHIRO OUCHI, RYU MIURA, HIROYUKI TSUJI: "Development of HAPS Backhaul System using mmWave Frequency -- HAPS as a NTN System for 5G and Beyond --", IEICE TECHNICAL REPORT, IEICE, JP, vol. 121, no. 153 (RCS2021-105), 19 August 2021 (2021-08-19), JP , pages 14 - 19, XP009550498, ISSN: 2432-6380 *

Similar Documents

Publication Publication Date Title
US11804895B2 (en) Multiple modem communication system and method for a mobile platform
US12021578B2 (en) Method and apparatus for surveying remote sites via guided wave communications
EP2957047B1 (en) Method for shifting communications of a terminal located on a moving platform from a first to a second satellite antenna beam.
Bacco et al. Networking challenges for non-terrestrial networks exploitation in 5G
EP4007339B1 (en) Dynamic site diversity in haps communication system
EP3424239B1 (en) Enhanced vhf link communications method
EP3921956B1 (en) Delta coding for remote sensing
CN111836315A (zh) 联合切换方法、装置、设备和存储介质
GB2594264A (en) Satellite communications system
WO2024003996A1 (ja) 無線通信システム、無線通信方法及び無線局
Kourogiorgas et al. Cooperative diversity performance of hybrid satellite and terrestrial millimeter wave backhaul 5G networks
Fabbro et al. Characterization and modelling of time diversity statistics for satellite communications from 12 to 50 GHz
WO2023205422A1 (en) Orbital or other non-terrestrial base station preemption and/or replacement upon terrestrial base station incapacity or failure
WO2023218556A1 (ja) 無線通信方法及び無線通信システム
WO2022219818A1 (ja) 無線通信システム、無線通信方法、及び通信経路決定装置
WO2024069686A1 (ja) 無線通信システム、中央制御装置、および無線通信方法
JP2004128631A (ja) 衛星通信方法、その方法に用いる移動局及びゲートウェイ局
CN116830665A (zh) 用于卫星下行传播预测的方法和系统
US20240179596A1 (en) Wireless communication system, wireless communication control method, and wireless communication control device
RU2798008C2 (ru) Дельта-кодирование для дистанционного зондирования
WO2024171342A1 (ja) 無線通信システム、ハンドオーバ制御装置、無線通信方法、およびハンドオーバ制御用プログラム
WO2024202040A1 (ja) サイトダイバーシチの切り替え制御装置、サイトダイバーシチの切り替え制御方法及びサイトダイバーシチの切り替え制御プログラム
Asai Research on NTN Technology for 5G evolution & 6G

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949275

Country of ref document: EP

Kind code of ref document: A1