WO2024003984A1 - Component supply device - Google Patents

Component supply device Download PDF

Info

Publication number
WO2024003984A1
WO2024003984A1 PCT/JP2022/025556 JP2022025556W WO2024003984A1 WO 2024003984 A1 WO2024003984 A1 WO 2024003984A1 JP 2022025556 W JP2022025556 W JP 2022025556W WO 2024003984 A1 WO2024003984 A1 WO 2024003984A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
component
stage
imaging
scattered
Prior art date
Application number
PCT/JP2022/025556
Other languages
French (fr)
Japanese (ja)
Inventor
昇 内山
章郎 杉原
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/025556 priority Critical patent/WO2024003984A1/en
Publication of WO2024003984A1 publication Critical patent/WO2024003984A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components

Definitions

  • the present invention relates to a component supply device that includes a stage on which components are scattered.
  • Some component supply devices include a stage on which components are scattered, as described in the following patent documents.
  • An object of the present invention is to suitably supply parts to a stage where multiple types of parts are scattered.
  • the present specification provides a stage on which multiple types of parts are scattered, a scattering device that scatters parts on the stage, and a scattering device that scatters parts on the stage. and an imaging device that images parts scattered on the stage, and satisfaction for all types of parts among the plurality of types of parts scattered on the stage, based on imaging data obtained by the imaging device imaging the parts scattered on the stage.
  • a parts supply device including a determination device that determines whether or not a component is being supplied.
  • each time the scattering device scatters parts on the stage the parts scattered on the stage are imaged by the imaging device, and based on the imaging data captured by the imaging device, multiple types of parts scattered on the stage are detected. It is determined whether all types of parts are satisfied. This makes it possible to suitably supply parts to the stage.
  • FIG. 2 is a perspective view showing a component mounting device of a component mounting machine.
  • FIG. 1 is a perspective view showing a bulk parts supply system.
  • FIG. 2 is a perspective view showing a bulk parts supply device.
  • FIG. 3 is a transparent view showing the bulk parts supply device.
  • FIG. 2 is a plan view showing the main body of the bulk parts supply system.
  • FIG. 3 is a transparent view showing the bulk parts supply device.
  • It is a perspective view showing a component support device.
  • It is a perspective view showing a component holding head. It is a figure showing a component receiving member in a state where electronic circuit components are housed.
  • FIG. 1 is a perspective view showing a bulk parts supply system.
  • FIG. 2 is a perspective view showing a bulk parts supply device.
  • FIG. 3 is a transparent view showing the bulk parts supply device.
  • FIG. 2 is a plan view showing the main body of the bulk parts supply system.
  • FIG. 2 is a block diagram showing a control device of the component mounting machine.
  • FIG. 2 is a perspective view showing a bulk parts supply device including two parts supply devices.
  • FIG. 7 is a diagram showing holdable components at the time of N-th imaging.
  • FIG. 7 is a diagram showing the occupancy rate of parts, the number of holdable parts, the average value of the number of holdable parts, and supplied parts at the time of N-th imaging. It is a figure which shows the flowchart when a component supply operation
  • FIG. 1 shows a component mounting machine 10.
  • the component mounting machine 10 is a device for mounting components onto the circuit board 12.
  • the component mounting machine 10 includes an apparatus main body 20, a base material conveyance/holding device 22, a component mounting device 24, imaging devices 26, 28, an aligned component supply system 30, a bulk component supply system 32, and a control device (see FIG. 12) 34.
  • the circuit base material 12 include a circuit board, a base material with a three-dimensional structure, and the like
  • examples of the circuit board include a printed wiring board, a printed circuit board, and the like.
  • the device main body 20 is composed of a frame 40 and a beam 42 mounted on the frame 40.
  • the base material conveyance/holding device 22 is disposed at the center of the frame 40 in the front-rear direction, and includes a conveyance device 50 and a clamp device 52.
  • the transport device 50 is a device that transports the circuit board 12
  • the clamp device 52 is a device that holds the circuit board 12.
  • the base material conveying and holding device 22 transports the circuit base material 12 and holds the circuit base material 12 fixedly at a predetermined position.
  • the direction in which the circuit board 12 is transported will be referred to as the X direction
  • the horizontal direction perpendicular to that direction will be referred to as the Y direction
  • the vertical direction will be referred to as the Z direction. That is, the width direction of the component mounter 10 is the X direction, and the front and back direction is the Y direction.
  • the component mounting device 24 is disposed on the beam 42 and has two working heads 60 and 62 and a working head moving device 64.
  • Each work head 60, 62 has a suction nozzle (see FIG. 2) 66, and the suction nozzle 66 holds the component.
  • the work head moving device 64 includes an X-direction moving device 68, a Y-direction moving device 70, and a Z-direction moving device 72. Then, the two working heads 60 and 62 are integrally moved to any position on the frame 40 by the X-direction moving device 68 and the Y-direction moving device 70. Further, as shown in FIG.
  • each work head 60, 62 is detachably attached to a slider 74, 76, and the Z-direction moving device 72 moves the slider 74, 76 individually in the vertical direction. That is, the work heads 60 and 62 are individually moved in the vertical direction by the Z direction moving device 72.
  • the imaging device 26 is attached to the slider 74 facing downward, and is moved together with the work head 60 in the X direction, Y direction, and Z direction. Thereby, the imaging device 26 images an arbitrary position on the frame 40. As shown in FIG. 1, the imaging device 28 is disposed facing upward between the substrate conveying and holding device 22 on the frame 40 and the aligned component supply system 30. Thereby, the imaging device 28 images the parts held by the suction nozzles 66 of the working heads 60 and 62.
  • the aligned component supply system 30 is disposed at one end of the frame 40 in the front-rear direction.
  • the aligned component supply system 30 includes a tray-type component supply device 78 and a feeder-type component supply device (not shown).
  • the tray type component supply device 78 is a device that supplies components placed on a tray.
  • the feeder type component supply device is a device that supplies components using a tape feeder (not shown) or a stick feeder (not shown).
  • the bulk parts supply system 32 is disposed at the other end of the frame 40 in the front-rear direction.
  • the bulk parts supply system 32 is a device that aligns a plurality of scattered parts and supplies the parts in an aligned state. In other words, it is an apparatus that aligns a plurality of parts in arbitrary orientations in a predetermined orientation and supplies the parts in a predetermined orientation.
  • the configuration of the bulk parts supply system 32 will be explained in detail.
  • the components supplied by the aligned component supply system 30 and the bulk component supply system 32 include electronic circuit components, solar cell components, power module components, and the like.
  • electronic circuit components include components with leads, components without leads, and the like.
  • the bulk parts supply system 32 includes a main body 80, a bulk parts supply device 82, a two-dimensional imaging device 84, and a parts delivery device 86.
  • the bulk parts supply device 82 includes a parts supply device 88, a frame 89, a parts support device (see FIG. 4) 90, and a parts return device (see FIG. 4) 92. 90 and a parts return device 92 are integrally constructed.
  • the bulk parts supply device 82 is detachably assembled to the main body 80.
  • the parts supply device 88 has a generally rectangular parallelepiped box shape, and is arranged to extend in the Y direction, as shown in FIGS. 4 and 5. Note that the Y direction is described as the front-rear direction of the parts supply device 88, and the direction toward the side where the parts return device 92 is disposed in the bulk parts supply device 82 is described as the front direction, and the direction toward the side where the parts supply device 88 is disposed is described as the front direction. The direction toward the side where the device is installed is described as backward.
  • the parts replenishing device 88 is open at the top and the front, the opening at the top is a component input port 97, and the front opening is a component discharge port 98.
  • an inclined plate 104 is disposed below the input port 97 .
  • the inclined plate 104 is arranged so as to be inclined downward from the rear end surface of the parts supply device 88 toward the center.
  • a conveyor device 106 is provided on the front side of the inclined plate 104.
  • the conveyor device 106 is disposed so as to be inclined upward from the front end of the inclined plate 104 toward the front of the component supply device 88.
  • the conveyor belt 112 of the conveyor device 106 is rotated counterclockwise in FIG. 5 by driving of an electromagnetic motor (see FIG. 12) 116. That is, the conveyance direction by the conveyor device 106 is diagonally upward from the front end of the inclined plate 104 toward the front.
  • an inclined plate 126 is provided below the front end of the conveyor device 106.
  • the inclined plate 126 is disposed from the front end surface of the component replenishing device 88 toward the bottom of the conveyor device 106, and the rear end thereof is inclined diagonally downward.
  • an inclined plate 128 is provided below the inclined plate 126 as well. The inclined plate 128 is inclined from below the central portion of the conveyor device 106 toward the discharge port 98 of the component supply device 88 so that the front end thereof is located downward.
  • the frame 89 is composed of a pair of side frames 130 and a connecting frame 132.
  • the pair of side frames 130 are erected so as to face each other, parallel to each other, and extending in the Y direction.
  • a connecting frame 132 spans the lower ends of the pair of side frames 130, and the pair of side frames 130 are connected by the connecting frame 132.
  • the distance between the pair of side frames 130 is made slightly larger than the dimension in the width direction of the component supply device 88, and the component supply device 88 is positioned between the pair of side frames 130. can be attached and detached with one touch. Note that "one-touch attachment/detachment" means that the attachment/detachment can be reproducibly performed without the operator using any tools or the like.
  • each slot 140 is formed to extend in the Y direction, and the five slots 140 are arranged adjacent to each other in the X direction at the same pitch.
  • the five slots 140 have the same shape.
  • the dimension of each slot 140 in the X direction that is, the width dimension, is smaller than the dimension of the frame 89 of the bulk parts supply device 82 in the width direction.
  • the dimension in the Y direction of each slot 140 that is, the length dimension, is slightly larger than the length dimension of the frame 89 of the bulk parts supply device 82.
  • a frame 89 of the bulk parts supply device 82 is bolted to each slot 140.
  • the bulk parts supply device 82 can be attached and detached by an operator using a tool using each slot 140 of the main body 80 while being positioned in the mounting area 141 corresponding to each slot. ing.
  • the component support device 90 includes a component support member 150 and a component support member moving device 152, as shown in FIGS. 4 and 5.
  • the component support member 150 includes a stage 156 and a pair of side walls 158.
  • the stage 156 has a generally elongated plate shape and is arranged so as to extend forward from below the component supply device 88 mounted between the pair of side frames 130.
  • the width of the stage 156 is approximately the same as the width between the pair of side frames 130, that is, the width of the frame 89, and the rear end of the stage 156 is the same as the width between the pair of side frames 130. It is located in between.
  • the upper surface of the stage 156 is generally horizontal, and as shown in FIG.
  • the stage 156 is disposed with a slight clearance at its rear end from the front end of the inclined plate 128 of the component supply device 88. Further, as shown in FIG. 4, the pair of side walls 158 are fixed in an erected state on both sides of the stage 156 in the longitudinal direction, and the upper ends of each side wall 158 are lower than the top surface of the stage 156. It extends upward.
  • the component support member moving device 152 slides the component support member 150 in the Y direction by operating an air cylinder (see FIG. 12) 166. At this time, the component support member 150 moves between a stored state in which it is stored below the component supply device 88 (see FIG. 7) and an exposed state in which it is exposed from below the component supply device 88 (see FIG. 5). .
  • the parts return device 92 includes a parts storage container 180 and a container rocking device 181.
  • the component storage container 180 is generally box-shaped and has an arcuate bottom surface. Note that the width of the component storage container 180 is approximately the same as the width of the stage 156.
  • the component storage container 180 is swingably held at the front end of the stage 156, and swings by the operation of the container swinging device 181. At this time, the component storage container 180 swings between a storage position with the opening facing upward (see FIG. 8) and a returned position with the opening facing the top surface of the stage 156 of the component support member 150 (see FIG. 9). do.
  • the two-dimensional imaging device 84 includes a camera 290 and a camera moving device 292, as shown in FIG.
  • Camera moving device 292 includes a guide rail 296 and a slider 298.
  • the guide rail 296 is fixed to the main body 80 above the parts supply device 88 so as to extend in the width direction (X direction) of the bulk parts supply system.
  • the slider 298 is slidably attached to the guide rail 296, and is slid to any position by the operation of an electromagnetic motor (see FIG. 12) 299. Further, the camera 290 is attached to the slider 298 in a state facing downward.
  • the component delivery device 86 includes a component holding head moving device 300, a component holding head 302, and two shuttle devices 304.
  • the component holding head moving device 300 includes an X-direction moving device 310, a Y-direction moving device 312, and a Z-direction moving device 314.
  • the Y direction moving device 312 has a Y slider 316 disposed above the bulk parts supply device 82 so as to extend in the X direction, and the Y slider 316 drives an electromagnetic motor (see FIG. 12) 319. to move to an arbitrary position in the Y direction.
  • the X-direction moving device 310 has an X-slider 320 disposed on the side surface of the Y-slider 316, and the X-slider 320 can be moved to any position in the X-direction by driving an electromagnetic motor (see FIG. 12) 321.
  • the Z direction moving device 314 has a Z slider 322 disposed on the side surface of the X slider 320, and the Z slider 322 can be moved to any position in the Z direction by driving an electromagnetic motor (see FIG. 12) 323. Moving.
  • the component holding head 302 includes a head main body 330, a suction nozzle 332, a nozzle rotation device 334, and a nozzle rotation device 335.
  • the head main body 330 is integrally formed with the Z slider 322.
  • the suction nozzle 332 holds the component and is detachably attached to the lower end of the holder 340.
  • the holder 340 is bendable at the support shaft 344, and the holder 340 is bent 90 degrees upward by the operation of the nozzle turning device 334. As a result, the suction nozzle 332 attached to the lower end of the holder 340 rotates 90 degrees and is located at the rotating position.
  • the suction nozzle 332 rotates between the non-swivel position and the swiveling position by the operation of the nozzle swiveling device 334.
  • the nozzle rotation device 335 rotates the suction nozzle 332 around its axis.
  • Each of the two shuttle devices 304 includes a component carrier 388 and a component carrier moving device 390, as shown in FIG. Fixed.
  • Five component receiving members 392 are attached to the component carrier 388 in a row in a horizontal direction, and a component is placed on each component receiving member 392.
  • the bulk parts supply system 32 can supply various parts, and various parts receiving members 392 are prepared depending on the shape of the parts.
  • a component receiving member 392 corresponding to a lead component 410 having a lead will be described.
  • the lead component 410 includes a block-shaped component body 412 and two leads 414 protruding from the bottom surface of the component body 412.
  • a component receiving recess 416 having a shape corresponding to the lead component 410 is formed in the component receiving member 392.
  • the component receiving recess 416 is a stepped recess, and is composed of a main body receiving recess 418 that opens on the top surface of the component receiving member 392, and a lead receiving recess 420 that opens on the bottom surface of the main body receiving recess 418.
  • the lead component 410 is inserted into the component receiving recess 416 with the lead 414 facing downward.
  • the lead component 410 is placed inside the component receiving recess 416 with the lead 414 inserted into the lead receiving recess 420 and the component body 412 being inserted into the main body receiving recess 418 .
  • the component carrier moving device 390 is a plate-shaped longitudinal member, and is disposed on the front side of the bulk component supply device 82 so as to extend in the front-rear direction.
  • a component carrier 388 is disposed on the upper surface of the component carrier moving device 390 so as to be slidable in the front-back direction, and is slid to any position in the front-back direction by driving an electromagnetic motor (see FIG. 12) 430. Note that when the component carrier 388 slides in the direction approaching the bulk component supply device 82, it slides to a component receiving position located within the movement range of the component holding head 302 by the component holding head moving device 300. On the other hand, when the component carrier 388 slides away from the bulk component supply device 82, it slides to a component supply position located within the range of movement of the work heads 60, 62 by the work head moving device 64.
  • the control device 34 includes a general control device 450, a plurality of individual control devices (only one is shown in the figure) 452, and an image processing device 454.
  • the overall control device 450 is mainly composed of a computer, and is connected to the substrate conveyance and holding device 22, the component mounting device 24, the imaging device 26, the imaging device 28, the aligned component supply system 30, and the bulk component supply system 32. has been done. Thereby, the overall control device 450 centrally controls the base material transport and holding device 22, the component mounting device 24, the imaging device 26, the imaging device 28, the aligned component supply system 30, and the bulk component supply system 32.
  • the plurality of individual control devices 452 are mainly configured with a computer, and include a base material conveyance and holding device 22, a component mounting device 24, an imaging device 26, an imaging device 28, an aligned component supply system 30, and a bulk component supply system 32. (In the figure, only the individual control device 452 corresponding to the bulk parts supply system 32 is shown).
  • the individual control device 452 of the bulk parts supply system 32 is connected to the component supply device 88, the component support device 90, the component return device 92, the camera moving device 292, the component holding head moving device 300, the component holding head 302, and the shuttle device 304. ing.
  • the individual control devices 452 of the bulk parts supply system 32 include the component supply device 88, the component support device 90, the component return device 92, the camera moving device 292, the component holding head moving device 300, the component holding head 302, and the shuttle device 304. control.
  • the image processing device 454 is connected to the two-dimensional imaging device 84 and processes imaged data captured by the two-dimensional imaging device 84.
  • the image processing device 454 is connected to the individual control device 452 of the bulk parts supply system 32. Thereby, the individual control device 452 of the bulk parts supply system 32 acquires the imaging data captured by the two-dimensional imaging device 84.
  • the component mounting machine 10 performs a work of mounting components onto the circuit substrate 12 held by the substrate conveying and holding device 22. Specifically, the circuit base material 12 is transported to a working position by the base material transport and holding device 22, and is fixedly held at that position by the clamp device 52. Next, the imaging device 26 moves above the fixedly held circuit board 12 and images the circuit board 12. Thereby, information regarding the error in the holding position of the circuit board 12 can be obtained. Further, the aligned parts supply system 30 or the bulk parts supply system 32 supplies parts at a predetermined supply position. Note that the supply of parts by the bulk parts supply system 32 will be explained in detail later.
  • one of the work heads 60 and 62 moves above the part supply position and holds the part by the suction nozzle 66. Subsequently, the work heads 60 and 62 holding the component move above the imaging device 28, and the component held by the suction nozzle 66 is imaged by the imaging device 28. This provides information regarding the error in the holding position of the component. Then, the work heads 60 and 62 holding the components move above the circuit board 12 and correct the errors in the holding position of the circuit board 12, the errors in the holding positions of the parts, etc. , mounted on the circuit board 12.
  • lead parts 410 are inputted by an operator through the input port 97 of the parts supply device 88, and the input lead parts 410 are processed by the operation of the bulk parts supply device 82 and the parts delivery device 86. It is supplied while being placed on the component receiving member 392 of the component carrier 388.
  • the operator inputs the lead component 410 from the input port 97 on the top surface of the component supply device 88.
  • the component support member 150 is moved below the component supply device 88 by the operation of the component support member moving device 152, and is in a so-called stored state (see FIG. 7).
  • the component storage container 180 disposed at the front end of the component support member 150 is located in front of the component supply device 88, and the component storage container 180 is located in front of the component supply device 88. This is a posture with the opening 180 facing upward (accommodating posture).
  • the lead component 410 input from the input port 97 of the component supply device 88 falls onto the inclined plate 104 of the component supply device 88 and rolls down to the lower end of the inclined plate 104 on the front side. At this time, the lead components 410 that have rolled down to the lower end of the front side of the inclined plate 104 are piled up between the lower end of the front side of the inclined plate 104 and the lower end of the rear side of the conveyor device 106. Then, when the conveyor device 106 is operated, the conveyor belt 112 of the conveyor device 106 rotates counterclockwise in FIG. 7 . At this time, the lead parts 410 piled up between the inclined plate 104 and the conveyor belt 112 are conveyed diagonally upward by the conveyor belt 112.
  • the lead component 410 conveyed by the conveyor belt 112 falls onto the inclined plate 126 from the upper end of the front side of the conveyor device 106.
  • the lead component 410 that has fallen onto the inclined plate 126 rolls backward on the inclined plate 126 and falls onto the inclined plate 128.
  • the lead component 410 that has fallen onto the inclined plate 128 rolls down toward the front and is discharged from the discharge port 98 on the front side of the component supply device 88.
  • the lead components 410 discharged from the discharge port 98 of the component supply device 88 are accommodated inside the component storage container 180. Then, when a predetermined amount of lead components 410 are discharged from the component supply device 88, that is, when the conveyor device 106 operates a certain amount, the conveyor device 106 stops. Next, the component support member 150 is moved forward from the stored state by the operation of the component support member moving device 152.
  • the container swing device 181 of the component return device 92 is activated, and the component storage container 180 swings.
  • the attitude of the component storage container 180 changes rapidly from an attitude with the opening facing upward (accommodating attitude) to an attitude with the opening facing the stage 156 (returning attitude).
  • the lead component 410 housed in the component storage container 180 is vigorously ejected toward the stage 156.
  • the lead components 410 are scattered from the component storage container 180 onto the stage 156.
  • the scattering of the lead components 410 is a concept that includes a state in which the lead components 410 are scattered in an overlapping state and a state in which the lead components 410 are scattered in a separate state without overlapping.
  • the camera 290 of the two-dimensional imaging device 84 moves the camera 290 onto the component support member by the operation of the camera moving device 292. 150 and image the lead component 410. Thereby, two-dimensional imaging data of each of the plurality of lead components 410 scattered on the upper surface of the component support member 150 is obtained. Then, information such as the position on the component support member 150 and the posture of the lead component 410 is calculated for the plurality of lead components 410 scattered on the upper surface of the component support member 150 based on the two-dimensional imaging data. .
  • holdable parts parts that can be held by the suction nozzle 332 (hereinafter referred to as “holdable parts”) are identified by pattern matching, and the position, orientation, etc. of the holdable parts on the component support member 150 are determined. Information is calculated. Note that since pattern matching is an existing technology, a detailed explanation of pattern matching will be omitted.
  • the component holding head 302 is moved above the lead component by the operation of the component holding head moving device 300, and the lead component is sucked and held by the suction nozzle 332. be done. Note that when the lead component is suctioned and held by the suction nozzle 332, the suction nozzle 332 is located at a non-rotating position.
  • the component holding head 302 moves above the component carrier 388.
  • the component carrier 388 is moved to the component receiving position by the operation of the component carrier moving device 390.
  • the suction nozzle 332 is rotated to the rotation position. Note that the suction nozzle 332 is rotated by the operation of the nozzle rotation device 335 so that the lead 414 of the lead component 410 held by the suction nozzle 332 in the rotating position is directed downward in the vertical direction.
  • the lead component 410 with the lead 414 facing vertically downward is inserted into the component receiving recess 416 of the component receiving member 392. Thereby, the lead component 410 is placed on the component receiving member 392 with the lead 414 facing downward in the vertical direction, as shown in FIG.
  • the component carrier 388 is moved to the component supply position by the operation of the component carrier moving device 390. Since the component carrier 388 that has moved to the component supply position is located within the movement range of the work heads 60 and 62, the lead component 410 is supplied to the component mounter 10 at this position in the bulk component supply system 32. In this way, in the bulk component supply system 32, the lead components 410 are supplied to the component receiving member 392 with the leads 414 facing downward and the top surface opposite the bottom surface to which the leads 414 are connected facing upward. Ru. Therefore, the suction nozzles 66 of the working heads 60 and 62 can appropriately hold the lead component 410.
  • the holdable parts when the holdable parts are scattered on the stage 156 of the component support member 150, holding of the scattered holdable parts is repeated, and the held holdable parts are It is placed on the component receiving member 392. Then, the component carrier 388 to which the component receiving member 392 is attached moves to the component supply position, whereby the lead component 410 is supplied.
  • the lead component 410 cannot be held from the stage 156. In other words, all the lead components 410 that were determined to be able to be held by the suction nozzle 332 were retained, and the lead components 410 that were determined to be unable to be held by the suction nozzle 332 or those that were determined to be unrecognizable. If lead component 410 remains on stage 156, lead component 410 cannot be held from stage 156.
  • the bulk parts supply system 32 performs a part return operation. That is, the lead component 410 remaining on the stage 156 is collected into the component storage container 180. Then, the lead components 410 collected in the component storage container 180 are scattered on the stage 156 again, and the posture of the lead components 410 is changed, so that the holding of the lead components 410 from the stage 156 is resumed. Ru.
  • the component support member 150 is moved downward of the component supply device 88 by the operation of the component support member moving device 152. That is, the component support member 150 moves from the exposed state (see FIG. 5) toward the retracted state (see FIG. 6). At this time, the component storage container 180 disposed at the front end of the component support member 150 is in a posture with its opening facing upward (recovery posture).
  • the lead component 410 on the stage 156 of the component support member 150 is dammed by the front end of the inclined plate 128 of the component supply device 88. It can be stopped.
  • the lead component 410 on the stage 156 is scraped into the component storage container 180.
  • the lead component 410 on the stage 156 is collected into the component storage container 180.
  • the collected lead components 410 are scattered on the stage 156.
  • the component support member 150 is in the stored state, as shown in FIG. Therefore, the component support member 150 is moved forward from the stored state by the operation of the component support member moving device 152. Then, at the timing when the component support member 150 moves forward by a predetermined amount from the stored state, the container rocking device 181 of the component return device 92 is activated, and the component storage container 180 is rocked. As a result, the attitude of the component storage container 180 changes rapidly from an attitude with the opening facing upward (accommodating attitude) to an attitude with the opening facing the stage 156 (returning attitude).
  • the lead component 410 housed in the component storage container 180 is vigorously ejected toward the stage 156.
  • the lead components 410 are scattered from the component storage container 180 onto the stage 156. That is, the lead components 410 collected in the component storage container 180 are supplied to the stage 156.
  • the attitude of the lead component 410 on the stage is changed, and the lead component 410 is held from above the stage 156 again.
  • the number of lead components scattered on the stage 156 decreases due to the return operation.
  • the number of components that can be held by the suction nozzle 332 from above the stage 156 also decreases, so lead components are supplied from the component supply device 88. A supply operation is performed to do so.
  • the camera 290 of the two-dimensional imaging device 84 moves the stage of the component support member 150 in order to calculate the position, orientation, etc. of the holdable component. 156.
  • Lead components scattered on top of 156 are imaged.
  • the position, orientation, etc. of the holdable component on the stage are calculated, and at this time, the occupancy rate of the component on the stage is also calculated.
  • the occupancy rate of a component is the ratio of the area occupied by the component to the area of the top surface of the stage 156, and the area of the top surface of the stage 156 is stored in the individual control device 452.
  • the individual control device 452 calculates the area of the parts scattered on the stage 156 based on the two-dimensional image data captured by the camera. Then, the individual control device 452 calculates the occupancy rate of the component.
  • the calculated component occupancy rate exceeds 15%, it is determined that the number of lead components scattered on the stage 156 is not small, and the components on the stage 156 are retained. be done. On the other hand, when the calculated component occupancy rate is 15% or less, it is determined that the number of lead components scattered on the stage 156 is small, and the lead components are supplied from the component supply device 88 to the stage. Ru.
  • the lead component 410 on the stage 156 is collected into the component storage container 180, similarly to the return operation. That is, the component support member 150 moves below the component supply device 88, that is, toward the stored state, by the operation of the component support member moving device 152, so that the lead component 410 on the stage 156 is moved to the component supply device 88. It is blocked by the inclined plate 128 and collected into the parts storage container 180.
  • the conveyor device 106 is operated, so that the lead component 410 housed in the component supply device 88 is conveyed by the conveyor belt 112 and discharged from the component supply device 88 .
  • the lead components 410 discharged from the component supply device 88 are accommodated in the component storage container 180. That is, the parts storage container 180 stores the parts collected from above the stage 156 and the parts newly supplied from the parts supply device 88. Then, when a predetermined amount of lead components 410 are discharged from the component supply device 88, the conveyor device 106 stops and the component support member 150 moves forward from the stored state. Then, at the timing when the component support member 150 moves forward from the stored state to the exposed state by a predetermined amount, the container swing device 181 of the component return device 92 is activated, and the component storage container 180 swings. At this time, the lead component 410 accommodated in the component storage container 180 is vigorously ejected toward the stage 156.
  • the lead components 410 are scattered from the component storage container 180 onto the stage 156. That is, in the supply operation, parts collected from above the stage 156 and parts newly supplied from the parts supply device 88 are scattered on the stage 156. In this way, parts newly supplied from the parts supply device 88 are scattered on the stage 156, so that the bulk parts supply device 82 can continuously supply parts.
  • the bulk parts supply system 32 in the bulk parts supply system 32, as shown in FIG. Alternatively, it can also be installed in the slot 140 of the main body 80.
  • the bulk parts supply device 500 includes a frame 504, a component support device 506, and a component return device 508.
  • the bulk parts supplying apparatus 500 is approximately the same as the bulk parts supplying apparatus, except that it is wider than the bulk parts supplying apparatus and is equipped with two parts supplying apparatuses 88, so the description will be simplified. explain.
  • the width dimension of the frame 504 is twice that of the frame 89 of the bulk parts supply device 82, and like the frame 89, it is composed of a pair of side frames 520 and a connecting frame 522.
  • the pair of side frames 520 have approximately the same shape as the pair of side frames 130 of the bulk parts supply device 82, and the widthwise dimension of the connecting frame 522 is equal to the width direction of the connecting frame 132 of the bulk parts supplying device 82. It is twice the size.
  • the two component supply devices 88 are removably mounted between the pair of side frames 520 in a state where they are lined up in the width direction.
  • the frame 504 which is twice the widthwise dimension of the frame 89 of the bulk parts supply device 82, fits into two adjacent slots 140 of the five slots 140 formed in the main body 80 of the bulk parts supply system 32. , to be installed.
  • the component support device 506 also includes a component support member 530 and a component support member moving device 532. and a side wall portion 538.
  • the dimension of the stage 536 in the width direction is twice that of the stage 156 of the bulk parts supply device 82, and a pair of side walls 538 are provided upright on both edges of the stage 536 in the width direction. Then, the component support member 530 slides in the front-back direction by the operation of the component support member moving device 532.
  • the parts return device 508 also includes a component storage container 540 and a container rocking device 542.
  • the dimension in the width direction of the component storage container 540 is twice that of the component storage container 180 of the bulk component supply device 82, and is swingably disposed at the front end of the stage 536. Then, by the operation of the container rocking device 542, the component storage container 540 is moved between a posture with the opening of the component storage container 540 facing upward (accommodation posture) and a posture with the opening of the component storage container 540 facing the stage 536 (returning posture). ).
  • the bulk parts supply device 500 with such a structure installed in the bulk parts supply system 32 can supply two types of parts. That is, for example, if one of the two component supply devices 88a stores the A component and the other component supply device 88b stores the B component, the component supply device 88a Component A is discharged from the component replenishing device 88b, and component B is discharged from the component supply device 88b, so that the A component and the B component are scattered on the stage 536. Subsequently, the parts scattered on the stage 536 are imaged by the two-dimensional imaging device 84, and based on the imaged data, the holdable parts among the scattered parts A and B are identified.
  • the holdable parts among the A parts and B parts scattered from above the stage 536 are held by the suction nozzle 332. That is, the bulk parts supply device 500 supplies A parts and B parts. Further, when the suction nozzle 332 holds holdable parts from above the stage 536 and there are no holdable parts on the stage 536, the return operation of the scattered parts is performed in the same manner as the bulk parts supply device 82. be exposed. Further, when the number of parts scattered on the stage 536 decreases, the parts are supplied from the parts supply device 88. However, in the bulk parts supply device 500, parts A are supplied from the parts supply device 88a and parts B are supplied from the parts supply device 88b, so two types of parts A and B are scattered on the stage.
  • the parts supply device 88 It is determined whether or not the parts are satisfied. If it is determined that all types of parts are satisfied, the parts are not supplied from the parts supply device 88, and if it is determined that any of all types of parts is not satisfied, the parts are not supplied. , parts of the type determined to be unsatisfied are supplied from the parts supply device 88. Note that the types of parts that are determined to be sufficient include those in which the suction nozzle 332 that performs the part holding work has parts that can be held without idle time or standby time, or the work plan for assembly or installation. There are parts that do not cause any delays.
  • parts A and B are scattered on the stage 536.
  • a component supply operation is performed. That is, in the parts supply operation, the conveyor device 106 of the parts supply device 88a is operated to discharge parts A from the parts supply device 88a, and the conveyor device 106 of the parts supply device 88b is operated to supply parts B. By being ejected from the device 88b, the A parts and the B parts are scattered on the stage 536. At this time, the component supply operation is repeatedly performed until the component occupancy exceeds 15%.
  • the individual control device 452 calculates the occupancy rate of the component based on the imaging data of the two-dimensional imaging device 84. At this time, if the calculated occupancy rate of the parts is 15% or less, the operation of supplying parts A and B is performed again. Then, the operation of supplying parts A and B is repeated until the occupancy rate of the parts exceeds 15%.
  • the component holding head carries out the work of holding the component with the suction nozzle.
  • the individual control device 452 specifies the holdable parts A part and B part based on the image data taken by the two-dimensional imaging device 84 in order to calculate the occupancy rate of the parts.
  • the imaging when the occupancy rate of the component exceeds 15% in the imaging data captured by the two-dimensional imaging device 84 is handled as the first imaging. For example, assume that the occupancy rate of parts at the time of the first imaging is 50%.
  • the individual control device 452 specifies the holdable parts for each of the A part and the B part based on the imaging data obtained during the first imaging
  • the individual control device 452 calculates the number of the specified holdable parts for each type of part, in a scattered manner. It is stored together with the number of times the part was imaged. For example, as shown in FIG. 14, when the scattered parts are imaged for the first time, it is specified that the number of parts that can be held for part A is two, and that the number of parts that can be held for part B is three. .
  • the individual control device 452 then stores the identified numbers, as shown in FIG. Note that in FIG.
  • the individual control device 452 determines the holdable parts based on the number of holdable parts for each specified part type (hereinafter referred to as the number of holdable parts).
  • the average value of the number of parts is calculated for each type of part. Note that the average value of the number of parts that can be held is the average value of the number of parts that can be held that is specified based on the imaging data of the last five images of scattered parts. Therefore, at the time of the first imaging, the number of parts that can be held for each type of component specified at the time of the first imaging becomes the average value of the number of parts that can be held at the time of the first imaging.
  • the average value of the number of parts that can be held for parts A at the time of the first imaging is 2.0, and the average value of the number of parts that can be held for parts B is 3.0. Then, since the component occupancy rate at the time of the first imaging is 50%, which exceeds 15%, it is determined that the A and B components are sufficient, and the component supply operation is executed.
  • the retainable parts on the stage are held by the suction nozzle 332.
  • the holdable component identified during the first imaging is held by the suction nozzle 332, a return operation is executed. That is, the parts remaining on the stage 536 are collected into the parts storage container 540, and the collected parts are scattered on the stage 536 again.
  • the two-dimensional imaging device 84 performs a second imaging of the parts scattered on the stage 536 again.
  • the individual control device 452 calculates the occupancy rate of the parts based on the second imaging data, and specifies the holdable parts for each type of parts. At this time, for example, since the occupancy rate of the parts at the time of the second imaging was 50%, as shown in FIG. It is specified that there are two holdable parts.
  • the individual control device 452 then stores the identified numbers, as shown in FIG.
  • the parts remaining on the stage 536 are collected into the parts storage container 540 and placed on the stage 536 again.
  • a return operation of the scattered parts is performed.
  • the two-dimensional imaging device 84 performs a third imaging of the parts scattered on the stage 536 again.
  • the individual control device 452 calculates the occupancy rate of the parts based on the third imaging data, and specifies the holdable parts for each type of parts. At this time, for example, since the component occupancy rate at the time of the third imaging was 10%, as shown in FIG. 14, the retainable components of component A are not specified, and the retainable components of component B It is specified that there is one.
  • the component occupancy rate at the time of the third imaging is 10% and is less than 15%, it is determined that there are not enough components, and the component supply operation is executed.
  • the average value of the number of parts that can be held for parts A and B is less than 1, it is determined that there are not enough parts A and B.
  • the average value of the number of parts that can be held for parts A and B is the same, and there are no parts that can be held for parts A and B, it is determined that there are not enough parts A and B.
  • the part with the smaller average value of the number of parts that can be held among parts A and parts B is not sufficient.
  • the average value of the number of parts that can be held for parts A at the time of the third imaging is 1.7, and the average value of the number of parts that can be held for parts B is 2.0. Therefore, based on the imaging data obtained during the third imaging, it is determined that the A parts are not sufficient, and the supply operation of the A parts is executed.
  • the two-dimensional imaging device 84 performs a fourth imaging of the components scattered on the stage 536. Then, the individual control device 452 calculates the occupancy rate of the parts based on the fourth imaging data, and specifies the holdable parts for each type of parts. For example, the occupancy rate of parts at the time of the fourth imaging is 15%, and as shown in FIG. If not, the individual controller 452 stores those identified numbers, as shown in FIG. Further, the individual control device 452 calculates the average value of the number of parts that can be held at the time of the fourth imaging for each type of part.
  • the average value of the number of parts that can be held for parts A at the time of the fourth imaging is 1.8, and the average value of the number of parts that can be held for parts B is 1.5. Therefore, based on the imaging data obtained during the fourth imaging, it is determined that the B components are not sufficient, and the B component supply operation is executed.
  • the two-dimensional imaging device 84 performs a fifth imaging of the components scattered on the stage 536. Then, the individual control device 452 calculates the occupancy rate of the parts based on the fifth imaging data, and specifies the holdable parts for each type of parts. For example, the occupancy rate of the parts at the time of the fifth image capture is 35%, and as shown in FIG. If it is specified that the number is 1, the individual control device 452 stores the specified number, as shown in FIG. Further, the individual control device 452 calculates the average value of the number of parts that can be held at the time of the fifth imaging for each type of part.
  • the parts remaining on the stage 536 are collected into the parts storage container 540 and placed on the stage 536 again.
  • a return operation of the scattered parts is performed.
  • the two-dimensional imaging device 84 performs a sixth imaging of the parts scattered on the stage 536 again.
  • the individual control device 452 calculates the occupancy rate of the parts based on the fifth imaging data, and specifies the holdable parts for each type of parts. At this time, for example, since the component occupancy rate at the time of the sixth imaging was 5%, as shown in FIG. Not specified. The individual control device 452 then stores these information as shown in FIG.
  • the component occupancy rate at the time of the sixth imaging is 5%, which is less than 15%, it is determined that there are not enough components, and the component supply operation is executed.
  • the average value of the number of parts that can be held for parts A at the time of the sixth imaging is 1.2, and the average value of the number of parts that can be held for parts B is also 1.2. In other words, the average value of the number of parts that can be held for parts A and the average value of the number of parts that can be held for parts B are the same.
  • there is no part A that can be held and there is no part that can hold part B. Therefore, based on the imaging data obtained during the sixth imaging, it is determined that the A and B parts are not sufficient, and the operation for supplying the A and B parts is executed.
  • the two-dimensional imaging device 84 performs the seventh imaging of the parts scattered on the stage 536. Then, the individual control device 452 calculates the occupancy rate of the parts based on the seventh imaging data, and specifies the holdable parts for each type of parts. For example, the occupancy rate of the parts at the time of the seventh imaging is 15%, and as shown in FIG. If it is specified that the number is 1, the individual control device 452 stores the specified number, as shown in FIG. Further, the individual control device 452 calculates the average value of the number of parts that can be held at the time of the seventh imaging for each type of part.
  • the average value of the number of parts that can be held for parts A at the seventh time of imaging is 0.8, and the average value of the number of parts that can be held for parts B is also 1.0. In other words, the average value of the number of parts that can be held for parts A and B is all 1 or less. Therefore, based on the imaging data obtained during the seventh imaging, it is determined that the A and B parts are not sufficient, and the supply operation of the A and B parts is executed.
  • each time parts are scattered on the stage it is determined whether there are enough parts on the stage based on the imaging data obtained by imaging the scattered parts on the stage with the two-dimensional imaging device 84. By determining whether this is the case, it becomes possible to suitably supply the parts to the stage. Furthermore, based on the imaging data obtained by imaging with the two-dimensional imaging device 84, it is first determined whether the area occupation rate of the scattered parts with respect to the area of the stage is 15% or less. If it is determined that the occupancy rate of parts is 15% or less, the parts are sufficient for each type of parts based on the average number of parts that can be held for each type of parts scattered on the stage. It is possible to judge whether or not there is a sufficient number of parts, and to supply only the types of parts that are not satisfied to the stage. Thereby, parts can be more suitably supplied to the stage.
  • the operation of supplying the A component and the B component and the imaging of the stage after the components are supplied are repeated.
  • the occupancy rate of the component exceeds 15% (S16: NO)
  • the part that can be held is held by the suction nozzle 332 (S20). Then, when the suction nozzle holds all the parts that can be held on the stage, a return operation is executed (S22).
  • the suction nozzle does not hold the parts and collects the parts scattered on the stage.
  • a scattered return operation is performed again (S22).
  • the two-dimensional imaging device 84 images the parts scattered on the stage after the return operation has been performed (S24).
  • the occupancy rate of the component is 15% or less based on the image data captured by the two-dimensional imaging device 84 (S26). At this time, if the occupancy rate of the parts exceeds 15% (S26: NO), the holding work of the holdable parts is performed by the suction nozzle (S18, S19), and the processes from S22 onwards are performed. . On the other hand, if the occupancy rate of the parts is 15% or less (S26: YES), it is determined whether the average number of parts that can be held for each of A parts and B parts is all 1 or less. (S28).
  • step S34 an operation is performed to supply the component A or B, which has a smaller average number of parts that can be held (S34).
  • the two-dimensional imaging device 84 is an example of an imaging device.
  • the parts supply device 88 is an example of a supply machine.
  • the individual control device 452 is an example of a determination device.
  • the bulk parts supply device 500 is an example of a parts supply device.
  • the parts return device 508 is an example of a scattering device.
  • Stage 536 is an example of a stage.
  • the present invention is not limited to the above embodiments, but can be implemented in various forms with various modifications and improvements based on the knowledge of those skilled in the art. Specifically, for example, in the above embodiment, it is determined whether or not there are enough parts for each type of parts based on the average number of parts that can be held for each type of parts. It may be determined whether or not there are enough parts for each type of parts based on the number of parts that can be held for each type. That is, it may be determined whether or not there are enough parts for each type of parts based on at least one of the number of parts that can be held for each type of parts and the average value of the number of parts that can be held. Furthermore, it may be determined whether or not there are sufficient parts for each type of parts based on the amount, ratio, etc. of parts that can be held for each type of parts.
  • a component supply device 88 is prepared for each type of component, and the same type of component is supplied from each of the plurality of component supply devices 88.
  • a single component supply device 88 may accommodate a plurality of types of components, and the single component supply device 88 may supply the plurality of types of components to the stage.
  • the parts return device 508 scatters the parts on the stage
  • the parts supply device 88 may scatter the parts on the stage. That is, in the embodiment described above, the parts supply device 88 supplies parts to the parts storage container 540 of the parts return device 508, and the parts storage container 540 containing the parts is scattered on the stage.
  • the parts supply device 88 may directly scatter the parts on the stage. That is, for example, the component supply device 88 may directly scatter the components on the stage by discharging the components while moving the stage from the stored state to the exposed state. In such a case, the parts supply device 88 functions as a scattering device.
  • the stage 536 is used as a member on which parts are scattered, but various members can be used as long as they have a shape that allows parts to be scattered.
  • a tray, a carrier, etc. can be used as a stage, or the upper surface of a conveyor belt can also function as a stage.
  • two parts supply devices 88 are arranged in one bulk parts supply device 500, but three or more parts supply devices 88 are arranged in one bulk parts supply device. You may. If different types of components are stored in each of the three or more component supply devices 88, three or more types of components can be supplied from one bulk component supply device 500.
  • the bulk parts supply device 500 that can supply three or more types of parts, if the occupancy rate of the parts scattered on the stage is 15% or less, the retainable parts among the three or more types of parts It is possible to supply the type of parts for which the average number of parts is the smallest, or to supply only the types of parts for which the average value of the number of holdable parts calculated for each of three or more types of parts is less than a predetermined threshold value. Good too.
  • the present invention is applied to the lead components 410, A component, and B component, but the present invention may be applied to various types of components. Specifically, the present invention can be applied to, for example, components of solar cells, components of power modules, electronic circuit components without leads, small chip-type electronic components, and the like.
  • Imaging device Two-dimensional imaging device (imaging device) 88: Parts supply device (supply machine) 452: Individual control device (judgment device) 500: Bulk parts supply device (components supply device) 508: Parts return device (scattering device) 536: stage

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Feeding Of Articles To Conveyors (AREA)

Abstract

This component supply device comprises: a stage on which a plurality of types of components are scattered; a scattering device for scattering the components on the stage; an imaging device for capturing an image of the components scattered on the stage each time the components are scattered on the stage by the scattering device; and a determination device for determining whether or not all of the plurality of types of components scattered on the stage satisfy an adequacy requirement on the basis of imaging data resulting from the imaging device imaging the components scattered on the stage.

Description

部品供給装置parts supply device
 本発明は、部品が散在されるステージを備える部品供給装置に関するものである。 The present invention relates to a component supply device that includes a stage on which components are scattered.
 部品供給装置には、下記特許文献に記載されているように、部品が散在されるステージを備えるものがある。 Some component supply devices include a stage on which components are scattered, as described in the following patent documents.
特開2005-183573号公報Japanese Patent Application Publication No. 2005-183573
 本発明は、複数種類の部品が散在されるステージに好適に部品を供給することを課題とする。 An object of the present invention is to suitably supply parts to a stage where multiple types of parts are scattered.
 上記課題を解決するために、本明細書は、複数種類の部品が散在されるステージと、前記ステージに部品を散在する散在装置と、前記散在装置が前記ステージに部品を散在する毎に前記ステージに散在された部品を撮像する撮像装置と、前記撮像装置が前記ステージに散在された部品を撮像した撮像データに基づいて、前記ステージに散在された複数種類の部品における全ての種類の部品について充足しているか否かを判断する判断装置とを備える部品供給装置を開示する。 In order to solve the above problems, the present specification provides a stage on which multiple types of parts are scattered, a scattering device that scatters parts on the stage, and a scattering device that scatters parts on the stage. and an imaging device that images parts scattered on the stage, and satisfaction for all types of parts among the plurality of types of parts scattered on the stage, based on imaging data obtained by the imaging device imaging the parts scattered on the stage. Disclosed is a parts supply device including a determination device that determines whether or not a component is being supplied.
 本開示によれば、散在装置がステージに部品を散在する毎にステージに散在された部品が撮像装置により撮像されて、撮像装置が撮像した撮像データに基づいて、ステージに散在された複数種類の部品における全ての種類の部品について充足しているか否かが判断される。これにより、ステージに好適に部品を供給することが可能となる。 According to the present disclosure, each time the scattering device scatters parts on the stage, the parts scattered on the stage are imaged by the imaging device, and based on the imaging data captured by the imaging device, multiple types of parts scattered on the stage are detected. It is determined whether all types of parts are satisfied. This makes it possible to suitably supply parts to the stage.
部品実装機を示す斜視図である。It is a perspective view showing a component mounting machine. 部品実装機の部品装着装置を示す斜視図である。FIG. 2 is a perspective view showing a component mounting device of a component mounting machine. ばら部品供給システムを示す斜視図である。FIG. 1 is a perspective view showing a bulk parts supply system. ばら部品供給装置を示す斜視図である。FIG. 2 is a perspective view showing a bulk parts supply device. ばら部品供給装置を示す透過図である。FIG. 3 is a transparent view showing the bulk parts supply device. ばら部品供給システムの本体を示す平面図である。FIG. 2 is a plan view showing the main body of the bulk parts supply system. ばら部品供給装置を示す透過図である。FIG. 3 is a transparent view showing the bulk parts supply device. 部品支持装置を示す斜視図である。It is a perspective view showing a component support device. 部品支持装置を示す斜視図である。It is a perspective view showing a component support device. 部品保持ヘッドを示す斜視図である。It is a perspective view showing a component holding head. 電子回路部品が収納された状態の部品受け部材を示す図である。It is a figure showing a component receiving member in a state where electronic circuit components are housed. 部品実装機の制御装置を示すブロック図である。FIG. 2 is a block diagram showing a control device of the component mounting machine. 2台の部品補給装置を備えるばら部品供給装置を示す斜視図である。FIG. 2 is a perspective view showing a bulk parts supply device including two parts supply devices. N回目の撮像時における保持可能部品を示す図である。FIG. 7 is a diagram showing holdable components at the time of N-th imaging. N回目の撮像時における部品の占有率と保持可能部品数と保持可能部品数の平均値と供給部品とを示す図である。FIG. 7 is a diagram showing the occupancy rate of parts, the number of holdable parts, the average value of the number of holdable parts, and supplied parts at the time of N-th imaging. 部品の供給動作が実行される際のフローチャートを示す図である。It is a figure which shows the flowchart when a component supply operation|movement is performed. 部品の供給動作が実行される際のフローチャートを示す図である。It is a figure which shows the flowchart when a component supply operation|movement is performed.
 以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。 Hereinafter, examples of the present invention will be described in detail as modes for carrying out the present invention with reference to the drawings.
 図1に、部品実装機10を示す。部品実装機10は、回路基材12に対する部品の実装作業を実行するための装置である。部品実装機10は、装置本体20、基材搬送保持装置22、部品装着装置24、撮像装置26,28、整列部品供給システム30、ばら部品供給システム32、制御装置(図12参照)34を備えている。なお、回路基材12として、回路基板、三次元構造の基材等が挙げられ、回路基板として、プリント配線板、プリント回路板等が挙げられる。 FIG. 1 shows a component mounting machine 10. The component mounting machine 10 is a device for mounting components onto the circuit board 12. The component mounting machine 10 includes an apparatus main body 20, a base material conveyance/holding device 22, a component mounting device 24, imaging devices 26, 28, an aligned component supply system 30, a bulk component supply system 32, and a control device (see FIG. 12) 34. ing. Note that examples of the circuit base material 12 include a circuit board, a base material with a three-dimensional structure, and the like, and examples of the circuit board include a printed wiring board, a printed circuit board, and the like.
 装置本体20は、フレーム40と、そのフレーム40に上架されたビーム42とによって構成されている。基材搬送保持装置22は、フレーム40の前後方向の中央に配設されており、搬送装置50とクランプ装置52とを有している。搬送装置50は、回路基材12を搬送する装置であり、クランプ装置52は、回路基材12を保持する装置である。これにより、基材搬送保持装置22は、回路基材12を搬送するとともに、所定の位置において、回路基材12を固定的に保持する。なお、以下の説明において、回路基材12の搬送方向をX方向と称し、その方向に直角な水平の方向をY方向と称し、鉛直方向をZ方向と称する。つまり、部品実装機10の幅方向は、X方向であり、前後方向は、Y方向である。 The device main body 20 is composed of a frame 40 and a beam 42 mounted on the frame 40. The base material conveyance/holding device 22 is disposed at the center of the frame 40 in the front-rear direction, and includes a conveyance device 50 and a clamp device 52. The transport device 50 is a device that transports the circuit board 12, and the clamp device 52 is a device that holds the circuit board 12. Thereby, the base material conveying and holding device 22 transports the circuit base material 12 and holds the circuit base material 12 fixedly at a predetermined position. In the following description, the direction in which the circuit board 12 is transported will be referred to as the X direction, the horizontal direction perpendicular to that direction will be referred to as the Y direction, and the vertical direction will be referred to as the Z direction. That is, the width direction of the component mounter 10 is the X direction, and the front and back direction is the Y direction.
 部品装着装置24は、ビーム42に配設されており、2台の作業ヘッド60,62と作業ヘッド移動装置64とを有している。各作業ヘッド60,62は、吸着ノズル(図2参照)66を有しており、吸着ノズル66によって部品を保持する。また、作業ヘッド移動装置64は、X方向移動装置68とY方向移動装置70とZ方向移動装置72とを有している。そして、X方向移動装置68とY方向移動装置70とによって、2台の作業ヘッド60,62は、一体的にフレーム40上の任意の位置に移動させられる。また、各作業ヘッド60,62は、図2に示すように、スライダ74,76に着脱可能に装着されており、Z方向移動装置72は、スライダ74,76を個別に上下方向に移動させる。つまり、作業ヘッド60,62は、Z方向移動装置72によって、個別に上下方向に移動させられる。 The component mounting device 24 is disposed on the beam 42 and has two working heads 60 and 62 and a working head moving device 64. Each work head 60, 62 has a suction nozzle (see FIG. 2) 66, and the suction nozzle 66 holds the component. Further, the work head moving device 64 includes an X-direction moving device 68, a Y-direction moving device 70, and a Z-direction moving device 72. Then, the two working heads 60 and 62 are integrally moved to any position on the frame 40 by the X-direction moving device 68 and the Y-direction moving device 70. Further, as shown in FIG. 2, each work head 60, 62 is detachably attached to a slider 74, 76, and the Z-direction moving device 72 moves the slider 74, 76 individually in the vertical direction. That is, the work heads 60 and 62 are individually moved in the vertical direction by the Z direction moving device 72.
 撮像装置26は、下方を向いた状態でスライダ74に取り付けられており、作業ヘッド60とともに、X方向,Y方向およびZ方向に移動させられる。これにより、撮像装置26は、フレーム40上の任意の位置を撮像する。撮像装置28は、図1に示すように、フレーム40上の基材搬送保持装置22と整列部品供給システム30との間に、上を向いた状態で配設されている。これにより、撮像装置28は、作業ヘッド60,62の吸着ノズル66に保持された部品を撮像する。 The imaging device 26 is attached to the slider 74 facing downward, and is moved together with the work head 60 in the X direction, Y direction, and Z direction. Thereby, the imaging device 26 images an arbitrary position on the frame 40. As shown in FIG. 1, the imaging device 28 is disposed facing upward between the substrate conveying and holding device 22 on the frame 40 and the aligned component supply system 30. Thereby, the imaging device 28 images the parts held by the suction nozzles 66 of the working heads 60 and 62.
 整列部品供給システム30は、フレーム40の前後方向での一方側の端部に配設されている。整列部品供給システム30は、トレイ型部品供給装置78とフィーダ型部品供給装置(図示省略)とを有している。トレイ型部品供給装置78は、トレイ上に載置された状態の部品を供給する装置である。フィーダ型部品供給装置は、テープフィーダ(図示省略)、スティックフィーダ(図示省略)によって部品を供給する装置である。 The aligned component supply system 30 is disposed at one end of the frame 40 in the front-rear direction. The aligned component supply system 30 includes a tray-type component supply device 78 and a feeder-type component supply device (not shown). The tray type component supply device 78 is a device that supplies components placed on a tray. The feeder type component supply device is a device that supplies components using a tape feeder (not shown) or a stick feeder (not shown).
 ばら部品供給システム32は、フレーム40の前後方向での他方側の端部に配設されている。ばら部品供給システム32は、ばらばらに散在された状態の複数の部品を整列させて、整列させた状態で部品を供給する装置である。つまり、任意の姿勢の複数の部品を、所定の姿勢に整列させて、所定の姿勢の部品を供給する装置である。以下に、ばら部品供給システム32の構成について詳しく説明する。なお、整列部品供給システム30および、ばら部品供給システム32によって供給される部品として、電子回路部品,太陽電池の構成部品,パワーモジュールの構成部品等が挙げられる。また、電子回路部品には、リードを有する部品,リードを有さない部品等が有る。 The bulk parts supply system 32 is disposed at the other end of the frame 40 in the front-rear direction. The bulk parts supply system 32 is a device that aligns a plurality of scattered parts and supplies the parts in an aligned state. In other words, it is an apparatus that aligns a plurality of parts in arbitrary orientations in a predetermined orientation and supplies the parts in a predetermined orientation. Below, the configuration of the bulk parts supply system 32 will be explained in detail. Note that the components supplied by the aligned component supply system 30 and the bulk component supply system 32 include electronic circuit components, solar cell components, power module components, and the like. Furthermore, electronic circuit components include components with leads, components without leads, and the like.
 ばら部品供給システム32は、図3に示すように、本体80と、ばら部品供給装置82と、2次元撮像装置84と、部品引渡し装置86とを有している。 As shown in FIG. 3, the bulk parts supply system 32 includes a main body 80, a bulk parts supply device 82, a two-dimensional imaging device 84, and a parts delivery device 86.
 ばら部品供給装置82は、部品補給装置88とフレーム89と部品支持装置(図4参照)90と部品戻し装置(図4参照)92とを含み、それら部品補給装置88とフレーム89と部品支持装置90と部品戻し装置92とが一体的に構成されたものである。ばら部品供給装置82は、本体80に着脱可能に組み付けられている。 The bulk parts supply device 82 includes a parts supply device 88, a frame 89, a parts support device (see FIG. 4) 90, and a parts return device (see FIG. 4) 92. 90 and a parts return device 92 are integrally constructed. The bulk parts supply device 82 is detachably assembled to the main body 80.
 部品補給装置88は、概して直方体の箱形状をなし、図4及び図5に示すように、Y方向に延びるように配設されている。なお、Y方向を部品補給装置88の前後方向と記載し、ばら部品供給装置82において、部品戻し装置92が配設されている側に向かう方向を、前方と記載し、部品補給装置88が配設されている側に向かう方向を、後方と記載する。 The parts supply device 88 has a generally rectangular parallelepiped box shape, and is arranged to extend in the Y direction, as shown in FIGS. 4 and 5. Note that the Y direction is described as the front-rear direction of the parts supply device 88, and the direction toward the side where the parts return device 92 is disposed in the bulk parts supply device 82 is described as the front direction, and the direction toward the side where the parts supply device 88 is disposed is described as the front direction. The direction toward the side where the device is installed is described as backward.
 部品補給装置88は、上面と前面とにおいて開口しており、上面の開口は部品の投入口97であり、前面の開口は部品の排出口98である。部品補給装置88では、投入口97の下方に、傾斜板104が配設されている。傾斜板104は、部品補給装置88の後方側の端面から中央方向に向かって、下方に傾斜するように配設されている。 The parts replenishing device 88 is open at the top and the front, the opening at the top is a component input port 97, and the front opening is a component discharge port 98. In the parts supply device 88 , an inclined plate 104 is disposed below the input port 97 . The inclined plate 104 is arranged so as to be inclined downward from the rear end surface of the parts supply device 88 toward the center.
 また、傾斜板104の前方側には、図5に示すように、コンベア装置106が配設されている。コンベア装置106は、傾斜板104の前方側端部から部品補給装置88の前方に向かって、上方に傾斜するように配設されている。なお、コンベア装置106のコンベアベルト112は、電磁モータ(図12参照)116の駆動により、図5での反時計回りに回転する。つまり、コンベア装置106による搬送方向は、傾斜板104の前端部から前方に向かって斜め上方である。 Further, on the front side of the inclined plate 104, as shown in FIG. 5, a conveyor device 106 is provided. The conveyor device 106 is disposed so as to be inclined upward from the front end of the inclined plate 104 toward the front of the component supply device 88. Note that the conveyor belt 112 of the conveyor device 106 is rotated counterclockwise in FIG. 5 by driving of an electromagnetic motor (see FIG. 12) 116. That is, the conveyance direction by the conveyor device 106 is diagonally upward from the front end of the inclined plate 104 toward the front.
 また、コンベア装置106の前方側端部の下方には、傾斜板126が配設されている。傾斜板126は、部品補給装置88の前方側の端面からコンベア装置106の下方に向かって配設されており、後方側の端部が斜め下方に傾斜している。さらに、その傾斜板126の下方にも、傾斜板128が配設されている。傾斜板128は、コンベア装置106の中央部の下方から部品補給装置88の排出口98に向かって、前方側の端部が下方に位置するように傾斜している。 Further, an inclined plate 126 is provided below the front end of the conveyor device 106. The inclined plate 126 is disposed from the front end surface of the component replenishing device 88 toward the bottom of the conveyor device 106, and the rear end thereof is inclined diagonally downward. Further, an inclined plate 128 is provided below the inclined plate 126 as well. The inclined plate 128 is inclined from below the central portion of the conveyor device 106 toward the discharge port 98 of the component supply device 88 so that the front end thereof is located downward.
 また、フレーム89は、図4に示すように、1対のサイドフレーム130と、連結フレーム132とにより構成されている。1対のサイドフレーム130は、対向した状態で互いに平行且つ、Y方向に延びるように立設されている。そして、1対のサイドフレーム130の下端に、連結フレーム132が架け渡されており、1対のサイドフレーム130が、連結フレーム132により連結されている。また、1対のサイドフレーム130の間の距離は、部品補給装置88の幅方向の寸法より僅かに大きくされており、1対のサイドフレーム130の間に、位置決めされた状態で部品補給装置88がワンタッチで着脱可能に装着されている。なお、ワンタッチで着脱可能とは、作業者が工具等を用いることなく、再現可能に着脱されることを意味する。 Further, as shown in FIG. 4, the frame 89 is composed of a pair of side frames 130 and a connecting frame 132. The pair of side frames 130 are erected so as to face each other, parallel to each other, and extending in the Y direction. A connecting frame 132 spans the lower ends of the pair of side frames 130, and the pair of side frames 130 are connected by the connecting frame 132. Further, the distance between the pair of side frames 130 is made slightly larger than the dimension in the width direction of the component supply device 88, and the component supply device 88 is positioned between the pair of side frames 130. can be attached and detached with one touch. Note that "one-touch attachment/detachment" means that the attachment/detachment can be reproducibly performed without the operator using any tools or the like.
 また、ばら部品供給システム32の本体80の上面には、図6に示すように、5つのスロット140が形成されている。各スロット140は、Y方向に延びるように形成されており、5つのスロット140は、同じピッチで、X方向に並んだ状態で隣接している。それら5つのスロット140は、同形状とされている。そして、各スロット140のX方向における寸法、つまり、幅寸法は、ばら部品供給装置82のフレーム89の幅方向の寸法より小さくされている。また、各スロット140のY方向における寸法、つまり、長さ寸法は、ばら部品供給装置82のフレーム89の長さ寸法より僅かに大きくされている。そして、各スロット140に、ばら部品供給装置82のフレーム89がボルト締結されている。これにより、ばら部品供給装置82は、作業者が工具を用いることで、本体80の各スロット140を利用して、その各々のスロットに対応した装着エリア141に位置決めされた状態で着脱可能とされている。 Further, as shown in FIG. 6, five slots 140 are formed on the top surface of the main body 80 of the bulk parts supply system 32. Each slot 140 is formed to extend in the Y direction, and the five slots 140 are arranged adjacent to each other in the X direction at the same pitch. The five slots 140 have the same shape. The dimension of each slot 140 in the X direction, that is, the width dimension, is smaller than the dimension of the frame 89 of the bulk parts supply device 82 in the width direction. Further, the dimension in the Y direction of each slot 140, that is, the length dimension, is slightly larger than the length dimension of the frame 89 of the bulk parts supply device 82. A frame 89 of the bulk parts supply device 82 is bolted to each slot 140. As a result, the bulk parts supply device 82 can be attached and detached by an operator using a tool using each slot 140 of the main body 80 while being positioned in the mounting area 141 corresponding to each slot. ing.
 また、部品支持装置90は、図4及び図5に示すように、部品支持部材150と部品支持部材移動装置152とを含む。部品支持部材150は、ステージ156と1対の側壁部158とによって構成されている。ステージ156は、概して長手形状の板形状をなし、1対のサイドフレーム130の間に装着された部品補給装置88の下方から前方に延び出すように、配設されている。また、ステージ156の幅寸法は、1対のサイドフレーム130の間の寸法、つまり、フレーム89の幅寸法と同程度とされており、ステージ156の後端部が、1対のサイドフレーム130の間に位置している。なお、ステージ156の上面は、概して水平であり、図5に示すように、後端部において、部品補給装置88の傾斜板128の前端部と僅かなクリアランスのある状態で配設されている。また、1対の側壁部158は、図4に示すように、ステージ156の長手方向の両側部に立設された状態で固定されており、各側壁部158の上端は、ステージ156の上面より上方に延び出している。 Further, the component support device 90 includes a component support member 150 and a component support member moving device 152, as shown in FIGS. 4 and 5. The component support member 150 includes a stage 156 and a pair of side walls 158. The stage 156 has a generally elongated plate shape and is arranged so as to extend forward from below the component supply device 88 mounted between the pair of side frames 130. Further, the width of the stage 156 is approximately the same as the width between the pair of side frames 130, that is, the width of the frame 89, and the rear end of the stage 156 is the same as the width between the pair of side frames 130. It is located in between. The upper surface of the stage 156 is generally horizontal, and as shown in FIG. 5, the stage 156 is disposed with a slight clearance at its rear end from the front end of the inclined plate 128 of the component supply device 88. Further, as shown in FIG. 4, the pair of side walls 158 are fixed in an erected state on both sides of the stage 156 in the longitudinal direction, and the upper ends of each side wall 158 are lower than the top surface of the stage 156. It extends upward.
 また、部品支持部材移動装置152は、部品支持部材150をエアシリンダ(図12参照)166の作動によりY方向にスライドさせる。この際、部品支持部材150は、部品補給装置88の下方に格納された格納状態(図7参照)と、部品補給装置88の下方から露出した露出状態(図5参照)との間で移動する。 Furthermore, the component support member moving device 152 slides the component support member 150 in the Y direction by operating an air cylinder (see FIG. 12) 166. At this time, the component support member 150 moves between a stored state in which it is stored below the component supply device 88 (see FIG. 7) and an exposed state in which it is exposed from below the component supply device 88 (see FIG. 5). .
 部品戻し装置92は、図8に示すように、部品収容容器180と容器搖動装置181とを含む。部品収容容器180は、概して箱状をなし、底面が円弧形状である。なお、部品収容容器180の幅寸法は、ステージ156の幅寸法と同程度とされている。その部品収容容器180は、ステージ156の前方側の端部において搖動可能に保持されており、容器搖動装置181の作動により、揺動する。この際、部品収容容器180は、開口を上方に向けた収容姿勢(図8参照)と、開口を部品支持部材150のステージ156の上面に向けた戻し姿勢(図9参照)との間で搖動する。 As shown in FIG. 8, the parts return device 92 includes a parts storage container 180 and a container rocking device 181. The component storage container 180 is generally box-shaped and has an arcuate bottom surface. Note that the width of the component storage container 180 is approximately the same as the width of the stage 156. The component storage container 180 is swingably held at the front end of the stage 156, and swings by the operation of the container swinging device 181. At this time, the component storage container 180 swings between a storage position with the opening facing upward (see FIG. 8) and a returned position with the opening facing the top surface of the stage 156 of the component support member 150 (see FIG. 9). do.
 2次元撮像装置84は、図3に示すように、カメラ290とカメラ移動装置292とを含む。カメラ移動装置292は、ガイドレール296とスライダ298とを含む。ガイドレール296は、部品補給装置88の上方において、ばら部品供給システムの幅方向(X方向)に延びるように、本体80に固定されている。スライダ298は、ガイドレール296にスライド可能に取り付けられており、電磁モータ(図12参照)299の作動により、任意の位置にスライドする。また、カメラ290は、下方を向いた状態でスライダ298に装着されている。 The two-dimensional imaging device 84 includes a camera 290 and a camera moving device 292, as shown in FIG. Camera moving device 292 includes a guide rail 296 and a slider 298. The guide rail 296 is fixed to the main body 80 above the parts supply device 88 so as to extend in the width direction (X direction) of the bulk parts supply system. The slider 298 is slidably attached to the guide rail 296, and is slid to any position by the operation of an electromagnetic motor (see FIG. 12) 299. Further, the camera 290 is attached to the slider 298 in a state facing downward.
 部品引渡し装置86は、図3に示すように、部品保持ヘッド移動装置300と部品保持ヘッド302と2台のシャトル装置304とを含む。 As shown in FIG. 3, the component delivery device 86 includes a component holding head moving device 300, a component holding head 302, and two shuttle devices 304.
 部品保持ヘッド移動装置300は、X方向移動装置310とY方向移動装置312とZ方向移動装置314とを含む。Y方向移動装置312は、X方向に延びるように、ばら部品供給装置82の上方に配設されたYスライダ316を有しており、Yスライダ316は、電磁モータ(図12参照)319の駆動により、Y方向の任意の位置に移動する。X方向移動装置310は、Yスライダ316の側面に配設されたXスライダ320を有しており、Xスライダ320は、電磁モータ(図12参照)321の駆動により、X方向の任意の位置に移動する。Z方向移動装置314は、Xスライダ320の側面に配設されたZスライダ322を有しており、Zスライダ322は、電磁モータ(図12参照)323の駆動により、Z方向の任意の位置に移動する。 The component holding head moving device 300 includes an X-direction moving device 310, a Y-direction moving device 312, and a Z-direction moving device 314. The Y direction moving device 312 has a Y slider 316 disposed above the bulk parts supply device 82 so as to extend in the X direction, and the Y slider 316 drives an electromagnetic motor (see FIG. 12) 319. to move to an arbitrary position in the Y direction. The X-direction moving device 310 has an X-slider 320 disposed on the side surface of the Y-slider 316, and the X-slider 320 can be moved to any position in the X-direction by driving an electromagnetic motor (see FIG. 12) 321. Moving. The Z direction moving device 314 has a Z slider 322 disposed on the side surface of the X slider 320, and the Z slider 322 can be moved to any position in the Z direction by driving an electromagnetic motor (see FIG. 12) 323. Moving.
 部品保持ヘッド302は、図10に示すように、ヘッド本体330と吸着ノズル332とノズル旋回装置334とノズル回転装置335とを含む。ヘッド本体330は、Zスライダ322と一体的に形成されている。吸着ノズル332は、部品を保持するものであり、ホルダ340の下端部に着脱可能に装着されている。ホルダ340は、支持軸344において屈曲可能とされており、ノズル旋回装置334の作動により、ホルダ340が上方向に90度屈曲する。これにより、ホルダ340の下端部に装着されている吸着ノズル332は、90度旋回し、旋回位置に位置する。つまり、吸着ノズル332は、ノズル旋回装置334の作動により、非旋回位置と旋回位置との間で旋回する。もちろん、非旋回位置と旋回位置との間の角度で位置決め停止させることも可能である。また、ノズル回転装置335は、吸着ノズル332をそれの軸心周りに回転させる。 As shown in FIG. 10, the component holding head 302 includes a head main body 330, a suction nozzle 332, a nozzle rotation device 334, and a nozzle rotation device 335. The head main body 330 is integrally formed with the Z slider 322. The suction nozzle 332 holds the component and is detachably attached to the lower end of the holder 340. The holder 340 is bendable at the support shaft 344, and the holder 340 is bent 90 degrees upward by the operation of the nozzle turning device 334. As a result, the suction nozzle 332 attached to the lower end of the holder 340 rotates 90 degrees and is located at the rotating position. That is, the suction nozzle 332 rotates between the non-swivel position and the swiveling position by the operation of the nozzle swiveling device 334. Of course, it is also possible to position and stop at an angle between the non-turning position and the turning position. Further, the nozzle rotation device 335 rotates the suction nozzle 332 around its axis.
 また、2台のシャトル装置304の各々は、図3に示すように、部品キャリヤ388と部品キャリヤ移動装置390とを含み、ばら部品供給装置82の前方側に横方向に並んで、本体80に固定されている。部品キャリヤ388には、5個の部品受け部材392が、横方向に一列に並んだ状態で装着されており、各部品受け部材392に、部品が載置される。 Each of the two shuttle devices 304 includes a component carrier 388 and a component carrier moving device 390, as shown in FIG. Fixed. Five component receiving members 392 are attached to the component carrier 388 in a row in a horizontal direction, and a component is placed on each component receiving member 392.
 なお、ばら部品供給システム32は、種々の部品を供給することが可能であり、部品受け部材392は、部品の形状に応じて種々のものが用意されている。ここでは、ばら部品供給システム32により供給される電子回路部品として、図11に示すように、リードを有するリード部品410に対応する部品受け部材392について説明する。リード部品410は、ブロック状の部品本体412と、部品本体412の底面から突出する2本のリード414とから構成されている。 Note that the bulk parts supply system 32 can supply various parts, and various parts receiving members 392 are prepared depending on the shape of the parts. Here, as an electronic circuit component supplied by the bulk component supply system 32, as shown in FIG. 11, a component receiving member 392 corresponding to a lead component 410 having a lead will be described. The lead component 410 includes a block-shaped component body 412 and two leads 414 protruding from the bottom surface of the component body 412.
 また、部品受け部材392には、リード部品410に応じた形状の部品受容凹部416が形成されている。部品受容凹部416は、段付き形状の凹部であり、部品受け部材392の上面に開口する本体部受容凹部418と、その本体部受容凹部418の底面に開口するリード受容凹部420とから構成されている。そして、リード部品410は、リード414が下方を向く姿勢で、部品受容凹部416の内部に挿入される。これにより、リード414がリード受容凹部420に挿入されるとともに、部品本体412が本体部受容凹部418に挿入された状態で、リード部品410が部品受容凹部416の内部に載置される。 Further, a component receiving recess 416 having a shape corresponding to the lead component 410 is formed in the component receiving member 392. The component receiving recess 416 is a stepped recess, and is composed of a main body receiving recess 418 that opens on the top surface of the component receiving member 392, and a lead receiving recess 420 that opens on the bottom surface of the main body receiving recess 418. There is. Then, the lead component 410 is inserted into the component receiving recess 416 with the lead 414 facing downward. As a result, the lead component 410 is placed inside the component receiving recess 416 with the lead 414 inserted into the lead receiving recess 420 and the component body 412 being inserted into the main body receiving recess 418 .
 また、部品キャリヤ移動装置390は、図3に示すように、板状の長手部材であり、前後方向に延びるように、ばら部品供給装置82の前方側に配設されている。部品キャリヤ移動装置390の上面には、部品キャリヤ388が前後方向にスライド可能に配設されており、電磁モータ(図12参照)430の駆動により、前後方向の任意の位置にスライドする。なお、部品キャリヤ388が、ばら部品供給装置82に接近する方向にスライドした際には、部品保持ヘッド移動装置300による部品保持ヘッド302の移動範囲内に位置する部品受取位置までスライドする。一方、部品キャリヤ388が、ばら部品供給装置82から離れる方向にスライドした際には、作業ヘッド移動装置64による作業ヘッド60,62の移動範囲内に位置する部品供給位置までスライドする。 Further, as shown in FIG. 3, the component carrier moving device 390 is a plate-shaped longitudinal member, and is disposed on the front side of the bulk component supply device 82 so as to extend in the front-rear direction. A component carrier 388 is disposed on the upper surface of the component carrier moving device 390 so as to be slidable in the front-back direction, and is slid to any position in the front-back direction by driving an electromagnetic motor (see FIG. 12) 430. Note that when the component carrier 388 slides in the direction approaching the bulk component supply device 82, it slides to a component receiving position located within the movement range of the component holding head 302 by the component holding head moving device 300. On the other hand, when the component carrier 388 slides away from the bulk component supply device 82, it slides to a component supply position located within the range of movement of the work heads 60, 62 by the work head moving device 64.
 また、制御装置34は、図12に示すように、統括制御装置450と、複数の個別制御装置(図では1つのみ図示されている)452と、画像処理装置454とを含む。統括制御装置450は、コンピュータを主体として構成されたものであり、基材搬送保持装置22,部品装着装置24,撮像装置26,撮像装置28,整列部品供給システム30,ばら部品供給システム32に接続されている。これにより、統括制御装置450は、基材搬送保持装置22,部品装着装置24,撮像装置26,撮像装置28,整列部品供給システム30,ばら部品供給システム32を統括して制御する。複数の個別制御装置452は、コンピュータを主体として構成されたものであり、基材搬送保持装置22,部品装着装置24,撮像装置26,撮像装置28,整列部品供給システム30,ばら部品供給システム32に対応して設けられている(図では、ばら部品供給システム32に対応する個別制御装置452のみが図示されている)。 Further, as shown in FIG. 12, the control device 34 includes a general control device 450, a plurality of individual control devices (only one is shown in the figure) 452, and an image processing device 454. The overall control device 450 is mainly composed of a computer, and is connected to the substrate conveyance and holding device 22, the component mounting device 24, the imaging device 26, the imaging device 28, the aligned component supply system 30, and the bulk component supply system 32. has been done. Thereby, the overall control device 450 centrally controls the base material transport and holding device 22, the component mounting device 24, the imaging device 26, the imaging device 28, the aligned component supply system 30, and the bulk component supply system 32. The plurality of individual control devices 452 are mainly configured with a computer, and include a base material conveyance and holding device 22, a component mounting device 24, an imaging device 26, an imaging device 28, an aligned component supply system 30, and a bulk component supply system 32. (In the figure, only the individual control device 452 corresponding to the bulk parts supply system 32 is shown).
 ばら部品供給システム32の個別制御装置452は、部品補給装置88,部品支持装置90,部品戻し装置92,カメラ移動装置292,部品保持ヘッド移動装置300,部品保持ヘッド302,シャトル装置304に接続されている。これにより、ばら部品供給システム32の個別制御装置452は、部品補給装置88,部品支持装置90,部品戻し装置92,カメラ移動装置292,部品保持ヘッド移動装置300,部品保持ヘッド302,シャトル装置304を制御する。また、画像処理装置454は、2次元撮像装置84に接続されており、2次元撮像装置84により撮像された撮像データを処理する。その画像処理装置454は、ばら部品供給システム32の個別制御装置452に接続されている。これにより、ばら部品供給システム32の個別制御装置452は、2次元撮像装置84により撮像された撮像データを取得する。 The individual control device 452 of the bulk parts supply system 32 is connected to the component supply device 88, the component support device 90, the component return device 92, the camera moving device 292, the component holding head moving device 300, the component holding head 302, and the shuttle device 304. ing. As a result, the individual control devices 452 of the bulk parts supply system 32 include the component supply device 88, the component support device 90, the component return device 92, the camera moving device 292, the component holding head moving device 300, the component holding head 302, and the shuttle device 304. control. Further, the image processing device 454 is connected to the two-dimensional imaging device 84 and processes imaged data captured by the two-dimensional imaging device 84. The image processing device 454 is connected to the individual control device 452 of the bulk parts supply system 32. Thereby, the individual control device 452 of the bulk parts supply system 32 acquires the imaging data captured by the two-dimensional imaging device 84.
 部品実装機10は、上述した構成によって、基材搬送保持装置22に保持された回路基材12に対して部品の装着作業が行われる。具体的には、回路基材12が、基材搬送保持装置22によって作業位置まで搬送され、その位置において、クランプ装置52によって固定的に保持される。次に、撮像装置26が、固定的に保持された回路基材12の上方に移動し、回路基材12を撮像する。これにより、回路基材12の保持位置の誤差に関する情報が得られる。また、整列部品供給システム30若しくは、ばら部品供給システム32は、所定の供給位置において、部品を供給する。なお、ばら部品供給システム32による部品の供給に関しては、後で詳しく説明する。そして、作業ヘッド60,62の何れかが、部品の供給位置の上方に移動し、吸着ノズル66によって部品を保持する。続いて、部品を保持した作業ヘッド60,62が、撮像装置28の上方に移動し、撮像装置28によって、吸着ノズル66に保持された部品が撮像される。これにより、部品の保持位置の誤差に関する情報が得られる。そして、部品を保持した作業ヘッド60,62が、回路基材12の上方に移動し、保持している部品を、回路基材12の保持位置の誤差,部品の保持位置の誤差等を補正し、回路基材12上に装着する。 With the above-described configuration, the component mounting machine 10 performs a work of mounting components onto the circuit substrate 12 held by the substrate conveying and holding device 22. Specifically, the circuit base material 12 is transported to a working position by the base material transport and holding device 22, and is fixedly held at that position by the clamp device 52. Next, the imaging device 26 moves above the fixedly held circuit board 12 and images the circuit board 12. Thereby, information regarding the error in the holding position of the circuit board 12 can be obtained. Further, the aligned parts supply system 30 or the bulk parts supply system 32 supplies parts at a predetermined supply position. Note that the supply of parts by the bulk parts supply system 32 will be explained in detail later. Then, one of the work heads 60 and 62 moves above the part supply position and holds the part by the suction nozzle 66. Subsequently, the work heads 60 and 62 holding the component move above the imaging device 28, and the component held by the suction nozzle 66 is imaged by the imaging device 28. This provides information regarding the error in the holding position of the component. Then, the work heads 60 and 62 holding the components move above the circuit board 12 and correct the errors in the holding position of the circuit board 12, the errors in the holding positions of the parts, etc. , mounted on the circuit board 12.
 ばら部品供給システム32では、リード部品410が、作業者によって部品補給装置88の投入口97から投入され、その投入されたリード部品410が、ばら部品供給装置82,部品引渡し装置86の作動により、部品キャリヤ388の部品受け部材392に載置された状態で供給される。 In the bulk parts supply system 32, lead parts 410 are inputted by an operator through the input port 97 of the parts supply device 88, and the input lead parts 410 are processed by the operation of the bulk parts supply device 82 and the parts delivery device 86. It is supplied while being placed on the component receiving member 392 of the component carrier 388.
 詳しくは、作業者は、部品補給装置88の上面の投入口97から、リード部品410を投入する。この際、部品支持部材150は、部品支持部材移動装置152の作動により、部品補給装置88の下方に移動しており、所謂、格納状態である(図7参照)。なお、部品支持部材150が格納状態にある場合に、部品支持部材150の前方側の端部に配設された部品収容容器180は、部品補給装置88の前方に位置しており、部品収容容器180の開口を上方に向けた姿勢(収容姿勢)である。 Specifically, the operator inputs the lead component 410 from the input port 97 on the top surface of the component supply device 88. At this time, the component support member 150 is moved below the component supply device 88 by the operation of the component support member moving device 152, and is in a so-called stored state (see FIG. 7). Note that when the component support member 150 is in the stored state, the component storage container 180 disposed at the front end of the component support member 150 is located in front of the component supply device 88, and the component storage container 180 is located in front of the component supply device 88. This is a posture with the opening 180 facing upward (accommodating posture).
 部品補給装置88の投入口97から投入されたリード部品410は、部品補給装置88の傾斜板104の上に落下し、傾斜板104の前方側の下端まで転がり落ちる。この際、傾斜板104の前方側の下端まで転がり落ちたリード部品410は、傾斜板104の前方側の下端と、コンベア装置106の後方側の下端との間に山積される。そして、コンベア装置106が作動されることで、コンベア装置106のコンベアベルト112が図7での反時計回りに周回する。この際、傾斜板104とコンベアベルト112との間に山積されたリード部品410が、コンベアベルト112によって斜め上方に向かって搬送される。 The lead component 410 input from the input port 97 of the component supply device 88 falls onto the inclined plate 104 of the component supply device 88 and rolls down to the lower end of the inclined plate 104 on the front side. At this time, the lead components 410 that have rolled down to the lower end of the front side of the inclined plate 104 are piled up between the lower end of the front side of the inclined plate 104 and the lower end of the rear side of the conveyor device 106. Then, when the conveyor device 106 is operated, the conveyor belt 112 of the conveyor device 106 rotates counterclockwise in FIG. 7 . At this time, the lead parts 410 piled up between the inclined plate 104 and the conveyor belt 112 are conveyed diagonally upward by the conveyor belt 112.
 そして、コンベアベルト112によって搬送されたリード部品410は、コンベア装置106の前方側の上端から傾斜板126の上に落下する。その傾斜板126の上に落下したリード部品410は、傾斜板126の上を後方に向かって転がり落ち、傾斜板128の上に落下する。その傾斜板128の上に落下したリード部品410は前方に向かって転がり落ち、部品補給装置88の前方側の排出口98から排出される。 Then, the lead component 410 conveyed by the conveyor belt 112 falls onto the inclined plate 126 from the upper end of the front side of the conveyor device 106. The lead component 410 that has fallen onto the inclined plate 126 rolls backward on the inclined plate 126 and falls onto the inclined plate 128. The lead component 410 that has fallen onto the inclined plate 128 rolls down toward the front and is discharged from the discharge port 98 on the front side of the component supply device 88.
 これにより、部品補給装置88の排出口98から排出されたリード部品410は、部品収容容器180の内部に収容される。そして、部品補給装置88から所定量のリード部品410が排出されると、つまり、コンベア装置106が一定量作動すると、コンベア装置106が停止する。次に、部品支持部材150が、部品支持部材移動装置152の作動により、格納状態から前方に向かって移動する。 As a result, the lead components 410 discharged from the discharge port 98 of the component supply device 88 are accommodated inside the component storage container 180. Then, when a predetermined amount of lead components 410 are discharged from the component supply device 88, that is, when the conveyor device 106 operates a certain amount, the conveyor device 106 stops. Next, the component support member 150 is moved forward from the stored state by the operation of the component support member moving device 152.
 そして、部品支持部材150が格納状態から所定量、露出状態となる前方に向かって移動したタイミングで、部品戻し装置92の容器搖動装置181が作動し、部品収容容器180が揺動する。これにより、部品収容容器180の姿勢が、開口を上方に向けた姿勢(収容姿勢)から、開口をステージ156に向けた姿勢(戻し姿勢)に勢いよく変化する。この際、部品収容容器180に収容されたリード部品410が、ステージ156に向かって勢いよく放出される。これにより、部品収容容器180からステージ156の上にリード部品410が散在される。なお、リード部品410の散在は、リード部品410が重なった状態でばら撒かれる状態及び、リード部品410が重なることなく、バラバラの状態でばら撒かれる状態を含む概念である。 Then, at the timing when the component support member 150 moves forward from the stored state to the exposed state by a predetermined amount, the container swing device 181 of the component return device 92 is activated, and the component storage container 180 swings. As a result, the attitude of the component storage container 180 changes rapidly from an attitude with the opening facing upward (accommodating attitude) to an attitude with the opening facing the stage 156 (returning attitude). At this time, the lead component 410 housed in the component storage container 180 is vigorously ejected toward the stage 156. As a result, the lead components 410 are scattered from the component storage container 180 onto the stage 156. Note that the scattering of the lead components 410 is a concept that includes a state in which the lead components 410 are scattered in an overlapping state and a state in which the lead components 410 are scattered in a separate state without overlapping.
 上述した手順に従って、部品補給装置88から部品支持部材150のステージ156の上にリード部品410が散在されると、2次元撮像装置84のカメラ290が、カメラ移動装置292の作動により、部品支持部材150の上方に移動し、リード部品410を撮像する。これにより、部品支持部材150の上面に散在された複数のリード部品410の各々の2次元撮像データが得られる。そして、部品支持部材150の上面に散在された複数のリード部品410に対して、2次元撮像データに基づいて、部品支持部材150上での位置、リード部品410の姿勢等の情報が演算される。この際、吸着ノズル332が保持することが可能な部品(以下、「保持可能部品」と記載する)がパターンマッチングにより特定されて、保持可能部品の部品支持部材150上での位置、姿勢等の情報が演算される。なお、パターンマッチングは既存の技術であるため、パターンマッチングの詳細な説明は省略する。 When the lead components 410 are scattered on the stage 156 of the component support member 150 from the component supply device 88 according to the above-described procedure, the camera 290 of the two-dimensional imaging device 84 moves the camera 290 onto the component support member by the operation of the camera moving device 292. 150 and image the lead component 410. Thereby, two-dimensional imaging data of each of the plurality of lead components 410 scattered on the upper surface of the component support member 150 is obtained. Then, information such as the position on the component support member 150 and the posture of the lead component 410 is calculated for the plurality of lead components 410 scattered on the upper surface of the component support member 150 based on the two-dimensional imaging data. . At this time, parts that can be held by the suction nozzle 332 (hereinafter referred to as "holdable parts") are identified by pattern matching, and the position, orientation, etc. of the holdable parts on the component support member 150 are determined. Information is calculated. Note that since pattern matching is an existing technology, a detailed explanation of pattern matching will be omitted.
 そして、演算されたリード部品410の位置に関する情報などに基づいて、リード部品の上方に、部品保持ヘッド302が、部品保持ヘッド移動装置300の作動により移動し、吸着ノズル332によってリード部品が吸着保持される。なお、吸着ノズル332によってリード部品が吸着保持される際には、吸着ノズル332は、非旋回位置に位置している。 Then, based on the calculated information regarding the position of the lead component 410, the component holding head 302 is moved above the lead component by the operation of the component holding head moving device 300, and the lead component is sucked and held by the suction nozzle 332. be done. Note that when the lead component is suctioned and held by the suction nozzle 332, the suction nozzle 332 is located at a non-rotating position.
 次に、リード部品410が吸着ノズル332によって保持された後に、部品保持ヘッド302が部品キャリヤ388の上方に移動する。この際、部品キャリヤ388は、部品キャリヤ移動装置390の作動により、部品受取位置に移動している。また、部品保持ヘッド302が部品キャリヤ388の上方に移動する際に、吸着ノズル332は、旋回位置に旋回される。なお、旋回位置の吸着ノズル332に保持されたリード部品410のリード414が、鉛直方向での下方を向くように、吸着ノズル332は、ノズル回転装置335の作動により、旋回する。 Next, after the lead component 410 is held by the suction nozzle 332, the component holding head 302 moves above the component carrier 388. At this time, the component carrier 388 is moved to the component receiving position by the operation of the component carrier moving device 390. Further, when the component holding head 302 moves above the component carrier 388, the suction nozzle 332 is rotated to the rotation position. Note that the suction nozzle 332 is rotated by the operation of the nozzle rotation device 335 so that the lead 414 of the lead component 410 held by the suction nozzle 332 in the rotating position is directed downward in the vertical direction.
 部品保持ヘッド302が部品キャリヤ388の上方に移動すると、リード414が鉛直方向での下方を向いた状態のリード部品410が、部品受け部材392の部品受容凹部416内に挿入される。これにより、リード部品410は、図11に示すように、リード414を鉛直方向での下方に向けた状態で、部品受け部材392に載置される。 When the component holding head 302 moves above the component carrier 388, the lead component 410 with the lead 414 facing vertically downward is inserted into the component receiving recess 416 of the component receiving member 392. Thereby, the lead component 410 is placed on the component receiving member 392 with the lead 414 facing downward in the vertical direction, as shown in FIG.
 そして、リード部品410が部品受け部材392に載置されると、部品キャリヤ388は、部品キャリヤ移動装置390の作動により、部品供給位置に移動する。部品供給位置に移動した部品キャリヤ388は、作業ヘッド60,62の移動範囲に位置しているため、ばら部品供給システム32では、この位置においてリード部品410が部品実装機10に供給される。このように、ばら部品供給システム32では、部品受け部材392において、リード414が下方を向き、リード414が接続されている底面と対向する上面が上方を向いた状態で、リード部品410が供給される。このため、作業ヘッド60,62の吸着ノズル66は、適切にリード部品410を保持することができる。 Then, when the lead component 410 is placed on the component receiving member 392, the component carrier 388 is moved to the component supply position by the operation of the component carrier moving device 390. Since the component carrier 388 that has moved to the component supply position is located within the movement range of the work heads 60 and 62, the lead component 410 is supplied to the component mounter 10 at this position in the bulk component supply system 32. In this way, in the bulk component supply system 32, the lead components 410 are supplied to the component receiving member 392 with the leads 414 facing downward and the top surface opposite the bottom surface to which the leads 414 are connected facing upward. Ru. Therefore, the suction nozzles 66 of the working heads 60 and 62 can appropriately hold the lead component 410.
 また、ばら部品供給システム32では、部品支持部材150のステージ156の上に保持可能部品が散在されている際に、散在されている保持可能部品の保持が繰り返され、保持された保持可能部品が部品受け部材392に載置される。そして、部品受け部材392の装着された部品キャリヤ388が部品供給位置に移動することで、リード部品410の供給が行われる。ただし、部品支持部材150のステージ156の上に保持可能部品が散在されていない場合には、ステージ156からリード部品410を保持することができない。つまり、吸着ノズル332により保持することが可能と判断されたリード部品410が全て保持されて、吸着ノズル332により保持することができないと判断されたリード部品410、若しくは、判別が不能と判断されたリード部品410がステージ156の上に残存している場合には、ステージ156からリード部品410を保持することができない。 Furthermore, in the bulk parts supply system 32, when the holdable parts are scattered on the stage 156 of the component support member 150, holding of the scattered holdable parts is repeated, and the held holdable parts are It is placed on the component receiving member 392. Then, the component carrier 388 to which the component receiving member 392 is attached moves to the component supply position, whereby the lead component 410 is supplied. However, if holdable components are not scattered on the stage 156 of the component support member 150, the lead component 410 cannot be held from the stage 156. In other words, all the lead components 410 that were determined to be able to be held by the suction nozzle 332 were retained, and the lead components 410 that were determined to be unable to be held by the suction nozzle 332 or those that were determined to be unrecognizable. If lead component 410 remains on stage 156, lead component 410 cannot be held from stage 156.
 このため、ばら部品供給システム32では、そのような場合に、部品のリターン動作が行われる。つまり、ステージ156の上に残存しているリード部品410が部品収容容器180に回収される。そして、部品収容容器180に回収されたリード部品410が、ステージ156の上に、再度、散在され、リード部品410の姿勢が変更されることで、ステージ156からのリード部品410の保持が再開される。 Therefore, in such a case, the bulk parts supply system 32 performs a part return operation. That is, the lead component 410 remaining on the stage 156 is collected into the component storage container 180. Then, the lead components 410 collected in the component storage container 180 are scattered on the stage 156 again, and the posture of the lead components 410 is changed, so that the holding of the lead components 410 from the stage 156 is resumed. Ru.
 具体的には、ステージ156の上の保持可能部品が全て保持されると、部品支持部材150が、部品支持部材移動装置152の作動により、部品補給装置88の下方に向かって移動する。つまり、部品支持部材150が、露出状態(図5参照)から格納状態(図6参照)に向かって移動する。この際、部品支持部材150の前端部に配設されている部品収容容器180は、開口を上方に向けた姿勢(回収姿勢)とされている。そして、部品支持部材150が露出状態から格納状態に向かって移動する際に、部品支持部材150のステージ156上のリード部品410は、部品補給装置88の傾斜板128の前方側の端部によって堰き止められる。 Specifically, when all the holdable components on the stage 156 are held, the component support member 150 is moved downward of the component supply device 88 by the operation of the component support member moving device 152. That is, the component support member 150 moves from the exposed state (see FIG. 5) toward the retracted state (see FIG. 6). At this time, the component storage container 180 disposed at the front end of the component support member 150 is in a posture with its opening facing upward (recovery posture). When the component support member 150 moves from the exposed state to the stored state, the lead component 410 on the stage 156 of the component support member 150 is dammed by the front end of the inclined plate 128 of the component supply device 88. It can be stopped.
 さらに、部品支持部材150が、図6に示すように、格納状態に至るまで移動すると、ステージ156上のリード部品410が、部品収容容器180の内部に掻き落とされる。これにより、ステージ156の上のリード部品410が、部品収容容器180に回収される。このように、ステージ156の上のリード部品410が部品収容容器180に回収されると、その回収されたリード部品410が、ステージ156の上に散在される。 Further, when the component support member 150 moves to the stored state as shown in FIG. 6, the lead component 410 on the stage 156 is scraped into the component storage container 180. As a result, the lead component 410 on the stage 156 is collected into the component storage container 180. In this manner, when the lead components 410 on the stage 156 are collected into the component storage container 180, the collected lead components 410 are scattered on the stage 156.
 詳しくは、部品収容容器180へのリード部品410の回収が完了した際に、部品支持部材150は、図6に示すように、格納状態とされている。このため、部品支持部材150が、部品支持部材移動装置152の作動により、格納状態から前方に向かって移動する。そして、部品支持部材150が格納状態から所定量、前方に向かって移動したタイミングで、部品戻し装置92の容器搖動装置181が作動し、部品収容容器180が搖動する。これにより、部品収容容器180の姿勢が、開口を上方に向けた姿勢(収容姿勢)から、開口をステージ156に向けた姿勢(戻し姿勢)に勢いよく変化する。 Specifically, when the collection of the lead components 410 into the component storage container 180 is completed, the component support member 150 is in the stored state, as shown in FIG. Therefore, the component support member 150 is moved forward from the stored state by the operation of the component support member moving device 152. Then, at the timing when the component support member 150 moves forward by a predetermined amount from the stored state, the container rocking device 181 of the component return device 92 is activated, and the component storage container 180 is rocked. As a result, the attitude of the component storage container 180 changes rapidly from an attitude with the opening facing upward (accommodating attitude) to an attitude with the opening facing the stage 156 (returning attitude).
 この際、部品収容容器180に収容されたリード部品410が、ステージ156に向かって勢いよく放出される。これにより、部品収容容器180からステージ156の上にリード部品410が散在される。つまり、部品収容容器180に回収されたリード部品410が、ステージ156に補給される。このように、リターン動作が実行されることで、ステージ上のリード部品410の姿勢が変更され、ステージ156の上から、再度、リード部品410が保持される。 At this time, the lead component 410 housed in the component storage container 180 is vigorously ejected toward the stage 156. As a result, the lead components 410 are scattered from the component storage container 180 onto the stage 156. That is, the lead components 410 collected in the component storage container 180 are supplied to the stage 156. By performing the return operation in this manner, the attitude of the lead component 410 on the stage is changed, and the lead component 410 is held from above the stage 156 again.
 また、上述したリターン動作が繰り返し実行されて、ステージ156の上からリード部品が保持されていくと、リターン動作によりステージ156の上に散在されるリード部品の個数が少なくなる。このようにステージ156の上に散在されるリード部品の個数が少なくなると、ステージ156の上から吸着ノズル332により保持することが可能な部品数も少なくなるため、部品補給装置88からリード部品を供給するための供給動作が実行される。 Furthermore, when the above-described return operation is repeatedly executed and lead components are held from above the stage 156, the number of lead components scattered on the stage 156 decreases due to the return operation. As the number of lead components scattered on the stage 156 decreases, the number of components that can be held by the suction nozzle 332 from above the stage 156 also decreases, so lead components are supplied from the component supply device 88. A supply operation is performed to do so.
 具体的には、リターン動作によりステージ156の上にリード部品が散在されると、保持可能部品の位置、姿勢等を演算するべく、2次元撮像装置84のカメラ290が、部品支持部材150のステージ156の上に散在されたリード部品を撮像する。そして、その2次元撮像データに基づいて、保持可能部品のステージ上での位置、姿勢等が演算されるが、その際に、ステージ上での部品の占有率も演算される。部品の占有率は、ステージ156の上面の面積に対する部品の占有面積の比率であり、ステージ156の上面の面積は個別制御装置452に記憶されている。一方、個別制御装置452は、カメラが撮像した2次元撮像データに基づいて、ステージ156の上に散在されている部品の面積を演算する。そして、個別制御装置452は部品の占有率を演算する。 Specifically, when the lead components are scattered on the stage 156 by the return operation, the camera 290 of the two-dimensional imaging device 84 moves the stage of the component support member 150 in order to calculate the position, orientation, etc. of the holdable component. 156. Lead components scattered on top of 156 are imaged. Then, based on the two-dimensional imaging data, the position, orientation, etc. of the holdable component on the stage are calculated, and at this time, the occupancy rate of the component on the stage is also calculated. The occupancy rate of a component is the ratio of the area occupied by the component to the area of the top surface of the stage 156, and the area of the top surface of the stage 156 is stored in the individual control device 452. On the other hand, the individual control device 452 calculates the area of the parts scattered on the stage 156 based on the two-dimensional image data captured by the camera. Then, the individual control device 452 calculates the occupancy rate of the component.
 この際、演算された部品の占有率が15%を超えている場合には、ステージ156の上に散在されているリード部品の個数は少なくないと判断されて、ステージ156の上の部品は保持される。一方、演算された部品の占有率が15%以下である場合に、ステージ156の上に散在されているリード部品の個数は少ないと判断されて、部品補給装置88からステージにリード部品が供給される。 At this time, if the calculated component occupancy rate exceeds 15%, it is determined that the number of lead components scattered on the stage 156 is not small, and the components on the stage 156 are retained. be done. On the other hand, when the calculated component occupancy rate is 15% or less, it is determined that the number of lead components scattered on the stage 156 is small, and the lead components are supplied from the component supply device 88 to the stage. Ru.
 詳しくは、まず、供給動作においても、リターン動作と同様に、ステージ156の上のリード部品410が部品収容容器180に回収される。つまり、部品支持部材150が、部品支持部材移動装置152の作動により、部品補給装置88の下方、つまり、格納状態に向かって移動することで、ステージ156上のリード部品410が部品補給装置88の傾斜板128によって堰き止められて、部品収容容器180に回収される。次に、部品補給装置88において、コンベア装置106が作動されることで、部品補給装置88に収容されているリード部品410がコンベアベルト112によって搬送されて、部品補給装置88から排出される。これにより、部品補給装置88から排出されたリード部品410は、部品収容容器180に収容される。つまり、部品収容容器180には、ステージ156の上から回収された部品と、部品補給装置88から新たに供給された部品とが収容される。そして、部品補給装置88から所定量のリード部品410が排出されると、コンベア装置106が停止し、部品支持部材150が格納状態から前方に向かって移動する。そして、部品支持部材150が格納状態から所定量、露出状態となる前方に向かって移動したタイミングで、部品戻し装置92の容器搖動装置181が作動し、部品収容容器180が揺動する。この際、部品収容容器180に収容されたリード部品410が、ステージ156に向かって勢いよく放出される。これにより、部品収容容器180からステージ156の上にリード部品410が散在される。つまり、供給動作では、ステージ156の上から回収された部品と、部品補給装置88から新たに供給された部品とが、ステージ156の上に散在される。このように、部品補給装置88から新たに供給された部品がステージ156の上に散在されることで、ばら部品供給装置82において継続的に部品を供給することができる。 Specifically, first, in the supply operation, the lead component 410 on the stage 156 is collected into the component storage container 180, similarly to the return operation. That is, the component support member 150 moves below the component supply device 88, that is, toward the stored state, by the operation of the component support member moving device 152, so that the lead component 410 on the stage 156 is moved to the component supply device 88. It is blocked by the inclined plate 128 and collected into the parts storage container 180. Next, in the component supply device 88 , the conveyor device 106 is operated, so that the lead component 410 housed in the component supply device 88 is conveyed by the conveyor belt 112 and discharged from the component supply device 88 . As a result, the lead components 410 discharged from the component supply device 88 are accommodated in the component storage container 180. That is, the parts storage container 180 stores the parts collected from above the stage 156 and the parts newly supplied from the parts supply device 88. Then, when a predetermined amount of lead components 410 are discharged from the component supply device 88, the conveyor device 106 stops and the component support member 150 moves forward from the stored state. Then, at the timing when the component support member 150 moves forward from the stored state to the exposed state by a predetermined amount, the container swing device 181 of the component return device 92 is activated, and the component storage container 180 swings. At this time, the lead component 410 accommodated in the component storage container 180 is vigorously ejected toward the stage 156. As a result, the lead components 410 are scattered from the component storage container 180 onto the stage 156. That is, in the supply operation, parts collected from above the stage 156 and parts newly supplied from the parts supply device 88 are scattered on the stage 156. In this way, parts newly supplied from the parts supply device 88 are scattered on the stage 156, so that the bulk parts supply device 82 can continuously supply parts.
 また、ばら部品供給システム32では、図13に示すように、2台の部品補給装置88を備えるばら部品供給装置500も用意されており、そのばら部品供給装置500を、ばら部品供給装置82の代わりに、本体80のスロット140に装着することもできる。 In addition, in the bulk parts supply system 32, as shown in FIG. Alternatively, it can also be installed in the slot 140 of the main body 80.
 詳しくは、ばら部品供給装置500は、ばら部品供給装置82と同様に、フレーム504と部品支持装置506と部品戻し装置508とを含む。なお、ばら部品供給装置500は、ばら部品供給装置より幅が広いこと、そして2台の部品補給装置88を備えていることを除いてはばら部品供給装置と略同じであるため、簡略化して説明する。 Specifically, like the bulk parts supply device 82, the bulk parts supply device 500 includes a frame 504, a component support device 506, and a component return device 508. Note that the bulk parts supplying apparatus 500 is approximately the same as the bulk parts supplying apparatus, except that it is wider than the bulk parts supplying apparatus and is equipped with two parts supplying apparatuses 88, so the description will be simplified. explain.
 フレーム504の幅方向の寸法は、ばら部品供給装置82のフレーム89の2倍であり、フレーム89と同様に、1対のサイドフレーム520と、連結フレーム522とにより構成されている。1対のサイドフレーム520は、ばら部品供給装置82の1対のサイドフレーム130と略同じ形状をなし、連結フレーム522の幅方向の寸法は、ばら部品供給装置82の連結フレーム132の幅方向の寸法の2倍である。このような構造により、1対のサイドフレーム520の間に、2台の部品補給装置88が幅方向に並んだ状態で着脱可能に装着される。なお、ばら部品供給装置82のフレーム89の幅方向の寸法の2倍であるフレーム504は、ばら部品供給システム32の本体80に形成された5つのスロット140のうちの隣り合う2つのスロット140に、装着される。 The width dimension of the frame 504 is twice that of the frame 89 of the bulk parts supply device 82, and like the frame 89, it is composed of a pair of side frames 520 and a connecting frame 522. The pair of side frames 520 have approximately the same shape as the pair of side frames 130 of the bulk parts supply device 82, and the widthwise dimension of the connecting frame 522 is equal to the width direction of the connecting frame 132 of the bulk parts supplying device 82. It is twice the size. With this structure, the two component supply devices 88 are removably mounted between the pair of side frames 520 in a state where they are lined up in the width direction. Note that the frame 504, which is twice the widthwise dimension of the frame 89 of the bulk parts supply device 82, fits into two adjacent slots 140 of the five slots 140 formed in the main body 80 of the bulk parts supply system 32. , to be installed.
 また、部品支持装置506も、ばら部品供給装置82の部品支持装置90と同様に、部品支持部材530と部品支持部材移動装置532を有しており、部品支持部材530は、ステージ536と1対の側壁部538とにより構成されている。ステージ536の幅方向の寸法は、ばら部品供給装置82のステージ156の2倍であり、そのステージ536の幅方向における両縁に、1対の側壁部538が立設されている。そして、部品支持部材530は、部品支持部材移動装置532の作動により前後方向にスライドする。 Further, like the component support device 90 of the bulk component supply device 82, the component support device 506 also includes a component support member 530 and a component support member moving device 532. and a side wall portion 538. The dimension of the stage 536 in the width direction is twice that of the stage 156 of the bulk parts supply device 82, and a pair of side walls 538 are provided upright on both edges of the stage 536 in the width direction. Then, the component support member 530 slides in the front-back direction by the operation of the component support member moving device 532.
 また、部品戻し装置508も、ばら部品供給装置82の部品戻し装置92と同様に、部品収容容器540と容器搖動装置542を有している。部品収容容器540の幅方向の寸法は、ばら部品供給装置82の部品収容容器180の2倍であり、ステージ536の前端に揺動可能に配設されている。そして、部品収容容器540は、容器搖動装置542の作動により、部品収容容器540の開口を上方に向けた姿勢(収容姿勢)と、部品収容容器540の開口をステージ536に向けた姿勢(戻し姿勢)との間で揺動する。 Similarly to the parts return device 92 of the bulk parts supply device 82, the parts return device 508 also includes a component storage container 540 and a container rocking device 542. The dimension in the width direction of the component storage container 540 is twice that of the component storage container 180 of the bulk component supply device 82, and is swingably disposed at the front end of the stage 536. Then, by the operation of the container rocking device 542, the component storage container 540 is moved between a posture with the opening of the component storage container 540 facing upward (accommodation posture) and a posture with the opening of the component storage container 540 facing the stage 536 (returning posture). ).
 ばら部品供給システム32に装着されたこのような構造のばら部品供給装置500は、2種類の部品を供給することができる。つまり、例えば、2台の部品補給装置88のうちの一方の部品補給装置88aにはA部品が収容され、他方の部品補給装置88bにはB部品が収容された場合には、部品補給装置88aからはA部品が排出され、部品補給装置88bからはB部品が排出されることで、ステージ536の上にはA部品とB部品とが散在される。続いて、ステージ536の上に散在された部品が2次元撮像装置84により撮像されて、その撮像データに基づいて、散在されたA部品及びB部品のうちの保持可能部品が特定される。そして、ステージ536の上から散在されたA部品及びB部品のうちの保持可能部品が吸着ノズル332により保持される。つまり、ばら部品供給装置500はA部品及びB部品を供給する。また、ステージ536の上から吸着ノズル332が保持可能部品を保持して、ステージ536の上に保持可能部品が無くなった場合には、ばら部品供給装置82と同様に、散在部品のリターン動作が行われる。また、ステージ536の上に散在される部品の個数が少なくなった場合には、部品補給装置88から部品が供給される。ただし、ばら部品供給装置500では、部品補給装置88aからはA部品が供給され、部品補給装置88bからはB部品が供給されるため、ステージの上に散在されたA部品及びB部品の2種類の部品について充足しているか否かが判断される。そして、全ての種類の部品について充足していると判断された場合には部品補給装置88から部品は供給されず、全ての種類の部品の何れかについて充足していないと判断された場合には、充足していないと判断された種類の部品が部品補給装置88から供給される。なお、充足していると判断された種類の部品は、部品の保持作業を実行する吸着ノズル332にアイドル時間や待機時間が生じず保持できる部品がある状態であったり、組み立てや装着の作業計画に遅れが生じない部品がある状態である。 The bulk parts supply device 500 with such a structure installed in the bulk parts supply system 32 can supply two types of parts. That is, for example, if one of the two component supply devices 88a stores the A component and the other component supply device 88b stores the B component, the component supply device 88a Component A is discharged from the component replenishing device 88b, and component B is discharged from the component supply device 88b, so that the A component and the B component are scattered on the stage 536. Subsequently, the parts scattered on the stage 536 are imaged by the two-dimensional imaging device 84, and based on the imaged data, the holdable parts among the scattered parts A and B are identified. Then, the holdable parts among the A parts and B parts scattered from above the stage 536 are held by the suction nozzle 332. That is, the bulk parts supply device 500 supplies A parts and B parts. Further, when the suction nozzle 332 holds holdable parts from above the stage 536 and there are no holdable parts on the stage 536, the return operation of the scattered parts is performed in the same manner as the bulk parts supply device 82. be exposed. Further, when the number of parts scattered on the stage 536 decreases, the parts are supplied from the parts supply device 88. However, in the bulk parts supply device 500, parts A are supplied from the parts supply device 88a and parts B are supplied from the parts supply device 88b, so two types of parts A and B are scattered on the stage. It is determined whether or not the parts are satisfied. If it is determined that all types of parts are satisfied, the parts are not supplied from the parts supply device 88, and if it is determined that any of all types of parts is not satisfied, the parts are not supplied. , parts of the type determined to be unsatisfied are supplied from the parts supply device 88. Note that the types of parts that are determined to be sufficient include those in which the suction nozzle 332 that performs the part holding work has parts that can be held without idle time or standby time, or the work plan for assembly or installation. There are parts that do not cause any delays.
 具体的には、ステージ536の上に部品が散在されておらず、部品収容容器540に部品が収容されていない初期状態において、ステージ536にA部品及びB部品を散在するべく、A部品及びB部品の供給動作が実行される。つまり、部品の供給動作において、部品補給装置88aのコンベア装置106が作動してA部品が部品補給装置88aから排出されるとともに、部品補給装置88bのコンベア装置106が作動してB部品が部品補給装置88bから排出されることで、ステージ536の上にA部品及びB部品が散在される。この際、部品の占有率が15%を超えるまで、部品の供給動作は繰り返して実行される。詳しくは、A部品及びB部品の供給動作が完了して、ステージ536の上に部品が散在されると、ステージ536の上に散在された部品が2次元撮像装置84により撮像される。そして、個別制御装置452は、2次元撮像装置84の撮像データに基づいて部品の占有率を演算する。この際、演算された部品の占有率が15%以下である場合には、再度、A部品及びB部品の供給動作が実行される。そして、部品の占有率が15%を超えるまで、A部品及びB部品の供給動作が繰り返される。 Specifically, in an initial state where no parts are scattered on the stage 536 and no parts are stored in the parts storage container 540, parts A and B are scattered on the stage 536. A component supply operation is performed. That is, in the parts supply operation, the conveyor device 106 of the parts supply device 88a is operated to discharge parts A from the parts supply device 88a, and the conveyor device 106 of the parts supply device 88b is operated to supply parts B. By being ejected from the device 88b, the A parts and the B parts are scattered on the stage 536. At this time, the component supply operation is repeatedly performed until the component occupancy exceeds 15%. Specifically, when the supply operation of parts A and B is completed and the parts are scattered on the stage 536, the parts scattered on the stage 536 are imaged by the two-dimensional imaging device 84. Then, the individual control device 452 calculates the occupancy rate of the component based on the imaging data of the two-dimensional imaging device 84. At this time, if the calculated occupancy rate of the parts is 15% or less, the operation of supplying parts A and B is performed again. Then, the operation of supplying parts A and B is repeated until the occupancy rate of the parts exceeds 15%.
 そして、部品の占有率が15%を超えると、部品保持ヘッドが吸着ノズルで部品の保持作業を実行する。詳しくは、部品の占有率を演算するために2次元撮像装置84が撮像した撮像データに基づいて、個別制御装置452がA部品及びB部品の保持可能部品を特定する。この際、2次元撮像装置84が撮像した撮像データにおいて部品の占有率が15%を超えたときの撮像を1回目の撮像として取り扱う。例えば、1回目の撮像時における部品の占有率が50%であったとする。そして、個別制御装置452は、1回目の撮像時における撮像データに基づいて、A部品及びB部品それぞれの保持可能部品を特定すると、特定した保持可能部品の個数を部品の種類毎に、散在した部品の撮像回数とともに記憶する。例えば、図14に示すように、散在した部品を1回目に撮像した時に、A部品の保持可能部品が2個であると特定され、B部品の保持可能部品が3個であると特定される。そして個別制御装置452は、図15に示したように、特定されたそれらの数を記憶する。なお、図14では、A部品及びB部品の保持可能部品のみが図示されており、A部品及びB部品の保持可能部品以外の部品、つまり、吸着ノズル332により保持できない部品は図示していない。また、A部品及びB部品はリード部品であるが、図を簡略化するために、リード部品のリードは図示せずに、リード部品を簡略化して図示している。 Then, when the occupancy rate of the component exceeds 15%, the component holding head carries out the work of holding the component with the suction nozzle. Specifically, the individual control device 452 specifies the holdable parts A part and B part based on the image data taken by the two-dimensional imaging device 84 in order to calculate the occupancy rate of the parts. At this time, the imaging when the occupancy rate of the component exceeds 15% in the imaging data captured by the two-dimensional imaging device 84 is handled as the first imaging. For example, assume that the occupancy rate of parts at the time of the first imaging is 50%. Then, when the individual control device 452 specifies the holdable parts for each of the A part and the B part based on the imaging data obtained during the first imaging, the individual control device 452 calculates the number of the specified holdable parts for each type of part, in a scattered manner. It is stored together with the number of times the part was imaged. For example, as shown in FIG. 14, when the scattered parts are imaged for the first time, it is specified that the number of parts that can be held for part A is two, and that the number of parts that can be held for part B is three. . The individual control device 452 then stores the identified numbers, as shown in FIG. Note that in FIG. 14, only parts A and B that can be held are shown, and parts other than parts A and B that can be held, that is, parts that cannot be held by the suction nozzle 332 are not shown. Further, although the A component and the B component are lead components, in order to simplify the drawing, the leads of the lead components are not shown and the lead components are shown in a simplified manner.
 そして、個別制御装置452は、部品の種類毎の保持可能部品を特定すると、特定した部品の種類毎の保持可能部品の個数(以降では、保持可能部品数と記載する)に基づいて、保持可能部品数の平均値を部品の種類毎に演算する。なお、保持可能部品数の平均値は、直近5回の散在した部品を撮像した撮像データに基づいて特定された保持可能部品数の平均値である。このため、1回目の撮像時には、1回目の撮像時に特定された部品の種類毎の保持可能部品数が1回目の撮像時における保持可能部品数の平均値となる。したがって、1回目の撮像時におけるA部品の保持可能部品数の平均値は2.0であり、B部品の保持可能部品数の平均値は3.0である。そして、1回目の撮像時の部品の占有率は50%であり、15%を超えているため、A部品及びB部品は充足していると判断されて、部品の供給動作は実行されることなくステージ上の保持可能部品が吸着ノズル332により保持される。 When the individual control device 452 specifies the holdable parts for each type of parts, the individual control device 452 determines the holdable parts based on the number of holdable parts for each specified part type (hereinafter referred to as the number of holdable parts). The average value of the number of parts is calculated for each type of part. Note that the average value of the number of parts that can be held is the average value of the number of parts that can be held that is specified based on the imaging data of the last five images of scattered parts. Therefore, at the time of the first imaging, the number of parts that can be held for each type of component specified at the time of the first imaging becomes the average value of the number of parts that can be held at the time of the first imaging. Therefore, the average value of the number of parts that can be held for parts A at the time of the first imaging is 2.0, and the average value of the number of parts that can be held for parts B is 3.0. Then, since the component occupancy rate at the time of the first imaging is 50%, which exceeds 15%, it is determined that the A and B components are sufficient, and the component supply operation is executed. The retainable parts on the stage are held by the suction nozzle 332.
 そして、1回目の撮像時に特定された保持可能部品が吸着ノズル332によって保持されると、リターン動作が実行される。つまり、ステージ536の上に残存していた部品が部品収容容器540に回収されて、回収された部品がステージ536の上に再度散在される。次に、ステージ536の上に再度散在された部品の2回目の撮像が2次元撮像装置84により実行される。そして、個別制御装置452は、2回目の撮像データに基づいて、部品の占有率を演算するとともに、部品の種類毎の保持可能部品を特定する。この際、例えば、2回目の撮像時における部品の占有率は50%であったことから、図14に示したように、A部品の保持可能部品が3個であると特定され、B部品の保持可能部品が2個であると特定される。そして個別制御装置452は、図15に示したように、特定されたそれらの数を記憶する。更に個別制御装置452は、2回目の撮像時における保持可能部品数の平均値を部品の種類毎に演算する。具体的には、1回目および2回目の撮像時において特定された部品の種類毎の保持可能部品数の平均値を、2回目の撮像時の部品の種類毎の保持可能部品数の平均値とする。したがって、2回目の撮像時におけるA部品の保持可能部品数の平均値は2.5(=(2+3)/2)であり、B部品の保持可能部品数の平均値は2.5(=(3+2)/2)である。そして、2回目の撮像時の部品の占有率は50%であり、15%を超えており、A部品及びB部品は充足していると判断されることから、部品の供給動作は実行されることなく、ステージ上の保持可能部品は吸着ノズル332によって保持される。 Then, when the holdable component identified during the first imaging is held by the suction nozzle 332, a return operation is executed. That is, the parts remaining on the stage 536 are collected into the parts storage container 540, and the collected parts are scattered on the stage 536 again. Next, the two-dimensional imaging device 84 performs a second imaging of the parts scattered on the stage 536 again. Then, the individual control device 452 calculates the occupancy rate of the parts based on the second imaging data, and specifies the holdable parts for each type of parts. At this time, for example, since the occupancy rate of the parts at the time of the second imaging was 50%, as shown in FIG. It is specified that there are two holdable parts. The individual control device 452 then stores the identified numbers, as shown in FIG. Furthermore, the individual control device 452 calculates the average value of the number of parts that can be held at the time of the second imaging for each type of part. Specifically, the average number of parts that can be held for each type of parts identified at the time of the first and second imaging is calculated as the average number of parts that can be held for each type of parts at the time of the second imaging. do. Therefore, the average number of parts that can be held for part A during the second imaging is 2.5 (=(2+3)/2), and the average number of parts that can be held for part B is 2.5 (=( 3+2)/2). Then, the component occupancy rate at the time of the second imaging is 50%, which exceeds 15%, and it is determined that the A and B components are sufficient, so the component supply operation is executed. The holdable component on the stage is held by the suction nozzle 332 without any movement.
 そして、2回目の撮像時に特定された保持可能部品が吸着ノズル332により全て保持されると、ステージ536の上に残存していた部品が部品収容容器540に回収されて、ステージ536の上に再度散在される部品のリターン動作が実行される。次に、ステージ536の上に再度散在された部品の3回目の撮像が2次元撮像装置84により実行される。そして、個別制御装置452は、その3回目の撮像データに基づいて、部品の占有率を演算するとともに、部品の種類毎の保持可能部品を特定する。この際、例えば、3回目の撮像時における部品の占有率は10%であったことから、図14に示したように、A部品の保持可能部品は特定されず、B部品の保持可能部品は1個であると特定される。そして個別制御装置452は、図15に示したように、特定されたそれらの数を記憶する。更に個別制御装置452は、3回目の撮像時における保持可能部品数の平均値を部品の種類毎に演算する。具体的には、1回目から3回目の撮像時において特定された部品の種類毎の保持可能部品数の平均値を3回目の撮像時の部品の種類毎の保持可能部品数の平均値とする。したがって、3回目の撮像時におけるA部品の保持可能部品数の平均値は1.7(=(2+3)/3)であり、B部品の保持可能部品数の平均値は2.0(=(3+2+1)/3)である。そして、3回目の撮像時の部品の占有率は10%であり、15%以下であることから、部品は充足していないと判断されて部品の供給動作が実行される。この際、A部品およびB部品の保持可能部品数の平均値が1以下である場合には、A部品及びB部品が充足していないと判断される。また、A部品とB部品の保持可能部品数の平均値が同じであり、A部品とB部品の保持可能部品が無い場合にも、A部品及びB部品が充足していないと判断される。また、上記以外の場合には、A部品およびB部品の保持可能部品数のうちの平均値が少ない部品の方が充足していないと判断される。ここでは、3回目の撮像時におけるA部品の保持可能部品数の平均値は1.7であり、B部品の保持可能部品数の平均値は2.0である。したがって、3回目の撮像時における撮像データに基づいて、A部品が充足していないと判断されてA部品の供給動作が実行される。 When all the holdable parts identified during the second imaging are held by the suction nozzle 332, the parts remaining on the stage 536 are collected into the parts storage container 540 and placed on the stage 536 again. A return operation of the scattered parts is performed. Next, the two-dimensional imaging device 84 performs a third imaging of the parts scattered on the stage 536 again. Then, the individual control device 452 calculates the occupancy rate of the parts based on the third imaging data, and specifies the holdable parts for each type of parts. At this time, for example, since the component occupancy rate at the time of the third imaging was 10%, as shown in FIG. 14, the retainable components of component A are not specified, and the retainable components of component B It is specified that there is one. The individual control device 452 then stores the identified numbers, as shown in FIG. Furthermore, the individual control device 452 calculates the average value of the number of parts that can be held at the time of the third imaging for each type of part. Specifically, the average value of the number of parts that can be held for each type of parts specified during the first to third imaging is set as the average value of the number of parts that can be held for each type of parts during the third imaging. . Therefore, the average value of the number of parts that can be held for part A at the time of the third imaging is 1.7 (=(2+3)/3), and the average value of the number of parts that can be held for part B is 2.0 (=( 3+2+1)/3). Then, since the component occupancy rate at the time of the third imaging is 10% and is less than 15%, it is determined that there are not enough components, and the component supply operation is executed. At this time, if the average value of the number of parts that can be held for parts A and B is less than 1, it is determined that there are not enough parts A and B. Furthermore, if the average value of the number of parts that can be held for parts A and B is the same, and there are no parts that can be held for parts A and B, it is determined that there are not enough parts A and B. In addition, in cases other than the above, it is determined that the part with the smaller average value of the number of parts that can be held among parts A and parts B is not sufficient. Here, the average value of the number of parts that can be held for parts A at the time of the third imaging is 1.7, and the average value of the number of parts that can be held for parts B is 2.0. Therefore, based on the imaging data obtained during the third imaging, it is determined that the A parts are not sufficient, and the supply operation of the A parts is executed.
 A部品の供給動作が実行されて、ステージ536の上に部品が散在されると、ステージ536の上に散在された部品の4回目の撮像が2次元撮像装置84によって実行される。そして、個別制御装置452は、その4回目の撮像データに基づいて、部品の占有率を演算するとともに、部品の種類毎の保持可能部品を特定する。例えば、4回目の撮像時における部品の占有率は15%であって、図14に示したように、A部品の保持可能部品は2個であると特定され、B部品の保持可能部品が特定されない場合には、個別制御装置452は、図15に示したように、特定されたそれらの数を記憶する。また、個別制御装置452は、4回目の撮像時における保持可能部品数の平均値を部品の種類毎に演算する。具体的には、1回目から4回目の撮像時において特定された部品の種類毎の保持可能部品数の平均値を4回目の撮像時における部品の種類毎の保持可能部品数の平均値とする。したがって、4回目の撮像時における、A部品の保持可能部品数の平均値は1.8(=(2+3+2)/4)であり、B部品の保持可能部品数の平均値は1.5(=(3+2+1)/4)である。そして、4回目の撮像時における部品の占有率は15%であって15%以下であるため、部品の供給動作が実行される。ここで、4回目の撮像時におけるA部品の保持可能部品数の平均値は1.8であり、B部品の保持可能部品数の平均値は1.5である。したがって、4回目の撮像時における撮像データに基づいて、B部品が充足していないと判断されてB部品の供給動作が実行される。 When the A component supply operation is executed and the components are scattered on the stage 536, the two-dimensional imaging device 84 performs a fourth imaging of the components scattered on the stage 536. Then, the individual control device 452 calculates the occupancy rate of the parts based on the fourth imaging data, and specifies the holdable parts for each type of parts. For example, the occupancy rate of parts at the time of the fourth imaging is 15%, and as shown in FIG. If not, the individual controller 452 stores those identified numbers, as shown in FIG. Further, the individual control device 452 calculates the average value of the number of parts that can be held at the time of the fourth imaging for each type of part. Specifically, the average value of the number of parts that can be held for each type of component identified during the first to fourth imaging is set as the average value of the number of parts that can be held for each type of component during the fourth imaging. . Therefore, at the time of the fourth imaging, the average value of the number of parts that can be held for part A is 1.8 (= (2 + 3 + 2) / 4), and the average value of the number of parts that can be held for part B is 1.5 (= (3+2+1)/4). Then, since the component occupancy rate at the time of the fourth imaging is 15%, which is less than 15%, the component supply operation is executed. Here, the average value of the number of parts that can be held for parts A at the time of the fourth imaging is 1.8, and the average value of the number of parts that can be held for parts B is 1.5. Therefore, based on the imaging data obtained during the fourth imaging, it is determined that the B components are not sufficient, and the B component supply operation is executed.
 B部品の供給動作が実行されて、ステージ536の上に部品が散在されると、ステージ536の上に散在された部品の5回目の撮像が2次元撮像装置84によって実行される。そして、個別制御装置452は、その5回目の撮像データに基づいて、部品の占有率を演算するとともに、部品の種類毎の保持可能部品を特定する。例えば、5回目の撮像時における部品の占有率は35%であって、図14に示したように、A部品の保持可能部品は1個であると特定され、B部品の保持可能部品は3個であると特定された場合には、個別制御装置452は、図15に示したように、特定されたそれらの数を記憶する。また、個別制御装置452は、5回目の撮像時における保持可能部品数の平均値を部品の種類毎に演算する。具体的には、1回目から5回目の撮像時において特定された部品の種類毎の保持可能部品数の平均値を5回目の撮像時における部品の種類毎の保持可能部品数の平均値とする。したがって、5回目の撮像時における、A部品の保持可能部品数の平均値は1.6(=(2+3+2+1)/5)であり、B部品の保持可能部品数の平均値は1.8(=(3+2+1+3)/5)である。そして、5回目の撮像時における部品の占有率は35%であり、15%を超えているため、A部品及びB部品は充足していると判断されて、部品の供給動作は実行されることなく、ステージ上の保持可能部品は吸着ノズル332によって保持される。 When the B component supply operation is executed and the components are scattered on the stage 536, the two-dimensional imaging device 84 performs a fifth imaging of the components scattered on the stage 536. Then, the individual control device 452 calculates the occupancy rate of the parts based on the fifth imaging data, and specifies the holdable parts for each type of parts. For example, the occupancy rate of the parts at the time of the fifth image capture is 35%, and as shown in FIG. If it is specified that the number is 1, the individual control device 452 stores the specified number, as shown in FIG. Further, the individual control device 452 calculates the average value of the number of parts that can be held at the time of the fifth imaging for each type of part. Specifically, the average value of the number of parts that can be held for each type of component identified during the first to fifth imaging is set as the average value of the number of parts that can be held for each type of component during the fifth imaging. . Therefore, at the time of the fifth imaging, the average value of the number of parts that can be held for part A is 1.6 (=(2+3+2+1)/5), and the average value of the number of parts that can be held for part B is 1.8 (= (3+2+1+3)/5). Then, since the component occupancy rate at the time of the fifth image capture is 35%, which exceeds 15%, it is determined that the A and B components are sufficient, and the component supply operation is executed. Instead, the holdable parts on the stage are held by the suction nozzle 332.
 そして、5回目の撮像時に特定された保持可能部品が吸着ノズル332によって全て保持されると、ステージ536の上に残存していた部品が部品収容容器540に回収されて、ステージ536の上に再度散在される部品のリターン動作が実行される。次に、ステージ536の上に再度散在された部品の6回目の撮像が2次元撮像装置84により実行される。そして、個別制御装置452は、その5回目の撮像データに基づいて、部品の占有率を演算するとともに、部品の種類毎の保持可能部品を特定する。この際、例えば、6回目の撮像時における部品の占有率は5%であったことから、図14に示したように、A部品の保持可能部品は特定されず、B部品の保持可能部品も特定されない。そして個別制御装置452は、図15に示したように、それらのことを記憶する。更に個別制御装置452は、6回目の撮像時における保持可能部品数の平均値を部品の種類毎に演算する。具体的には、2回目から6回目の撮像時において特定された部品の種類毎の保持可能部品数の平均値を6回目の撮像時の部品の種類毎の保持可能部品数の平均値とする。したがって、6回目の撮像時におけるA部品の保持可能部品数の平均値は1.2(=(3+2+1)/5)であり、B部品の保持可能部品数の平均値は1.2(=(2+1+3)/5)である。そして、6回目の撮像時の部品の占有率は5%であり、15%以下であることから、部品は充足していないと判断されて部品の供給動作が実行される。ここで、6回目の撮像時におけるA部品の保持可能部品数の平均値は1.2であり、B部品の保持可能部品数の平均値も1.2である。つまり、A部品の保持可能部品数の平均値とB部品の保持可能部品数の平均値とは同じである。そして、6回目の撮像時に、A部品の保持可能部品はなく、B部品の保持可能部品もない。このため、6回目の撮像時における撮像データに基づいて、A部品及びB部品が充足していないと判断されて、A部品及びB部品の供給動作が実行される。 When all of the holdable parts identified during the fifth imaging are held by the suction nozzle 332, the parts remaining on the stage 536 are collected into the parts storage container 540 and placed on the stage 536 again. A return operation of the scattered parts is performed. Next, the two-dimensional imaging device 84 performs a sixth imaging of the parts scattered on the stage 536 again. Then, the individual control device 452 calculates the occupancy rate of the parts based on the fifth imaging data, and specifies the holdable parts for each type of parts. At this time, for example, since the component occupancy rate at the time of the sixth imaging was 5%, as shown in FIG. Not specified. The individual control device 452 then stores these information as shown in FIG. Furthermore, the individual control device 452 calculates the average value of the number of parts that can be held at the time of the sixth imaging for each type of part. Specifically, the average value of the number of parts that can be held for each type of component specified during the second to sixth imaging is set as the average value of the number of parts that can be held for each type of component during the sixth imaging. . Therefore, the average value of the number of parts that can be held for part A at the time of the sixth imaging is 1.2 (= (3 + 2 + 1) / 5), and the average value of the number of parts that can be held for part B is 1.2 (= ( 2+1+3)/5). Then, since the component occupancy rate at the time of the sixth imaging is 5%, which is less than 15%, it is determined that there are not enough components, and the component supply operation is executed. Here, the average value of the number of parts that can be held for parts A at the time of the sixth imaging is 1.2, and the average value of the number of parts that can be held for parts B is also 1.2. In other words, the average value of the number of parts that can be held for parts A and the average value of the number of parts that can be held for parts B are the same. Then, at the time of the sixth imaging, there is no part A that can be held, and there is no part that can hold part B. Therefore, based on the imaging data obtained during the sixth imaging, it is determined that the A and B parts are not sufficient, and the operation for supplying the A and B parts is executed.
 A部品及びB部品の供給動作が実行されて、ステージ536の上に部品が散在されると、ステージ536の上に散在された部品の7回目の撮像が2次元撮像装置84によって実行される。そして、個別制御装置452は、その7回目の撮像データに基づいて、部品の占有率を演算するとともに、部品の種類毎の保持可能部品を特定する。例えば、7回目の撮像時における部品の占有率は15%であって、図14に示したように、A部品の保持可能部品は1個であると特定され、B部品の保持可能部品が1個であると特定された場合には、個別制御装置452は、図15に示したように、特定されたそれらの数を記憶する。また、個別制御装置452は、7回目の撮像時における保持可能部品数の平均値を部品の種類毎に演算する。具体的には、3回目から7回目の撮像時に特定された部品の種類毎の保持可能部品数の平均値を7回目の撮像時の部品の種類毎の保持可能部品数の平均値とする。したがって、7回目の撮像時における、A部品の保持可能部品数の平均値は0.8(=(2+1+1)/5)であり、B部品の保持可能部品数の平均値は1.0(=(1+3+1)/5)である。そして、7回目の撮像時の部品の占有率は15%であり、15%以下であることから、部品は充足していないと判断されて部品の供給動作が実行される。ここでは、7回目の撮像時におけるA部品の保持可能部品数の平均値は0.8であり、B部品の保持可能部品数の平均値も1.0である。つまり、A部品とB部品の保持可能部品数の平均値は全て1以下である。したがって、7回目の撮像時における撮像データに基づいて、A部品及びB部品が充足していないと判断されてA部品及びB部品の供給動作が実行される。 When the supply operation of parts A and B is performed and the parts are scattered on the stage 536, the two-dimensional imaging device 84 performs the seventh imaging of the parts scattered on the stage 536. Then, the individual control device 452 calculates the occupancy rate of the parts based on the seventh imaging data, and specifies the holdable parts for each type of parts. For example, the occupancy rate of the parts at the time of the seventh imaging is 15%, and as shown in FIG. If it is specified that the number is 1, the individual control device 452 stores the specified number, as shown in FIG. Further, the individual control device 452 calculates the average value of the number of parts that can be held at the time of the seventh imaging for each type of part. Specifically, the average value of the number of parts that can be held for each type of component specified during the third to seventh imaging is set as the average value of the number of parts that can be held for each type of component during the seventh imaging. Therefore, at the time of the seventh image capture, the average value of the number of parts that can be held for part A is 0.8 (=(2+1+1)/5), and the average value of the number of parts that can be held for part B is 1.0 (= (1+3+1)/5). Then, the occupancy rate of the parts at the time of the seventh imaging is 15%, and since it is less than 15%, it is determined that there are not enough parts, and the parts supply operation is executed. Here, the average value of the number of parts that can be held for parts A at the seventh time of imaging is 0.8, and the average value of the number of parts that can be held for parts B is also 1.0. In other words, the average value of the number of parts that can be held for parts A and B is all 1 or less. Therefore, based on the imaging data obtained during the seventh imaging, it is determined that the A and B parts are not sufficient, and the supply operation of the A and B parts is executed.
 このように、ステージ上に部品が散在される毎に、散在されたステージ上の部品を2次元撮像装置84によって撮像して取得した撮像データに基づいて、ステージ上の部品が充足しているのか否かを判断することで、好適に部品をステージに供給することが可能となる。また、2次元撮像装置84によって撮像して取得した撮像データに基づいて、まずは、ステージの面積に対して散在された部品の面積の占有率が15%以下であるのか否かを判断する。そして部品の占有率が15%以下であると判断した場合には、ステージ上に散在された部品の種類毎に取得した保持可能部品数の平均値に基づいて、部品の種類毎に部品が充足しているのか否かを判断し、充足していない種類の部品のみをステージに供給することができる。これにより、更に好適に部品をステージに供給することができる。 In this way, each time parts are scattered on the stage, it is determined whether there are enough parts on the stage based on the imaging data obtained by imaging the scattered parts on the stage with the two-dimensional imaging device 84. By determining whether this is the case, it becomes possible to suitably supply the parts to the stage. Furthermore, based on the imaging data obtained by imaging with the two-dimensional imaging device 84, it is first determined whether the area occupation rate of the scattered parts with respect to the area of the stage is 15% or less. If it is determined that the occupancy rate of parts is 15% or less, the parts are sufficient for each type of parts based on the average number of parts that can be held for each type of parts scattered on the stage. It is possible to judge whether or not there is a sufficient number of parts, and to supply only the types of parts that are not satisfied to the stage. Thereby, parts can be more suitably supplied to the stage.
 なお、上述した部品の供給動作およびリターン動作等を、図16及び図17に示すフローチャートを用いて再度、簡便に説明する。まず、ステージ536の上に部品が散在されておらず、かつ部品収容容器540に部品が収容されていない初期状態において、ステージ536にA部品及びB部品を散在する部品の供給動作が実行される(S10)。そして、ステージに散在された部品が2次元撮像装置84により撮像されて(S12)、2次元撮像装置84が撮像した撮像データに基づいてステージ上の面積に対して散在された部品の面積の占有率が15%以下であるか否かが判断される(S16)。この際、部品の占有率が閾値である15%以下の場合(S16:YES)には、A部品及びB部品の供給動作と部品が供給されたのちのステージの撮像とが繰り返される。一方、部品の占有率が15%を超える場合(S16:NO)には、ステージ上に保持が可能である部品があるか否かが判断される(S18)。この際、ステージ上に保持が可能である部品がある場合(S18:YES)には、吸着ノズル332によって保持が可能である部品は保持される(S20)。そして、吸着ノズルがステージ上に保持が可能である部品を全て保持した場合にはリターン動作が実行される(S22)。一方で、ステージ上に吸着ノズルによって保持が可能である部品がない場合(S18:NO)には、吸着ノズルによる部品の保持作業は実行されずに、ステージ上に散在された部品を回収して再度散在するリターン動作が実行される(S22)。そして、リターン動作が実行されたのちのステージに散在された部品が2次元撮像装置84によって撮像される(S24)。 Note that the above-mentioned component supply operation, return operation, etc. will be briefly explained again using the flowcharts shown in FIGS. 16 and 17. First, in an initial state in which no components are scattered on the stage 536 and no components are stored in the component storage container 540, a component supply operation in which components A and B are scattered on the stage 536 is performed. (S10). Then, the parts scattered on the stage are imaged by the two-dimensional imaging device 84 (S12), and based on the imaging data taken by the two-dimensional imaging device 84, the area occupied by the parts scattered on the stage is It is determined whether the rate is 15% or less (S16). At this time, if the occupancy rate of the component is less than the threshold value of 15% (S16: YES), the operation of supplying the A component and the B component and the imaging of the stage after the components are supplied are repeated. On the other hand, if the occupancy rate of the component exceeds 15% (S16: NO), it is determined whether there is a component that can be held on the stage (S18). At this time, if there is a part that can be held on the stage (S18: YES), the part that can be held is held by the suction nozzle 332 (S20). Then, when the suction nozzle holds all the parts that can be held on the stage, a return operation is executed (S22). On the other hand, if there are no parts on the stage that can be held by the suction nozzle (S18: NO), the suction nozzle does not hold the parts and collects the parts scattered on the stage. A scattered return operation is performed again (S22). The two-dimensional imaging device 84 images the parts scattered on the stage after the return operation has been performed (S24).
 続いて、2次元撮像装置84が撮像した撮像データに基づいて部品の占有率が15%以下であるか否かが判断される(S26)。この際、部品の占有率が15%を超えている場合(S26:NO)には、吸着ノズルによって保持可能部品の保持作業が実行されて(S18,S19)、S22以降の処理が実行される。一方、部品の占有率が15%を以下である場合(S26:YES)には、A部品およびB部品それぞれにおいて保持が可能である部品数の平均値が全て1以下であるか否かが判断される(S28)。そして、A部品およびB部品それぞれの保持可能部品数の平均値が1以下である場合(S28:YES)には、A部品及びB部品の供給動作が実行される(S30)。一方で、A部品およびB部品それぞれの保持可能部品数の平均値が1以下でない場合(S28:NO)には、A部品の保持可能部品数の平均値とB部品の保持可能部品数の平均値とが同じであって、A部品及びB部品の保持可能部品がないのか否かが判断される(S32)。この際に、A部品の保持可能部品数の平均値とB部品の保持可能部品数の平均値とが同じであって、A部品及びB部品の保持可能部品がない場合(S32:YES)には、A部品及びB部品の供給動作が実行される(S30)。一方で、A部品の保持可能部品数の平均値とB部品の保持可能部品数の平均値と異なる場合若しくは、A部品とB部品との少なくとも一方の保持可能部品が有る場合(S32:NO)には、A部品とB部品の保持可能部品数の平均値が少ない方の部品の供給動作が実行される(S34)。 Next, it is determined whether the occupancy rate of the component is 15% or less based on the image data captured by the two-dimensional imaging device 84 (S26). At this time, if the occupancy rate of the parts exceeds 15% (S26: NO), the holding work of the holdable parts is performed by the suction nozzle (S18, S19), and the processes from S22 onwards are performed. . On the other hand, if the occupancy rate of the parts is 15% or less (S26: YES), it is determined whether the average number of parts that can be held for each of A parts and B parts is all 1 or less. (S28). Then, when the average value of the number of parts that can be held for each of the A part and the B part is 1 or less (S28: YES), the operation of supplying the A part and the B part is executed (S30). On the other hand, if the average value of the number of parts that can be held for each of parts A and B is not less than 1 (S28: NO), the average number of parts that can be held for part A and the average number of parts that can be held for part B are It is determined whether or not the values are the same and there are no parts A and B that can be held (S32). At this time, if the average value of the number of parts that can be held for parts A and the average value for the number of parts that can be held for parts B are the same, and there are no parts that can be held for parts A and B (S32: YES), Then, the supply operation of parts A and B is executed (S30). On the other hand, if the average value of the number of parts that can be held for parts A is different from the average value of the number of parts that can be held for parts B, or if there is a part that can be held at least one of parts A and parts B (S32: NO). In step S34, an operation is performed to supply the component A or B, which has a smaller average number of parts that can be held (S34).
 なお、2次元撮像装置84は、撮像装置の一例である。部品補給装置88は、供給機の一例である。個別制御装置452は、判断装置の一例である。ばら部品供給装置500は、部品供給装置の一例である。部品戻し装置508は、散在装置の一例である。ステージ536は、ステージの一例である。 Note that the two-dimensional imaging device 84 is an example of an imaging device. The parts supply device 88 is an example of a supply machine. The individual control device 452 is an example of a determination device. The bulk parts supply device 500 is an example of a parts supply device. The parts return device 508 is an example of a scattering device. Stage 536 is an example of a stage.
 また、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、上記実施例では、部品の種類毎の保持可能部品数の平均値に基づいて、部品の種類毎に部品が充足しているのか否かが判断されているが、部品の種類毎の保持可能部品数に基づいて、部品の種類毎に部品が充足しているのか否かが判断されてもよい。つまり、部品の種類毎の保持可能部品数と保持可能部品数の平均値との少なくとも一方に基づいて、部品の種類毎に部品が充足しているのか否かが判断されてもよい。また、部品の種類毎の保持可能部品の量,比率等に基づいて、部品の種類毎に部品が充足しているのか否かが判断されてもよい。 Further, the present invention is not limited to the above embodiments, but can be implemented in various forms with various modifications and improvements based on the knowledge of those skilled in the art. Specifically, for example, in the above embodiment, it is determined whether or not there are enough parts for each type of parts based on the average number of parts that can be held for each type of parts. It may be determined whether or not there are enough parts for each type of parts based on the number of parts that can be held for each type. That is, it may be determined whether or not there are enough parts for each type of parts based on at least one of the number of parts that can be held for each type of parts and the average value of the number of parts that can be held. Furthermore, it may be determined whether or not there are sufficient parts for each type of parts based on the amount, ratio, etc. of parts that can be held for each type of parts.
 また、上記実施例では、部品の種類毎に部品補給装置88が用意されており、複数の部品補給装置88の各々から同じ種類の部品が供給されている。一方で、ひとつの部品補給装置88に複数種類の部品が収容されており、そのひとつの部品補給装置88から複数種類の部品がステージに供給されてもよい。 Furthermore, in the above embodiment, a component supply device 88 is prepared for each type of component, and the same type of component is supplied from each of the plurality of component supply devices 88. On the other hand, a single component supply device 88 may accommodate a plurality of types of components, and the single component supply device 88 may supply the plurality of types of components to the stage.
 また、上記実施例では、部品戻し装置508がステージの上に部品を散在しているが、部品補給装置88がステージの上に部品を散在してもよい。つまり、上記実施例では、部品補給装置88が部品戻し装置508の部品収容容器540に部品を供給し、その部品を収容した部品収容容器540がステージの上に部品を散在している。一方で、部品補給装置88が直接的にステージの上に部品を散在してもよい。つまり、例えば、ステージを格納状態から露出状態に移動させながら、部品補給装置88が部品を排出することで、部品補給装置88が直接的にステージの上に部品を散在してもよい。このような場合には、部品補給装置88が散在装置として機能する。 Furthermore, in the above embodiment, the parts return device 508 scatters the parts on the stage, but the parts supply device 88 may scatter the parts on the stage. That is, in the embodiment described above, the parts supply device 88 supplies parts to the parts storage container 540 of the parts return device 508, and the parts storage container 540 containing the parts is scattered on the stage. On the other hand, the parts supply device 88 may directly scatter the parts on the stage. That is, for example, the component supply device 88 may directly scatter the components on the stage by discharging the components while moving the stage from the stored state to the exposed state. In such a case, the parts supply device 88 functions as a scattering device.
 また、上記実施例では、部品が散在される部材としてステージ536が採用されているが、部品を散在することが可能な形状であれば種々の部材を採用することができる。具体的には、例えば、トレイ,キャリア等をステージとして採用することが出来るしコンベアベルトの上面をステージとして機能させることも出来る。 Furthermore, in the above embodiment, the stage 536 is used as a member on which parts are scattered, but various members can be used as long as they have a shape that allows parts to be scattered. Specifically, for example, a tray, a carrier, etc. can be used as a stage, or the upper surface of a conveyor belt can also function as a stage.
 また、上記実施例では、1台のばら部品供給装置500に2台の部品補給装置88が配設されているが、1台のばら部品供給装置に3台以上の部品補給装置88を配設してもよい。それら3台以上の部品補給装置88の各々に異なる種類の部品が収容される場合には、1台のばら部品供給装置500から3種類以上の部品を供給することができる。また、3種類以上の部品を供給することができるばら部品供給装置500において、ステージに散在された部品の占有率が15%以下である場合には、3種類以上の部品のうちの保持可能部品数の平均値が最も少なかった種類の部品を供給しても良いし、3種類以上の部品それぞれにおいて演算した保持可能部品数の平均値が所定の閾値より少なかった種類の部品のみを供給してもよい。 Further, in the above embodiment, two parts supply devices 88 are arranged in one bulk parts supply device 500, but three or more parts supply devices 88 are arranged in one bulk parts supply device. You may. If different types of components are stored in each of the three or more component supply devices 88, three or more types of components can be supplied from one bulk component supply device 500. In addition, in the bulk parts supply device 500 that can supply three or more types of parts, if the occupancy rate of the parts scattered on the stage is 15% or less, the retainable parts among the three or more types of parts It is possible to supply the type of parts for which the average number of parts is the smallest, or to supply only the types of parts for which the average value of the number of holdable parts calculated for each of three or more types of parts is less than a predetermined threshold value. Good too.
 また、上記実施例では、リード部品410,A部品,B部品のリード部品に本発明を適用しているが、種々の種類の部品に本発明を適用しても良い。具体的には、例えば、太陽電池の構成部品,パワーモジュールの構成部品,リードを有さない電子回路部品、チップ型小型電子部品等に、本発明を適用できる。 Furthermore, in the above embodiment, the present invention is applied to the lead components 410, A component, and B component, but the present invention may be applied to various types of components. Specifically, the present invention can be applied to, for example, components of solar cells, components of power modules, electronic circuit components without leads, small chip-type electronic components, and the like.
 84:2次元撮像装置(撮像装置)  88:部品補給装置(供給機)  452:個別制御装置(判断装置)  500:ばら部品供給装置(部品供給装置)  508:部品戻し装置(散在装置)  536:ステージ 84: Two-dimensional imaging device (imaging device) 88: Parts supply device (supply machine) 452: Individual control device (judgment device) 500: Bulk parts supply device (components supply device) 508: Parts return device (scattering device) 536: stage

Claims (4)

  1.  複数種類の部品が散在されるステージと、
     前記ステージに部品を散在する散在装置と、
     前記散在装置が前記ステージに部品を散在する毎に前記ステージに散在された部品を撮像する撮像装置と、
     前記撮像装置が前記ステージに散在された部品を撮像した撮像データに基づいて、前記ステージに散在された複数種類の部品における全ての種類の部品について充足しているか否かを判断する判断装置と
     を備える部品供給装置。
    A stage where multiple types of parts are scattered,
    a scattering device that scatters parts on the stage;
    an imaging device that images the parts scattered on the stage each time the scattering device scatters the parts on the stage;
    a determination device that determines whether or not all types of parts among the plurality of types of parts scattered on the stage are satisfied based on image data obtained by imaging the parts scattered on the stage by the imaging device; Equipped with a parts supply device.
  2.  前記判断装置が充足していないと判断した種類の部品を前記ステージに供給する供給機を備える請求項1に記載の部品供給装置。 The component supply device according to claim 1, further comprising a supply machine that supplies the stage with the type of components determined by the determination device to be insufficient.
  3.  前記判断装置が前記ステージに散在された複数種類の部品における全ての種類の部品において充足していると判断した場合に、前記供給機は前記ステージに部品を供給しない請求項2に記載の部品供給装置。 3. The parts supply according to claim 2, wherein the supply device does not supply parts to the stage when the judgment device judges that all types of parts among the plurality of types of parts scattered on the stage are sufficient. Device.
  4.  前記判断装置は、
     前記撮像装置が前記ステージに散在された部品を撮像した撮像データに基づいて前記ステージの面積に対する前記ステージに散在された部品の占有率と前記ステージに散在された複数種類の部品における全ての種類の部品において保持することが可能である部品の平均値とを演算し、前記占有率と前記平均値とに基づいて前記ステージに散在された複数種類の部品における全ての種類の部品について充足しているか否かを判断する請求項1ないし請求項3のいずれか1つに記載の部品供給装置。
    The determination device includes:
    The occupancy rate of the parts scattered on the stage with respect to the area of the stage and the total number of types of parts among the plurality of types of parts scattered on the stage are determined based on image data obtained by the imaging device imaging the parts scattered on the stage. Calculate the average value of parts that can be held in the part, and check whether the sufficiency is satisfied for all types of parts among the plurality of types of parts scattered on the stage based on the occupancy rate and the average value. The component supply device according to any one of claims 1 to 3, which determines whether or not the component supply device has been used.
PCT/JP2022/025556 2022-06-27 2022-06-27 Component supply device WO2024003984A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025556 WO2024003984A1 (en) 2022-06-27 2022-06-27 Component supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025556 WO2024003984A1 (en) 2022-06-27 2022-06-27 Component supply device

Publications (1)

Publication Number Publication Date
WO2024003984A1 true WO2024003984A1 (en) 2024-01-04

Family

ID=89382108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025556 WO2024003984A1 (en) 2022-06-27 2022-06-27 Component supply device

Country Status (1)

Country Link
WO (1) WO2024003984A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116442A1 (en) * 2017-12-12 2019-06-20 株式会社Fuji Component feeding device and component feeding method
WO2020245945A1 (en) * 2019-06-05 2020-12-10 株式会社Fuji Parts supply apparatus
JP2021082842A (en) * 2021-02-26 2021-05-27 株式会社Fuji Pickup device
WO2022009336A1 (en) * 2020-07-08 2022-01-13 株式会社Fuji Component supply method and component supply device
WO2022107188A1 (en) * 2020-11-17 2022-05-27 株式会社Fuji Image processing device and method for identifying scattered components

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116442A1 (en) * 2017-12-12 2019-06-20 株式会社Fuji Component feeding device and component feeding method
WO2020245945A1 (en) * 2019-06-05 2020-12-10 株式会社Fuji Parts supply apparatus
WO2022009336A1 (en) * 2020-07-08 2022-01-13 株式会社Fuji Component supply method and component supply device
WO2022107188A1 (en) * 2020-11-17 2022-05-27 株式会社Fuji Image processing device and method for identifying scattered components
JP2021082842A (en) * 2021-02-26 2021-05-27 株式会社Fuji Pickup device

Similar Documents

Publication Publication Date Title
JP6748714B2 (en) Parts supply system
CN111052890B (en) Component supply system
CN109716878B (en) Component supply system
CN109156096B (en) Component supply device
WO2017208324A1 (en) Component supply apparatus
JP6921234B2 (en) Parts supply device and parts supply method
WO2024003984A1 (en) Component supply device
CN110248777B (en) Working machine
JP7168709B2 (en) pickup device
JP7221387B2 (en) Parts feeder
CN111096098B (en) Component supply device
CN110651537B (en) Component supply device
CN109997426B (en) Working machine
JP7260286B2 (en) Work machine and placement method
JP2019197929A (en) Component holding device, and suction nozzle determination method
JP7008835B2 (en) Parts supply equipment
JP7110318B2 (en) COMPONENT MOUNTING SYSTEM AND COMPONENT HOLDING METHOD
WO2019130463A1 (en) Component supply device
WO2018179316A1 (en) Component supply device
CN114342581A (en) Component holding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949263

Country of ref document: EP

Kind code of ref document: A1