WO2024002345A1 - 电池壳体的平面度调整夹具、设备、方法及电池制造系统 - Google Patents

电池壳体的平面度调整夹具、设备、方法及电池制造系统 Download PDF

Info

Publication number
WO2024002345A1
WO2024002345A1 PCT/CN2023/104706 CN2023104706W WO2024002345A1 WO 2024002345 A1 WO2024002345 A1 WO 2024002345A1 CN 2023104706 W CN2023104706 W CN 2023104706W WO 2024002345 A1 WO2024002345 A1 WO 2024002345A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
battery
battery case
unsealed
flatness
Prior art date
Application number
PCT/CN2023/104706
Other languages
English (en)
French (fr)
Inventor
成朋
汤云潞
谢媛媛
冯保铭
耿杰
张琦
Original Assignee
江苏时代新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司 filed Critical 江苏时代新能源科技有限公司
Publication of WO2024002345A1 publication Critical patent/WO2024002345A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D3/00Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/10Die sets; Pillar guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of battery production, and in particular to a flatness adjustment jig, equipment, method and battery manufacturing system for a battery case.
  • the present application provides a fixture, equipment, method and battery manufacturing system for adjusting the flatness of a battery case, which can improve the consistency of the flatness of the battery case.
  • the first aspect of this application proposes a flatness adjustment fixture for a battery case, including a module,
  • the inner surface of the module forms a shaping space and is provided with a protruding structure on the inner surface.
  • Unsealed battery cells with the battery shell can enter or leave the shaping space.
  • the unsealed battery cells can enter or leave the shaping space.
  • the recessed position of the battery housing is arranged corresponding to the convex structure, and the convex structure is used to form abutment against the bulged recessed position.
  • the flatness adjustment jig of the battery case of the present application when the unsealed battery cell is reshaped, the unsealed battery cell is placed in the reshaping space, and the protruding structure in the reshaping space is aligned with the shape of the battery case.
  • the recessed position is set correspondingly, and then the recessed position of the unsealed battery cell is bulged.
  • the bulged recessed position is in contact with the convex structure of the shaping space.
  • the battery cell After maintaining for a certain period of time, the battery cell is deflated.
  • the original The shape of the recessed position matches the convex structure, which suppresses the rebound of the battery case.
  • the flatness of the battery case is used to adjust the fixture.
  • the shape of the shaped battery case is The consistency of the flatness is better, which effectively improves the efficiency of wrapping the insulating blue film and applying glue on the surface of the battery case.
  • the outer surface of the convex structure is a convex arc surface.
  • the convex height of the arc top of the convex arc surface is a preset height, and the value of the preset height is within the preset flatness specification range of the battery case.
  • the flatness adjustment jig is used to reshape the battery case
  • the recessed position of the battery case bulges and abuts against the convex structure on the outer surface
  • the convex arc surface is used to provide a reference for the bulging of the recessed position.
  • the top of the convex arc surface is the highest position of the convex structure.
  • the convex structure By setting the convex structure to a preset height and setting the preset height within the preset flatness specification range, the bulge of the recessed position of the battery case is improved. Finally, it can meet the requirements of the preset flatness specifications, which further improves the efficiency of wrapping the insulating blue film and applying glue on the surface of the battery case in the subsequent processes.
  • the preset height is h, where h ⁇ (0mm, 2mm).
  • the module includes:
  • a second mold the second mold is arranged opposite to the first mold, the shaping space is formed between the first mold and the second mold, the first mold and/or the second mold
  • the mold is provided with the protruding structure.
  • the protruding structure is provided on both the first mold and the second mold, and the protruding structure on the first mold is different from the protruding structure on the second mold.
  • the protruding structures on the mold are arranged accordingly.
  • the first mold and the second mold are arranged opposite each other.
  • the flatness adjustment fixture further includes a driving mechanism, at least one of the first mold and the second mold is drivingly connected to the driving mechanism, and the driving mechanism is used to drive The first mold and the second mold are close to or far away from each other.
  • the unsealed battery cells can enter or leave the shaping space.
  • the The unsealed battery cells are arranged in the shaping space and the recessed positions are arranged corresponding to the protruding structures.
  • the driving mechanism is used to drive the first mold and the second mold close to or away from each other, thereby realizing the opening or closing of the shaping space, so that when the shaping space is open, the unsealed battery cells can easily enter or leave the shaping space to prevent the battery from appearing. Case of scratches on the casing.
  • the driving mechanism includes:
  • a first driving member is transmission connected with the first mold to drive the first mold to move toward or away from the second mold; and/or,
  • the second driving member is transmission connected with the second mold to drive the third
  • the two molds move toward or away from the first mold.
  • the first driving member is a first telescopic cylinder
  • the second driving member is a second telescopic cylinder.
  • the first driving member and the second driving member are respectively configured as telescopic cylinders, thereby improving the linear motion of the first mold and the second mold, preventing misalignment between the first mold and the second mold, and thereby improving the first mold and the second mold.
  • the accuracy of the shaping space formed by the mold and the second mold improves the shaping accuracy of the battery case.
  • the second aspect of this application proposes a flatness adjustment device for a battery case, including:
  • Helium return device when the unsealed battery cell is placed in the shaping space of the flatness adjustment fixture, the helium return device is used to fill helium gas into the unsealed battery cell so that the unsealed battery cell
  • the recessed position of the battery case of the battery cell deforms outward and abuts against the convex structure in the shaping space.
  • the flatness adjustment fixture is used so that the recessed position of the battery case can effectively contact the convex structure during the reshaping process, thereby improving the reshaping effect of the battery case.
  • the helium return device includes:
  • An inflating nozzle the inflating nozzle is connected with the air source;
  • a driving component is drivingly connected to the inflating nozzle, and is used to drive the inflating nozzle to communicate with or separate from the unsealed battery cell.
  • the driving component is used to drive the inflating nozzle to change the position of the inflating nozzle so that the inflating nozzle can effectively connect or disconnect the unsealed battery cells so that the unsealed battery cells can be filled with helium through the air source and the inflating nozzle. , using the increase in helium pressure to inflate the recessed position of the battery case, and matching the flatness adjustment fixture to realize the shaping of the battery case, thereby improving the flatness of the shaped battery case.
  • the flatness adjustment device further includes:
  • a sensing device the sensing device is used to sense whether there are unsealed battery cells in the shaping space;
  • a control device the control device is electrically connected to the sensing device, the helium return device and the flatness adjustment fixture respectively.
  • the sensing device is used to sense whether there are unsealed battery cells in the shaping space of the mold, and the sensed signal is fed back to the control device.
  • the control device controls the flatness adjustment fixture and return according to the presence of unsealed battery cells in the shaping space.
  • the helium device reshapes the battery casing of unsealed battery cells, which improves the automated operation of battery casing reshaping and improves production efficiency.
  • a third aspect of the application proposes a battery manufacturing system, including:
  • the flatness adjustment device of the battery case is provided downstream of the formation device;
  • the sealing equipment is provided downstream of the flatness adjustment equipment of the battery case, and is used for sealing the battery case.
  • the helium return device and the flatness adjustment fixture in the flatness adjustment equipment are used to shape the unsealed battery cells after the formation process.
  • the sealing equipment performs the shaping The final unsealed battery cells are sealed, so that the produced battery cells meet the assembly requirements of subsequent processes, thereby improving the product yield.
  • the fourth aspect of this application proposes a method for adjusting the flatness of a battery case, which is as follows
  • the flatness adjustment equipment of the battery case is implemented, including:
  • the helium return device is controlled to fill the unsealed battery cell with helium gas according to preset parameters until the recessed position of the battery shell of the unsealed battery cell is deformed and aligned with the convex structure of the shaping space. Butt against each other.
  • the unsealed battery cells after the formation process are placed in the shaping space of the flatness adjustment fixture, and then the helium return device is used to fill the unsealed battery cells with helium gas, and the helium gas is used to pressurize the inside of the battery case.
  • the battery case is inflated, and the recessed position is inflated and pressed against the convex structure of the shaping space, thereby realizing the reshaping operation of the recessed position of the battery case, thereby improving the safety of reshaping multiple battery cases.
  • Flatness consistency
  • the step of controlling the unsealed battery cells to enter the shaping space of the flatness adjustment fixture and maintaining the unsealed battery cells in the shaping space includes:
  • the first mold and the second mold of the module are controlled to be close to each other to clamp the unsealed battery cell in the shaping space, so as to
  • the protruding structure is arranged corresponding to the recessed position.
  • the preset parameters include a preset inflation pressure, where the preset inflation pressure is P, P ⁇ (10kpa, 100kpa);
  • the preset parameters include a preset inflation duration, wherein the preset inflation duration For t, t ⁇ (2s, 10s). Setting preset parameters and controlling the helium return device to operate under the preset parameters can not only improve the reshaping effect of the battery casing, but also effectively reduce the energy consumption of the helium return device, thereby reducing production and manufacturing costs.
  • Figure 1 schematically shows a structural diagram of a vehicle according to an embodiment of the present application
  • Figure 2 schematically shows an exploded structural diagram of a battery cell according to an embodiment of the present application
  • Figure 3 is a schematic structural diagram of the change in flatness of the battery case before and after cooling in the prior art
  • Figure 4 schematically shows the structural diagram of the flatness adjustment device of the battery case in the embodiment of the present application
  • Figure 5 is a schematic structural diagram of the flatness adjustment fixture in the flatness adjustment equipment of the battery case shown in Figure 4;
  • Figure 6 is a schematic structural diagram of the changes in the flatness of the battery case before and after the battery case is reshaped using a flatness clamp in the embodiment of the present application;
  • Figure 7 is a structural block diagram schematically showing the flatness adjustment device of the battery case in the embodiment of the present application.
  • Figure 8 is a block diagram schematically showing the structural block diagram of the battery manufacturing system in the embodiment of the present application.
  • FIG. 9 schematically shows a flow chart of a method for adjusting the flatness of a battery case according to an embodiment of the present application.
  • Module 22111 Module; 22111. First mold; 22112. Second mold; 22113. Shaping space; 22114. Protruding structure;
  • Driving mechanism 22121. First driving part; 22122. Second driving part;
  • 2220 Helium return device; 2221. Driving component; 2222. Inflating nozzle; 2223. Air guide tube; 2224. Air source;
  • Support frame 2230. Support frame; 2240. Base; 2250. Control device; 2260. Sensing device.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the power battery is not It is only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but is also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • the internal temperature of the battery cells is as high as 45-50°C and the external temperature is 25°C.
  • the external temperature is 25°C.
  • a pressure difference will occur, which will cause the large surface and sides of the battery case to become more concave, making its flatness exceed specifications.
  • the flatness of the battery case exceeds the specification, subsequent packaging of the insulating blue film on a single battery cell will lead to a reduction in the quality of the insulating blue film.
  • the module section needs to assemble individual battery cells, which will have a negative impact on the battery.
  • the applicant found that after the battery cell formation process is completed, the unsealed battery cells are placed In the flatness adjustment fixture with a convex structure, set the convex structure corresponding to the recessed position of the battery case, and then use a helium return device to fill the battery case with helium gas so that the battery case is inflated and resisted In the shaping space of the flatness adjustment fixture, at the same time, the concave position and the convex position are in contact, which reduces the pressure difference caused by the temperature difference between the inside and outside of the battery cell and causes the flatness of the large surface and side of the battery case to exceed specifications. At the same time, it also reduces the flatness of the battery case. Meets the battery case consistency requirements.
  • the battery cells disclosed in the embodiments of the present application can be used in, but are not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • a power supply system including the battery cells, batteries, etc. disclosed in this application can be used to form the electrical device.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device can be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle Cars, ships, spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • the battery 100 may include multiple battery cells 11 .
  • the battery cell 11 refers to the smallest unit that constitutes a battery module or battery pack.
  • a plurality of battery cells 11 can be connected in series and/or in parallel via the electrode terminals 111a to be used in various applications.
  • the batteries mentioned in this application include battery modules or battery packs.
  • the plurality of battery cells 11 can be connected in series, in parallel, or in mixed connection. Mixed connection refers to a mixture of series connection and parallel connection.
  • the battery 100 may also be called a battery pack.
  • multiple battery cells 11 can directly form a battery pack, or they can first form a battery module, and then the battery modules can form a battery pack.
  • FIG. 2 is a schematic diagram of the exploded structure of the battery cell 11 provided by some embodiments of the present application.
  • the battery cell 11 refers to the smallest unit that constitutes the battery 100 .
  • the battery cell 11 includes a battery box and a battery core assembly 113 .
  • the battery box includes an end cover 111 and a battery case 112 .
  • the end cap 111 refers to a component that covers the opening of the battery case 112 to isolate the internal environment of the battery cell 11 from the external environment.
  • the shape of the end cap 111 may be adapted to the shape of the battery case 112 to fit the battery case 112 .
  • the end cap 111 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap 111 is less likely to deform when subjected to extrusion and collision, so that the battery cell 11 can have higher durability. Structural strength and safety performance can also be improved.
  • the end cap 111 may be provided with functional components such as the electrode terminal 111a.
  • the electrode terminal 111a can be used to electrically connect with the battery cell assembly 113 for outputting or inputting electric energy of the battery cell 11 .
  • the end cap 111 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 11 reaches a threshold.
  • an insulating member may also be provided inside the end cover 111 , and the insulating member may be used to isolate the electrical connection components in the battery case 112 from the end cover 111 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber, etc.
  • the battery case 112 is a component used to cooperate with the end cover 111 to form an internal environment of the battery cell 11 , wherein the internal environment formed can be used to accommodate the battery core assembly 113 , electrolyte (not shown in the figure) and other components. part.
  • the end cover 111 of the battery case 112 may be an independent component, and an opening may be provided on the battery case 112.
  • the end cover 111 covers the opening at the opening to form an internal environment of the battery cell 11.
  • the end cover 111 and the battery case 112 can also be integrated. Specifically, the end cover 111 and the battery case 112 can form a common connection surface before other components are put into the case. When the battery case needs to be packaged 112, and then make the end cover 111 cover the battery case 112.
  • the battery case 112 may be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the battery case 112 can be determined according to the specific shape and size of the battery core assembly 113 .
  • the battery case 112 may be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiments of the present application.
  • the flatness adjustment fixture 2210 of the battery case 112 includes a module 2211, the inner surface of the shaping space 22113 forms a shaping space and the inner surface A protruding structure 22114 is provided on the top, so that the unsealed battery cells 11 with the battery case 112 can enter or leave the shaping space 22113.
  • the unsealed battery cells 11 are located on the When shaping the space 22113, the recessed position 1121 of the battery case 112 is arranged corresponding to the protruding structure 22114, and the protruding structure 22114 is used to form abutment against the bulged recessed position 1121.
  • the unsealed battery cell 11 is reshaped, the unsealed battery cell 11 is placed in the reshaping space 22113, and the protruding structure 22114 in the reshaping space 22113 is set corresponding to the recessed position 1121 of the battery case 112. , and then expand the recessed position 1121 of the unsealed battery cell 11.
  • the expanded recessed position 1121 contacts the convex structure 22114 of the shaping space 22113.
  • the battery cell 11 is deflated.
  • the shape of the original recessed position 1121 matches the protruding structure 22114, which suppresses the rebound of the battery case 112.
  • the flatness of the battery case 112 is used to adjust the fixture 2210 when batch shaping of unsealed battery cells 11 is performed. At this time, the flatness consistency of the reshaped battery case 112 is better, so that the efficiency of wrapping the insulating blue film and applying glue on the surface of the battery case 112 is effectively improved.
  • the unsealed battery cell 11 has a structure after the chemical formation process is completed, and when the unsealed battery cell 11 is inflated, helium gas can be filled into the unsealed battery cell 11 through the helium return process. or other processes (such as filling electrolyte, etc.), so that the internal pressure of the unsealed battery cell 11 increases, so that the recessed position 1121 of the battery case 112 is bulged, and the convex structure 22114 of the shaping space 22113 is used.
  • the bulged recessed position 1121 forms abutment, thereby realizing the shaping operation of the recessed position 1121 .
  • the shaping space 22113 is used to accommodate the unsealed battery cell 11, and the shape of the shaping space 22113 is adapted to the shape of the unsealed battery cell 11.
  • the protruding structure 22114 is formed on the inner surface of the shaping space 22113. When the unsealed battery is After the cell 11 is set in place in the shaping space 22113, the protruding structure 22114 is disposed corresponding to the recessed position 1121 of the battery case 112 of the unsealed battery cell 11, where there is a gap between the recessed position 1121 and the protruding structure 22114.
  • the recessed position 1121 deforms outward, causing the recessed position 1121 to be inflated until the recessed position 1121 is in contact with the convex structure.
  • the gap between 22114 disappears, and the recessed position 1121 abuts the convex structure 22114.
  • the recessed position 1121 undergoes plastic deformation to improve the recessed position of the battery case 112 after the pressure is released.
  • the setting 1121 does not rebound, so that the shaping effect of the recessed position 1121 is improved.
  • a protruding structure 22114 is provided, and the protruding structure 22114 is used to provide a basis for the battery case 112 to rest during the reshaping process, so that the recessed position 1121 can fully abut against the protruding structure 22114, and the plane of the battery case 112 is On the basis of adjusting the flatness to meet the flatness specifications, reduce the deformation amount of the battery case 112 to prevent the recessed position 1121 from rebounding after shaping (because the battery case 112 usually has a certain elastic deformation ability, if the battery case The deformation of the body 112 is large during the adjustment process, and it is very easy for the battery case 112 to rebound after the helium return device 2220 releases the pressure, causing the adjustment effect of the recessed position 1121 to be uncontrollable and resulting in the failure to meet the flatness specifications) .
  • the recessed position 1121 of the battery case 112 does not meet the flatness specifications of the battery case 112.
  • the recessed position 1121 bulges and abuts against the convex structure 22114.
  • the shape of the recessed position 1121 is consistent with the shape of the recessed position 1121.
  • the convex structure 22114 matches, and the concavity of the recessed position 1121 is consistent with the convexity of the convex position.
  • the convexity of the convex structure 22114 is set within the flatness specification.
  • the recessed position 1121 still has a certain degree of flatness after shaping. However, the reshaped depression meets the flatness requirements of the battery case 112 and further meets the requirements of subsequent processing steps.
  • the flatness consistency of the battery casings 112 means that when the battery casings 112 are processed in batches, after the recessed position 1121 of each battery casing 112 is processed, they are within the flatness specification of the battery casing (the The flatness specification is set within the average dent value of the battery cases 112 of the processed batch).
  • the shape of the protruding structure 22114 can be set as needed, and can be a regular shape (such as a circle, a bar shape, a square, etc.), or an irregular shape (such as a zigzag shape, a lightning shape, or multiple shapes). combination of various shapes, etc.), the specific shape of the protruding structure 22114 is set according to the shape of the recessed position 1121 of the battery case 112 that needs to be reshaped.
  • the shaping space 22113 has multiple surfaces, and the protruding structure 22114 can be provided on one surface of the shaping space 22113 or on multiple surfaces, depending on the battery case 112 of the unsealed battery cell 11 to be shaped.
  • the recessed position 1121 on the surface can be specifically set.
  • the number of the protruding structures 22114 on one surface can be one or more. The specific number depends on the battery case that needs to be reshaped.
  • One surface of 112 has several recessed positions 1121 for setting.
  • the outer surface of the protruding structure 22114 is a convex arc surface.
  • the outer surface of the battery case 112 after the formation process, due to the temperature difference between the inside and outside, the outer surface of the battery case 112 usually becomes concave, and the inner concave surface is usually a concave arc surface.
  • a convex shape is provided at the position of the shaping space 22113 corresponding to the concave position 1121.
  • the protruding structure 22114 is formed, and the outer surface of the protruding structure 22114 is set into a convex arc surface structure, thereby improving the better contact between the battery case 112 and the protruding structure 22114 during the reshaping process of the battery case 112. This reduces the possibility of the battery recessed position 1121 rebounding after shaping, thereby improving the shaping effect of the battery case 112 .
  • the recessed position 1121 of the battery case 112 will deform outward and be inflated.
  • Setting the outer surface of the protruding structure 22114 as a convex arc surface can make the recessed position During the filling process of 1121, the recessed position 1121 can fully abut against the convex structure 22114, and the shape of the convex structure 22114 limits the position of the recessed position 1121 during the filling process, so that the reshaped shape conforms to the convex structure 22114
  • the shape is set so that the flatness of the reshaped battery case 112 is within the required specification range, thereby meeting the processing requirements of subsequent processes.
  • configuring the protruding structure 22114 as a convex arc surface can enable the body of the battery case 112 at the recessed position 1121 to fully abut against the protruding structure 22114 during the process of inflating and shaping the recessed position 1121 of the battery case 112. This prevents breakage caused by stress concentration and further improves the shaping effect of the battery case 112 .
  • the convex height of the arc top of the convex arc surface is a preset height, and the value of the preset height is within the preset flatness specification range of the battery case 112 .
  • the outer surface of the protruding structure 22114 is configured as a convex arc surface.
  • the cross-section formed is a parabolic shape, and the parabolic shape has the highest position, wherein the highest position is The position is the arc top of the convex arc surface, and the distance between the highest position and the surface of the shaping space 22113 with the convex structure 22114 is the convex height of the arc top.
  • the convex height of the arc top is Set to the preset height, and set the value of the preset height within the preset flatness specification range.
  • the recessed position 1121 of the battery case 112 bulges and abuts against the convex structure 22114 with a convex arc surface on the outer surface, and the convex arc surface is used as the recessed position 1121.
  • the bulge provides a benchmark, and the arc top of the convex arc surface is the highest position of the convex structure 22114.
  • the convex structure 22114 By setting the convex structure 22114 to a preset height and setting the preset height within the preset flatness specification interval, the height is improved.
  • the recessed position 1121 of the battery case 112 can meet the preset flatness specification requirements after being bulged, so that the efficiency of wrapping the insulating blue film and applying glue on the surface of the battery case 112 can be further improved in subsequent processes.
  • the preset flatness specification area can be set according to different battery cases 112 , that is, the protruding height of the arc top of the protruding structure 22114 is set. To meet the shaping requirements of different battery cases 112.
  • the preset height of the arc of the protruding structure 22114 is set according to the average recess value of the recessed positions 1121 of the batch of battery cases 112, so as to Use the set protruding structures 22114 to reshape the batch of battery cases 112 so that the recessed positions 1121 of the batch of battery cases 112 are adapted to the protruding heights of the protruding structures 22114, that is, the batch of battery cases 112 are reshaped.
  • the batch of battery cases 112 all have the same recessed structure, thereby improving the flatness consistency of the batch of battery cases 112 .
  • the preset height is h, where h ⁇ (0mm, 2mm).
  • the convex structure 22114 with a convex arc surface on the outer surface is formed by arching from the inner surface of the shaping space 22113, and the distance between the top of the arc and the surface of the shaping space 22113 with the convex structure 22114 is a preset height.
  • h by setting the value of h between 0mm ⁇ h ⁇ 2mm, on the basis of improving the shaping of the battery case 112, the flatness of the battery case 112 can be made to meet the required flatness specifications, thereby satisfying demand for subsequent production, thus improving the smooth progress of production and the yield rate of output.
  • the recessed deformation of the surface of the battery case 112 after reshaping is smaller, preventing the battery case from being
  • the dent in the body 112 affects the internal space, which improves the space inside the battery case 112 that is sufficient for the installation of the battery assembly 13 .
  • the preset height can be adjusted according to actual production, where the value of h can be 0.1mm, 0.2mm, 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7 mm, 0.8mm, 0.9mm, 1.0mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm, 1.6mm, 1.7mm, 1.8mm, 1.9mm....
  • the module 2211 includes:
  • the first mold 22111 The first mold 22111;
  • a second mold 22112 is arranged opposite to the first mold 22111.
  • the shaping space 22113 is formed between the first mold 22111 and the second mold 22112.
  • the first mold 22111 And/or the second mold 22112 is provided with the protruding structure 22114.
  • the first mold 22111 and the second mold 22112 form the mold set 2211, and the shaping space 22113 is formed between the first mold 22111 and the second mold 22112, while at least one of the first mold 22111 and the second mold 22112 A raised structure 22114 is provided.
  • the processing and manufacturing of the module 2211 is facilitated.
  • the layout and processing of the protruding structures 22114 during the processing of the module 2211 are facilitated.
  • the module 2211 is set into two parts: a first mold 22111 and a second mold 22112.
  • the shaping space 22113 is formed between the two molds.
  • the shaping space 22113 formed by the two molds can be an open structure. It can also be a closed structure.
  • the protruding structure 22114 is provided on both the first mold 22111 and the second mold 22112, and is located on the first mold 22111
  • the protruding structure 22114 on the second mold 22112 is arranged corresponding to the protruding structure 22114 on the second mold 22112.
  • the battery case 112 usually has recessed positions on two oppositely arranged sides. 1121 (for example, the battery case 112 has a rectangular structure, and the two opposite large surfaces and/or the two opposite sides of the battery case 112 will usually be depressed simultaneously), when reshaping the battery case 112,
  • the unsealed battery cell 11 is placed in the shaping space 22113 formed between the first mold 22111 and the second mold 22112, and the protruding structures 22114 on the two molds are respectively connected with the recessed positions 1121 on the battery case 112.
  • the helium return device 2220 when used to charge the battery case 112 with nitrogen, the pressure of the helium gas in the battery case 112 continues to increase, causing the recessed positions 1121 to be filled and against the two protruding structures respectively. 22114, thereby enabling synchronous shaping of the recessed positions 1121 on two opposite surfaces of the battery case 112, thereby improving the shaping effect of the battery case 112.
  • the number of the protruding structures 22114 on the first mold 22111 can be one, two, three..., and when the number of the protruding structures 22114 on the first mold 22111 is two and two When there are more than two, the structures may be exactly the same, partly the same or completely different. At the same time, when the number of the protruding structures 22114 on the first mold 22111 is two or more, the protruding structures 22114 are arranged according to the battery case. Set the concave position 1121 on 112 specifically.
  • the number of the protruding structures 22114 on the second mold 22112 can be one, two, three..., and when the number of the protruding structures 22114 on the second mold 22112 is two or more , the structures may be exactly the same, partly the same or completely different. At the same time, when the number of the protruding structures 22114 on the second mold 22112 is two or more, the protruding structures 22114 are arranged according to the recessed surface on the battery case 112 Position 1121 for specific settings.
  • a shaping space 22113 is formed between the first mold 22111 and the second mold 22112, wherein both the first mold 22111 and the second mold 22112 can be fixed structures (the shaping space 22113 is a fixed space) , or it can be that one of the two is a fixed structure (the shaping space 22113 is a variable space), the other is a movable structure, or both can be movable structures (the shaping space 22113 is a variable space) space).
  • the flatness adjustment fixture 2210 further includes a driving mechanism 2212, and at least one of the first mold 22111 and the second mold 22112 One is drivingly connected to the driving mechanism 2212.
  • the driving mechanism 2212 is used to drive the first mold 22111 and the second mold 22112 toward or away from each other.
  • the unsealed battery cell The body 11 can enter or leave the shaping space 22113.
  • the unsealed battery cell 11 is provided in the shaping space 22113 and the recessed position 1121 corresponds to the protruding structure 22114. set up.
  • a driving mechanism 2212 is provided, and the driving mechanism 2212 is transmission connected with at least one of the two molds.
  • the operation of the driving mechanism 2212 is used to drive the first mold 22111 and the second mold 22112 to move closer to or farther away from each other.
  • the shaping space 22113 is in an open state.
  • the shaping space 22113 is in a closed state.
  • the shaping space 22113 is opened, the unsealed battery cells 11 can enter or leave the shaping space 22113.
  • the shaping space 22113 is closed, the battery cells 11 located in the shaping space 22113 are sandwiched by the first mold 22111 and the second mold 22112. held and kept within the shaping space 22113.
  • the shaping space 22113 for the unsealed battery cells 11 to easily enter or leave the module 2211 is improved, thereby reducing the situation where the battery shell of the unsealed battery cells 11 is scratched due to the narrow passage, making the battery The quality of monomer 11 is effectively improved.
  • the shaping space 22113 formed by the first mold 22111 and the second mold 22112 is an open space (only on one side of the first mold 22111 and one side of the second mold 22112
  • the driving mechanism 2212 drives the first mold 22111 away from the second mold 22112 so that the size of the channel entering the shaping space 22113 is increased.
  • the unsealed battery cell 11 enters the shaping space 22113 through the channel, It is more convenient and there will be no friction between the mold and the battery case due to the small space, thereby eliminating the risk of the battery case being scratched.
  • the first mold 22111 and the second mold 22112 move closer to or away from each other, that is, driven by the driving mechanism 2212, the first mold 22111 and the second mold 22112 move linearly, This is used to open or close the shaping space 22113.
  • the driving structure can be independently connected to the first mold 22111, or can be independently connected to the third mold 22111.
  • the second mold 22112 is transmission connected, and can also be transmission connected with the first mold 22111 and the second mold 22112 respectively, so as to meet the operation of the first mold 22111 relative to the second mold 22112, thereby improving the entry or exit of the unsealed battery cells 11 Plastic space 22113.
  • the driving mechanism 2212 drives the first mold 22111 and the second mold 22112 to move toward each other to close the shaping space 22113, the unsealed battery cells 11 located in the shaping space 22113 are clamped in the shaping space 22113, and the battery case 112
  • the recessed position 1121 and the protruding structure 22114 are arranged correspondingly (with a gap between the two), and the flat position of the battery case 112 (the position where no recess occurs) is against the surface of the mold forming the shaping space 22113, thereby unsealing
  • the battery cells 11 are maintained in the shaping space 22113 to prevent the battery case 112 from being displaced during the shaping process, thus improving the shaping effect of the battery case 112 .
  • the driving mechanism 2212 includes: a first driving member 22121, the first driving member 22121 is drivingly connected to the first mold 22111 to drive The first mold 22111 moves toward or away from the second mold 22112, and/or the second driving member 22122.
  • the second driving member 22122 is transmission connected with the second mold 22112 to drive the The second mold 22112 moves toward or away from the first mold 22111.
  • the first mold 22111 is transmission connected to the first driving member 22121
  • the second mold 22112 is transmission connected to the second driving member 22122.
  • the first driving member 22121 is used to drive whether the first mold 22111 moves
  • the second driving member is used to drive the first mold 22111 to move.
  • the component 22122 drives whether the second mold 22112 moves.
  • the first mold 22111 and the second mold 22112 can be moved closer to or farther away from each other through the operation of at least one driving component.
  • the first driving member 22121 and the second driving member 22122 By arranging the first driving member 22121 and the second driving member 22122, the first mold 22111 and the second mold 22112 are respectively driven. The mold 22111 and the second mold 22112 are driven separately, thereby improving the flexibility of the mold movement.
  • first driving member 22121 and the second driving member 22122 may be of the same type. It may also be different. In the embodiment of the present application, the first driving member 22121 and the second driving member 22122 are of exactly the same type, wherein the type of the driving member may be the driving component 2221 (motor, internal combustion engine or steam engine, etc.) + transmission assembly (gear set or pulley set, etc.), or telescopic cylinder (air cylinder, oil cylinder or electric cylinder, etc.).
  • the driving component 2221 motor, internal combustion engine or steam engine, etc.
  • transmission assembly gear set or pulley set, etc.
  • telescopic cylinder air cylinder, oil cylinder or electric cylinder, etc.
  • the first driving member 22121 is a first telescopic cylinder
  • the second driving member 22122 is a second telescopic cylinder.
  • the first driving member 22121 and the second driving member 22122 may be of different types.
  • the driving part 22121 and the second driving part 22122 are respectively arranged in the structure of a telescopic cylinder, thereby improving the linear movement of the first mold 22111 and the second mold 22112, preventing misalignment between the first mold 22111 and the second mold 22112, and thereby improving the The accuracy of the shaping space 22113 formed by the first mold 22111 and the second mold 22112 is improved, so that the shaping accuracy of the battery case 112 is improved.
  • the flatness adjustment fixture 2210 also has a base 2240.
  • the first mold 22111 and the second mold 22112 are respectively slidably disposed on the base 2240.
  • the cylinder body of the first telescopic cylinder is installed and fixed on the base 2240.
  • the cylinder rod of the first telescopic cylinder is connected to the first mold 22111, the cylinder body of the second telescopic cylinder is installed and fixed on the base 2240, the cylinder rod of the second telescopic cylinder is connected to the second mold 22112, the first telescopic cylinder and the third telescopic cylinder
  • the expansion and contraction directions of the two telescopic cylinders are consistent, so that the expansion and contraction of the two telescopic cylinders can be used to drive the two molds to move closer to or away from each other on the base 2240 respectively.
  • a chute is provided on the base 2240.
  • the chute extends along the direction in which the first mold 22111 moves.
  • the first slider structure of the first mold 22111 is slidably installed in the chute.
  • the second slider of the second mold 22112 can Slidingly installed in the chute, the first telescopic cylinder is connected to the first mold 22111 and drives the first mold 22111 to slide along the extension direction of the chute, the second telescopic cylinder is connected to the second mold 22112 and drives the second mold 22112 to slide along the sliding chute.
  • the groove extends in the direction of sliding, and the base 2240 with the chute is used to guide the two module groups 2211, further improving the accuracy of the shaping space 22113 formed by the first mold 22111 and the second mold 22112.
  • the second aspect of the present application proposes a flatness adjustment device 2200 for the battery case 112, as shown in Figures 4 to 6, including:
  • Helium return device 2220 is used to fill helium gas into the unsealed battery cell 11 when the unsealed battery cell 11 is placed in the shaping space 22113 of the flatness adjustment fixture 2210. , so that the recessed position 1121 of the battery case 112 of the unsealed battery cell 11 is deformed outward and comes into contact with the protruding structure 22114 in the shaping space 22113.
  • the unsealed battery cell 11 is placed in the shaping space 22113 of the module 2211 of the flatness adjustment jig 2210, so that the convex shape of the shaping space 22113 is
  • the structure 22114 corresponds to the recessed position 1121 of the battery case 112, and the helium return device 2220 is connected to the unsealed battery cell 11.
  • the helium return device 2220 is used to fill the battery case 112 with helium gas
  • the helium return device 2220 is used to fill the battery case 112 with helium gas.
  • the recessed position 1121 of the battery case 112 is inflated so that the recessed position 1121 abuts against the protruding structure 22114 to achieve shaping of the battery case 112.
  • the flatness adjustment clamp is used to make the recessed position 1121 of the battery case 112 at During the shaping process, the protruding structure 22114 can be effectively contacted, thereby improving the shaping effect of the battery case 112.
  • the flatness after shaping can be effectively improved. consistency.
  • the helium return device 2220 fills the interior of the battery case 112 with helium gas to reshape the battery case 112 by using helium gas to inflate the battery case 112. During the inflating process, the battery case 112 can be reshaped. Position 1121 is uniformly shaped, thereby improving a good shaping effect.
  • the helium return device 2220 is connected to the inside of the unsealed battery cell 11, and the helium return device 2220 returns to the unsealed battery cell 11.
  • the interior of the body 11 is filled with helium gas.
  • the internal pressure of the battery case 112 continues to increase.
  • the increase in air pressure causes the battery case 112 to deform from the inside to the outside.
  • the deformation causes the recessed position 1121 to bulge.
  • use the convex structure 22114 of the shaping space 22113 to abut the recessed position 1121 to prevent rebound after shaping, thereby improving the overall stability of the battery case 112. shape effect.
  • the helium return device 2220 includes:
  • Gas source 2224 the gas source 2224 is used to store compressed helium
  • Inflating nozzle 2222 the inflating nozzle 2222 is connected with the air source 2224;
  • the driving component 2221 is drivingly connected to the inflating nozzle 2222 and is used to drive the inflating nozzle 2222 to communicate with or separate from the unsealed battery cell 11 .
  • the inflating nozzle 2222 is connected to the air source 2224, and the inflating nozzle 2222 is drivingly connected to the driving component 2221.
  • the driving component 2221 drives the inflating nozzle 2222 to change the position, so as to realize the communication between the inflating nozzle 2222 and the unsealed battery cell 11 or disconnect.
  • the driving component 2221 is used to drive the inflating nozzle 2222 to change the position of the inflating nozzle 2222 so that the inflating nozzle 2222 can effectively connect or disconnect the unsealed battery cell 11 so that the unsealed battery can be inflated through the air source 2224 and the inflating nozzle 2222.
  • the cell 11 performs a helium filling operation, using the increase in helium pressure to inflate the recessed position 1121 of the battery case 112, and matching the flatness adjustment fixture 2210 to realize the shaping of the battery case, thereby improving the shape of the battery case after shaping. 112° flatness.
  • the driving component 2221 drives the inflating nozzle 2222 to separate from the unsealed battery cell 11 , thereby improving the entry of the unsealed battery cell 11 Or interference occurs when leaving the shaping space 22113.
  • the driving component 2221 can effectively improve the connection between the inflating nozzle 2222 and the unsealed battery cell 11.
  • the gas source 2224 is a high-pressure gas source 2224, which stores high-pressure helium gas inside.
  • the high-pressure helium gas in the gas source 2224 enters the interior of the battery case 112 through the charging nozzle 2222. , to realize the filling of the battery case 112.
  • the gas source 2224 stops filling the battery case 112 with helium gas.
  • the inflating nozzle 2222 is connected to the air source 2224 through the air guide tube 2223, and a control valve is provided on one of the air guide tube 2223, the inflating nozzle 2222 and the air source 2224.
  • the control valve is used to control whether the inflating nozzle 2222 is open to the outside world. Outputs helium, thereby improving the effective supply of helium and preventing helium Air leakage leads to waste.
  • the flatness adjustment device 2200 also includes a support frame 2230.
  • the support frame 2230 is installed on the base 2240 of the flatness adjustment fixture 2210.
  • the driving component 2221 is installed on the support frame 2230.
  • the driving component 2221 is a telescopic cylinder (in In other embodiments, the driving component 2221 is a motor + rack and pinion structure), the inflating nozzle 2222 is installed on the cylinder rod of the telescopic cylinder, and the telescopic action of the telescopic cylinder is used to realize the connection between the inflating nozzle 2222 and the unsealed battery cell 11 or disconnect.
  • the telescopic rod has a simple structure and good directionality, which can effectively improve the connection accuracy between the inflation nozzle 2222 and the unsealed battery cell 11 .
  • the flatness adjustment device 2200 further includes:
  • Sensing device 2260 the sensing device 2260 is used to sense whether there is an unsealed battery cell 11 in the shaping space 22113;
  • Control device 2250 The control device 2250 is electrically connected to the sensing device 2260, the helium return device 2220 and the flatness adjustment fixture 2210 respectively.
  • the sensing device 2260 is used to sense whether there are unsealed battery cells 11 in the shaping space 22113 of the mold, and the sensed signal is fed back to the control device 2250.
  • the control device 2250 determines whether there are unsealed battery cells 11 in the shaping space 22113. Controlling the flatness adjustment jig 2210 and the helium return device 2220 to shape the battery case 112 of the unsealed battery cell 11 improves the automated operation of shaping the battery case 112 and improves production efficiency.
  • control device 2250 includes a human-computer interaction module, a processing module, a storage module, etc.
  • the human-computer interaction module is used for the operator to input corresponding instructions for flatness adjustment settings (via buttons, touch screens, or mobile terminals, etc.),
  • the flatness adjustment device 2200 displays current working status information (has a display function), the processing module is used for data processing and calculation, etc., and the storage module is used for data storage, etc.
  • the sensing device 2260 can be installed inside the shaping space 22113 or outside the shaping space 22113.
  • the sensing device 2260 can be a photoelectric sensor or an infrared sensor.
  • the third aspect of this application proposes a battery manufacturing system 2000, as shown in Figures 4 to 8, including:
  • the flatness adjustment device 2200 of the battery case 112 is provided downstream of the formation device 2100;
  • Sealing device 2300 the sealing device 2300 is provided downstream of the flatness adjustment device 2200 of the battery case 112 , and is used for sealing the battery case 112 .
  • the helium return device 2220 and the flatness adjustment jig 2210 in the flatness adjustment equipment 2200 are used to shape the unsealed battery cells 11 after the formation process, and the flatness shaping equipment reshapes the battery cases of the unsealed battery cells 11 112 After the shaping is completed, the sealing equipment 2300 performs a sealing operation on the shaped unsealed battery cells 11, so that the produced battery cells 11 meet the assembly requirements of subsequent processes, thereby improving the product yield.
  • the battery manufacturing system 2000 also includes a conveyor equipment 2400 (conveyor belt, etc.).
  • the conveyor equipment 2400 is used to transfer the position of the battery cells 11, for example, transfer the battery cells 11 to the formation equipment 2100, and transfer the battery cells 11 to the formation equipment 2100.
  • the body 11 is transferred from the chemical forming equipment 2100 to the cooling position, the battery cells 11 are transferred from the cooling position to the sealing equipment 2300, and the battery cells 11 are transferred from the sealing equipment 2300 to the next work station, etc.
  • the fourth aspect of the present application proposes a flatness adjustment method of the battery case 112, which is implemented by the flatness adjustment device 2200 of the battery case 112 as described above, including:
  • S1 Receive the unsealed battery cells 11 after the formation process
  • S2 Control the unsealed battery cell 11 to enter the shaping space 22113 of the module 2211 of the flatness adjustment fixture 2210, and keep the unsealed battery in the shaping space 22113;
  • S3 Control the helium return device 2220 to fill the unsealed battery cell 11 with helium gas according to preset parameters until the recessed position 1121 of the battery case 112 of the unsealed battery cell 11 is deformed and connected with the helium gas.
  • the protruding structures 22114 of the shaping space 22113 are in contact with each other.
  • the unsealed battery cells 11 after the chemical formation process are placed in the shaping space 22113 of the flatness adjustment jig 2210, and then the helium return device 2220 is used to fill the unsealed battery cells 11 with helium gas.
  • Pressure is applied inside the battery case 112 so that the battery case 112 is inflated, and the recessed position 1121 is inflated and pressed against the convex structure 22114 of the shaping space 22113, thereby realizing the reshaping operation of the recessed position 1121 of the battery case 112 , thereby improving the flatness consistency when performing shaping operations on multiple battery cases 112 .
  • setting preset parameters for the helium return device 2220 can effectively reduce the adverse effects of helium gas on other components disposed inside the battery case 112 while improving the shaping effect of the battery case 112 .
  • the first mold 22111 and the second mold 22112 of the module 2211 are controlled to approach each other to clamp the unsealed battery cell 11 in the In the shaping space 22113, the protruding structure 22114 is arranged corresponding to the recessed position 1121.
  • the premise is that there are unsealed battery cells 11 in the shaping space 22113.
  • the module 2211 is run so that the first mold 22111 and the second mold 22112 pair unsealed.
  • the battery cells 11 are clamped so that the recessed position 1121 on the battery case 112 effectively corresponds to the protruding structure 22114 in the shaping space 22113, thereby preventing the battery case 112 from being displaced during the shaping process, thereby improving the accuracy of the adjustment. Shaping effect of battery case 112.
  • the preset parameters include a preset inflation pressure, where the preset inflation pressure is P, P ⁇ (10kpa, 100kpa);
  • the preset parameters include the inflation duration, where the inflation duration is t, t ⁇ (2s, 10s).
  • setting preset parameters and controlling the helium return device 2220 to operate under the preset parameters can effectively reduce the energy consumption of the helium return device 2220 while improving the shaping effect of the battery case 112, thereby reducing the cost of manufacturing. .
  • the preset inflation pressure when the preset inflation pressure is set in inverse proportion to the preset inflation time, that is, when the preset inflation time is long, the preset inflation pressure is small, and conversely when the preset inflation time is short, the inflation pressure is large, thereby improving While reshaping the battery case 112, prevent adverse effects on other internal components of the battery case 112 (for example, damage to the internal structure caused by excessive pressure, etc.).
  • the temperature of the battery cell 11 after coming out of the formation process is 45-50°C.
  • the time required is generally 15 minutes.
  • the temperature of the battery cell 11 is still at 40°C. ⁇ 45°C.
  • FIG 3 after the battery cell 11 is welded and sealed with a sealing nail, there is a temperature difference between the inside and outside of the battery cell 11.
  • the internal temperature of the battery cell 11 drops to the outside temperature, a huge pressure difference will occur, causing the battery to The flatness of the large surface and side surfaces of the housing 112 becomes concave, exceeding the flatness specification.
  • the unsealed battery cells 11 are placed in the flatness adjustment fixture 2210 with the protruding structure 22114, and the protruding structure 22114 is arranged corresponding to the recessed position 1121 of the battery case 112. Then use the helium return device 2220 to fill the battery case 112 with helium gas, so that the battery case 112 is inflated and abuts the shaping space 22113 of the flatness adjustment fixture 2210, and at the same time, the recessed position 1121 abuts the raised position. This reduces the pressure difference caused by the temperature difference between the inside and outside of the battery cell 11, causing the flatness of the large surface and side surfaces of the battery case 112 to exceed specifications, and also meets the consistency requirements of the battery case 112.
  • the battery cell 11 after the battery cell 11 is formed, its average concavity is measured to be -0.5 mm.
  • the surface is a convex arc surface, and the convex height of the arc top of the convex arc surface is 0.5mm, so that it can fit closely with the battery core during use.
  • the flatness of the battery core is measured at the final visual inspection.
  • the flatness specification of this product is -0.6-0mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种电池壳体(112)的平面度调整夹具(2210)、平面度调整设备(2200)、平面度调整方法及电池制造系统(2000),该平面度调整夹具(2210)包括模组(2211),模组(2211)的内表面形成整形空间(22113)并且内表面上设有凸起结构(22114),具有电池壳体(112)的未封口电池单体(11)能够进入或离开整形空间(22113),未封口电池单体(11)设于整形空间(22113)时,电池壳体(112)的凹陷位置(1121)与凸起结构(22114)对应设置,凸起结构(22114)用于对鼓起后的凹陷位置(1121)形成抵靠。整形时,电池壳体(112)的凹陷位置(1121)被鼓起,鼓起后的凹陷位置(1121)与整形空间(22113)的凸起结构(22114)相抵接,原凹陷位置(1121)的形状与凸起结构(22114)相适配。

Description

电池壳体的平面度调整夹具、设备、方法及电池制造系统
相关申请的交叉引用
本申请要求以下专利申请的优先权和权益,其全部内容通过引用结合在本申请中:
2022年07月01日提交至中国国家知识产权局的、申请号为202210764319.6、名称为“电池壳体的平面度调整夹具、设备、方法及电池制造系统”的中国专利申请。
技术领域
本申请涉及电池生产技术领域,尤其涉及一种电池壳体的平面度调整夹具、设备、方法及电池制造系统。
背景技术
随着新能源的发展,越来越多的领域采用新能源作为动力。由于具有能量密度高、可循环充电、安全环保等优点,电池被广泛应用于新能源汽车、消费电子、储能系统等领域中。
在电池的生产工序中,需要对单个电池单体包绝缘蓝膜,若电池单体的平面度不在规格范围内,会导致包绝缘蓝膜优率降。
发明内容
鉴于上述问题,本申请提供一种电池壳体的平面度调整夹具、设备、方法及电池制造系统,能够提高电池壳体的平面度具有一致性的问题。
本申请的第一方面提出了一种电池壳体的平面度调整夹具,包括模组, 所述模组的内表面形成整形空间并且所述内表面上设有凸起结构,具有所述电池壳体的未封口电池单体能够进入或离开所述整形空间,所述未封口电池单体设于所述整形空间时,所述电池壳体的凹陷位置与所述凸起结构对应设置,所述凸起结构用于对鼓起后的所述凹陷位置形成抵靠。
根据本申请的电池壳体的平面度调整夹具,当对未封口电池单体进行整形时,将未封口电池单体设置在整形空间内,并且将整形空间内的凸起结构与电池壳体的凹陷位置对应设置,再对未封口电池单体的凹陷位置进行鼓起,鼓起后的凹陷位置与整形空间的凸起结构相抵接,保持一定时间后,对电池单体进行放气操作,原凹陷位置的形状与凸起结构相适配,抑制了电池壳体的回弹,利用电池壳体的平面度调整夹具,当对未封口电池单体进行批量整形时,整形后的电池壳体的平面度一致性较佳,使得包绝缘蓝膜及在电池壳体的表面涂胶优率得到有效地提高。
在本申请的一些实施例中,所述凸起结构的外表面为凸弧面。通过将凸起结构的外表面设置成凸弧面的结构,从而提高了在对电池壳体进行整形的过程中,电池壳体与凸起结构具有更好的贴合度,进而减少了电池凹陷位置发生整形后回弹的情况,使得电池壳体的整形效果得到了提高。
在本申请的一些实施例中,所述凸弧面的弧顶的凸起高度为预设高度,所述预设高度的取值在所述电池壳体的预设平面度规格区间内。当利用平面度调整夹具对电池壳体进行整形时,电池壳体的凹陷位置鼓起且与外表面成凸弧面的凸起结构相抵靠,利用凸弧面为凹陷位置的鼓起提供基准,凸弧面的弧顶为凸起结构的最高位置,通过将凸起结构设置为预设高度且将预设高度设置在预设平面度规格区间内,从而提高了电池壳体的凹陷位置鼓起后能够满足预设平面度规格的要求,使得后续工序中包绝缘蓝膜及在电池壳体的表面涂胶优率进一步得到提高。
在本申请的一些实施例中,所述预设高度为h,其中,h∈(0mm,2mm)。通过将预设高度的取值设置在0mm~2mm的区间内,使得整形后的电池壳体 的平面度处于预设平面度规格的要求之内,进一步满足了后续工序中的生产需求,从而提高了生产的顺利进行以及产量的良率。
在本申请的一些实施例中,所述模组包括:
第一模具;
第二模具,所述第二模具与所述第一模具相对设置,所述整形空间形成在所述第一模具和所述第二模具之间,所述第一模具和/或所述第二模具设有所述凸起结构。通过将模组设置成第一模具和第二模具两个部分,从而便于对模组的加工和制造,同时,便于模组加工过程中对凸起结构的布局及加工。
在本申请的一些实施例中,所述第一模具和所述第二模具上均设有所述凸起结构,并且位于所述第一模具上的所述凸起结构与位于所述第二模具上的所述凸起结构对应设置。第一模具和第二模具相对设置,通过在两个模具上分别设置有凸起结构,从而能够实现对电池壳体相对两个面的凹陷位置进行同步整形,进而提高了对电池壳体的整形效果。
在本申请的一些实施例中,所述平面度调整夹具还包括驱动机构,所述第一模具和所述第二模具中的至少一个与所述驱动机构传动连接,所述驱动机构用于驱动所述第一模具和所述第二模具彼此靠近或者远离,在所述彼此远离状态下,所述未封口电池单体能够进入或离开所述整形空间,在所述彼此靠近状态下,所述未封口电池单体设于所述整形空间内且所述凹陷位置与所述凸起结构对应设置。利用驱动机构驱动第一模具和第二模具彼此靠近或者远离,实现了整形空间的打开或者关闭,以便于在整形空间打开状态下,未封口电池单体能够便捷进入或者离开整形空间,防止出现电池壳体划伤的情况。
在本申请的一些实施例中,所述驱动机构包括:
第一驱动件,所述第一驱动件与所述第一模具传动连接,以驱动所述第一模具向靠近或者远离所述第二模具的方向运动;和/或,
第二驱动件,所述第二驱动件与所述第二模具传动连接,以驱动所述第 二模具向靠近或者远离所述第一模具的方向运动。通过设置第一驱动件和第二驱动件,从而实现了对第一模具和第二模具的分别驱动,可通过分别通过第一驱动件和第二驱动件实现对第一模具和第二模具的分别驱动,进而提高了模具运动的灵活性。
在本申请的一些实施例中,所述第一驱动件为第一伸缩缸;
并且/或者所述第二驱动件为第二伸缩缸。
将第一驱动件和第二驱动件分别设置成伸缩缸的结构,从而提高了第一模具和第二模具沿直线运动,防止第一模具和第二模具之间存在错位,进而提高了第一模具和第二模具所构成的整形空间的精度,使得电池壳体的整形精度得到了提高。
本申请的第二方面提出了一种电池壳体的平面度调整设备,包括:
根据如上所述电池壳体的平面度调整夹具;
回氦装置,在未封口电池单体设于所述平面度调整夹具的整形空间内时,所述回氦装置用于向所述未封口电池单体内充入氦气,以使所述未封口电池单体的电池壳体的凹陷位置向外发生形变,并与所述整形空间内的凸起结构相抵接。在对未封口电池单体的电池壳体进行整形时,将未封口电池单体设置在平面度调整夹具的模组的整形空间内,使得整形空间的凸起结构与电池壳体的凹陷位置相对应,并将回氦装置与未封口电池单体连通,利用回氦装置对电池壳体内充入氦气,利用氦气将电池壳体的凹陷位置充鼓,使得凹陷位置抵靠在凸起结构上,以实现对电池壳体的整形,利用平面度调整夹具,使得电池壳体的凹陷位置在整形过程中能够有效接触凸起结构,从而提高了对电池壳体的整形效果,当对多个未封口电池单体的电池壳体进行整形时,能够有效提高整形后平面度的一致性。
在本申请的一些实施例中,所述回氦装置包括:
气源,所述气源用于存储压缩氦气;
充气嘴,所述充气嘴与所述气源连通;
驱动部件,所述驱动部件与所述充气嘴传动连接,用于驱动所述充气嘴与所述未封口电池单体连通或分离。利用驱动部件对充气嘴进行驱动,以便改变充气嘴的位置,使得充气嘴能够有效与未封口电池单体连接或断开,以便通过气源以及充气嘴对未封口电池单体进行充氦气操作,利用氦气压强的增大将电池壳体的凹陷位置充鼓,并匹配平面度调整夹具实现对电池壳的整形,进而提高了整形后的电池壳体的平面度。
在本申请的一些实施例中,所述平面度调整设备还包括:
感知装置,所述感知装置用于感知所述整形空间内是否具有未封口电池单体;
控制装置,所述控制装置分别与所述感知装置、所述回氦装置和所述平面度调整夹具电连接。利用感知装置来感知模具的整形空间内是否设有未封口电池单体,并将感知后的信号反馈至控制装置,控制装置根据整形空间内具有未封口电池单体来控制平面度调整夹具以及回氦装置对未封口电池单体的电池壳体进行整形,提高了电池壳体整形的自动化操作,使得生产的效率得到了提高。
本申请的第三方面提出了一种电池制造系统,包括:
化成设备;
根据如上所述电池壳体的平面度调整设备,所述电池壳体的平面度调整设备设于所述化成设备的下游;
封口设备,所述封口设备设于所述电池壳体的平面度调整设备的下游,用于对电池壳体封口。利用平面度调整设备中的回氦装置以及平面度调整夹具对化成工序后的未封口电池单体进行整形,平面度整形设备对未封口电池单体的电池壳体整形完毕后,封口设备对整形后的未封口电池单体进行封口操作,从而使得生产的电池单体满足后续工序的组装要求,进而提高了产品的良率。
本申请的第四方面提出了一种电池壳体的平面度调整方法,其通过如上 所述电池壳体的平面度调整设备来实施,包括:
接收化成工序后的未封口电池单体;
控制未封口电池单体进入平面度调整夹具的模组的整形空间内,并将所述未封口电池保持在所述整形空间内;
控制回氦装置以预设参数向所述未封口电池单体内充入氦气,直至使所述未封口电池单体的电池壳体的凹陷位置发生形变,并与所述整形空间的凸起结构相抵接。
将化成工序后的未封口电池单体设置在平面度调整夹具的整形空间内,再利用回氦装置对未封口电池单体进行充氦气操作,利用氦气对电池壳体内部进行施压,使得电池壳体被充鼓,凹陷位置充鼓后抵靠在整形空间的凸起结构上,从而实现对电池壳体凹陷位置的整形操作,进而提高了对多个电池壳体进行整形操作时的平面度一致性。
在本申请的一些实施例中,在控制未封口电池单体进入平面度调整夹具的整形空间内,并将所述未封口电池单体保持在所述整形空间内的步骤中,包括:
获取所述整形空间的预设位置是否具有所述未封口电池单体;
根据所述预设位置具有所述未封口电池单体,控制所述模组的第一模具和第二模具相互靠近,以将所述未封口电池单体夹持在所述整形空间内,以使所述凸起结构与所述凹陷位置对应设置。利用整形空间内具有未封口电池单体为前提,在整形空间内具有未封口电池单体时,运行模组,使得第一模具和第二模具对未封口电池单体进行夹持,提高电池壳体上的凹陷位置与整形空间内的凸起结构有效对应设置,从而提高了对电池壳体整形过程中不发生位移,进而提高对电池壳体的整形效果。
在本申请的一些实施例中,所述预设参数包括预设充气压力,其中,预设充气压力为P,P∈(10kpa,100kpa);
并且/或者,所述预设参数包括预设充气时长,其中,所述预设充气时长 为t,t∈(2s,10s)。设置预设参数,并控制回氦装置在预设参数下运行,在提高对电池壳体整形效果的同时,能够有效降低回氦装置的能耗,进而降低生产制造的成本。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
图1示意性地示出了根据本申请实施方式的车辆的结构示意图;
图2示意性地示出了根据本申请实施方式的电池单体的分解结构示意图;
图3为现有技术中,降温前后电池壳体的平整度的变化结构示意图;
图4示意性地示出了本申请实施方式中的电池壳体的平面度调整设备的结构示意图;
图5为图4所示的电池壳体的平面度调整设备中平整度调整夹具的结构示意图;
图6为本申请实施方式中,利用平整度夹具对电池壳体整形前后电池壳体的平整度的变化结构示意图;
图7为示意性地示出了本申请实施方式中电池壳体的平面度调整设备的结构框图;
图8为示意性地示出了本申请实施方式中电池制造系统的结构框图;
图9示意性地示出了根据本申请实施方式的电池壳体的平面度调整方法的流程图。
附图标记如下:
1000、车辆;
100、电池;200、控制器;300、马达;
11、电池单体;
111、端盖;111a、电极端子;
112、电池壳体;
1121、凹陷位置;
113、电芯组件;
2000、电池制造系统;
2100、化成设备;2200、平面度调整设备;2300、封口设备;2400、输送设备;
2210、平面度调整夹具;
2211、模组;22111、第一模具;22112、第二模具;22113、整形空间;22114、凸起结构;
2212、驱动机构;22121、第一驱动件;22122、第二驱动件;
2220、回氦装置;2221、驱动部件;2222、充气嘴;2223、导气管;2224、气源;
2230、支撑架;2240、底座;2250、控制装置;2260、感知装置。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是 两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不 仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请人注意到,现有电池单体在化成工序结束后,电池单体内部温度高达45-50℃,外界温度25℃,在此条件下对其进行密封钉焊接密封后,由于内外温差的存在,当电池单体内部温度降低到等于外界的25℃会产生压差,进而使电池壳体的大面及侧面变得更凹,使其平面度超规格。当电池壳体的平面度超规格时,后续对单个电池单体包绝缘蓝膜会导致包绝缘蓝膜优率降低,同时,模组段需要对单个电池单体进行组装,该过程会对电池单体侧面及大面涂胶(使单个电池单体之间连接更牢固,提高整个电池包的结构强度),由于涂胶量固定,会导致模组端溢胶不良率增加或压胶面积不足的情况,因此如何解决电池单体因内外温差导致的压差而使电池壳体的大面及侧面的平面度超规格的问题成为本领域技术人员亟需解决的技术问题。
为了解决电池单体因内外温差导致的压差而使电池壳体的大面及侧面的平面度超规格的问题,申请人研究发现,电池单体化成工序结束后,将未封口电池单体设置在具有凸起结构的平面度调整夹具内,并将凸起结构与电池壳体的凹陷位置对应设置,再利用回氦装置对电池壳体内充氦气,以使电池壳体被充鼓且抵靠平面度调整夹具的整形空间内,同时凹陷位置与凸起位置相抵靠,减少了电池单体因内外温差导致的压差而使电池壳体的大面及侧面的平面度超规格,同时也满足了电池壳体一致性要求。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽 车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的电池和用电设备,还可以适用于所有包括箱体的电池以及使用电池的用电设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
为了满足不同的使用电力需求,电池100可以包括多个电池单体11,电池单体11是指组成电池模块或电池包的最小单元。多个电池单体11可经由电极端子111a而被串联和/或并联在一起以应用于各种应用场合。本申请中所提到的电池包括电池模块或电池包。其中,多个电池单体11之间可以串联或并联或混联,混联是指串联和并联的混合。电池100也可以称为电池包。本申请的实施例中多个电池单体11可以直接组成电池包,也可以先组成电池模块,电池模块再组成电池包。
图2为本申请一些实施例提供的电池单体11的分解结构示意图。电池单体11是指组成电池100的最小单元。如图2,电池单体11包括有电池箱和电芯组件113,电池箱包括端盖111和电池壳体112。
端盖111是指盖合于电池壳体112的开口处以将电池单体11的内部环境隔绝于外部环境的部件。不限地,端盖111的形状可以与电池壳体112的形状相适应以配合电池壳体112。可选地,端盖111可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖111在受挤压碰撞时就不易发生形变,使电池单体11能够具备更高的结构强度,安全性能也可以有所提高。端盖111上可以设置有如电极端子111a等的功能性部件。电极端子111a可以用于与电芯组件113电连接,以用于输出或输入电池单体11的电能。在一些实施例中,端盖111上还可以设置有用于在电池单体11的内部压力或温度达到阈值时泄放内部压力的泄压机构。在一些实施例中,在端盖111的内侧还可以设置有绝缘件,绝缘件可以用于隔离电池壳体112内的电连接部件与端盖111,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
电池壳体112是用于配合端盖111以形成电池单体11的内部环境的组件,其中,形成的内部环境可以用于容纳电芯组件113、电解液(在图中未示出)以及其他部件。电池壳体112的端盖111可以是独立的部件,可以于电池壳体112上设置开口,通过在开口处使端盖111盖合开口以形成电池单体11的内部环境。不限地,也可以使端盖111和电池壳体112一体化,具体地,端盖111和电池壳体112可以在其他部件入壳前先形成一个共同的连接面,当需要封装电池壳体112的内部时,再使端盖111盖合电池壳体112。电池壳体112可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,电池壳体112的形状可以根据电芯组件113的具体形状和尺寸大小来确定。电池壳体112的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
在本申请的一些实施例中,如图4至图6所示,电池壳体112的平面度调整夹具2210,包括模组2211,所述整形空间22113的内表面形成整形空间并且所述内表面上设有凸起结构22114,具有所述电池壳体112的未封口电池单体11能够进入或离开所述整形空间22113,所述未封口电池单体11设于所 述整形空间22113时,所述电池壳体112的凹陷位置1121与所述凸起结构22114对应设置,凸起结构22114用于对鼓起后的凹陷位置1121形成抵靠。
具体地,当未封口电池单体11进行整形时,将未封口电池单体11设置在整形空间22113内,并且将整形空间22113内的凸起结构22114与电池壳体112的凹陷位置1121对应设置,再对未封口电池单体11的凹陷位置1121进行鼓起操作,鼓起后的凹陷位置1121与整形空间22113的凸起结构22114相抵接,保持一定时间后,对电池单体11进行放气操作,原凹陷位置1121的形状与凸起结构22114相适配,抑制了电池壳体112的回弹,利用电池壳体112的平面度调整夹具2210,当对未封口电池单体11进行批量整形时,整形后的电池壳体112的平面度一致性较佳,使得包绝缘蓝膜及在电池壳体112的表面涂胶优率得到有效地提高。
需要理解的是,未封口电池单体11为化成工序结束之后的结构,并且在对未封口电池单体11进行鼓起时,可通过回氦工序对未封口电池单体11内充入氦气或者其它工序(例如充入电解液等),使得未封口电池单体11的内部压力增大,从而使得电池壳体112的凹陷位置1121被鼓起,并利用整形空间22113的凸起结构22114为鼓起后的凹陷位置1121形成抵靠,从而实现对凹陷位置1121的整形操作。
整形空间22113用于容纳未封口电池单体11,并且整形空间22113的形状与未封口电池单体11的形状相适配,凸起结构22114形成在整形空间22113的内表面上,当未封口电池单体11在整形空间22113内设置到位后,凸起结构22114与未封口电池单体11的电池壳体112的凹陷位置1121对应设置,其中,凹陷位置1121与凸起结构22114之间存在间隙,在回氦装置2220对电池壳体112的内部充入氦气后,随着内部压强的增大,凹陷位置1121向外发生形变,使得凹陷位置1121被充鼓,直至凹陷位置1121与凸起结构22114之间的间隙消失,并且凹陷位置1121与凸起结构22114相抵靠,保持一段时间后,使得凹陷位置1121发生塑性形变,以提高电池壳体112泄压后凹陷位 置1121不回弹,使得凹陷位置1121的整形效果得到提高。
另外,设置凸起结构22114,利用凸起结构22114为整形过程中的电池壳体112提供抵靠的基础,以便凹陷位置1121能够充分与凸起结构22114相抵靠,在将电池壳体112的平面度调整至满足平面度规格的基础上,减小电池壳体112的形变量,防止出现整形后凹陷位置1121出现回弹的情况(由于电池壳体112通常具有一定弹性形变的能力,若电池壳体112在调整过程中形变量较大,极易发生回氦装置2220泄压后电池壳体112回弹的情况,从而造成凹陷位置1121的调整效果不可控而导致无法达到平面度规格的情况)。
应当理解的是,电池壳体112的凹陷位置1121不符合电池壳体112的平面度规格,整形过程中凹陷位置1121鼓起且与凸起结构22114相抵靠,整形后,凹陷位置1121的形状与凸起结构22114相匹配,同时凹陷位置1121的凹度与凸起位置的凸度相一致,将凸起结构22114的凸度设置在平面度的规格内,虽然凹陷位置1121整形后仍具有一定的凹陷,但是整形后的凹陷满足电池壳体112的平面度的要求,进而满足了后续加工工序的要求。
另外,电池壳体112的平面度一致性是指,当对电池壳体112进行批量处理时,每个电池壳体112的凹陷位置1121被处理后,均在电池壳体的平面度规格(该平面度规格根据所处理批次的电池壳体112的平均凹陷值进行设定)之内。
需要指出的是,凸起结构22114的形状根据需要进行设定,可以为规则形状(例如为圆形、条形或者方形等),也可以为不规则形状(例如为锯齿状、闪电状或者多种形状的组合体等),凸起结构22114的具体形状根据所需整形的电池壳体112的凹陷位置1121的形状进行设定。
另外,整形空间22113具有多个面,凸起结构22114可设置在整形空间22113的一个面上,也可设置在多个面上,具体根据所要整形的未封口电池单体11的电池壳体112上的凹陷位置1121进行具体设定,同时,凸起结构22114在一个面上的数量可以为一个或者多个,具体数量根据所需整形的电池壳体 112的一个面上具有几处凹陷位置1121进行设定。
在本申请的一些实施例中,如图4至图6所示,所述凸起结构22114的外表面为凸弧面。
具体地,化成工序后,由于内外温差的原因,电池壳体112的外表面通常会发生内凹的情况,并且内凹面通常为凹弧面,在整形空间22113对应凹陷位置1121的位置上设置凸起结构22114,并且将凸起结构22114的外表面设置成凸弧面的结构,从而提高了在对电池壳体112进行整形的过程中,电池壳体112与凸起结构22114具有更好的贴合度,进而减少了电池凹陷位置1121发生整形后回弹的情况,使得电池壳体112的整形效果得到了提高。
需要理解的是,电池壳体112在回氦装置2220的充气作用下,凹陷位置1121会向外侧发生形变而被充鼓,将凸起结构22114的外表面设置为凸弧面,能够使得凹陷位置1121充鼓过程中,凹陷位置1121能够充分抵靠在凸起结构22114上,并通过凸起结构22114的形状对凹陷位置1121充鼓过程中的限位,使得整形后的形状按照凸起结构22114的形状设置,从而使得整形后的电池壳体112的平面度在所需的规格范围之内,进而满足了后续工序的加工需求。
另外,将凸起结构22114设置成凸弧面,能够使得电池壳体112的凹陷位置1121充鼓整形的过程中,电池壳体112位于凹陷位置1121的本体能够充分与凸起结构22114相抵靠,防止出现应力集中而发生断裂的情况,进一步提高了电池壳体112的整形效果。
在本申请的一些实施例中,所述凸弧面的弧顶的凸起高度为预设高度,所述预设高度的取值在所述电池壳体112的预设平面度规格区间内。
具体地,凸起结构22114的外表面设置成凸弧面,当对凸起结构22114沿其高度方向进行剖切时,所形成的截面为抛物线形状,该抛物线形状具有最高位置,其中,该最高位置为凸弧面的弧顶,并且最高位置与整形空间22113具有凸起结构22114的面之间的距离为弧顶的凸起高度,将弧顶的凸起高度 设置为预设高度,并且将预设高度的取值设定在预设平面度规格区间内。
当利用平面度调整夹具2210对电池壳体112进行整形时,电池壳体112的凹陷位置1121鼓起且与外表面成凸弧面的凸起结构22114相抵靠,利用凸弧面为凹陷位置1121的鼓起提供基准,凸弧面的弧顶为凸起结构22114的最高位置,通过将凸起结构22114设置为预设高度且将预设高度设置在预设平面度规格区间内,从而提高了电池壳体112的凹陷位置1121鼓起后能够满足预设平面度规格的要求,使得后续工序中包绝缘蓝膜及在电池壳体112的表面涂胶优率进一步得到提高。
需要指出的是,在本申请的实施方式中,预设平面度规格区域可根据不同的电池壳体112进行设定,即对凸起结构22114的弧顶的凸起高度进行设定,以此来满足不同电池壳体112的整形需求。例如,当对一批具有同一型号的电池壳体112进行整形时,根据该批电池壳体112的凹陷位置1121的平均凹陷值对凸起结构22114的弧形的预设高度进行设定,以利用设定好的凸起结构22114对该批次的电池壳体112进行整形,使得该批电池壳体112整形后的凹陷位置1121均与凸起结构22114的凸起高度相适配,即该批电池壳体112均具有同样的凹陷结构,以此来提高该批电池壳体112的平面度的一致性。
在本申请的一些实施例中,如图5所示,所述预设高度为h,其中,h∈(0mm,2mm)。
具体地,在本申请中,外表面为凸弧面的凸起结构22114自整形空间22113的内表面拱起形成,其弧顶距离整形空间22113具有凸起结构22114的面的距离为预设高度h,通过将h的取值设定在0mm<h<2mm之间,从而在提高对电池壳体112整形的基础上,使得电池壳体112的平面度符合所需的平面度规格,进而满足后续生产的使用需求,从而提高了生产的顺利进行以及产量的良率。
需要理解的是,通过将预设高度h的取值范围设定在0mm<h<2mm之间,从而使得整形后的电池壳体112表面的凹陷形变量较小,防止因电池壳 体112凹陷导致内部空间受到影响,提高了电池壳体112的内部具有足够满足电芯组件13安装的空间。
需要指出的是,在本申请的实施方式中,预设高度可根据实际生产进行调整,其中,h的取值可以为0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm、1.6mm、1.7mm、1.8mm、1.9mm……。
在本申请的一些实施例中,如图4至图6所示,所述模组2211包括:
第一模具22111;
第二模具22112,所述第二模具22112与所述第一模具22111相对设置,所述整形空间22113形成在所述第一模具22111和所述第二模具22112之间,所述第一模具22111和/或所述第二模具22112设有所述凸起结构22114。
具体地,第一模具22111和第二模具22112形成模组2211,并且整形空间22113形成在第一模具22111和第二模具22112之间,同时第一模具22111和第二模具22112中的至少一者设置有凸起结构22114。通过将模组2211设置成第一模具22111和第二模具22112两个部分,从而便于对模组2211的加工和制造,同时,便于模组2211加工过程中对凸起结构22114的布局及加工。
需要指出的是,将模组2211设置成第一模具22111和第二模具22112两个部分,整形空间22113形成在两个模具之间,两个模具所形成的整形空间22113可以为开放式结构,也可以为封闭式结构。
另外,凸起结构22114设置在哪个模具上,以及凸起结构22114在模具上如何设置,可根据具体需要整形的电池壳体112进行设定及调整。
在本申请的一些实施例中,如图4至图6所示,所述第一模具22111和所述第二模具22112上均设有所述凸起结构22114,并且位于所述第一模具22111上的所述凸起结构22114与位于所述第二模具22112上的所述凸起结构22114对应设置。
具体地,电池壳体112的壳体通常在两个相对设置的侧面上产生凹陷位 置1121(例如电池壳体112为矩形结构,电池壳体112的两个相对设置的大面和/或两个相对设置的侧面通常会同步出现凹陷),在对电池壳体112进行整形时,将未封口电池单体11设置在第一模具22111和第二模具22112之间所形成的整形空间22113内,并且将两个模具上的凸起结构22114分别与电池壳体112上的凹陷位置1121对应设置,当利用回氦装置2220对电池壳体112进行充氮操作时,利用电池壳体112氦气压强的不断增大,使得凹陷位置1121被充鼓且分别抵靠在两个凸起结构22114上,从而能够实现对电池壳体112相对两个面的凹陷位置1121进行同步整形,进而提高了对电池壳体112的整形效果。
需要理解的是,在第一模具22111上的凸起结构22114的数量可以为一个、两个、三个……,并且,当第一模具22111上的凸起结构22114的数量为两个及两个以上时,其结构可以完全相同,部分相同或者完全不同,同时,当第一模具22111上的凸起结构22114的数量为两个及两个以上时,凸起结构22114的设置根据电池壳体112上凹陷位置1121进行具体设定。
另外,在第二模具22112上的凸起结构22114的数量可以为一个、两个、三个……,并且,当第二模具22112上的凸起结构22114的数量为两个及两个以上时,其结构可以完全相同,部分相同或者完全不同,同时,当第二模具22112上的凸起结构22114的数量为两个及两个以上时,凸起结构22114的设置根据电池壳体112上凹陷位置1121进行具体设定。
在本申请的实施方式中,第一模具22111和第二模具22112之间形成整形空间22113,其中,第一模具22111与第二模具22112可以均为固定式结构(整形空间22113为固定式空间),也可以为两者其中一个为固定式结构(整形空间22113为可变式空间),另一个为可动式结构,还可以为两个均为可动式结构(整形空间22113为可变式空间)。
在本申请的一些实施例中,如图4和图5所示,所述平面度调整夹具2210还包括驱动机构2212,所述第一模具22111和所述第二模具22112中的至少 一个与所述驱动机构2212传动连接,所述驱动机构2212用于驱动所述第一模具22111和所述第二模具22112彼此靠近或者远离,在所述彼此远离状态下,所述未封口电池单体11能够进入或离开所述整形空间22113,在所述彼此靠近状态下,所述未封口电池单体11设于所述整形空间22113内且所述凹陷位置1121与所述凸起结构22114对应设置。
具体地,设置驱动机构2212,并且驱动机构2212与两个模具中的至少一个传动连接,利用驱动机构2212的运行来驱动第一模具22111和第二模具22112相互靠近或者相互远离,当两个模具相互远离时,整形空间22113为打开状态,当两个模具相互靠近时,整形空间22113为关闭状态。当整形空间22113打开时,未封口电池单体11能够进入或者离开整形空间22113,当整形空间22113关闭时,位于整形空间22113内的电池单体11被第一模具22111和第二模具22112所夹持并被保持在整形空间22113内。
通过设置驱动机构2212,从而提高了未封口电池单体11便捷进入或者离开模组2211的整形空间22113,进而减少了因通道狭小导致未封口电池单体11的电池壳划伤的情况,使得电池单体11的品质得到有效地提高。
需要理解的是,如图4至图6所示,第一模具22111和第二模具22112所形成的整形空间22113为开放式空间(仅在第一模具22111的一侧和第二模具22112的一侧进行封闭)驱动机构2212驱动第一模具22111相对第二模具22112彼此远离,使得进入整形空间22113的通道尺寸被增大,此时未封口电池单体11通过通道进入到整形空间22113内时,较为便捷,不会出现因空间狭小产生模具与电池壳摩擦的情况,以消除电池壳被划伤的风险。
需要指出的是,在驱动机构2212的驱动下,第一模具22111和第二模具22112彼此靠近或者远离运动,即在驱动机构2212的驱动下,第一模具22111和第二模具22112进行直线运动,以此来实现对整形空间22113的打开或者关闭。
另外,驱动结构可以单独与第一模具22111传动连接,也可以单独与第 二模具22112传动连接,还可以分别与第一模具22111和第二模具22112传动连接,以此来满足第一模具22111相对第二模具22112的运行,进而提高了未封口电池单体11进入或者离开整形空间22113。
此外,当驱动机构2212驱动第一模具22111和第二模具22112相向运动将整形空间22113关闭后,位于整形空间22113内的未封口电池单体11被夹持在整形空间22113内,电池壳体112的凹陷位置1121与凸起结构22114对应设置(两者之间具有间隙),电池壳体112的平面位置(未发生凹陷的位置)与模具构成整形空间22113的表面相抵靠,以此将未封口电池单体11保持在整形空间22113内,防止在整形过程中电池壳体112发生位移,进而提高了对电池壳体112的整形效果。
在本申请的一些实施例中,如图4和图5所示,所述驱动机构2212包括:第一驱动件22121,所述第一驱动件22121与所述第一模具22111传动连接,以驱动所述第一模具22111向靠近或者远离所述第二模具22112的方向运动,和/或者第二驱动件22122,所述第二驱动件22122与所述第二模具22112传动连接,以驱动所述第二模具22112向靠近或者远离所述第一模具22111的方向运动。
具体地,第一模具22111与第一驱动件22121传动连接,第二模具22112与第二驱动件22122传动连接,利用第一驱动件22121对第一模具22111是否运动进行驱动,以及利用第二驱动件22122对第二模具22112是否运动进行驱动,可通过至少一个驱动件的运行实现第一模具22111和第二模具22112相互靠近或者远离。
通过设置第一驱动件22121和第二驱动件22122,从而实现了对第一模具22111和第二模具22112的分别驱动,可通过分别通过第一驱动件22121和第二驱动件22122实现对第一模具22111和第二模具22112的分别驱动,进而提高了模具运动的灵活性。
需要指出的是,第一驱动件22121与第二驱动件22122的类型可以相同, 也可以不同,在本申请的实施方式中,第一驱动件22121和第二驱动件22122的类型完全相同,其中,驱动件的类型可以为驱动部件2221(电机、内燃机或者蒸汽机等)+变速组件(齿轮组或带轮组等),还可以为伸缩缸(气缸、油缸或者电缸等)。
在本申请的一些实施例中,所述第一驱动件22121为第一伸缩缸;
并且/或者所述第二驱动件22122为第二伸缩缸。
具体地,当第一驱动件22121和第二驱动件22122的类型完全相同时(在本申请的其它实施方式中,第一驱动件22121和第二驱动件22122的类型可以不同),将第一驱动件22121和第二驱动件22122分别设置成伸缩缸的结构,从而提高了第一模具22111和第二模具22112沿直线运动,防止第一模具22111和第二模具22112之间存在错位,进而提高了第一模具22111和第二模具22112所构成的整形空间22113的精度,使得电池壳体112的整形精度得到了提高。
需要指出的是,平面度调整夹具2210还具有底座2240,第一模具22111和第二模具22112分别以可滑动的方式设置在底座2240上,第一伸缩缸的缸体安装固定在底座2240上,第一伸缩缸的缸杆连接在第一模具22111上,第二伸缩缸的缸体安装固定在底座2240上,第二伸缩缸的缸杆连接在第二模具22112上,第一伸缩缸和第二伸缩缸的伸缩方向一致,以利用两个伸缩缸的伸缩来分别驱动两个模具在底座2240上的相互靠近或者相互远离。
在底座2240上设置有滑槽,滑槽沿第一模具22111移动的方向延伸,第一模具22111的第一滑块结构可滑动地安装在滑槽内,第二模具22112的第二滑块可滑动地安装在滑槽内,第一伸缩缸与第一模具22111相连且驱动第一模具22111沿滑槽的延伸方向滑动,第二伸缩缸与第二模具22112相连且驱动第二模具22112沿滑槽的方向延伸方向滑动,利用具有滑槽的底座2240来实现对两个模组2211进行导向,进一步提高了第一模具22111和第二模具22112形成整形空间22113的精度。
本申请的第二方面提出了一种电池壳体112的平面度调整设备2200,如图4至图6所示,包括:
根据如上所述电池壳体112的平面度调整夹具2210;
回氦装置2220,在未封口电池单体11设于所述平面度调整夹具2210的整形空间22113内时,所述回氦装置2220用于向所述未封口电池单体11内充入氦气,以使所述未封口电池单体11的电池壳体112的凹陷位置1121向外发生形变,并与所述整形空间22113内的凸起结构22114相抵接。
具体地,在对未封口电池单体11的电池壳体112进行整形时,将未封口电池单体11设置在平面度调整夹具2210的模组2211的整形空间22113内,使得整形空间22113的凸起结构22114与电池壳体112的凹陷位置1121相对应,并将回氦装置2220与未封口电池单体11连通,利用回氦装置2220对电池壳体112内充入氦气,利用氦气将电池壳体112的凹陷位置1121充鼓,使得凹陷位置1121抵靠在凸起结构22114上,以实现对电池壳体112的整形,利用平面度调整夹具,使得电池壳体112的凹陷位置1121在整形过程中能够有效接触凸起结构22114,从而提高了对电池壳体112的整形效果,当对多个未封口电池单体11的电池壳体112进行整形时,能够有效提高整形后平面度的一致性。
需要理解的是,回氦装置2220对电池壳体112的内部通过充入氦气,以利用氦气充鼓电池壳体112的方式实现对电池壳体112的整形,充鼓过程中能够使得凹陷位置1121被均匀整形,从而能够提高了良好的整形效果。
另外,当未封口电池单体11进入到整形空间22113内且在整形空间22113内被夹持后,回氦装置2220与未封口电池单体11的内部连通,回氦装置2220向未封口电池单体11的内部充入氦气,随着氦气的增加,电池壳体112的内部压力不断增大,气压增大使得电池壳体112自内向外发生形变,通过发生形变将凹陷位置1121鼓起,并利用整形空间22113的凸起结构22114对凹陷位置1121抵靠,防止整形后出现的回弹的情况,进而提高电池壳体112的整 形效果。
在本申请的一些实施例中,如图4所示,所述回氦装置2220包括:
气源2224,所述气源2224用于存储压缩氦气;
充气嘴2222,所述充气嘴2222与所述气源2224连通;
驱动部件2221,所述驱动部件2221与所述充气嘴2222传动连接,用于驱动所述充气嘴2222与所述未封口电池单体11连通或分离。
具体地,充气嘴2222与气源2224连通,并且充气嘴2222与驱动部件2221传动连接,驱动部件2221驱动充气嘴2222进行位置的变换,以实现充气嘴2222与未封口电池单体11的连通或者断开。利用驱动部件2221对充气嘴2222进行驱动,以便改变充气嘴2222的位置,使得充气嘴2222能够有效与未封口电池单体11连接或断开,以便通过气源2224以及充气嘴2222对未封口电池单体11进行充氦气操作,利用氦气压强的增大将电池壳体112的凹陷位置1121充鼓,并匹配平面度调整夹具2210实现对电池壳的整形,进而提高了整形后的电池壳体112的平面度。
需要理解的是,当未封口电池单体11进入或者离开平面度调整夹具的整形空间22113时,驱动部件2221驱动充气嘴2222与未封口电池单体11分离,提高了未封口电池单体11进入或者离开整形空间22113时发生干涉的情况,当未封口电池单体11设置在整形空间22113内且需要进行整形时,利用驱动部件2221能够有效提高充气嘴2222与未封口电池单体11的连通。
另外,气源2224为高压气源2224,其内部存储有高压的氦气,当需要对电池壳体112进行整形时,气源2224内的高压氦气经充气嘴2222进入到电池壳体112内部,以实现对电池壳体112的充鼓,当电池壳体112整形完毕后,气源2224停止向电池壳体112内充入氦气。
需要指出的是,充气嘴2222通过导气管2223与气源2224连通,并且在导气管2223、充气嘴2222以及气源2224中的一者上设有控制阀,利用控制阀控制充气嘴2222是否对外输出氦气,从而提高了氦气的有效供给,防止氦 气泄露导致浪费的情况。
另外,平面度调整设备2200还包括支撑架2230,支撑架2230安装在平面度调整夹具2210的底座2240上,驱动部件2221安装在支撑架2230上,在本申请中驱动部件2221为伸缩缸(在其它实施方式中,驱动部件2221为电机+齿轮齿条结构),充气嘴2222安装在伸缩缸的缸杆上,利用伸缩缸的伸缩动作来实现充气嘴2222与未封口电池单体11的连接或者断开。伸缩杆的结构简单,并且方向性较好,能够有效提高充气嘴2222与未封口电池单体11的连接精度。
在本申请的一些实施例中,如图7所示,所述平面度调整设备2200还包括:
感知装置2260,所述感知装置2260用于感知所述整形空间22113内是否具有未封口电池单体11;
控制装置2250,所述控制装置2250分别与所述感知装置2260、所述回氦装置2220和所述平面度调整夹具2210电连接。利用感知装置2260来感知模具的整形空间22113内是否设有未封口电池单体11,并将感知后的信号反馈至控制装置2250,控制装置2250根据整形空间22113内具有未封口电池单体11来控制平面度调整夹具2210以及回氦装置2220对未封口电池单体11的电池壳体112进行整形,提高了电池壳体112整形的自动化操作,使得生产的效率得到了提高。
需要指出的是,控制装置2250包括人机交互模块、处理模块以及存储模块等,人机交互模块用于操作者对平面度调整设置输入相应指令(通过按键、触控屏或者移动终端等),以及平面度调整设备2200显示当前工作状态信息(具有显示功能),处理模块用于数据的处理以及运算等,存储模块用于对数据的存储等。
另外,感知装置2260可设置在整形空间22113内部,也可以设置在整形空间22113的外部,感知装置2260可以为光电传感器或红外传感器等。
本申请的第三方面提出了一种电池制造系统2000,如图4至图8所示,包括:
化成设备2100;
根据如上所述电池壳体112的平面度调整设备2200,所述电池壳体112的平面度调整设备2200设于所述化成设备2100的下游;
封口设备2300,所述封口设备2300设于所述电池壳体112的平面度调整设备2200的下游,用于对电池壳体112封口。
具体地,利用平面度调整设备2200中的回氦装置2220以及平面度调整夹具2210对化成工序后的未封口电池单体11进行整形,平面度整形设备对未封口电池单体11的电池壳体112整形完毕后,封口设备2300对整形后的未封口电池单体11进行封口操作,从而使得生产的电池单体11满足后续工序的组装要求,进而提高了产品的良率。
需要指出的是,电池制造系统2000还包括输送设备2400(输送带等),输送设备2400用于实现电池单体11位置的转移,例如将电池单体11转移至化成设备2100内,将电池单体11自化成设备2100转移至冷却位置,将电池单体11自冷却位置转移至封口设备2300,以及将电池单体11自封口设备2300转移至下一工位等。
如图4至图9所示,本申请的第四方面提出了一种电池壳体112的平面度调整方法,其通过如上所述电池壳体112的平面度调整设备2200来实施,包括:
S1:接收化成工序后的未封口电池单体11;
S2:控制未封口电池单体11进入平面度调整夹具2210的模组2211的整形空间22113内,并将所述未封口电池保持在所述整形空间22113内;
S3:控制回氦装置2220以预设参数向所述未封口电池单体11内充入氦气,直至使所述未封口电池单体11的电池壳体112的凹陷位置1121发生形变,并与所述整形空间22113的凸起结构22114相抵接。
具体地,将化成工序后的未封口电池单体11设置在平面度调整夹具2210的整形空间22113内,再利用回氦装置2220对未封口电池单体11进行充氦气操作,利用氦气对电池壳体112内部进行施压,使得电池壳体112被充鼓,凹陷位置1121充鼓后抵靠在整形空间22113的凸起结构22114上,从而实现对电池壳体112凹陷位置1121的整形操作,进而提高了对多个电池壳体112进行整形操作时的平面度一致性。
需要理解的是,对回氦装置2220设置预设参数,从而在提高对电池壳体112整形效果的同时,有效减少了因氦气对设置在电池壳体112内部的其它部件产生不良影响。
在本申请的一些实施例中,在控制未封口电池单体11进入平面度调整夹具2210的整形空间22113内,并将所述未封口电池单体11保持在所述整形空间22113内的步骤中,包括:
获取所述整形空间22113的预设位置是否具有所述未封口电池单体11;
根据所述预设位置具有所述未封口电池单体11,控制所述模组2211的第一模具22111和第二模具22112相互靠近,以将所述未封口电池单体11夹持在所述整形空间22113内,以使所述凸起结构22114与所述凹陷位置1121对应设置。
具体地,利用整形空间22113内具有未封口电池单体11为前提,在整形空间22113内具有未封口电池单体11时,运行模组2211,使得第一模具22111和第二模具22112对未封口电池单体11进行夹持,提高电池壳体112上的凹陷位置1121与整形空间22113内的凸起结构22114有效对应设置,从而提高了对电池壳体112整形过程中不发生位移,进而提高对电池壳体112的整形效果。
在本申请的一些实施例中,所述预设参数包括预设充气压力,其中,预设充气压力为P,P∈(10kpa,100kpa);
并且/或者,所述预设参数包括充气时长,其中,所述充气时长为t,t∈ (2s,10s)。
具体地,设置预设参数,并控制回氦装置2220在预设参数下运行,在提高对电池壳体112整形效果的同时,能够有效降低回氦装置2220的能耗,进而降低生产制造的成本。
需要指出的是,当预设充气压力与预设充气时间呈反比设置,即当预设充气时间长时,预设充气压力小,反之预设充气时间短时,充气压力大,以此在提高对电池壳体112整形的同时,防止对电池壳体112内部其它部件产生不良影响(例如压力过大导致内部结构被损坏等)。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
现有技术中,电池单体11从化成工序出来后温度在45~50℃,当电池单体11到达密封钉焊接工位时所需时间一般为15min,15min后电池单体11温度依然在40~45℃,如图3所示,对电池单体11密封钉焊接封口后,电池单体11内外存在温差,当电池单体11内部温度降低到外界温度时会产生巨大压差,从而使电池壳体112的大面及侧面的平面度变凹,超出平面度规格。
本申请是在电池单体11化成后将未封口电池单体11设置在具有凸起结构22114的平面度调整夹具2210内,并将凸起结构22114与电池壳体112的凹陷位置1121对应设置,再利用回氦装置2220对电池壳体112内充氦气,以使电池壳体112被充鼓且抵靠平面度调整夹具2210的整形空间22113内,同时凹陷位置1121与凸起位置相抵靠,减少了电池单体11因内外温差导致的压差而使电池壳体112的大面及侧面的平面度超规格,同时也满足了电池壳体112一致性要求。
在本申请的一些实施例中,电池单体11化成后,经测量其凹度平均值为-0.5mm。以此数据定做平面度调整夹具2210,并且将平面度调整夹具2210的整形空间22113的凸起结构22114的最凸点的凸度(凸起结构22114的外表 面为凸弧面,凸弧面的弧顶的凸起高度)为0.5mm,使其在使用中与电芯贴合紧密。在最终目检处电芯测量平面度,该产品平面度规格:-0.6-0mm。
使用本申请中的平面度调整夹具2210对电池壳体112的平面度的调整效果相比于普通平面夹具而言具有明显改善,具体数据参见如下表1:
表1
通过表1相关数据可知,本申请中的夹具对于电池壳体112的平面度的调整效果明显优于平面夹具对电池壳体112的平面度的调整效果。
应当理解的是,使用本申请中的平面度调整夹具对电池壳体112的凹陷位置1121进行整形时,虽然整形后的凹陷位置1121的凹陷值较平面夹具整形后的凹陷位置1121的凹陷值大,但是其仍满足平面度规格的要求(-0.6-0mm),而使用本申请中的平面度调整夹具对电池壳体112的凹陷位置1121进行整形的平面度一致性明显要高于平面夹具整形后的平面度一致性。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (16)

  1. 一种电池壳体的平面度调整夹具,其中,包括模组,所述模组的内表面形成整形空间并且所述内表面上设有凸起结构,具有所述电池壳体的未封口电池单体能够进入或离开所述整形空间,所述未封口电池单体设于所述整形空间时,所述电池壳体的凹陷位置与所述凸起结构对应设置,所述凸起结构用于对鼓起后的所述凹陷位置形成抵靠。
  2. 根据权利要求1所述的电池壳体的平面度调整夹具,其中,所述凸起结构的外表面为凸弧面。
  3. 根据权利要求2所述的电池壳体的平面度调整夹具,其中,所述凸弧面的弧顶的凸起高度为预设高度,所述预设高度的取值在所述电池壳体的预设平面度规格区间内。
  4. 根据权利要求3所述的电池壳体的平面度调整夹具,其中,所述预设高度为h,其中,h∈(0mm,2mm)。
  5. 根据权利要求1至4任一项所述的电池壳体的平面度调整夹具,其中,所述模组包括:
    第一模具;
    第二模具,所述第二模具与所述第一模具相对设置,所述整形空间形成在所述第一模具和所述第二模具之间,所述第一模具和/或所述第二模具设有所述凸起结构。
  6. 根据权利要求5所述的电池壳体的平面度调整夹具,其中,所述第一模具和所述第二模具上均设有所述凸起结构,并且位于所述第一模具上的所述凸起结构与位于所述第二模具上的所述凸起结构对应设置。
  7. 根据权利要求5或6所述的电池壳体的平面度调整夹具,其中,所述平面度调整夹具还包括驱动机构,所述第一模具和所述第二模具中的至少一个与所述驱动机构传动连接,所述驱动机构用于驱动所述第一模具和所述第二 模具彼此靠近或者远离,在彼此远离状态下,所述未封口电池单体能够进入或离开所述整形空间,在彼此靠近状态下,所述未封口电池单体设于所述整形空间内且所述凹陷位置与所述凸起结构对应设置。
  8. 根据权利要求7所述的电池壳体的平面度调整夹具,其中,所述驱动机构包括:
    第一驱动件,所述第一驱动件与所述第一模具传动连接,以驱动所述第一模具向靠近或者远离所述第二模具的方向运动;和/或,
    第二驱动件,所述第二驱动件与所述第二模具传动连接,以驱动所述第二模具向靠近或者远离所述第一模具的方向运动。
  9. 根据权利要求8所述的电池壳体的平面度调整夹具,其中,所述第一驱动件为第一伸缩缸;
    并且/或者所述第二驱动件为第二伸缩缸。
  10. 一种电池壳体的平面度调整设备,其中,包括:
    根据权利要求1至9任一项所述电池壳体的平面度调整夹具;
    回氦装置,在未封口电池单体设于所述平面度调整夹具的整形空间内时,所述回氦装置用于向所述未封口电池单体内充入氦气,以使所述未封口电池单体的电池壳体的凹陷位置向外发生形变,并与所述整形空间内的凸起结构相抵接。
  11. 根据权利要求10所述的电池壳体的平面度调整设备,其中,所述回氦装置包括:
    气源,所述气源用于存储压缩氦气;
    充气嘴,所述充气嘴与所述气源连通;
    驱动部件,所述驱动部件与所述充气嘴传动连接,用于驱动所述充气嘴与所述未封口电池单体连通或分离。
  12. 根据权利要求10或11所述的电池壳体的平面度调整设备,其中,所述平面度调整设备还包括:
    感知装置,所述感知装置用于感知所述整形空间内是否具有未封口电池单体;
    控制装置,所述控制装置分别与所述感知装置、所述回氦装置和所述平面度调整夹具电连接。
  13. 一种电池制造系统,其中,包括:
    化成设备;
    根据权利要求10至12任一项所述电池壳体的平面度调整设备,所述电池壳体的平面度调整设备设于所述化成设备的下游;
    封口设备,所述封口设备设于所述电池壳体的平面度调整设备的下游,用于对电池壳体封口。
  14. 一种电池壳体的平面度调整方法,其通过权利要求10至12任一项所述电池壳体的平面度调整设备来实施,其中,包括:
    接收化成工序后的未封口电池单体;
    控制未封口电池单体进入平面度调整夹具的模组的整形空间内,并将所述未封口电池单体保持在所述整形空间内;
    控制回氦装置以预设参数向所述未封口电池单体内充入氦气,直至使所述未封口电池单体的电池壳体的凹陷位置发生形变,并与所述整形空间的凸起结构相抵接。
  15. 根据权利要求14所述的电池壳体的平面度调整方法,其中,在控制未封口电池单体进入平面度调整夹具的整形空间内,并将所述未封口电池单体保持在所述整形空间内的步骤中,包括:
    获取所述整形空间的预设位置是否具有所述未封口电池单体;
    根据所述预设位置具有所述未封口电池单体,控制所述模组的第一模具和第二模具相互靠近,以将所述未封口电池单体夹持在所述整形空间内,以使所述凸起结构与所述凹陷位置对应设置。
  16. 根据权利要求14或15所述的电池壳体的平面度调整方法,其中,所 述预设参数包括预设充气压力,其中,预设充气压力为P,P∈(10kpa,100kpa);
    并且/或者,所述预设参数包括预设充气时长,其中,所述预设充气时长为t,t∈(2s,10s)。
PCT/CN2023/104706 2022-07-01 2023-06-30 电池壳体的平面度调整夹具、设备、方法及电池制造系统 WO2024002345A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210764319.6A CN114833217B (zh) 2022-07-01 2022-07-01 电池壳体的平面度调整夹具、设备、方法及电池制造系统
CN202210764319.6 2022-07-01

Publications (1)

Publication Number Publication Date
WO2024002345A1 true WO2024002345A1 (zh) 2024-01-04

Family

ID=82574776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104706 WO2024002345A1 (zh) 2022-07-01 2023-06-30 电池壳体的平面度调整夹具、设备、方法及电池制造系统

Country Status (2)

Country Link
CN (1) CN114833217B (zh)
WO (1) WO2024002345A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114833217B (zh) * 2022-07-01 2022-11-08 江苏时代新能源科技有限公司 电池壳体的平面度调整夹具、设备、方法及电池制造系统
CN115498242B (zh) * 2022-11-16 2023-05-16 江苏时代新能源科技有限公司 平面度调整系统及平面度调整方法
CN115555432B (zh) * 2022-12-07 2023-03-21 江苏恒义工业技术有限公司 汽车电池箱整形装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080157779A1 (en) * 2006-12-28 2008-07-03 Panasonic Ev Energy Co., Ltd. Prismatic battery short circuit inspection method, prismatic battery manufacturing method and current collector shape adjusting device
CN207069005U (zh) * 2017-07-06 2018-03-02 新余超能通新能源有限公司 一种方形锂离子电池双面整形挤压封口装置
CN207967191U (zh) * 2018-04-03 2018-10-12 宁德时代新能源科技股份有限公司 电池整形装置
CN212366037U (zh) * 2020-04-23 2021-01-15 江苏金赛尔电池科技有限公司 一种用于锂离子电池封口整形夹具
CN113546986A (zh) * 2021-08-02 2021-10-26 德清泰鑫金属制品有限公司 一种废旧钢铁回收用钢管矫正辅助装置
CN114833217A (zh) * 2022-07-01 2022-08-02 江苏时代新能源科技有限公司 电池壳体的平面度调整夹具、设备、方法及电池制造系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202474111U (zh) * 2012-01-19 2012-10-03 胡家讲 方型锂电池自动整形真空封口一体机
CN107645011B (zh) * 2017-10-26 2024-07-12 河北银隆新能源有限公司 电池整形装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080157779A1 (en) * 2006-12-28 2008-07-03 Panasonic Ev Energy Co., Ltd. Prismatic battery short circuit inspection method, prismatic battery manufacturing method and current collector shape adjusting device
CN207069005U (zh) * 2017-07-06 2018-03-02 新余超能通新能源有限公司 一种方形锂离子电池双面整形挤压封口装置
CN207967191U (zh) * 2018-04-03 2018-10-12 宁德时代新能源科技股份有限公司 电池整形装置
CN212366037U (zh) * 2020-04-23 2021-01-15 江苏金赛尔电池科技有限公司 一种用于锂离子电池封口整形夹具
CN113546986A (zh) * 2021-08-02 2021-10-26 德清泰鑫金属制品有限公司 一种废旧钢铁回收用钢管矫正辅助装置
CN114833217A (zh) * 2022-07-01 2022-08-02 江苏时代新能源科技有限公司 电池壳体的平面度调整夹具、设备、方法及电池制造系统

Also Published As

Publication number Publication date
CN114833217A (zh) 2022-08-02
CN114833217B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2024002345A1 (zh) 电池壳体的平面度调整夹具、设备、方法及电池制造系统
WO2024000857A1 (zh) 电池壳体的平面度调整方法、调整设备及电池制造系统
US20190148683A1 (en) Cylindrical Battery Cell Manufacturing Device Comprising Secondary Crimping Mold
CN104993183A (zh) 一种电池模块、电池模组及电池模组封装方法
CN103441306A (zh) 弯曲电池制造方法
KR100586896B1 (ko) 이차전지용 파우치의 성형장치
CN107925019A (zh) 用于形成二次电池的袋型外壳的设备和方法
CN208970607U (zh) 防爆阀以及电池模组
KR20200117177A (ko) 이차전지용 파우치 외장재의 제조장치 및 제조방법
EP4391199A1 (en) Battery unit, battery, and electric device
WO2023240798A1 (zh) 电池箱、电池及用电装置
KR20220099462A (ko) 실링 유닛 및 그를 포함하는 실링 장치와 파우치형 이차전지 제조 장치
CN204029935U (zh) 一种软包电池化成分容柜
CN116391292A (zh) 电池单体、电池及用电装置
CN103872267A (zh) 一种软包装锂离子电池及其铝塑膜外壳的冲压模具
CN214898536U (zh) 一种圆柱软包锂电池的高度整形装置
CN113078368B (zh) 圆柱形锂离子电池电芯半自动充气膨胀设备
CN108878986B (zh) 一种弧形锂离子电池制造装置及制造方法
WO2022205860A1 (zh) 一种电池模组制备设备及电池模组的制作方法
CN207624823U (zh) 基于电芯一次封装系统的整体封压装置
WO2024103715A1 (zh) 一种圆柱电池的纠偏装置及加工设备
CN221885296U (zh) 一种全固态电池模组及电动汽车
CN114944529B (zh) 一种软包弧形电池壳体结构及其制作工艺
CN210607465U (zh) 一种扣式电池封口装置
CN221773827U (zh) 焊接定位工装以及电池生产线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830508

Country of ref document: EP

Kind code of ref document: A1