WO2024002291A1 - 一种静脉图像采集装置及其薄化设计方法、终端设备 - Google Patents

一种静脉图像采集装置及其薄化设计方法、终端设备 Download PDF

Info

Publication number
WO2024002291A1
WO2024002291A1 PCT/CN2023/104157 CN2023104157W WO2024002291A1 WO 2024002291 A1 WO2024002291 A1 WO 2024002291A1 CN 2023104157 W CN2023104157 W CN 2023104157W WO 2024002291 A1 WO2024002291 A1 WO 2024002291A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
window
reflector
collection
vein image
Prior art date
Application number
PCT/CN2023/104157
Other languages
English (en)
French (fr)
Inventor
吴春艳
宋卫栋
施祖传
李战涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024002291A1 publication Critical patent/WO2024002291A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/141Control of illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns
    • G06V40/145Sensors therefor

Definitions

  • Embodiments of the present application relate to the technical field of vein image acquisition structures, and in particular to a vein image acquisition device, terminal equipment, and a thinning design method of a vein image acquisition device.
  • the vein image of a living body is a living biological feature, which can be a vein image or a palm vein image.
  • Vein recognition uses near-infrared light to illuminate the living body, and uses the absorption of near-infrared light by hemoglobin in the flowing blood. It uses an infrared camera to take pictures to obtain the vein distribution map. After normalization, denoising, filtering enhancement, vein pattern segmentation and thinning, It performs processing such as chemical repair and extracts its features for identity authentication.
  • Vein recognition is highly accurate, highly anti-counterfeiting, stable in characteristics, and easy to use. It is widely used in different situations that require personal identity authentication, such as financial technology, social security, livelihood services, traffic command, education and examinations, smart security and smart homes, etc. .
  • Conventional vein image acquisition devices include straight-up and straight-down acquisition devices and reflection-type acquisition devices.
  • the straight-up and straight-down type collection device see Figure 1
  • the near-infrared light generated by the light source 1 is illuminated from top to bottom, passes through the collection site of the living body 200, and the vein image is captured by the camera 4 directly below the collection site.
  • a reflector 3 with an inclination angle of 45° to the horizontal plane is added, and the position and orientation of the camera 4 are adjusted.
  • the near-infrared light generated by the light source 1 is reflected to the camera 4 through the reflector 3, and the vein image is captured through the camera 4.
  • This solution decomposes the original object distance into vertical segments and horizontal segments, which can reduce the distance in the vertical direction and reduce the thickness of the collection device.
  • the collection device is equipped with a reflector 3 with an inclination angle of 45°. It is limited by the object distance, the radial size of the camera 4 and the horizontal space.
  • the thickness of the collection device is the vertical distance from the collection window 2 to the bottom of the reflector 3. It is difficult for the collection device to further thinning.
  • Embodiments of the present application provide a thinning design method for a vein image acquisition device, a terminal device, and a vein image acquisition device, which solves the problem in related technologies that it is difficult to further thin the vein image acquisition device.
  • a vein image collection device which includes: a light source, a collection window, a reflector, and a camera; the collection window is light-transmissible; the light source is set toward the collection window to collect light that can pass through the living body. Illuminating the organism located in the collection window; the reflector is used to reflect the light that passes through the organism to the camera. The reflector is tilted relative to the collection window.
  • the reflector has a first side and a second side opposite to each other.
  • One side is set adjacent to the collection window; the optical axis of the camera is parallel to the collection window; the angle ⁇ between the optical axis of the camera and the reflective surface of the reflector satisfies: 20° ⁇ 45°; the camera includes along the optical path A lens and an image sensor are provided, and the reflected light formed by the reflector is condensed by the lens and is imaged on the image sensor.
  • the vein image acquisition device provided by the embodiment of the present application is based on the conventional reflective acquisition device.
  • the angle between the optical axis of the camera and the reflective surface of the reflector is set to [20°, 45°), and the angle of the reflector is
  • the first side remains adjacent to the acquisition window, and the optical axis of the camera remains arranged horizontally. While the various components remain the same, the vein image acquisition device of this embodiment can be made thinner than the conventional reflective acquisition device, thus realizing the acquisition device Further thinning can be applied to scenes that require more space.
  • the camera of this embodiment can achieve better results than conventional
  • the camera of the reflective acquisition device has more vein image information (ie, a vein image with a larger area). After the processor corrects the distortion of the collected image, a vein image that meets the requirements of vein identification can be obtained.
  • an infrared filter disposed between the collection window and the reflector is also included. Setting up an infrared filter can reduce external stray light entering the camera and obtain better imaging quality.
  • the length of the infrared filter is greater than or equal to the length of the effective viewing window area of the collection window. The light that passes through the collection part of the biological body can pass through the infrared filter and then be reflected to the camera through the reflector.
  • it also includes a housing, the collection window is provided on the housing, and the reflector and camera are installed in the housing.
  • the collection window, reflector and camera are arranged on the casing to facilitate the direct assembly of the vein image collection device into the application scene.
  • the optical axis between the collection window and the reflector is perpendicular to the light exit surface of the light source. This helps the light generated by the light source to pass through the biological collection part more evenly, improves the imaging uniformity of the camera, and obtains better image quality.
  • the light source is located on the side of the collection window facing away from the reflector, and the light source and the collection window are spaced apart.
  • the biological collection part is placed on or above the collection window, and the light generated by the light source passes through the biological collection part and is then projected on the reflector.
  • the light source is located on the side of the collection window facing the reflector, and the light source and the collection window are spaced apart.
  • the biological collection part is placed on or above the collection window.
  • the light generated by the light source is projected from bottom to upward. It shines on the biological collection part through the collection window.
  • the light is transmitted and reflected in the collection part, and then enters the collection part from top to bottom. window, and then projected on the reflector.
  • the light source is located around the collection window.
  • the biological collection part is placed in the collection window, and the light generated by the light source is irradiated on the biological collection part.
  • the light is transmitted and reflected in the collection part, then enters the collection window from top to bottom, and is projected on the reflector.
  • the distance L between the first side and the second side of the reflector satisfies: 6 mm ⁇ L ⁇ 20 mm.
  • the overall structure takes up less space and has a smaller thickness.
  • the length E of the camera in the direction perpendicular to the optical axis of the camera and the distance B between the optical axis of the camera and the collection window satisfies: E/2 ⁇ B. This ensures that the side of the camera close to the collection window will not be higher than the collection window, making the thickness of the overall structure smaller.
  • the angle of view ⁇ of the vein image acquisition device, the angle ⁇ between the optical axis of the camera and the reflective surface of the mirror, the angle between the acquisition window and the first side is perpendicular to the acquisition window.
  • the vein images collected by the camera and processed by the processor for distortion correction meet the requirements for vein recognition.
  • the length W of the effective window area of the collection window, the angle ⁇ between the optical axis of the camera and the reflective surface of the mirror, the angle between the collection window and the first side perpendicular to the collection window The distance A in the direction, the distance B between the optical axis of the camera and the collection window, the distance X between the focus of the lens and the first side in the direction of the optical axis of the camera, and the distance between the first side and the second side
  • the vein images collected by the camera and processed by the processor for distortion correction meet the requirements for vein recognition.
  • embodiments of the present application provide a terminal device, including a processor and the above-mentioned vein image acquisition device.
  • the processor is communicatively connected to the vein image acquisition device.
  • the processor is used to distort the vein image collected by the vein image acquisition device. Correction processing to obtain the corrected image.
  • the terminal equipment provided by the embodiment of the present application adopts the above-mentioned vein image acquisition device.
  • the vein image acquisition device can be made thinner than the conventional reflective acquisition device, achieving further thinning of the acquisition device and can be used in applications that require more space. in the scene.
  • the camera of this embodiment collects more vein image information than the camera of a conventional reflective collection device, so that the processor can use it for vein recognition after correcting the image distortion.
  • embodiments of the present application provide a thinning design method for a vein image acquisition device, which includes the following steps:
  • the vein image acquisition device is adjusted
  • the original image collection device includes: a light source, a collection window, a reflector and a camera.
  • the reflector is tilted relative to the collection window.
  • the reflector has a first side and a second side opposite to each other, and the first side is adjacent to the collection window.
  • the camera includes a lens and an image sensor; the light source irradiates the light that can pass through the organism to the organism located in the collection window, the reflector reflects the light that passes through the organism to the camera, and the reflected light formed by the reflector passes through
  • the lens condenses the light and forms an image on the image sensor; the optical axis of the camera is parallel to the collection window; the optical axis of the camera and the reflector
  • the angle ⁇ 0 between the reflective surfaces is 45°; the length of the effective window area of the acquisition window is W 0 ; the field of view angle of the original image acquisition device is ⁇ 0 ;
  • the thinning design method of the vein image acquisition device provided by the embodiment of the present application is based on the original image acquisition device (ie, the conventional reflective acquisition device).
  • the angle between the optical axis of the camera and the reflective surface of the reflector is set is [20°, 45°), and the optical axis of the camera remains horizontally arranged.
  • the vein image acquisition device of this embodiment can be made thinner than the conventional reflective acquisition device, realizing the acquisition device Further thinning can be applied to scenes that require more space.
  • the camera of this embodiment can achieve better results than conventional
  • the camera of the reflective acquisition device has more vein image information. After the processor corrects the distortion of the collected image, a vein image that meets the requirements of vein identification can be obtained.
  • reducing the distance The length of the zone increases.
  • the distance between the optical axis of the camera and the collection window is reduced, so that the field of view of the vein image collection device is increased and the length of the effective window area of the collection window is increased.
  • Figure 1 is a schematic structural diagram of a conventional straight-up and straight-down collection device
  • Figure 2 is a schematic structural diagram of a conventional reflective collection device
  • Figure 3 is a schematic structural diagram of a vein image acquisition device provided by an embodiment of the present application.
  • FIG. 4 are respectively the imaging simulation diagram and the optical path simulation diagram of the vein image acquisition device in Figure 3 when the checkerboard calibration plate and the strip calibration plate are placed in the acquisition window;
  • Figure 5 is a partial structural schematic diagram of the vein image acquisition device of Figure 3.
  • Figure 6 is a partial structural schematic diagram of the vein image acquisition device of Figure 3.
  • Figure 7 is a schematic structural diagram of the original image acquisition device
  • FIG. 8 are respectively the imaging simulation diagram and the optical path simulation diagram of the original image acquisition device in Figure 7 when the checkerboard calibration plate and the strip calibration plate are placed in the acquisition window;
  • Figure 9 is a schematic structural diagram of a vein image acquisition device provided by another embodiment of the present application.
  • FIG. 10 are respectively imaging simulation diagrams and optical path simulation diagrams of the vein image acquisition device in Figure 9 when the checkerboard calibration plate and the strip calibration plate are respectively placed in the acquisition window.
  • connection may be detachable.
  • the ground connection can also be a non-detachable connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • length The terms “length”, “width”, “top”, “bottom”, “front”, “back”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, The orientation or positional relationship indicated by “inside”, “outer”, etc.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • the conventional reflective collection device is equipped with a reflector 3 with an inclination angle of 45° to the horizontal plane. This can only achieve thinning of the collection device to a certain extent, and it is difficult to further reduce the size of the collection device.
  • the conventional collection device does not set the inclination angle of the reflector 3 relative to the horizontal plane to be smaller than 45° (such as 30°).
  • the technical obstacle is: when the inclination angle of the reflector 3 is set to be smaller than 45°, the light passes through The image acquired by the camera 4 arranged horizontally will have a certain tangential distortion, that is, the collected images are all trapezoidal. It is difficult to compare the trapezoidal vein image with the originally collected normal vein image, and thus the identity authentication cannot be completed. Only when the reflector 3 with a tilt angle of 45° is used, the camera 4 with the optical axis arranged horizontally can collect a rectangular normal vein image. This is a technical obstacle that is difficult for those skilled in the art to overcome.
  • the vein image acquisition devices in the following embodiments of the present application can be applied to various occasions that require personal identity authentication, such as door locks, safes, attendance machines, mice and other terminal equipment. If the vein image acquisition device 100 can be further thinned, it can be used in scenarios that require more space, such as being used in car door handles or other door handles for identification when opening the door, or in mobile phones, smart watches, etc. Implement the unlocking function in the terminal device.
  • an embodiment of the present application provides a vein image collection device 100, which includes: a light source 10, a collection window 20, a reflector 30 and a camera 40; the collection window 20 is light-transmissive; the light source 10 is set toward the collection window 20 for Light that can pass through the organism is irradiated onto the organism located in the collection window 20; the reflector 30 is used to reflect the light that passes through the organism to the camera 40.
  • the reflector 30 is tilted relative to the collection window 20, and the reflector 30 It has opposite first side 31 and second side 32, and the first side 31 is arranged adjacent to the collection window 20; the optical axis 41 of the camera 40 is parallel to the collection window 20; the optical axis 41 of the camera 40 and the reflector
  • the angle ⁇ between the reflective surfaces of 30 satisfies: 20° ⁇ 45°; the camera 40 includes a lens 42 and an image sensor 43 arranged along the optical path.
  • the reflected light formed by the reflector 30 is condensed by the lens 42 and then forms an image in the image. image on sensor 43.
  • the light source 10 is used to generate near-infrared light that can penetrate the living body, and can be a light-emitting diode (LED) lamp with a filter layer provided on the light-emitting surface 11 to transmit the near-infrared light, or it can be Other light sources 10 that can emit near-infrared light.
  • LED light-emitting diode
  • the collection window 20 can be used to locate the collection part of the living body (such as fingers and palms).
  • the collection window 20 can be embodied as a light-transmitting plate or an empty window. During use, the collection part of the organism can be placed at the collection window 20 or above the collection window 20 .
  • This article defines the plane where the acquisition window 20 is located as a horizontal plane.
  • the optical axis 41 of the camera 40 is parallel to the collection window 20, and the optical axis 41 of the camera 40 is arranged in a horizontal direction.
  • the reflector 30 is a plane reflector or other replaceable optical device.
  • the reflector 30 can be configured as a rectangular reflector 30, which is easy to manufacture and assemble at a predetermined position.
  • the reflector 30 can also be configured in other shapes.
  • the reflector 30 is tilted relative to the collection window 20.
  • the reflector 30 has a first side 31 and a second side 32 opposite to each other.
  • the first side 31 is disposed adjacent to the collection window 20 and can be understood as: the first side 31 It is relatively close to the collection window 20 , while the second side 32 is relatively far from the collection window 20 .
  • the collection window 20 is defined herein as the top side of the device, and the second side 32 is defined as the bottom side of the device.
  • the distance in the vertical direction between the collection window 20 and the second side 32 is approximately the thickness Z of the vein image collection device 100 .
  • the image sensor 43 may be a charge-coupled device (CCD) image sensor or a complementary metal oxide semiconductor memory (CMOS) image sensor, which can be selected as required.
  • CCD charge-coupled device
  • CMOS complementary metal oxide semiconductor memory
  • the angle ⁇ between the optical axis 41 of the camera 40 and the reflective surface of the reflector 30 is the angle between the reflector 30 and the horizontal plane.
  • the value can be determined according to the degree of thinning of the vein image acquisition device 100 required. For example, ⁇ can be set to 20°, 25°, 30°, 35°, 40°, and so on. When ⁇ is set too small (less than 20°), The images collected by the camera 40 will be severely distorted.
  • the vein image acquisition device 100 provided in the embodiment of the present application is based on a conventional reflective acquisition device.
  • the angle between the optical axis 41 of the camera 40 and the reflective surface of the reflector 30 is set to [20°, 45°) , the first side 31 of the reflector 30 remains adjacent to the acquisition window 20, and the optical axis 41 of the camera 40 remains horizontally arranged.
  • the vein image acquisition device 100 of this embodiment can be made smaller than the conventional reflection
  • the new type collection device is thinner, achieving further thinning of the collection device, and can be used in scenes that require more space.
  • the angle between the reflector 30 in the vein image acquisition device 100 and the horizontal plane is less than 45°.
  • the camera 40 with the optical axis arranged horizontally will collect a vein image with trapezoidal distortion.
  • the distorted vein image is difficult to compare with the original collected normal vein image. Images are compared.
  • (a) and (b) in Figure 4 are respectively imaging simulation diagrams of the vein image acquisition device provided by the embodiment of the present application when the checkerboard calibration plate and the strip calibration plate are respectively placed in the acquisition window. It can be seen that the image collected by the camera 40 has trapezoidal distortion.
  • the field of view (field of view, FOV) ⁇ of the vein image collection device 100 is increased, and by increasing or not changing the length W of the effective window area of the collection window 20 , so that the camera 40 of this embodiment can obtain more vein image information (i.e., a vein image with a larger area) than the camera of a conventional reflective acquisition device.
  • the processor corrects the distortion of the collected image, it can obtain a vein image that meets the requirements of vein identification.
  • vein image Vein images that meet the requirements for vein recognition have no distortion and can comprehensively and clearly record the distribution of veins at the collection site of a living body, and can be used for identification and authentication of living bodies.
  • processor distortion correction is a conventional image signal processing (ISP) technology, which can repair distorted images into ideal and normal images.
  • ISP image signal processing
  • the thin vein image acquisition device 100 combined with image signal processing technology can overcome the technical obstacle that conventional reflective acquisition devices cannot configure mirrors with an inclination angle less than 45°.
  • an infrared filter (IR filter) 50 disposed between the collection window 20 and the reflector 30 is also included.
  • IR filter infrared filter
  • the infrared filter 50 can transmit light in a specific infrared band and filter out light outside this band. By setting the infrared filter 50, external stray light can be reduced from entering the camera 40, and better imaging quality can be obtained.
  • the length G of the infrared filter 50 is greater than or equal to the length W of the effective viewing window area of the collection window 20 . In this solution, all the light passing through the collection part of the biological body can pass through the infrared filter 50 and then be reflected to the camera 40 through the reflector 30 .
  • the infrared filter 50 does not need to be provided.
  • a housing 60 is also included, the collection window 20 is provided on the housing 60 , and the reflector 30 and the camera 40 are installed in the housing 60 .
  • the collection window 20, the reflector 30 and the camera 40 are arranged on the housing 60, so that the vein image collection device 100 can be directly assembled into the application scene.
  • the housing 60 can be made of an opaque material, which facilitates the light entering the housing 60 to be reflected by the reflector 30 and then be captured by the camera 40 .
  • the housing 60 may be an assembled structure or an integrally formed structure.
  • the housing 60 includes a first shell and a second shell, and the first shell and the second shell are assembled using fasteners or buckles or other methods.
  • the first shell and the second shell may enclose an installation cavity, and the infrared filter plate, reflector 30 and camera 40 are arranged at appropriate positions in the installation cavity.
  • the first shell has an installation hole, and the collection window 20 is a light-transmitting plate and is arranged at the installation hole.
  • the optical axis 21 between the collection window 20 and the reflector 30 is perpendicular to the light exit surface 11 of the light source 10 . Since the inclination angle of the reflector 30 relative to the horizontal plane in this embodiment is less than 45°, the optical axis 21 between the collection window 20 and the reflector 30 will be inclined toward the side away from the camera 40, making the light source 10 larger on the inclined side. of light intensity. This facilitates the light generated by the light source 10 to pass through the biological collection part more uniformly, improves the imaging uniformity of the camera 40, and obtains better image quality.
  • the light source 10 can be implemented in various ways.
  • the first way to realize the light source is the top lighting type: referring to Figure 3, the light source 10 is located on the side of the collection window 20 facing away from the reflector 30, and the light source 10 and the collection window 20 are spaced apart.
  • the biological collection site is placed on or above the collection window 20 , and the light generated by the light source 10 passes through the biological collection site and is then projected on the reflector 30 .
  • the light source 10 is disposed on the side of the collection window 20 facing away from the reflector 30 , the light source 10 can be disposed on another structural member instead of being disposed in the housing 60 for installing the reflector 30 and the camera 40 .
  • the light source 10 can be set on the door panel, and the collection window 20, the reflector 30 and the camera 40 are set on the door handle, which is convenient for arrangement and does not take up too much space.
  • the second way to realize the light source is down-lighting: the light source is located on the side of the collection window facing the reflector, and the light source and the collection window are spaced apart.
  • the biological collection part is placed on or above the collection window.
  • the light generated by the light source is projected from bottom to upward. It shines on the biological collection part through the collection window.
  • the light is transmitted and reflected in the collection part, and then enters the collection part from top to bottom. window, and then projected on the reflector.
  • the light source can be arranged inside the housing to make the overall structure compact.
  • the third way to realize the light source is side lighting: the light source is located around the collection window.
  • the biological collection part is placed in the collection window, and the light generated by the light source is irradiated on the biological collection part.
  • the light is transmitted and reflected in the collection part, then enters the collection window from top to bottom, and is projected on the reflector.
  • the housing is provided with a shell wall on the side of the collection window, and the light source can be arranged on the shell wall.
  • the distance L between the first side 31 and the second side 32 of the reflector 30 satisfies: 6 mm ⁇ L ⁇ 20 mm. If the distance L between the first side 31 and the second side 32 of the reflector 30 is set in the above range, the inclination angle of the reflector 30 relative to the horizontal plane is less than 45°, so that the overall structure takes up less space and has a smaller thickness.
  • the length E of the camera 40 in the direction perpendicular to the optical axis 41 of the camera 40 and the distance B between the optical axis 41 of the camera 40 and the collection window 20 satisfies: E/2 ⁇ B.
  • the optical axis 41 of the camera 40 is arranged horizontally, so that the length E and the distance B of the camera 40 satisfy the above relationship, so that the side of the camera 40 close to the collection window 20 will not be higher than the collection window 20, so that the thickness of the overall structure is smaller.
  • the field of view angle ⁇ of the vein image acquisition device 100 and the length W of the effective viewing window area of the acquisition window 20 will be introduced below.
  • the field of view angle ⁇ of the vein image collection device 100 refers to the angle of view of the measured target (ie, the collection site of the living body) with the equivalent position 43' of the image sensor 43 relative to the reflector 30 as the vertex.
  • the object image can pass through the angle formed by the two edges (S, T) of the maximum range of the equivalent position image sensor.
  • A is the distance between the collection window 20 and the first side 31 in the direction perpendicular to the collection window 20;
  • B is the distance between the optical axis 41 of the camera 40 and the collection window 20;
  • X is the distance between the focus of the lens 42 and the first side 31 in the direction of the optical axis 41 of the camera 40;
  • L is the distance between the first side 31 and the second side 32 of the reflecting mirror 30 , that is, the length of the reflecting mirror 30 .
  • the effective viewing window area of the collection window 20 refers to the area formed on the collection window 20 by the two edges (S, T) of the field of view angle ⁇ .
  • A is the distance between the collection window 20 and the first side 31 in the direction perpendicular to the collection window 20;
  • B is the distance between the optical axis 41 of the camera 40 and the collection window 20;
  • X is the distance between the focus of the lens 42 and the first side 31 in the direction of the optical axis 41 of the camera 40;
  • L is the distance between the first side 31 and the second side 32 of the reflecting mirror 30 , that is, the length of the reflecting mirror 30 .
  • the distance between the first side 31 and the second side 32 of the reflecting mirror 30 (length of the reflecting mirror 30) L.
  • N (D 2 +Y 2 ) 1/2
  • the focus of the lens 42 and the first side are set within an appropriate range.
  • the camera 40 of this embodiment can obtain more vein image information than the camera of a conventional reflective collection device.
  • a larger length W of the effective window area can be set, so that the camera 40 can obtain more vein image information to compensate for the loss during distortion correction.
  • the original image collection device includes: light source 1, collection window 2, reflector 3 and camera 4.
  • Camera 4 includes lens 42 and image sensor 43.
  • the optical axis 41 of the camera 4 is parallel to the collection window 2, the angle ⁇ 0 between the reflector 30 and the horizontal plane is 45°, the imaging optical axis of the camera 40 is centered, the field of view ⁇ 0 is 22°, and the collection window 20
  • the length W 0 of the effective window area is 9.3mm
  • the thickness Z 0 of the original image acquisition device is 11mm.
  • the distance and position relationship between the camera 40 and the reflector 30 satisfies: the vein image collected by the camera 40 meets the vein identification requirements.
  • FIG. 8 is imaging simulation diagrams of the original image acquisition device when the checkerboard calibration plate and the strip calibration plate are respectively placed in the acquisition window. It can be seen from the figure that when the angle ⁇ 0 between the reflector 3 and the horizontal plane is 45°, the camera 4 with the optical axis arranged horizontally can collect normal images.
  • (c) in Figure 8 is an optical path simulation diagram of the original image acquisition device. The two horizontal bars on the upper side of the figure are the acquisition window 2 and the infrared filter 5 respectively.
  • the vein image acquisition device 100 has an angle ⁇ between the reflector 30 and the horizontal plane of 35°, and the imaging optical axis 21 is tilted toward the side away from the camera 40 .
  • the camera 40 is moved in the horizontal direction toward the reflector 30 while the position and length W of the effective window area remain unchanged.
  • the transmitted light passing through the veins is projected to the reflector 30, and then reflected by the reflector 30 to the camera 40.
  • the vein image is collected through the camera 40, so that the vein image collected by the camera 40 has been processed by the processor for distortion correction and meets the requirements of vein recognition. Require.
  • FIG. 4 is respectively imaging simulation diagrams of the vein image acquisition device of the first embodiment when the checkerboard calibration plate and the strip calibration plate are respectively placed in the acquisition window. It can be seen from the figure that when the angle ⁇ between the reflector 30 and the horizontal plane is 35°, the camera 40 with the optical axis arranged horizontally can collect a trapezoidal image with tangential distortion.
  • (c) in Figure 4 is an optical path simulation diagram of the vein image acquisition device 100 of the first embodiment. The two horizontal bars on the upper side of the figure are the acquisition window 20 and the infrared filter 50 respectively.
  • the simulation results show that using the same camera and realizing the position and length of the effective window area, the thickness Z of the vein image acquisition device 100 of the first embodiment is 10 mm, and the thickness is reduced by 1 mm. There is a gain of 1/11, which effectively reduces the thickness; the field of view angle ⁇ is 25.5°, an increase of 3.5°, and a gain of 3.5/22. Increasing the field of view angle ⁇ helps the camera 40 obtain more image information.
  • the angle ⁇ between the reflector 30 and the horizontal plane is 35°, and the imaging light 21 is tilted toward the side away from the camera 40 .
  • the position of the camera 40 is raised by 0.9mm, the camera 40 is moved in the horizontal direction toward the reflector 30, the position of the effective window area is kept unchanged, and the length W of the effective window area is increased to 9.9mm. , thereby allowing the camera 40 to capture more effective information to compensate for the distortion loss.
  • the transmitted light passing through the veins is projected onto the reflector 30, and then is reflected by the reflector 30. 30 is reflected to the camera 40, and the vein image is collected through the camera 40, so that the image of the vein image collected by the camera 40 and processed by the processor for distortion correction meets the vein recognition requirements.
  • FIG. 10 is an optical path simulation diagram of the vein image acquisition device 100 of the second embodiment.
  • the two horizontal bars on the upper side of the figure are the acquisition window 20 and the infrared filter 50 respectively.
  • the simulation results show that using the same camera, the thickness of the vein image acquisition device 100 of the second embodiment is 10 mm, which is reduced by 1 mm, with a gain of 1/11, effectively reducing the thickness; the field of view is 27°, an increase of 5°, with a gain of 5/22, which increases the field of view and helps the camera 40 obtain more image information.
  • An embodiment of the present application provides a terminal device, including a processor and the above-mentioned vein image acquisition device 100.
  • the processor is communicatively connected to the vein image acquisition device 100.
  • the processor is used to perform distortion correction on the vein images collected by the vein image acquisition device 100. processed to obtain the corrected image.
  • the terminal equipment provided by the embodiment of the present application adopts the above-mentioned vein image acquisition device 100.
  • the vein image acquisition device 100 can be made thinner than the conventional reflective acquisition device, achieving further thinning of the acquisition device and can be applied to the space occupied. in more demanding scenarios.
  • the camera 40 of this embodiment collects more vein image information than the camera of a conventional reflective collection device, so that the image distortion can be corrected by the processor and used for vein recognition.
  • the terminal devices can be door locks, safes, attendance machines, mice, door handles, mobile phones, smart watches and other terminal devices that require personal identity authentication.
  • the embodiment of the present application provides a thinning design method for the vein image acquisition device 100, which includes the following steps:
  • the vein image acquisition device 100 is obtained by adjustment
  • the original image collection device as shown in Figure 7 includes: light source 1, collection window 2, reflector 3 and camera 4.
  • the reflector 30 is tilted relative to the collection window 20.
  • the reflector 30 has opposite first sides 31 and The second side 32 and the first side 31 are arranged adjacent to the collection window 20.
  • the camera 4 includes a lens 42 and an image sensor 43; the light source 1 irradiates light that can pass through the living body onto the living body located in the collecting window 2.
  • the reflector 3 reflects the light that has passed through the living body to the camera 4.
  • the reflected light formed by the reflector 3 is condensed by the lens 42 and is imaged on the image sensor 43; the optical axis 41 of the camera 4 is parallel to the collection window 2; The angle ⁇ 0 between the optical axis 41 of the camera 4 and the reflective surface of the mirror 30 is 45°; the length of the effective viewing window area of the acquisition window 20 is W 0 ; the field of view angle of the original image acquisition device is ⁇ 0 ;
  • the distance position relationship between the camera 40 and the reflector 30 is adjusted to adjust the field of view angle ⁇ of the vein image collection device 100 to satisfy ⁇ > ⁇ 0 .
  • the thinning design method of the vein image acquisition device 100 provided by the embodiment of the present application is based on the original image acquisition device (ie, the conventional reflective acquisition device).
  • the optical axis 41 of the camera 40 and the reflective surface of the reflector 30 are The included angle of Thinner, the acquisition device can be further reduced in thickness, and can be used in scenes that require more space.
  • the camera 40 of this embodiment It can obtain more vein image information than the camera of a conventional reflective acquisition device.
  • the processor corrects the distortion of the collected image, a vein image that meets the requirements of vein identification can be obtained.
  • W 0 ⁇ W ⁇ 1.15W 0 can be set.
  • the camera 40 can obtain more vein image information to meet the requirements of distortion correction. Compensation for time losses.
  • W>W 0 the center of the effective window area remains unchanged and both ends are extended and widened.
  • the length W of the effective window area ranges from: 9mm ⁇ W ⁇ 20mm.
  • the length W of the effective window area ranges from: 45mm ⁇ W ⁇ 100mm.
  • the distance X between the focus of the lens 42 and the first side 31 in the direction of the optical axis 41 of the camera 40 is reduced, so that the field of view of the vein image acquisition device 100 is increased.
  • the length of the effective window area of the collection window 20 increases.
  • the focus of the lens 42 and the first side are set within an appropriate range.
  • the distance between the optical axis 41 of the camera 40 and the collection window 20 is reduced, so that the field of view of the vein image collection device 100 is increased, and the effective viewing window area of the collection window 20 is increased. Increased length.
  • vein image acquisition device 100 provided in the above embodiments can be adapted to the thinning design method of the vein image acquisition device 100 as some optional implementation methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)

Abstract

本申请实施例提供了一种静脉图像采集装置及其薄化设计方法、终端设备。在常规反射式采集装置的基础上,将摄像头的光轴和反射镜的反射面之间的夹角设置为[20°,45°),反射镜的第一侧边保持邻近采集窗,摄像头的光轴保持水平布置,在各种器件保持相同的情况下,本实施例静脉图像采集装置可以制作得比常规反射式采集装置更薄,实现了采集装置近一步减薄,可应用于对占用空间更苛刻的场景中。通过设置摄像头和反射镜之间的距离位置关系,增加或不改变采集窗的有效视窗区的长度,使得本实施例摄像头采集相比常规反射式采集装置的摄像头更多的静脉图像信息,使得处理器对图像畸变矫正处理后可作为静脉识别使用。

Description

一种静脉图像采集装置及其薄化设计方法、终端设备
本申请要求在2022年7月1日提交中国国家知识产权局、申请号为202210781091.1的中国专利申请的优先权,发明名称为“一种静脉图像采集装置及其薄化设计方法、终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及静脉图像采集结构技术领域,尤其涉及一种静脉图像采集装置、终端设备、静脉图像采集装置的薄化设计方法。
背景技术
生物体的静脉图像是一种活体生物特征,可以是静脉图像或掌静脉图像。静脉识别采用近红外光线照射生物体,利用流动的血液中血红蛋白对近红外光的吸收作用,用红外摄像头拍照获取静脉血管分布图,经归一化、去噪、滤波增强、静脉纹路分割和细化修复等处理过程,提取其特征进行身份认证。静脉识别具有高度准确、高度防伪、特性稳定、使用方便等特点,广泛应用在需要个人身份认证的不同场合,比如金融科技、社会保障、民生服务、指挥交通、教育考试、智慧安全和智能家居等。
常规的静脉图像采集装置有直上直下式采集装置和反射式采集装置。在直上直下式采集装置中,参阅图1,光源1产生的近红外光线从上往下打光,透过生物体200的采集部位,在采集部位的正下方通过摄像头4拍摄静脉图像。在确定摄像头4后,根据成像原理1/f=1/u+1/v(其中,f为摄像头焦距;u为物距;v为像距),清晰成像需要一定的物距(即采集部位到摄像头4的距离),采集装置的厚度(即采集窗2至摄像头4的距离)要调整至满足成像物距需要,使得厚度较大,难以小型化。
在反射式采集装置中,参阅图2,在直上直下式采集装置的基础上,增加了和水平面间倾斜角45°的反射镜3,并调整摄像头4的位置和朝向。光源1产生的近红外光线通过反射镜3反射至摄像头4,通过摄像头4拍摄静脉图像。该方案将原来的物距分解为竖直段和水平段,能降低竖直方向的距离,实现采集装置厚度降低。该采集装置配置了45°倾斜角的反射镜3,受到物距、摄像头4径向尺寸和水平空间的限制,采集装置的厚度为采集窗2至反射镜3底部的竖向距离,采集装置难以进一步薄化。
发明内容
本申请实施例提供一种静脉图像采集装置、终端设备、静脉图像采集装置的薄化设计方法,解决了相关技术中的静脉图像采集装置难以进一步薄化的问题。
本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种静脉图像采集装置,包括:光源、采集窗、反射镜和摄像头;采集窗可透光;光源朝向采集窗设置,用于将可透过生物体的光照射至位于采集窗的生物体上;反射镜用于将透过生物体后的光反射至摄像头,反射镜相对采集窗倾斜设置,反射镜具有相对的第一侧边和第二侧边,第一侧边相邻于采集窗设置;摄像头的光轴和采集窗相平行;摄像头的光轴和反射镜的反射面之间的夹角α满足:20°≤α<45°;摄像头包括沿光路设置的透镜和图像传感器,在反射镜形成的反射光经过透镜聚光后在图像传感器上成像。
本申请实施例提供的静脉图像采集装置,在常规反射式采集装置的基础上,将摄像头的光轴和反射镜的反射面之间的夹角设置为[20°,45°),反射镜的第一侧边保持邻近采集窗,摄像头的光轴保持水平布置,在各种器件保持相同的情况下,本实施例静脉图像采集装置可以制作得比常规反射式采集装置更薄,实现了采集装置近一步减薄,可应用于对占用空间更苛刻的场景中。
通过设置摄像头和反射镜之间的距离位置,以增大静脉图像采集装置的视场角θ,通过增加或不改变采集窗的有效视窗区的长度W,使得本实施例摄像头可获得相比常规反射式采集装置的摄像头更多的静脉图像信息(即面积更大的静脉图像),经过处理器对采集图像畸变矫正处理后可得到符合静脉识别要求的静脉图像。
在一种可选实现方式中,还包括设置于采集窗和反射镜之间的红外滤光片。设置红外滤光片,就能减少外部杂光进入到摄像头上,可获得较佳的成像质量。
在一种可选实现方式中,在摄像头的光轴方向上,红外滤光片的长度大于或等于采集窗的有效视窗区的长度。透过生物体采集部位的光都能经过红外滤光片,再通过反射镜反射至摄像头上。
在一种可选实现方式中,还包括壳体,采集窗设置于壳体上,反射镜和摄像头安装于壳体内。将采集窗、反射镜和摄像头设置在壳体上,便于静脉图像采集装置直接装配至应用场景中。
在一种可选实现方式中,采集窗和反射镜之间的光轴垂直于光源的出光面。利于光源产生的光线较均匀地透过生物体采集部,提升摄像头的成像均匀性,获得较佳图像质量。
在一种可选实现方式中,光源位于采集窗背对反射镜的一侧,光源和采集窗间隔设置。生物体采集部位放置在采集窗或其上方,光源产生的光透过生物体采集部位,再投射在反射镜上。
在一种可选实现方式中,光源位于采集窗面向反射镜的一侧,光源和采集窗间隔设置。生物体采集部位放置在采集窗或其上方,光源产生的光由下向上投射,经过采集窗照射在生物体采集部位上,光在采集部位内发生透射和反射,再由上向下进入到采集窗,再投射在反射镜上。
在一种可选实现方式中,光源位于采集窗的周围。生物体采集部位放置在采集窗,光源产生的光照射在生物体采集部位上,光在采集部位内发生透射和反射,再由上向下进入到采集窗,再投射在反射镜上。
在一种可选实现方式中,反射镜的第一侧边和第二侧边的间距L满足:6mm≤L≤20mm。使得整体结构占用空间较小,厚度较小。
在一种可选实现方式中,摄像头在垂直于摄像头的光轴方向上的长度E和摄像头的光轴和采集窗的间距B之间满足:E/2≤B。使得摄像头靠近采集窗的一侧不会高于采集窗,使整体结构厚度较小。
在一种可选实现方式中,静脉图像采集装置的视场角θ、摄像头的光轴和反射镜的反射面之间的夹角α、采集窗和第一侧边之间在垂直于采集窗的方向上的距离A、摄像头的光轴和采集窗的间距B、透镜的焦点和第一侧边之间在摄像头的光轴方向上的距离X,以及第一侧边和第二侧边的间距L,满足以下公式:
θ=arctan[(B-A)/X]+arctan[(L*sinα-(B-A))/(X-L*cosα)];
摄像头采集的静脉图像经过处理器畸变矫正处理后的图像符合静脉识别要求。
视场角θ越大,图像传感器可采集的静脉图像信息就越多,越有利于所采集的静脉图像经过处理器畸变矫正处理后的图像符合静脉识别要求。
在一种可选实现方式中,采集窗的有效视窗区的长度W、摄像头的光轴和反射镜的反射面之间的夹角α、采集窗和第一侧边之间在垂直于采集窗的方向上的距离A、摄像头的光轴和采集窗的间距B、透镜的焦点和第一侧边之间在摄像头的光轴方向上的距离X,以及第一侧边和第二侧边的间距L,满足以下公式:
W={A/sin[2α-arctan((B-A)/X)]+[(B-A)2+X2]1/2}*cos[2α-arctan((B-A)/X)]-{A/sin[2α+arctan[(L*sinα-
(B-A))/(X-L*cosα)]]+[(L*sinα-(B-A))2+(X-L*cosα)2]1/2}*cos[2α+arctan[(L*sinα-(B-A))/(X-L*cosα)]];
摄像头采集的静脉图像经过处理器畸变矫正处理后的图像符合静脉识别要求。
采集窗的有效视窗区的长度W越大,图像传感器可采集的静脉图像信息就越多,越有利于所采集的静脉图像经过处理器畸变矫正处理后的图像符合静脉识别要求。
第二方面,本申请实施例提供一种终端设备,包括处理器和上述的静脉图像采集装置,处理器和静脉图像采集装置通信连接,处理器用于对静脉图像采集装置所采集的静脉图像进行畸变矫正处理以获得矫正后图像。
本申请实施例提供的终端设备,采用上述的静脉图像采集装置,静脉图像采集装置可以制作得比常规反射式采集装置更薄,实现了采集装置近一步减薄,可应用于对占用空间更苛刻的场景中。本实施例摄像头采集相比常规反射式采集装置的摄像头更多的静脉图像信息,使得处理器对图像畸变矫正处理后可作为静脉识别使用。
第三方面,本申请实施例提供一种静脉图像采集装置的薄化设计方法,包括以下步骤:
在原始图像采集装置的基础上,调整得到静脉图像采集装置;
其中,原始图像采集装置包括:光源、采集窗、反射镜和摄像头,反射镜相对采集窗倾斜设置,反射镜具有相对的第一侧边和第二侧边,第一侧边相邻于采集窗设置,摄像头包括透镜和图像传感器;光源将可透过生物体的光照射至位于采集窗的生物体上,反射镜将透过生物体后的光反射至摄像头,在反射镜形成的反射光经过透镜聚光后在图像传感器上成像;摄像头的光轴和采集窗相平行;摄像头的光轴和反射镜 的反射面之间的夹角α0为45°;采集窗的有效视窗区的长度为W0;原始图像采集装置的视场角为θ0
调整摄像头的光轴和反射镜的反射面之间的夹角α,满足20°≤α<45°;
调整采集窗的有效视窗区的长度W,满足W≥W0
调整摄像头和反射镜之间的距离位置关系,以调整静脉图像采集装置的视场角θ,满足θ>θ0
本申请实施例提供的静脉图像采集装置的薄化设计方法,在原始图像采集装置(即常规反射式采集装置)的基础上,将摄像头的光轴和反射镜的反射面之间的夹角设置为[20°,45°),摄像头的光轴保持水平布置,在各种器件保持相同的情况下,本实施例静脉图像采集装置可以制作得比常规反射式采集装置更薄,实现了采集装置近一步减薄,可应用于对占用空间更苛刻的场景中。通过设置摄像头和反射镜之间的距离位置,以增大静脉图像采集装置的视场角θ,通过增加或不改变采集窗的有效视窗区的长度W,使得本实施例摄像头可获得相比常规反射式采集装置的摄像头更多的静脉图像信息,经过处理器对采集图像畸变矫正处理后可得到符合静脉识别要求的静脉图像。
在一种可选实现方式中,减小透镜的焦点和第一侧边之间在摄像头的光轴方向上的距离X,使得在静脉图像采集装置的视场角增大,采集窗的有效视窗区的长度增大。
在一种可选实现方式中,减小摄像头的光轴和采集窗的间距,使得在静脉图像采集装置的视场角增大,采集窗的有效视窗区的长度增大。
附图说明
图1为常规的直上直下式采集装置的结构示意图;
图2为常规的反射式采集装置的结构示意图;
图3为本申请实施例提供的静脉图像采集装置的结构示意图;
图4中的(a)至(c)分别为图3的静脉图像采集装置在采集窗分别放置棋盘格标定板、条状格标定板时的成像仿真图,以及光路仿真图;
图5为图3的静脉图像采集装置的部分结构示意图;
图6为图3的静脉图像采集装置的部分结构示意图;
图7为原始图像采集装置的结构示意图;
图8中的(a)至(c)分别为图7的原始图像采集装置在采集窗分别放置棋盘格标定板、条状格标定板时的成像仿真图,以及光路仿真图;
图9为本申请另一实施例提供的静脉图像采集装置的结构示意图;
图10中的(a)至(c)分别为图9的静脉图像采集装置在采集窗分别放置棋盘格标定板、条状格标定板时的成像仿真图,以及光路仿真图。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。虽然本申请的描述将结合一些实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作为申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请实施例中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
如图2所示常规的反射式采集装置中,配置了和水平面45°倾斜角的反射镜3,只能在一定程度上实现采集装置的薄化,难以将采集装置近一步做小。常规采集装置没有将反射镜3相对水平面的倾斜角设置为比45°更小(比如30°),所存在的技术障碍是:在反射镜3的倾斜角设置为比45°更小时,通过光轴水平布置的摄像头4获取的图像会存在一定的切向畸变,就是所采集的图像都呈现为梯形,梯形静脉图像难以跟原始采集的正常静脉图像进行比对,进而无法完成身份认证。只有采用45°倾斜角的反射镜3时,光轴水平布置的摄像头4才会采集到呈矩形的正常静脉图像。这是本领域技术人员难以逾越的技术障碍。
本申请以下各个实施例的静脉图像采集装置,可以应用于需要个人身份认证的各种场合,比如,门锁、保险箱、考勤机、鼠标等终端设备。如果能将静脉图像采集装置100进一步薄化,就能应用于对占用空间更苛刻的场景中,比如用在汽车门把手或其他门把手作为开门时的身份识别,或者用在手机、智能手表等终端设备中实现解锁功能。
参阅图3,本申请实施例提供一种静脉图像采集装置100,包括:光源10、采集窗20、反射镜30和摄像头40;采集窗20可透光;光源10朝向采集窗20设置,用于将可透过生物体的光照射至位于采集窗20的生物体上;反射镜30用于将透过生物体后的光反射至摄像头40,反射镜30相对采集窗20倾斜设置,反射镜30具有相对的第一侧边31和第二侧边32,第一侧边31相邻于采集窗20设置;摄像头40的光轴41和采集窗20相平行;摄像头40的光轴41和反射镜30的反射面之间的夹角α满足:20°≤α<45°;摄像头40包括沿光路设置的透镜42和图像传感器43,在反射镜30形成的反射光经过透镜42聚光后在图像传感器43上成像。
其中,光源10用于产生可透过生物体的近红外光,可以为发光二极管(light-emitting diode,LED)灯并在出光面11上设置滤光层以透过近红外光,还可以是其他可发出近红外光的光源10。
采集窗20可用于对生物体的采集部位(比如手指、手掌)定位。采集窗20可以体现为一块透光板,也可以为一个空窗。在使用时,生物体的采集部位可以放置在采集窗20处,也放置在采集窗20的上方。本文将采集窗20所在平面定义为一个水平面。摄像头40的光轴41和采集窗20相平行,摄像头40的光轴41是水平方向布置。
反射镜30就是平面反射镜或其他可以代替的光学器件。反射镜30可以配置为矩形的反射镜30,容易制作和装配在预定位置。反射镜30也可以设置为其他形状。反射镜30相对采集窗20倾斜设置,反射镜30具有相对的第一侧边31和第二侧边32,第一侧边31相邻于采集窗20设置,可以理解为:第一侧边31离采集窗20比较近,而第二侧边32离采集窗20比较远。本文将采集窗20定义为装置的顶侧,第二侧边32定义为装置的底侧。采集窗20和第二侧边32在竖直方向上的距离大致就是静脉图像采集装置100的厚度Z。
图像传感器43可以是电荷耦合元件(charge-coupled device,CCD)图像传感器,或者互补金属氧化物半导体存储器(complementary metal oxide semiconductor,CMOS)图像传感器,具体按需选择。
由于摄像头40的光轴41和采集窗20相平行,摄像头40的光轴41和反射镜30的反射面之间的夹角α就是反射镜30和水平面之间的夹角。可以按照需要薄化静脉图像采集装置100的程度去取值。示例性的,α可以设置为20°、25°、30°、35°、40°,等等。α设置得过小(小于20°)时, 摄像头40采集的图像将会严重失真。
本申请实施例提供的静脉图像采集装置100,在常规反射式采集装置的基础上,将摄像头40的光轴41和反射镜30的反射面之间的夹角设置为[20°,45°),反射镜30的第一侧边31保持邻近采集窗20,摄像头40的光轴41保持水平布置,在各种器件保持相同的情况下,本实施例静脉图像采集装置100可以制作得比常规反射式采集装置更薄,实现了采集装置近一步减薄,可应用于对占用空间更苛刻的场景中。
本静脉图像采集装置100中的反射镜30和水平面之间的夹角小于45°,光轴水平布置的摄像头40会采集到呈梯形畸变的静脉图像,畸变的静脉图像难以跟原始采集的正常静脉图像进行比对。图4中的(a)、(b)分别是本申请实施例提供的静脉图像采集装置在采集窗分别放置棋盘格标定板、条状格标定板时的成像仿真图。可以看出摄像头40采集的图像呈梯形畸变。
通过设置摄像头40和反射镜30之间的距离位置,以增大静脉图像采集装置100的视场角(field of view,FOV)θ,通过增加或不改变采集窗20的有效视窗区的长度W,使得本实施例摄像头40可获得相比常规反射式采集装置的摄像头更多的静脉图像信息(即面积更大的静脉图像),经过处理器对采集图像畸变矫正处理后可得到符合静脉识别要求的静脉图像。符合静脉识别要求的静脉图像是没有畸变失真的,能全面、清楚地记录生物体采集部位的静脉分布情况,可用于生物体身份的识别认证。其中,处理器畸变矫正属于常规的图像信号处理(image signal processing,ISP)技术,能够将畸变失真图像修复为理想正常的图像。薄化的静脉图像采集装置100结合图像信号处理技术,就能克服了常规反射式采集装置无法配置倾斜角小于45°反射镜的技术障碍。
在一些实施例中,参阅图3,还包括设置于采集窗20和反射镜30之间的红外滤光片(infrared filter,IR filter)50。一般的使用场景中,周围环境都会存在较多的杂光,外部杂光进入到摄像头40上将会影响成像质量。红外滤光片50可以使特定红外波段的光透过,滤除此波段以外的光。设置红外滤光片50,就能减少外部杂光进入到摄像头40上,可获得较佳的成像质量。
在一些实施例中,参阅图3,在摄像头40的光轴41方向(即水平方向)上,红外滤光片50的长度G大于或等于采集窗20的有效视窗区的长度W。该方案中,透过生物体采集部位的光都能经过红外滤光片50,再通过反射镜30反射至摄像头40上。
此外,在外部杂光较弱对摄像头40的成像影响较小的场合,比如较黑暗的场合,就可以不设置红外滤光片50。
在一些实施例中,参阅图3,还包括壳体60,采集窗20设置于壳体60上,反射镜30和摄像头40安装于壳体60内。该方案中,将采集窗20、反射镜30和摄像头40设置在壳体60上,便于静脉图像采集装置100直接装配至应用场景中。壳体60可采用不透光的材料制作,利于进入壳体60的光线经过反射镜30反射后由摄像头40获取图像。壳体60可以为组装结构或一体成型结构。
示例性的,壳体60包括第一壳和第二壳,第一壳和第二壳采用紧固件或卡扣或其他方式装配。第一壳和第二壳可围成安装腔,红外滤光板、反射镜30和摄像头40设置在安装腔合适位置。第一壳具有安装孔,采集窗20为透光板并设置在安装孔处。
在一些实施例中,参阅图3,采集窗20和反射镜30之间的光轴21垂直于光源10的出光面11。由于本实施例反射镜30相对水平面的倾斜角小于45°,采集窗20和反射镜30之间的光轴21将会朝向远离摄像头40的一侧倾斜,使光源10在倾斜一侧配置更大的光强度。利于光源10产生的光线较均匀地透过生物体采集部,提升摄像头40的成像均匀性,获得较佳图像质量。
在设置光源10时,光源10可以有多种实现方式。
第一种光源的实现方式是上打光式:参阅图3,光源10位于采集窗20背对反射镜30的一侧,光源10和采集窗20间隔设置。生物体采集部位放置在采集窗20或其上方,光源10产生的光透过生物体采集部位,再投射在反射镜30上。
由于光源10设置在采集窗20背对反射镜30的一侧,光源10可设置在另一结构件上,而不设置在用于安装反射镜30和摄像头40的壳体60内。比如,在门把手的场景中,光源10可设置在门板上,而采集窗20、反射镜30和摄像头40设置在门把手上,方便布置,不会占用过多空间。
第二种光源的实现方式是下打光式:光源位于采集窗面向反射镜的一侧,光源和采集窗间隔设置。生物体采集部位放置在采集窗或其上方,光源产生的光由下向上投射,经过采集窗照射在生物体采集部位上,光在采集部位内发生透射和反射,再由上向下进入到采集窗,再投射在反射镜上。在配置壳体时,光源可设置在壳体内,使整体结构紧凑。
第三种光源的实现方式是侧打光式:光源位于采集窗的周围。生物体采集部位放置在采集窗,光源产生的光照射在生物体采集部位上,光在采集部位内发生透射和反射,再由上向下进入到采集窗,再投射在反射镜上。在配置壳体时,壳体在采集窗的侧部设置壳壁,光源可以布置在壳壁上。
在一些实施例中,参阅图5,反射镜30的第一侧边31和第二侧边32的间距L满足:6mm≤L≤20mm。将反射镜30的第一侧边31和第二侧边32的间距L在以上区间取值,反射镜30相对水平面的倾斜角小于45°,使得整体结构占用空间较小,厚度较小。
在一些实施例中,参阅图5,摄像头40在垂直于摄像头40的光轴41方向上的长度E和摄像头40的光轴41和采集窗20的间距B之间满足:E/2≤B。摄像头40的光轴41水平布置,使得摄像头40的长度E和间距B满足以上关系,使得摄像头40靠近采集窗20的一侧不会高于采集窗20,使整体结构厚度较小。
下面介绍静脉图像采集装置100的视场角θ和采集窗20的有效视窗区的长度W。
参阅图5、图6,静脉图像采集装置100的视场角θ是指以图像传感器43相对于反射镜30的等效位置43’为顶点,以被测目标(即生物体的采集部位)的物像可通过等效位置图像传感器的最大范围的两条边缘(S、T)构成的夹角。视场角θ越大,图像传感器43可采集的静脉图像信息就越多,越有利于所采集的静脉图像经过处理器畸变矫正处理后的图像符合静脉识别要求。
视场角θ的计算公式如下:
θ=arctan[(B-A)/X]+arctan[(L*sinα-(B-A))/(X-L*cosα)];(1)
其中,A为采集窗20和第一侧边31之间在垂直于采集窗20的方向上的距离;
B为摄像头40的光轴41和采集窗20的间距;
X为透镜42的焦点和第一侧边31之间在摄像头40的光轴41方向上的距离;
L为反射镜30的第一侧边31和第二侧边32的间距,即反射镜30的长度。
采集窗20的有效视窗区是指视场角θ的两条边缘(S、T)在采集窗20上形成的区域。采集窗20的有效视窗区的长度W越大,图像传感器43可采集的静脉图像信息就越多,越有利于所采集的静脉图像经过处理器畸变矫正处理后的图像符合静脉识别要求。
采集窗20的有效视窗区的长度W的计算公式如下:
W={A/sin[2α-arctan((B-A)/X)]+[(B-A)2+X2]1/2}*cos[2α-arctan((B-A)/X)]-{A/sin[2α+arctan[(L*sinα-
(B-A))/(X-L*cosα)]]+[(L*sinα-(B-A))2+(X-L*cosα)2]1/2}*cos[2α+arctan[(L*sinα-(B-A))/(X-L*cosα)]];(2)
其中,A为采集窗20和第一侧边31之间在垂直于采集窗20的方向上的距离;
B为摄像头40的光轴41和采集窗20的间距;
X为透镜42的焦点和第一侧边31之间在摄像头40的光轴41方向上的距离;
L为反射镜30的第一侧边31和第二侧边32的间距,即反射镜30的长度。
下面给出公式(1)和公式(2)的推导过程。参阅图5、图6,画出视场角的两条边缘光路,画出两条边缘光路的等效光路(S、T)。根据已知参数可得到一些过渡参数,最后得到公式(1)和公式(2)。
已知参数如下:
采集窗20和第一侧边31之间在垂直于采集窗20的方向上的距离A;
摄像头40的光轴41和采集窗20的间距B;
透镜42的焦点和第一侧边31之间在摄像头40的光轴41方向上的距离X;
反射镜30的第一侧边31和第二侧边32的间距(反射镜30长度)L。
可得,如下过渡参数:
透镜42的焦点到反射镜30的第一侧边31在竖直方向上的距离C:C=B-A
透镜42的焦点到反射镜30的第二侧边32在竖直方向上的距离D:D=L*sinα-C
透镜42的焦点到反射镜30的第二侧边32在水平方向上的距离Y:Y=X-L*cosα
透镜42的焦点到反射镜30的第一侧边31的直线距离M:M=(C2+X2)1/2
视场角上部分β:β=arctan(C/X)
透镜42的焦点到反射镜30的第二侧边32的直线距离N:N=(D2+Y2)1/2
视场角下部分γ:γ=arctan(D/Y)
镜面对称等效光路长度S:A/sin(2α-β)+(C2+X2)1/2
镜面对称等效光路长度T:T=A/sin(2α+γ)+(D2+Y2)1/2
可得,视场角θ的计算公式:
θ=β+γ=arctan(C/X)+arctan(D/Y)=arctan[(B-A)/X]+arctan[(L*sinα-(B-A))/(X-L*cosα)]
可得,采集窗20的有效视窗区的长度W的计算公式:
W=S*cos(2α-β)-T*cos(2α+γ)
=[A/sin(2α-β)+(C2+X2)1/2]*cos(2α-β)-[A/sin(2α+γ)+(D2+Y2)1/2]*cos(2α+γ)
={A/sin[2α-arctan((B-A)/X)]+[(B-A)2+X2]1/2}*cos[2α-arctan((B-A)/X)]-{A/sin[2α+arctan[(L*sinα-(
B-A))/(X-L*cosα)]]+[(L*sinα-(B-A))2+(X-L*cosα)2]1/2}*cos[2α+arctan[(L*sinα-(B-A))/(X-L*cosα)]]
下面通过调整摄像头40和反射镜30之间的距离位置关系,即改变透镜42的焦点和第一侧边31之间在摄像头40的光轴41方向上的距离X,以及摄像头40的光轴41和采集窗20的间距B这两个参数,考察视场角θ和采集窗20的有效视窗区的长度W的变化。
在反射镜30的长度L、反射镜30与水平面的夹角α、摄像头40的光轴41和采集窗20的间距B一定的情况下,在合适范围内使透镜42的焦点和第一侧边31之间在摄像头40的光轴41方向上的距离X变小,依据公式(1)可知视场角θ将会变大,依据公式(2)可知有效视窗区的长度W将会变大。
在反射镜30的长度L、反射镜30与水平面的夹角α、透镜42的焦点和第一侧边31之间在摄像头40的光轴41方向上的距离X一定的情况下,在合适范围内使摄像头40的光轴41和采集窗20的间距B变小,依据公式(1)且在β≤γ条件下,视场角θ将会变大;依据公式(2)且在β≤γ条件下,有效视窗区的长度W将会变大。
在常规反射式采集装置的基础上,各种器件保持相同,使反射镜30与水平面的夹角α变小,夹角α取值区间为[20°,45°),通过使透镜42的焦点和第一侧边31之间在摄像头40的光轴41方向上的距离X,摄像头40的光轴41和采集窗20的间距B中的至少一个参数变小,就能实现视场角θ变大,从而能使本实施例摄像头40可获得相比常规反射式采集装置的摄像头更多的静脉图像信息。
在常规反射式采集装置的基础上,可设置更大的有效视窗区的长度W,使得摄像头40获得更多的静脉图像信息,满足对畸变矫正时损失量的弥补。
下面提供一种常规反射式采集装置(称为原始图像采集装置)作为对比例。参阅图7,原始图像采集装置包括:光源1、采集窗2、反射镜3和摄像头4,摄像头4包括透镜42和图像传感器43。摄像头4的光轴41和采集窗2相平行,反射镜30和水平面之间的夹角α0为45°,摄像头40的成像光轴居中设置,视场角θ0为22°,采集窗20的有效视窗区的长度W0为9.3mm,原始图像采集装置的厚度Z0为11mm。摄像头40和反射镜30之间的距离位置关系满足:摄像头40采集的静脉图像符合静脉识别要求。
图8中的(a)、(b)分别是原始图像采集装置在采集窗分别放置棋盘格标定板、条状格标定板时的成像仿真图。从图中可看出,在反射镜3和水平面之间的夹角α0为45°时,光轴水平布置的摄像头4可采集到正常的图像。图8中的(c)是原始图像采集装置的光路仿真图,图中上侧两个横条分别是采集窗2和红外滤光片5。
本申请第一实施例的静脉图像采集装置100,参阅图3,反射镜30与水平面的夹角α为35°,成像光轴21向远离摄像头40的一侧倾斜。在原始图像采集装置的基础上,使摄像头40向反射镜30沿水平方向移动,并使有效视窗区的位置和长度W保持不变。透过静脉脉络的透过光投射到反射镜30,再由反射镜30反射至摄像头40,通过摄像头40采集静脉图像,满足摄像头40采集的静脉图像经过处理器畸变矫正处理后的图像符合静脉识别要求。
图4中的(a)、(b)分别是第一实施例静脉图像采集装置在采集窗分别放置棋盘格标定板、条状格标定板时的成像仿真图。从图中可看出,在反射镜30和水平面之间的夹角α为35°时,光轴水平布置的摄像头40可采集到切向畸变的梯形图像。图4中的(c)是第一实施例静脉图像采集装置100的光路仿真图,图中上侧两个横条分别是采集窗20和红外滤光片50。
相比于原始图像采集装置,仿真结果显示,使用相同的摄像头,在实现有效视窗区的位置和长度的情况下,第一实施例静脉图像采集装置100的厚度Z为10mm,厚度降低了1mm,有1/11的收益,有效降低厚度;视场角θ为25.5°,增大了3.5°,有3.5/22的收益,增大视场角θ,利于摄像头40获得更多的图像信息。
本申请第二实施例的静脉图像采集装置100,参阅图9,反射镜30与水平面的夹角α为35°,成像光21向远离摄像头40的一侧倾斜。在原始图像采集装置的基础上,使摄像头40位置抬高0.9mm,使摄像头40向反射镜30沿水平方向移动,并使有效视窗区的位置不变,增加有效视窗区的长度W至9.9mm,从而使摄像头40摄取更多有效信息,以补偿畸变损失。透过静脉脉络的透过光投射到反射镜30,再由反射镜 30反射至摄像头40,通过摄像头40采集静脉图像,满足摄像头40采集的静脉图像经过处理器畸变矫正处理后的图像符合静脉识别要求。
图10中的(a)、(b)分别是第二实施例静脉图像采集装置在采集窗分别放置棋盘格标定板、条状格标定板时的成像仿真图。从图中可看出,在反射镜30和水平面之间的夹角α为35°时,光轴水平布置的摄像头40可采集到切向畸变的梯形图像。图10中的(c)是第二实施例静脉图像采集装置100的光路仿真图,图中上侧两个横条分别是采集窗20和红外滤光片50。
相比于原始图像采集装置,仿真结果显示,使用相同的摄像头,第二实施例静脉图像采集装置100的厚度为10mm,降低了1mm,有1/11的收益,有效降低厚度;视场角为27°,增大了5°,有5/22的收益,增大视场角,利于摄像头40获得更多的图像信息。
本申请实施例提供一种终端设备,包括处理器和上述的静脉图像采集装置100,处理器和静脉图像采集装置100通信连接,处理器用于对静脉图像采集装置100所采集的静脉图像进行畸变矫正处理以获得矫正后图像。
本申请实施例提供的终端设备,采用上述的静脉图像采集装置100,静脉图像采集装置100可以制作得比常规反射式采集装置更薄,实现了采集装置近一步减薄,可应用于对占用空间更苛刻的场景中。本实施例摄像头40采集相比常规反射式采集装置的摄像头更多的静脉图像信息,使得处理器对图像畸变矫正处理后可作为静脉识别使用。
其中,终端设备可以是门锁、保险箱、考勤机、鼠标、门把手、手机、智能手表等需要个人身份认证的终端设备。
本申请实施例提供一种静脉图像采集装置100的薄化设计方法,包括以下步骤:
在原始图像采集装置的基础上,调整得到静脉图像采集装置100;
其中,如图7所示的原始图像采集装置包括:光源1、采集窗2、反射镜3和摄像头4,反射镜30相对采集窗20倾斜设置,反射镜30具有相对的第一侧边31和第二侧边32,第一侧边31相邻于采集窗20设置,摄像头4包括透镜42和图像传感器43;光源1将可透过生物体的光照射至位于采集窗2的生物体上,反射镜3将透过生物体后的光反射至摄像头4,在反射镜3形成的反射光经过透镜42聚光后在图像传感器43上成像;摄像头4的光轴41和采集窗2相平行;摄像头4的光轴41和反射镜30的反射面之间的夹角α0为45°;采集窗20的有效视窗区的长度为W0;原始图像采集装置的视场角为θ0
结合图3,调整摄像头40的光轴41和反射镜30的反射面之间的夹角α,满足20°≤α<45°;
调整采集窗20的有效视窗区的长度W,满足W≥W0
调整摄像头40和反射镜30之间的距离位置关系,以调整静脉图像采集装置100的视场角θ,满足θ>θ0
本申请实施例提供的静脉图像采集装置100的薄化设计方法,在原始图像采集装置(即常规反射式采集装置)的基础上,将摄像头40的光轴41和反射镜30的反射面之间的夹角设置为[20°,45°),摄像头40的光轴41保持水平布置,在各种器件保持相同的情况下,本实施例静脉图像采集装置100可以制作得比常规反射式采集装置更薄,实现了采集装置近一步减薄,可应用于对占用空间更苛刻的场景中。通过设置摄像头40和反射镜30之间的距离位置,以增大静脉图像采集装置100的视场角θ,通过增加或不改变采集窗20的有效视窗区的长度W,使得本实施例摄像头40可获得相比常规反射式采集装置的摄像头更多的静脉图像信息,经过处理器对采集图像畸变矫正处理后可得到符合静脉识别要求的静脉图像。
在设置有效视窗区的长度W时,可使W0≤W≤1.15W0,在有效视窗区的长度不变或改变较小下,摄像头40可获得更多的静脉图像信息,满足对畸变矫正时损失量的弥补。在W=W0时,使有效视窗区位置保持不变。在W>W0时,使有效视窗区的中心保持不变且两端延伸加宽。在采集指静脉图像的场景下,有效视窗区的长度W取值范围是:9mm≤W≤20mm。在采集掌静脉图像的场景下,有效视窗区的长度W取值范围是:45mm≤W≤100mm。
在一些实施例中,结合图5,减小透镜42的焦点和第一侧边31之间在摄像头40的光轴41方向上的距离X,使得在静脉图像采集装置100的视场角增大,采集窗20的有效视窗区的长度增大。
在反射镜30的长度L、反射镜30与水平面的夹角α、摄像头40的光轴41和采集窗20的间距B一定的情况下,在合适范围内使透镜42的焦点和第一侧边31之间在摄像头40的光轴41方向上的距离X变小,依据公式(1)可知视场角θ将会变大,依据公式(2)可知有效视窗区的长度W将会变大。
在一些实施例中,结合图5、图6,减小摄像头40的光轴41和采集窗20的间距,使得在静脉图像采集装置100的视场角增大,采集窗20的有效视窗区的长度增大。
在反射镜30的长度L、反射镜30与水平面的夹角α、透镜42的焦点和第一侧边31之间在摄像头40的光轴41方向上的距离X一定的情况下,在合适范围内使摄像头40的光轴41和采集窗20的间距B变小,依据公式(1)且在β≤γ条件下,视场角θ将会变大;依据公式(2)且在β≤γ条件下,有效视窗区的长度W将会变大。
可以理解的,上述实施例提供的静脉图像采集装置100可以适用于该静脉图像采集装置100的薄化设计方法,作为一些可选的实现方式。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种静脉图像采集装置,其特征在于,包括:光源、采集窗、反射镜和摄像头;
    所述采集窗可透光;
    所述光源朝向所述采集窗设置,用于将可透过生物体的光照射至位于所述采集窗的生物体上;
    所述反射镜用于将透过生物体后的光反射至所述摄像头,所述反射镜相对所述采集窗倾斜设置,所述反射镜具有相对的第一侧边和第二侧边,所述第一侧边相邻于所述采集窗设置;
    所述摄像头的光轴和所述采集窗相平行;所述摄像头的光轴和所述反射镜的反射面之间的夹角α满足:20°≤α<45°;
    所述摄像头包括沿光路设置的透镜和图像传感器,在所述反射镜形成的反射光经过所述透镜聚光后在所述图像传感器上成像。
  2. 根据权利要求1所述的静脉图像采集装置,其特征在于,还包括设置于所述采集窗和所述反射镜之间的红外滤光片。
  3. 根据权利要求2所述的静脉图像采集装置,其特征在于,在所述摄像头的光轴方向上,所述红外滤光片的长度大于或等于所述采集窗的有效视窗区的长度。
  4. 根据权利要求1至3任一项所述的静脉图像采集装置,其特征在于,还包括壳体,所述采集窗设置于所述壳体上,所述反射镜和所述摄像头安装于所述壳体内。
  5. 根据权利要求1至4任一项所述的静脉图像采集装置,其特征在于,所述采集窗和所述反射镜之间的光轴垂直于所述光源的出光面。
  6. 根据权利要求1至5任一项所述的静脉图像采集装置,其特征在于,所述光源位于所述采集窗背对所述反射镜的一侧,所述光源和所述采集窗间隔设置;
    或,所述光源位于所述采集窗面向所述反射镜的一侧,所述光源和所述采集窗间隔设置;
    或,所述光源位于所述采集窗的周围。
  7. 根据权利要求1至6任一项所述的静脉图像采集装置,其特征在于,所述反射镜的所述第一侧边和所述第二侧边的间距L满足:6mm≤L≤20mm;
    和/或,所述摄像头在垂直于所述摄像头的光轴方向上的长度E和所述摄像头的光轴和所述采集窗的间距B之间满足:E/2≤B。
  8. 根据权利要求1至7任一项所述的静脉图像采集装置,其特征在于,所述静脉图像采集装置的视场角θ、所述摄像头的光轴和所述反射镜的反射面之间的夹角α、所述采集窗和所述第一侧边之间在垂直于所述采集窗的方向上的距离A、所述摄像头的光轴和所述采集窗的间距B、所述透镜的焦点和所述第一侧边之间在所述摄像头的光轴方向上的距离X,以及所述第一侧边和所述第二侧边的间距L,满足以下公式:
    θ=arctan[(B-A)/X]+arctan[(L*sinα-(B-A))/(X-L*cosα)];
    所述摄像头采集的静脉图像经过处理器畸变矫正处理后的图像符合静脉识别要求。
  9. 根据权利要求1至8任一项所述的静脉图像采集装置,其特征在于,所述采集窗的有效视窗区的长度W、所述摄像头的光轴和所述反射镜的反射面之间的夹角α、所述采集窗和所述第一侧边之间在垂直于所述采集窗的方向上的距离A、所述摄像头的光轴和所述采集窗的间距B、所述透镜的焦点和所述第一侧边之间在所述摄像头的光轴方向上的距离X,以及所述第一侧边和所述第二侧边的间距L,满足以下公式:
    W={A/sin[2α-arctan((B-A)/X)]+[(B-A)2+X2]1/2}*cos[2α-arctan((B-A)/X)]-{A/sin[2α+arctan[(L*sinα-
    (B-A))/(X-L*cosα)]]+[(L*sinα-(B-A))2+(X-L*cosα)2]1/2}*cos[2α+arctan[(L*sinα-(B-A))/(X-L*cosα)]];
    所述摄像头采集的静脉图像经过处理器畸变矫正处理后的图像符合静脉识别要求。
  10. 一种终端设备,其特征在于,包括处理器和如权利要求1至9任一项所述的静脉图像采集装置,所述处理器和所述静脉图像采集装置通信连接,所述处理器用于对所述静脉图像采集装置所采集的静脉图像进行畸变矫正处理以获得矫正后图像。
  11. 一种静脉图像采集装置的薄化设计方法,其特征在于,包括以下步骤:
    在原始图像采集装置的基础上,调整得到静脉图像采集装置;
    其中,所述原始图像采集装置包括:光源、采集窗、反射镜和摄像头,所述反射镜相对所述采集窗倾斜设置,所述反射镜具有相对的第一侧边和第二侧边,所述第一侧边相邻于所述采集窗设置,所述摄像头包括透镜和图像传感器;所述光源将可透过生物体的光照射至位于所述采集窗的生物体上,所述反射镜将 透过生物体后的光反射至所述摄像头,在所述反射镜形成的反射光经过所述透镜聚光后在所述图像传感器上成像;所述摄像头的光轴和所述采集窗相平行;所述摄像头的光轴和所述反射镜的反射面之间的夹角α0为45°;所述采集窗的有效视窗区的长度为W0;所述原始图像采集装置的视场角为θ0
    调整所述摄像头的光轴和所述反射镜的反射面之间的夹角α,满足20°≤α<45°;
    调整所述采集窗的有效视窗区的长度W,满足W≥W0
    调整所述摄像头和所述反射镜之间的距离位置关系,以调整所述静脉图像采集装置的视场角θ,满足θ>θ0
  12. 根据权利要求11所述的静脉图像采集装置的薄化设计方法,其特征在于,减小所述透镜的焦点和所述第一侧边之间在所述摄像头的光轴方向上的距离;
    和/或,减小所述摄像头的光轴和所述采集窗的间距。
PCT/CN2023/104157 2022-07-01 2023-06-29 一种静脉图像采集装置及其薄化设计方法、终端设备 WO2024002291A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210781091.1A CN117373071A (zh) 2022-07-01 2022-07-01 一种静脉图像采集装置及其薄化设计方法、终端设备
CN202210781091.1 2022-07-01

Publications (1)

Publication Number Publication Date
WO2024002291A1 true WO2024002291A1 (zh) 2024-01-04

Family

ID=89383303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104157 WO2024002291A1 (zh) 2022-07-01 2023-06-29 一种静脉图像采集装置及其薄化设计方法、终端设备

Country Status (2)

Country Link
CN (1) CN117373071A (zh)
WO (1) WO2024002291A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204189177U (zh) * 2014-11-21 2015-03-04 张慧芳 活体指纹与静脉采集装置
CN208922284U (zh) * 2018-10-09 2019-05-31 格林比特(天津)生物信息技术有限公司 一种同时采集指纹和静脉的装置
CN110969668A (zh) * 2019-11-22 2020-04-07 大连理工大学 一种长焦双目相机的立体标定算法
CN216014317U (zh) * 2021-09-26 2022-03-11 盛视科技股份有限公司 透射式静脉采集模块及静脉识别系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204189177U (zh) * 2014-11-21 2015-03-04 张慧芳 活体指纹与静脉采集装置
CN208922284U (zh) * 2018-10-09 2019-05-31 格林比特(天津)生物信息技术有限公司 一种同时采集指纹和静脉的装置
CN110969668A (zh) * 2019-11-22 2020-04-07 大连理工大学 一种长焦双目相机的立体标定算法
CN216014317U (zh) * 2021-09-26 2022-03-11 盛视科技股份有限公司 透射式静脉采集模块及静脉识别系统

Also Published As

Publication number Publication date
CN117373071A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
CN109196524B (zh) 通过光学感测检测指纹的电子设备及其操作方法
CN111401243B (zh) 光学传感器模块及其电子设备
US10579871B2 (en) Biometric composite imaging system and method reusable with visible light
US8223199B2 (en) Finger vein authentication unit and information processing unit
KR101441331B1 (ko) 광학식 지문 인식 장치
CN101681021B (zh) 大景深成像系统和虹膜识别系统
EP3001867B1 (en) Smartphone configured to perform biometric recognition of an iris pattern and corresponding facial features of a subject
WO2015176657A1 (zh) 虹膜识别装置及其制造方法和应用
CN101661555B (zh) 静脉成像装置、静脉成像方法和静脉认证装置
US8204476B2 (en) Portable telephone and electronic device
WO2020172876A1 (zh) 光学图像采集单元、光学图像采集系统和电子设备
US20100278394A1 (en) Apparatus for Iris Capture
US20080317293A1 (en) Finger vein authentication apparatus and information processing apparatus
JP2002529864A (ja) ハイ・コントラスト、ロー・歪みの映像キャプチャー光学システム
CN109685034B (zh) 指纹识别模组及显示装置
JP2003506798A (ja) 光学撮像システムにおける台形歪みの軽減および像の鮮明化のための方法ならびに装置
US10484584B2 (en) System and method for mobile device biometric add-on
CN108292424B (zh) 指静脉认证装置
WO2024002291A1 (zh) 一种静脉图像采集装置及其薄化设计方法、终端设备
CN109740400B (zh) 一种条码识读设备
JP6338567B2 (ja) センサーアセンブリ
CN214475050U (zh) 一种光学模组及电子设备
JP2008036226A (ja) 静脈認証用撮像ユニット及び電子機器
JP2003339676A (ja) 目画像撮像装置
EP2490153A1 (en) Vein authentication module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830455

Country of ref document: EP

Kind code of ref document: A1