WO2024001916A1 - 扫描仪姿态定位方法、装置、设备及存储介质 - Google Patents

扫描仪姿态定位方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024001916A1
WO2024001916A1 PCT/CN2023/101830 CN2023101830W WO2024001916A1 WO 2024001916 A1 WO2024001916 A1 WO 2024001916A1 CN 2023101830 W CN2023101830 W CN 2023101830W WO 2024001916 A1 WO2024001916 A1 WO 2024001916A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanner
data
collection information
information
attitude
Prior art date
Application number
PCT/CN2023/101830
Other languages
English (en)
French (fr)
Inventor
张远松
张健
林忠威
Original Assignee
先临三维科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先临三维科技股份有限公司 filed Critical 先临三维科技股份有限公司
Publication of WO2024001916A1 publication Critical patent/WO2024001916A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • G06T7/41Analysis of texture based on statistical description of texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/32Indexing scheme for image data processing or generation, in general involving image mosaicing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10008Still image; Photographic image from scanner, fax or copier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds

Definitions

  • Embodiments of the present disclosure relate to the field of three-dimensional scanning technology, and in particular, to a scanner posture positioning method, device, equipment and storage medium.
  • the posture of the scanner In the process of scanning with a scanner, the posture of the scanner needs to be positioned at all times to facilitate subsequent analysis of the posture of the scanner. Therefore, the posture positioning of the scanner has become an important link in the scanning process.
  • the attitude of the scanner In order to locate the attitude of the scanner in real time, the attitude of the scanner needs to be calculated based on the acquisition data obtained by the scanner.
  • the acquisition data obtained by the scanner is not ideal, resulting in the inability to accurately position the scanner posture. Therefore, proposing a method that can accurately position the attitude of the scanner is a technical problem that needs to be solved urgently.
  • the present disclosure provides a scanner attitude positioning method, device, equipment and storage medium.
  • the target scanner scans the target object, obtain the first collection information and the second collection information sent by the target scanner;
  • the preliminary attitude data is corrected using the second acquisition information to obtain the real-time attitude data of the target scanner.
  • An embodiment of the present disclosure also provides a scanner posture positioning device, which includes:
  • a collection information acquisition module used to obtain the first collection information and the second collection information sent by the target scanner when the target scanner scans the target object;
  • the preliminary attitude data determination module is used to splice the collection information of adjacent frames in the first collection information to obtain the preliminary posture data of the target scanner;
  • the real-time attitude data determination module is used to correct the preliminary attitude data using the second collection information to obtain the real-time attitude data of the target scanner.
  • An embodiment of the present disclosure also provides an electronic device, which includes:
  • processors one or more processors
  • a storage device for storing one or more programs
  • one or more processors When one or more programs are executed by one or more processors, one or more processors are caused to implement the scanner attitude positioning method provided in the first aspect.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, the storage medium stores a computer program, and the computer program is used to execute the scanner attitude positioning method provided by the embodiments of the present disclosure.
  • the scanner attitude positioning method, device, equipment and storage medium provided by the embodiments of the present disclosure can obtain the first collection information and the second collection information sent by the target scanner when the target scanner scans the target object; and then, The acquisition information of adjacent frames in the first acquisition information is spliced to obtain the preliminary attitude data of the target scanner; finally, the preliminary attitude data is corrected using the second acquisition information to obtain the real-time attitude data of the target scanner.
  • one type of collection information can be used to initially locate the posture of the target scanner, and another type of collection information can be used to correct the preliminary positioning posture, resulting in a higher accuracy
  • this scanner attitude positioning method improves the accuracy of the scanner attitude positioning.
  • Figure 1 is a schematic flowchart of a scanner posture positioning method in one or more embodiments of the present disclosure
  • Figure 2 is a schematic flowchart of another scanner posture positioning method in one or more embodiments of the present disclosure
  • Figure 3 is a schematic structural diagram of a scanner posture positioning device in one or more embodiments of the present disclosure
  • the scanner can scan based on different scanning modes, obtain collection data through different collection devices, and send the collection data to the electronic device, so that the electronic device can position the posture of the scanner based on the collection data.
  • the collected data may include the acceleration and angular velocity of the scanner, point cloud information, texture information and landmark point information of the target object.
  • the scanner can be a handheld scanner
  • the collection device can include an inertial collection device, a trinocular camera, etc.
  • the inertial acquisition device may specifically be an inertial measurement unit (IMU), used to collect the acceleration and angular velocity of the IMU. degree; two cameras in the trinocular camera collect the point cloud information and landmark point information of the target object, and the other camera collects the texture information of the target object.
  • IMU inertial measurement unit
  • embodiments of the present disclosure provide a scanner attitude positioning method, device, equipment and storage medium.
  • the scanner attitude positioning method can be executed by an electronic device or a server.
  • electronic devices may include tablets, desktop computers, laptops and other devices with communication functions, and may also include devices simulated by virtual machines or simulators.
  • the server can be a server cluster or a cloud server.
  • FIG. 1 shows a schematic flowchart of a scanner posture positioning method provided by an embodiment of the present disclosure.
  • the scanner attitude positioning method may include the following steps.
  • the target scanner when it is necessary to locate the posture of the target scanner, can scan the target object based on any scanning mode, and use the acquisition device to collect information, and send the acquired acquisition information to Electronic device, the collected information includes first collected information and second collected information.
  • the target scanner may be a handheld scanner for mobile scanning of target objects.
  • the target object refers to the object being scanned.
  • part or all areas of the target object have rich texture features and geometric features, or part or all areas of the target object are pasted with landmark points in advance.
  • the first collected information and the second collected information include different information.
  • both the first acquisition information and the second acquisition information include at least one of the following: acceleration and angular velocity of the IMU on the target scanner, point cloud information of the target object scanned by the target scanner, texture information and points of the target object.
  • the point cloud information is used to characterize the geometric features of the target object, and may include point cloud coordinates, or a combination of point cloud coordinates and normal vectors.
  • the first collection information and the second collection information can be any combination.
  • the first acquisition information is the acceleration and angular velocity of the IMU
  • the second acquisition information is a combination of texture information and point cloud information.
  • the first collected information is the acceleration and angular velocity of the IMU
  • the second collected information is the landmark point information of the target object.
  • the first collected information is the acceleration and angular velocity of the IMU, and the second collected information is the point cloud information of the target object;
  • the first collection information is a combination of texture information and point cloud information
  • the second collection information is landmark point information of the target object.
  • the acceleration and angular velocity of the IMU can be used for dynamic display of the device. If the device moves without scanning an object, the acceleration and angular velocity of the IMU can also cause the interface perspective on the electronic device to change as the target scanner moves.
  • the combination of the first collection information and the second collection information includes but is not limited to the above scanning methods.
  • S120 Splice the collection information of adjacent frames in the first collection information to obtain preliminary attitude data of the target scanner.
  • the target scanner can obtain multiple frames of collection information, and the electronic device can extract the collection information of adjacent frames from the first collection information, and perform the collection information on the adjacent frames. Splicing enables preliminary calculation of the attitude data of the target scanner and obtains preliminary attitude data.
  • the preliminary posture data may be inter-frame relative motion values of the scanner.
  • the preliminary posture data may include an inter-frame rotation matrix and an inter-frame translation matrix.
  • attitude data initially calculated based on a single collected data can may be inaccurate.
  • other collected data can be used to correct the preliminary calculated attitude data, thereby accurately calculating the final attitude data of the target scanner.
  • real-time attitude data refers to the attitude of the target scanner at the current moment.
  • the real-time posture data may include an inter-frame rotation matrix and an inter-frame translation matrix.
  • the combination of texture information and point cloud information can be used to correct the preliminary attitude data to obtain real-time attitude data.
  • the landmark point information can be used to correct the preliminary attitude data to obtain real-time attitude data.
  • the point cloud information can be used to correct the preliminary attitude data to obtain real-time attitude data.
  • the landmark point information can be used to correct the preliminary posture data to obtain real-time posture data.
  • the acceleration and angular velocity of the IMU can be used to correct the preliminary attitude data to obtain real-time attitude data. In this way, when the stitching of landmark points fails, the IMU can be used to make a short tracking transition to maintain the smoothness of the scan.
  • the method of positioning the scanner posture based on texture information or point cloud information relies on the target object itself having rich texture attributes. If the first collection information is a combination of texture information and point cloud information, and the target object When the geometric features are not obvious, or there is no specific texture information, it is difficult to accurately locate the scanner's attitude. Therefore, combining other types of second collection information to position the scanner's attitude can be used when the texture or geometric features are not obvious. The area can also locate the scanner attitude.
  • the method of positioning the scanner posture based on landmark points if some areas of the target object do not support pasting of landmark points, the landmark point information cannot be obtained. As a result, the attitude of the scanner cannot be accurately positioned. Therefore, combining other types of second collection information to position the attitude of the scanner can also locate the attitude of the scanner in areas without marks.
  • the inertial acquisition device will drift, resulting in inaccurate acceleration and angular velocity. Therefore, other types of secondary sensors must be combined with The method of collecting information and positioning the scanner's attitude can improve the positioning accuracy of the scanner.
  • a scanner posture positioning method can obtain the first acquisition information and the second acquisition information sent by the target scanner when the target scanner scans the target object; and then, the first acquisition information is The collected information of adjacent frames is spliced to obtain the preliminary attitude data of the target scanner; finally, the second collected information is used to correct the preliminary attitude data to obtain the real-time attitude data of the target scanner.
  • one type of collection information can be used to initially locate the posture of the target scanner, and another type of collection information can be used to correct the preliminary positioning posture, resulting in a higher accuracy The attitude of the target scanner, therefore, this scanner attitude positioning method improves the accuracy of the scanner attitude positioning.
  • the candidate posture data for posture correction may be calculated based on only the second collection information, or the candidate posture data for posture correction may be calculated based on the second collection information and the third collection information. , and use the candidate attitude data to correct the preliminary attitude data.
  • FIG. 2 shows a schematic flowchart of a scanner attitude positioning method provided by an embodiment of the present disclosure.
  • the scanner attitude positioning method may include the following steps.
  • S220 Splice the collection information of adjacent frames in the first collection information to obtain preliminary attitude data of the target scanner.
  • S210 ⁇ S220 are similar to S210 ⁇ S220 and will not be described again here.
  • S230 Splice the collection information of adjacent frames in the second collection information to obtain candidate posture data for posture correction.
  • the target scanner can obtain multiple frames of collection information, and the electronic device can extract the collection information of adjacent frames from the second collection information, and perform the collection information on the adjacent frames. Splicing to obtain candidate attitude data for attitude correction.
  • the candidate posture data can be used as a constraint condition for the preliminary posture data, so that the initial posture data is adjusted based on the candidate posture data.
  • the candidate posture data may include an inter-frame rotation matrix and an inter-frame translation matrix.
  • the candidate posture data can be calculated by splicing texture and point cloud. .
  • the candidate attitude data can be calculated by splicing landmark points.
  • point cloud splicing can be used to calculate the candidate attitude data.
  • point cloud splicing can also be used to calculate candidate pose data.
  • the third acquisition information also includes at least one of the following: acceleration and angular velocity of the IMU on the target scanner, point cloud information of the target object scanned by the target scanner, a combination of texture information and point cloud information of the target object, and landmark point information of the target object.
  • the first collected information, the second collected information and the third collected information can be any combination.
  • the first collected information is the acceleration and angular velocity of the IMU
  • the second collected information is a combination of texture information and point cloud information
  • the third collected information is a landmark point.
  • the first collected information is the acceleration and angular velocity of the IMU
  • the second collected information is point cloud information
  • the third collected information is the landmark point.
  • the combination methods of the first collection information, the second collection information and the third collection information include but are not limited to the above scanning methods.
  • S250 Splice the collection information of adjacent frames in the second collection information to obtain the first candidate posture data for posture correction, and splice the collection information of adjacent frames in the third collection information to obtain the first candidate posture data for posture correction.
  • the second candidate pose data Splice the collection information of adjacent frames in the second collection information to obtain the first candidate posture data for posture correction.
  • the target scanner can obtain multiple frames of collection information
  • the electronic device can extract the collection information of adjacent frames from the second collection information, and perform the collection information on the adjacent frames. Splicing is performed to obtain the first candidate posture data, and the collection information of adjacent frames is extracted from the third collection information, and the collection information of adjacent frames is spliced to obtain the second candidate posture data.
  • S260 may specifically include the following steps:
  • the first candidate attitude data and the second candidate attitude data are weighted and summed to obtain candidate attitude data for attitude correction.
  • the electronic device can obtain the weight corresponding to each candidate posture data, and perform a weighted sum based on the respective corresponding weights to obtain the final candidate posture data.
  • S270 may specifically include the following steps:
  • the electronic device can continuously adjust the preliminary posture based on the candidate attitude data. Attitude data, until the preliminary attitude data within the preset adjustment times remains unchanged, then it is determined that the preliminary attitude data has reached a stable value, or if the preliminary attitude data is within the preset threshold range, then the adjusted attitude data will be obtained and will have been
  • the adjusted posture data is used as real-time posture data.
  • the stability value and the preset threshold range can be understood as limiting conditions for determining whether the posture is adjusted properly.
  • the stable value may also include a rotation matrix and a translation matrix.
  • the candidate posture data can be obtained by splicing the second collection information, or by splicing the second collection information and the third collection information, so that the target scan can be accurately calculated using the candidate posture data
  • the candidate attitude data since there are many ways to determine the candidate attitude data, it can be adapted to positioning the scanner's attitude in a variety of scenarios.
  • different collected information can be spliced in different ways to determine posture data.
  • the acceleration collected by the inertial acquisition device, the texture information of the target object, and the point cloud information can be used as a combined splicing method to position the attitude of the scanner.
  • the point cloud information may include point cloud coordinates, or point cloud coordinates and normal vectors.
  • the first collection information includes the acceleration and angular velocity of the inertial collection device on the target scanner, and the acceleration and angular velocity are collected by the inertial collection device of the target scanner.
  • S120 may specifically include the following steps:
  • the first relative motion value may include the rotation moment of the inertial acquisition device in adjacent frames. matrix and translation matrix.
  • the second relative motion value may include a rotation matrix and a translation matrix of the target scanner in adjacent frames. Specifically, after obtaining the second relative motion, the second relative motion can be multiplied by the pose of the target scanner in the previous frame to obtain the pose of the target scanner in the current frame, thereby obtaining preliminary pose data.
  • the second collection information includes a combination of texture information and point cloud information of the target object.
  • S230 may specifically include the following steps:
  • the electronic device can input the texture information and point cloud information of adjacent frames into a preset splicing algorithm, so as to use the preset splicing algorithm to splice the texture and point cloud to obtain candidate posture data.
  • the preset splicing algorithm may be an ICP splicing algorithm.
  • the second collection information includes point cloud information of the target object.
  • S230 may specifically include the following steps:
  • the electronic device can input the point cloud information of adjacent frames into a preset splicing algorithm, so that the preset splicing algorithm is used to perform point cloud splicing to obtain candidate posture data.
  • the acceleration collected by the inertial acquisition device and the landmark point information of the target object can be used as a combined splicing method to position the attitude of the scanner.
  • the second collection information includes landmark point information of the target object.
  • S230 may specifically include the following steps:
  • the landmark point pairs in adjacent frames are obtained from the landmark point information, and the landmark point pairs are matched. If there is a landmark point pair in the adjacent frame, the matching result of the landmark point pair can be used as candidate posture data. If there are multiple landmark point pairs in adjacent frames, the matching results of each feature point pair can be weighted and summed to obtain candidate pose data.
  • the first collection information and the second collection information can also be combined in other forms. Regardless of the combination, the detailed calculation process of the preliminary posture data and candidate posture data can be referred to the description of the previous embodiments. Here No further details will be given. In addition, the first collection information, the second collection information and the third collection information can also be combined. Similarly, regardless of the combination method, the detailed calculation process of the preliminary posture data and the candidate posture data can be referred to the aforementioned embodiments. The description will not be repeated here.
  • preliminary posture data and candidate posture data can be accurately calculated through splicing.
  • Embodiments of the present disclosure also provide a scanner attitude positioning device for implementing the above scanner attitude positioning method, which will be described below with reference to FIG. 3 .
  • the scanner attitude positioning device may be an electronic device or a server.
  • electronic devices may include tablets, desktop computers, laptops and other devices with communication functions, and may also include devices simulated by virtual machines or simulators.
  • the server can be a server cluster or a cloud server.
  • the scanner posture positioning device 300 may include:
  • the collection information acquisition module 310 is used to obtain the first collection information and the second collection information sent by the target scanner when the target scanner scans the target object;
  • the preliminary attitude data determination module 320 is used to splice the collection information of adjacent frames in the first collection information to obtain the preliminary posture data of the target scanner;
  • the real-time attitude data determination module 330 is used to correct the preliminary attitude data using the second collection information to obtain the real-time attitude data of the target scanner.
  • a scanner attitude positioning device can obtain the first acquisition information and the second acquisition information sent by the target scanner when the target scanner scans the target object. Collect information; then, splice the collection information of adjacent frames in the first collection information to obtain the preliminary posture data of the target scanner; finally use the second collection information to correct the preliminary posture data to obtain the real-time posture data of the target scanner.
  • one type of collection information can be used to initially locate the posture of the target scanner, and another type of collection information can be used to correct the preliminary positioning posture, resulting in a higher accuracy
  • this scanner attitude positioning method improves the accuracy of the scanner attitude positioning.
  • the real-time gesture data determination module 330 may include:
  • a candidate posture data determination unit is used to splice the collection information of adjacent frames in the second collection information to obtain candidate posture data for posture correction;
  • the real-time attitude data determination unit is used to correct the preliminary attitude data based on the candidate attitude data to obtain the real-time attitude data of the target scanner.
  • the device further includes:
  • the real-time attitude data determination module 330 includes:
  • the computing unit is used to splice the collection information of adjacent frames in the second collection information to obtain the first candidate posture data for posture correction, and to splice the collection information of adjacent frames in the third collection information to obtain the used Second candidate attitude data for attitude correction;
  • a candidate attitude data determination unit configured to calculate candidate attitude data for attitude correction based on the first candidate attitude data and the second candidate attitude data
  • the real-time attitude data determination unit is used to correct the preliminary attitude data based on the candidate attitude data to obtain the real-time attitude data of the target scanner.
  • the candidate posture data determination unit is specifically configured to perform a weighted sum of the first candidate posture data and the second candidate posture data to obtain candidate posture data for posture correction.
  • the real-time posture data determination unit is specifically configured to iteratively adjust the preliminary posture data according to the candidate posture data until the preliminary posture data reaches a stable value or is within a preset threshold range;
  • the preliminary attitude data that reaches a stable value or is within a preset threshold range is used as Real-time attitude data from the target scanner.
  • the first collection information includes the acceleration and angular velocity of the inertial collection device on the target scanner, and the acceleration and angular velocity are collected by the inertial collection device of the target scanner;
  • the preliminary posture data determination module 320 includes:
  • the first relative motion value calculation unit is used to integrate the acceleration and angular velocity of adjacent frames in the first collection information to obtain the first relative motion value of the inertial acquisition device in the adjacent frames;
  • a second relative motion value calculation unit configured to calculate the second relative motion value of the target scanner in adjacent frames based on the first relative motion value and the relative posture between the inertial acquisition device and the target scanner;
  • a preliminary posture data determination unit configured to calculate the posture of the target scanner in the current frame based on the second relative motion and the posture of the target scanner in the previous frame, and use the posture of the target scanner in the current frame as a preliminary attitude data.
  • the second collection information includes a combination of texture information and point cloud information of the target object
  • the real-time attitude data determination module 330 includes:
  • the first splicing unit is used to splice texture information and point cloud information of adjacent frames using a preset splicing algorithm to obtain candidate pose data for pose correction.
  • the second collection information includes point cloud information of the target object
  • the real-time attitude data determination module 330 includes:
  • the second splicing unit is used to splice the point cloud information of adjacent frames using a preset splicing algorithm to obtain candidate attitude data for attitude correction.
  • the second collection information includes landmark point information of the target object
  • the real-time attitude data determination module 330 includes:
  • the landmark point matching unit is used to match the landmark point information of adjacent frames to obtain candidate posture data for posture correction.
  • the scanner attitude positioning device 300 shown in FIG. 3 can perform each step in the method embodiment shown in FIGS. 1 to 2 and implement each step in the method embodiment shown in FIGS. 1 to 2 The process and effects will not be described in detail here.
  • FIG. 4 shows a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • the electronic device may include a processor 401 and a memory 402 storing computer program instructions.
  • processor 401 may include a central processing unit (CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits according to the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • Memory 402 may include bulk storage for information or instructions.
  • the memory 402 may include a hard disk drive (HDD), a floppy disk drive, flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive or both. A combination of the above.
  • Memory 402 may include removable or non-removable (or fixed) media, where appropriate.
  • Memory 402 may be internal or external to the integrated gateway device, where appropriate.
  • memory 402 is non-volatile solid-state memory.
  • memory 402 includes read-only memory (ROM).
  • the ROM can be a mask-programmed ROM, programmable ROM (Programmable ROM, PROM), erasable PROM (Electrical Programmable ROM, EPROM), electrically erasable PROM (Electrically Erasable Programmable ROM, EEPROM) ), electrically rewritable ROM (Electrically Alterable ROM, EAROM) or flash memory, or a combination of two or more of these.
  • the processor 401 reads and executes the computer program instructions stored in the memory 402 to execute the steps of the scanner attitude positioning method provided by the embodiment of the present disclosure.
  • the electronic device may also include a transceiver 403 and a bus 404.
  • the processor 401, the memory 402 and the transceiver 403 are connected through the bus 404 and complete communication with each other.
  • Bus 404 includes hardware, software, or both.
  • the bus may include an Accelerated Graphics Port (AGP) or other graphics bus, an Extended Industry Standard Architecture (EISA) bus, a Front Side BUS (FSB), an Ultra Transmission (Hyper Transport, HT) interconnect, Industrial Standard Architecture (ISA) bus, unlimited bandwidth interconnect, Low Pin Count (LPC) bus, storage Device bus, Micro Channel Architecture (MCA) bus, Peripheral Component Interconnect (PCI) bus, PCI-Express (PCI-X) bus, Serial Advanced Technology Attachment (SATA) ) bus, the Video Electronics Standards Association Local Bus (VLB) bus, or other suitable bus, or a combination of two or more of these.
  • bus 404 may include one or more buses.
  • the following is an example of a computer-readable storage medium provided by an embodiment of the present disclosure.
  • the computer-readable storage medium belongs to the same inventive concept as the scanner posture positioning method of the above-mentioned embodiments.
  • the embodiment of the computer-readable storage medium For details that are not described in detail, please refer to the above embodiments of the scanner attitude positioning method.
  • This embodiment provides a storage medium containing computer-executable instructions. When executed by a computer processor, the computer-executable instructions are used to perform a scanner attitude positioning method.
  • the method includes:
  • the target scanner scans the target object, obtain the first collection information and the second collection information sent by the target scanner;
  • the preliminary attitude data is corrected using the second acquisition information to obtain the real-time attitude data of the target scanner.
  • the embodiments of the present disclosure provide a storage medium containing computer-executable instructions.
  • the computer-executable instructions are not limited to the above method operations, and can also perform the scanner attitude positioning method provided by any embodiment of the disclosure. Related operations.
  • the present disclosure can be implemented with the help of software and necessary general hardware. Of course, it can also be implemented with hardware, but in many cases the former is a better implementation. . Based on this understanding, the technical solution of the present disclosure can be embodied in the form of a software product in nature or in part that contributes to the existing technology.
  • the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • FLASH flash memory
  • hard disk or optical disk etc.
  • a computer cloud platform which can be a personal computer, server, or network cloud platform, etc.
  • the scanner attitude positioning method provided by the present disclosure can use one type of collection information to initially locate the posture of the target scanner during the scanner posture positioning process, and use another type of collection information to correct the preliminary positioning posture. , obtain the attitude of the target scanner with higher accuracy. Therefore, this scanner attitude positioning method improves the accuracy of the scanner attitude positioning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Probability & Statistics with Applications (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本公开涉及一种扫描仪姿态定位方法、装置、设备及存储介质。在目标扫描仪扫描目标对象的情况下,能够获取目标扫描仪发送的第一采集信息和第二采集信息;然后,对第一采集信息中相邻帧的采集信息进行拼接,得到目标扫描仪的初步姿态数据;最终利用第二采集信息修正初步姿态数据,得到目标扫描仪的实时姿态数据。通过上述方式,在进行扫描仪姿态定位的过程中,可以利用一种类型的采集信息初步定位目标扫描仪的姿态,并利用另一种类型的采集信息修正初步定位的姿态,得到准确性较高的目标扫描仪的姿态,因此,这种扫描仪姿态定位方法提高了扫描仪姿态定位的准确性。

Description

扫描仪姿态定位方法、装置、设备及存储介质
本公开要求2022年6月30日提交中国专利局、申请号为2022107707696、发明名称为“扫描仪姿态定位方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开实施例涉及三维扫描技术领域,尤其涉及一种扫描仪姿态定位方法、装置、设备及存储介质。
背景技术
在利用扫描仪进行扫描的过程中,需要时刻定位扫描仪的姿态,方便后续分析扫描仪的姿态,因此扫描仪的姿态定位成为扫描过程中一项重要环节。
为了实时定位扫描仪的姿态,需要根据扫描仪获取的采集数据计算扫描仪的姿态。但是,很多情况下扫描仪获取的采集数据不理想,导致无法准确的定位扫描仪姿态。因此,提出一种能够准确的定位扫描仪姿态的方法是目前亟需解决的技术问题。
发明内容
(一)要解决的技术问题
为了解决上述技术问题或者至少部分地解决上述技术问题,本公开提供了一种扫描仪姿态定位方法、装置、设备及存储介质。
(二)技术方案
本公开实施例提供了一种扫描仪姿态定位方法,所述方法包括:
在目标扫描仪扫描目标对象的情况下,获取目标扫描仪发送的第一采集信息和第二采集信息;
对第一采集信息中相邻帧的采集信息进行拼接,得到目标扫描仪 的初步姿态数据;
利用第二采集信息修正初步姿态数据,得到目标扫描仪的实时姿态数据。
本公开实施例还提供了一种扫描仪姿态定位装置,所述装置包括:
采集信息获取模块,用于在目标扫描仪扫描目标对象的情况下,获取目标扫描仪发送的第一采集信息和第二采集信息;
初步姿态数据确定模块,用于对第一采集信息中相邻帧的采集信息进行拼接,得到目标扫描仪的初步姿态数据;
实时姿态数据确定模块,用于利用第二采集信息修正初步姿态数据,得到目标扫描仪的实时姿态数据。
本公开实施例还提供了一种电子设备,该设备包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,
当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现第一方面所提供的扫描仪姿态定位方法。
本公开实施例还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行如本公开实施例提供的扫描仪姿态定位方法。
(三)有益效果
本公开实施例提供的上述技术方案与现有技术相比具有如下优点:
本公开实施例提供的扫描仪姿态定位方法、装置、设备及存储介质,在目标扫描仪扫描目标对象的情况下,能够获取目标扫描仪发送的第一采集信息和第二采集信息;然后,对第一采集信息中相邻帧的采集信息进行拼接,得到目标扫描仪的初步姿态数据;最终利用第二采集信息修正初步姿态数据,得到目标扫描仪的实时姿态数据。通过上述方式,在进行扫描仪姿态定位的过程中,可以利用一种类型的采集信息初步定位目标扫描仪的姿态,并利用另一种类型的采集信息修正初步定位的姿态,得到准确性较高的目标扫描仪的姿态,因此,这种扫描仪姿态定位方法提高了扫描仪姿态定位的准确性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和 解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个或多个实施例中的一种扫描仪姿态定位方法的流程示意图;
图2是本公开一个或多个实施例中的另一种扫描仪姿态定位方法的流程示意图;
图3是本公开一个或多个实施例中的一种扫描仪姿态定位装置的结构示意图;
图4是本公开一个或多个实施例中的一种电子设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
扫描仪在扫描目标对象的时候,可以基于不同的扫描模式进行扫描,并通过不同采集装置获取采集数据,并将采集数据发送至电子设备,使得电子设备基于采集数据对扫描仪的姿态进行定位。可选的,采集数据可以包括扫描仪的加速度和角速度、目标对象的点云信息、纹理信息以及标志点信息。
可选的,扫描仪可以是手持式扫描仪,采集装置可以包括惯性采集装置、三目相机等。其中,惯性采集装置具体可以是惯性测量单元(Inertial Measurement Unit,IMU),用于采集IMU的加速度和角速 度;三目相机中的两个相机采集目标对象的点云信息以及标志点信息,另一个相机采集目标对象的纹理信息。
然而,很多情况下单一的采集数据不完善,例如,采集数据出现误差,或者,从采集数据中无法提取到丰富的特征,或者,无法采集到标志点信息,从而导致无法准确的定位扫描仪姿态。也就是说,现有技术在弱纹理的区域以及不能粘贴标志点的区域,无法进行扫描仪姿态定位。
为了解决上述问题,本公开实施例提供了一种扫描仪姿态定位方法、装置、设备及存储介质。
下面结合图1至图2对本公开实施例提供的扫描仪姿态定位方法进行说明。在本公开实施例中,该扫描仪姿态定位方法可以由电子设备或服务器执行。其中,电子设备可以包括平板电脑、台式计算机、笔记本电脑等具有通信功能的设备,也可以包括虚拟机或者模拟器模拟的设备。服务器可以是服务器集群也可以是云服务器。
图1示出了本公开实施例提供的一种扫描仪姿态定位方法的流程示意图。
如图1所示,该扫描仪姿态定位方法可以包括如下步骤。
S110、在目标扫描仪扫描目标对象的情况下,获取目标扫描仪发送的第一采集信息和第二采集信息。
在本公开实施例中,当需要定位目标扫描仪的姿态时,目标扫描仪可以基于任意一种扫描模式对目标对象进行扫描,并且利用采集装置进行信息采集,并将获取到的采集信息发送至电子设备,该采集信息包括第一采集信息和第二采集信息。
在本公开实施例中,目标扫描仪可以是一种手持式扫描仪,用于移动式扫描目标对象。
在本公开实施例中,目标对象是指被扫描物体。其中,目标对象的部分区域或者全部区域具有丰富的纹理特征和几何特征,或者,目标对象的部分区域或者全部区域预先粘贴标志点。
在本公开实施例中,第一采集信息和第二采集信息包括的信息不相同。
可选的,第一采集信息和第二采集信息均包括以下至少一种:目标扫描仪上IMU的加速度和角速度、目标扫描仪所扫描的目标对象的点云信息、目标对象的纹理信息和点云信息的结合、以及目标对象的标志点信息。其中,点云信息用于表征目标对象的几何特征,可以包括点云坐标,或者包括点云坐标与法向量的组合。
在实际应用时,第一采集信息和第二采集信息可以是任意组合。
在一些示例中,第一采集信息是IMU的加速度和角速度,第二采集信息是纹理信息和点云信息的结合。
在另一些示例中,第一采集信息是IMU的加速度和角速度,第二采集信息是目标对象的标志点信息。
在又一些示例中,第一采集信息是IMU的加速度和角速度,第二采集信息是目标对象的点云信息;
在再一些示例中,第一采集信息是纹理信息和点云信息的结合,第二采集信息是目标对象的标志点信息。
其中,IMU的加速度和角速度可以用于进行设备动态显示。如设备在没有扫描对象的情况下让设备发生移动,IMU的加速度和角速度也可以让电子设备上的界面视角随着目标扫描仪的移动而发生改变。
需要说明的是,对于不同产品型号的目标扫描仪,第一采集信息和第二采集信息的组合方式包括但不限于以上几种扫描方式。
S120、对第一采集信息中相邻帧的采集信息进行拼接,得到目标扫描仪的初步姿态数据。
在本公开实施例中,在每一扫描时刻,目标扫描仪可以获取到多帧采集信息,电子设备可以从第一采集信息中提取相邻帧的采集信息,并对相邻帧的采集信息进行拼接,使得初步计算目标扫描仪的姿态数据,得到初步姿态数据。
在本公开实施例中,初步姿态数据可以是扫描仪的帧间相对运动值。具体的,初步姿态数据可以包括帧间旋转矩阵和帧间平移矩阵。
S130、利用第二采集信息修正初步姿态数据,得到目标扫描仪的实时姿态数据。
可以理解的是,由于基于单一的采集数据初步计算的姿态数据可 能不准确,为了提高目标扫描仪的姿态定位的准确性,可以利用其他的采集数据修正初步计算的姿态数据,从而准确的计算目标扫描仪的最终的姿态数据。
在本公开实施例中,实时姿态数据是指目标扫描仪在当前时刻下的姿态。具体的,实时姿态数据可以包括帧间旋转矩阵和帧间平移矩阵。
在一些示例中,若初步姿态数据基于IMU的加速度和角速度计算得到,则可以利用纹理信息和点云信息的结合来修正初步姿态数据,得到实时姿态数据。
在另一些示例中,若初步姿态数据基于IMU的加速度和角速度计算得到,则可以利用标志点信息来修正初步姿态数据,得到实时姿态数据。
在又一些示例中,若初步姿态数据基于IMU的加速度和角速度计算得到,则可以利用点云信息来修正初步姿态数据,得到实时姿态数据。
在再一些示例中,若初步姿态数据基于纹理信息和点云信息的结合计算得到,则可以利用标志点信息来修正初步姿态数据,得到实时姿态数据。
在再一些示例中,若初步姿态数据基于标志点信息计算得到,则可以利用IMU的加速度和角速度来修正初步姿态数据,得到实时姿态数据。这样,当标志点拼接失败时,能够用IMU做短暂跟踪过渡,保持扫描的流畅性。
在一些场景下,对于基于纹理信息或点云信息定位扫描仪姿态的方式,依赖目标对象本身具有丰富的纹理属性,若第一采集信息是纹理信息和点云信息的结合,并且,目标对象的几何特征不明显,或者没有特定的纹理信息时,很难准确的定位扫描仪的姿态,因此,结合其他类型的第二采集信息,进行扫描仪姿态定位的方式,能够在纹理或者几何特征不明显的区域也能定位扫描仪姿态。
在另一些场景下,对于基于标志点定位扫描仪姿态的方式,如果目标对象的部分区域不支持粘贴标志点,则无法获取到标志点信息, 导致无法准确的定位扫描仪的姿态,因此,结合其他类型的第二采集信息,进行扫描仪姿态定位的方式,能够在无标志的区域也能定位扫描仪姿态。
在又一些场景下,对于基于加速度和角速度定位扫描仪姿态的方式,随着扫描仪的工作时间延长,惯性采集装置会发生飘零现象,导致加速度和角速度不准确,因此,结合其他类型的第二采集信息,进行扫描仪姿态定位的方式,能够提高扫描仪的定位准确性。
本公开实施例的一种扫描仪姿态定位方法,在目标扫描仪扫描目标对象的情况下,能够获取目标扫描仪发送的第一采集信息和第二采集信息;然后,对第一采集信息中相邻帧的采集信息进行拼接,得到目标扫描仪的初步姿态数据;最终利用第二采集信息修正初步姿态数据,得到目标扫描仪的实时姿态数据。通过上述方式,在进行扫描仪姿态定位的过程中,可以利用一种类型的采集信息初步定位目标扫描仪的姿态,并利用另一种类型的采集信息修正初步定位的姿态,得到准确性较高的目标扫描仪的姿态,因此,这种扫描仪姿态定位方法提高了扫描仪姿态定位的准确性。
在本公开另一种实施方式中,可以只根据第二采集信息计算用于进行姿态修正的候选姿态数据,或者,基于第二采集信息和第三采集信息计算用于进行姿态修正的候选姿态数据,并利用候选姿态数据修正初步姿态数据。
图2示出了本公开实施例提供的一种扫描仪姿态定位方法的流程示意图。
如图2所示,该扫描仪姿态定位方法可以包括如下步骤。
S210、在目标扫描仪扫描目标对象的情况下,获取目标扫描仪发送的第一采集信息和第二采集信息。
S220、对第一采集信息中相邻帧的采集信息进行拼接,得到目标扫描仪的初步姿态数据。
其中,S210~S220与S210~S220相似,在此不做赘述。
S230、对第二采集信息中相邻帧的采集信息进行拼接,得到用于姿态修正的候选姿态数据。
在本公开实施例中,在每一扫描时刻,目标扫描仪可以获取到多帧采集信息,电子设备可以从第二采集信息中提取相邻帧的采集信息,并对相邻帧的采集信息进行拼接,得到用于姿态修正的候选姿态数据。
在本公开实施例中,候选姿态数据可以作为初步姿态数据的约束条件,使得以候选姿态数据为基准调整初始姿态数据。具体的,候选姿态数据可以包括帧间旋转矩阵和帧间平移矩阵。
在一些实施例中,若第一采集信息是加速度和角速度,第二采集信息包括纹理信息和点云信息的结合,针对第二采集信息,可以利用纹理与点云拼接的方式,计算候选姿态数据。
在另一些实施例中,若第一采集信息是加速度和角速度,第二采集信息是标志点信息,则可以利用标志点拼接的方式,计算候选姿态数据。
在又一些实施例中,若第一采集信息是加速度和角速度,第二采集信息是点云信息,则可以利用点云拼接的方式,计算候选姿态数据。
在再一些实施例中,若第一采集信息是纹理信息和点云信息的结合,第二采集信息是标志点信息,也可以利用点云拼接的方式,计算候选姿态数据。
S240、获取目标扫描仪发送的第三采集信息。
在本公开实施例中,为了进一步提高扫描仪定位的准确性,在获取第一采集信息和第二采集信息的同时,还可以获取目标扫描仪发送的第三采集信息,使得集合第三采集信息协同定位扫描仪姿态。
在本公开实施例中,第一采集信息和第二采集信息以及第三采集信息包括的信息不相同。
可选的,第三采集信息也包括以下至少一种:目标扫描仪上IMU的加速度和角速度、目标扫描仪所扫描的目标对象的点云信息、目标对象的纹理信息和点云信息的结合、以及目标对象的标志点信息。
在实际应用时,第一采集信息、第二采集信息以及第三采集信息可以是任意组合。
在一些示例中,第一采集信息是IMU的加速度和角速度,第二采集信息是纹理信息和点云信息的结合,第三采集信息是标志点。
在另一些示例中,第一采集信息是IMU的加速度和角速度,第二采集信息是点云信息,第三采集信息是标志点。
需要说明的是,对于不同产品型号的目标扫描仪,第一采集信息、第二采集信息以及第三采集信息的组合方式包括但不限于以上几种扫描方式。
S250、对第二采集信息中相邻帧的采集信息进行拼接,得到用于姿态修正的第一候选姿态数据,以及对第三采集信息中相邻帧的采集信息进行拼接,得到用于姿态修正的第二候选姿态数据。
在本公开实施例中,在每一扫描时刻,目标扫描仪可以获取到多帧采集信息,电子设备可以从第二采集信息中提取相邻帧的采集信息,并对相邻帧的采集信息进行拼接,得到第一候选姿态数据,以及第三采集信息中提取相邻帧的采集信息,并对相邻帧的采集信息进行拼接,得到第二候选姿态数据。
需要说明的是,第三采集信息对应的拼接方式可以参见S230中第二采集信息对应的拼接方式,在此不做赘述。
S260、根据第一候选姿态数据和第二候选姿态数据,计算用于姿态修正的候选姿态数据。
在本公开实施例中,可选的,S260具体可以包括如下步骤:
对第一候选姿态数据和第二候选姿态数据进行加权求和,得到用于姿态修正的候选姿态数据。
具体的,电子设备可以获取各候选姿态数据对应的权重,并基于各自对应的权重进行加权求和,得到最终的候选姿态数据。
S270、基于候选姿态数据修正初步姿态数据,得到目标扫描仪的实时姿态数据。
在本公开实施例中,可选的,S270具体可以包括如下步骤:
S2701、根据候选姿态数据迭代调整初步姿态数据,直至初步姿态数据达到稳定值或者位于预设的阈值范围内;
S2702、将达到稳定值或者位于预设的阈值范围内的初步姿态数据,作为目标扫描仪的实时姿态数据。
具体的,电子设备可以以候选姿态数据为基准,不断的调整初步 姿态数据,直至预设调整次数内的初步姿态数据不变,则确定初步姿态数据达到稳定值,或者,初步姿态数据位于预设的阈值范围内,则得到已经调整好的姿态数据,并将已经调整好的姿态数据作为实时姿态数据。
其中,稳定值和预设的阈值范围可以理解为用于确定姿态是否调整好姿态的限定条件。具体的,稳定值也可以包括旋转矩阵和平移矩阵。
由此,在本公开实施例中,可以通过对第二采集信息进行拼接,或者,对第二采集信息和第三采集信息进行拼接,得到候选姿态数据,使得利用候选姿态数据准确的计算目标扫描仪的实时姿态数据,同时,由于候选姿态数据的确定方式有多种,能够适应于在多种场景下进行扫描仪姿态定位。
在本公开又一种实施方式中,对于不同的采集信息,可以采用不同方式进行拼接,以确定姿态数据。
在本公开一些实施例中,可以将惯性采集装置采集的加速度和目标对象的纹理信息以及点云信息,作为组合拼接方式,用于定位扫描仪的姿态。其中,点云信息可以包括点云坐标,或者,包括点云坐标和法向量。
在本公开实施例中,第一采集信息包括目标扫描仪上惯性采集装置的加速度和角速度,加速度和角速度由目标扫描仪的惯性采集装置采集。
相应的,S120具体可以包括如下步骤:
S1201、对第一采集信息中相邻帧的加速度和角速度进行积分,得到惯性采集装置在相邻帧的第一相对运动值;
S1202、根据第一相对运动值,以及惯性采集装置和目标扫描仪之间的相对位姿,计算目标扫描仪在相邻帧的第二相对运动值;
S1203、基于第二相对运动,以及目标扫描仪在上一帧的位姿,计算目标扫描仪在当前帧的位姿,并将目标扫描仪在当前帧的位姿作为初步姿态数据。
其中,第一相对运动值可以包括惯性采集装置在相邻帧的旋转矩 阵和平移矩阵。
其中,第二相对运动值可以包括目标扫描仪在相邻帧的旋转矩阵和平移矩阵。具体的,在得到第二相对运动之后,可以将第二相对运动与目标扫描仪在上一帧的位姿相乘,得到目标扫描仪在当前帧的位姿,从而得到初步姿态数据。
在本公开实施例中,第二采集信息包括目标对象的纹理信息和点云信息的结合。
相应的,S230具体可以包括如下步骤:
S2301、利用预设拼接算法对相邻帧的纹理信息和点云信息进行拼接,得到用于姿态修正的候选姿态数据。
具体的,电子设备能够将相邻帧的纹理信息和点云信息输入预设拼接算法,以利用预设拼接算法进行纹理和点云拼接,得到候选姿态数据。其中,预设拼接算法可以是ICP拼接算法。
在本公开另一些实施例中,可以将惯性采集装置采集的加速度和目标对象的点云信息,作为组合拼接方式,用于定位扫描仪的姿态。
需要说明的是,基于加速度和角速度计算初步姿态数据的方式可以参见前述实施例,在此不做赘述。
在本公开实施例中,第二采集信息包括目标对象的点云信息。
相应的,S230具体可以包括如下步骤:
S2301、利用预设拼接算法对相邻帧的点云信息进行拼接,得到用于姿态修正的候选姿态数据。
具体的,电子设备能够将相邻帧的点云信息输入预设拼接算法,使得利用预设拼接算法进行点云拼接,得到候选姿态数据。
在本公开又一些实施例中,可以将惯性采集装置采集的加速度和目标对象的标志点信息,作为组合拼接方式,用于定位扫描仪的姿态。
需要说明的是,基于加速度和角速度计算初步姿态数据的方式可以参见前述实施例,在此不做赘述。
在本公开实施例中,第二采集信息包括目标对象的标志点信息。
相应的,S230具体可以包括如下步骤:
S2303、将相邻帧的标志点信息进行匹配,得到用于姿态修正的候 选姿态数据。
具体的,从标志点信息中获取相邻帧中的标志点对,并将标志点对进行匹配,若相邻帧存在一个标志点对,可以将该标志点对的匹配结果作为候选姿态数据,若相邻帧存在多个标志点对,可以将各个特征点对的匹配结果进行加权求和,得到候选姿态数据。
在其他实施例中,第一采集信息和第二采集信息还可以是其他形式的组合,不管何种组合方式,初步姿态数据和候选姿态数据的细节计算过程可以参见前述实施例的描述,在此不做赘述。除此之外,还可以将第一采集信息、第二采集信息以及第三采集信息进行组合,同样的,不管何种组合方式,初步姿态数据和候选姿态数据的细节计算过程可以参见前述实施例的描述,在此不做赘述。
由此,在本公开实施例中,对于采集信息的任意一种组合方式,可以通过拼接的方式准确的计算初步姿态数据和候选姿态数据。
本公开实施例还提供了一种用于实现上述的扫描仪姿态定位方法的扫描仪姿态定位装置,下面结合图3进行说明。在本公开实施例中,该扫描仪姿态定位装置可以为电子设备或服务器。其中,电子设备可以包括平板电脑、台式计算机、笔记本电脑等具有通信功能的设备,也可以包括虚拟机或者模拟器模拟的设备。服务器可以是服务器集群或者云服务器。
图3示出了本公开实施例提供的一种扫描仪姿态定位装置的结构示意图。
如图3所示,扫描仪姿态定位装置300可以包括:
采集信息获取模块310,用于在目标扫描仪扫描目标对象的情况下,获取目标扫描仪发送的第一采集信息和第二采集信息;
初步姿态数据确定模块320,用于对第一采集信息中相邻帧的采集信息进行拼接,得到目标扫描仪的初步姿态数据;
实时姿态数据确定模块330,用于利用第二采集信息修正初步姿态数据,得到目标扫描仪的实时姿态数据。
本公开实施例的一种扫描仪姿态定位装置,在目标扫描仪扫描目标对象的情况下,能够获取目标扫描仪发送的第一采集信息和第二采 集信息;然后,对第一采集信息中相邻帧的采集信息进行拼接,得到目标扫描仪的初步姿态数据;最终利用第二采集信息修正初步姿态数据,得到目标扫描仪的实时姿态数据。通过上述方式,在进行扫描仪姿态定位的过程中,可以利用一种类型的采集信息初步定位目标扫描仪的姿态,并利用另一种类型的采集信息修正初步定位的姿态,得到准确性较高的目标扫描仪的姿态,因此,这种扫描仪姿态定位方法提高了扫描仪姿态定位的准确性。
在本公开一些实施例中,实时姿态数据确定模块330,可以包括:
候选姿态数据确定单元,用于对第二采集信息中相邻帧的采集信息进行拼接,得到用于姿态修正的候选姿态数据;
实时姿态数据确定单元,用于基于候选姿态数据修正初步姿态数据,得到目标扫描仪的实时姿态数据。
在本公开一些实施例中,该装置还包括:
第三采集信息获取装置,用于获取目标扫描仪发送的第三采集信息;
相应的,实时姿态数据确定模块330,包括:
计算单元,用于对第二采集信息中相邻帧的采集信息进行拼接,得到用于姿态修正的第一候选姿态数据,以及对第三采集信息中相邻帧的采集信息进行拼接,得到用于姿态修正的第二候选姿态数据;
候选姿态数据确定单元,用于根据第一候选姿态数据和第二候选姿态数据,计算用于姿态修正的候选姿态数据;
实时姿态数据确定单元,用于基于候选姿态数据修正初步姿态数据,得到目标扫描仪的实时姿态数据。
在本公开一些实施例中,候选姿态数据确定单元具体用于,对第一候选姿态数据和第二候选姿态数据进行加权求和,得到用于姿态修正的候选姿态数据。
在本公开一些实施例中,实时姿态数据确定单元具体用于,根据候选姿态数据迭代调整初步姿态数据,直至初步姿态数据达到稳定值或者位于预设的阈值范围内;
将达到稳定值或者位于预设的阈值范围内的初步姿态数据,作为 目标扫描仪的实时姿态数据。
在本公开一些实施例中,第一采集信息包括目标扫描仪上惯性采集装置的加速度和角速度,加速度和角速度由目标扫描仪的惯性采集装置采集;
相应的,初步姿态数据确定模块320,包括:
第一相对运动值计算单元,用于对第一采集信息中相邻帧的加速度和角速度进行积分,得到惯性采集装置在相邻帧的第一相对运动值;
第二相对运动值计算单元,用于根据第一相对运动值,以及惯性采集装置和目标扫描仪之间的相对位姿,计算目标扫描仪在相邻帧的第二相对运动值;
初步姿态数据确定单元,用于基于第二相对运动,以及目标扫描仪在上一帧的位姿,计算目标扫描仪在当前帧的位姿,并将目标扫描仪在当前帧的位姿作为初步姿态数据。
在本公开一些实施例中,第二采集信息包括目标对象的纹理信息和点云信息的结合;
相应的,实时姿态数据确定模块330,包括:
第一拼接单元,用于利用预设拼接算法对相邻帧的纹理信息和点云信息进行拼接,得到用于姿态修正的候选姿态数据。
在本公开一些实施例中,第二采集信息包括目标对象的点云信息;
相应的,实时姿态数据确定模块330,包括:
第二拼接单元,用于利用预设拼接算法对相邻帧的点云信息进行拼接,得到用于姿态修正的候选姿态数据。
在本公开一些实施例中,第二采集信息包括目标对象的标志点信息;
相应的,实时姿态数据确定模块330,包括:
标志点匹配单元,用于将相邻帧的标志点信息进行匹配,得到用于姿态修正的候选姿态数据。
需要说明的是,图3所示的扫描仪姿态定位装置300可以执行图1至图2所示的方法实施例中的各个步骤,并且实现图1至图2所示的方法实施例中的各个过程和效果,在此不做赘述。
图4示出了本公开实施例提供的一种电子设备的结构示意图。
如图4所示,该电子设备可以包括处理器401以及存储有计算机程序指令的存储器402。
具体地,上述处理器401可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器402可以包括用于信息或指令的大容量存储器。举例来说而非限制,存储器402可以包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个及其以上这些的组合。在合适的情况下,存储器402可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器402可在综合网关设备的内部或外部。在特定实施例中,存储器402是非易失性固态存储器。在特定实施例中,存储器402包括只读存储器(Read-Only Memory,ROM)。在合适的情况下,该ROM可以是掩模编程的ROM、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Electrical Programmable ROM,EPROM)、电可擦除PROM(Electrically Erasable Programmable ROM,EEPROM)、电可改写ROM(Electrically Alterable ROM,EAROM)或闪存,或者两个或及其以上这些的组合。
处理器401通过读取并执行存储器402中存储的计算机程序指令,以执行本公开实施例所提供的扫描仪姿态定位方法的步骤。
在一个示例中,该电子设备还可包括收发器403和总线404。其中,如图4所示,处理器401、存储器402和收发器403通过总线404连接并完成相互间的通信。
总线404包括硬件、软件或两者。举例来说而非限制,总线可包括加速图形端口(Accelerated Graphics Port,AGP)或其他图形总线、增强工业标准架构(Extended Industry Standard Architecture,EISA)总线、前端总线(Front Side BUS,FSB)、超传输(Hyper Transport,HT)互连、工业标准架构(Industrial Standard Architecture,ISA)总线、无限带宽互连、低引脚数(Low Pin Count,LPC)总线、存储 器总线、微信道架构(Micro Channel Architecture,MCA)总线、外围控件互连(Peripheral Component Interconnect,PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(Serial Advanced Technology Attachment,SATA)总线、视频电子标准协会局部(Video Electronics Standards Association Local Bus,VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线404可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
以下是本公开实施例提供的计算机可读存储介质的实施例,该计算机可读存储介质与上述各实施例的扫描仪姿态定位方法属于同一个发明构思,在计算机可读存储介质的实施例中未详尽描述的细节内容,可以参考上述扫描仪姿态定位方法的实施例。
本实施例提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种扫描仪姿态定位方法,该方法包括:
在目标扫描仪扫描目标对象的情况下,获取目标扫描仪发送的第一采集信息和第二采集信息;
对第一采集信息中相邻帧的采集信息进行拼接,得到目标扫描仪的初步姿态数据;
利用第二采集信息修正初步姿态数据,得到目标扫描仪的实时姿态数据。
当然,本公开实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上的方法操作,还可以执行本公开任意实施例所提供的扫描仪姿态定位方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本公开可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、 随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机云平台(可以是个人计算机,服务器,或者网络云平台等)执行本公开各个实施例所提供的扫描仪姿态定位方法。
注意,上述仅为本公开的较佳实施例及所运用技术原理。本领域技术人员会理解,本公开不限于这里的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本公开的保护范围。因此,虽然通过以上实施例对本公开进行了较为详细的说明,但是本公开不仅仅限于以上实施例,在不脱离本公开构思的情况下,还可以包括更多其他等效实施例,而本公开的范围由所附的权利要求范围决定。
工业实用性
本公开提供的扫描仪姿态定位方法,在进行扫描仪姿态定位的过程中,可以利用一种类型的采集信息初步定位目标扫描仪的姿态,并利用另一种类型的采集信息修正初步定位的姿态,得到准确性较高的目标扫描仪的姿态,因此,这种扫描仪姿态定位方法提高了扫描仪姿态定位的准确性。

Claims (12)

  1. 一种扫描仪姿态定位方法,其特征在于,包括:
    在目标扫描仪扫描目标对象的情况下,获取所述目标扫描仪发送的第一采集信息和第二采集信息;
    对所述第一采集信息中相邻帧的采集信息进行拼接,得到所述目标扫描仪的初步姿态数据;
    利用所述第二采集信息修正所述初步姿态数据,得到所述目标扫描仪的实时姿态数据。
  2. 根据权利要求1所述的方法,其特征在于,所述利用所述第二采集信息修正所述初步姿态数据,得到所述目标扫描仪的实时姿态数据,包括:
    对所述第二采集信息中相邻帧的采集信息进行拼接,得到用于姿态修正的候选姿态数据;
    基于所述候选姿态数据修正所述初步姿态数据,得到所述目标扫描仪的实时姿态数据。
  3. 根据权利要求1所述的方法,其特征在于,还包括:
    获取所述目标扫描仪发送的第三采集信息;
    相应的,所述利用所述第二采集信息修正所述初步姿态数据,得到所述目标扫描仪的实时姿态数据,包括:
    对所述第二采集信息中相邻帧的采集信息进行拼接,得到用于姿态修正的第一候选姿态数据,以及对所述第三采集信息中相邻帧的采集信息进行拼接,得到用于姿态修正的第二候选姿态数据;
    根据所述第一候选姿态数据和所述第二候选姿态数据,计算用于姿态修正的候选姿态数据;
    基于所述候选姿态数据修正所述初步姿态数据,得到所述目标扫 描仪的实时姿态数据。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述第一候选姿态数据和所述第二候选姿态数据,计算用于姿态修正的候选姿态数据,包括:
    对所述第一候选姿态数据和所述第二候选姿态数据进行加权求和,得到所述用于姿态修正的候选姿态数据。
  5. 根据权利要求2或3所述的方法,其特征在于,所述基于所述候选姿态数据修正所述初步姿态数据,得到所述目标扫描仪的实时姿态数据,包括:
    根据所述候选姿态数据迭代调整所述初步姿态数据,直至所述初步姿态数据达到稳定值或者位于预设的阈值范围内;
    将所述达到稳定值或者所述位于预设的阈值范围内的初步姿态数据,作为所述目标扫描仪的实时姿态数据。
  6. 根据权利要求1所述的方法,其特征在于,所述第一采集信息包括所述目标扫描仪上惯性采集装置的加速度和角速度,所述加速度和所述角速度由所述目标扫描仪的惯性采集装置采集;
    相应的,所述对所述第一采集信息中相邻帧的采集信息进行拼接,得到所述目标扫描仪的初步姿态数据,包括:
    对所述第一采集信息中相邻帧的加速度和角速度进行积分,得到所述惯性采集装置在相邻帧的第一相对运动值;
    根据所述第一相对运动值,以及所述惯性采集装置和所述目标扫描仪之间的相对位姿,计算所述目标扫描仪在相邻帧的第二相对运动值;
    基于所述第二相对运动,以及所述目标扫描仪在上一帧的位姿,计算所述目标扫描仪在当前帧的位姿,并将所述目标扫描仪在当前帧的位姿作为所述初步姿态数据。
  7. 根据权利要求2所述的方法,其特征在于,所述第二采集信息包括所述目标对象的纹理信息和点云信息的结合;
    相应的,所述对所述第二采集信息中相邻帧的采集信息进行拼接,得到用于姿态修正的候选姿态数据,包括:
    利用预设拼接算法对所述相邻帧的纹理信息和点云信息进行拼接,得到所述用于姿态修正的候选姿态数据。
  8. 根据权利要求2所述的方法,其特征在于,所述第二采集信息包括所述目标对象的点云信息;
    相应的,所述对所述第二采集信息中相邻帧的采集信息进行拼接,得到用于姿态修正的候选姿态数据,包括:
    利用预设拼接算法对所述相邻帧的点云信息进行拼接,得到所述用于姿态修正的候选姿态数据。
  9. 根据权利要求2所述的方法,其特征在于,所述第二采集信息包括所述目标对象的标志点信息;
    相应的,所述对所述第二采集信息中相邻帧的采集信息进行拼接,得到用于姿态修正的候选姿态数据,包括:
    将所述相邻帧的标志点信息进行匹配,得到所述用于姿态修正的候选姿态数据。
  10. 一种扫描仪姿态定位装置,其特征在于,包括:
    采集信息获取模块,用于在目标扫描仪扫描目标对象的情况下,获取目标扫描仪发送的第一采集信息和第二采集信息;
    初步姿态数据确定模块,用于对所述第一采集信息中相邻帧的采集信息进行拼接,得到所述目标扫描仪的初步姿态数据;
    实时姿态数据确定模块,用于利用所述第二采集信息修正所述初步姿态数据,得到所述目标扫描仪的实时姿态数据。
  11. 一种电子设备,其特征在于,包括:
    处理器;
    存储器,用于存储可执行指令;
    其中,所述处理器用于从所述存储器中读取所述可执行指令,并执行所述可执行指令以实现上述权利要求1-9中任一项所述的扫描仪姿态定位方法。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述存储介质存储有计算机程序,当所述计算机程序被处理器执行时,使得处理器实现上述权利要求1-9中任一项所述的扫描仪姿态定位方法。
PCT/CN2023/101830 2022-06-30 2023-06-21 扫描仪姿态定位方法、装置、设备及存储介质 WO2024001916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210770769.6A CN115187663A (zh) 2022-06-30 2022-06-30 扫描仪姿态定位方法、装置、设备及存储介质
CN202210770769.6 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024001916A1 true WO2024001916A1 (zh) 2024-01-04

Family

ID=83514978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101830 WO2024001916A1 (zh) 2022-06-30 2023-06-21 扫描仪姿态定位方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115187663A (zh)
WO (1) WO2024001916A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115187663A (zh) * 2022-06-30 2022-10-14 先临三维科技股份有限公司 扫描仪姿态定位方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140368378A1 (en) * 2011-12-20 2014-12-18 Sadar 3D, Inc. Systems, apparatus, and methods for data acquisition and imaging
CN109920007A (zh) * 2019-01-26 2019-06-21 中国海洋大学 基于多光谱光度立体与激光扫描的三维成像装置及方法
CN111461980A (zh) * 2020-03-30 2020-07-28 北京百度网讯科技有限公司 点云拼接算法的性能估计方法和装置
CN111754573A (zh) * 2020-05-19 2020-10-09 新拓三维技术(深圳)有限公司 一种扫描方法及系统
CN113514008A (zh) * 2020-04-10 2021-10-19 杭州思看科技有限公司 三维扫描方法、三维扫描系统和计算机可读存储介质
CN115187663A (zh) * 2022-06-30 2022-10-14 先临三维科技股份有限公司 扫描仪姿态定位方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140368378A1 (en) * 2011-12-20 2014-12-18 Sadar 3D, Inc. Systems, apparatus, and methods for data acquisition and imaging
CN109920007A (zh) * 2019-01-26 2019-06-21 中国海洋大学 基于多光谱光度立体与激光扫描的三维成像装置及方法
CN111461980A (zh) * 2020-03-30 2020-07-28 北京百度网讯科技有限公司 点云拼接算法的性能估计方法和装置
CN113514008A (zh) * 2020-04-10 2021-10-19 杭州思看科技有限公司 三维扫描方法、三维扫描系统和计算机可读存储介质
CN111754573A (zh) * 2020-05-19 2020-10-09 新拓三维技术(深圳)有限公司 一种扫描方法及系统
CN115187663A (zh) * 2022-06-30 2022-10-14 先临三维科技股份有限公司 扫描仪姿态定位方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN115187663A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
US10810734B2 (en) Computer aided rebar measurement and inspection system
CN111127563A (zh) 联合标定方法、装置、电子设备及存储介质
US9787960B2 (en) Image processing apparatus, image processing system, image processing method, and computer program
US20230316690A1 (en) 3-D Reconstruction Using Augmented Reality Frameworks
CN110988849B (zh) 雷达系统的标定方法、装置、电子设备及存储介质
CN110660098B (zh) 基于单目视觉的定位方法和装置
WO2024001916A1 (zh) 扫描仪姿态定位方法、装置、设备及存储介质
CN110163087B (zh) 一种人脸姿态识别方法及系统
CN114550177B (zh) 图像处理的方法、文本识别方法及装置
US20220414910A1 (en) Scene contour recognition method and apparatus, computer-readable medium, and electronic device
CN110349212B (zh) 即时定位与地图构建的优化方法及装置、介质和电子设备
CN110660102B (zh) 基于人工智能的说话人识别方法及装置、系统
CN112819860B (zh) 视觉惯性系统初始化方法及装置、介质和电子设备
JP2020027439A (ja) 情報処理装置、情報処理方法
WO2022252873A1 (zh) 相机内参的标定验证方法、装置、设备及介质
WO2024001960A1 (zh) 位置调整方法、装置、设备及存储介质
JP2022531186A (ja) 情報処理方法、装置、電子機器、記憶媒体およびプログラム
WO2022062355A1 (zh) 一种融合定位方法及装置
CN117191080A (zh) 相机与imu外参的标定方法、装置、设备及存储介质
US11941835B2 (en) Eye information estimate apparatus, eye information estimate method, and program
CN110097061B (zh) 一种图像显示方法及装置
CN105631850B (zh) 对齐多视图扫描
CN116342585A (zh) 一种产品缺陷检测方法、装置、设备及存储介质
CN113140031B (zh) 三维影像建模系统、方法及应用其的口腔扫描设备
CN109087338B (zh) 一种图像稀疏光流的提取方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830095

Country of ref document: EP

Kind code of ref document: A1