WO2024001815A1 - 直驱打纬机构、织机及织机控制系统 - Google Patents

直驱打纬机构、织机及织机控制系统 Download PDF

Info

Publication number
WO2024001815A1
WO2024001815A1 PCT/CN2023/100519 CN2023100519W WO2024001815A1 WO 2024001815 A1 WO2024001815 A1 WO 2024001815A1 CN 2023100519 W CN2023100519 W CN 2023100519W WO 2024001815 A1 WO2024001815 A1 WO 2024001815A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
loom
beat
reed assembly
direct
Prior art date
Application number
PCT/CN2023/100519
Other languages
English (en)
French (fr)
Inventor
孙鹏
耿彬彬
段玉响
张建秋
邵佳威
孙义
张源
于兆凯
Original Assignee
深圳市汇川技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇川技术股份有限公司 filed Critical 深圳市汇川技术股份有限公司
Publication of WO2024001815A1 publication Critical patent/WO2024001815A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D49/00Details or constructional features not specially adapted for looms of a particular type
    • D03D49/60Construction or operation of slay
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D51/00Driving, starting, or stopping arrangements; Automatic stop motions
    • D03D51/005Independent drive motors

Definitions

  • the present application relates to the field of textile and weaving technology, and in particular to a direct-drive beating mechanism, a loom and a loom control system.
  • traditional looms are mainly composed of five major mechanisms: shedding mechanism, direct drive beating mechanism, let-off mechanism, crimping mechanism and water spray mechanism.
  • the direct drive beat-up mechanism is mainly used to push the weft yarn introduced into the shed by the weft insertion mechanism to the cloth fell, thereby forming a stable fabric.
  • the power source of the direct-drive beat-up mechanism of traditional looms can only come from the main shaft.
  • the main shaft movement is converted into reciprocating swing through mechanisms such as crankshaft connecting rods and conjugate cams.
  • the operating status of the direct-drive beat-up mechanism can only be adjusted by adjusting the main shaft. state, but the motion transmission is non-linear and strongly coupled. Therefore, the direct-drive beat-up mechanism of traditional looms has limited adaptability, unstable weaving, high noise, and is not conducive to high-speed looms and fabrics. Defects such as high limitations in quality process adjustment.
  • the main purpose of this application is to provide a direct-drive beat-up mechanism, which is designed to decouple the beat-up motion from the spindle motion and directly drive the reed assembly to achieve parallel beat-up, so as to at least solve some of the above technical problems.
  • this application provides a direct drive beating-up mechanism including:
  • the driving module includes at least one linear motor, and the at least one linear motor is used to provide the main power source for the linear reciprocating motion of the reed assembly; wherein each of the linear motors includes a linear motor stator and a linear motor movable, The linear motor movable body is slidingly matched with the linear motor stator, and the end of the linear motor movable body is connected to the reed assembly.
  • the driving module further includes a first connection seat, and the first connection seat is used to connect the linear motor stator and the loom frame.
  • the first connecting seat and the linear motor stator are of an integral structure.
  • the plane where the first connection base is located is parallel to the center plane of the linear motor movable.
  • the distance between the linear motor and the reed assembly is less than a preset threshold.
  • the linear motor motor is integrated into the reed assembly.
  • the direct-drive beating mechanism further includes a second connecting seat, the second connecting seat is used to connect the reed assembly and the linear motor motor;
  • the first end of the linear motor rotor is connected to the second connection base, and the second end of the linear motor rotor is in sliding fit with the linear motor stator.
  • the linear motor stator is provided on at least one side of the reed assembly, and the linear motor moves horizontally.
  • the second connection base includes a connected adapter part and a fixed part, and the linear motor stator moves horizontally.
  • the adapter part is connected to the linear motor motor, and the fixing part is connected to the reed assembly.
  • the direct-drive beating mechanism is provided with a plurality of linear motors, and the plurality of linear motors are connected to the reed assembly through at least one second connection seat, and the at least A second connection base is provided with a plurality of said fixing parts;
  • At least part of the fixing part is provided on both sides of the adapter part, and/or at least part of the fixing part is provided on a surface of the adapter part facing away from the linear motor motor.
  • the adapter part is an integral structure, and the fixing part is provided on the adapter part and connected to the reed assembly;
  • the second connecting seat is an integral structure
  • the fixing part is provided with reinforcing ribs.
  • the linear motor includes: a cylindrical linear motor, a flat plate linear motor or a U-shaped linear motor.
  • This application also proposes a loom, which includes a stand and a direct-drive beat-up mechanism as described above.
  • the linear motor stator in the direct-drive beat-up mechanism is fixedly connected to the stand.
  • the loom control system includes:
  • An interactive module the interactive module is provided with a human-computer interaction interface
  • a detection module the detection module is communicatively connected to the interactive module, the detection module is equipped with a sensor, and the sensor is installed on the loom;
  • a main control module the main control module is communicatively connected with the interactive module and the detection module;
  • a drive control module is electrically connected to the drive module and communicatively connected with the main control module and the detection module.
  • This application uses a linear motor as the main power source for the linear reciprocating motion of the reed assembly.
  • the advantage is that the complicated beating mechanism is replaced by a direct-drive linear motor.
  • the structure is simple and is more conducive to high-speed looms.
  • the force-displacement characteristics and current characteristics of the linear motor are almost linear, so the reed assembly can be controlled more linearly and flexibly to achieve the beat-up movement.
  • the linear motor motor is directly connected to the reed assembly without an intermediate transmission mechanism. It can directly drive the reed to perform linear reciprocating motion, reducing power loss. It is also more conducive to the control of the beat-up movement by the loom control system, thereby achieving Efficient digital and electronic loom control can greatly reduce system vibration and noise.
  • the direct drive beat-up mechanism proposed in this application can be adapted to various types of air-jet, water-jet looms and rapier looms with traditional asynchronous spindle drive, direct drive spindle drive, truly achieving wider variety adaptability, and can It can compensate the startup defects of the loom to a certain extent and greatly improve the quality of fabrics.
  • Figure 1 is a schematic structural diagram of an embodiment of a traditional loom
  • Figure 2 is a schematic structural diagram of an embodiment of the loom of the present application.
  • Figure 3 is a schematic structural diagram of an embodiment of the direct drive beat-up mechanism of the present application.
  • Figure 4 is an enlarged structural schematic diagram of position A in Figure 3;
  • Figure 5 is a schematic structural diagram of another embodiment of the direct drive beat-up mechanism of the present application.
  • Figure 6 is a schematic diagram of an embodiment of the loom control system of the present application.
  • traditional looms mainly include a shedding mechanism, a beating mechanism, a let-off mechanism 230, a curling mechanism 270 and a water spray mechanism.
  • the let-off mechanism 230 drives the warp beam to operate and release the warp yarns
  • the curling mechanism 270 rolls the woven fabric on the winding shaft
  • the heald frame 240 moves up and down in layers, so that the warp yarns passing through the center eye of the healds of the heald frame 240
  • the shedding can be formed by layered movement to ensure that the weft insertion mechanism 250 will smoothly pass the ejected weft yarn through the shed; the beating-up mechanism will beat the weft yarn to the cloth surface to form a fabric.
  • the above-mentioned mechanisms follow the movement cycle of the main shaft 210, and the weft yarn is ejected from the main shaft 210. 210 specific angle sections act in a certain timing sequence and work together to complete the weaving operation.
  • the main function of the beat-up mechanism is to push the weft yarn introduced into the shed by the weft insertion mechanism 250 to the cloth fell, thereby forming a stable fabric.
  • the traditional loom beat-up mechanism is mainly divided into four-link beat-up mechanism, six-link beat-up mechanism and conjugate cam beat-up mechanism.
  • the four-bar linkage beat-up mechanism of a traditional loom the main power source can only come from the main shaft 210.
  • the continuous rotation of the main shaft 210 is converted into the reciprocating periodic swing of the beat-up mechanism through a crankshaft four-bar linkage mechanism.
  • the strong coupling design of the traditional beat-up mechanism and the main shaft 210 requires the traditional beat-up mechanism to convert the periodic motion of the main shaft 210 into the reed assembly 50 through a mechanical transmission mechanism such as a crankshaft connecting rod mechanism or a conjugate cam mechanism. Periodic reciprocating motion.
  • the periodic reciprocating motion of the beating-up mechanism is the main component of the equivalent load fluctuation, and the vibration and noise problems of the whole machine are serious.
  • the present application provides a direct-drive beat-up mechanism 100 .
  • the direct-drive beating mechanism 100 may include a reed assembly 50 and a drive module.
  • the drive module may include at least one linear motor 10 , and the at least one linear motor 10 is used to provide
  • the reed assembly 50 performs linear reciprocating motion to provide the main power source; wherein, each linear motor 10 can include a linear motor stator 11 and a linear motor rotor 13.
  • the linear motor rotor 13 is in sliding cooperation with the linear motor stator 11.
  • the linear motor rotor The end of 13 is connected with the reed assembly 50.
  • the direct drive beat-up mechanism 100 proposed in this application drives the reed assembly 50 through a drive module independent of the main shaft 210 to achieve parallel beat-up.
  • the loom 200 is provided with a stand, and each mechanism of the loom 200 is disposed on the stand, and each mechanism operates cooperatively to implement the weaving operation.
  • the driving module can also be disposed on the stand.
  • the driving module includes at least one linear motor 10 and mainly drives the reed assembly 50 to perform linear reciprocating motion through the linear motor movable 13 that flexibly cooperates with the linear motor stator 11 . It can be understood that the movement direction of the linear motor 13 is consistent with the direction of the warp threads, so that the reed assembly 50 can continuously push the weft threads drawn out by the weft insertion mechanism 250 into the cloth fell.
  • the linear motor 13 is a rod, and a linear channel 11a is provided through the linear motor stator 11.
  • the linear motor 13 is movably located in the linear channel 11a, and is opposite to the linear motor.
  • the stator 11 reciprocates along the linear channel 11a.
  • the outer contour of the linear motor stator 11 is roughly block-shaped or cylindrical, and is fixedly connected to the stand.
  • the linear channel 11a is set as a hollow channel, and the wire windings in the linear motor stator 11 surround the linear motor stator 11 .
  • the linear channel 11a can penetrate the linear motor stator 11 in the direction of the warp so that the linear motor 13 can pass through the linear motor stator 11 to obtain a longer beating stroke; or, the linear channel 11a can be configured In the linear motor stator 11, the linear motor stator 11 can be long or short, depending on the beating stroke.
  • the linear motor stator 11 When the windings in the linear motor stator 11 are supplied with alternating current, a traveling magnetic field will be generated in the linear channel 11a. Under the cutting of the traveling magnetic field, the linear motor 13 will induce an electromotive force and generate a current. This current interacts with the magnetic field. Produce electromagnetic thrust.
  • the linear motor stator 11 is fixed, the linear motor rotor 13 moves along the linear channel 11 a relative to the linear motor stator 11 .
  • the linear motor 10 can also be arranged in a flat-plate type, U-type, etc., and is not limited here.
  • the drive module may use the linear motor 10 as the only power source; in another embodiment, the drive module may use the linear motor 10 as the main power source, and may use a linear motor 10 including but not limited to a ball screw.
  • the driving mode is used as an auxiliary power source, and the main power source and the auxiliary power source cooperate to drive the reed assembly 50 to move linearly back and forth.
  • the drive module may also include a rotating motor, a ball screw shaft and a ball screw nut.
  • the ball screw shaft is connected to the output end of the rotating motor, and the ball screw nut is connected to the output end of the rotating motor.
  • the ball screw shaft and the reed assembly 50 are connected to the ball screw nut, and the rotating motor drives the ball screw shaft to rotate, so that the ball screw nut drives the reed assembly 50 to move along the axis of the ball screw shaft.
  • the main power source and the auxiliary power source may be synchronized.
  • This application uses the linear motor 10 as the main power source for the reed assembly 50 to perform linear reciprocating motion.
  • the advantage is that the complicated beating mechanism is replaced by the direct-drive linear motor 10, the structure is simple, and it is more conducive to the high speed of the loom 200. change. Moreover, the force-displacement characteristics and current characteristics of the linear motor 10 are almost linear, so the reed assembly 50 can be controlled more linearly and flexibly to achieve the beating motion.
  • the linear motor 13 is directly connected to the reed assembly 50, without an intermediate transmission mechanism, and can directly drive the reed to perform linear reciprocating motion, reducing power loss, and is also more conducive to the control of the beat-up movement by the control system of the loom 200. , thereby achieving efficient digital and electronic loom 200 control, and greatly reducing system vibration and noise.
  • the direct drive beat-up mechanism 100 proposed in this application can be adapted to various types of air-jet, water-jet looms 200 and rapier looms 200 driven by traditional asynchronous spindle 210 drive and direct drive spindle 210 drive, truly realizing a wider range of varieties. It is adaptable and can compensate the startup defects of the loom 200 to a certain extent, greatly improving the fabric quality.
  • the driving module may further include a first connection base 30 , which is used to connect the linear motor stator 11 and the frame of the loom 200 .
  • the linear motor stator 11 is connected to the frame of the loom 200 through the first connection seat 30 to ensure the stability of the drive module and improve the beat-up accuracy.
  • the first connecting seat 30 and the linear motor stator 11 are of an integrated structure.
  • the linear motor stator 11 is in sliding fit with the linear motor rotor 13 , and the peripheral side of the linear motor stator 11 is extended or bent to form a first connection seat 30 , and the first connection seat 30 is connected to the loom 200 stand.
  • Fixed connection by integrating the linear motor stator 11 and the first connection base 30, improves the integrity and stability of the drive module, and facilitates disassembly and assembly.
  • the linear motor stator 11 can be directly integrated on the stand of the loom 200 . That is to say, the linear motor stator 11 is installed on the stand parts of the loom 200 during production. The form of the linear motor stator 11 depends on the actual demand. When the loom 200 is assembled, the linear motor stator 11 is installed on the stand of the loom 200. To integrate the linear motor stator 11, it is only necessary to install the linear motor rotor 13 in conjunction with the linear motor stator 11, and there is no need to provide a first connection base 30. In this way, the integration and integrity of the loom 200 can be further improved, so that the direct-drive beating mechanism 100 and the loom 200 stand are more closely connected and the operation is more stable.
  • the plane where the first connection base 30 is located is parallel to the center plane of the linear motor 13 . That is to say, in this embodiment, the plane where the motion direction of the linear motor 13 is located is parallel to the plane where the first connecting seat 30 is located, so that when the first connecting seat 30 is on the stand of the loom 200 When set horizontally, the linear motor 13 performs horizontal linear reciprocating motion, thereby driving the reed assembly 50 to horizontally linear reciprocating motion, which also makes the force state of the driving module during operation simple and more stable.
  • the distance between the linear motor 10 and the reed assembly 50 may be less than a preset threshold.
  • the distance between the linear motor 10 and the reed assembly 50 may be the straight-line distance between the end connecting the linear motor 13 and the reed assembly 50 and the stress point of the reed assembly 50, or it may be It is the straight-line distance between the geometric center point of the linear motor 10 and the geometric center point of the reed assembly 50.
  • the specific distance can be determined according to the actual situation, and is not limited in the embodiments of this specification.
  • the above-mentioned preset threshold may be a value greater than 0, such as: 3 mm, 1 cm, 10 cm, 24 cm, 1 meter, etc. In some embodiments, the above-mentioned preset threshold may be based on the traditional loom. The linear distance between the power source in the beat-up mechanism and the force-bearing point of the reed assembly 50 is determined. The above-mentioned preset threshold can be much smaller than the distance between the power source and the force-bearing point of the reed assembly 50 in the beat-up mechanism of a traditional loom. straight-line distance.
  • the above-mentioned preset threshold is used to represent a high degree of integration between the linear motor 10 and the reed assembly 50.
  • the specific value can be determined according to actual needs, and is not limited in the embodiments of this specification.
  • the traditional loom 200 uses the main shaft 210 to drive the beat-up mechanism, and the corresponding linear distance between the main shaft 210 and the stress point of the reed assembly 50 is.
  • transmission structures such as connecting rods are often used to transmit power layer by layer between the power source of the traditional loom 200 and the reed assembly 50, resulting in large power loss and complicated motion.
  • the linear motor 13 is connected to the reed assembly 50 to reduce the distance between them and simplify the structure, making power transmission more direct, reducing power loss, and achieving higher integration and driving efficiency. .
  • the linear motor 13 can be directly integrated into the reed assembly 50 .
  • the reed assembly 50 and the linear motor stator 11 can be an integrated structure.
  • the reed assembly 50 is provided with the linear motor 13 during production.
  • the linear motor rotor 13 on the 50 can be installed in conjunction with the linear motor stator 11. In this way, the integration and integrity of the loom 200 can be further improved, so that the direct-drive beating mechanism 100 and the loom 200 stand are more closely connected and the operation is more stable.
  • the reed assembly 50 may include a reed mesh and a frame structure disposed around the reed mesh.
  • a plate-like, rod-like structure, etc. is extended on the peripheral side of the frame to serve as the linear motor movable unit 13 and correspond to the reed mesh.
  • the linear motor stator 11 matches.
  • the linear motor motor 13 can extend in the horizontal direction, and the linear motor stator 11 is provided on one side of the reed assembly 50; or, the linear motor motor 13 can extend in the vertical direction.
  • the linear motor stator 11 is provided above or below the reed assembly 50 .
  • magnetic components can also be attached to the frame structure to serve as the linear motor 13; or, the linear motor 13 can also be arranged in other possible ways, specifically It can be determined according to the actual situation, and the embodiments of this specification do not limit this.
  • the direct drive beat-up mechanism 100 may also include a second connection base 40 for connecting the reed assembly 50 and the linear motor 13; the first end of the linear motor 13 Connected to the second connection base 40 , the second end of the linear motor 13 slides with the linear motor stator 11 .
  • a second connecting seat 40 can be provided between the linear motor 13 and the reed assembly 50.
  • the second connecting seat 40 serves as a transfer function.
  • the two When separately arranged from the reed assembly 50, the two can be better fixedly connected, increasing the contact area with the reed assembly 50, and further improving stability and reliability.
  • the volume of the second connecting seat 40 is small.
  • the thickness of the second connecting seat 40 can be 2 centimeters, and the height can be equivalent to the width of the reed assembly. The thickness here can refer to the second connecting seat 40. The distance between the surface of the two connecting seats 40 facing the reed assembly 50 and the surface facing the linear motor 10 .
  • the thickness here is used as a preset threshold. Since there is no intermediate transmission mechanism such as a connecting rod, this value is much smaller than the straight line between the power source and the stress point of the reed assembly 50 in the beat-up mechanism of a traditional loom. distance.
  • the method of using the second connection base 40 to connect the linear motor 13 and the reed assembly 50 has a higher degree of integration than the method of using a linkage mechanism to connect the linear motor 13 and the reed assembly 50, and the power transmission loss is also reduced. smaller.
  • the linear motor 13 is integrated on the reed assembly 50. Theoretically, the distance between the end of the linear motor 13 connected to the reed assembly 50 and the stress point of the reed assembly 50 is The straight-line distance is zero, the power transmission loss is small, and the efficiency is high.
  • the linear motor stator 11 is provided on at least one side of the reed assembly 50 , the linear motor 13 moves horizontally, and the second connection base 40 includes an adapter part 41 and a fixed part 43 , the adapter part 41 is connected to the linear motor 13, and the fixed part 43 is connected to the reed assembly 50.
  • the direct-drive beating mechanism 100 is provided with a linear motor 10.
  • the linear motor stator 11 can be located on any side around the reed assembly 50 and serves as the main power source to drive the movement of the reed assembly 50.
  • the connecting part 41 is used to connect the linear motor 13, and the fixed part 43 is connected to the reed assembly 50 to increase the contact area and improve stability.
  • the direct-drive beating mechanism 100 is provided with multiple linear motors 10 , and the multiple linear motors 13 are connected to the reed assembly 50 through at least one second connection base 40 , and the at least one second connection base 40 A plurality of fixing parts 43 are provided. Among them, at least part of the fixing part 43 is provided on both sides of the adapter part 41 , and/or at least part of the fixation part 43 is provided on the surface of the adapter part 41 away from the linear motor 13 .
  • the plurality of linear motors 10 can be arranged at intervals along the length direction of the reed assembly 50 , or can be arranged symmetrically or asymmetrically above, below, and on the left and right sides of the reed assembly 50 .
  • the details can be determined according to the actual situation. It is determined that this is not limited by the embodiments of this specification.
  • the direct-drive beating mechanism 100 can be provided with two sets of linear motors 10.
  • the two linear motors 10 are symmetrically located at both ends of the reed assembly 50 to make the movement of the reed assembly 50 more stable. and precision, which is more conducive to the control of beat-up movement and the high speed of loom 200.
  • the arrangement form of the direct drive beat-up mechanism 100 is not limited to this.
  • a single set of linear motors 10 can be set, or more sets of linear motors can be set 10. There are no further limitations here.
  • the reed assembly moves horizontally
  • the linear motor stator 11 can be disposed on both sides of the reed assembly 50 along its movement direction
  • the linear motor rotor 13 is disposed horizontally
  • the second connection base 40 includes an adapter part 41 and a fixed part 43.
  • the adapter part 41 is connected to the linear motor 13.
  • the fixed part 43 is provided on opposite sides of the adapter part 41 and connected to the reed assembly 50.
  • the linear motor 10 is disposed above and/or below the reed assembly 50 .
  • the linear motor 13 moves horizontally.
  • the second connection base 40 includes an adapter part 41 and a fixed part 43 .
  • the connecting part 41 is connected to the linear motor 13
  • the fixing part 43 is provided on the surface of the adapter part 41 away from the linear motor 13
  • the fixing part 43 is connected to the reed assembly 50 .
  • the adapter part 41 when multiple sets of linear motors 10 are provided, the adapter part 41 can be integrated, and a plurality of fixing parts 43 are provided on the adapter part 41 and connected to the reed assembly 50 to further improve the integrity.
  • multiple adapter portions 41 can also be separately provided corresponding to multiple sets of linear motors 10, making it easy to disassemble and assemble.
  • the adapter part 41 is a whole plate or block arranged along the length direction of the reed assembly 50.
  • the fixing part 43 is arranged in an "L" shape, one of which is connected to the adapter part 41, and the other part Connected to reed assembly 50. Furthermore, in order to improve the strength, the fixing part 43 may be formed with reinforcing ribs.
  • the flat linear motor 10 can be selected in this embodiment.
  • the thickness of the second connecting seat 40, the form and extension direction of the fixing part 43, the connection method, etc. may vary depending on the actual situation. The situation is adjusted, and the embodiments of this specification are not limited to this.
  • the arrangement method of the linear motor 10 is not limited to the above two embodiments, and can be combined and implemented within a reasonable range, and is not limited here.
  • the straight-line distance between the end of the linear motor 13 connected to the reed assembly 50 and the force-bearing point of the reed assembly 50 is the thickness of the second connecting seat 40, where The thickness is also much smaller than the length of the connecting rod structure of the traditional loom. Therefore, relatively speaking, the solution of this embodiment also has higher efficiency and lower power loss.
  • the second connection base 40 is an integral structure, and the adapter portion 41 is provided with a threaded hole on the surface facing the linear motor 10.
  • the linear motor 13 can be threadedly connected to the second connection base 40 and fixed.
  • the portion 43 can be connected to the reed assembly 50 through bolts and has a larger contact area, making the connection between the reed assembly 50 and the linear motor 13 more stable and the overall structure more reliable.
  • the linear motor 10 is a cylindrical linear motor 10 , a flat linear motor 10 or a U-shaped linear motor 10 .
  • the cylindrical linear motor 10 has been described in detail in the previous embodiments and will not be described again here.
  • the linear motor stator 11 is provided with a linear channel 11a, and the linear motor rotor 13 reciprocates relative to the linear motor stator 11 along the linear channel 11a.
  • the linear motor 10 can be of a single-sided flat plate type, that is, the linear motor stator 11 is provided on one side of the linear motor rotor 13; or, the linear motor 10 can be of a double-sided flat plate type, with the linear motor stator 11 being provided on both sides of the linear motor rotor 13.
  • the linear motor stator 11 is sandwiched to form a linear channel 11a.
  • the linear motor stator 11 can be arranged in a U shape, and the two branches of the U shape are sandwiched to form a linear channel 11a, and the linear motor 13 reciprocates in the linear channel 11a.
  • linear motor 10 can also be implemented in other reasonable forms, which will not be listed here.
  • the loom 200 may include a stand and a direct-drive beat-up mechanism 100.
  • the specific structure of the direct-drive beat-up mechanism 100 refers to the above embodiment.
  • the linear motor stator 11 in the weft mechanism 100 is fixedly connected to the platform. Since the present loom 200 adopts all the technical solutions of all the above embodiments, it has at least all the beneficial effects brought by the technical solutions of the above embodiments, which will not be described again one by one.
  • the loom 200 control system is applied to the loom 200 described in any of the above embodiments.
  • the loom 200 control system may include an interactive module, a detection module, a main control module and a drive control.
  • the interactive module is provided with a human-computer interaction interface
  • the detection module is communicatively connected with the interactive module
  • the detection module is equipped with a sensor
  • the sensor is installed on the loom 200
  • the main control module is communicatively connected with the interactive module and the detection module
  • the drive control module is electrically connected to the driver module, and communicates with the main control module and detection module.
  • the human-computer interaction interface can be a display screen with a touch screen function, and the status parameters obtained by the detection module can be displayed on the display screen in real time, so that the operator can understand the status information of the loom 200 .
  • the interactive module and the main control module can communicate wired or wirelessly.
  • the main control module is preset with models or control instructions, process parameters, etc. that control the operation of various mechanisms of the loom 200.
  • the control system of the loom 200 is highly digitalized and Under the premise of electronics, operators can input or change instructions or parameters through the interactive interface to adjust the process.
  • the operator can input the required beating stroke parameters and beating intensity parameters to the main control module through the interactive interface according to different process needs, and the main control module can adjust and calculate accordingly and send the data to the beating mechanism.
  • the control module sends control instructions to control the beating movement more conveniently.
  • the detection module is mainly used to monitor the operating status of the loom 200.
  • the detection module includes the main shaft 210 detection module, the direct drive beat-up mechanism 100 detection module, the weft insertion mechanism 250 detection module, and the let-off mechanism 230 detection
  • the module and curling mechanism 270 detect the module.
  • the detection module of the direct drive beat-up mechanism 100 can be equipped with a linear motor 10 encoder connected to the linear motor 10 module to beat up the reed assembly 50.
  • the speed, displacement and other parameter signals of movement are compiled into communication signals and sent to the main control module to realize the status monitoring of the beat-up movement.
  • the sensors may also include speed sensors, displacement sensors, angle sensors, etc. provided in other mechanisms of the loom 200 .
  • the detection module is not limited to the form of a sensor, but also includes detection circuits and other devices for monitoring electrical signals.
  • the detection module is mainly used to monitor the operating status of the loom 200 system in real time, including the movement status of the main shaft 210, such as the angle of the main shaft 210, the rotation speed of the main shaft 210, the current and voltage of the main shaft 210, etc.; the operating status of the direct drive beat-up mechanism 100, Such as the operating displacement, speed, acceleration, voltage, current and other information of each direct drive beating-up mechanism 100; the operating status of the weft insertion mechanism 250, such as the water pressure, water volume, actuator voltage, current and other information of the water-jet loom 200; the warp let-off/ The crimping operation status, such as let-off/crimping rate, yarn tension, etc., realizes real-time monitoring of the overall status of the loom 200, and generates status parameters and sends them to the main control module for calculation and processing.
  • the main control module includes a main control chip used to process data parameters and issue control instructions.
  • the control instructions can be sent to the drive control module through wireless or wired methods, and various control instructions are used to control system timing and fabric process control. And fabric molding quality control, etc.
  • the drive control module includes a drive board provided with a control circuit.
  • the drive control module includes a main shaft 210 control module, a weft insertion mechanism 250 control module, a let-off mechanism 230 control module, and a curling mechanism that are provided corresponding to each mechanism of the loom 200 270 control module and beat-up mechanism control module.
  • the beat-up mechanism control module is electrically connected to the drive module. That is to say, the control system of the loom 200 no longer adjusts the movement of the beat-up mechanism through the main shaft 210, but directly controls the movement of the reed assembly 50 through the drive module to improve the system operating efficiency. , which helps to control and adjust the beat-up force and beat-up stroke. Moreover, on this basis, by flexibly adjusting the beating-up intensity and the distance between the cloth fell and the reed assembly 50 during beating-up, it can theoretically adapt to all varieties, eliminate the problem of driving defects on the cloth surface, and greatly improve the quality of the fabric surface.
  • a mathematical model can be established in the main control module to accurately control the direct drive beat-up mechanism 100, to achieve force-displacement hybrid control and operating curve planning control, thereby achieving beat-up. Linear control of stroke and beat-up force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Linear Motors (AREA)
  • Looms (AREA)

Abstract

一种直驱打纬机构(100)、织机(200)及织机控制系统,直驱打纬机构(100)包括钢筘组件(50)和驱动模块,驱动模块包括至少一个直线电机(10),至少一个直线电机(10)用于为钢筘组件(50)做直线往复运动提供主动力源;每个直线电机(10)包括直线电机定子(11)和直线电机动子(13),直线电机动子(13)与直线电机定子(11)滑动配合,直线电机动子(13)的端部与钢筘组件(50)连接。

Description

直驱打纬机构、织机及织机控制系统
本申请要求于2022年6月29号申请的、申请号为202210750359.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及纺织织造技术领域,特别涉及一种直驱打纬机构、织机及织机控制系统。
背景技术
目前,传统织机主要由开口机构、直驱打纬机构、送经机构、卷曲机构以及喷水机构五大机构构成。其中,直驱打纬机构主要用于将引纬机构引入梭口的纬纱推向织口,从而形成稳定织物。
传统织机直驱打纬机构的动力源均只能来自于主轴,将主轴运动通过曲轴连杆、共轭凸轮等机构转化为往复摆动,直驱打纬机构的运行状态只能通过调整主轴运行状态来实现,但其间的运动传动是非线性强耦合的,因此传统织机直驱打纬机构在应用方面存在品种适应性局限高、织造不稳定、噪音较大且不利于织机高速化、织物品质的工艺调整方面局限性高等缺陷。
技术问题
本申请的主要目的是提供一种直驱打纬机构,旨在实现打纬运动与主轴运动的解耦,直接驱动钢筘组件实现平行打纬,以至少解决若干上述技术问题。
技术解决方案
为实现上述目的,本申请提供一种直驱打纬机构包括:
钢筘组件;和
驱动模块,包括至少一个直线电机,所述至少一个直线电机用于为所述钢筘组件做直线往复运动提供主动力源;其中,每个所述直线电机包括直线电机定子和直线电机动子,所述直线电机动子与所述直线电机定子滑动配合,所述直线电机动子的端部与所述钢筘组件连接。
在一实施例中,所述驱动模块还包括第一连接座,所述第一连接座用于连接所述直线电机定子和织机台架。
在一实施例中,所述第一连接座与所述直线电机定子为一体结构。
在一实施例中,所述第一连接座所处的平面与所述直线电机动子的中心平面平行。
在一实施例中,所述直线电机与所述钢筘组件之间的距离小于预设阈值。
在一实施例中,所述直线电机动子集成于所述钢筘组件中。
在一实施例中,所述直驱打纬机构还包括第二连接座,所述第二连接座用于连接所述钢筘组件和所述直线电机动子;
所述直线电机动子的第一端与所述第二连接座连接,所述直线电机动子的第二端与所述直线电机定子滑动配合。
在一实施例中,所述直线电机定子设于所述钢筘组件的至少一侧,所述直线电机动子水平运动,所述第二连接座包括相连的转接部和固定部,所述转接部连接所述直线电机动子,所述固定部连接所述钢筘组件。
在一实施例中,所述直驱打纬机构设有多个所述直线电机,多个所述直线电机动子通过至少一个所述第二连接座与所述钢筘组件连接,所述至少一个第二连接座设有多个所述固定部;
其中,至少部分所述固定部设于所述转接部两侧,且/或至少部分所述固定部设于所述转接部背离所述直线电机动子的表面。
在一实施例中,所述转接部为一体结构,所述固定部设于转接部上,并与所述钢筘组件连接;
且/或,所述第二连接座为一体结构;
且/或,所述固定部设有加强筋。
在一实施例中,所述直线电机包括:圆筒式直线电机、平板式直线电机或U型式直线电机。
本申请还提出一种织机,所述织机包括台架和如上所述的直驱打纬机构,所述直驱打纬机构中的直线电机定子与所述台架固定连接。
本申请还提出一种织机控制系统,所述织机控制系统应用于如上所述的织机,所述织机控制系统包括:
交互模块,所述交互模块设有人机交互界面;
检测模块,所述检测模块与所述交互模块通信连接,所述检测模块设有传感器,所述传感器设于织机上;
主控模块,所述主控模块与所述交互模块、所述检测模块通信连接;及
驱动控制模块,所述驱动控制模块电连接驱动模块,并与所述主控模块、所述检测模块通信连接。
有益效果
本申请采用直线电机作为钢筘组件做直线往复运动的主动力源,其优点在于将繁杂的打纬机构由直驱式的直线电机代替,结构形式简单,更加有利于织机高速化。而且,直线电机的力-位移特性与电流特性几乎是线性的,因此可以更为线性灵活地控制钢筘组件实现打纬运动。本申请将直线电机动子直接连接于钢筘组件,没有中间传递机构,可以直接驱动钢筘进行直线往复运动,减少动力损耗,也更有利于织机控制系统对打纬运动的控制,进而实现高效的数字化、电子化织机控制,并可以大大降低系统振动与噪音。
如此,将传统与主轴运动强耦合的打纬运动实现解耦,结构形式简单化,从而大大降低了系统结构集成复杂度,减轻主轴负载,有利于织机高速化。此外,如此设置无需通过更换直驱打纬机构或调整主轴,直接调整直线电机的参数,即可方便地控制打纬行程和力度以适应不同品种,使生产更高效便捷。因此,本申请所提出的直驱打纬机构可适应传统异步主轴传动、直驱主轴传动的各类喷气、喷水织机以及剑杆织机,真正实现更为广泛的品种适应性,并可以一定程度补偿织机的开机疵痕问题,大大提升织物品质。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为传统织机一实施例的结构示意图;
图2为本申请织机一实施例的结构示意图;
图3为本申请直驱打纬机构一实施例的结构示意图;
图4为图3中A处的放大结构示意图;
图5为本申请直驱打纬机构另一实施例的结构示意图;
图6为本申请织机控制系统一实施例的示意图。
附图标号说明:
标号 名称 标号 名称
100 直驱打纬机构 43 固定部
10 直线电机 50 钢筘组件
11 直线电机定子 200 织机
11a 直线通道 210 主轴
13 直线电机动子 230 送经机构
30 第一连接座 240 综框
40 第二连接座 250 引纬机构
41 转接部 270 卷曲机构
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
如图1所示,目前,传统织机主要包括开口机构,打纬机构,送经机构230,卷曲机构270以及喷水机构。其中,送经机构230带动经轴运转释放经纱,由卷曲机构270将织成的织物卷在卷布轴上;综框240通过上下分层运动,使得穿过综框240综丝中心眼的经纱得以分层运动形成梭口,以保证引纬机构250将喷出的纬纱从梭口顺利穿过;打纬机构将纬纱打向布面形成织物,上述各机构随着主轴210运动周期,在主轴210特定角度区间按照一定的时序动作,共同协作完成织布操作。
其中,打纬机构的主要作用是将引纬机构250引入梭口的纬纱推向织口,从而形成稳定织物。传统织机打纬机构主要分为四连杆打纬机构,六连杆打纬机构以及共轭凸轮打纬机构。如图1所示为传统织机四连杆打纬机构,其主动力源只能来自于主轴210,通过一个曲轴四连杆机构将主轴210连续转动转化为打纬机构往复周期摆动。也就是说,传统打纬机构的与主轴210的强耦合设计使得传统的打纬机构需要将主轴210的周期运动通过曲轴连杆机构或共轭凸轮机构等机械传动机构转化为钢筘组件50的周期往复运动。
因此,传统织机打纬机构在应用方面存在以下多方面的缺陷:
(1)品种适应性局限高,对于一台安装调试好的织机200,打纬机构尺寸及打纬摆角行程已固定,打纬运动状态与主轴210运动强耦合,一种打维机构只能适应特定范围的织物品种,且很难通过对打纬机构进行调节而适应品种,由此限制了单台织机200的品种适应性;
(2)在工艺调整、织物品质调整方面局限性高,常见的开车布面疵痕问题与打纬机构打纬力输出状态相关,传统打纬机构的运行状态只能通过调整主轴210运行状态来实现,调试难度大、效率低,受多方面因素影响复杂,不利于操作;
(3)打纬机构周期性摆动导致主轴210运动存在明显的周期性波动,给稳定织造带来了许多不利影响;
(4)打纬机构周期性往复摆动特性,由于曲轴连杆的止点效应,当钢筘处于前后止点处具有较大的加速度,给织机200台架引入水平方振动冲击较大,对结构可靠性尤其是主轴210寿命影响较大,且不利于织机200高速化;
(5)打纬机构周期性的往复运动是等效负载波动的主要占比成分,整机振动及噪音问题严重。
鉴于此,为实现打纬运动与主轴210运动的解耦,直接驱动钢筘组件50进行平行打纬的目的,本申请提供一种直驱打纬机构100。
参照图1至图6,在本申请的一些实施例中,直驱打纬机构100可以包括钢筘组件50和驱动模块,驱动模块可以包括至少一个直线电机10,至少一个直线电机10用于为钢筘组件50做直线往复运动提供主动力源;其中,每个直线电机10可以包括直线电机定子11和直线电机动子13,直线电机动子13与直线电机定子11滑动配合,直线电机动子13的端部与钢筘组件50连接。
在一实施例中,本申请提出的直驱打纬机构100,通过独立于主轴210的驱动模块驱动钢筘组件50实现平行打纬。具体地,织机200设有台架,织机200各机构均设于台架上,各机构协同运作实现织布作业。本实施例中,驱动模块亦可设于台架上,驱动模块包括至少一个直线电机10,并主要通过与直线电机定子11活动配合的直线电机动子13带动钢筘组件50作直线往复运动。可以理解地,直线电机动子13的运动方向与经线的走向一致,以使钢筘组件50可以不断地将引纬机构250引出的纬线推入织口。
在一实施方式中,参照图3和图4,直线电机动子13为杆体,直线电机定子11内贯通设有直线通道11a,直线电机动子13活动设于直线通道11a内,并相对直线电机定子11沿直线通道11a往复运动。本实施例中,直线电机定子11的外轮廓大致呈块状或筒状,其与台架固定连接,直线通道11a被设为一段中空的孔道,直线电机定子11内的电线绕组环绕于直线电机动子13。视实际的打纬行程,该直线通道11a可以沿经线的方向贯通直线电机定子11以使直线电机动子13得以穿过直线电机定子11,得到更长的打纬行程;或者,直线通道11a设于直线电机定子11内,直线电机定子11可长可短,适应打纬行程而定。当直线电机定子11内的绕组通入交流电时,直线通道11a内便产生行波磁场,直线电机动子13在行波磁场切割下,将感应出电动势并产生电流,该电流与磁场相作用就产生电磁推力。在直线电机定子11的固定的情况下,直线电机动子13便相对于直线电机定子11沿直线通道11a运动。
当然,在本申请其他方面的实施例中,直线电机10亦可采用平板式、U型式等设置形式,在此不多作限定。
在其中一实施例中,驱动模块可采用直线电机10作为唯一的动力源;而在另一实施例中,驱动模块可以采用直线电机10为主动力源,并采用包括但不限于滚珠丝杠的驱动方式作为辅动力源,主动力源与辅动力源配合驱动钢筘组件50直线往复运动。
具体地,基于上述以滚珠丝杠作为辅动力源的形式,驱动模块还可以包括旋转电机、滚珠丝杠轴及滚珠丝杠螺母,滚珠丝杠轴连接旋转电机的输出端,滚珠丝杠螺母连接滚珠丝杠轴,钢筘组件50连接滚珠丝杠螺母,旋转电机带动滚珠丝杠轴旋转,以使滚珠丝杠螺母带动钢筘组件50沿滚珠丝杠轴的轴线方向运动。
可以理解地,主动力源与辅动力源可以是同步的。
本申请采用直线电机10作为钢筘组件50做直线往复运动的主动力源,其优点在于将繁杂的打纬机构由直驱式的直线电机10代替,结构形式简单,更加有利于织机200高速化。而且,直线电机10的力-位移特性与电流特性几乎是线性的,因此可以更为线性灵活地控制钢筘组件50实现打纬运动。本申请将直线电机动子13直接连接于钢筘组件50,没有中间传递机构,可以直接驱动钢筘进行直线往复运动,减少动力损耗,也更有利于织机200控制系统对打纬运动的控制,进而实现高效的数字化、电子化织机200控制,并可以大大降低系统振动与噪音。
如此,将传统与主轴210运动强耦合的打纬运动实现解耦,结构形式简单化,从而大大降低了系统结构集成复杂度,减轻主轴210负载,有利于织机200高速化。此外,如此设置无需通过更换直驱打纬机构100或调整主轴210,直接调整直线电机10的参数,即可方便地控制打纬行程和力度以适应不同品种,使生产更高效便捷。因此,本申请所提出的直驱打纬机构100可适应传统异步主轴210传动、直驱主轴210传动的各类喷气、喷水织机200以及剑杆织机200,真正实现更为广泛的品种适应性,并可以一定程度补偿织机200的开机疵痕问题,大大提升织物品质。
在一实施例中,驱动模块还可以包括第一连接座30,第一连接座30用于连接直线电机定子11和织机200的台架。本实施例中,直线电机定子11通过第一连接座30与织机200的台架连接,以保证驱动模块的稳定性,提高打纬精度。
在一实施例中,第一连接座30与直线电机定子11为一体结构。参照图4,本实施例中,直线电机定子11与直线电机动子13滑动配合,直线电机定子11周侧延伸或弯折形成第一连接座30,第一连接座30与织机200台架固定连接,通过将直线电机定子11和第一连接座30一体成型,提高驱动模块整体性和稳定性,同时方便拆装。
当然,在本申请其他方面的实施例中,织机200台架上可直接集成直线电机定子11。即是说,织机200的台架零件上在生产时即设有直线电机定子11,直线电机定子11的形式视实际需求而定,在进行织机200的组装时,织机200台架上集成直线电机定子11,只需将直线电机动子13与该直线电机定子11配合安装即可,无需设置第一连接座30。如此可进一步提高织机200的集成度和整体性,使直驱打纬机构100与织机200台架的连接更为紧密,运行更为稳定。
在一实施例中,第一连接座30所处的平面与直线电机动子13的中心平面平行。也就是说,本实施例中,直线电机动子13的运动方向所处的平面与第一连接座30所处的平面是平行的,以使得当第一连接座30在织机200台架上水平设置时,直线电机动子13作水平直线往复运动,从而驱动钢筘组件50水平地直线往复运动,也使得驱动模块运行时受力状态简单,更为平稳。
在一实施例中,直线电机10与钢筘组件50之间的距离可以小于预设阈值。本实施例中,直线电机10与钢筘组件50之间的距离可以是直线电机动子13与钢筘组件50连接的端部与钢筘组件50的受力点之间的直线距离,也可以是直线电机10的几何中心点与钢筘组件50的几何中心点之间的直线距离,具体的可以根据实际情况确定,本说明书实施例对此不作限定。
在本实施例中,上述预设阈值可以是大于0的数值,例如:3毫米、1厘米、10厘米、24厘米、1米等,在一些实施例中上述预设阈值可以基于传统织机的打纬机构中动力源与钢筘组件50的受力点之间的直线距离确定,上述预设阈值可以远小于传统织机的打纬机构中动力源与钢筘组件50的受力点之间的直线距离。当然可以理解的是,上述预设阈值用于表征直线电机10与钢筘组件50之间的高集成度,具体数值可以根据实际需求确定,本说明书实施例对此不作限定。
传统的织机200采用主轴210驱动打纬机构,与之对应的便是主轴210与钢筘组件50的受力点之间的直线距离。而传统的织机200动力源与钢筘组件50之间常采用连杆等传动结构进行动力的层层传递,动力损耗较大且运动较为复杂。本实施例中则将直线电机动子13与钢筘组件50连接,缩小二者之间的距离,简化结构,使动力的传递更为直接,减少动力损耗,具有较高的集成度和驱动效率。
具体地,在一实施例中,直线电机动子13可以直接集成于钢筘组件50中。本实施例中,钢筘组件50与直线电机定子11可以为一体结构,钢筘组件50在生产时即设有直线电机动子13,在进行织机200的组装时,只需将钢筘组件50上的直线电机动子13与直线电机定子11配合安装即可。如此可进一步提高织机200的集成度和整体性,使直驱打纬机构100与织机200台架的连接更为紧密,运行更为稳定。
在一实施方式中,钢筘组件50可以包括筘网和设于筘网周围的框架结构,框架的周侧延伸设有板状、杆状等结构,以作为直线电机动子13,并与相应的直线电机定子11相配合。
其中,以打纬方向为水平方向为例,直线电机动子13可沿水平方向延伸,直线电机定子11设于钢筘组件50的一侧;或者,直线电机动子13可沿竖直方向延伸设置,直线电机定子11设于钢筘组件50的上方或下方。
当然可以理解的是,在其他实施例中,还可以将磁性件贴附于框架结构上以作为直线电机动子13;亦或者,直线电机动子13还可以以其它可能的方式设置,具体的可以根据实际情况确定,本说明书实施例对此不作限定。
在另一实施例中,直驱打纬机构100还可以包括第二连接座40,第二连接座40用于连接钢筘组件50和直线电机动子13;直线电机动子13的第一端与第二连接座40连接,直线电机动子13的第二端与直线电机定子11滑动配合。
参照图3至图5,本实施例中,直线电机动子13和钢筘组件50之间可以设有第二连接座40,第二连接座40起到转接作用,当直线电机动子13和钢筘组件50分体设置时,可将二者更好的固定连接,增大与钢筘组件50的接触面积,进一步提升稳定性和可靠性。需要说明的是,第二连接座40的体积较小,例如,综合强度考虑,第二连接座40的厚度可以为2厘米,高度可与钢筘组件的宽度相当,此处的厚度可以指第二连接座40朝向钢筘组件50的表面与朝向直线电机10的表面之间的距离。可以理解地,将此处的厚度作为预设阈值,由于没有连杆等中间传动机构,该值远小于传统织机的打纬机构中动力源与钢筘组件50的受力点之间的直线距离。采用第二连接座40连接直线电机动子13和钢筘组件50的方式,相较于采用连杆机构等连接直线电机动子13和钢筘组件50的方式集成度更高,动力传输损耗也更小。
可以理解地,本实施例中,直线电机动子13集成于钢筘组件50上,理论上直线电机动子13与钢筘组件50连接的端部与钢筘组件50的受力点之间的直线距离为零,动力传输损耗小,效率高。
参照图3和图5,在一实施例中,直线电机定子11设于钢筘组件50的至少一侧,直线电机动子13水平运动,第二连接座40包括转接部41和固定部43,转接部41连接直线电机动子13,固定部43连接钢筘组件50。
在一些实施例中,直驱打纬机构100设有一个直线电机10,直线电机定子11可设于钢筘组件50周围的任意一侧,并作为驱动钢筘组件50运动的主动力源,转接部41用于连接直线电机动子13,固定部43则与钢筘组件50,以增大接触面积,提高稳定性。
在其他一些实施例中,直驱打纬机构100设有多个直线电机10,多个直线电机动子13通过至少一个第二连接座40与钢筘组件50连接,至少一个第二连接座40设有多个固定部43。其中,至少部分固定部43设于转接部41两侧,且/或至少部分固定部43设于转接部41背离直线电机动子13的表面。
在一实施例中,多个直线电机10可以沿钢筘组件50的长度方向间隔设置,也可以在钢筘组件50的上方、下方及左右两侧对称或非对称设置,具体的可以根据实际情况确定,本说明书实施例对此不作限定。
参照图3,在一实施方式中,直驱打纬机构100可以设有两组直线电机10,两个直线电机10对称设于钢筘组件50的两端,使钢筘组件50运动更为稳定和精准,更利于打纬运动的控制和织机200高速化。
当然,直驱打纬机构100的设置形式不限于此,视实际的织机200情况,在保证本申请的构思得以实现的前提下,可设置单组直线电机10,或设置更多组直线电机10,在此不多作限定。
参照图3和图4,在一实施例中,钢筘组件水平运动,直线电机定子11可以沿钢筘组件50的运动方向设于其两侧,直线电机动子13水平设置,第二连接座40包括转接部41和固定部43,转接部41连接直线电机动子13,固定部43设于转接部41相对两侧,并连接钢筘组件50。
在另一实施例中,参照图5,直线电机10设于钢筘组件50上方和/或下方,直线电机动子13水平运动,第二连接座40包括转接部41和固定部43,转接部41连接直线电机动子13,固定部43设于转接部41背离直线电机动子13的表面,固定部43连接钢筘组件50。
在一实施方式中,当设有多组直线电机10时,转接部41可以是一体的,多个固定部43设于转接部41上,并与钢筘组件50连接,进一步提升整体性和结构稳定性,也可以分别对应多组直线电机10分体设置的多个转接部41,拆装方便。
本实施例中,转接部41为沿钢筘组件50长度方向设置的整块板体或块体,固定部43呈“L”形设置,其一支与转接部41连接,另一支与钢筘组件50连接。进一步地,为提高强度,固定部43可以形成有加强筋。
其中,本实施例中可选平板式直线电机10。
当然,在上述两个实施例所示的水平平推式和垂直平推式的直线电机10结构中,第二连接座40的厚度、固定部43的形式及延伸方向、连接方式等可视实际情况调整,本说明书实施例对此不作限定。
此外,直线电机10的设置方式不限于上述两实施例,可在合理范围内进行组合实施,在此不多作限定。
可以理解地,上述两个实施例中,直线电机动子13与钢筘组件50连接的端部与钢筘组件50的受力点之间的直线距离为第二连接座40的厚度,此处的厚度也远小于传统织机的连杆结构的长度,因此相对而言,本实施例的方案亦有着较高的效率和更低的动力损耗。
可以理解地,在一实施例中,第二连接座40为一体结构,转接部41朝向直线电机10的表面设有螺纹孔,直线电机动子13可与第二连接座40螺纹连接,固定部43可通过螺栓连接于钢筘组件50,具有较大的接触面积,使钢筘组件50与直线电机动子13的连接更稳定,整体结构更为可靠。
在一实施例中,直线电机10为圆筒式直线电机10、平板式直线电机10或U型式直线电机10。
圆筒式直线电机10前述实施例中已经详细阐述,在此不再赘述。
具体地,对于平板式直线电机10,直线电机定子11设有直线通道11a,直线电机动子13相对直线电机定子11沿直线通道11a往复运动。可选地,直线电机10为单边平板式,即直线电机定子11设于直线电机动子13的一侧;或者,直线电机10可以为双边平板式,设于直线电机动子13两侧的直线电机定子11夹设形成直线通道11a。
亦或者,直线电机定子11可以呈U型设置,U形设置的两支夹设形成直线通道11a,直线电机动子13在直线通道11a内往复运动。
当然,直线电机10还可以是其他合理的实现形式,在此不再一一列举。
本申请还提出一种织机200,在一实施例中,织机200可以包括台架和直驱打纬机构100,其中,直驱打纬机构100的具体结构参照上述实施例,直驱打纬机构100中的直线电机定子11与台架固定连接。由于本织机200采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
本申请更提出一种织机200控制系统,织机200控制系统应用于如上任一实施例所述的织机200,织机200控制系统可以包括交互模块、检测模块、主控模块及驱动控制模块,交互模块设有人机交互界面,检测模块与交互模块通信连接,检测模块设有传感器,传感器设于织机200上,主控模块与交互模块、检测模块通信连接,驱动控制模块电连接驱动模块,并与主控模块、检测模块通信连接。
在一实施例中,人机交互界面可以是具备触屏功能的显示屏,检测模块所得到的状态参数可以实时地显示在显示屏上,以供操作人员了解织机200的状态信息。更进一步地,交互模块与主控模块可进行有线或无线地通讯,主控模块预设有控制织机200各机构运行的模型或控制指令、工艺参数等,在织机200控制系统高度数字化、电子化的前提下,操作人员可通过交互界面输入或更改指令或参数以进行工艺的调整。
在一实施方式中,操作人员可以根据不同的工艺需要,通过交互界面向主控模块输入需要的打纬行程参数和打纬力度参数,主控模块可随之进行调整和计算并向打纬机构控制模块发送控制指令,从而较为方便地实现打纬运动的控制。
检测模块主要用于实施监护织机200运行状态,与织机200相对应地,检测模块包括主轴210检测模块、直驱打纬机构100检测模块、引纬机构250检测模块、送经机构230检测模块及卷曲机构270检测模块。
在一实施方式中,当直驱打纬机构100采用直线电机10驱动时,直驱打纬机构100检测模块可设置连接直线电机10模组的直线电机10编码器,以将钢筘组件50打纬运动的速度、位移等参数信号编译成通讯信号发送至主控模块,实现打纬运动的状态监测。
在一实施方式中,传感器还可以包括设置在织机200其他机构的速度传感器、位移传感器、角度传感器等等。
当然,检测模块不限于传感器的形式,还包括检测电路等用于监测电信号的装置。总体来讲,检测模块主要用于实时监护织机200系统运行状态,包括主轴210运动状态,如主轴210角度、主轴210转速、主轴210电流、电压等信息;直驱打纬机构100运行状态,如各个直驱打纬机构100运行位移、速度、加速度、电压、电流等信息;引纬机构250运行状态,如喷水织机200水压、水量、执行机构电压、电流等信息;送经/卷曲运行状态,如送经/卷曲速率、纱线张力等,实现对织机200整体状态的实时监控,并生成状态参数发送到主控模块进行运算处理。
主控模块包括用于处理数据参数和发出控制指令的主控芯片,控制指令可通过无线或者有线的方式发送至驱动控制模块,并通过各种控制指令进行系统时序相关控制,织物工艺过程控制,以及织物成型品质控制等。本实施例中,驱动控制模块包括设置有控制电路的驱动板,驱动控制模块包括对应织机200各机构设置的主轴210控制模块、引纬机构250控制模块、送经机构230控制模块、卷曲机构270控制模块以及打纬机构控制模块。
其中,打纬机构控制模块电连接驱动模块,也就是说织机200控制系统不再通过主轴210调节打纬机构的运动,而是直接通过驱动模块控制钢筘组件50的运动,提高系统运行效率,有助于进行打纬力和打纬行程的控制与调节。并且,在此基础上,通过灵活地调整打纬力度以及打纬时织口与钢筘组件50的距离,能够理论上适应所有品种,消除布面开车疵痕问题,大大提升织物布面品质。
在直驱打纬机构100采用直线电机10的情况下,可以在主控模块建立数学模型以精确的控制直驱打纬机构100,实现力-位移混合控制以及运行曲线规划控制,从而实现打纬行程、打纬力的线性控制。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (13)

  1. 一种直驱打纬机构,所述直驱打纬机构设于织机,其中,所述直驱打纬机构包括:
    钢筘组件;和
    驱动模块,包括至少一个直线电机,所述至少一个直线电机用于为所述钢筘组件做直线往复运动提供主动力源;其中,每个所述直线电机包括直线电机定子和直线电机动子,所述直线电机动子与所述直线电机定子滑动配合,所述直线电机动子的端部与所述钢筘组件连接。
  2. 如权利要求1所述的直驱打纬机构,其中,所述驱动模块还包括第一连接座,所述第一连接座用于连接所述直线电机定子和织机台架。
  3. 如权利要求2所述的直驱打纬机构,其中,所述第一连接座与所述直线电机定子为一体结构。
  4. 如权利要求2所述的直驱打纬机构,其中,所述第一连接座所处的平面与所述直线电机动子的中心平面平行。
  5. 如权利要求1所述的直驱打纬机构,其中,所述直线电机与所述钢筘组件之间的距离小于预设阈值。
  6. 如权利要求5所述的直驱打纬机构,其中,所述直线电机动子集成于所述钢筘组件中。
  7. 如权利要求5所述的直驱打纬机构,其中,所述直驱打纬机构还包括第二连接座,所述第二连接座用于连接所述钢筘组件和所述直线电机动子;
    所述直线电机动子的第一端与所述第二连接座连接,所述直线电机动子的第二端与所述直线电机定子滑动配合。
  8. 如权利要求7所述的直驱打纬机构,其中,所述直线电机定子设于所述钢筘组件的至少一侧,所述直线电机动子水平运动,所述第二连接座包括相连的转接部和固定部,所述转接部连接所述直线电机动子,所述固定部连接所述钢筘组件。
  9. 如权利要求8所述的直驱打纬机构,其中,所述直驱打纬机构设有多个所述直线电机,多个所述直线电机动子通过至少一个所述第二连接座与所述钢筘组件连接,所述至少一个第二连接座设有多个所述固定部;
    其中,至少部分所述固定部设于所述转接部两侧,且/或至少部分所述固定部设于所述转接部背离所述直线电机动子的表面。
  10. 如权利要求8所述的直驱打纬机构,其中,所述转接部为一体结构,所述固定部设于转接部上,并与所述钢筘组件连接;
    且/或,所述第二连接座为一体结构;
    且/或,所述固定部设有加强筋。
  11. 如权利要求1至9中任意一项所述的直驱打纬机构,其中,所述直线电机包括:圆筒式直线电机、平板式直线电机或U型式直线电机。
  12. 一种织机,其中,所述织机包括台架和如权利要求1至11中任意一项所述的直驱打纬机构,所述直驱打纬机构中的直线电机定子与所述台架固定连接。
  13. 一种织机控制系统,所述织机控制系统应用于如权利要求12所述的织机,其中,所述织机控制系统包括:
    交互模块,所述交互模块设有人机交互界面;
    检测模块,所述检测模块与所述交互模块通信连接,所述检测模块设有传感器,所述传感器设于织机上;
    主控模块,所述主控模块与所述交互模块、所述检测模块通信连接;及
    驱动控制模块,所述驱动控制模块电连接驱动模块,并与所述主控模块、所述检测模块通信连接。
PCT/CN2023/100519 2022-06-29 2023-06-15 直驱打纬机构、织机及织机控制系统 WO2024001815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210750359.5A CN115074895A (zh) 2022-06-29 2022-06-29 直驱打纬机构、织机及织机控制系统
CN202210750359.5 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024001815A1 true WO2024001815A1 (zh) 2024-01-04

Family

ID=83255791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100519 WO2024001815A1 (zh) 2022-06-29 2023-06-15 直驱打纬机构、织机及织机控制系统

Country Status (2)

Country Link
CN (1) CN115074895A (zh)
WO (1) WO2024001815A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074895A (zh) * 2022-06-29 2022-09-20 深圳市汇川技术股份有限公司 直驱打纬机构、织机及织机控制系统
CN115874342A (zh) * 2023-02-27 2023-03-31 无锡市鼎麒新材料科技有限公司 一种多线式碳纤维布的织造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1485479A (zh) * 2002-09-28 2004-03-31 李克来 电子打纬机构
CN201395674Y (zh) * 2008-11-25 2010-02-03 龚松杰 一种带有直线电机的打纬机构
CN201495367U (zh) * 2009-09-09 2010-06-02 常州纺织服装职业技术学院 织布机钢筘控制机构
CN202519421U (zh) * 2012-01-20 2012-11-07 东华大学 一种增力平行打纬机构
CN204455469U (zh) * 2015-02-06 2015-07-08 西安工程大学 一种平行打纬机构
CN109371545A (zh) * 2018-11-05 2019-02-22 中材科技股份有限公司 一种平行打纬机构及编织机
CN109371546A (zh) * 2018-11-08 2019-02-22 浙江越剑智能装备股份有限公司 一种高速剑杆提花毛巾织机及其打纬系统
DE102018211531A1 (de) * 2018-07-11 2020-01-16 Lindauer Dornier Gesellschaft Mit Beschränkter Haftung Webmaschine sowie Verfahren zum Führen eines Gewebes in einer Webmaschine
CN115074895A (zh) * 2022-06-29 2022-09-20 深圳市汇川技术股份有限公司 直驱打纬机构、织机及织机控制系统
CN217709838U (zh) * 2022-06-29 2022-11-01 深圳市汇川技术股份有限公司 直驱打纬机构、织机及织机控制系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1485479A (zh) * 2002-09-28 2004-03-31 李克来 电子打纬机构
CN201395674Y (zh) * 2008-11-25 2010-02-03 龚松杰 一种带有直线电机的打纬机构
CN201495367U (zh) * 2009-09-09 2010-06-02 常州纺织服装职业技术学院 织布机钢筘控制机构
CN202519421U (zh) * 2012-01-20 2012-11-07 东华大学 一种增力平行打纬机构
CN204455469U (zh) * 2015-02-06 2015-07-08 西安工程大学 一种平行打纬机构
DE102018211531A1 (de) * 2018-07-11 2020-01-16 Lindauer Dornier Gesellschaft Mit Beschränkter Haftung Webmaschine sowie Verfahren zum Führen eines Gewebes in einer Webmaschine
CN109371545A (zh) * 2018-11-05 2019-02-22 中材科技股份有限公司 一种平行打纬机构及编织机
CN109371546A (zh) * 2018-11-08 2019-02-22 浙江越剑智能装备股份有限公司 一种高速剑杆提花毛巾织机及其打纬系统
CN115074895A (zh) * 2022-06-29 2022-09-20 深圳市汇川技术股份有限公司 直驱打纬机构、织机及织机控制系统
CN217709838U (zh) * 2022-06-29 2022-11-01 深圳市汇川技术股份有限公司 直驱打纬机构、织机及织机控制系统

Also Published As

Publication number Publication date
CN115074895A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2024001815A1 (zh) 直驱打纬机构、织机及织机控制系统
JP2007107128A (ja) 織機における耳糸開口装置
JP4015111B2 (ja) からみ織の製織のための織機
CN217709838U (zh) 直驱打纬机构、织机及织机控制系统
CN103643386A (zh) 一种新型双经轴剑杆织机
CN103541132B (zh) 剑杆织机用分离式筘座装置
CN1664201B (zh) 带有电机驱动框架的织机
WO2023236917A1 (zh) 开口机构及织机
CN209957971U (zh) 一种异纬高密双层织物生产装置
CN101319430B (zh) 一种三维花纹织造装置
CN1209514C (zh) 具有磁悬浮梭子的织布机
CN201224800Y (zh) 一种三维花纹织造装置
CN100402724C (zh) 塑料编织布喷水织机
CN102234863A (zh) 用于喷气织机后梁驱动机构的闭环控制装置
CN101194058B (zh) 毛圈织机
CN104153105A (zh) 一种喷气织机打纬机构
CN211142347U (zh) 一种多剑杆织机引纬机构
CN212000072U (zh) 一种织机的开口机构
CN201546002U (zh) 全电力驱动小样织布机
CN208562683U (zh) 一种集成电机、开口机构及纺织机
CN209162336U (zh) 一种多功能小型全自动织样机
CN112064175A (zh) 一种加强型喷水织机后梁控制结构
CN205856749U (zh) 单侧驱动钢筘横动机构
CN102505291B (zh) 碳纤维织机送经张力控制装置
CN220468310U (zh) 一种剑杆织机的起毛装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829995

Country of ref document: EP

Kind code of ref document: A1