WO2024001789A1 - 信号检测方法及其设备、存储介质 - Google Patents

信号检测方法及其设备、存储介质 Download PDF

Info

Publication number
WO2024001789A1
WO2024001789A1 PCT/CN2023/100243 CN2023100243W WO2024001789A1 WO 2024001789 A1 WO2024001789 A1 WO 2024001789A1 CN 2023100243 W CN2023100243 W CN 2023100243W WO 2024001789 A1 WO2024001789 A1 WO 2024001789A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
detection
data signals
component
grouping
Prior art date
Application number
PCT/CN2023/100243
Other languages
English (en)
French (fr)
Inventor
黄启圣
张耀东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024001789A1 publication Critical patent/WO2024001789A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technology, in particular to a signal detection method, signal detection equipment, and computer-readable storage medium.
  • the seventh-generation WIFI protocol can support up to 16 spatial streams, which brings great convenience to communication.
  • access points AP, Access Point
  • MMSE Minimum Mean Squared Error
  • ZF Zero Forcing
  • Embodiments of the present application provide a signal detection method, signal detection equipment, and computer-readable storage media.
  • inventions of the present application provide a signal detection device.
  • the signal detection device includes: a signal processing component configured to receive an initial signal including multiple data streams, and preprocess the initial signal to obtain A plurality of data signals and the channel parameters corresponding to each of the data signals; a signal grouping component, connected to the output end of the signal processing component, configured to receive the multiple data signals and the corresponding channel parameters of each of the data signals. channel parameters, and group the plurality of data signals according to the channel parameters of the plurality of data signals; the signal detection component is connected to the output end of the signal grouping component and is configured to receive the grouped plurality of data signals. data signals, and perform grouping detection on the grouped plurality of data signals to obtain grouping detection results for all the data signals.
  • inventions of the present application also provide a signal detection method, which should be configured as a signal detection device.
  • the signal detection device includes a signal processing component, a signal grouping component and a signal detection component.
  • the signal detection component is respectively connected with The signal grouping component is connected to the signal merging detection component;
  • the signal detection method includes: controlling the signal processing component to receive an initial signal including multiple data streams, and preprocessing the initial signal to obtain multiple data signals and channel parameters corresponding to each of the data signals; controlling the signal grouping component to receive the multiple data signals and the channel parameters corresponding to each of the data signals, and according to the channel parameters of the multiple data signals Group the multiple data signals; control the signal detection component to receive the multiple data signals after grouping, and perform group detection on the multiple data signals after grouping to obtain the results for all the data signals. Group test results.
  • embodiments of the present application also provide a signal detection device, including: at least one processor; at least one A memory configured to store at least one program; when at least one of the programs is executed by at least one of the processors, the signal detection method as described above is implemented.
  • embodiments of the present application further provide a computer-readable storage medium in which a processor-executable program is stored, and when the processor-executable program is executed by the processor, it is configured to implement the aforementioned signal detection method.
  • Figure 1 is a schematic diagram of a signal detection device provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a signal detection device provided by another embodiment of the present application.
  • Figure 3 is a schematic diagram of an application scenario of a signal detection device provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a signal detection device provided by another embodiment of the present application.
  • Figure 5 is a schematic diagram of a signal detection device provided by another embodiment of the present application.
  • Figure 6 is a schematic diagram of a signal detection device provided by another embodiment of the present application.
  • Figure 7 is a schematic diagram of a signal detection device provided by another embodiment of the present application.
  • Figure 8 is a schematic diagram of a signal detection device provided by another embodiment of the present application.
  • Figure 9 is a schematic diagram of a signal detection device provided by another embodiment of the present application.
  • Figure 10 is a flow chart of a signal detection method provided by an embodiment of the present application.
  • Figure 11 is a flow chart after the control signal detection component performs group detection on multiple grouped data signals in the signal detection method provided by an embodiment of the present application;
  • Figure 12 is a flow chart of the control signal grouping component grouping multiple data signals in the signal detection method provided by an embodiment of the present application;
  • Figure 13 is a flow chart of controlling the signal detection component to perform group detection on multiple grouped data signals in the signal detection method provided by an embodiment of the present application;
  • Figure 14 is a flow chart in which, in the signal detection method provided by one embodiment of the present application, the control signal processing component pre-processes the initial signal to obtain multiple data signals and the channel parameters corresponding to each data signal;
  • Figure 15 is a schematic diagram of a signal detection device provided by an embodiment of the present application.
  • the signal detection device of the example includes: a signal processing component configured to receive an initial signal including multiple data streams, and preprocess the initial signal to obtain multiple data signals and channel parameters corresponding to each data signal; a signal grouping component , connected to the output end of the signal processing component, configured to receive multiple data signals and channel parameters corresponding to each data signal, and to group the multiple data signals according to the channel parameters of the multiple data signals; the signal detection component, and The output end of the signal grouping component is connected and is configured to receive multiple grouped data signals, perform group detection on the multiple grouped data signals, and obtain group detection results for all data signals.
  • the signal processing component preprocesses the initial signal to obtain multiple data signals and the channel parameters corresponding to each data signal, so that the signal grouping component groups the multiple data signals to be detected according to the channel parameters, and based on
  • the signal detection component performs group detection on each data signal after grouping. Since only a relatively small number of data signals in each group need to be detected separately after grouping, the complex signal detection process can be split into relatively simple ones in each group. The signal detection process reduces the complexity of signal detection, thereby filling the technical gaps in related methods.
  • Figure 1 is a schematic diagram of a signal detection device 100 provided by an embodiment of the present application.
  • the signal detection device 100 includes but is not limited to a signal grouping component 110, a signal detection component 120 and a signal processing component 130.
  • the signal grouping component 110 is connected to the signal detection component 120 and the signal processing component 130 respectively;
  • the signal processing component 130 is configured to receive an initial signal including multiple data streams, and preprocess the initial signal to obtain multiple data signals and channel parameters corresponding to each data signal;
  • the signal grouping component 110 is configured to receive multiple data signals and channel parameters corresponding to each data signal, and to group the multiple data signals according to the channel parameters of the multiple data signals;
  • the signal detection component 120 is configured to receive multiple grouped data signals and perform group detection on the multiple grouped data signals to obtain group detection results for all data signals.
  • the signal processing component 130 preprocesses the initial signal to obtain multiple data signals and the channel parameters corresponding to each data signal, so that the signal grouping component 110 groups the multiple data signals to be detected according to the channel parameters, and based on the signal detection component 120 performs group detection on each grouped data signal. Since only a relatively small number of data signals in each group need to be detected separately after grouping, the complex signal detection process can be split into relatively simple signals in each group. The detection process reduces the complexity of signal detection, thereby filling the technical gaps in related methods.
  • the signal detection device 100 further includes: a signal combination detection component 140, connected to the output end of the signal detection component 120, configured to receive the group detection results for all data signals, and perform Interference elimination processing is performed on the grouping detection results to obtain output detection results for all data signals; interference elimination processing is performed on the grouping detection results based on the signal merging detection component 140 to obtain output detection results, which can improve signal detection performance and improve possible problems caused by grouping detection. Error effects to meet detection needs.
  • a signal combination detection component 140 connected to the output end of the signal detection component 120, configured to receive the group detection results for all data signals, and perform Interference elimination processing is performed on the grouping detection results to obtain output detection results for all data signals
  • interference elimination processing is performed on the grouping detection results based on the signal merging detection component 140 to obtain output detection results, which can improve signal detection performance and improve possible problems caused by grouping detection. Error effects to meet detection needs.
  • signal processing components may include, but are not limited to:
  • a first signal processing component configured to receive an initial signal including multiple data streams and perform front-end processing on the initial signal to obtain multiple first processed signals;
  • the second signal processing component is respectively connected to the first signal processing component and the signal grouping component, and is configured to receive all first processed signals sent by the first signal processing component, and perform frequency offset correction and frequency correction on all first processed signals. Domain processing obtains all data signals carrying channel parameters, and sends all data signals and channel parameters corresponding to each data signal to the signal grouping component.
  • the first signal processing component and the second signal processing component Through the cooperation of the first signal processing component and the second signal processing component, it is possible to obtain the initial wireless signal and preprocess the wireless signal to obtain the data signal to be detected and its corresponding channel parameters, so that the signal grouping component can obtain to the channel parameters of each data signal and perform subsequent correlation detection operations. That is to say, the first signal processing component and the second signal processing component can cooperate to preprocess the initial data signal and determine the channel parameters of each data signal. .
  • the first signal processing component can serve as a radio frequency front-end to receive the initial wireless signal from the air interface and perform front-end processing on it.
  • the front-end processing includes but is not limited to: AGC amplification, spectrum shifting, filtering, etc., through the first signal processing component
  • the first processed signal is obtained through processing, so that the first processed signal can become a signal that can be processed by the backend.
  • the second signal processing component may include but is not limited to a signal input frequency offset compensation component, a Fast Fourier Transform (FFT) module, and a Long Training Field (LTF) parser.
  • the signal input frequency offset compensation component Frequency offset correction can be performed on the first processed signal to reduce inter-subcarrier interference caused by frequency offset, and then the processed signal is sent to the FFT module and converted to the frequency domain for processing.
  • the LTF part and The remaining data parts are separated, and then the LTF part is sent to the LTF parser for channel estimation to obtain the channel matrix H. In this way, the data signal carrying the channel parameters can be obtained, so that the channel parameters of each data signal can be sent to the signal grouping component.
  • the signal processing component, the signal grouping component, the signal detection component and the signal combining detection component can be integratedly provided in the signal detection device, or can be separately separated from the signal detection device, or the technology in the art Technicians can also choose the implementation method of cooperation between various components, which is not limited here.
  • the signal detection device can be applied to, but is not limited to, a communication system that adopts the 7th generation WIFI protocol and communicates based on multiple-input multiple-output MIMO technology, and can be adapted to process a relatively large number (for example, the number of spatial streams) at the same time. Greater than 4) AP under the 7th generation WIFI protocol of spatial stream data, where the "spatial stream data" in this embodiment essentially expresses the same meaning as the "spatial stream” and "data signal” in the following embodiments, That is to say, they all refer to the signals to be detected. To avoid confusion, this is explained hereby.
  • the application scenario of the signal detection device may be, but is not limited to, a site STA intensive access scenario, as shown in Figure 3.
  • Figure 3 is a schematic diagram of the application scenario of the signal detection device provided by an embodiment of the present application.
  • An AP in Figure 3 needs to process multiple spatial streams from various terminals (i.e., terminal 1, terminal 2...terminal n shown in Figure 3) at the same time, that is, the AP uses MU- allowed by the 7th generation WIFI protocol.
  • MIMO technology performs spatial stream access until the number of streams that the AP needs to detect simultaneously reaches 16.
  • the signal detection device can group each spatial stream according to the preset strategy, and detect within each group to obtain the group detection result, and then The group detection results are sent to subsequent modules for processing, and the decoupling of the received signals can be completed through the above process.
  • this application can not only be applied to the intensive access multi-data stream detection scenario of the 7th generation WIFI protocol, but is also compatible with previous WIFI protocols. It can not only be applied to Single AP detection in the WLAN field, but also may be used In the MIMO detection of multiple APs in the WLAN field, there is no limitation here.
  • the terminal in Figure 3 may be, but is not limited to, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless Communication equipment, user agent or user device, etc., and the presentation form in specific application scenarios may be different. That is to say, the terminal may be different in different application scenarios, which is not limited here.
  • UE user equipment
  • user unit user station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • wireless Communication equipment user agent or user device, etc.
  • the terminal may be different in different application scenarios, which is not limited here.
  • the signal grouping component is configured to calculate the characteristic value corresponding to each data signal based on the acquired channel parameters of multiple data signals and a preset channel parameter scoring strategy, and group the characteristic values from all data signals.
  • Several data signals whose characteristic values are within the same preset range are divided into the same group. That is to say, the signal grouping component can be based on multiple The relevant feature values calculated by the data signals are respectively used to achieve accurate grouping. In this way, the grouping method is dominated by the scoring value, and there will not be too many wrong groupings or missed groupings, which can ensure that the grouping can proceed normally.
  • the channel parameters may include multiple types, such as signal-to-interference plus Noise Ratio (SINR), signal-to-noise ratio (Signal-Noise Ratio, SNR), channel matrix, etc., which are not limited here.
  • SINR signal-to-interference plus Noise Ratio
  • SNR signal-to-noise Ratio
  • channel matrix etc., which are not limited here.
  • SINR signal-to-interference plus Noise Ratio
  • the preset range can be a similar range, that is, several data with similar eigenvalues can be
  • the information is divided into the same group, which means that the preset range of the grouping results can be set according to the actual scenario, which is not limited here; in addition, the number of groups divided based on the division method of this embodiment and the number of groups in each group
  • the number of data signals is not limited.
  • the channel parameter scoring strategy can be set according to specific application scenarios, which is not limited here.
  • the channel parameter scoring strategy may include but is not limited to at least one of the following:
  • the score is based on the size of the signal-to-interference-to-noise ratio
  • the score is based on the size of the signal-to-noise ratio
  • the scoring is based on the main diagonal elements of the channel matrix
  • the score is based on the size of the column two norm of the channel matrix
  • scoring is performed based on the magnitude of the signal strength.
  • channel parameters may also include other types, and the channel parameter scoring strategy may be changed accordingly, without limitation. Examples are given below to illustrate the working principle of the signal grouping component.
  • a grouper is used as the signal grouping component.
  • the grouper is a device that groups data signals according to certain rules or parameters (for example, channel matrix H or signal strength). The purpose is to group the data signals of the working environment into the same group. Detection, its input can be the channel matrix H and the data signal to be detected, and the output is the data signal to be detected that has been grouped and adjusted to indicate which data signals in the same group are sent to subsequent signal detection components for detection.
  • a grouping process can be as follows: calculate the score of each spatial stream according to the scoring criteria, and group the spatial streams with similar scores into the same group.
  • the scoring criteria can be but are not limited to: SNR optimal, main diagonal of the channel matrix The elements are dominant, the SINR is optimal, the column two norm of the channel matrix is the largest, and the received signal strength is optimal, etc., you can select groups with high detection scores in subsequent detections.
  • the channel matrix H is inverted to obtain Then calculate the score of the spatial stream in the corresponding sorting group separately.
  • the calculation method is:
  • the group that should be detected currently is the group corresponding to the above calculation result.
  • the channel matrix H is divided by rows Each row vector can be expressed as At this time, the Bank’s Score is:
  • the signal detection component may, but is not limited to, be configured to perform serial packet detection or parallel packet detection on multiple data signals according to the packet results. That is to say, the signal detection component may use a single packet detector to perform serial packet detection. Line detection or multiple packet detectors are used for parallel detection. The accuracy of detection of multiple data signals can be ensured through serial packet detection or parallel packet detection. As for the specific use of serial packet detection or parallel packet detection, it can be determined according to actual conditions. The selection setting is based on the scenario, that is to say, generally speaking, parallel detection is more efficient but the cost is relatively higher, so it is necessary to weigh and select the corresponding detection method in the specific scenario.
  • the signal detection component may, but is not limited to, be configured to use ZF detection algorithm, MMSE detection algorithm, maximum likelihood detection algorithm, spherical detection algorithm, serial interference cancellation detection algorithm and parallel interference cancellation detection algorithm.
  • At least one method is to perform group detection on multiple data signals after grouping to ensure that the group detection process can proceed normally, that is, with the assistance of the algorithm, multiple data signals after grouping can be accurately and reliably detected into groups.
  • the algorithm can be selected and set according to specific scenarios, and is not limited here; among them, the maximum likelihood detection algorithm can be of many types, for example, it can be in the normal state, or in the reduced state, etc.
  • the signal combination detection component may be, but is not limited to, configured as follows: Perform interference elimination processing on the packet detection results in at least one of the following ways:
  • the signal detection results of each data signal are obtained from the packet detection results, and parallel interference elimination processing is performed on all signal detection results.
  • one or more suitable one or more of the above various interference cancellation processing methods can be selected for interference cancellation processing according to the actual situation.
  • serial interference cancellation processing is performed on the group detection results, that is, an inter-group serial interference cancellation method is deployed on a group basis, which is beneficial to eliminating the serial interference between each group, or the group detection results are processed.
  • Parallel interference cancellation processing that is, deploying a group-based parallel interference cancellation method, is conducive to eliminating parallel interference between each group; the signal detection results of each data signal are obtained from the group detection results, and all signal detection results are Perform serial interference cancellation processing, that is, deploy a serial interference cancellation method based on data signals, which is helpful to eliminate the serial interference between each group, or obtain the signal detection result of each data signal from the group detection result, and All signal detection results undergo parallel interference cancellation processing, that is, deploying a parallel interference cancellation method based on data signals, which is beneficial to eliminating parallel interference between each group.
  • the signal combination detection component is further configured to perform multiple iterations of interference elimination processing on the output detection results, wherein the input of the next iteration of interference elimination processing is the output detection result corresponding to the previous iteration of interference elimination processing; Iterative interference elimination processing on the output detection results is conducive to optimizing the output detection results in an iterative manner, that is, deploying a single signal merging detection component with an iterative structure to perform iterative interference elimination to obtain better output detection results. For example, it is possible but not The input of this iteration is limited to the output detection result of the previous iteration, and so on. When the preset number of iterations is reached or the detection result is determined to meet the preset requirements, the iteration can be stopped.
  • Figure 4 is a schematic diagram of a signal detection device provided by another embodiment of the present application.
  • the signal detection equipment adopts the setting method of multiple parallel detectors + a single detection result combiner.
  • the signal detection component uses multiple detectors to work in parallel. The more detectors, the higher the parallelism and the faster the detection speed. However, The cost is also higher, and the number of detectors is less than or equal to the number of groups; two detection result combiners can be deployed in the signal combination detection component to work serially with each other. Theoretically, the more detection result combiners, the more output detection results. The results are more precise.
  • Figure 5 is a schematic diagram of a signal detection device provided by another embodiment of the present application.
  • the signal detection equipment uses a single serial detector + no detection result combiner setup.
  • the cost of this setup is relatively low, but due to the lack of merging operations for grouped detection results, there may be some component interference errors.
  • Figure 6 is a schematic diagram of a signal detection device provided by another embodiment of the present application.
  • the signal detection equipment adopts the setup method of a single serial detector + a single detection result combiner, which can also relatively reduce the setup cost.
  • Figure 7 is a schematic diagram of a signal detection device provided by another embodiment of the present application.
  • the signal detection equipment adopts the setting method of a single serial detector + a single iterative detection result combiner, which is conducive to optimizing the output results in an iterative manner.
  • Figure 8 is a schematic diagram of a signal detection device provided by another embodiment of the present application.
  • the signal detection equipment adopts a setting method of multiple parallel detectors + multiple serial detection result combiners (two are shown in Figure 8, and there can be more in specific scenarios), which is conducive to optimization. Output the detection results.
  • Figure 9 is a schematic diagram of a signal detection device provided by another embodiment of the present application.
  • the signal detection equipment adopts a setting method of a single serial detector + multiple serial detection result combiners (two are shown in Figure 9, and there can be more in specific scenarios), which can relatively reduce Set costs and optimize output detection results.
  • the signal detection device 100 and its signal grouping component 110, signal detection component 120 and signal processing component 130 shown in Figure 1 have the above functions, as well as the signal detection device 100 and its signal processing shown in Figure 2
  • the above-mentioned functions of the component 130, the signal grouping component 110, the signal detection component 120 and the signal combination detection component 140 can be applied in different application scenarios, and are not limited here.
  • the signal detection device 100 and its signal grouping components 110, The signal detection component 120 and the signal processing component 130, as well as the signal detection device 100 and its signal processing component 130, signal grouping component 110, signal detection component 120 and signal combination detection component 140 shown in Figure 2, can be applied to 5G and 6G communications.
  • Network systems and subsequently evolved mobile communication network systems, etc., are not specifically limited in this embodiment.
  • the signal grouping component 110, the signal detection component 120 and the signal combination detection component 140 do not limit the embodiments of the present application. They may include more or less components than shown in the figures, or some components may be combined, or different components may be used. Component placement.
  • Figure 10 is a flow chart of a signal detection method provided by an embodiment of the present application.
  • the signal detection method can be, but is not limited to, applied to signal detection equipment, such as the signal detection in the embodiment shown in Figure 1 device 100 or the signal detection device 100 in the embodiment shown in FIG. 2 .
  • the signal detection method may include but is not limited to step S110 to step S130.
  • Step S110 The control signal processing component receives an initial signal including multiple data streams, and preprocesses the initial signal to obtain multiple data signals and channel parameters corresponding to each data signal;
  • Step S120 The control signal grouping component receives multiple data signals and channel parameters corresponding to each data signal, and groups the multiple data signals according to the channel parameters of the multiple data signals;
  • Step S130 The control signal detection component receives the multiple grouped data signals, and performs group detection on the multiple grouped data signals to obtain group detection results for all data signals.
  • the signal processing component preprocesses the initial signal to obtain multiple data signals and the channel parameters corresponding to each data signal, so that the signal grouping component groups the multiple data signals to be detected according to the channel parameters, and based on the signal
  • the detection component performs group detection on each grouped data signal. Since only a relatively small number of data signals in each group need to be detected separately after grouping, the complex signal detection process can be split into relatively simple ones in each group. The signal detection process reduces the complexity of signal detection, thereby filling the technical gaps in related methods.
  • steps S110 to S130 in this embodiment belong to the same inventive concept and the related embodiments of the above-mentioned signal detection equipment, they are completely corresponding to each other. The only difference is that the objects of the method and the device are different. Therefore, this method
  • steps S110 to step S130 in the embodiment reference can be made to the relevant embodiments of the signal detection device in the above embodiment. In order to avoid redundancy, other details of steps S110 to step S130 in this embodiment are Specific implementations and related implementations will not be described again here.
  • step S130 which also includes but is not limited to step S140.
  • Step S140 The control signal combining detection component receives the grouping detection results for all data signals, and performs interference elimination processing on the grouping detection results to obtain output detection results for all data signals.
  • the output detection results are obtained by performing interference elimination processing on the grouping detection results, which can improve the signal detection performance and improve the possible error effects caused by the grouping detection to meet the detection needs.
  • control signal combination detection component performs interference elimination processing on the packet detection results" in step S140, which includes at least one of the following:
  • the signal detection results of each data signal are obtained from the packet detection results, and parallel interference elimination processing is performed on all signal detection results.
  • serial interference elimination processing is performed on the group detection results, that is, an inter-group serial interference elimination method is deployed on a group basis, which is beneficial to eliminating serial interference between each group, or parallel interference is performed on the group detection results
  • Elimination processing that is, deploying a group-based parallel interference elimination method to help eliminate parallel interference between groups; obtain the signal detection results of each data signal from the group detection results, and serialize all signal detection results
  • Line interference cancellation processing that is, deploying a serial interference cancellation method based on data signals, is conducive to eliminating the serial interference between each group, or obtaining the signal detection results of each data signal from the group detection results, and all signals
  • the detection results are subjected to parallel interference cancellation processing, that is, a parallel interference cancellation method based on data signals is deployed, which is beneficial to eliminating parallel interference between each group.
  • step S140 An embodiment of the present application describes the steps after step S140, which also includes but is not limited to step S150.
  • Step S150 The control signal merging detection component performs multiple iterations of interference elimination processing on the output detection results, where the input of the next iteration of interference elimination processing is the output detection result corresponding to the previous iteration of interference elimination processing.
  • iterative interference elimination processing is performed on the output detection results, which is conducive to optimizing the output detection results in an iterative manner, that is, deploying a single signal merging detection component with an iterative structure to perform iterative interference elimination to obtain better output detection results, such as , the input of this iteration can be, but is not limited to, set to the last output detection result, and so on.
  • the iteration can be stopped.
  • step S140 and step S150 in this embodiment belong to the same inventive concept and the related embodiments of the above-mentioned signal detection equipment, they are completely corresponding to each other. The only difference is that the objects of the method and the device are different. Therefore, this method
  • step S140 and step S150 in the embodiment reference can be made to the relevant embodiments of the signal detection device in the above embodiment. In order to avoid redundancy, other specific implementations of step S140 and step S150 in this embodiment are Specific implementations and related implementations will not be described again here.
  • Step S120 includes but is not limited to steps S1201 to S1202.
  • Step S1201 The control signal grouping component calculates the characteristic value corresponding to each data signal based on the channel parameters of multiple data signals and the preset channel parameter scoring strategy;
  • Step S1202 The control signal grouping component divides several data signals whose characteristic values are within the same preset range from all data signals into the same group.
  • control signal grouping component achieves accurate grouping based on the relevant characteristic values calculated separately for multiple data signals. In this way, the grouping method is dominated by the scoring value, and there will not be too many wrong groupings or missed groupings. situation to ensure that the grouping can proceed normally.
  • the channel parameter scoring strategy can be set according to specific application scenarios, which is not limited here.
  • the channel parameter scoring strategy may include but is not limited to at least one of the following:
  • the score is based on the size of the signal-to-interference-to-noise ratio
  • the score is based on the size of the signal-to-noise ratio
  • the scoring is based on the main diagonal elements of the channel matrix
  • the score is based on the size of the column two norm of the channel matrix
  • scoring is performed based on the magnitude of the signal strength.
  • channel parameters may also include other types, and the channel parameter scoring strategy may be changed accordingly without limitation.
  • steps S1201 to S1202 in this embodiment and the related embodiments of the above-mentioned signal detection equipment belong to the same inventive concept and are completely corresponding to each other, the only difference lies in the object of the method and the device. Therefore, this implementation
  • steps S1201 to S1202 in the example reference can be made to the relevant embodiments of the signal detection device in the above embodiment. In order to avoid redundancy, other specific implementations of steps S1201 to S1202 in this embodiment are The relevant implementation methods will not be described again here.
  • Step S130 includes but is not limited to step S131.
  • Step S131 The control signal detection component performs serial grouping detection or parallel grouping detection on multiple data signals according to the grouping results.
  • the signal detection component can use a single group detector for serial detection or multiple group detectors for parallel detection.
  • the accuracy of detecting multiple data signals can be ensured through serial group detection or parallel group detection.
  • serial group detection or parallel group detection you can choose and set it according to the actual scenario. That is to say, generally speaking, parallel detection is more efficient but the cost is relatively higher, so a trade-off needs to be made in specific scenarios. Corresponding detection method.
  • step S131 in this embodiment and the related embodiments of the above-mentioned signal detection equipment belong to the same inventive concept and are completely corresponding to each other, the only difference lies in the objects of the method and the device. Therefore, in this embodiment
  • step S131 please refer to the relevant embodiments of the signal detection device in the above embodiment. To avoid redundancy, other specific implementations and related implementations of step S131 of this embodiment are here No longer.
  • Step S130 includes but is not limited to step S132.
  • Step S132 The control signal detection component uses at least one of a zero-forcing detection algorithm, a minimum mean square error detection algorithm, a maximum likelihood detection algorithm, a spherical detection algorithm, a serial interference cancellation detection algorithm, and a parallel interference cancellation detection algorithm to group The multiple data signals behind are grouped for detection.
  • algorithm detection is used to ensure that the packet detection process can proceed normally, that is, with the assistance of the algorithm, multiple data signals can be accurately and reliably detected in packets.
  • step S132 in this embodiment and the related embodiments of the above-mentioned signal detection equipment belong to the same inventive concept and are completely corresponding to each other, the only difference lies in the objects of the method and the device. Therefore, in this embodiment
  • step S132 please refer to the relevant embodiments of the signal detection device in the above embodiment. To avoid redundancy, other specific implementations and related implementations of step S132 of this embodiment are here No longer.
  • step S110 which includes but is not limited to steps S111 to S113.
  • Step S111 Control the first signal processing component to receive an initial signal including multiple data streams and perform front-end processing on the initial signal to obtain multiple first processed signals;
  • Step S112 Control the second signal processing component to receive all first processing signals sent by the first signal processing component, and perform frequency offset correction and frequency domain processing on all first processed signals to obtain all data signals carrying channel parameters;
  • Step S113 Control the second signal processing component to send all data signals and channel parameters corresponding to each data signal to the signal grouping component.
  • the first signal processing component and the second signal processing component by controlling the first signal processing component and the second signal processing component, it is possible to obtain the initial wireless signal and preprocess the wireless signal to obtain the data signal to be detected and its corresponding channel parameters, so as to group the signals.
  • the component can obtain the channel parameters of each data signal and perform subsequent correlation detection operations, that is, control the first signal processing component and the second signal processing component to cooperate to preprocess the initial data signal to determine each data The role of the channel parameters of the signal.
  • steps S111 to S113 in this embodiment and the related embodiments of the above-mentioned signal detection equipment belong to the same inventive concept and are completely corresponding to each other, the only difference lies in the objects of the method and the device. Therefore, this embodiment
  • steps S111 to S113 in the example reference can be made to the relevant embodiments of the signal detection device in the above embodiment. In order to avoid redundancy, other specific implementations of steps S111 to S113 in this embodiment are The relevant implementation methods will not be described again here.
  • one embodiment of the present application also discloses a signal detection device 200, including: at least one processor 210; at least one memory 220 configured to store at least one program; when at least one program is When executed, at least one processor 210 implements the signal detection method as in any previous embodiment.
  • an embodiment of the present application also discloses a computer-readable storage medium in which computer-executable instructions are stored, and the computer-executable instructions are configured to perform the signal detection method as in any of the previous embodiments.
  • an embodiment of the present application also discloses a computer program product, which includes a computer program or computer instructions.
  • the computer program or computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer program from the computer-readable storage medium.
  • the computer program or computer instructions are obtained, and the processor executes the computer program or computer instructions, so that the computer device performs the signal detection method as in any of the previous embodiments.
  • the signal processing component preprocesses the initial signal to obtain multiple data signals and the channel parameters corresponding to each data signal, so that the signal grouping component groups the multiple data signals to be detected according to the channel parameters, and Based on the signal detection component, each grouped data signal is detected in groups. Since only a relatively small number of data signals in each group need to be detected separately after grouping, the complex signal detection process can be split into relatively small numbers in each group. The simple signal detection process reduces the complexity of signal detection, thereby filling the technical gaps in related methods.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embody computer readable instructions, data structures, program modules, or programs such as Other data in a modulated data signal such as a carrier wave or other transport mechanism and may include any information delivery medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

本申请公开了一种信号检测方法及其设备、存储介质。信号检测设备(100)包括:信号处理组件(130),被配置为接收包括多个数据流的初始信号,并对初始信号进行预处理得到多个数据信号以及每个数据信号对应的信道参数(S110);信号分组组件(110),与信号处理组件的输出端连接,被配置为根据多个数据信号的信道参数对多个数据信号进行分组(S120);信号检测组件(120),与信号分组组件的输出端连接,被配置为接收分组后的多个数据信号,并对分组后的多个数据信号进行分组检测,得到对于所有数据信号的分组检测结果(S130)。

Description

信号检测方法及其设备、存储介质
相关申请的交叉引用
本申请基于申请号为202210736249.3、申请日为2022年6月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,尤其是一种信号检测方法及信号检测设备、计算机可读存储介质。
背景技术
随着WIFI协议的不断演进,第七代WIFI协议已经能够支持多达16条空间流,这为通信带来了极大的便利。目前,对于第六代WIFI协议下的接入点(AP,Access Point)一般采用最小均方误差(Minimum Mean Squared Error,MMSE)算法、迫零(Zero Forcing,ZF)算法等进行检测,这些算法能够较好地适用于第六代WIFI协议所支持的最多8空间流或4空间流的AP检测,但随着第七代WIFI协议空间流的明显增加,上述检测算法的复杂度也随之大量增加,难以适用于第七代WIFI协议下的AP检测。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种信号检测方法及信号检测设备、计算机可读存储介质。
第一方面,本申请实施例提供了一种信号检测设备,所述信号检测设备包括:信号处理组件,被配置为接收包括多个数据流的初始信号,并对所述初始信号进行预处理得到多个数据信号以及每个所述数据信号对应的信道参数;信号分组组件,与所述信号处理组件的输出端连接,被配置为接收所述多个数据信号以及每个所述数据信号对应的信道参数,并根据所述多个数据信号的信道参数对所述多个数据信号进行分组;信号检测组件,与所述信号分组组件的输出端连接,被配置为接收分组后的所述多个数据信号,并对分组后的所述多个数据信号进行分组检测,得到对于所有所述数据信号的分组检测结果。
第二方面,本申请实施例还提供了一种信号检测方法,应被配置为信号检测设备,所述信号检测设备包括信号处理组件、信号分组组件和信号检测组件,所述信号检测组件分别与所述信号分组组件和所述信号合并检测组件连接;所述信号检测方法,包括:控制所述信号处理组件接收包括多个数据流的初始信号,并对所述初始信号进行预处理得到多个数据信号以及每个所述数据信号对应的信道参数;控制所述信号分组组件接收所述多个数据信号以及每个所述数据信号对应的信道参数,并根据所述多个数据信号的信道参数对所述多个数据信号进行分组;控制所述信号检测组件接收分组后的所述多个数据信号,并对分组后的所述多个数据信号进行分组检测,得到对于所有所述数据信号的分组检测结果。
第三方面,本申请实施例还提供了一种信号检测设备,包括:至少一个处理器;至少一 个存储器,被配置为存储至少一个程序;当至少一个所述程序被至少一个所述处理器执行时实现如前面所述的信号检测方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,其中存储有处理器可执行的程序,所述处理器可执行的程序被处理器执行时被配置为实现如前面所述的信号检测方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方法的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方法,并不构成对本申请技术方法的限制。
图1是本申请一个实施例提供的信号检测设备的示意图;
图2是本申请另一个实施例提供的信号检测设备的示意图;
图3是本申请一个实施例提供的信号检测设备的应用场景示意图;
图4是本申请另一个实施例提供的信号检测设备的示意图;
图5是本申请另一个实施例提供的信号检测设备的示意图;
图6是本申请另一个实施例提供的信号检测设备的示意图;
图7是本申请另一个实施例提供的信号检测设备的示意图;
图8是本申请另一个实施例提供的信号检测设备的示意图;
图9是本申请另一个实施例提供的信号检测设备的示意图;
图10是本申请一个实施例提供的信号检测方法的流程图;
图11是本申请一个实施例提供的信号检测方法中,控制信号检测组件对分组后的多个数据信号进行分组检测之后的流程图;
图12是本申请一个实施例提供的信号检测方法中,控制信号分组组件对多个数据信号进行分组的流程图;
图13是本申请一个实施例提供的信号检测方法中,控制信号检测组件对分组后的多个数据信号进行分组检测的流程图;
图14是本申请一个实施例提供的信号检测方法中,控制信号处理组件对初始信号进行预处理得到多个数据信号以及每个数据信号对应的信道参数的流程图;
图15是本申请一个实施例提供的信号检测设备的示意图。
具体实施方式
为了使本申请的目的、技术方法及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请提供了一种信号检测方法及信号检测设备、计算机可读存储介质。其中一个实施 例的信号检测设备,包括:信号处理组件,被配置为接收包括多个数据流的初始信号,并对初始信号进行预处理得到多个数据信号以及每个数据信号对应的信道参数;信号分组组件,与信号处理组件的输出端连接,被配置为接收多个数据信号以及每个数据信号对应的信道参数,并根据多个数据信号的信道参数对多个数据信号进行分组;信号检测组件,与信号分组组件的输出端连接,被配置为接收分组后的多个数据信号,并对分组后的多个数据信号进行分组检测,得到对于所有数据信号的分组检测结果。该实施例中,通过信号处理组件预处理初始信号而得到多个数据信号以及每个数据信号对应的信道参数,以便于信号分组组件根据信道参数将待检测的多个数据信号进行分组,并基于信号检测组件对分组后的各个数据信号进行分组检测,由于分组后只需对各个分组内数量相对更少的数据信号分别进行检测,因此可以将复杂的信号检测流程拆分为各个分组内相对简单的信号检测流程,实现了信号检测复杂度的降低,从而可以弥补相关方法中的技术空白。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的信号检测设备100的示意图,该信号检测设备100包括但不限于有信号分组组件110、信号检测组件120和信号处理组件130。
其中,信号分组组件110分别与信号检测组件120和信号处理组件130连接;
信号处理组件130,被配置为接收包括多个数据流的初始信号,并对初始信号进行预处理得到多个数据信号以及每个数据信号对应的信道参数;
信号分组组件110,被配置为接收多个数据信号以及每个数据信号对应的信道参数,并根据多个数据信号的信道参数对多个数据信号进行分组;
信号检测组件120,被配置为接收分组后的多个数据信号,并对分组后的多个数据信号进行分组检测,得到对于所有数据信号的分组检测结果。
通过信号处理组件130预处理初始信号而得到多个数据信号以及每个数据信号对应的信道参数,以便于信号分组组件110根据信道参数将待检测的多个数据信号进行分组,并基于信号检测组件120对分组后的各个数据信号进行分组检测,由于分组后只需对各个分组内数量相对更少的数据信号分别进行检测,因此可以将复杂的信号检测流程拆分为各个分组内相对简单的信号检测流程,实现了信号检测复杂度的降低,从而可以弥补相关方法中的技术空白。
在一实施例中,如图2所示,信号检测设备100还包括:信号合并检测组件140,与信号检测组件120的输出端连接,被配置为接收对于所有数据信号的分组检测结果,并对分组检测结果进行干扰消除处理,得到对于所有数据信号的输出检测结果;基于信号合并检测组件140对分组检测结果进行干扰消除处理得到输出检测结果,能够提高信号检测性能,改善分组检测可能带来的误差影响以满足检测需求。
在一实施例中,信号处理组件可以包括但不限于:
第一信号处理组件,被配置为接收包括多个数据流的初始信号并对初始信号进行前端处理,得到多个第一处理信号;
第二信号处理组件,分别与第一信号处理组件和信号分组组件连接,被配置为接收由第一信号处理组件发送的所有第一处理信号,并对所有第一处理信号进行频偏修正和频域处理得到所有携带信道参数的数据信号,向信号分组组件发送所有数据信号和每个数据信号对应的信道参数。
通过第一信号处理组件和第二信号处理组件的配合,可以实现获取初始的无线信号并对该无线信号进行预处理而得到待检测的数据信号和其对应的信道参数,以便信号分组组件能够获取到每个数据信号的信道参数并进行后续相关检测操作,也就是说,第一信号处理组件和第二信号处理组件可以配合起到预处理初始数据信号而确定每个数据信号的信道参数的作用。
其中,第一信号处理组件可以作为射频前端从空口接收初始的无线信号并对其进行前端处理,该前端处理包括但不限于为:AGC放大、频谱搬移以及滤波处理等,通过第一信号处理组件的处理得到第一处理信号,使得第一处理信号可成为能够被后端处理的信号。
其中,第二信号处理组件可以包括但不限于信号输入频偏补偿元件、快速傅立叶变换(Fast Fourier Transform,FFT)模块以及长训练字段(Long Training Field,LTF)解析器,信号输入频偏补偿元件可以对第一处理信号进行频偏修正,以降低频偏带来的子载波间干扰,而后将处理得到的信号送入到FFT模块转换至频域进行处理,在频域进行处理时将LTF部分和其余数据部分进行分离,再将LTF部分送入LTF解析器进行信道估计得到信道矩阵H,这样就能够得到携带信道参数的数据信号,以便于将每个数据信号的信道参数向信号分组组件发送。在一实施例中,信号处理组件、信号分组组件、信号检测组件和信号合并检测组件可以被集成地设置在信号检测设备中,也可以从信号检测设备中被分别地拆分出来,或者本领域技术人员也可以自行选择各个组件之间的配合实现方式,此处并未限定。
在一实施例中,信号检测设备可以但不限于应用于采用第7代WIFI协议且基于多输入多输出MIMO技术进行通信的通信系统,可适配于同时处理相对较多(例如,空间流数量大于4)空间流数据的第7代WIFI协议下的AP,其中,本实施例中的“空间流数据”与下述各实施例中的“空间流”、“数据信号”实质表达相同含义,即指的均是待检测的信号,为免产生混淆,特此说明。
在一实施例中,信号检测设备的应用场景可以但不限于为站点STA密集接入场景,如图3所示,图3是本申请一个实施例提供的信号检测设备的应用场景示意图,此时图3中的一个AP需要同时处理多个分别来自各个终端(即图3中所示的终端1、终端2…终端n)的空间流,即该AP采用第7代WIFI协议所允许的MU-MIMO技术进行空间流接入直至AP需要同时检测的流数达到16,此时信号检测设备可以根据预设策略对各个空间流进行分组处理,并在各个分组内进行检测得到分组检测结果,然后将分组检测结果送入后续模块进行处理,经过上述流程可以完成对接收信号的解耦。需要说明的是,本申请不仅可以应用于第7代WIFI协议密集接入多数据流检测场景中,还可以兼容之前的WIFI协议,不仅能够应用于WLAN领域的Single AP检测,还有可能被应用于WLAN领域的多AP的MIMO检测中,此处并未限定。
在一实施例中,图3中的终端可以但不限于为用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置等,且在具体应用场景中的呈现形式可以为不同的,也就是说,终端在不同应用场景中可以为不同的,此处并未限定。
在一实施例中,信号分组组件,被配置为根据获取到的多个数据信号的信道参数和预设的信道参数评分策略计算出每个数据信号对应的特征值,并从所有数据信号中将特征值处于同一预设范围内的若干数据信号划分到同一组中,也就是说,信号分组组件可以根据对多个 数据信号分别进行计算得到的相关特征值以实现准确分组,这样分组的方式是由评分值所主导,不会出现太多的错误分组或漏分组的情况,可以确保分组能够正常进行。
在一实施例中,信道参数可以包括多个类型,例如信干噪比(Signal to Interference plus Noise Ratio,SINR)、信噪比(Signal-Noise Ratio,SNR)以及信道矩阵等,此处不作限定,在计算多个数据信号的特征值时,可以从信道参数中选出一种或多种作为标准来进行计算;预设范围可以取为相近似的范围,即可以将特征值相近的若干数据信息划分到同一个组中,这说明分组结果的预设范围可以根据实际场景进行设置,此处并未限定;此外,基于本实施例的划分方式所划分得到的分组数和每个分组内的数据信号的个数可以不作限定。
在一实施例中,信道参数评分策略可以根据具体应用场景进行设置,此处并未限定。例如,信道参数评分策略可以包括但不限于如下至少之一:
当信道参数包括信干噪比,根据信干噪比的大小进行评分;
当信道参数包括信噪比,根据信噪比的大小进行评分;
当信道参数包括信道矩阵,根据信道矩阵的主对角元素进行评分;
当信道参数包括信道矩阵,根据信道矩阵的列二范数的大小进行评分;
当所述信道参数包括信号强度,根据信号强度的大小进行评分。
可以理解地是,信道参数还可以包括其他的类型,那么信道参数评分策略可以相应变化,不作限定,以下给出示例以说明信号分组组件的工作原理。
示例一:
采用分组器作为信号分组组件,分组器为一种根据一定规则或参数(例如,信道矩阵H或信号强度)对数据信号进行分组的装置,目的在于将工作环境的数据信号分在同一组中进行检测,其输入可以为信道矩阵H和待检测的数据信号,输出为经过分组调整的待检测的数据信号,以指示哪些数据信号在同一组内被送入后续的信号检测组件进行检测。
一种分组流程可以为:根据评分标准计算每条空间流的得分,将得分相近的空间流分到同一组中,其中,评分标准可以但不限于采用:SNR最优、信道矩阵的主对角元素占优、SINR最优、信道矩阵的列二范数最大以及接收信号强度最优等,可以选择后续检测中优先检测评分高的分组。
以采用SNR最优算法为例,存储得到信道矩阵H后,对信道矩阵H求逆得到再分别计算对应排序组内空间流的得分Score,计算方式为:
那么当前应当被检测的组为上述计算结果所对应的组
以采用主对角占优算法为例,对信道矩阵H按行进行分割每个行向量可以表示为此时本行的得分Score为:
此时,当前组内得分为应当被检测组为
在一实施例中,信号检测组件,可以但不限于被配置为根据分组结果对多个数据信号进行串行分组检测或并行分组检测,也就是说,信号检测组件可以采用单一分组检测器进行串行检测或者采用多个分组检测器进行并行检测,通过串行分组检测或并行分组检测可以确保对多个数据信号进行检测的精确度,至于具体采用串行分组检测或并行分组检测,可以根据实际情景进行选择设置,也就是说,通常而言,并行检测的效率更高但成本也相对更高,因此需要在具体场景中进行权衡选择相应的检测方式。
在一实施例中,信号检测组件,可以但不限于被配置为采用ZF检测算法、MMSE检测算法、最大似然检测算法、球形检测算法、串行干扰消除检测算法和并行干扰消除检测算法中的至少一种,对分组后的多个数据信号进行分组检测,以确保分组检测流程能够正常进行,即在算法的辅助下可以准确可靠地对分组后的多个数据信号进行分组检测,至于具体采用的算法可以根据具体场景进行选择设置,此处不作限定;其中,最大似然检测算法可以为多种类型,例如可以为正常状态下的,也可以为减状态下的等。
需要说明的是,上述ZF检测算法、MMSE检测算法、最大似然检测算法、球形检测算法、串行干扰消除检测算法和并行干扰消除检测算法为本领域技术人员所熟知,故此处不作赘述。
在一实施例中,由于在对各个数据信号进行分组检测以后,组与组之间可能存在组间干扰,那么为了消除这种组间干扰,信号合并检测组件可以但不限于被配置为采用如下至少之一的方式对分组检测结果进行干扰消除处理:
对分组检测结果进行串行干扰消除处理;
对分组检测结果进行并行干扰消除处理;
从分组检测结果中获取每个数据信号的信号检测结果,对所有信号检测结果进行串行干扰消除处理;
从分组检测结果中获取每个数据信号的信号检测结果,对所有信号检测结果进行并行干扰消除处理。
需要说明的是,在具体应用场景中,可以根据实际情况从上述各种干扰消除处理方式中选择合适的一种或多种进行干扰消除处理。
在一实施例中,对分组检测结果进行串行干扰消除处理,即部署以组为单位的组间串行干扰消除方式,有利于消除各个分组之间的串行干扰,或者对分组检测结果进行并行干扰消除处理,即部署以组为单位的组间并行干扰消除方式,有利于消除各个分组之间的并行干扰;从分组检测结果中获取每个数据信号的信号检测结果,对所有信号检测结果进行串行干扰消除处理,即部署以数据信号为单位的串行干扰消除方式,有利于消除各个分组之间的串行干扰,或者从分组检测结果中获取每个数据信号的信号检测结果,对所有信号检测结果进行并行干扰消除处理,即部署以数据信号为单位的并行干扰消除方式,有利于消除各个分组之间的并行干扰。
在一实施例中,信号合并检测组件还被配置为对输出检测结果进行多次迭代干扰消除处理,其中,下一次迭代干扰消除处理的输入为上一次迭代干扰消除处理对应的输出检测结果; 对输出检测结果进行迭代干扰消除处理,有利于以迭代的方式优化输出检测结果,即部署单个具有迭代结构的信号合并检测组件进行迭代干扰消除以获得更优的输出检测结果,例如,可以但不限于将本次迭代的输入设定为上一次迭代的输出检测结果,以此类推,当达到预设迭代次数或判定检测结果符合预设要求时,则可以停止迭代。
需要说明的是,串行干扰消除处理、并行干扰消除处理和迭代干扰消除处理的具体实现方式为本领域技术人员所熟知,故在此对其不作赘述。
以下给出本申请实施例的信号检测设备的多种示例。
示例二:
如图4所示,图4是本申请另一个实施例提供的信号检测设备的示意图。
参照图4,该信号检测设备采用多个并行检测器+单一检测结果合并器的设置方式,其中,信号检测组件采用多检测器并行工作,检测器越多并行度越高,检测速度越快但是成本也越高,检测器的数量小于或等于分组数;信号合并检测组件中可以部署两个检测结果合并器,彼此之间串行工作,理论上而言检测结果合并器越多,则输出检测结果越精确。
示例三:
如图5所示,图5是本申请另一个实施例提供的信号检测设备的示意图。
参照图5,该信号检测设备采用单一串行检测器+无检测结果合并器的设置方式,这样设置的成本相对较低,但由于缺少对于分组检测结果的合并操作,可能存在一些组件干扰误差。
示例四:
如图6所示,图6是本申请另一个实施例提供的信号检测设备的示意图。
参照图6,该信号检测设备采用单一串行检测器+单一检测结果合并器的设置方式,也能够相对降低设置成本。
示例五:
如图7所示,图7是本申请另一个实施例提供的信号检测设备的示意图。
参照图7,该信号检测设备采用单一串行检测器+单一迭代检测结果合并器的设置方式,有利于以迭代的方式优化输出结果。
示例六:
如图8所示,图8是本申请另一个实施例提供的信号检测设备的示意图。
参照图8,该信号检测设备采用多个并行检测器+多个串行检测结果合并器(图8中示出为2个,在具体场景中可以为更多个)的设置方式,有利于优化输出检测结果。
示例七:
如图9所示,图9是本申请另一个实施例提供的信号检测设备的示意图。
参照图9,该信号检测设备采用单一串行检测器+多个串行检测结果合并器(图9中示出为2个,在具体场景中可以为更多个)的设置方式,能够相对降低设置成本,优化输出检测结果。
需要说明的是,图1所示的信号检测设备100及其信号分组组件110、信号检测组件120和信号处理组件130所具有的上述功能,以及图2所示的信号检测设备100及其信号处理组件130、信号分组组件110、信号检测组件120和信号合并检测组件140所具有的上述功能可以应用于不同的应用场景中,此处并未限制。
本领域技术人员可以理解的是,图1所示的信号检测设备100及其信号分组组件110、 信号检测组件120和信号处理组件130,以及图2所示的信号检测设备100及其信号处理组件130、信号分组组件110、信号检测组件120和信号合并检测组件140,可以应用于5G、6G通信网络系统以及后续演进的移动通信网络系统等,本实施例对此并不作具体限定。
本领域技术人员可以理解的是,图1所示的信号检测设备100及其信号分组组件110、信号检测组件120和信号处理组件130,以及图2所示的信号检测设备100及其信号处理组件130、信号分组组件110、信号检测组件120和信号合并检测组件140,并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述信号检测设备的实施例,下面提出本申请的信号检测方法的各个实施例。
如图10所示,图10是本申请一个实施例提供的信号检测方法的流程图,该信号检测方法可以但不限于应用于信号检测设备,例如应用于图1所示实施例中的信号检测设备100或图2所示实施例中的信号检测设备100。该信号检测方法可以包括但不限于步骤S110至步骤S130。
步骤S110:控制信号处理组件接收包括多个数据流的初始信号,并对初始信号进行预处理得到多个数据信号以及每个数据信号对应的信道参数;
步骤S120:控制信号分组组件接收多个数据信号以及每个数据信号对应的信道参数,并根据多个数据信号的信道参数对多个数据信号进行分组;
步骤S130:控制信号检测组件接收分组后的多个数据信号,并对分组后的多个数据信号进行分组检测,得到对于所有数据信号的分组检测结果。
本步骤中,通过信号处理组件预处理初始信号而得到多个数据信号以及每个数据信号对应的信道参数,以便于信号分组组件根据信道参数将待检测的多个数据信号进行分组,并基于信号检测组件对分组后的各个数据信号进行分组检测,由于分组后只需对各个分组内数量相对更少的数据信号分别进行检测,因此可以将复杂的信号检测流程拆分为各个分组内相对简单的信号检测流程,实现了信号检测复杂度的降低,从而可以弥补相关方法中的技术空白。
需要说明的是,由于本实施例中的步骤S110至步骤S130与上述信号检测设备的相关实施例属于同一发明构思,相互之间为完全对应的,区别仅在于方法与装置的客体不同,因此本实施例中的步骤S110至步骤S130的其他具体实施方式以及相关实施方式,可以参照上述实施例中的信号检测设备的相关实施例,为避免冗余,本实施例的步骤S110至步骤S130的其他具体实施方式以及相关实施方式在此不再赘述。
如图11所示,本申请的一个实施例,对步骤S130之后的步骤进行说明,还包括但不限于步骤S140。
步骤S140:控制信号合并检测组件接收对于所有数据信号的分组检测结果,并对分组检测结果进行干扰消除处理,得到对于所有数据信号的输出检测结果。
本步骤中,通过对分组检测结果进行干扰消除处理得到输出检测结果,能够提高信号检测性能,改善分组检测可能带来的误差影响以满足检测需求。
本申请的一个实施例,对步骤S140中的“控制信号合并检测组件对分组检测结果进行干扰消除处理”进行说明,其包括如下至少之一:
对分组检测结果进行串行干扰消除处理;
对分组检测结果进行并行干扰消除处理;
从分组检测结果中获取每个数据信号的信号检测结果,对所有信号检测结果进行串行干扰消除处理;
从分组检测结果中获取每个数据信号的信号检测结果,对所有信号检测结果进行并行干扰消除处理。
本步骤中,对分组检测结果进行串行干扰消除处理,即部署以组为单位的组间串行干扰消除方式,有利于消除各个分组之间的串行干扰,或者对分组检测结果进行并行干扰消除处理,即部署以组为单位的组间并行干扰消除方式,有利于消除各个分组之间的并行干扰;从分组检测结果中获取每个数据信号的信号检测结果,对所有信号检测结果进行串行干扰消除处理,即部署以数据信号为单位的串行干扰消除方式,有利于消除各个分组之间的串行干扰,或者从分组检测结果中获取每个数据信号的信号检测结果,对所有信号检测结果进行并行干扰消除处理,即部署以数据信号为单位的并行干扰消除方式,有利于消除各个分组之间的并行干扰。
本申请的一个实施例,对步骤S140之后的步骤进行说明,还包括但不限于步骤S150。
步骤S150:控制信号合并检测组件对输出检测结果进行多次迭代干扰消除处理,其中,下一次迭代干扰消除处理的输入为上一次迭代干扰消除处理对应的输出检测结果。
本步骤中,对输出检测结果进行迭代干扰消除处理,有利于以迭代的方式优化输出检测结果,即部署单个具有迭代结构的信号合并检测组件进行迭代干扰消除以获得更优的输出检测结果,例如,可以但不限于将本次迭代的输入设定为上一次的输出检测结果,以此类推,当达到预设迭代次数或判定检测结果符合预设要求时,则可以停止迭代。
需要说明的是,由于本实施例中的步骤S140和步骤S150与上述信号检测设备的相关实施例属于同一发明构思,相互之间为完全对应的,区别仅在于方法与装置的客体不同,因此本实施例中的步骤S140和步骤S150的其他具体实施方式以及相关实施方式,可以参照上述实施例中的信号检测设备的相关实施例,为避免冗余,本实施例的步骤S140和步骤S150的其他具体实施方式以及相关实施方式在此不再赘述。
如图12所示,本申请的一个实施例,对步骤S120进行说明,步骤S120包括但不限于步骤S1201至S1202。
步骤S1201:控制信号分组组件根据多个数据信号的信道参数和预设的信道参数评分策略计算出每个数据信号对应的特征值;
步骤S1202:控制信号分组组件从所有数据信号中,将特征值处于同一预设范围内的若干数据信号划分到同一组中。
本步骤中,控制信号分组组件根据对多个数据信号分别进行计算得到的相关特征值以实现准确分组,这样分组的方式是由评分值所主导,不会出现太多的错误分组或漏分组的情况,可以确保分组能够正常进行。
在一实施例中,信道参数评分策略可以根据具体应用场景进行设置,此处并未限定。例如,信道参数评分策略可以包括但不限于如下至少之一:
当信道参数包括信干噪比,根据信干噪比的大小进行评分;
当信道参数包括信噪比,根据信噪比的大小进行评分;
当信道参数包括信道矩阵,根据信道矩阵的主对角元素进行评分;
当信道参数包括信道矩阵,根据信道矩阵的列二范数的大小进行评分;
当所述信道参数包括信号强度,根据信号强度的大小进行评分。
可以理解地是,信道参数还可以包括其他的类型,那么信道参数评分策略可以相应变化,不作限定。
需要说明的是,由于本实施例中的步骤S1201至S1202与上述信号检测设备的相关实施例属于同一发明构思,相互之间为完全对应的,区别仅在于方法与装置的客体不同,因此本实施例中的步骤S1201至S1202的其他具体实施方式以及相关实施方式,可以参照上述实施例中的信号检测设备的相关实施例,为避免冗余,本实施例的步骤S1201至S1202的其他具体实施方式以及相关实施方式在此不再赘述。
本申请的一个实施例,对步骤S130中的“控制信号检测组件对分组后的多个数据信号进行分组检测”进行说明,步骤S130包括但不限于步骤S131。
步骤S131:控制信号检测组件根据分组结果对多个数据信号进行串行分组检测或并行分组检测。
本步骤中,信号检测组件可以采用单一分组检测器进行串行检测或者采用多个分组检测器进行并行检测,通过串行分组检测或并行分组检测可以确保对多个数据信号进行检测的精确度,至于具体采用串行分组检测或并行分组检测,可以根据实际情景进行选择设置,也就是说,通常而言,并行检测的效率更高但成本也相对更高,因此需要在具体场景中进行权衡选择相应的检测方式。
需要说明的是,由于本实施例中的步骤S131与上述信号检测设备的相关实施例属于同一发明构思,相互之间为完全对应的,区别仅在于方法与装置的客体不同,因此本实施例中的步骤S131的其他具体实施方式以及相关实施方式,可以参照上述实施例中的信号检测设备的相关实施例,为避免冗余,本实施例的步骤S131的其他具体实施方式以及相关实施方式在此不再赘述。
如图13所示,本申请的一个实施例,对步骤S130中的“控制信号检测组件对分组后的多个数据信号进行分组检测”进行说明,步骤S130包括但不限于步骤S132。
步骤S132:控制信号检测组件采用迫零检测算法、最小均方误差检测算法、最大似然检测算法、球形检测算法、串行干扰消除检测算法和并行干扰消除检测算法中的至少一种,对分组后的多个数据信号进行分组检测。
本步骤中,采用算法检测的方式以确保分组检测流程能够正常进行,即在算法的辅助下可以准确可靠地对多个数据信号进行分组检测。
需要说明的是,由于本实施例中的步骤S132与上述信号检测设备的相关实施例属于同一发明构思,相互之间为完全对应的,区别仅在于方法与装置的客体不同,因此本实施例中的步骤S132的其他具体实施方式以及相关实施方式,可以参照上述实施例中的信号检测设备的相关实施例,为避免冗余,本实施例的步骤S132的其他具体实施方式以及相关实施方式在此不再赘述。
如图14所示,本申请的一个实施例,对步骤S110进行说明,步骤S110包括但不限于步骤S111至S113。
步骤S111:控制第一信号处理组件接收包括多个数据流的初始信号并对初始信号进行前端处理,得到多个第一处理信号;
步骤S112:控制第二信号处理组件接收由第一信号处理组件发送的所有第一处理信号, 并对所有第一处理信号进行频偏修正和频域处理得到所有携带信道参数的数据信号;
步骤S113:控制第二信号处理组件向信号分组组件发送所有数据信号和每个数据信号对应的信道参数。
本步骤中,通过控制第一信号处理组件和第二信号处理组件,可以实现获取初始的无线信号并对该无线信号进行预处理而得到待检测的数据信号和其对应的信道参数,以便信号分组组件能够获取到每个数据信号的信道参数并进行后续相关检测操作,也就是说,控制第一信号处理组件和第二信号处理组件以使其配合起到预处理初始数据信号而确定每个数据信号的信道参数的作用。
需要说明的是,由于本实施例中的步骤S111至S113与上述信号检测设备的相关实施例属于同一发明构思,相互之间为完全对应的,区别仅在于方法与装置的客体不同,因此本实施例中的步骤S111至S113的其他具体实施方式以及相关实施方式,可以参照上述实施例中的信号检测设备的相关实施例,为避免冗余,本实施例的步骤S111至S113的其他具体实施方式以及相关实施方式在此不再赘述。
另外,如图15所示,本申请的一个实施例还公开了一种信号检测设备200,包括:至少一个处理器210;至少一个存储器220,被配置为存储至少一个程序;当至少一个程序被至少一个处理器210执行时实现如前面任意实施例中的信号检测方法。
另外,本申请的一个实施例还公开了一种计算机可读存储介质,其中存储有计算机可执行指令,计算机可执行指令被配置为执行如前面任意实施例中的信号检测方法。
此外,本申请的一个实施例还公开了一种计算机程序产品,包括计算机程序或计算机指令,计算机程序或计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取计算机程序或计算机指令,处理器执行计算机程序或计算机指令,使得计算机设备执行如前面任意实施例中的信号检测方法。
本申请实施例中,通过信号处理组件预处理初始信号而得到多个数据信号以及每个数据信号对应的信道参数,以便于信号分组组件根据信道参数将待检测的多个数据信号进行分组,并基于信号检测组件对分组后的各个数据信号进行分组检测,由于分组后只需对各个分组内数量相对更少的数据信号分别进行检测,因此可以将复杂的信号检测流程拆分为各个分组内相对简单的信号检测流程,实现了信号检测复杂度的降低,从而可以弥补相关方法中的技术空白。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如 载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (18)

  1. 一种信号检测设备,包括:
    信号处理组件,被配置为接收包括多个数据流的初始信号,并对所述初始信号进行预处理得到多个数据信号以及每个所述数据信号对应的信道参数;
    信号分组组件,与所述信号处理组件的输出端连接,被配置为接收所述多个数据信号以及每个所述数据信号对应的信道参数,并根据所述多个数据信号的信道参数对所述多个数据信号进行分组;
    信号检测组件,与所述信号分组组件的输出端连接,被配置为接收分组后的所述多个数据信号,并对分组后的所述多个数据信号进行分组检测,得到对于所有所述数据信号的分组检测结果。
  2. 根据权利要求1所述的信号检测设备,还包括:
    信号合并检测组件,与所述信号检测组件的输出端连接,被配置为接收对于所有所述数据信号的分组检测结果,并对所述分组检测结果进行干扰消除处理,得到对于所有所述数据信号的输出检测结果。
  3. 根据权利要求2所述的信号检测设备,其中,所述信号合并检测组件被配置为采用如下至少之一的方式对所述分组检测结果进行干扰消除处理:
    对所述分组检测结果进行串行干扰消除处理;或
    对所述分组检测结果进行并行干扰消除处理;或
    从所述分组检测结果中获取每个所述数据信号的信号检测结果,对所有所述信号检测结果进行串行干扰消除处理;或
    从所述分组检测结果中获取每个所述数据信号的信号检测结果,对所有所述信号检测结果进行并行干扰消除处理。
  4. 根据权利要求2所述的信号检测设备,其中,所述信号合并检测组件还被配置为对所述输出检测结果进行多次迭代干扰消除处理,其中,下一次所述迭代干扰消除处理的输入为上一次所述迭代干扰消除处理对应的所述输出检测结果。
  5. 根据权利要求1所述的信号检测设备,其中,所述信号分组组件被配置为根据所述多个数据信号的信道参数和预设的信道参数评分策略计算出每个所述数据信号对应的特征值,并从所有所述数据信号中,将所述特征值处于同一预设范围内的若干所述数据信号划分到同一组中。
  6. 根据权利要求5所述的信号检测设备,其中,所述信道参数评分策略包括如下至少之一:
    当所述信道参数包括信干噪比,根据所述信干噪比的大小进行评分;或
    当所述信道参数包括信噪比,根据所述信噪比的大小进行评分;或
    当所述信道参数包括信道矩阵,根据所述信道矩阵的主对角元素进行评分;或
    当所述信道参数包括信道矩阵,根据所述信道矩阵的列二范数的大小进行评分;或
    当所述信道参数包括信号强度,根据所述信号强度的大小进行评分。
  7. 根据权利要求1所述的信号检测设备,其中,所述信号检测组件被配置为采用迫零检测算法,或最小均方误差检测算法,或最大似然检测算法,或球形检测算法,或串行干扰消 除检测算法,或并行干扰消除检测算法中的至少一种,对分组后的所述多个数据信号进行分组检测。
  8. 根据权利要求1所述的信号检测设备,其中,所述信号处理组件包括:
    第一信号处理组件,被配置为接收包括多个数据流的初始信号并对所述初始信号进行前端处理,得到多个第一处理信号;
    第二信号处理组件,分别与所述第一信号处理组件和所述信号分组组件连接,被配置为接收由所述第一信号处理组件发送的所有所述第一处理信号,并对所有所述第一处理信号进行频偏修正和频域处理得到所有携带所述信道参数的所述数据信号,向所述信号分组组件发送所有所述数据信号和每个所述数据信号对应的信道参数。
  9. 一种信号检测方法,应用于信号检测设备,所述信号检测设备包括信号处理组件、信号分组组件和信号检测组件,所述信号检测组件分别与所述信号分组组件和所述信号合并检测组件连接;
    所述信号检测方法,包括:
    控制所述信号处理组件接收包括多个数据流的初始信号,并对所述初始信号进行预处理得到多个数据信号以及每个所述数据信号对应的信道参数;
    控制所述信号分组组件接收所述多个数据信号以及每个所述数据信号对应的信道参数,并根据所述多个数据信号的信道参数对所述多个数据信号进行分组;
    控制所述信号检测组件接收分组后的所述多个数据信号,并对分组后的所述多个数据信号进行分组检测,得到对于所有所述数据信号的分组检测结果。
  10. 根据权利要求9所述的信号检测方法,其中,所述信号检测设备还包括与所述信号检测组件的输出端连接的信号合并检测组件;所述对分组后的所述多个数据信号进行分组检测,得到对于所有所述数据信号的分组检测结果之后,还包括:
    控制所述信号合并检测组件接收对于所有所述数据信号的分组检测结果,并对所述分组检测结果进行干扰消除处理,得到对于所有所述数据信号的输出检测结果。
  11. 根据权利要求10所述的信号检测方法,其中,所述控制所述信号合并检测组件对所述分组检测结果进行干扰消除处理,包括如下至少之一:
    控制所述信号合并检测组件对所述分组检测结果进行串行干扰消除处理;或
    控制所述信号合并检测组件对所述分组检测结果进行并行干扰消除处理;或
    控制所述信号合并检测组件从所述分组检测结果中获取每个所述数据信号的信号检测结果,对所有所述信号检测结果进行串行干扰消除处理;或
    控制所述信号合并检测组件从所述分组检测结果中获取每个所述数据信号的信号检测结果,对所有所述信号检测结果进行并行干扰消除处理。
  12. 根据权利要求10所述的信号检测方法,其中,所述对所述分组检测结果进行干扰消除处理,得到对于所有所述数据信号的输出检测结果之后,还包括:
    控制所述信号合并检测组件对所述输出检测结果进行多次迭代干扰消除处理,其中,下一次所述迭代干扰消除处理的输入为上一次所述迭代干扰消除处理对应的所述输出检测结果。
  13. 根据权利要求9所述的信号检测方法,其中,所述控制所述信号分组组件根据所述多个数据信号的信道参数对所述多个数据信号进行分组,包括:
    控制所述信号分组组件根据所述多个数据信号的信道参数和预设的信道参数评分策略计 算出每个所述数据信号对应的特征值;
    控制所述信号分组组件从所有所述数据信号中,将所述特征值处于同一预设范围内的若干所述数据信号划分到同一组中。
  14. 根据权利要求13所述的信号检测方法,其中,所述信道参数评分策略包括如下至少之一:
    当所述信道参数包括信干噪比,根据所述信干噪比的大小进行评分;或
    当所述信道参数包括信噪比,根据所述信噪比的大小进行评分;或
    当所述信道参数包括信道矩阵,根据所述信道矩阵的主对角元素进行评分;或
    当所述信道参数包括信道矩阵,根据所述信道矩阵的列二范数的大小进行评分;或
    当所述信道参数包括信号强度,根据所述信号强度的大小进行评分。
  15. 根据权利要求9所述的信号检测方法,其中,所述控制所述信号检测组件对分组后的所述多个数据信号进行分组检测,包括:
    控制所述信号检测组件采用迫零检测算法,或最小均方误差检测算法,或最大似然检测算法,或球形检测算法,或串行干扰消除检测算法,或并行干扰消除检测算法中的至少一种,对分组后的所述多个数据信号进行分组检测。
  16. 根据权利要求9所述的信号检测方法,其中,所述信号处理组件包括第一信号处理组件和第二信号处理组件,所述第二信号处理组件分别与所述第一信号处理组件和所述信号分组组件连接;所述控制所述信号处理组件接收包括多个数据流的初始信号,并对所述初始信号进行预处理得到多个数据信号以及每个所述数据信号对应的信道参数,包括:
    控制所述第一信号处理组件接收包括多个数据流的初始信号并对所述初始信号进行前端处理,得到多个第一处理信号;
    控制所述第二信号处理组件接收由所述第一信号处理组件发送的所有所述第一处理信号,并对所有所述第一处理信号进行频偏修正和频域处理得到所有携带所述信道参数的所述数据信号;
    控制所述第二信号处理组件向所述信号分组组件发送所有所述数据信号和每个所述数据信号对应的信道参数。
  17. 一种信号检测设备,包括:
    至少一个处理器;
    至少一个存储器,被配置为存储至少一个程序;
    当至少一个所述程序被至少一个所述处理器执行时,实现如权利要求9至16任意一项所述的信号检测方法。
  18. 一种计算机可读存储介质,存储有处理器可执行的程序,所述处理器可执行的程序被处理器执行时,被配置为实现如权利要求9至16任意一项所述的信号检测方法。
PCT/CN2023/100243 2022-06-27 2023-06-14 信号检测方法及其设备、存储介质 WO2024001789A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210736249.3A CN117353876A (zh) 2022-06-27 2022-06-27 信号检测方法及其设备、存储介质
CN202210736249.3 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024001789A1 true WO2024001789A1 (zh) 2024-01-04

Family

ID=89363643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100243 WO2024001789A1 (zh) 2022-06-27 2023-06-14 信号检测方法及其设备、存储介质

Country Status (2)

Country Link
CN (1) CN117353876A (zh)
WO (1) WO2024001789A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933423A (en) * 1994-07-04 1999-08-03 Nokia Telecommunications Oy Reception method, and a receiver
US20020018454A1 (en) * 2000-03-15 2002-02-14 Misra Raj Mani Multi-user detection using an adaptive combination of joint detection and successive interface cancellation
US20070127587A1 (en) * 2005-12-01 2007-06-07 Samsung Electronics Co., Ltd. Interleaver design for IEEE 802.11n standard
US20140211704A1 (en) * 2013-01-28 2014-07-31 Qualcomm Incorporated Extending range and delay spread in wifi bands
US20150327282A1 (en) * 2014-05-12 2015-11-12 Qualcomm Incorporated Methods and apparatus for channel selection in a wireless local area network
US10637705B1 (en) * 2017-05-25 2020-04-28 Genghiscomm Holdings, LLC Peak-to-average-power reduction for OFDM multiple access
US20200145155A1 (en) * 2018-11-04 2020-05-07 Semiconductor Components Industries, Llc Early link detection based adaptive selection of receive parameters
CN112565117A (zh) * 2020-11-06 2021-03-26 西安电子科技大学 滤波器组多载波信道估计方法、系统、介质、终端及应用
CN114389756A (zh) * 2022-01-20 2022-04-22 东南大学 基于分组ml检测和并行迭代干扰抵消的上行mimo检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933423A (en) * 1994-07-04 1999-08-03 Nokia Telecommunications Oy Reception method, and a receiver
US20020018454A1 (en) * 2000-03-15 2002-02-14 Misra Raj Mani Multi-user detection using an adaptive combination of joint detection and successive interface cancellation
US20070127587A1 (en) * 2005-12-01 2007-06-07 Samsung Electronics Co., Ltd. Interleaver design for IEEE 802.11n standard
US20140211704A1 (en) * 2013-01-28 2014-07-31 Qualcomm Incorporated Extending range and delay spread in wifi bands
US20150327282A1 (en) * 2014-05-12 2015-11-12 Qualcomm Incorporated Methods and apparatus for channel selection in a wireless local area network
US10637705B1 (en) * 2017-05-25 2020-04-28 Genghiscomm Holdings, LLC Peak-to-average-power reduction for OFDM multiple access
US20200145155A1 (en) * 2018-11-04 2020-05-07 Semiconductor Components Industries, Llc Early link detection based adaptive selection of receive parameters
CN112565117A (zh) * 2020-11-06 2021-03-26 西安电子科技大学 滤波器组多载波信道估计方法、系统、介质、终端及应用
CN114389756A (zh) * 2022-01-20 2022-04-22 东南大学 基于分组ml检测和并行迭代干扰抵消的上行mimo检测方法

Also Published As

Publication number Publication date
CN117353876A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
JP6263602B2 (ja) 非線形プリコーディングベースのマルチユーザ多入力多出力のための局およびアクセスポイント
CN103220065B (zh) 空闲信道评估阈值的调整方法及装置
TWI504184B (zh) 無線行動裝置、用於訊號處理的系統及其方法
JP2022506632A (ja) チャネル状態情報フィードバック方法および装置
US10033550B2 (en) User equipment detection for uplink random access in dispersive fading environments
CN110784286B (zh) 基于压缩感知的非正交多址接入系统的多用户检测方法
US20210067212A1 (en) Beamforming performance optimization
WO2016173152A1 (zh) 分布式基站的下行天线选择方法及装置
CN102571182A (zh) 一种无线局域网中接收天线的选择方法和装置
US9066244B2 (en) Uplink signal bandwidth characterization from channel state information
EP2727304A2 (en) Noise estimation filter
US8483641B1 (en) Validation and stabilization of noise matrices
WO2015184949A1 (zh) 在干扰条件下的lte上行系统的信号检测方法和装置
WO2024001789A1 (zh) 信号检测方法及其设备、存储介质
US8724754B2 (en) Noise power thresholding and balancing for long term evolution (LTE) symbol detection
CN115459879B (zh) 一种大维信号处理方法、装置和电子设备
CN111224911A (zh) 一种基于盲均衡辅助深度学习的方法及系统
CN114826837B (zh) 一种信道估计方法、装置、设备及存储介质
CN114567526B (zh) 信号解调方法、基带芯片、终端设备及存储介质
CN106060918B (zh) 一种功率控制方法及基站
CN108809453B (zh) 用于多输入多输出操作的平衡拼图天线波束搜寻方法
CN112887231B (zh) 一种mimo信道估计的改进方法和系统
US20190190756A1 (en) Distributed Base Station with Frequency Domain Interface on Which Signal Subspace Varies According to Frequency Bin
US9998189B1 (en) Adaptive device and method for wireless network
CN113810920A (zh) 波束训练方法、网络设备、终端、系统和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829971

Country of ref document: EP

Kind code of ref document: A1