WO2016173152A1 - 分布式基站的下行天线选择方法及装置 - Google Patents

分布式基站的下行天线选择方法及装置 Download PDF

Info

Publication number
WO2016173152A1
WO2016173152A1 PCT/CN2015/087244 CN2015087244W WO2016173152A1 WO 2016173152 A1 WO2016173152 A1 WO 2016173152A1 CN 2015087244 W CN2015087244 W CN 2015087244W WO 2016173152 A1 WO2016173152 A1 WO 2016173152A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
downlink
downlink antenna
antennas
base station
Prior art date
Application number
PCT/CN2015/087244
Other languages
English (en)
French (fr)
Inventor
侯晓辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016173152A1 publication Critical patent/WO2016173152A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas

Definitions

  • This application relates to, but is not limited to, the field of wireless communication technology.
  • a distributed base station generally has a plurality of antennas.
  • the uplink antenna receives a signal
  • the downlink antenna corresponding to the uplink antenna is determined according to a one-to-one correspondence between the preset uplink antenna and the downlink antenna. If the downlink antenna is not selected, Properly, the information transmission quality is poor and the rate is low.
  • the present invention provides a downlink antenna selection method and device for a distributed base station, which aims to solve the technical problem that the selection of the downlink antenna is not appropriate enough, thereby causing poor information transmission quality and low rate.
  • the downlink antenna selection method of the distributed base station includes:
  • the step of selecting a downlink antenna in the determined antenna according to the quality parameter includes:
  • the preset condition is that the quality parameter is greater than a first preset threshold.
  • the step of determining, by using the antenna whose quality parameter meets a preset condition, a candidate downlink antenna includes:
  • the quality parameters corresponding to the candidate downlink antennas are all greater than or equal to the quality parameters of the antennas other than the candidate antennas.
  • the step of selecting a downlink antenna in the candidate downlink antenna according to each of the timing advances includes:
  • the candidate downlink antenna whose difference is less than or equal to a second preset threshold is used as a downlink antenna.
  • the downlink antenna selection device of the distributed base station includes:
  • Determining a module configured to: determine an antenna that currently receives an uplink signal
  • a calculation module configured to: calculate a quality parameter of the determined uplink signal received by each of the antennas;
  • selecting a module configured to: select a downlink antenna among the determined antennas according to the quality parameter.
  • the selecting module includes:
  • a determining unit configured to: determine an antenna whose quality parameter meets a preset condition as a candidate downlink antenna
  • a calculating unit configured to: calculate a timing advance of the uplink signal received by each of the candidate downlink antennas;
  • the selecting unit is configured to: select a downlink antenna among the candidate downlink antennas according to each of the timing advances.
  • the preset condition is that the quality parameter is greater than a first preset threshold.
  • the determining unit includes:
  • the first determining subunit is configured to: determine an antenna corresponding to the preset number of quality parameters as a candidate downlink antenna;
  • the quality parameters corresponding to the candidate downlink antennas are all greater than or equal to the quality parameters of the antennas other than the candidate antennas.
  • the selecting unit includes:
  • a second determining subunit configured to: determine an antenna with a corresponding maximum quality parameter as a reference antenna
  • Calculating a subunit configured to: separately calculate a difference between the time advance of the reference antenna and each candidate downlink antenna;
  • the sub-unit is selected, and the candidate downlink antenna whose difference is less than or equal to the second preset threshold is used as the downlink antenna.
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the downlink antenna selection method of the distributed base station determines the quality parameter of the uplink signal received by each of the antennas by determining an antenna that currently receives the uplink signal, and determines the quality parameter according to the quality parameter.
  • the downlink antenna is selected from the antenna, and the downlink antenna is selected according to the quality parameter of the uplink signal, so that the adaptive selection of the downlink antenna is realized, and the flexible selection of the downlink antenna and the coordinated transmission of the downlink are realized, thereby improving the space freedom of the downlink transmission. Degree, which improves the quality and speed of information transmission.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for selecting a downlink antenna of a distributed base station according to the present invention
  • FIG. 2 is a schematic flowchart of a step of selecting a downlink antenna in a downlink antenna selection method of a distributed base station according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a step of selecting a downlink antenna in a candidate downlink antenna in a downlink antenna selection method of a distributed base station according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of functional modules of an embodiment of a downlink antenna selection apparatus for a distributed base station according to the present invention.
  • FIG. 5 is a schematic diagram of a refinement function module of a module selected in a downlink antenna selection apparatus of a distributed base station according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a refinement function module of a selection unit of a downlink antenna selection apparatus of a distributed base station according to an embodiment of the present invention.
  • Embodiments of the present invention provide a downlink antenna selection method for a distributed base station.
  • the distributed base station has two forms.
  • the first form is: a baseband processing center and a plurality of remote radio frequency modules;
  • the second form is: a base station cooperative group, and in the base station cooperative group, one base station is responsible for the baseband.
  • the downlink antenna selection method of the distributed base station provided by the embodiment of the present invention is implemented by using the distributed base station.
  • the downlink antenna selection method of the distributed base station provided by the embodiment of the present invention may be performed by using the baseband processing center, or by using the foregoing baseband.
  • the central processing of the base station is performed.
  • FIG. 1 is a schematic flowchart of a method for selecting a downlink antenna of a distributed base station according to an embodiment of the present invention, where a method for selecting a downlink antenna of the distributed base station includes:
  • Step S10 determining an antenna that currently receives an uplink signal
  • a distributed base station including a baseband processing center and a plurality of remote radio frequency modules are taken as an example for description.
  • the remote radio module can be a single-channel remote radio module or a multi-channel remote radio module, and each channel is equipped with one antenna.
  • all channels corresponding to all antennas in the distributed base station are in an open state.
  • the distributed base station has a total of 32 antennas
  • the 32 antennas are determined as the antennas that receive the uplink signal.
  • Step S20 calculating a quality parameter of the determined uplink signal received by each of the antennas
  • the quality parameter may be a SINR (Signal to Interference plus Noise Ratio) parameter or an RSSI (Receive Signal Strength Indicator) parameter.
  • SINR Signal to Interference plus Noise Ratio
  • RSSI Receiveive Signal Strength Indicator
  • the reference point of the measurement is the antenna port of the base station, that is, the RSSI is all signals in the received Symbol.
  • the SINR is the ratio of the strength of the received wanted signal to the strength of the received interfering signal (noise and interference).
  • the quality parameter is taken as an SINR parameter as an example.
  • the SINR parameters of the uplink signals received by each antenna are as follows:
  • Step S30 selecting a downlink antenna among the determined antennas according to the quality parameter.
  • FIG. 2 is a schematic flowchart of a step of selecting a downlink antenna in a method for selecting a downlink antenna of a distributed base station according to an embodiment of the present disclosure, where step S30 includes:
  • Step S31 Determine an antenna whose quality parameter meets a preset condition as a candidate downlink antenna
  • the candidate downlink antenna can be determined in the following manner:
  • the preset condition is that the quality parameter is greater than the first preset threshold, that is, the antenna corresponding to the quality parameter that is greater than the first preset threshold is determined as the candidate downlink antenna.
  • the antenna parameters corresponding to the quality parameters greater than 10 are 2, 3, 5, 6, 7, and 8, respectively, so antennas 2, 3, 5, 6, 7, and 8 can be used. Selected as the candidate downlink antenna.
  • step S31 includes:
  • the quality parameters corresponding to the candidate downlink antennas are all greater than or equal to the quality parameters of the antennas other than the candidate antennas.
  • the method of selecting a preset quantity of quality parameters may be set according to actual needs.
  • the calculated quality parameters may be arranged in ascending or descending order, and then a preset number of quality parameters are selected in the sorted quality parameter list. You can also use the bubble method to select a preset number of quality parameters.
  • the descending order of the calculated quality parameters is taken as an example for description.
  • the sorted quality parameter list is as follows:
  • a preset number of quality parameters are selected from high to low;
  • the selected antenna corresponding to the quality parameter is determined as a candidate downlink antenna.
  • the preset number may be six. Therefore, the antenna corresponding to the first six quality parameters in the sorted quality parameter list is selected as the candidate downlink antenna, that is, antennas 2, 3, 5, 6, 7, and 8 are selected as Candidate downlink antenna.
  • Step S32 calculating a timing advance of the uplink signal received by each of the candidate downlink antennas
  • the timing advance is to eliminate the different transmission delay between UEs.
  • the timing advance of the uplink signal corresponding to the candidate downlink antenna is as follows:
  • Step S33 Select a downlink antenna in the candidate downlink antenna according to each of the timing advances.
  • the manner of selecting the downlink antenna in the candidate downlink antenna according to the timing advance may be selected according to actual needs. For example, a time advance range may be preset, and the foregoing is within the time advance range.
  • the candidate downlink antenna corresponding to the timing advance is determined as the downlink antenna.
  • it can be implemented in the following manner: Referring to FIG. 3, FIG. 3 is a schematic flowchart of a step of selecting a downlink antenna in a candidate downlink antenna in a method for selecting a downlink antenna of a distributed base station according to an embodiment of the present disclosure, where step S33 includes:
  • Step S331 determining an antenna with a corresponding maximum quality parameter as a reference antenna
  • the maximum quality parameter is 20, and the corresponding antenna number is 7, so the antenna 7 is used as the reference antenna.
  • Step S332 respectively calculating a difference between the reference antenna and the timing advance of each candidate downlink antenna
  • the difference calculated above is the absolute value of the difference.
  • the absolute value of the difference between the timing advance of each candidate downlink antenna and the timing advance of the reference antenna is as follows:
  • Step S333 the candidate downlink antenna whose difference is less than or equal to a second preset threshold is used as a downlink antenna.
  • the second preset threshold can be set according to actual needs.
  • the second preset threshold may be set to a CP (Cyclic Prefix) length value, that is, the second preset threshold may be set to 2192 Ts.
  • the final downlink antenna is 2, 3, and 5 6, 6, and 8.
  • the downlink antenna selection method of the distributed base station determines the quality parameter of the uplink signal received by each of the antennas by determining an antenna that currently receives the uplink signal, and determines the quality parameter according to the quality parameter.
  • the downlink antenna is selected from the antenna, and the downlink antenna is selected according to the quality parameter of the uplink signal, so that the adaptive selection of the downlink antenna is realized, and the flexible selection of the downlink antenna and the coordinated transmission of the downlink are realized, thereby improving the space freedom of the downlink transmission. Degree, which improves the quality and speed of information transmission.
  • Embodiments of the present invention provide a downlink antenna selection apparatus for a distributed base station.
  • the distributed base station has two forms. The first form is: a baseband processing center and a plurality of remote radio frequency modules; the second form is: a base station cooperative group, and in the base station cooperative group, one base station is responsible for the baseband. Central processing.
  • the downlink antenna selection device of the distributed base station according to the embodiment of the present invention is implemented by the distributed base station.
  • the downlink antenna selection device of the distributed base station provided by the embodiment of the present invention may be the foregoing baseband processing center, or the foregoing baseband processing base. Centrally processed base station.
  • FIG. 4 is a schematic diagram of functional modules of an embodiment of a downlink antenna selection apparatus for a distributed base station according to the present invention.
  • the downlink antenna selection device of the distributed base station includes:
  • the determining module 10 is configured to: determine an antenna that receives the uplink signal;
  • a distributed base station including a baseband processing center and a plurality of remote radio frequency modules are taken as an example for description.
  • the remote radio module can be a single-channel remote radio module or a multi-channel remote radio module, and each channel is equipped with one antenna.
  • all channels corresponding to all antennas in the distributed base station are in an open state.
  • the distributed base station has a total of 32 antennas
  • the 32 antennas are determined as the antennas that receive the uplink signal.
  • the calculating module 20 is configured to: calculate a quality parameter of the determined uplink signal received by each of the antennas;
  • the quality parameter may be a SINR (Signal to Interference plus Noise Ratio) parameter or an RSSI (Receive Signal Strength Indicator) parameter.
  • SINR Signal to Interference plus Noise Ratio
  • RSSI Receiveive Signal Strength Indicator
  • the reference point of the measurement is the antenna port of the base station, that is, the RSSI is all signals in the received Symbol.
  • the SINR is the ratio of the strength of the received wanted signal to the strength of the received interfering signal (noise and interference).
  • the quality parameter is taken as an SINR parameter as an example.
  • the SINR parameters of the uplink signals received by each antenna are as shown in Table 1 above.
  • the selecting module 30 is configured to: select a downlink antenna among the determined antennas according to the quality parameter.
  • FIG. 5 is a schematic diagram of a refinement function module of a module selected in a downlink antenna selection apparatus of a distributed base station according to an embodiment of the present disclosure, and the selection module 30 includes:
  • the determining unit 31 is configured to: determine an antenna whose quality parameter meets a preset condition as a candidate downlink antenna;
  • the candidate downlink antenna can be determined in the following manner:
  • the preset condition is that the quality parameter is greater than the first preset threshold, that is, the antenna corresponding to the quality parameter that is greater than the first preset threshold is determined as the candidate downlink antenna.
  • the antenna parameters corresponding to the quality parameters greater than 10 are 2, 3, 5, 6, 7, and 8, respectively, so antennas 2, 3, 5, 6, 7, and 8 can be used. Selected as the candidate downlink antenna.
  • the determining unit 31 includes:
  • the first determining subunit is configured to: determine an antenna corresponding to the preset number of quality parameters as a candidate downlink antenna;
  • the quality parameters corresponding to the candidate downlink antennas are all greater than or equal to the quality parameters of the antennas other than the candidate antennas.
  • the method of selecting a preset quantity of quality parameters may be set according to actual needs.
  • the calculated quality parameters may be arranged in ascending or descending order, and then a preset number of quality parameters are selected in the sorted quality parameter list. You can also use the bubble method to select a preset number of quality parameters.
  • the descending order of the calculated quality parameters is taken as an example for description.
  • the sorted quality parameter list is shown in Table 2 above.
  • a preset number of quality parameters are selected from high to low;
  • the selected antenna corresponding to the quality parameter is determined as a candidate downlink antenna.
  • the preset number may be six. Therefore, the antenna corresponding to the first six quality parameters in the sorted quality parameter list is selected as the candidate downlink antenna, that is, antennas 2, 3, 5, 6, 7, and 8 are selected as Candidate downlink antenna.
  • the calculating unit 32 is configured to: calculate a timing advance of the uplink signal received by each of the candidate downlink antennas;
  • uplink signals of different UEs arrive.
  • the eNodeB needs time alignment to ensure the orthogonality of the uplink signals between the UEs, which helps to eliminate interference in the cell.
  • the main purpose of the timing advance is to eliminate different transmission delays between UEs.
  • the timing advance of the uplink signal corresponding to the candidate downlink antenna is as shown in Table 3 above.
  • the selecting unit 33 is configured to: select a downlink antenna among the candidate downlink antennas according to the timing advance.
  • the manner of selecting the downlink antenna in the candidate downlink antenna according to the timing advance may be selected according to actual needs. For example, a time advance range may be preset, and the foregoing is within the time advance range.
  • the candidate downlink antenna corresponding to the timing advance is determined as the downlink antenna.
  • it can be implemented in the following manner: Referring to FIG. 6, FIG. 6 is a schematic diagram of a refinement function module of a selection unit of a downlink antenna selection apparatus of a distributed base station according to an embodiment of the present invention, where the selection unit 33 includes:
  • the second determining subunit 331 is configured to: determine an antenna with a corresponding maximum quality parameter as a reference antenna;
  • the maximum quality parameter is 20, and the corresponding antenna number is 7, so the antenna 7 is used as the reference antenna.
  • the calculating subunit 332 is configured to separately calculate a difference between the reference antenna and the timing advance of each candidate downlink antenna
  • the difference calculated above is the absolute value of the difference.
  • the absolute value of the difference between the timing advance of each candidate downlink antenna and the timing advance of the reference antenna is as shown in Table 4 above.
  • the selecting sub-unit 333 is configured to: use the candidate downlink antenna whose difference is less than or equal to a second preset threshold as a downlink antenna;
  • the second preset threshold can be set according to actual needs.
  • the second preset threshold may be set to a CP (Cyclic Prefix) length value, that is, the second preset threshold may be set to 2192 Ts.
  • the final downlink antenna is 2, 3, and 5 6, 6, and 8.
  • the downlink antenna selection apparatus of the distributed base station determines the quality parameter of the uplink signal received by each of the antennas by determining the antenna that currently receives the uplink signal, and determines the quality parameter according to the quality parameter.
  • the downlink antenna is selected from the antenna, and the downlink antenna is selected according to the quality parameter of the uplink signal, so that the adaptive selection of the downlink antenna is realized, and the flexible selection of the downlink antenna and the coordinated transmission of the downlink are realized, thereby improving the space freedom of the downlink transmission. Degree, which improves the quality and speed of information transmission.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the downlink antenna can be selected according to the quality parameter of the uplink signal, and the adaptive downlink antenna is selected, and the flexible selection of the downlink antenna and the coordinated transmission of the downlink are implemented, thereby improving the spatial freedom of the downlink transmission, thereby improving Information transmission quality and speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公布一种分布式基站的下行天线选择方法及装置,所述分布式基站的下行天线选择方法包括:确定当前接收到上行信号的天线;计算确定的每个所述天线接收到的上行信号的质量参数;根据每个所述质量参数在确定的所述天线中选取下行天线。

Description

分布式基站的下行天线选择方法及装置 技术领域
本申请涉及但不限于无线通信技术领域。
背景技术
随着LTE(Long Term Evolution,长期演进)和5G技术的发展,分布式基站得到越来越多的应用。分布式基站一般设有多根天线,在上行天线接收到信号时,根据预设的上行天线与下行天线之间的一一对应关系,确定与上行天线对应的下行天线,如果下行天线的选择不恰当,会造成信息传输质量较差、速率较低。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供一种分布式基站的下行天线选择方法及装置,旨在解决下行天线的选择不够恰当、进而造成信息传输质量较差、速率较低的技术问题。
分布式基站的下行天线选择方法包括:
确定当前接收到上行信号的天线;
计算确定的每个所述天线接收到的上行信号的质量参数;
根据所述质量参数在确定的所述天线中选取下行天线。
可选地,所述根据所述质量参数在确定的所述天线中选取下行天线的步骤包括:
将所述质量参数满足预设条件的天线确定为候选下行天线;
计算每个所述候选下行天线接收到的所述上行信号的时间提前量;
根据每个所述时间提前量在所述候选下行天线中选取下行天线。
可选地,所述预设条件为所述质量参数大于第一预设阈值。
可选地,所述将所述质量参数满足预设条件的天线确定为候选下行天线的步骤包括:
将预设数量的质量参数对应的天线确定为候选下行天线;
其中,所述候选下行天线对应的质量参数均大于或等于所述天线中除所述候选天线之外的其它天线对应的质量参数。
可选地,所述根据每个所述时间提前量在所述候选下行天线中选取下行天线的步骤包括:
将所对应的质量参数最大的天线确定为参考天线;
分别计算所述参考天线与每个候选下行天线的所述时间提前量之间的差值;
将所述差值小于或等于第二预设阈值的所述候选下行天线作为下行天线。
分布式基站的下行天线选择装置包括:
确定模块,设置为:确定当前接收到上行信号的天线;
计算模块,设置为:计算确定的每个所述天线接收到的上行信号的质量参数;
选取模块,设置为:根据所述质量参数在确定的所述天线中选取下行天线。
可选地,所述选取模块包括:
确定单元,设置为:将所述质量参数满足预设条件的天线确定为候选下行天线;
计算单元,设置为:计算每个所述候选下行天线接收到的所述上行信号的时间提前量;
选取单元,设置为:根据每个所述时间提前量在所述候选下行天线中选取下行天线。
可选地,所述预设条件为所述质量参数大于第一预设阈值。
可选地,所述确定单元包括:
第一确定子单元,设置为:将预设数量的质量参数对应的天线确定为候选下行天线;
其中,所述候选下行天线对应的质量参数均大于或等于所述天线中除所述候选天线之外的其它天线对应的质量参数。
可选地,所述选取单元包括:
第二确定子单元,设置为:将所对应的质量参数最大的天线确定为参考天线;
计算子单元,设置为:分别计算所述参考天线与每个候选下行天线的所述时间提前量之间的差值;
选取子单元,设置为:将所述差值小于或等于第二预设阈值的所述候选下行天线作为下行天线。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
本发明实施例提供的分布式基站的下行天线选择方法,通过确定当前接收到上行信号的天线,并计算确定的每个所述天线接收到的上行信号的质量参数,根据所述质量参数在确定的所述天线中选取下行天线,根据上行信号的质量参数选择下行天线,实现了自适应的选取下行天线,以及实现了对下行天线的灵活选择和下行的协作传输,提升了下行传输的空间自由度,进而提升了信息传输质量和速率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明分布式基站的下行天线选择方法实施例的流程示意图;
图2为本发明实施例分布式基站的下行天线选择方法中选取下行天线步骤的细化流程示意图;
图3为本发明实施例分布式基站的下行天线选择方法中在候选下行天线中选取下行天线步骤的细化流程示意图;
图4为本发明分布式基站的下行天线选择装置实施例的功能模块示意图;
图5为本发明实施例分布式基站的下行天线选择装置中选取模块的细化功能模块示意图;
图6为本发明实施例分布式基站的下行天线选择装置的选取单元的细化功能模块示意图。
本发明的实施方式
本发明实施例提供一种分布式基站的下行天线选择方法。分布式基站具有两种形式,第一种形式为:由基带处理中心和若干远端射频模块构成;第二种形式为:由基站协同群构成,在基站协同群中,有一个基站负责基带的中央处理。本发明实施例提供的分布式基站的下行天线选择方法基于上述分布式基站实施,例如,本发明实施例提供的分布式基站的下行天线选择方法可通过上述基带处理中心执行,或者通过上述负责基带的中央处理的基站执行。
参照图1,图1为本发明分布式基站的下行天线选择方法实施例的流程示意图,所述分布式基站的下行天线选择方法包括:
步骤S10,确定当前接收到上行信号的天线;
在本实施例中,以分布式基站包括基带处理中心和若干远端射频模块为例进行说明。远端射频模块可以为单通道远端射频模块或多通道远端射频模块,每一通道配备一个天线。可选地,分布式基站中的所有天线对应的通道均处于打开状态。在移动终端(例如手机)向分布式基站发送信号时,分布式基站通过相应的天线接收来自移动终端的上行信号,接收到上行信号的天线通道处于激活状态。由基带处理中心确定接收到上行信号的天线。
例如,假设分布式基站共设有32根天线,在移动终端向分布式基站发送信号时,上述32根天线均接收到了上行信号,则将上述32根天线确定为接收到上行信号的天线。
步骤S20,计算确定的每个所述天线接收到的上行信号的质量参数;
在本实施例中,质量参数可以为SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)参数或者为RSSI(Receive Signal Strength Indicator,接收宽带功率)参数。其中,RSSI为在接收机脉冲成型滤波器定义的带宽内的接收信号(可能会含噪声和干扰)功率,测量的参考点为基站的天线端口,即RSSI是在这个接收到Symbol内的所有信号功率的平均值。SINR为接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值。
在本实施例中以质量参数为SINR参数为例进行说明。
例如,上述确定的32根天线中,每个天线接收到的上行信号的SINR参数如下表所示:
表1
Figure PCTCN2015087244-appb-000001
Figure PCTCN2015087244-appb-000002
步骤S30,根据所述质量参数在确定的所述天线中选取下行天线。
参照图2,图2为本发明实施例分布式基站的下行天线选择方法中选取下行天线步骤的细化流程示意图,步骤S30包括:
步骤S31,将所述质量参数满足预设条件的天线确定为候选下行天线;
在本实施例中,可以采用以下方式确定候选下行天线:
方式一,所述预设条件为所述质量参数大于第一预设阈值,即将大于第一预设阈值的所述质量参数对应的天线确定为候选下行天线。
例如,预设阈值可以设置为10,则大于10的质量参数对应的天线编号分别为2、3、5、6、7和8,因此,可将天线2、3、5、6、7和8选取为候选下行天线。
方式二,步骤S31包括:
将预设数量的质量参数对应的天线确定为候选下行天线;
其中,所述候选下行天线对应的质量参数均大于或等于所述天线中除所述候选天线之外的其它天线对应的质量参数。
选择预设数量的质量参数的方式可以根据实际需要进行设置,例如,可以先将计算的质量参数按照升序或降序的方式进行排列,然后在排序后的质量参数列表中选取预设数量的质量参数,还可以采取冒泡法选取预设数量的质量参数。本实施例以先对计算的质量参数进行降序排列为例进行说明。
将计算的所述质量参数按照降序进行排序;
例如,排序后的质量参数列表如下:
表2
Figure PCTCN2015087244-appb-000003
Figure PCTCN2015087244-appb-000004
在排序后的质量参数中,从高到低选取预设数量的质量参数;
将选取的所述质量参数对应的天线确定为候选下行天线。
例如,预设数量可以为6个,因此,选择上述排序后的质量参数列表中的前6个质量参数对应的天线作为候选下行天线,即选取天线2、3、5、6、7和8作为候选下行天线。
步骤S32,计算每个所述候选下行天线接收到的所述上行信号的时间提前量;
在LTE系统中,不同UE(User Equipment,用户设备)的上行信号到达eNodeB时要时间对齐,以保证UE之间上行信号的正交性,有助于消除小区 内的干扰,时间提前量的主要目的是为了消除UE之间不同的传输时延。
上述候选下行天线对应的上行信号的时间提前量如下表所示:
表3
天线编号 时间提前量
2 96Ts
3 16Ts
5 32Ts
6 48Ts
7 48Ts
8 32Ts
步骤S33,根据每个所述时间提前量在所述候选下行天线中选取下行天线。
在本实施例中,根据时间提前量在候选下行天线中选取下行天线的方式可以根据实际需要进行选择,例如,可以预先设置一时间提前量范围,将位于所述时间提前量范围内的所述时间提前量对应的候选下行天线确定为下行天线。此外,还可以采用以下方式实现:参照图3,图3为本发明实施例分布式基站的下行天线选择方法中在候选下行天线中选取下行天线步骤的细化流程示意图,步骤S33包括:
步骤S331,将所对应的质量参数最大的天线确定为参考天线;
在本实施例中,根据表1,最大的质量参数为20,其对应的天线编号为7,因此,将天线7作为参考天线。
步骤S332,分别计算所述参考天线与每个候选下行天线的所述时间提前量之间的差值;
可选地,上述计算的差值为差值绝对值。在本实施例中,每个候选下行天线的时间提前量与参考天线的所述时间提前量之间的差值的绝对值如下表所示:
表4
天线编号 时间提前量 对应的差值
    绝对值
2 96Ts 48Ts
3 16Ts 34Ts
5 32Ts 16Ts
6 48Ts 0Ts
7 48Ts 0Ts
8 32Ts 16Ts
步骤S333,将所述差值小于或等于第二预设阈值的所述候选下行天线作为下行天线;
第二预设阈值可以根据实际需要进行设置。可选地,第二预设阈值可以设置为CP(Cyclic Prefix,循环前缀)长度值,即第二预设阈值可以设置为2192Ts。
在本实施例中,由于所有候选下行天线对应的差值绝对值均小于上述第二预设阈值,因此上述所有候选下行天线均可作为下行天线,即最终确定的下行天线为2、3、5、6、7和8。
本发明实施例提供的分布式基站的下行天线选择方法,通过确定当前接收到上行信号的天线,并计算确定的每个所述天线接收到的上行信号的质量参数,根据所述质量参数在确定的所述天线中选取下行天线,根据上行信号的质量参数选择下行天线,实现了自适应的选取下行天线,以及实现了对下行天线的灵活选择和下行的协作传输,提升了下行传输的空间自由度,进而提升了信息传输质量和速率。
本发明实施例提供一种分布式基站的下行天线选择装置。分布式基站具有两种形式,第一种形式为:由基带处理中心和若干远端射频模块构成;第二种形式为:由基站协同群构成,在基站协同群中,有一个基站负责基带的中央处理。本发明实施例提供的分布式基站的下行天线选择装置基于上述分布式基站实施,例如,本发明实施例提供的分布式基站的下行天线选择装置可以为上述基带处理中心,或者为上述负责基带的中央处理的基站。
参照图4,图4为本发明分布式基站的下行天线选择装置实施例的功能模块示意图。所述分布式基站的下行天线选择装置包括:
确定模块10,设置为:确定接收到上行信号的天线;
在本实施例中,以分布式基站包括基带处理中心和若干远端射频模块为例进行说明。远端射频模块可以为单通道远端射频模块或多通道远端射频模块,每一通道配备一个天线。可选地,分布式基站中的所有天线对应的通道均处于打开状态。在移动终端(例如手机)向分布式基站发送信号时,分布式基站通过相应的天线接收来自移动终端的上行信号,接收到上行信号的天线通道处于激活状态。由确定模块10确定接收到上行信号的天线。
例如,假设分布式基站共设有32根天线,在移动终端向分布式基站发送信号时,上述32根天线均接收到了上行信号,则将上述32根天线确定为接收到上行信号的天线。
计算模块20,设置为:计算确定的每个所述天线接收到的上行信号的质量参数;
在本实施例中,质量参数可以为SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)参数或者为RSSI(Receive Signal Strength Indicator,接收宽带功率)参数。其中,RSSI为在接收机脉冲成型滤波器定义的带宽内的接收信号(可能会含噪声和干扰)功率,测量的参考点为基站的天线端口,即RSSI是在这个接收到Symbol内的所有信号功率的平均值。SINR为接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值。
在本实施例中以质量参数为SINR参数为例进行说明。
例如,上述确定的32根天线中,每个天线接收到的上行信号的SINR参数上述表1所示。
选取模块30,设置为:根据所述质量参数在确定的所述天线中选取下行天线。
参照图5,图5为本发明实施例分布式基站的下行天线选择装置中选取模块的细化功能模块示意图,选取模块30包括:
确定单元31,设置为:将所述质量参数满足预设条件的天线确定为候选下行天线;
在本实施例中,可以采用以下方式确定候选下行天线:
方式一,所述预设条件为所述质量参数大于第一预设阈值,即将大于第一预设阈值的所述质量参数对应的天线确定为候选下行天线。
例如,预设阈值可以设置为10,则大于10的质量参数对应的天线编号分别为2、3、5、6、7和8,因此,可将天线2、3、5、6、7和8选取为候选下行天线。
方式二,确定单元31包括:
第一确定子单元,设置为:将预设数量的质量参数对应的天线确定为候选下行天线;
其中,所述候选下行天线对应的质量参数均大于或等于所述天线中除所述候选天线之外的其它天线对应的质量参数。
选择预设数量的质量参数的方式可以根据实际需要进行设置,例如,可以先将计算的质量参数按照升序或降序的方式进行排列,然后在排序后的质量参数列表中选取预设数量的质量参数,还可以采取冒泡法选取预设数量的质量参数。本实施例以先对计算的质量参数进行降序排列为例进行说明。
将计算的所述质量参数按照降序进行排序;
例如,排序后的质量参数列表如上表2所示。
在排序后的质量参数中,从高到低选取预设数量的质量参数;
将选取的所述质量参数对应的天线确定为候选下行天线。
例如,预设数量可以为6个,因此,选择上述排序后的质量参数列表中的前6个质量参数对应的天线作为候选下行天线,即选取天线2、3、5、6、7和8作为候选下行天线。
计算单元32,设置为:计算每个所述候选下行天线接收到的所述上行信号的时间提前量;
在LTE系统中,不同UE(User Equipment,用户设备)的上行信号到达 eNodeB时要时间对齐,以保证UE之间上行信号的正交性,有助于消除小区内的干扰,时间提前量的主要目的是为了消除UE之间不同的传输时延。
上述候选下行天线对应的上行信号的时间提前量如上表3所示。
选取单元33,设置为:根据所述时间提前量在所述候选下行天线中选取下行天线。
在本实施例中,根据时间提前量在候选下行天线中选取下行天线的方式可以根据实际需要进行选择,例如,可以预先设置一时间提前量范围,将位于所述时间提前量范围内的所述时间提前量对应的候选下行天线确定为下行天线。此外,还可以采用以下方式实现:参照图6,图6为本发明实施例分布式基站的下行天线选择装置的选取单元的细化功能模块示意图,所述选取单元33包括:
第二确定子单元331,设置为:将所对应的质量参数最大的天线确定为参考天线;
在本实施例中,根据表1,最大的质量参数为20,其对应的天线编号为7,因此,将天线7作为参考天线。
计算子单元332,设置为:分别计算所述参考天线与每个候选下行天线的所述时间提前量之间的差值;
可选地,上述计算的差值为差值绝对值。在本实施例中,每个候选下行天线的时间提前量与参考天线的所述时间提前量之间的差值的绝对值如上表4所示。
选取子单元333,设置为:将所述差值小于或等于第二预设阈值的所述候选下行天线作为下行天线;
第二预设阈值可以根据实际需要进行设置。可选地,第二预设阈值可以设置为CP(Cyclic Prefix,循环前缀)长度值,即第二预设阈值可以设置为2192Ts。
在本实施例中,由于所有候选下行天线对应的差值绝对值均小于上述第二预设阈值,因此上述所有候选下行天线均可作为下行天线,即最终确定的下行天线为2、3、5、6、7和8。
本发明实施例提供的分布式基站的下行天线选择装置,通过确定当前接收到上行信号的天线,并计算确定的每个所述天线接收到的上行信号的质量参数,根据所述质量参数在确定的所述天线中选取下行天线,根据上行信号的质量参数选择下行天线,实现了自适应的选取下行天线,以及实现了对下行天线的灵活选择和下行的协作传输,提升了下行传输的空间自由度,进而提升了信息传输质量和速率。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例能够根据上行信号的质量参数选择下行天线,实现了自适应的选取下行天线,以及实现了对下行天线的灵活选择和下行的协作传输,提升了下行传输的空间自由度,进而提升了信息传输质量和速率。

Claims (11)

  1. 一种分布式基站的下行天线选择方法,包括:
    确定当前接收到上行信号的天线;
    计算确定的每个所述天线接收到的上行信号的质量参数;
    根据所述质量参数在确定的所述天线中选取下行天线。
  2. 如权利要求1所述的分布式基站的下行天线选择方法,其中,所述根据所述质量参数在确定的所述天线中选取下行天线的步骤包括:
    将所述质量参数满足预设条件的天线确定为候选下行天线;
    计算每个所述候选下行天线接收到的所述上行信号的时间提前量;
    根据每个所述时间提前量在所述候选下行天线中选取下行天线。
  3. 如权利要求2所述的分布式基站的下行天线选择方法,其中,所述预设条件为所述质量参数大于第一预设阈值。
  4. 如权利要求2所述的分布式基站的下行天线选择方法,其中,所述将所述质量参数满足预设条件的天线确定为候选下行天线的步骤包括:
    将预设数量的质量参数对应的天线确定为候选下行天线;
    其中,所述候选下行天线对应的质量参数均大于或等于所述天线中除所述候选天线之外的其它天线对应的质量参数。
  5. 如权利要求3或4所述的分布式基站的下行天线选择方法,其中,所述根据每个所述时间提前量在所述候选下行天线中选取下行天线的步骤包括:
    将所对应的质量参数最大的天线确定为参考天线;
    分别计算所述参考天线与每个候选下行天线的所述时间提前量之间的差值;
    将所述差值小于或等于第二预设阈值的所述候选下行天线作为下行天线。
  6. 一种分布式基站的下行天线选择装置,包括:
    确定模块,设置为:确定当前接收到上行信号的天线;
    计算模块,设置为:计算确定的每个所述天线接收到的上行信号的质量参数;
    选取模块,设置为:根据所述质量参数在确定的所述天线中选取下行天线。
  7. 如权利要求6所述的分布式基站的下行天线选择装置,其中,所述选取模块包括:
    确定单元,设置为:将所述质量参数满足预设条件的天线确定为候选下行天线;
    计算单元,设置为:计算每个所述候选下行天线接收到的所述上行信号的时间提前量;
    选取单元,设置为:根据每个所述时间提前量在所述候选下行天线中选取下行天线。
  8. 如权利要求7所述的分布式基站的下行天线选择装置,其中,所述预设条件为所述质量参数大于第一预设阈值。
  9. 如权利要求7所述的分布式基站的下行天线选择装置,其中,所述确定单元包括:
    第一确定子单元,设置为:将预设数量的质量参数对应的天线确定为候选下行天线;
    其中,所述候选下行天线对应的质量参数均大于或等于所述天线中除所述候选天线之外的其它天线对应的质量参数。
  10. 如权利要求8或9所述的分布式基站的下行天线选择装置,其中,所述选取单元包括:
    第二确定子单元,设置为:将所对应的质量参数最大的天线确定为参考天线;
    计算子单元,设置为:分别计算所述参考天线与每个候选下行天线的所述时间提前量之间的差值;
    选取子单元,设置为:将所述差值小于或等于第二预设阈值的所述候选下行天线作为下行天线。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-5任一项的方法。
PCT/CN2015/087244 2015-04-30 2015-08-17 分布式基站的下行天线选择方法及装置 WO2016173152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510218905.0 2015-04-30
CN201510218905.0A CN106209180B (zh) 2015-04-30 2015-04-30 分布式基站的下行天线选择方法及装置

Publications (1)

Publication Number Publication Date
WO2016173152A1 true WO2016173152A1 (zh) 2016-11-03

Family

ID=57198046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087244 WO2016173152A1 (zh) 2015-04-30 2015-08-17 分布式基站的下行天线选择方法及装置

Country Status (2)

Country Link
CN (1) CN106209180B (zh)
WO (1) WO2016173152A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685508B (zh) * 2017-02-10 2020-06-23 京信通信系统(中国)有限公司 一种数据传输方法及装置
US10284292B2 (en) * 2017-05-30 2019-05-07 Andrew Wireless Systems Gmbh Systems and methods for communication link redundancy for distributed antenna systems
WO2020226844A1 (en) 2019-05-06 2020-11-12 Commscope Technologies Llc Transport cable redundancy in a distributed antenna system using digital transport
CN110278015B (zh) * 2019-05-16 2021-02-09 华为技术有限公司 一种天线选择方法、装置及终端
CN112910525B (zh) * 2019-12-03 2022-06-21 深圳市万普拉斯科技有限公司 移动终端的天线切换方法、装置和移动终端
CN113260074B (zh) * 2021-07-15 2022-04-22 成都爱瑞无线科技有限公司 上行数据处理方法、系统、装置、设备及存储介质
CN114578144B (zh) * 2022-05-06 2022-07-19 成都瑞迪威科技有限公司 一种高效免对位的天线通道分布检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080181171A1 (en) * 2007-01-25 2008-07-31 Adc Telecommunications, Inc. Distributed remote base station system
CN101388701A (zh) * 2007-09-10 2009-03-18 大唐移动通信设备有限公司 用户数据接收/发送方法、装置及分布式智能天线系统
CN101710839A (zh) * 2009-08-07 2010-05-19 无锡爱达威通信科技有限公司 无线ofdm/tdd系统的多天线选择性发送分集方法
CN103119855A (zh) * 2009-12-28 2013-05-22 高通股份有限公司 用于无线装置的虚拟天线阵列

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050053099A1 (en) * 2003-09-05 2005-03-10 Spear Stephen L. Timing advance determinations in wireless communications devices and methods
CN101291475A (zh) * 2007-04-18 2008-10-22 展讯通信(上海)有限公司 用于时分双工无线通信系统的移动台及其天线选择方法
CN102469497B (zh) * 2010-11-11 2014-08-13 中兴通讯股份有限公司 用于选取上下行最佳cp的方法及基站
CN102655679B (zh) * 2011-03-02 2016-06-15 鼎桥通信技术有限公司 下行发送通道选择方法、基站及室内分布系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080181171A1 (en) * 2007-01-25 2008-07-31 Adc Telecommunications, Inc. Distributed remote base station system
CN101388701A (zh) * 2007-09-10 2009-03-18 大唐移动通信设备有限公司 用户数据接收/发送方法、装置及分布式智能天线系统
CN101710839A (zh) * 2009-08-07 2010-05-19 无锡爱达威通信科技有限公司 无线ofdm/tdd系统的多天线选择性发送分集方法
CN103119855A (zh) * 2009-12-28 2013-05-22 高通股份有限公司 用于无线装置的虚拟天线阵列

Also Published As

Publication number Publication date
CN106209180B (zh) 2020-06-02
CN106209180A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2016173152A1 (zh) 分布式基站的下行天线选择方法及装置
US9907031B2 (en) Base station, mobile station, wireless communications system, and wireless communications method
US8447327B2 (en) Method and apparatus for a buffering scheme for OTDOA based location positioning
US9786985B2 (en) Apparatus, system and method of beamforming training
CN109819511B (zh) 一种数据传输的方法及相关装置
US11109356B2 (en) Apparatus, system and method of trigger-based ranging measurement
WO2012150806A3 (ko) 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 기지국
US20160234640A1 (en) Locationing via staged antenna utilization
KR20180082438A (ko) 업링크 채널 정보
CN107005939B (zh) 经区分优先次序的rts-cts资源
JP2019524023A (ja) 参照信号伝送方法、並びに関連するデバイスおよびシステム
WO2013106382A1 (en) Device, system and method of communicating during a contention based access period
WO2020155184A1 (zh) 干扰或信号接收功率测量的方法和设备
EP2919031A2 (en) Locationing via staged antenna utilization
CN110351032B (zh) 资源配置方法及装置
US20160309357A1 (en) Spatial Contention in Dense Wireless Network
WO2019148455A1 (en) User equipment and method of wireless communication of same
CN104125631A (zh) 一种接收通道增益自动控制方法和设备
WO2017114126A1 (zh) 一种联合数据传输方法及设备
US9419829B2 (en) Apparatus, system and method of direct current (DC) estimation of a wireless communication packet
CN116158132A (zh) 扩展非地面网络的时间间隙范围
CN105765891A (zh) 用于数据传输的方法和基站
CN106560012B (zh) 一种通信方法及装置
CN110830196B (zh) 一种时长配置方法、装置及设备
US20190190756A1 (en) Distributed Base Station with Frequency Domain Interface on Which Signal Subspace Varies According to Frequency Bin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890528

Country of ref document: EP

Kind code of ref document: A1