WO2024001161A1 - 一种基于功率检测计的自检测电路 - Google Patents

一种基于功率检测计的自检测电路 Download PDF

Info

Publication number
WO2024001161A1
WO2024001161A1 PCT/CN2023/072110 CN2023072110W WO2024001161A1 WO 2024001161 A1 WO2024001161 A1 WO 2024001161A1 CN 2023072110 W CN2023072110 W CN 2023072110W WO 2024001161 A1 WO2024001161 A1 WO 2024001161A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
amplitude
tubes
signal
phased array
Prior art date
Application number
PCT/CN2023/072110
Other languages
English (en)
French (fr)
Inventor
余益明
康凯
赵晨曦
刘辉华
吴韵秋
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Publication of WO2024001161A1 publication Critical patent/WO2024001161A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents

Definitions

  • the invention belongs to the field of advanced semiconductor technology, and specifically relates to a self-detection circuit based on a power detector.
  • phase control and amplitude control of the phased array system are greatly affected.
  • researchers have also conducted a lot of research on phased array systems for high and low temperature application scenarios, the phase, amplitude, etc.
  • the deterioration of accuracy of key indicators cannot always be improved well.
  • the accuracy of phase and amplitude control is not only limited by the working environment, but also by the inconsistent performance between channels caused by uneven heat dissipation under large-scale array integration.
  • the current detection method mainly couples the signal of the phased array system to the self-detection link, and converts the RF signal into a DC signal by mixing to zero intermediate frequency.
  • the amplitude of the two orthogonal I/Q signals is obtained, so the orthogonality requirements for the orthogonal signals in the link are relatively high. If the orthogonality of the link orthogonal signals is not enough, it will directly lead to errors in the detected phase information. Too large; the self-detection link is highly complex and uses modules such as an orthogonal signal generator, mixer, and drive amplifier, resulting in a larger chip area.
  • the existing technology self-detection circuit is highly complex and has a large chip area. Shortcomings.
  • the purpose of the present invention is to provide a self-detection circuit based on a power detector, which solves the problems of high complexity and large chip area of the self-detection circuit.
  • a self-detection circuit based on a power detector including: power detector, coupler, phase control Array transmitting channel 1 and phased array transmitting channel 2;
  • phase detection and amplitude detection are divided into two working modes: phase detection and amplitude detection:
  • the four tubes are biased at Vbias_phase.
  • the differential signals carrying phase information are V+_phase and V-_phase. After tubes Q1 and Q2, their voltage signals are converted.
  • the differential signals V+_amp and V-_amp of the amplitude information are converted into current signals through tubes Q3 and Q4 and carried by currents i 1amp and i 2amp , while V+_phase and V-_phase have no signals; tubes Q5 and Q6 only have DC bias
  • the current generated by the bias is i dc .
  • the sum of i 1amp and i 2amp is I 1 .
  • the high-frequency signal is filtered by cap2.
  • the DC current i dc corresponding to tubes Q5 and Q6 adds up to I 2 , the currents I 1 and I 2 are converted into DC voltage through the resistor R 2 , and the DC voltage carrying the amplitude information is obtained by subtracting the two.
  • the variable gain amplifier controls the amplitude of the radio frequency signal by changing the gain, and the phase shifter changes the phase and power of the radio frequency signal within a 360° range.
  • the amplifier provides gain and amplifies the power of the radio frequency signal to increase the transmit power of the antenna; the amplitude and phase information of the phased array transmitting channel 1 and the phased array transmitting channel 2 are extracted to the self-detection circuit through the coupler, and the power detector detects The amplitude and phase information are detected and the detection voltage is output.
  • the signal of the phased array transmitting channel 1 passing through the coupler is The signal of phased array transmitting channel 2 passing through the coupler is The two signals are differentiated through the transformer and become a differential signal.
  • the differential signals are:
  • the differential signal enters the power detector, and the detection amplitude is:
  • the differential signal carrying phase information When detecting the phase, the differential signal carrying phase information enters the tubes Q1 and Q2 and is converted into currents i 1ph and i 2ph .
  • Q7 and Q8 work at the same DC operating point as Q1 and Q2, so Q1 and Q2 output
  • the difference between the current I 1 and the output current I 2 of Q7 and Q8 can be obtained:
  • the current ⁇ I containing the phase information is obtained, and finally becomes the voltage information V out through the load resistor R2; finally, a function corresponding to the phase and the output voltage difference is obtained, that is, formula (14); that is, and linearly related.
  • the signal of the phased array transmission channel 1 passing through the coupler is The signal of phased array transmitting channel 2 passing through the coupler is The two signals are differentiated through the transformer and become a differential signal.
  • the differential signal carrying the amplitude information enters the tubes Q3 and Q4 and is converted into electrical i 1amp and i 2amp flow.
  • Q5 and Q6 work at the same DC operating point as Q3 and Q4. Therefore, the difference between the output current I 1 of Q3 and Q4 and the output current I 2 of Q5 and Q6 can be obtained by only containing
  • the current ⁇ I of the amplitude information finally becomes the voltage information V out through the load resistor R2; a function corresponding to the amplitude and the output voltage difference is obtained, which is formula (25);
  • the circuit of the present invention converts phase information into amplitude information using the sum-difference product method, and then detects the amplitude-phase information of the phased array system through a power detector.
  • This invention is based on advanced semiconductor technology, by converting phase information into amplitude information, and then using a power detection circuit to detect the amplitude and phase information of the phased array system; the invention uses the phase information between channels of the phased array system to convert into amplitude Information, phase detection is achieved through a power detector. Therefore, the circuit complexity is very low, the circuit structure is simple, and it will occupy a smaller chip area.
  • Figure 1 shows the self-detection architecture of the present invention for phased array amplitude and phase information
  • Figure 2 is a top view of the 3D model of the coupler of the present invention.
  • Figure 3 is a perspective view of the 3D model of the coupler of the present invention.
  • Figure 4 shows the structure of the power detector of the present invention
  • Figure 5 is and relation chart
  • Figure 6 is a graph showing the relationship between 10log(V out ) and P 1 .
  • a self-detection circuit based on a power detector includes: power detector, coupler, phased array transmitting channel 1 and phased array transmitting channel 2; the power detection score is divided into phase detection and amplitude detection.
  • tubes Q1 and Q2 and tubes Q7 and Q8 work at the same DC point, the four tubes are biased at Vbias_phase, and the differential signals carrying phase information are V+_phase and V-_phase, passing through tube Q1 , the voltage signal of Q2 is converted into a current signal carried by i 1ph and i 2ph , while V+_amp and V-_amp have no signal at this time; at the same time, under the same bias, the corresponding DC current of Q7 and Q8 is i dc , at Node A, i 1ph and i 2ph are added to I 1 and the high frequency signal is filtered through cap2. The current signal is converted into a voltage signal through resistor R2. Subtracting the voltages of node A and node B is obtained representing the phase information. DC voltage.
  • the differential signals V+_amp and V-_amp of the amplitude information are converted into current signals through tubes Q3 and Q4 and carried by currents i 1amp and i 2amp , while V+_phase and V-_phase have no signals; tubes Q5 and Q6 only have DC bias
  • the current generated by the bias is i dc .
  • the sum of i 1amp and i 2amp is I 1 .
  • the high-frequency signal is filtered by cap2.
  • the DC current i dc corresponding to tubes Q5 and Q6 adds up to I 2 , the currents I 1 and I 2 are converted into DC voltage through the resistor R 2 , and the DC voltage carrying the amplitude information is obtained by subtracting the two. See (1)-(27) for the specific formula derivation.
  • the entire large plane is the ground plane, the dark part is the m7 layer, and the rest is the m9 layer.
  • the specific model is shown on the back of the pad in Figure 3.
  • the signal of the phased array system passes through the power amplifier, is transmitted to the Spad, and is coupled to the self-detection circuit through the capacitor.
  • the variable gain amplifier controls the RF signal amplitude by changing the gain
  • the phase shifter changes the phase of the RF signal within a 360° range
  • the power amplifier Provide gain and amplify RF signal power to improve antenna transmitting power.
  • the amplitude and phase information of channel 1 and channel 2 are extracted to the self-detection circuit through the coupler, and then the power detector detects the amplitude and phase information and outputs the detection voltage.
  • the power detector is mainly composed of 9 NMOS tubes Q1-Q9, and has two working states: phase detection and amplitude detection.
  • phase detection the bias voltage of tubes Q1, Q2, Q7, and Q8 is 400mV, and the tubes work in the saturation zone.
  • the capacitor cap1 is an isolation capacitor with a value of 1pF
  • the capacitor cap2 is a filter capacitor with a value of 968fF
  • the resistor R1 5k ⁇
  • the resistor R2 is a load resistor with a value of 1k ⁇ .
  • Phased array transmit channel 1 is coupled
  • the signal of the device is
  • the signal of phased array transmitting channel 2 passing through the coupler is, the two signals are differentiated by the transformer and become a differential signal
  • the differential signals are:
  • the differential signals carrying phase information enter the tubes Q1 and Q2 and are converted into currents i 1ph and i 2ph .
  • Q7 and Q8 work at the same DC operating point as Q1 and Q2, so the outputs of Q1 and Q2 The difference between the current I 1 and the output current I 2 of Q7 and Q8 can be
  • the differential signals carrying the amplitude information enter the tubes Q3 and Q4 and are converted into currents i 1amp and i 2amp .
  • Q5 and Q6 work at the same DC operating point as Q3 and Q4, so Q3 and Q4 output
  • the difference between the current I 1 and the output current I 2 of Q5 and Q6 can obtain the current ⁇ I containing only the amplitude information, and finally it becomes the voltage information V out through the load resistor R2.
  • a function corresponding to the amplitude and the output voltage difference is obtained, namely formula (25).
  • the channel 2 amplitude control unit is artificially configured to the minimum gain state.
  • the signal of channel 2 coupled to the power detector through the coupler is very small compared to the signal of channel 1 coupled to the power detector. , so A 2 is ignored, which is obtained from formula (25):
  • the phased array system In order to ensure that the phased array system can be used normally in complex electromagnetic-thermal environments, the phased array system needs to be able to resist PVT.
  • the performance of the amplitude and phase control module has a crucial impact on the phased array's core indicators such as beam pointing, beam scanning, and side lobe suppression.
  • the precision and accuracy of phase and amplitude control often deteriorate more seriously.
  • the current mainstream research on this problem is to design amplitude and phase control circuits that are less affected by PVT to minimize the impact of PVT on the phased array system, or to introduce compensation circuits to compensate for the amplitude and phase control accuracy caused by different working environments. Worsening problem.
  • this method cannot effectively avoid the impact of PVT changes on the amplitude and phase control of the phased array system.
  • a detection link for the amplitude and phase of the phased array system is proposed, which is used to quickly and conveniently detect the amplitude and phase performance of the phased array system after the amplitude and phase performance of the phased array system has deteriorated, thereby providing a better solution for the phased array system.
  • the self-calibration of the control array system lays the foundation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种基于功率检测计的自检测电路,包括:功率检测计、耦合器、相控阵发射通道1与相控阵发射通道2,功率检测计分为相位检测和幅度检测两种工作模式。解决了自检测电路复杂度高、芯片面积较大的问题。

Description

一种基于功率检测计的自检测电路 技术领域
本发明属于先进半导体工艺领域,具体涉及一种基于功率检测计的自检测电路。
背景技术
随着相控阵系统应用场景多样化,相控阵系统在极端环境下的应用需求也相应变高。极高温与极低温的工作环境下,相控阵系统的相位控制与幅度控制受到较大影响,尽管针对高低温的应用场景,研究人员也对相控阵系统进行大量研究,但是相位、幅度等关键指标的精度恶化始终无法得到很好的改善。相位、幅度控制精度不仅受限于工作环境,还受限于大规模阵列集成下的散热不均匀导致的通道间性能不一致。解决相控阵系统中相位控制模块、幅度控制模块精度恶化的办法之一就是校正,而校正的前提则是能够准确地对相控阵系统的幅相信息进行检测。因此,针对这类问题的研究在近年来已成为研究热点。
目前已有的检测方式主要是通过将相控阵系统的信号耦合到自检测链路,通过混频到零中频使射频信号变为直流信号。目前通过正交I/Q两路信号幅度求得,所以对链路中正交信号的正交性要求较高,如果链路正交信号正交性不够,会直接导致检测到的相位信息误差过大;自检测链路复杂度较高,采用了正交信号发生器、混频器以及驱动放大器等模块造成其芯片面积较大,现有技术自检测电路复杂度高、具有芯片面积较大的缺点。
发明内容
本发明的目的是提供一种基于功率检测计的自检测电路,解决了自检测电路复杂度高、芯片面积较大的问题。
本发明采用以下技术方案:
一种基于功率检测计的自检测电路,包括:功率检测计、耦合器、相控 阵发射通道1和相控阵发射通道2;
其中,功率检测计分为相位检测和幅度检测两种工作模式:
当工作模式为相位检测模式时,管子Q3、Q4、Q5、Q6通过偏置Vbias_amp=0V,处于截止状态,管子Q1、Q2、Q7、Q8和Q9通过偏置Vbias_phase=400mV处于正常工作状态;此时,管子Q1、Q2和管子Q7、Q8工作在同一直流点,四个管子都偏置在Vbias_phase,携带相位信息的差分信号为V+_phase和V-_phase,经过管子Q1、Q2其电压信号转换为电流信号由i1ph和i2ph携带,而V+_amp和V-_amp此时无信号;同时,Q7、Q8在相同偏置下,对应的直流电流为idc,在节点A,i1ph和i2ph相加为I1并通过cap2滤除高频信号,经过电阻R2由电流信号转换为电压信号,将节点A与节点B的电压相减就得到了代表相位信息的直流电压;
当工作模式为幅度检测时,管子Q1、Q2、Q7、Q8偏置为Vbias_phase=0V,管子不工作,管子Q3、Q4、Q5、Q6偏置在Vbias_amp=400mV,管子正常工作;此时,携带幅度信息的差分信号V+_amp和V-_amp,经过管子Q3、Q4转换为电流信号由电流i1amp和i2amp携带,而V+_phase和V-_phase无信号;管子Q5、Q6仅有直流偏置,偏置产生的电流为idc,在节点A,i1amp和i2amp相加为I1,其中高频信号被cap2滤除,管子Q5、Q6对应的直流电流idc相加为I2,电流I1、I2经过电阻R2转换为直流电压,二者相减即得到携带幅度信息的直流电压。
优选地,相控阵发射通道1与相控阵发射通道2中,可变增益放大器通过改变增益实现对射频信号幅度进行控制,移相器则是在360°范围内改变射频信号的相位,功率放大器则是提供增益且对射频信号功率进行放大,提高天线的发射功率;相控阵发射通道1与相控阵发射通道2的幅相信息,通过耦合器提取到自检测电路,功率检测计对幅相信息进行检测,输出检测电压。
优选地,功率检测计工作模式为相位检测模式时,相控阵发射通道1经过耦合器的信号为相控阵发射通道2经过耦合器的信号为两个信号经过变压器做差并变为差分信号,
差分信号分别为:

差分信号进入功率检测计,检测幅度:
在对相位进行检测时,携带相位信息的差分信号进入管子Q1、Q2转换为电流i1ph、i2ph,同时Q7、Q8与Q1、Q2工作在相同的直流工作点,因此Q1、Q2这一路输出电流I1与Q7、Q8这一路输出电流I2做差就能得出:

得到包含相位信息的电流ΔI,最后通过负载电阻R2就变为电压信息Vout;最后就得到了一个相位与输出电压差对应的函数即公式(14);即成线性相关。
优选地,功率检测计对幅度进行检测时,相控阵发射通道1经过耦合器的信号为相控阵发射通道2经过耦合器的信号为两个信号经过变压器做差并变为差分信号,
对幅度进行检测时,携带幅度信息的差分信号进入管子Q3、Q4转换为电 流i1amp、i2amp,同时Q5、Q6与Q3、Q4工作在相同的直流工作点,因此Q3、Q4这一路输出电流I1与Q5、Q6这一路输出电流I2做差就能得到只包含幅度信息的电流ΔI,最后通过负载电阻R2就变为电压信息Vout;得到了一个幅度与输出电压差对应的函数即公式(25);
在检测幅度时,将相控阵发射通道2幅度控制单元配置到最小增益状态,此时相控阵发射通道2经耦合器耦合到功率检测计的信号相比相控阵发射通道1耦合到功率检测计的信号非常小,因此将A2忽略不计,即由公式(25)得到:
然后将电压幅度A1转换为功率P1/dBm得:
P1=10log(Vout)-10log(KR2)       (27)
由公式(27)可见,功率P1与10log(Vout)成正比。
本发明的有益效果是:本发明电路利用和差化积的方式将相为信息转化为幅度信息,然后通过功率检测计检测相控阵系统的幅相信息。本发明基于先进半导体工艺,通过将相位信息转换为幅度信息,然后利用功率检测电路来实现对相控阵系统幅相信息的检测;本发明利用将相控阵系统通道间的相位信息转换为幅度信息,通过功率检测计实现对相位的检测。因此,该电路复杂度很低,电路架构简单,会占用更小的芯片面积。
附图说明
图1为本发明针对相控阵幅相信息的自检测架构;
图2为本发明耦合器3D模型俯视图;
图3为本发明耦合器3D模型斜视图;
图4为本发明功率检测计结构;
图5为关系图;
图6为10log(Vout)与P1关系图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在图1中,一种基于功率检测计的自检测电路,包括:功率检测计、耦合器、相控阵发射通道1和相控阵发射通道2;功率检测计分为相位检测和幅度检测两种工作模式:
如图4所示,当工作模式为相位检测模式时,管子Q3、Q4、Q5、Q6通过偏置Vbias_amp=0V,处于截止状态,管子Q1、Q2、Q7、Q8和Q9通过偏置Vbias_phase=400mV处于正常工作状态;此时,管子Q1、Q2和管子Q7、Q8工作在同一直流点,四个管子都偏置在Vbias_phase,携带相位信息的差分信号为V+_phase和V-_phase,经过管子Q1、Q2其电压信号转换为电流信号由i1ph和i2ph携带,而V+_amp和V-_amp此时无信号;同时,Q7、Q8在相同偏置下,对应的直流电流为idc,在节点A,i1ph和i2ph相加为I1并通过cap2滤除高频信号,经过电阻R2由电流信号转换为电压信号,将节点A与节点B的电压相减就得到了代表相位信息的直流电压。
当工作模式为幅度检测时,管子Q1、Q2、Q7、Q8偏置为Vbias_phase=0V,管子不工作,管子Q3、Q4、Q5、Q6偏置在Vbias_amp=400mV,管子正常工作;此时,携带幅度信息的差分信号V+_amp和V-_amp,经过管子Q3、Q4转换为电流信号由电流i1amp和i2amp携带,而V+_phase和V-_phase无信号;管子Q5、Q6仅有直流偏置,偏置产生的电流为idc,在节点A,i1amp和i2amp相加为I1,其中高频信号被cap2滤除,管子Q5、Q6对应的直流电流idc相加为I2,电流I1、I2经过电阻R2转换为直流电压,二者相减即得到携带幅度信息的直流电压,具体公式推导见(1)-(27)。
如图2所示,整个大平面为地平面,深色部分为m7层,其余的为m9层。具体模型见图3中的pad背面,相控阵系统的信号经过功率放大器,传递到Spad,经过电容耦合到自检测电路。
对于相控阵发射通道1和相控阵发射通道2,可变增益放大器通过改变增益实现对射频信号幅度进行控制,移相器则是在360°范围内改变射频信号的相位,功率放大器则是提供增益且对射频信号功率进行放大,提高天线 的发射功率。通道1和通道2的幅相信息通过耦合器提取到自检测电路,然后功率检测计对幅相信息进行检测,输出检测电压。
如图4所示,功率检测计主要由Q1-Q9功9个NMOS管组成,共有相位检测和幅度检测两种工作状态。工作在相位检测时,管子Q1、Q2、Q7、Q8偏置电压为400mV,管子工作在饱和区,管子Q3、Q4、Q5、Q6偏置在0mV,管子不打开;工作在幅度检测时,Q3、Q4、Q5、Q6偏置在400mV,管子Q1、Q2、Q7、Q8偏置在0mV;管子Q9为尾电流源,偏置在600mV,即Vbias_current=600mV。电容cap1为隔值电容值为1pF,电容cap2为滤波电容其值为968fF;电阻R1=5kΩ,电阻R2为负载电阻其值为1kΩ。
针对相位信息,理论推导如下:
相控阵发射通道1经过耦合器的信号为相控阵发射通道2经过耦合器的信号为,两个信号经过变压器做差并变为差分信号,
差分信号分别为:

在对相位进行检测时,携带相位信息的差分信号进入管子Q1、Q2转换为电流i1ph、i2ph,同时Q7、Q8与Q1、Q2工作在相同的直流工作点,因此Q1、Q2这一路输出电流I1与Q7、Q8这一路输出电流I2做差就能
在对相位进行检测时,携带相位信息的差分信号进入管子Q1、Q2转换为电流i1ph、i2ph,同时Q7、Q8与Q1、Q2工作在相同的直流工作点,因此Q1、Q2这一路输出电流I1与Q7、Q8这一路输出电流I2做差就能得到只包含相位信息的电流ΔI,最后通过负载电阻R2就变为电压信息Vout,最后就得到了一个相位与输出电压差对应的函数即公式(14)。对公式(14)做处理我们可以得到:
成线性相关。
针对幅度信息,具体推导如下:
假设通道1经过耦合器的信号为通道2经过耦合器的信号为两个信号经过变压器做差并变为差分信号,
在对幅度进行检测时,携带幅度信息的差分信号进入管子Q3、Q4转换为电流i1amp、i2amp,同时Q5、Q6与Q3、Q4工作在相同的直流工作点,因此Q3、Q4这一路输出电流I1与Q5、Q6这一路输出电流I2做差就能得到只包含幅度信息的电流ΔI,最后通过负载电阻R2就变为电压信息Vout。最后就得到了一个幅度与输出电压差对应的函数即公式(25)。考虑到,在检测幅度的时候,人为地将通道2幅度控制单元配置到最小增益状态,此时通道2经耦合器耦合到功率检测计的信号相比通道1耦合到功率检测计的信号非常小,因此将A2忽略不计,即由公式(25)得到:
然后将电压幅度A1转换为功率P1/dBm得:
P1=10log(Vout)-10log(KR2)   (27)
由公式(27)可见,功率P1与10log(Vout)成正比。
过仿真软件验证可知,电路架构与理论公式通道较吻合。
具体结果如图5所示。
由图5可以很明显得看出,呈线性相关,与理论推导相吻合,表明自检测电路能够较为准确地检测相控阵系统通道间的相位差。
如图6所示,10log(Vout)与P1呈成正比,与理论推导相吻合,表明在相控阵系统通道输出功率-3dBm-13dBm范围内,自检测链路能够较为准确的实现对相控阵系统幅度检测。
为了保证相控阵系统在复杂电磁-热环境下能够正常使用,需要相控阵系统具备抗PVT能力。作为相控阵系统中的核心模块,幅相控制模块的性能对相控阵的波束指向、波束扫描、旁瓣抑制等核心指标有着至关重要的影响。然而,在受到PVT影响时,相位以及幅度控制的精度和准确度往往恶化的较为严重。针对这一问题目前主流的研究主要是设计受PVT影响更小的幅相控制电路来尽可能降低PVT对相控阵系统的影响,又或者引入补偿电路来弥补不同工作环境引起的幅相控制精度恶化的问题。但是,这样的方式并不能有效地规避PVT变化对相控阵系统幅相控制的影响。在此背景下,提出了一款针对相控阵系统幅度和相位的检测链路,用于在相控阵系统幅相性能恶化之后,快速且方便地实现对幅相性能的检测,从而为相控阵系统自校准奠定基础。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (4)

  1. 一种基于功率检测计的自检测电路,其特征在于,包括:功率检测计、耦合器、相控阵发射通道1和相控阵发射通道2;
    其中,所述功率检测计分为相位检测和幅度检测两种工作模式:
    当工作模式为相位检测模式时,管子Q3、Q4、Q5、Q6通过偏置Vbias_amp=0V,处于截止状态,管子Q1、Q2、Q7、Q8和Q9通过偏置Vbias_phase=400mV处于正常工作状态;此时,管子Q1、Q2和管子Q7、Q8工作在同一直流点,四个管子都偏置在Vbias_phase,携带相位信息的差分信号为V+_phase和V-_phase,经过管子Q1、Q2其电压信号转换为电流信号由i1ph和i2ph携带,而V+_amp和V-_amp此时无信号;同时,Q7、Q8在相同偏置下,对应的直流电流为idc,在节点A,i1ph和i2ph相加为I1并通过cap2滤除高频信号,经过电阻R2由电流信号转换为电压信号,将节点A与节点B的电压相减就得到了代表相位信息的直流电压;
    当工作模式为幅度检测时,管子Q1、Q2、Q7、Q8偏置为Vbias_phase=0V,管子不工作,管子Q3、Q4、Q5、Q6偏置在Vbias_amp=400mV,管子正常工作;此时,携带幅度信息的差分信号V+_amp和V-_amp,经过管子Q3、Q4转换为电流信号由电流i1amp和i2amp携带,而V+_phase和V-_phase无信号;管子Q5、Q6仅有直流偏置,偏置产生的电流为idc,在节点A,i1amp和i2amp相加为I1,其中高频信号被cap2滤除,管子Q5、Q6对应的直流电流idc相加为I2,电流I1、I2经过电阻R2转换为直流电压,二者相减即得到携带幅度信息的直流电压。
  2. 根据权利要求1所述的一种基于功率检测计的自检测电路,其特征在于,所述相控阵发射通道1与相控阵发射通道2中,可变增益放大器通过改变增益实现对射频信号幅度进行控制,移相器则是在360°范围内改变射频信号的相位,功率放大器则是提供增益且对射频信号功率进行放大,提高天线的发射功率;所述相控阵发射通道1与相控阵发射通道2的幅相信息,通过耦合器提取到自检测电路,所述功率检测计对幅相信息进行检测,输出检测电压。
  3. 根据权利要求2所述一种基于功率检测计的自检测电路,其特征在于, 所述功率检测计工作模式为相位检测模式时,所述相控阵发射通道1经过耦合器的信号为所述相控阵发射通道2经过耦合器的信号为两个信号经过变压器做差并变为差分信号,
    差分信号分别为:

    差分信号进入功率检测计,检测幅度:
    在对相位进行检测时,携带相位信息的差分信号进入管子Q1、Q2转换为电流i1ph、i2ph,同时Q7、Q8与Q1、Q2工作在相同的直流工作点,因此Q1、Q2这一路输出电流I1与Q7、Q8这一路输出电流I2做差就能得出:
    i1ph=K(ΔV++vgs-vth)2  (4)
    i1ph=K(ΔV-+vgs-vth)2  (5)
    idc=K(vgs-vth)2  (6)

    I1=i1ph+i2ph  (8)
    I2=2×idc  (9)
    ΔI=I1-I2=2KΔV+ 2  (10)



    得到包含相位信息的电流ΔI,最后通过负载电阻R2就变为电压信息Vout;最后就得到了一个相位与输出电压差对应的函数即公式(14);
    成线性相关。
  4. 根据权利要求1所述一种基于功率检测计的自检测电路,其特征在于,所述功率检测计对幅度进行检测时,所述相控阵发射通道1经过耦合器的信号为所述相控阵发射通道2经过耦合器的信号为两个信号经过变压器做差并变为差分信号,


    i1amp=K(ΔV++vgs-vth)2  (18)
    i2amp=K(ΔV-+vgs-vth)2  (19)

    I1=i1amp+i2amp  (20)
    I2=2×idc  (21)

    DC|ΔI|=K(A1-A2)2  (23)
    Vout=DC|ΔI|×R2=K(A1-A2)2R2  (24)
    对幅度进行检测时,携带幅度信息的差分信号进入管子Q3、Q4转换为电流i1amp、i2amp,同时Q5、Q6与Q3、Q4工作在相同的直流工作点,因此Q3、Q4这一路输出电流I1与Q5、Q6这一路输出电流I2做差就能得到只包含幅度信息的电流ΔI,最后通过负载电阻R2就变为电压信息Vout;得到了一个幅度与输出电压差对应的函数即公式(25);
    在检测幅度时,将所述相控阵发射通道2幅度控制单元配置到最小增益状态,此时所述相控阵发射通道2经耦合器耦合到功率检测计的信号相比所述相控阵发射通道1耦合到功率检测计的信号非常小,因此将A2忽略不计,即由公式(25)得到:
    然后将电压幅度A1转换为功率P1/dBm得:
    P1=10log(Vout)-10log(KR2)  (27)
    由公式(27)可见,功率P1与10log(Vout)成正比。
PCT/CN2023/072110 2022-06-30 2023-01-13 一种基于功率检测计的自检测电路 WO2024001161A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210762352.5 2022-06-30
CN202210762352.5A CN115144649A (zh) 2022-06-30 2022-06-30 一种基于功率检测计的自检测电路

Publications (1)

Publication Number Publication Date
WO2024001161A1 true WO2024001161A1 (zh) 2024-01-04

Family

ID=83410843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072110 WO2024001161A1 (zh) 2022-06-30 2023-01-13 一种基于功率检测计的自检测电路

Country Status (2)

Country Link
CN (1) CN115144649A (zh)
WO (1) WO2024001161A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144649A (zh) * 2022-06-30 2022-10-04 成都通量科技有限公司 一种基于功率检测计的自检测电路

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329809B1 (en) * 1999-08-27 2001-12-11 Rf Micro Devices, Inc. RF power amplifier output power sensor
CN102299752A (zh) * 2011-05-27 2011-12-28 上海信朴臻微电子有限公司 预校准射频功率检测器
CN102624407A (zh) * 2012-03-30 2012-08-01 江苏物联网研究发展中心 一种带自动增益控制的射频发射前端电路
US20120294055A1 (en) * 2011-05-18 2012-11-22 Kim Eun-Hee Power detector
CN103424611A (zh) * 2013-08-26 2013-12-04 上海航天测控通信研究所 一种基于lxi总线的发射通道输出功率自动测试系统
CN104335485A (zh) * 2012-06-01 2015-02-04 高通股份有限公司 具有温度补偿的功率检测器
US20180145641A1 (en) * 2016-11-22 2018-05-24 Infineon Technologies Ag RF Power Detector Circuits
CN112436857A (zh) * 2020-07-21 2021-03-02 珠海市杰理科技股份有限公司 检测电路及检测方法、无线射频收发器、电器设备
CN112782466A (zh) * 2020-12-28 2021-05-11 新郦璞科技(上海)有限公司 数字辅助校准rms功率检测方法及系统
CN113640576A (zh) * 2021-08-12 2021-11-12 南京汇君半导体科技有限公司 射频功率检测电路及电子设备
CN115144649A (zh) * 2022-06-30 2022-10-04 成都通量科技有限公司 一种基于功率检测计的自检测电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707137A (zh) * 2012-07-03 2012-10-03 复旦大学 一种射频功率检测电路
CN104122437B (zh) * 2014-07-24 2017-01-25 上海银晟伟业信息技术有限公司 一种硅基功率检测器
CN113872706A (zh) * 2020-06-30 2021-12-31 深圳市中兴微电子技术有限公司 相位确定方法及装置、相位校准方法、介质、天线设备
CN112904079B (zh) * 2021-01-22 2024-04-16 新郦璞科技(上海)有限公司 双向射频功率检测器、工作方法及系统
CN112986669B (zh) * 2021-05-12 2021-08-10 成都信息工程大学 一种射频功率检测电路

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329809B1 (en) * 1999-08-27 2001-12-11 Rf Micro Devices, Inc. RF power amplifier output power sensor
US20120294055A1 (en) * 2011-05-18 2012-11-22 Kim Eun-Hee Power detector
CN102299752A (zh) * 2011-05-27 2011-12-28 上海信朴臻微电子有限公司 预校准射频功率检测器
CN102624407A (zh) * 2012-03-30 2012-08-01 江苏物联网研究发展中心 一种带自动增益控制的射频发射前端电路
CN104335485A (zh) * 2012-06-01 2015-02-04 高通股份有限公司 具有温度补偿的功率检测器
CN103424611A (zh) * 2013-08-26 2013-12-04 上海航天测控通信研究所 一种基于lxi总线的发射通道输出功率自动测试系统
US20180145641A1 (en) * 2016-11-22 2018-05-24 Infineon Technologies Ag RF Power Detector Circuits
CN112436857A (zh) * 2020-07-21 2021-03-02 珠海市杰理科技股份有限公司 检测电路及检测方法、无线射频收发器、电器设备
CN112782466A (zh) * 2020-12-28 2021-05-11 新郦璞科技(上海)有限公司 数字辅助校准rms功率检测方法及系统
CN113640576A (zh) * 2021-08-12 2021-11-12 南京汇君半导体科技有限公司 射频功率检测电路及电子设备
CN115144649A (zh) * 2022-06-30 2022-10-04 成都通量科技有限公司 一种基于功率检测计的自检测电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAI KANG ; PHAM DUY DONG ; J. BRINKHOFF ; CHUN-HUAT HENG ; FUJIANG LIN ; XIAOJUN YUAN: "A power efficient 60 GHz 90nm CMOS OOK receiver with an on-chip antenna", RADIO-FREQUENCY INTEGRATION TECHNOLOGY, 2009. RFIT 2009. IEEE INTERNATIONAL SYMPOSIUM ON, IEEE, PISCATAWAY, NJ, USA, 9 January 2009 (2009-01-09), pages 36 - 39, XP031640388, ISBN: 978-1-4244-5031-2 *

Also Published As

Publication number Publication date
CN115144649A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
US6678506B1 (en) Extended range power detector
WO2024001161A1 (zh) 一种基于功率检测计的自检测电路
CN102545793A (zh) 一种pA-μA量程的微弱电流放大器
Zheng et al. A linear dynamic range receiver with timing discrimination for pulsed TOF imaging LADAR application
WO2015184638A1 (zh) 阵列天线校准方法、装置和系统
TW201306630A (zh) 平方電路、積體電路、無線通訊單元以及相關方法
CN104836542A (zh) 一种用于风洞应变天平信号测量的前置放大器及校准测量方法
CN110086487B (zh) 一种宽带大动态范围对数检波器
CN109270375B (zh) 鉴频式KIDs探测器相位噪声测量电路系统及测量方法
CN1005809B (zh) 可集成化的高频宽带超线性放大器及其制造方法
CN218673908U (zh) 一种平衡光电探测器
CN108760045B (zh) 一种大动态范围的光电探测电路
WO2023097941A1 (zh) 功率检测电路、功率放大器模块及射频前端架构
US7911278B1 (en) Biased low differential input impedance current receiver/converter device and method for low noise readout from voltage-controlled detectors
Voelkel et al. A Low-Power 120-GHz integrated sixport receiver front-end with digital adjustable gain in a 130-nm bicmos technology
CN201173760Y (zh) 一种差动变压器位置信号放大传输装置
CN103674797A (zh) 颗粒物浓度检测传感器
CN105974395A (zh) 一种基于cmos工艺的高速窄脉冲电流放大器
CN208313429U (zh) 一种可选择通道增益范围的光电探测装置
CN220457378U (zh) 一种基于有源巴伦的有源移相器
CN220383034U (zh) 一种高共模抑制跨阻放大器和光耦芯片
CN201886055U (zh) 全量程高线性度模拟信号隔离电路
WO2015048645A1 (en) Microwave voltmeter using fully-linearized diode detector
CN217388660U (zh) 一种四象限探测器信号放大及处理电路
CN220935145U (zh) 放大电路单元、模块及半导体检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829354

Country of ref document: EP

Kind code of ref document: A1