WO2024001118A1 - 一种电熔接头损伤监测系统及方法 - Google Patents

一种电熔接头损伤监测系统及方法 Download PDF

Info

Publication number
WO2024001118A1
WO2024001118A1 PCT/CN2022/141897 CN2022141897W WO2024001118A1 WO 2024001118 A1 WO2024001118 A1 WO 2024001118A1 CN 2022141897 W CN2022141897 W CN 2022141897W WO 2024001118 A1 WO2024001118 A1 WO 2024001118A1
Authority
WO
WIPO (PCT)
Prior art keywords
damage
value
monitoring
electrofusion joint
resistance
Prior art date
Application number
PCT/CN2022/141897
Other languages
English (en)
French (fr)
Inventor
姚日雾
施建峰
刘星辰
郑津洋
葛周天
王中震
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US18/111,315 priority Critical patent/US11808739B1/en
Publication of WO2024001118A1 publication Critical patent/WO2024001118A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body

Definitions

  • This application relates to the field of pipeline monitoring, and in particular to an electrofusion joint damage monitoring system and method.
  • connection technologies for non-metallic pipes electrofusion connection technology is currently a commonly used connection method due to its advantages such as convenient on-site installation, high standardization of operations, and reliable performance.
  • electrofusion connection technology is currently a commonly used connection method due to its advantages such as convenient on-site installation, high standardization of operations, and reliable performance.
  • the pressure-bearing capacity of some large-diameter non-metallic pipes has exceeded 6.4MPa.
  • the strength of electrofusion joints has become the main reason limiting the development of high-pressure composite pipes.
  • 53% of pipeline system failures occur at pipe fittings.
  • the strength of electrofusion joints has become a limiting factor in the development of non-metallic piping systems.
  • this has also put forward higher requirements for the safety of pipeline systems.
  • the present application aims to solve, at least to a certain extent, one of the technical problems in the related art.
  • one purpose of this application is to propose an electrofusion joint damage monitoring system for damage monitoring of electrofusion joints of conductive non-metallic pipelines.
  • the damage monitoring system includes a data acquisition module, a database, a data processing module and a damage judgment module. .
  • the data acquisition module is connected to the electrofusion joint to be monitored through a pair of monitoring electrodes, and is used to collect the resistance data of the electrofusion joint between the two monitoring electrodes;
  • the database is used to store the first damage critical value and the second damage critical value.
  • the data processing module is used to process the resistance data of the electrofusion joint collected by the data acquisition module to obtain the first monitoring value and the second monitoring value.
  • the first monitoring value and the second monitoring value are real-time monitoring values corresponding to the first damage critical value and the second damage critical value respectively; and the damage judgment module is used to use the first monitoring value to The value is compared with the first damage threshold value, and the second monitoring value is compared with the second damage threshold value, and when the first monitoring value is greater than the first damage threshold value and/or the second monitoring value is greater than the second damage threshold value, It is judged that the electrofusion joint is damaged, wherein the first damage critical value and the second damage critical value are two different values selected from the following values: the monitoring resistance value at the time of damage, which is the monitoring resistance value at the time of damage.
  • the resistance value reached; the change value of the monitoring resistance at the time of damage is the monitoring resistance value at the time of damage minus the initial resistance value; the change rate of the monitoring resistance value at the time of damage is the change value of the monitoring resistance at the time of damage
  • the ratio of the absolute value of to the initial resistance value; the change rate of the slope of the relative change curve of the monitored resistance at the moment of damage is the ratio of the slope of the relative change curve of the monitored resistance of the electrofusion joint in one time period before and after the moment of damage; where , the first damage critical value and the second damage critical value are determined based on the resistance change curve of at least one electrofusion joint sample and the internal pressure value at the time of damage; for each electrofusion joint sample, the The internal pressure value at the time of damage of the electrofusion joint sample is determined based on the damage degree-internal pressure change curve used to quantitatively characterize the damage degree of the electrofusion joint sample, D i represents the degree of damage of the electrofusion joint after loading with an internal pressure of iMpa, P i represents the
  • the electrofusion joint includes a polymer matrix and conductive filler, and the conductive filler is evenly distributed in the polymer matrix to form a conductive network.
  • the polymer matrix includes at least one of polyethylene, polypropylene, polyvinyl chloride, and polyamide;
  • the conductive filler includes carbon nanotubes, carbon nanofibers, carbon fibers, metal fibers, metal-coated glass fibers, graphene, and carbon black. at least one of them.
  • the material and structure of the electrofusion joint sample and the electrofusion joint to be monitored are basically the same.
  • the first damage critical value and the second damage critical value are monitored by applying loads to multiple electrofusion joint samples and calculating the average value of the multiple electrofusion joint samples at the time of damage. Or get the minimum value.
  • the first monitoring value is the change rate of the monitoring resistance value of the electrofusion joint
  • the second monitoring value is the change rate of the relative change curve slope of the monitoring resistance of the electrofusion joint.
  • the damage monitoring system is connected to multiple electrofusion joints and performs damage monitoring on the multiple electrofusion joints simultaneously.
  • a result display module is also included, and the result display module is configured to receive and display the information sent by the damage judgment module.
  • a method for monitoring damage to electrofusion joints includes: applying an internal pressure load to an electrofusion joint sample, and recording the resistance value data of each electrofusion joint sample to obtain each of the described The resistance change curve of the electrofusion joint sample, wherein the resistance value data at least includes the initial resistance value, the resistance value at the time of damage, and the resistance change value in multiple time periods from the initial time to the time of damage; by analyzing the electrofusion joint
  • the samples are subjected to internal pressure loading to cause damage in each of the electrofusion joint samples, and the pressure-bearing strength P i of each of the electrofusion joint samples after damage is measured through a blast test to obtain each of the electrofusion joints.
  • the damage degree-internal pressure change curve of the head sample used to quantitatively characterize the damage degree Di after internal pressure loading; through the resistance change curve and the damage degree-internal pressure change curve of each electrofusion joint sample
  • the pressure change curve is used to obtain the first damage critical value and the second damage critical value of each electrofusion joint sample at the time of damage, and store them in the database; by connecting a pair of monitoring electrodes to the electrofusion joint to be monitored for monitoring, the collected Resistance data of the electrofusion joint, and obtaining a first monitoring value and a second monitoring value based on the resistance data; comparing the first monitoring value with the first damage threshold value, and comparing the second monitoring value with the second damage threshold value ; When the first monitoring value is greater than the first damage threshold value and/or the second monitoring value is greater than the second damage threshold value, it is determined that the electrofusion joint is damaged.
  • the first damage threshold value is the ratio of the absolute value of the change in the resistance value monitored at the time of damage relative to the initial resistance value and the initial resistance value; the second damage threshold value is, at the time of damage The ratio of the slope of the relative change curve of the monitored resistance within one time period before and after; the first monitoring value is the change rate of the monitoring resistance value of the electrofusion joint; the second monitoring value is the change in the slope of the relative change curve of the monitoring resistance of the electrofusion joint Rate.
  • the material and structure of the electrofusion joint sample and the electrofusion joint to be monitored are basically the same.
  • Figure 1 is a framework diagram of an electrofusion joint damage monitoring system according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of an electrofusion joint according to an embodiment of the present application.
  • Figure 3(a) is a schematic diagram of an electrofusion joint according to another embodiment of the present application
  • Figure 3(b) is a cross-sectional view of the electrofusion joint in Figure 3(a).
  • Figure 4 is a flow chart of an electrofusion joint damage monitoring method according to an embodiment of the present application.
  • Figure 5 is a flow chart for quantitative characterization of electrofusion joint damage according to an embodiment of the present application.
  • Figures 6(a) and 6(b) show the quantitative characterization results of electrofusion joint damage according to an embodiment of the present application.
  • Figure 6(a) is the relationship curve between the pressure-bearing strength of the electrofusion joint and the internal pressure of the joint
  • Figure 6(b) is the relationship curve between the damage degree of the electrofusion joint and the internal pressure of the joint.
  • Figure 7 is a graph showing the monitoring resistance of the electrofusion joint and the change curve of the internal pressure of the joint over time during the process of applying an internal pressure load to the electrofusion joint until the electrofusion joint fails according to an embodiment of the present application.
  • FIG. 8 is a curve of the monitoring resistance of the electrofusion joint changing with the internal pressure of the joint during the process of applying an internal pressure load to the electrofusion joint until the electrofusion joint fails according to an embodiment of the present application.
  • Figure 9 is a comparison result of the monitoring resistance of the electrofusion joint and the damage degree of the joint according to an embodiment of the present application.
  • Figure 10 is a resistance change curve during the electrofusion joint damage monitoring process according to an embodiment of the present application.
  • Figure 11 is a resistance change curve during the electrofusion joint damage monitoring process according to another embodiment of the present application.
  • Figures 1-11 What is described in Figures 1-11 is a preferred schematic diagram for the implementation of this application, but the specific technical forms involved in this application can also be implemented in other similar ways, and are not limited to the framework and sequence given in Figures 1-11 . More precisely, the implementation process provided in this application is a better way to understand the technical route of this application more thoroughly and comprehensively in the technical field involved in this application.
  • the current research on this type of electrofusion joint mainly focuses on the preparation process of the electrofusion joint (refer to the Chinese patent application ZL201911289769.9), the electrode layout (refer to the Chinese patent application ZL202110042251.6), and the mold structure (refer to the Chinese patent application ZL202010793068.5 and ZL201911403395.9) to improve the structural enhancement effect of electrofusion joints and the reliability of monitoring resistance.
  • this application aims to propose a damage monitoring method and system for electrofusion joints of non-metallic pipelines. Based on this method and system, the damage status of electrofusion joints can be monitored and evaluated in real time to improve the safety and reliability of non-metallic pipelines.
  • FIG. 1 is a framework diagram of an electrofusion joint damage monitoring system according to an embodiment of the present application.
  • the electrofusion joint damage monitoring system is used for damage monitoring of electrofusion joints of conductive non-metallic pipelines.
  • the electrofusion joint damage monitoring system includes: a data acquisition module 3, a database, a data processing module and Damage judgment module.
  • the pipe 1 is a non-metal pipe, or a non-metal composite pipe.
  • it can be polyethylene pipes, metal-reinforced polyethylene pipes, PVC pipes, polypropylene pipes, polyamide pipes, etc.
  • the data acquisition module 3 can measure the monitoring resistance of electrofusion joints, collect resistance data, and transmit resistance data.
  • the data acquisition module 3 can simultaneously measure the monitoring resistance of multiple electrofusion joints to reduce the number of data acquisition modules 3 in the pipeline.
  • the data acquisition module 3 is connected to the electrofusion joint 2 to be monitored through a pair of monitoring electrodes, and is used to collect resistance data of the electrofusion joint between the two monitoring electrodes.
  • the electrofusion joints to be monitored are conductive non-metallic pipe electrofusion joints.
  • the body material of the electrofusion joint 2 to be monitored is a filled conductive composite material
  • the matrix is polymer materials such as polyethylene and polypropylene
  • the filler is carbon nanotubes, carbon nanofibers, carbon fibers, metal fibers, plated Metallic glass fiber, graphene, carbon black and other conductive fillers.
  • Conductive fillers evenly distributed in the polymer matrix can form a microscopic conductive network and improve the conductivity of the composite material.
  • the electrofusion joint to be monitored can be a short carbon fiber reinforced plastic electrofusion pipe fitting with strain self-monitoring function proposed by the inventor team in previous research, including but not limited to patent application ZL201910147997.6 in China , ZL201911289769.9, ZL202110042251.6, ZL202010793068.5 and ZL201911403395.9 are known electrofusion joints disclosed in patent documents.
  • the body material of the electrofusion joint is short carbon fiber reinforced polyethylene conductive composite material. Due to the excellent conductivity of carbon fiber materials, the carbon fibers filled in the polyethylene matrix form a microscopic conductive network, which can improve the conductivity of the composite material.
  • the electrofusion joint to be monitored can also be other types of conductive electrofusion pipe fittings.
  • FIG. 2 is a schematic diagram of an electrofusion joint according to an embodiment of the present application.
  • a pair of monitoring electrodes 4 are pasted on the surface of the electrofusion joint, and the resistance of the body material of the electrofusion joint between the two monitoring electrodes can be measured.
  • defects such as plastic deformation or microscopic cracks will appear inside the electrofusion joint, causing the microscopic conductive network in the electrofusion joint body material to be destroyed, thereby reducing the conductivity of the electrofusion joint body material, thus measuring
  • the resulting monitoring resistance of the electrofusion joint will increase accordingly. Based on this, by measuring the resistance change of the electrofusion joint, the damage status of the electrofusion joint can be monitored.
  • FIG 3(a) is a schematic diagram of an electrofusion joint according to another embodiment of the present application
  • Figure 3(b) is a cross-sectional view of the electrofusion joint in Figure 3(a).
  • the welding resistance wire in the electrofusion joint can be set as a segmented resistance wire 5.
  • the two sections of resistance wire are independent of each other and do not conduct with each other.
  • the resistance wire is used as Monitoring electrodes; from this, the resistance of the electrofusion joint body material between the monitoring electrodes can be measured.
  • the database is used to store the first damage threshold value, the second damage threshold value, the resistance data collected by the data acquisition module 3, the data processed by the data processing module, and the data processed by the damage judgment module.
  • the first damage critical value and the second damage critical value are critical values that characterize the electrofusion joint when damage occurs. They are related to the material properties and structure of the electrofusion joint itself, and are usually fixed values. .
  • the first damage critical value and the second damage critical value can select two different values from the following values: the monitoring resistance value at the time of damage, the change value of the monitoring resistance at the time of damage, and the change in the monitoring resistance value at the time of damage. rate, the change rate of the slope of the relative change curve of the monitoring resistance at the time of damage, etc.
  • the monitoring resistance value at the time of damage is the resistance value monitored at the time of damage; the change value of the monitoring resistance at the time of damage is the monitoring resistance value at the time of damage minus the initial resistance value.
  • the change rate of the monitoring resistance value at the time of damage is the ratio of the absolute value of the change value of the monitoring resistance at the time of damage to the initial resistance value; the change rate of the slope of the relative change curve of the monitoring resistance at the time of damage is the electrofusion joint The ratio of the slope of the relative resistance change curve is monitored within one time period before and after the damage moment.
  • One advantage of this choice is that the above parameters only need to be obtained by measuring the monitoring resistance of the electrofusion joint or calculating it after measuring the monitoring resistance of the electrofusion joint; and by using two parameters: the first damage threshold value and the second damage threshold value As a critical value for damage judgment, the damage of electrofusion joints can be monitored and judged more accurately than using a single value. Specifically, since the distribution of filled conductive composite materials cannot be accurately controlled during the manufacturing process of electrofusion joints, the initial resistance values and damage moment resistance values of different electrofusion joints may be different. If you only refer to a single critical value as the standard for damage judgment, the accuracy cannot be well controlled.
  • these values can be obtained by performing burst test calculations on the same batch of electrofusion joint samples in advance and stored in the database in advance.
  • the electrofusion joint sample is basically the same material and structure as the electrofusion joint to be monitored. It can be an electrofusion joint produced using the same process and in the same batch as the electrofusion joint to be monitored.
  • the first damage critical value and the second damage critical value are obtained by applying loads to multiple electrofusion joint samples, monitoring and calculating the average or minimum value of the multiple electrofusion joint samples at the moment of damage.
  • the average value obtained through multiple experimental calculations can relatively more accurately represent the critical value when the electrofusion joint is damaged; while the minimum value obtained through multiple experimental calculations represents the higher safety performance of the electrofusion joint. Reference value used in required situations.
  • the first damage threshold value may be the change rate of the monitored resistance value at the time of damage, where the change rate of the monitored resistance value at the time of damage is the change in the resistance value monitored at the time of damage relative to the initial resistance value.
  • the ratio of the absolute value to the initial resistance value; the second damage critical value can be the change rate of the slope of the relative change curve of the monitoring resistance at the time of damage, where the change rate of the slope of the relative change curve of the monitoring resistance at the time of damage is at each time before and after the time of damage. The ratio of the slope of the relative resistance change curve is monitored within a time period.
  • the first damage threshold value may be the monitored resistance value at the time of damage, where the monitored resistance value at the time of damage is the resistance value monitored at the time of damage; the second damage threshold value may be the monitored resistance value at the time of damage.
  • the change value of the resistance where the change value of the monitored resistance at the time of damage is the resistance value monitored at the time of damage minus the initial resistance value.
  • the data processing module is used to process the resistance data collected by the data acquisition module 3 to obtain the first monitoring value and the second monitoring value.
  • the first monitoring value and the second monitoring value are the real-time monitoring values of the electrofusion pipe corresponding to the first damage critical value and the second damage critical value. They are also selected from the following values: monitoring resistance value, monitoring The change value of the resistance, the change rate of the monitored resistance value, the change rate of the slope of the relative change curve of the monitored resistance, etc.
  • the damage judgment module is used to compare the first monitoring value with the first damage threshold value and the second monitoring value with the second damage threshold value; when the first monitoring value is greater than the first damage threshold value and/or the second monitoring value When it is greater than the second damage threshold, the damage judgment module determines that the electrofusion joint is damaged.
  • the electrofusion joint damage monitoring system is connected to a plurality of electrofusion joints and performs damage monitoring of the plurality of electrofusion joints simultaneously.
  • the electrofusion joint damage monitoring system of the present application also includes a result display module, which is used to receive and display the information sent by the damage judgment module.
  • the result display module can be an LED screen, LCD display, tablet computer, mobile phone or other smart terminal.
  • FIG 4 is a flow chart of an electrofusion joint damage monitoring method according to an embodiment of the present application. Referring to Figure 4, this application provides a method for monitoring damage to electrofusion joints, including the following steps S101 to S106.
  • the resistance value data at least includes: initial resistance value, resistance value at the time of damage, and resistance change values in multiple time periods from the initial time to the time of damage.
  • S103 Monitor the electrofusion joint to be monitored, and obtain the first monitoring value and the second monitoring value.
  • the step of storing the resistance value data in S101 may be performed after S102, and this application does not limit this.
  • the first damage threshold value, the second damage threshold value, etc. have been described above and will not be described again here.
  • accurate quantitative characterization of the damage degree of electrofusion joints is a basic task; the quantitative characterization of the damage degree of electrofusion joints will be further explained in detail below.
  • Figure 5 is a flow chart for quantitative characterization of electrofusion joint damage according to an embodiment of the present application.
  • the degree of damage to the electrofusion joint can be quantitatively characterized by applying internal pressure to the electrofusion joint to produce different degrees of joint damage, and establishing a correlation between the internal pressure of the joint and the degree of joint damage, including the following steps A-C.
  • Step A Electrofusion joint damage introduction: damage is caused in the joint by applying internal pressure to the electrofusion joint.
  • Step B Electrofusion joint strength measurement: Measure the pressure-bearing strength of the electrofusion joint after damage occurs through a blast test.
  • Step C Calculate the degree of damage to the electrofusion joint:
  • the degree of damage to the electrofusion joint is defined as the degree of reduction in the pressure-bearing strength of the joint. From this, the degree of damage to the electrofusion joint after internal pressure loading is calculated:
  • D i represents the degree of damage to the electrofusion joint after loading with an internal pressure of iMpa, ranging from 0 to 1, with 0 representing no damage and 1 representing complete damage;
  • P i represents the degree of damage to the electrofusion joint after loading with an internal pressure of iMpa.
  • P max represents the maximum pressure-bearing strength of the electrofusion joint without damage.
  • Figure 6(a) and Figure 6(b) are the quantitative characterization results of electrofusion joint damage according to an embodiment of the present application.
  • Figure 6(a) is the relationship curve between the pressure-bearing strength of the electrofusion joint and the internal pressure of the joint
  • Figure 6(b) is the relationship curve between the damage degree of the electrofusion joint and the internal pressure of the joint.
  • the joint pressure-bearing strength first goes through a smooth process at the stage of 0 to 4MPa internal pressure, and during this period the joint pressure-bearing strength changes relatively.
  • the pressure-bearing strength of the electrofusion joint is basically not reduced, and the corresponding joint damage degree is basically 0.
  • the loading internal pressure reaches about 6MPa, the pressure-bearing strength of the electrofusion joint begins to decrease significantly, and the corresponding joint damage degree increases significantly.
  • the degree of damage to the electrofusion joint increases rapidly.
  • the correlation between the loading internal pressure of the electrofusion joint and the joint damage degree was established. If it is considered that the damage degree of the electrofusion joint exceeds 0.1 (other values can also be taken), it means that the joint has obvious damage. According to the damage quantification characterization results, the corresponding internal pressure of the joint at this time is 6.15MPa.
  • the critical value of the relative change in resistance is used as the first damage critical value
  • the critical value of the change rate of the relative change curve slope of the resistance is used as the second damage critical value to further illustrate the electrofusion joint damage monitoring system of the present application. and methods.
  • FIG. 7 shows the monitoring resistance of the electrofusion joint and the time-varying curve of the internal pressure of the electrofusion joint during the process of applying an internal pressure load to the electrofusion joint until the electrofusion joint fails according to an embodiment of the present application.
  • Connect the monitoring electrode of the electrofusion joint to the resistance measurement system apply an internal pressure load to the electrofusion joint until the joint fails, thereby causing varying degrees of damage in the electrofusion joint. Collect and record the monitoring resistance changes of the joint during this process.
  • Figure 7 shows the relative change curve of the monitoring resistance of the electrofusion joint measured during the blasting process of the electrofusion joint.
  • the relative change curve of the monitored resistance during the blasting process of the electrofusion joint has obvious regularity.
  • the change in the joint monitoring resistance is very small and can basically be ignored.
  • the joint monitoring resistance shows a continuous and rapid rise.
  • the monitoring resistance of the electrofusion joint shows two completely different changing trends at the initial stage of loading and before the joint is about to fail, which indicates that the electrofusion joint may be damaged at the inflection point of the monitoring resistance curve, resulting in a rapid increase in the joint monitoring resistance.
  • the slope of the relative change curve of the monitoring resistance in any time range can be calculated, which is used to calculate the critical value K c of the slope change rate of the relative change curve of the monitoring resistance when the electrofusion joint is damaged.
  • FIG. 8 is a curve of the monitoring resistance of the electrofusion joint changing with the internal pressure of the joint during the process of applying an internal pressure load to the electrofusion joint until the electrofusion joint fails according to an embodiment of the present application.
  • the monitoring resistance change curve with time measured during the blasting process of the above electrofusion joint is converted into a monitoring resistance change curve with internal pressure. The results are shown in Figure 8.
  • Figure 9 is a comparison result of the monitoring resistance of the electrofusion joint and the damage degree of the joint according to an embodiment of the present application.
  • the relative change curve of the electrofusion joint monitoring resistance is basically consistent with the change trend of the joint damage degree curve.
  • the degree of damage to the electrofusion joint is close to 0, which indicates that the joint is in a safe state.
  • the damage degree of the joint continues to increase to 1 when the blast failure occurs.
  • the corresponding monitoring resistance of the electrofusion joint at this stage also continues to rise rapidly.
  • the results show that the monitoring resistance change of the electrofusion joint has a good correspondence with the degree of damage of the joint, and the measured monitoring resistance change of the electrofusion joint can be used to characterize the damage of the electrofusion joint.
  • the corresponding internal pressure of the joint at this time is 6.15MPa according to the damage quantification characterization results. From the comparison results in Figure 9, it can be seen that the relative change rate of the monitoring resistance at this time is 4.9 ⁇ 10 3 %. From this, it is determined that the relative change ⁇ R c of the monitoring resistance when the joint is damaged is 4.9 ⁇ 10 3 %. Multiple critical values can be obtained based on the relative change curves of the monitored resistance during the blasting process of multiple electrofusion joints, and ⁇ R c can be determined by calculating the average of these results or taking the minimum value.
  • the corresponding internal pressure of the joint at this time is 6.15MPa based on the damage quantification characterization results. From Figure 7, it can be determined that the corresponding test time at this time is about 40s. From this, the slopes K 1 and K 2 of the relative change curve of the monitored resistance within the time range of ⁇ t before and after this moment (for example, ⁇ t is taken as 5s) are calculated.
  • K 1 is the slope of the curve in the time range of 35 to 40s, calculated as 320.11% s -1 by the following formula
  • K 2 is the slope of the curve in the time range of 40 to 45s, calculated as 1099.19 by the following formula %s -1 .
  • the critical value ⁇ R c for monitoring the relative change in resistance when damage occurs to the joint i.e., the first damage critical value
  • the critical value K c i.e., the second damage critical value
  • Figure 10 is a resistance change curve during the electrofusion joint damage monitoring process according to an embodiment of the present application.
  • the data processing module calculates the relative change value ⁇ R t of the monitoring resistance in real time as the first monitoring value, and calculates the slope change rate K t of the relative change curve of the monitoring resistance of the electrofusion joint in real time as the second monitoring value.
  • the calculated second monitoring value K t of the electrofusion joint was 5.82.
  • the damage judgment module determines that the electrofusion joint is damaged at this time.
  • Figure 11 is a resistance change curve during the electrofusion joint damage monitoring process according to another embodiment of the present application.
  • the data processing module calculates the relative change value ⁇ R t of the monitoring resistance in real time as the first monitoring value, and calculates the slope change rate K t of the relative change curve of the monitoring resistance of the electrofusion joint in real time as the second monitoring value.
  • the relative change value of the monitored resistance increased gently, without a sudden increase in the curve.
  • damage such as cracks and crack propagation will slowly occur inside the joint, causing the monitoring resistance value of the electrofusion joint to slowly increase.
  • a similar method can be used to calculate the relative change of the monitoring resistance of the electrofusion joint at any time and the slope change rate of the relative change curve of the monitoring resistance. Based on this, the first monitoring value and the second monitoring value of the electrofusion joint at any time t can be obtained; the first monitoring value is compared with the first damage critical value, and the second monitoring value is compared with the second damage critical value; when When the first monitoring value is greater than the first damage threshold value and/or the second monitoring value is greater than the second damage threshold value, the damage judgment module determines that the electrofusion joint is damaged. From this, the damage status of the electrofusion joint can be judged.
  • the first damage critical value and the second damage critical value are selected from the following values and combined to implement the technical solution of the present application:
  • the monitoring resistance value at the moment of damage the change value of the monitoring resistance, the change rate of the monitoring resistance value, and the change rate of the slope of the relative change curve of the monitoring resistance.
  • various combinations of the first damage threshold and the second damage threshold can be obtained.
  • the specific implementation is basically similar to the above application cases, and will not be described in detail here. .
  • the electrofusion joint damage monitoring system and method proposed in this application utilizes the sensing characteristics of the electrofusion joint body material to achieve real-time monitoring and evaluation of the damage status of the electrofusion joint without the need for external sensors, improving the performance of non-metallic joints. pipeline safety and reliability;
  • This application selects a combination of damage critical values for judgment, which can not only monitor sudden damage in a short time in real time, but also monitor the initiation and slow expansion of damage under long-term service loads;
  • This application quantitatively characterizes the degree of damage to the electrofusion joint.
  • the key parameters for damage assessment of the electrofusion joint are obtained: the change rate of the monitoring resistance value and the relative change curve of the monitoring resistance.
  • the rate of change of the slope is determined, and its damage critical value is determined, which provides basic data for the damage judgment of electrofusion joints based on resistance measurement.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Non-exhaustive list of computer readable media include the following: electrical connections with one or more wires (electronic device), portable computer disk cartridges (magnetic device), random access memory (RAM), Read-only memory (ROM), erasable and programmable read-only memory (EPROM or flash memory), fiber optic devices, and portable compact disc read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, and subsequently edited, interpreted, or otherwise suitable as necessary. process to obtain the program electronically and then store it in computer memory.
  • various parts of the present application can be implemented in hardware, software, firmware, or a combination thereof.
  • various steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a logic gate circuit with a logic gate circuit for implementing a logic function on a data signal.
  • Discrete logic circuits application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • connection can It can be a fixed connection, or it can be a detachable connection, or it can be integrated. It can be understood that it can also be a mechanical connection, an electrical connection, etc.; of course, it can also be a direct connection, or an indirect connection through an intermediate medium, or it can be two The internal connection between components, or the interaction between two components.
  • connection can It can be a fixed connection, or it can be a detachable connection, or it can be integrated. It can be understood that it can also be a mechanical connection, an electrical connection, etc.; of course, it can also be a direct connection, or an indirect connection through an intermediate medium, or it can be two The internal connection between components, or the interaction between two components.
  • connection can be a fixed connection, or it can be a detachable connection, or it can be integrated. It can be understood that it can also be a mechanical connection, an electrical connection, etc.; of course, it can also be a direct connection, or an indirect connection through an intermediate medium, or it can be two The
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种电熔接头(2)损伤监测系统及监测方法,用于可导电非金属管道电熔接头(2)的损伤监测,损伤监测系统包括:数据采集模块(3)、数据库、数据处理模块以及损伤判断模块;数据处理模块用于处理数据采集模块采集的电阻数据,获得第一监测值和第二监测值;损伤判断模块用于将第一监测值与第一损伤临界值对比,以及将第二监测值与第二损伤临界值对比;当第一监测值大于第一损伤临界值和/或第二监测值大于第二损伤临界值时,损伤判断模块判断电熔接头发生了损伤。

Description

一种电熔接头损伤监测系统及方法 技术领域
本申请涉及管道监测领域,特别涉及一种电熔接头损伤监测系统及方法。
背景技术
在非金属管道的连接技术中,电熔连接技术因其现场安装方便、操作标准化高、性能可靠等优点,是目前常用的连接方法。目前,通过纤维增强层和钢丝网骨架增强,部分大口径非金属管材的承压能力已经突破6.4MPa,电熔接头的强度已经成为限制高压复合管发展的主要原因。根据美国PPDC(Plastic Pipe Database Committee)对管道系统失效原因的分析,53%的管道系统失效发生在管件处。电熔接头的强度已经成为限制非金属管道系统发展的一个原因。另一方面,随着非金属管道在氢气、燃气、核电等领域的应用,这对管道系统的安全性也提出了更高的要求。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的一个目的在于提出一种电熔接头损伤监测系统,用于可导电非金属管道电熔接头的损伤监测,损伤监测系统包括数据采集模块、数据库、数据处理模块以及损伤判断模块。其中,数据采集模块通过一对监测电极连接到待监测的电熔接头,用于采集两个监测电极之间电熔接头的电阻数据;数据库用于储存第一损伤临界值、第二损伤临界值、数据采集模块采集的电阻数据、数据处理模块处理的数据、损伤判断模块处理的数据;数据处理模块用于处理数据采集模块采集的电熔接头的电阻数据,获得第一监测值和第二监测值;所述第一监测值和所述第二监测值为分别与所述第一损伤临界值和所述第二损伤临界值相对应的实时监测值;以及损伤判断模块用于将第一监测值与第一损伤临界值对比、以及将第二监测值与第二损伤临界值对比,并当第一监测值大于第一损伤临界值和/或第二监测值大于第二损伤临界值时,判断电熔接头发生了损伤,其中,所述第一损伤临界值和所述第二损伤临界值为从以下数值中选择的两个不同的值:损伤时刻的监测电阻值,为在损伤时刻监测到的电阻值;损伤时刻的监测电阻的变化值,为所述损伤时刻的监测电阻值减去初始电阻值;损伤时刻的监测电阻值的变化率,为所述损伤时刻的监测电阻的变化值的绝对值与所述初始电阻值的比值;损伤时刻的监测电阻相对变化曲线斜率的变化率,为电熔接头在损伤时刻的前后各一个时间周期内监测电阻相对变化曲线的斜率的比值;其中,所述第一损伤临界值和所述第二损伤临界值是基于至少一个电熔接头试样的电阻变化曲线和损伤时刻内压值确定的;针对每个所述电熔接头试样,所述电熔接头试样的损伤时刻内压值是基于用于对所述电熔接头试样的损伤程度进行量化表征的损伤程度-内压变化曲线确定的,
Figure PCTCN2022141897-appb-000001
D i代表进行内压为iMpa的内压加载后所述电熔接头的损伤程度,P i代表在进行内压为iMpa的所述内压加载后所述电熔接头的承压强度,P max代表所述电熔接头没有损伤时的最高承压强度;针对每个所述电熔接头试样,所述电熔接头试样的电阻变化曲线是通过对所述电熔接头试样施加内压载荷,并记录所述电熔接头试样的电阻值数据而获得的,所述电阻值数据至少包括初始电阻值、损伤时刻电阻值以及从初始到损伤时刻之间多个时间周期内的电阻变化值。
根据本申请的一个实施例,电熔接头包括聚合物基体以及导电填料,导电填料均匀分布在聚合物基体中形成导电网络。其中,聚合物基体包含聚乙烯、聚丙烯、聚氯乙 烯、聚酰胺中的至少一种;导电填料包含碳纳米管、碳纳米纤维、碳纤维、金属纤维、镀金属玻璃纤维、石墨烯、炭黑中的至少一种。
根据本申请的一个实施例,电熔接头试样与待监测的电熔接头的材料、结构基本相同。
根据本申请的一个实施例,第一损伤临界值和第二损伤临界值为,通过对多个电熔接头试样施加载荷监测并计算所述多个电熔接头试样在损伤时刻的平均值或者最小值而获得。
根据本申请的一个实施例,第一监测值为电熔接头的监测电阻值的变化率;第二监测值为电熔接头的监测电阻相对变化曲线斜率的变化率。
根据本申请的一个实施例,损伤监测系统连接到多个电熔接头,同时执行多个电熔接头的损伤监测。
根据本申请的一个实施例,还包括结果展示模块,结果展示模块用于接收并展示损伤判断模块发送的信息。
根据本申请的一个实施例,提供了一种电熔接头损伤监测方法,包括:对电熔接头试样施加内压载荷,并记录各电熔接头试样的电阻值数据,以获得各所述电熔接头试样的电阻变化曲线,其中,电阻值数据至少包括初始电阻值、损伤时刻电阻值以及从初始到损伤时刻之间多个时间周期内的电阻变化值;通过对所述电熔接头试样进行内压加载以在各所述电熔接头试样中产生损伤,并通过爆破试验测量各所述电熔接头试样产生损伤后的承压强度P i,以得到各所述电熔接头试样的用于对内压加载后的损伤程度D i进行量化表征的损伤程度-内压变化曲线;通过各所述电熔接头试样的所述电阻变化曲线和所述损伤程度-内压变化曲线获得各电熔接头试样损伤时刻的第一损伤临界值、第二损伤临界值,并储存入数据库;通过将一对监测电极连接到待监测的电熔接头进行监测,采集所述电熔接头的电阻数据,并基于所述电阻数据获得第一监测值和第二监测值;将第一监测值与第一损伤临界值对比、以及将第二监测值与第二损伤临界值对比;当第一监测值大于第一损伤临界值和/或第二监测值大于第二损伤临界值时,判断电熔接头发生了损伤。
根据本申请的一个实施例,第一损伤临界值为,在损伤时刻监测到的电阻值相对初始电阻值的变化绝对值与所述初始电阻值的比值;第二损伤临界值为,在损伤时刻的前后各一个时间周期内监测电阻相对变化曲线的斜率的比值;第一监测值为电熔接头的监测电阻值的变化率;第二监测值为电熔接头的监测电阻相对变化曲线斜率的变化率。
根据本申请的一个实施例,所述电熔接头试样与所述待监测的电熔接头的材料、结构基本相同。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是本申请一实施例的电熔接头损伤监测系统框架图。
图2是本申请一实施例的电熔接头示意图。
图3(a)是本申请另一个实施例的电熔接头示意图,图3(b)为图3(a)中的电熔接头的剖面图。
图4是本申请一实施例的电熔接头损伤监测方法流程图。
图5是本申请一实施例的电熔接头损伤量化表征流程图。
图6(a)和6(b)为本申请一实施例的电熔接头损伤量化表征结果。其中,图6(a)为电熔接头承压强度与接头内压关系曲线,图6(b)为电熔接头损伤程度与接头内压关系曲线。
图7为本申请一实施例的在向电熔接头施加内压载荷至电熔接头失效的过程中,电熔接头监测电阻以及接头内压随时间变化曲线。
图8为本申请一实施例的在向电熔接头施加内压载荷至电熔接头失效的过程中,电熔接头监测电阻随接头内压变化曲线。
图9为本申请一实施例的电熔接头监测电阻与接头损伤程度对比结果。
图10为本申请一实施例的电熔接头损伤监测过程电阻变化曲线。
图11为本申请另一个实施例的电熔接头损伤监测过程电阻变化曲线。
附图标号:管材1、电熔接头2、数据采集模块3、成对的监测电极4、分段式电阻丝5。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
附图1-11所描述的为本申请实施的较佳示意图,但是本申请所涉及的具体技术形式也可以以其他类似的方式实施,并不仅限于附图1-11所给出的框架和顺序。更精确地讲,本申请所给出的实施流程是本申请所涉及技术领域中较为透彻全面理解本申请技术路线的较好方式。
除本申请另有定义词汇外,本申请中所使用的全部技术和科学术语均与本申请技术领域内所属技术人员通常理解的内容相同。本申请内容和实施路线中所使用的术语只是为了更好地表达本申请技术流程中具体实施的步骤,并不仅仅局限在所描述的术语内。
在合理情况下,本申请公开的实施方式中各个实例是可以互相组合的。
为提高电熔接头的承压强度,同时实现电熔接头的安全监测,发明人团队首次提出了具有应变自监测功能的短碳纤维增强塑料电熔管件(参考中国申请专利ZL201910147997.6)。该申请通过在聚合物基体中填充碳纤维以增强电熔接头本体材料的力学强度,由此提升电熔接头的承压强度。另一方面,利用碳纤维优异的导电性,在电熔接头本体材料中形成微观导电网络,使得电熔接头本体材料具有电学传感特性,由此实现了基于电阻测量的电熔接头应变自监测。目前对该类型电熔接头的研究主要集中在电熔接头的制备工艺(参考中国申请专利ZL201911289769.9)、电极布置(参考中国申请专利ZL202110042251.6)、模具结构(参考中国申请专利ZL202010793068.5和ZL201911403395.9)等方面,以提升电熔接头的结构增强效果和监测电阻的可靠性。
现有的基于电阻测量的电熔接头监测研究中,能够监测得到内压作用下电熔接头的电阻变化。然而,目前还未公开一种有效的根据电熔接头监测电阻变化来判断电熔接头的损伤状态的方法。这是由于导电复合材料电熔接头的损伤监测效果受电熔接头本 体材料性能、接头结构及载荷类型等多种因素的影响。例如,材料方面,电熔接头本体的导电复合材料的体积电导率会随着材料的应力水平发生变化;结构方面,电熔接头作为结构不连续处,内冷焊区存在明显的应力集中;受载方面,电熔接头承受内压、轴向载荷以及重力等复杂载荷作用。另一方面,实现电熔接头损伤监测的前提是能够量化表征电熔接头的损伤程度,目前无论是聚合物电熔接头还是导电复合材料电熔接头,均缺乏电熔接头的损伤量化表征研究。
因此,本申请旨在提出一种非金属管道电熔接头损伤监测方法及系统,基于该方法及系统实时监测并评估电熔接头的损伤状态,提升非金属管道的安全性和可靠性。
图1是本申请一实施例的电熔接头损伤监测系统框架图。参考图1,在一个实施例中该电熔接头损伤监测系统用于可导电非金属管道电熔接头的损伤监测,该电熔接头损伤监测系统包括:数据采集模块3、数据库、数据处理模块以及损伤判断模块。
在一个实施例中,管材1是非金属管道,或非金属复合管。例如可以是聚乙烯管道、金属增强聚乙烯管道、PVC管道、聚丙烯管道、聚酰胺管道等。
数据采集模块3可以测量电熔接头监测电阻、采集电阻数据和传输电阻数据,该数据采集模块3可以同时测量多个电熔接头的监测电阻,以减少管线中数据采集模块3的数量。
数据采集模块3通过一对监测电极连接到待监测的电熔接头2,用于采集两个监测电极之间电熔接头的电阻数据。待监测的电熔接头是可导电非金属管道电熔接头。
在一个实施例中,待监测的电熔接头2本体材料为填充型导电复合材料,基体为聚乙烯和聚丙烯等聚合物材料,填料为碳纳米管、碳纳米纤维、碳纤维、金属纤维、镀金属玻璃纤维、石墨烯、炭黑等导电填料。均匀分布在聚合物基体中的导电填料能够形成微观的导电网络,提升复合材料的导电性。通过在电熔接头表面粘贴成对的监测电极,可以测量得到两个监测电极之间电熔接头本体材料的电阻。当电熔接头发生损伤时,电熔接头内部会出现塑性变形或者微观裂纹等缺陷,导致电熔接头本体材料中的微观导电网络发生破坏,从而降低电熔接头本体材料的导电性,由此测量得到的电熔接头监测电阻会随之增加。
在一个优选的实施例中,待监测的电熔接头可以是发明人团队在先前研究中提出的具有应变自监测功能的短碳纤维增强塑料电熔管件,包括但不限于在中国申请专利ZL201910147997.6、ZL201911289769.9、ZL202110042251.6、ZL202010793068.5以及ZL201911403395.9等专利文献中公开的已知电熔接头。以Dn 110mm电熔接头为例,电熔接头本体材料为短碳纤维增强聚乙烯导电复合材料。由于碳纤维材料优异的导电性,填充在聚乙烯基体中的碳纤维形成微观的导电网络,能够提升复合材料的导电性。此外,待监测的电熔接头还可以是其他类型的可导电电熔管件。
图2是本申请一实施例的电熔接头示意图。如图2所示,在电熔接头表面粘贴成对的监测电极4,可以测量得到两个监测电极之间电熔接头本体材料的电阻。当电熔接头发生损伤时,电熔接头内部会出现塑性变形或者微观裂纹等缺陷,导致电熔接头本体材料中的微观导电网络发生破坏,从而降低电熔接头本体材料的导电性,由此测量得到的电熔接头监测电阻会随之增加。基于此,通过测量电熔接头的电阻变化,可以监测电熔接头的损伤状态。
图3(a)是本申请另一个实施例的电熔接头示意图,图3(b)为图3(a)中的电熔接头的剖面图。如图3(a)、图3(b)所示,可以将电熔接头中的焊接电阻丝设置为分段式电阻丝5,两段电阻丝相互独立、互不导通,采用电阻丝作为监测电极;由此可以测量得到监测电极之间电熔接头本体材料的电阻。
在本申请中,数据库用于储存第一损伤临界值、第二损伤临界值、数据采集模块3采集的电阻数据、数据处理模块处理的数据、损伤判断模块处理的数据。
在本申请的一个实施例中,第一损伤临界值和第二损伤临界值为表征电熔接头在发生损伤时的临界数值,与电熔接头本身的材料性质与构造相关,通常是固定的值。优选的,第一损伤临界值和第二损伤临界值可以从以下数值中选择两个不同的值:损伤时刻的监测电阻值、损伤时刻的监测电阻的变化值、损伤时刻的监测电阻值的变化率、损伤时刻的监测电阻相对变化曲线斜率的变化率等。
在一些实施例中,损伤时刻的监测电阻值为在损伤时刻监测到的电阻值;损伤时刻的监测电阻的变化值为损伤时刻的监测电阻值减去初始电阻值。在一些实施例中,损伤时刻的监测电阻值的变化率为损伤时刻的监测电阻的变化值的绝对值与初始电阻值的比值;损伤时刻的监测电阻相对变化曲线斜率的变化率为电熔接头在损伤时刻的前后各一个时间周期内监测电阻相对变化曲线的斜率的比值。
这样的选择其中一个优势在于,上述参数仅需通过测量电熔接头监测电阻获得或者通过测量电熔接头监测电阻后进行计算获得;而通过采用第一损伤临界值和第二损伤临界值两个参数作为损伤判断的临界值,相比采用单个数值能够更加精准地监测判断出电熔接头的损伤。具体的说,由于电熔接头在生产制造过程中,填充型导电复合材料的分布尚无法精准控制,因此不同电熔接头的初始电阻值、损伤时刻电阻值可能并不相同。如果仅参考单个临界值作为损伤判断的标准,则精度无法得到很好的控制。
此外,这些数值可以通过预先对于同一批次的电熔接头试样进行爆破试验计算来获得,并预先储存在数据库中。其中电熔接头试样与待监测的电熔接头的材料、结构基本相同,可以是与待监测的电熔接头采用相同工艺、同一批次生产获得的电熔接头。优选的,第一损伤临界值和第二损伤临界值为,通过对多个电熔接头试样施加载荷,监测并计算多个电熔接头试样在损伤时刻的平均值或者最小值而获得。通过多次的实验计算获得的平均值能够相对更加准确地表征电熔接头发生损伤时的临界值;而通过多次的实验计算获得的最小值则表征电熔接头在对安全性能提出更高的要求场合下采用的参考值。
在一个优选实施例中,第一损伤临界值可以为损伤时刻的监测电阻值的变化率,其中,损伤时刻的监测电阻值的变化率为在损伤时刻监测到的电阻值相对初始电阻值的变化绝对值与初始电阻值的比值;第二损伤临界值可以为损伤时刻的监测电阻相对变化曲线斜率的变化率,其中,损伤时刻的监测电阻相对变化曲线斜率的变化率为在损伤时刻的前后各一个时间周期内监测电阻相对变化曲线的斜率的比值。
在另一个实施例中,第一损伤临界值可以为损伤时刻的监测电阻值,其中,损伤时刻的监测电阻值为在损伤时刻监测到的电阻值;第二损伤临界值可以为损伤时刻的监测电阻的变化值,其中,损伤时刻的监测电阻的变化值为损伤时刻监测到的电阻值减去初始电阻值。
数据处理模块用于处理数据采集模块3采集的电阻数据,以获得第一监测值和第二监测值。第一监测值和第二监测值是与第一损伤临界值和第二损伤临界值对应的电熔管件的实时监测值,同样是从以下数值中选择两个不同的值:监测电阻值、监测电阻的变化值、监测电阻值的变化率、监测电阻相对变化曲线斜率的变化率等。
损伤判断模块用于将第一监测值与第一损伤临界值对比、以及将第二监测值与第二损伤临界值对比;当第一监测值大于第一损伤临界值和/或第二监测值大于第二损伤临界值时,损伤判断模块判断电熔接头发生了损伤。
在一个实施例中,电熔接头损伤监测系统连接到多个电熔接头,同时执行多个电熔 接头的损伤监测。
在一个实施例中,本申请的电熔接头损伤监测系统还包括结果展示模块,结果展示模块用于接收并展示损伤判断模块发送的信息。结果展示模块可以是LED屏、液晶显示器,平板电脑,手机或者其他智能终端。
图4是本申请一实施例的电熔接头损伤监测方法流程图。参考图4,本申请提供一种电熔接头损伤监测方法,包括以下步骤S101至S106。
S101,对电熔接头试样施加载荷,记录电熔接头试样的电阻值数据并储存入数据库。电阻值数据至少包括:初始电阻值、损伤时刻电阻值以及从初始时刻到损伤时刻之间多个时间周期内的电阻变化值。
S102,对电阻值数据进行计算获得电熔接头试样损伤时刻的第一损伤临界值、第二损伤临界值,并储存入数据库。
S103,对待监测的电熔接头进行监测,获得第一监测值和第二监测值。
S104,将第一监测值与第一损伤临界值对比、以及将第二监测值与第二损伤临界值对比;当第一监测值大于第一损伤临界值和/或第二监测值大于第二损伤临界值时,损伤判断模块判断电熔接头发生了损伤。
S105,输出监测结果。
在一些实施例中,S101中的电阻值数据的储存步骤可以在S102之后,本申请对此不进行限制。
对于第一损伤临界值、第二损伤临界值等,在前文已经记载,在此不做赘述。在电熔接头损伤监测中,对电熔接头损伤程度的准确量化表征是一项基础工作;以下将对量化表征电熔接头损伤程度进一步进行详细说明。
图5是本申请一实施例的电熔接头损伤量化表征流程图。如图5所示,电熔接头损伤程度可以通过对电熔接头进行内压加载产生不同程度的接头损伤,建立接头内压与接头损伤程度的关联关系来进行量化表征,包括以下步骤A-C。
步骤A.电熔接头损伤引入:通过对电熔接头进行内压加载,在接头中产生损伤。
步骤B.电熔接头强度测量:通过爆破试验测量电熔接头产生损伤后的承压强度。
步骤C.电熔接头损伤程度计算:将电熔接头的损伤程度定义为接头承压强度的降低程度,由此计算得到内压加载后电熔接头的损伤程度:
Figure PCTCN2022141897-appb-000002
其中,D i代表进行内压为iMpa的内压加载后电熔接头的损伤程度,范围在0~1之间,0代表无损伤,1代表完全损伤;P i代表在进行内压为iMpa的内压加载后电熔接头的承压强度;P max代表电熔接头没有损伤时的最高承压强度。
对多个接头重复上述A-C步骤,由此得到不同加载内压下的电熔接头损伤程度。
图6(a)和图6(b)为本申请一实施例的电熔接头损伤量化表征结果。其中,图6(a)为电熔接头承压强度与接头内压关系曲线,图6(b)为电熔接头损伤程度与接头内压关系曲线。如图6(a)和图6(b)所示,随着加载内压增加,在内压0~4MPa的阶段,接头承压强度先是经过平稳的过程,这期间的接头承压强度变化较小;在内压为5~7MPa的阶段,接头承压强度开始出现较大变化,接头出现损伤;在内压达到8MPa时,接头承压强度接近0,接头基本完全损伤。由此可知,对于加载内压为2.49MPa和5.04MPa的电熔接头,其承压强度并未见明显降低。随着加载内压继续增加, 如对于加载内压为6.50MPa和7.17MPa的电熔接头,电熔接头的承压强度出现了明显的降低。
上述结果说明对电熔接头进行内压加载会产生接头损伤,导致接头承压强度降低。加载内压越大,接头承压强度降低越明显,说明接头的损伤程度越大。为了量化分析不同加载内压引入的接头损伤程度,根据公式(1)计算了电熔接头的损伤程度。
在加载内压较低时,电熔接头承压强度基本没有降低,其对应的接头损伤程度基本为0。当加载内压达到约6MPa时,电熔接头承压强度开始出现明显降低,其对应的接头损伤程度明显增加。加载内压继续增加时,电熔接头的损伤程度迅速增加。
通过上述损伤量化表征试验建立了电熔接头加载内压与接头损伤程度的关联关系。若认为电熔接头损伤程度超过0.1(也可以取其它值)时代表接头出现明显损伤,则根据损伤量化表征结果此时对应的接头内压为6.15MPa。
在以下的实际案例中,采用电阻相对变化的临界值作为第一损伤临界值、采用电阻相对变化曲线斜率的变化率临界值作为第二损伤临界值来进一步说明本申请的电熔接头损伤监测系统及方法。
图7为本申请一实施例的在向电熔接头施加内压载荷至电熔接头失效的过程中,电熔接头的监测电阻以及接头内压随时间变化曲线。将电熔接头的监测电极连接至电阻测量系统,对电熔接头施加内压载荷至接头失效,从而在电熔接头中产生不同程度的损伤,采集并记录此过程中的接头监测电阻变化,结果如图7所示。图7为电熔接头爆破过程中测量得到的电熔接头监测电阻相对变化曲线。电熔接头爆破过程的监测电阻相对变化曲线具有明显的规律性。在低压阶段,接头监测电阻变化很小,基本可以忽略。电熔接头失效之前,接头监测电阻表现为持续快速的上升。电熔接头的监测电阻在加载初期和接头即将失效之前表现出了两种截然不同的变化趋势,这表明电熔接头在监测电阻曲线的拐点处可能出现了损伤,导致了接头监测电阻快速增加。
根据图7中电熔接头监测电阻相对变化曲线,可以计算任意时间范围内的监测电阻相对变化曲线的斜率,用于计算电熔接头出现损伤时监测电阻相对变化曲线斜率变化率的临界值K c
图8为本申请一实施例的在向电熔接头施加内压载荷至电熔接头失效的过程中,电熔接头监测电阻随接头内压变化曲线。将上述电熔接头爆破过程中测量得到的监测电阻随时间变化曲线转化为监测电阻随内压变化曲线,结果如图8所示。
图9为本申请一实施例的电熔接头监测电阻与接头损伤程度对比结果。如图9所示,电熔接头监测电阻相对变化曲线与接头损伤程度曲线的变化趋势基本吻合。在电熔接头内压较低时,电熔接头监测电阻的相对变化基本可以忽略,对应的是电熔接头损伤程度接近于这表明接头处于安全状态。电熔接头失效之前,接头的损伤程度不断增加至爆破失效发生时的1,这一阶段对应的电熔接头监测电阻也出现持续快速的上升。结果表明电熔接头的监测电阻变化与接头的损伤程度具有良好的对应关系,测量得到的电熔接头监测电阻变化能够用于表征电熔接头的损伤。
若是认为当电熔接头损伤程度超过0.1(也可以取其它值)时接头出现了明显损伤,根据损伤量化表征结果此时对应的接头内压为6.15MPa。从图9的对比结果可以得到此时监测电阻相对变化率为4.9×10 3%,由此确定了接头出现损伤时的监测电阻相对变化ΔR c为4.9×10 3%。可以根据多个电熔接头爆破过程的监测电阻相对变化曲线得到多个临界值,通过计算这些结果的平均值或者取其中的最小值确定ΔR c
若是认为当电熔接头损伤程度超过0.1(也可以取其它值)时接头出现了明显损伤, 根据损伤量化表征结果此时对应的接头内压为6.15MPa。从图7中可以确定此时对应的测试时间约为40s。由此计算该时刻前后Δt(例如,Δt取为5s)时间范围内监测电阻相对变化曲线的斜率K 1和K 2。对于图7中的曲线,K 1为35~40s时间范围内曲线的斜率,由下式计算为320.11%s -1;K 2为40~45s时间范围内曲线的斜率,由下式计算为1099.19%s -1
Figure PCTCN2022141897-appb-000003
Figure PCTCN2022141897-appb-000004
由此计算得到电熔接头出现损伤时刻监测电阻相对变化曲线斜率变化率的临界值K c为:
Figure PCTCN2022141897-appb-000005
根据上述确定了接头出现损伤时的监测电阻相对变化的临界值ΔR c(即第一损伤临界值),以及监测电阻相对变化曲线斜率变化率的临界值K c(即第二损伤临界值)。
图10为本申请一实施例的电熔接头损伤监测过程电阻变化曲线。如图10所示,在电熔接头的损伤监测过程中,电熔接头的监测电阻相对变化值不断增加。数据处理模块实时计算监测电阻相对变化值ΔR t作为第一监测值,实时计算电熔接头监测电阻相对变化曲线的斜率变化率K t作为第二监测值。在时间t=341秒时刻,由于电熔接头中出现了损伤缺陷,导致监测电阻出现了快速增加,此时计算得到的电熔接头的第二监测值K t=5.82。虽然此时电熔接头的第一监测值ΔR t=1.9×10 3%,远小于电熔接头的第一损伤临界值ΔR c(ΔR c=4.9×10 3%),但是由于第二监测值K t大于第二损伤临界值K c(K c=3.43),损伤判断模块即判断此时电熔接头出现了损伤。
图11为本申请另一个实施例的电熔接头损伤监测过程电阻变化曲线。如图11所示,在电熔接头的损伤监测过程中,电熔接头的监测电阻相对变化值不断增加。数据处理模块实时计算监测电阻相对变化值ΔR t作为第一监测值,实时计算电熔接头监测电阻相对变化曲线的斜率变化率K t作为第二监测值。在电熔接头整个测试过程中,监测电阻相对变化值平缓增加,没有出现曲线的突增。但是在长时间的服役载荷作用下,接头内部还是会缓慢地出现裂纹以及裂纹扩展等损伤,导致电熔接头的监测电阻值缓慢增加。在t=796分钟时刻,电熔接头的监测电阻值超过了临界值,即此时的电熔接头的第一监测值ΔR t开始超过了电熔接头的第一损伤临界值(ΔR c=4.9×10 3%)。虽然此时第二监测值K t=1.06,远小于电熔接头的第二损伤临界值K c(K c=3.43),但是由于第一监测值ΔR t大于第一损伤临界值ΔR c,损伤判断模块即判断此时电熔接头出现了损伤。
采用类似的方法可以计算任意时刻的电熔接头监测电阻相对变化和监测电阻相对变化曲线斜率变化率。基于此可以获得电熔接头在任意t时刻的第一监测值和第二监测值;将第一监测值与第一损伤临界值对比、以及将第二监测值与第二损伤临界值对比;当第一监测值大于第一损伤临界值和/或第二监测值大于第二损伤临界值时,损伤判断模块判断电熔接头发生了损伤。由此,即可判断电熔接头的损伤状态。
对于本领域技术人员来说,根据上述实施例已经可以充分理解,即第一损伤临界值和第二损伤临界值从以下数值中选择两个不同的值进行组合来具体实施本申请的技术方案:损伤时刻的监测电阻值、监测电阻的变化值、监测电阻值的变化率、监测电阻 相对变化曲线斜率的变化率。由此可以获得第一损伤临界值和第二损伤临界值的多种组合形式,本领域技术人员根据上述实施例已经能够充分理解,其具体实施方式与上述应用案例基本类似,在此不做赘述。
与以往的相关技术相比,本申请实施例中的一个或多个技术方案,至少具有如下技术效果或优点:
(1)本申请提出的电熔接头损伤监测系统和方法利用电熔接头本体材料的传感特性,在无需外接传感器的情况下实现了电熔接头损伤状态的实时监测与评估,提升了非金属管道的安全性和可靠性;
(2)本申请提出的电熔接头损伤监测系统和方法通过采用不同维度的多个临界值来进行电熔接头损伤监测,能够克服单个临界值监测判断带来的不确定性和精准度不高的问题;
(3)本申请通过选择组合形式的损伤临界值进行判断,既可以实时监测短时间内突发损伤,又能够监测在长时间服役载荷作用下损伤的萌生与慢速扩展;
(4)本申请量化表征了电熔接头的损伤程度,结合电熔接头的监测电阻测量数据,获取了用于电熔接头损伤评估的关键参数:监测电阻值的变化率和监测电阻相对变化曲线斜率的变化率,并确定了其损伤临界值,为基于电阻测量的电熔接头损伤判断提供基础数据。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“优选实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽 度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,本申请实施例中所使用的“第一”、“第二”等术语,仅用于描述目的,而不可以理解为指示或者暗示相对重要性,或者隐含指明本实施例中所指示的技术特征数量。由此,本申请实施例中限定有“第一”、“第二”等术语的特征,可以明确或者隐含地表示该实施例中包括至少一个该特征。在本申请的描述中,词语“多个”的含义是至少两个或者两个及以上,例如两个、三个、四个等,除非实施例中另有明确具体的限定。
在本申请中,除非实施例中另有明确的相关规定或者限定,否则实施例中出现的术语“安装”、“相连”、“连接”和“固定”等应做广义理解,例如,连接可以是固定连接,也可以是可拆卸连接,或成一体,可以理解的,也可以是机械连接、电连接等;当然,还可以是直接相连,或者通过中间媒介进行间接连接,或者可以是两个元件内部的连通,或者两个元件的相互作用关系。对于本领域的普通技术人员而言,能够根据具体的实施情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种电熔接头损伤监测系统,用于可导电非金属管道电熔接头的损伤监测,其中,所述损伤监测系统包括:
    数据采集模块,通过一对监测电极连接到待监测的电熔接头,用于采集两个所述监测电极之间所述电熔接头的电阻数据;
    数据库,用于储存第一损伤临界值、第二损伤临界值、所述数据采集模块采集的所述电阻数据;
    数据处理模块,用于处理所述数据采集模块采集的所述电熔接头的电阻数据,获得第一监测值和第二监测值;所述第一监测值和所述第二监测值为分别与所述第一损伤临界值和所述第二损伤临界值相对应的实时监测值;以及
    损伤判断模块,用于将所述第一监测值与所述第一损伤临界值对比、以及将所述第二监测值与所述第二损伤临界值对比,并当所述第一监测值大于所述第一损伤临界值和/或所述第二监测值大于所述第二损伤临界值时,判断所述电熔接头发生了损伤,
    其中,所述第一损伤临界值和所述第二损伤临界值为从以下数值中选择的两个不同的值:
    损伤时刻的监测电阻值,为在损伤时刻监测到的电阻值;
    损伤时刻的监测电阻的变化值,为所述损伤时刻的监测电阻值减去初始电阻值;
    损伤时刻的监测电阻值的变化率,为所述损伤时刻的监测电阻的变化值的绝对值与所述初始电阻值的比值;
    损伤时刻的监测电阻相对变化曲线斜率的变化率,为电熔接头在损伤时刻的前后各一个时间周期内监测电阻相对变化曲线的斜率的比值;
    其中,所述第一损伤临界值和所述第二损伤临界值是基于至少一个电熔接头试样的电阻变化曲线和损伤时刻内压值确定的;
    针对每个所述电熔接头试样,所述电熔接头试样的损伤时刻内压值是基于用于对所述电熔接头试样的损伤程度进行量化表征的损伤程度-内压变化曲线确定的,
    Figure PCTCN2022141897-appb-100001
    D i代表进行内压为iMpa的内压加载后所述电熔接头的损伤程度,
    P i代表在进行内压为iMpa的所述内压加载后所述电熔接头的承压强度,
    P max代表所述电熔接头没有损伤时的最高承压强度;
    针对每个所述电熔接头试样,所述电熔接头试样的电阻变化曲线是通过对所述电熔接头试样施加内压载荷,并记录所述电熔接头试样的电阻值数据而获得的,所述电阻值数据至少包括初始电阻值、损伤时刻电阻值以及从初始到损伤时刻之间多个时间周期内的电阻变化值。
  2. 根据权利要求1所述的电熔接头损伤监测系统,其中,所述电熔接头包括聚合物基体以及导电填料,
    所述导电填料均匀分布在所述聚合物基体中形成导电网络,
    所述聚合物基体包含聚乙烯、聚丙烯、聚氯乙烯、聚酰胺中的至少一种;
    所述导电填料包含碳纳米管、碳纳米纤维、碳纤维、金属纤维、镀金属玻璃纤维、石墨烯、炭黑中的至少一种。
  3. 根据权利要求1所述的电熔接头损伤监测系统,其中,所述电熔接头试样与所述待监测的电熔接头的材料、结构基本相同。
  4. 根据权利要求3所述的电熔接头损伤监测系统,其中,所述第一损伤临界值和所述第二损伤临界值为,通过对多个电熔接头试样施加内压载荷监测并计算所述多个电熔接头试样在损伤时刻的平均值或者最小值而获得。
  5. 根据权利要求4所述的电熔接头损伤监测系统,其中,
    所述第一监测值为所述电熔接头的监测电阻值的变化率;
    所述第二监测值为所述电熔接头的监测电阻相对变化曲线斜率的变化率。
  6. 根据权利要求1所述的电熔接头损伤监测系统,其中,所述损伤监测系统连接到多个所述电熔接头,同时执行多个所述电熔接头的损伤监测。
  7. 根据权利要求1所述的电熔接头损伤监测系统,还包括结果展示模块,
    所述结果展示模块用于接收并展示所述损伤判断模块发送的信息。
  8. 一种电熔接头损伤监测方法,包括:
    对电熔接头试样施加内压载荷,并记录各所述电熔接头试样的电阻值数据,以获得各所述电熔接头试样的电阻变化曲线,其中,所述电阻值数据至少包括初始电阻值、损伤时刻电阻值以及从初始到损伤时刻之间多个时间周期内的电阻变化值;
    通过对所述电熔接头试样进行内压加载以在各所述电熔接头试样中产生损伤,并通过爆破试验测量各所述电熔接头试样产生损伤后的承压强度P i,以得到各所述电熔接头试样的用于对内压加载后的损伤程度D i进行量化表征的损伤程度-内压变化曲线;
    通过各所述电熔接头试样的所述电阻变化曲线和所述损伤程度-内压变化曲线获得各所述电熔接头试样损伤时刻的第一损伤临界值、第二损伤临界值,并储存入数据库;
    通过将一对监测电极连接到待监测的电熔接头进行监测,采集所述电熔接头的电阻数据,并基于所述电阻数据获得第一监测值和第二监测值;
    将所述第一监测值与所述第一损伤临界值对比、以及将所述第二监测值与所述第二损伤临界值对比;当所述第一监测值大于所述第一损伤临界值和/或所述第二监测值大于所述第二损伤临界值时,判断为所述电熔接头发生了损伤。
  9. 根据权利要求8所述的电熔接头损伤监测方法,其中,
    所述第一损伤临界值为,在损伤时刻监测到的电阻值相对初始电阻值的变化绝对值与所述初始电阻值的比值;
    所述第二损伤临界值为,在损伤时刻的前后各一个时间周期内监测电阻相对变化曲线的斜率的比值;
    所述第一监测值为所述电熔接头的监测电阻值的变化率;
    所述第二监测值为所述电熔接头的监测电阻相对变化曲线斜率的变化率。
  10. 根据权利要求8所述的电熔接头损伤监测方法,其中,所述电熔接头试样与所述待监测的电熔接头的材料、结构基本相同。
PCT/CN2022/141897 2022-07-01 2022-12-26 一种电熔接头损伤监测系统及方法 WO2024001118A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/111,315 US11808739B1 (en) 2022-07-01 2023-02-17 Monitoring damage of electrofusion joints

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210768293.2 2022-07-01
CN202210768293.2A CN114813848B (zh) 2022-07-01 2022-07-01 一种电熔接头损伤监测系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/111,315 Continuation US11808739B1 (en) 2022-07-01 2023-02-17 Monitoring damage of electrofusion joints

Publications (1)

Publication Number Publication Date
WO2024001118A1 true WO2024001118A1 (zh) 2024-01-04

Family

ID=82523418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141897 WO2024001118A1 (zh) 2022-07-01 2022-12-26 一种电熔接头损伤监测系统及方法

Country Status (2)

Country Link
CN (1) CN114813848B (zh)
WO (1) WO2024001118A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11808739B1 (en) 2022-07-01 2023-11-07 Zhejiang University Monitoring damage of electrofusion joints
CN114813848B (zh) * 2022-07-01 2022-10-18 浙江大学 一种电熔接头损伤监测系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019718A1 (en) * 1994-12-20 1996-06-27 University Of Bradford Fused strain gauge and monitored pipe system
CN101769728A (zh) * 2010-02-02 2010-07-07 浙江大学 聚乙烯管道热熔接头焊接焊缝区检测方法
CN108362771A (zh) * 2018-02-13 2018-08-03 京东方科技集团股份有限公司 一种损伤监测装置及系统
CN109101742A (zh) * 2018-08-28 2018-12-28 南京航空航天大学 基于电阻抗成像损伤监测的复合材料强度预测方法
US20200088688A1 (en) * 2018-09-13 2020-03-19 JANA Corporation Apparatus and method for insepcting a fusion joint
CN111766272A (zh) * 2020-06-18 2020-10-13 合肥国轩高科动力能源有限公司 一种电池铝塑膜冲坑破损检测液及其检测方法
CN112361231A (zh) * 2021-01-13 2021-02-12 浙江大学 具有自传感智能监测功能的电熔管件及其加工与监测方法
CN114200019A (zh) * 2021-11-10 2022-03-18 深圳市燃气集团股份有限公司 一种聚乙烯管道电熔接头相控阵测试方法及测试系统
CN114813848A (zh) * 2022-07-01 2022-07-29 浙江大学 一种电熔接头损伤监测系统及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11254537A (ja) * 1998-03-09 1999-09-21 Kubota Corp 電気融着の異常検出方法および装置
JP3996707B2 (ja) * 1998-09-10 2007-10-24 積水化学工業株式会社 電気融着継手の通電異常検知装置
JP2003320587A (ja) * 2002-05-08 2003-11-11 Mitsui Chemicals Inc 電気融着方法及び装置と電気融着継手
CN102478533A (zh) * 2010-11-22 2012-05-30 大连创达技术交易市场有限公司 一种复合材料损伤自诊断系统
CN102539325B (zh) * 2010-12-08 2014-03-26 华东理工大学 基于应变监测的焦碳塔结构损伤监测方法
CN102914427B (zh) * 2012-10-14 2015-05-20 北京工业大学 一种多轴随机载荷下疲劳损伤评估方法
EP3045888A1 (en) * 2015-01-13 2016-07-20 BAE Systems PLC Structural damage detection
CN109827014B (zh) * 2019-02-28 2020-07-14 浙江大学 具有应变自监测功能的碳纤维增强塑料电熔管件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019718A1 (en) * 1994-12-20 1996-06-27 University Of Bradford Fused strain gauge and monitored pipe system
CN101769728A (zh) * 2010-02-02 2010-07-07 浙江大学 聚乙烯管道热熔接头焊接焊缝区检测方法
CN108362771A (zh) * 2018-02-13 2018-08-03 京东方科技集团股份有限公司 一种损伤监测装置及系统
CN109101742A (zh) * 2018-08-28 2018-12-28 南京航空航天大学 基于电阻抗成像损伤监测的复合材料强度预测方法
US20200088688A1 (en) * 2018-09-13 2020-03-19 JANA Corporation Apparatus and method for insepcting a fusion joint
CN111766272A (zh) * 2020-06-18 2020-10-13 合肥国轩高科动力能源有限公司 一种电池铝塑膜冲坑破损检测液及其检测方法
CN112361231A (zh) * 2021-01-13 2021-02-12 浙江大学 具有自传感智能监测功能的电熔管件及其加工与监测方法
CN114200019A (zh) * 2021-11-10 2022-03-18 深圳市燃气集团股份有限公司 一种聚乙烯管道电熔接头相控阵测试方法及测试系统
CN114813848A (zh) * 2022-07-01 2022-07-29 浙江大学 一种电熔接头损伤监测系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAIDU: "Non-metallic Pipe Smart Fitting System", HIGHER EDUCATION EXPO CHINA, 10 May 2021 (2021-05-10), XP009552378, Retrieved from the Internet <URL:https://heec.cahe.edu.nu/school/science-project/1477.html> *

Also Published As

Publication number Publication date
CN114813848B (zh) 2022-10-18
CN114813848A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2024001118A1 (zh) 一种电熔接头损伤监测系统及方法
US11911975B2 (en) Carbon fiber reinforced plastic electrofusion fitting and a self-monitoring method of strain
Zhang et al. Elastic–plastic fracture analyses for pipeline girth welds with 3D semi-elliptical surface cracks subjected to large plastic bending
Ruggieri et al. Numerical modeling of ductile crack extension in high pressure pipelines with longitudinal flaws
Van Minnebruggen et al. Crack growth characterization in single-edge notched tension testing by means of direct current potential drop measurement
Chen et al. Fatigue performance and life estimation of automotive adhesive joints using a fracture mechanics approach
CN107283037B (zh) 核燃料棒电阻焊质量监测方法
CN110672417A (zh) 一种小冲杆试验获取超薄材料弹塑性性能的方法
Sarzosa et al. A numerical investigation of constraint effects in circumferentially cracked pipes and fracture specimens including ductile tearing
Almeida-Fernandes et al. Compressive transverse fracture behaviour of pultruded GFRP materials: Experimental study and numerical calibration
CN111767664A (zh) 基于能量释放率确定金属材料平面应变断裂韧性的方法
Zhang et al. Development of a burst capacity model for corroded pipelines considering corrosion defect width and a revised Folias factor equation
CN116817176B (zh) 一种基于数字孪生的储氢瓶健康状态在线监测方法及系统
CN111044186A (zh) 一种在役管道环焊缝缺陷安全评价及补强方式选择的方法
US11808739B1 (en) Monitoring damage of electrofusion joints
Zhu A new material failure criterion for numerical simulation of burst pressure of corrosion defects in pipelines
Zheng et al. Development of Nondestructive Test and Safety Assessment of Electrofusion Joints for Connecting Polyethylene Pipes
CN110174314B (zh) 高压加热器管程内壁塑性应变评估方法
Tandon et al. Evaluation of existing fracture mechanics models for burst pressure predictions, theoretical and experimental aspects
CN108229052B (zh) 基于flapw算法的磁记忆信号特征研究方法
Liu et al. Resistance and strain during tearing for tubular joints under reversed axial actions
Sarzosa et al. Experimental and numerical study on the ductile fracture response of X65 girth-welded joint made of Inconel 625 alloy
CN104198294B (zh) 一种压力管道元件非爆破型式试验方法
CN103472101B (zh) 一种疲劳损伤电化学检测装置及方法
Vargas et al. A level 3 BS7910 ECA for a titanium stress joint for use on a high motion floater in the Gulf of Mexico

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949194

Country of ref document: EP

Kind code of ref document: A1