CN109827014B - 具有应变自监测功能的碳纤维增强塑料电熔管件 - Google Patents
具有应变自监测功能的碳纤维增强塑料电熔管件 Download PDFInfo
- Publication number
- CN109827014B CN109827014B CN201910147997.6A CN201910147997A CN109827014B CN 109827014 B CN109827014 B CN 109827014B CN 201910147997 A CN201910147997 A CN 201910147997A CN 109827014 B CN109827014 B CN 109827014B
- Authority
- CN
- China
- Prior art keywords
- pipe fitting
- electric melting
- melting pipe
- electrodes
- carbon fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002844 melting Methods 0.000 title claims abstract description 181
- 230000008018 melting Effects 0.000 title claims abstract description 181
- 238000012544 monitoring process Methods 0.000 title claims abstract description 74
- 239000004918 carbon fiber reinforced polymer Substances 0.000 title claims abstract description 37
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 101
- 239000004917 carbon fiber Substances 0.000 claims abstract description 101
- 239000000463 material Substances 0.000 claims abstract description 72
- 230000008859 change Effects 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 36
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 17
- 230000008569 process Effects 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 52
- -1 polyethylene Polymers 0.000 claims description 40
- 239000004698 Polyethylene Substances 0.000 claims description 31
- 229920000573 polyethylene Polymers 0.000 claims description 31
- 238000001746 injection moulding Methods 0.000 claims description 20
- 229920003023 plastic Polymers 0.000 claims description 20
- 239000004033 plastic Substances 0.000 claims description 20
- 239000000843 powder Substances 0.000 claims description 18
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 14
- 238000003723 Smelting Methods 0.000 claims description 14
- 229910052709 silver Inorganic materials 0.000 claims description 14
- 239000004332 silver Substances 0.000 claims description 14
- 239000000853 adhesive Substances 0.000 claims description 13
- 230000001070 adhesive effect Effects 0.000 claims description 13
- 239000011265 semifinished product Substances 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 12
- 238000003466 welding Methods 0.000 claims description 12
- 230000004927 fusion Effects 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 10
- 239000004743 Polypropylene Substances 0.000 claims description 9
- 229920001155 polypropylene Polymers 0.000 claims description 9
- 238000005498 polishing Methods 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 7
- 239000004416 thermosoftening plastic Substances 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 3
- 238000010008 shearing Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 230000002829 reductive effect Effects 0.000 abstract description 6
- 230000009172 bursting Effects 0.000 abstract description 2
- 239000002131 composite material Substances 0.000 description 28
- 238000011068 loading method Methods 0.000 description 13
- 125000004122 cyclic group Chemical group 0.000 description 11
- 230000002787 reinforcement Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000000835 fiber Substances 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 9
- 238000005422 blasting Methods 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 238000011049 filling Methods 0.000 description 7
- 230000003014 reinforcing effect Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 229920001903 high density polyethylene Polymers 0.000 description 6
- 239000004700 high-density polyethylene Substances 0.000 description 6
- 230000006378 damage Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 230000002427 irreversible effect Effects 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005325 percolation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002990 reinforced plastic Substances 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 206010063385 Intellectualisation Diseases 0.000 description 1
- 244000137852 Petrea volubilis Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L47/00—Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
- F16L47/02—Welded joints; Adhesive joints
- F16L47/03—Welded joints with an electrical resistance incorporated in the joint
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/82—Testing the joint
- B29C65/8269—Testing the joint by the use of electric or magnetic means
- B29C65/8276—Testing the joint by the use of electric or magnetic means by the use of electric means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0001—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3404—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
- B29C65/342—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3472—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
- B29C65/3476—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/12—Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
- B29C66/122—Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/12—Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
- B29C66/124—Tongue and groove joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/52—Joining tubular articles, bars or profiled elements
- B29C66/522—Joining tubular articles
- B29C66/5221—Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/52—Joining tubular articles, bars or profiled elements
- B29C66/522—Joining tubular articles
- B29C66/5229—Joining tubular articles involving the use of a socket
- B29C66/52291—Joining tubular articles involving the use of a socket said socket comprising a stop
- B29C66/52292—Joining tubular articles involving the use of a socket said socket comprising a stop said stop being internal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/721—Fibre-reinforced materials
- B29C66/7212—Fibre-reinforced materials characterised by the composition of the fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/721—Fibre-reinforced materials
- B29C66/7214—Fibre-reinforced materials characterised by the length of the fibres
- B29C66/72143—Fibres of discontinuous lengths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/95—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
- B29K2023/0608—PE, i.e. polyethylene characterised by its density
- B29K2023/065—HDPE, i.e. high density polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2507/00—Use of elements other than metals as filler
- B29K2507/04—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2023/00—Tubular articles
- B29L2023/22—Tubes or pipes, i.e. rigid
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Branch Pipes, Bends, And The Like (AREA)
Abstract
本发明涉及热塑性塑料电熔管件领域,旨在提供一种具有应变自监测功能的碳纤维增强塑料电熔管件。包括:埋设了电阻丝的电熔管件本体,在电熔管件本体上设有分别接至电阻丝两端的两根接线柱;其特征在于,所述电熔管件本体是由填充了碳纤维的热塑性塑料制成;在电熔管件本体表面设置至少一组成对的电极,用于监测使用过程中因受热温升或内压变形导致的电阻值变化以实现对电熔管件的应变监测。本发明能够提高材料的弹性模量和屈服强度,具有更高的机械强度,更高的爆破压力,能够提升运行压力。可以监测到电熔管件的应变以及其内部的压力大小,不需要额外的设备,提升电熔管件的智能化与安全性。制造工艺简单,稳定性好,降低工艺成本。
Description
技术领域
本发明涉及热塑性塑料电熔管件领域,特别涉及采用碳纤维填充热塑性塑料制造的增强塑料电熔管件以及该电熔管件的应变自监测技术。
背景技术
与传统的金属管道相比,聚乙烯和聚丙烯等塑料及其复合材料管道具有柔性高、韧性好、耐腐蚀、使用寿命长和环保经济等优点,是公认的“绿色”管道。随着我国能源结构的调整和城市化进程的加速,塑料及其复合材料管道在国家重大工程中有着广泛的运用,如在滩涂和浅海石油工业领域作为高压跨接管,在城市燃气管网中作为燃气输送管道,在核电站中作为冷却水循环管道,同时其也是油井注水管和浅海中低压海洋软管的理想替代品。我国已成为塑料及其复合材料管道产量和需求量最大的国家,应用前景十分广阔。
在塑料管道的连接技术中,电熔管件焊接技术因其现场安装方便、操作标准化高、性能可靠等优点,是目前常用的连接方法。电熔管件焊接的工作原理是,使用电熔焊机将电熔管件通电后,利用电熔管件内电阻丝通电时产生的热量及膨胀力将管材的外壁与电熔管件熔融连接在一起。电熔管件不仅是塑料管道最主要的连接方式,而且也是连接增强塑料复合管的最主要手段。通过纤维增强层和钢丝网骨架增强,部分大口径塑性复合管材的承压能力已经突破6.4MPa,电熔管件的强度已经成为限制高压复合管发展的主要瓶颈。根据美国PPDC(Plastic Pipe Database Committee)对管道系统失效原因的分析,53%的管道失效发生在管件处。电熔接头的强度和可靠性是整个塑料压力管道系统的薄弱环节。
目前,电熔管件的增强方式主要有内置钢板增强层以及在电熔管件外壁缠绕纤维增强层。内置钢板增强层的电熔管件由于金属钢板是极性材料,而聚乙烯和聚丙烯等塑料基体大多是非极性材料,两种材料之间的粘接效果差,导致时常无法协同承载,降低了钢板的增强效果。而电熔管件外壁缠绕纤维增强层的方法只能增加管件的环向强度,轴向强度的提升不明显。
在提升电熔接头可靠性方面,国内外各大研究机构竞先研究各种在役无损安全评定技术,如聚乙烯管道电熔接头冷焊缺陷的超声检测方法(发明专利号:ZL200810121786.7)、电熔接头焊接质量检测与实现自动评判的方法(发明专利号:ZL201010270038.2)、超声相控阵检测聚乙烯电熔接头缺陷类型自动识别方法(发明专利号:201510666070.5)、聚乙烯管道电熔接头的微波扫描检测方法(CN102401804A)等。这些检测方法的提出,不断提升电熔接头的安全保障能力,并形成了首部聚乙烯管道电熔接头无损检测与安全评定标准(GB/T29460,GB/T29461)。然而这些检测手段无法在管件使用过程中实时监测电熔管件的运行状态,无法实时监控电熔管件的可靠性。
管道的结构健康监测技术可及时发现并预防管道中潜在失效风险。其中光纤传感技术是常用的管道监测手段,目前在桥梁等工程中得到了应用。但光纤信号受到温度、应变因素的影响难以解耦,且光纤材料易断裂,需要专门维护,限制了其应用。
在电熔接头的增强方面,考虑到短碳纤维增强聚合物能够提高材料的机械强度,采用该材料制造电熔管件是提升管件机械性能的有效方法。相关的研究包括,俄罗斯国立科技大学的Chukov研究发现填充碳纤维后聚乙烯材料的强度增加为原来的两倍。华东交通大学的李力等研究发现碳纤维填充含量为4.0%时,复合材料的拉伸强度、弹性模量分别增加了18.4%、208.0%。虽然碳纤维增强聚合物的机械性能已经有人研究,但是还没有人将碳纤维增强聚合物用于电熔管件的机械增强,也未有关于电熔管件的应变自监测相关的研究报道。
发明内容
本发明要解决的技术问题是,克服现有技术中的不足,提供一种具有应变自监测功能的碳纤维增强塑料电熔管件。
为解决上述技术问题,本发明采用的解决方案是:
提供一种具有应变自监测功能的碳纤维增强塑料电熔管件,包括埋设了电阻丝的电熔管件本体,在电熔管件本体上设有分别接至电阻丝两端的两根接线柱;所述电熔管件本体是由填充了碳纤维的热塑性塑料制成;在电熔管件本体表面设置至少一组成对的电极,用于监测使用过程中因受热温升或内压变形导致的电阻值变化以实现对电熔管件的应变监测。
本发明中,在电熔管件本体中,短切碳纤维的质量占比为5~20%。(电熔管件通常由聚乙烯或聚丙烯材质单独注塑而成,碳纤维的具体填充量需根据碳纤维的机械增强效果和材料应变监测灵敏度综合确定)
本发明中,所述电极是薄片电极、线状电极或条状电极;其中,薄片电极厚度为0.1~0.5mm并以粘贴方式固定在电熔管件本体表面,线状电极或条状电极嵌入在设于电熔管件本体表面的电极槽中。
本发明中,成对的电极沿电熔管件环向布置,用于监测管件轴向应变;或者成对的电极沿电熔管件轴向布置,用于监测管件环向应变;或者,成对电极之间与电熔管件环向或轴向呈小于45°的夹角,用于监测管件环向或轴向的应变。
本发明中,所述成对的电极至少有两组;当其中有一组为环向布置另一组为轴向布置时,两组成对电极之间不能发生交叉(交叉会导致电流紊乱影响测量准确性)。
本发明中,在每对电极中,两个电极的间距为1~5mm。
本发明进一步提供了前述碳纤维增强塑料电熔管件的制备方法,包括以下步骤:
(1)将热塑性塑料粉末和短切碳纤维放入机械搅拌器中,搅拌得到均匀的混配料;在混配料中,短切碳纤维的质量占比为5~20%;所述短切碳纤维的直径7~10μm,长度1~5mm;热塑性塑料粉末是指聚乙烯粉末或聚丙烯粉末;
(2)将混配料加入挤出机的料斗中,通过挤出机的螺杆剪切作用使得碳纤维均匀分布在塑料基体中,挤出得到线条状的复合物;然后通过造粒机造粒,得到复合物粒子;
(3)按常规的电熔管件制备工艺,经注塑机注塑成型得到电熔管件半成品;
(4)在电熔管件半成品的表面安装至少一对电极:在电熔管件半成品的表面需要粘贴电极的区域涂覆一层导电银胶,然后在导电银胶上粘贴薄片电极;或者,在注塑成型时使电熔管件半成品的表面具备电极槽,然后将线状电极或条状电极嵌入电极槽内;最终得到具有应变自监测功能的碳纤维增强塑料电熔管件。
本发明进一步提供了利用前述碳纤维增强塑料电熔管件实现应变监测的方法,包括:以导线将成对的电极分别连接至电阻仪的接线柱,在使用电熔焊机对电熔管件通电进行焊接时或管件内部存在介质压力时,记录电阻仪的阻值变化以实现对电熔管件的应变监测。
本发明还提供了另一种具有应变自监测功能的碳纤维增强塑料电熔管件,包括埋设了电阻丝的电熔管件本体,在电熔管件本体上设有分别接至电阻丝两端的两根接线柱;所述电熔管件本体是由填充了碳纤维的热塑性塑料制成,短切碳纤维在电熔管件本体中的质量占比为5~20%。
本发明进一步提供了利用该碳纤维增强塑料电熔管件实现应变监测的方法,包括以下步骤:
(1)在碳纤维增强塑料电熔管件的表面安装至少一对电极:
以砂纸打磨碳纤维增强塑料电熔管件表面,然后用导电银胶将厚度为0.1~0.5mm的薄片电极粘贴在打磨位置;或者,在碳纤维增强塑料电熔管件表面开设电极槽,然后将线状电极或条状电极嵌入电极槽内;
(2)以导线将成对的电极分别连接至电阻仪的接线柱,在使用电熔焊机对电熔管件通电进行焊接时或管件内部存在介质压力时,记录电阻仪的阻值变化以实现对电熔管件的应变监测。
本发明中,在电熔管件表面需要监测应变的位置粘贴电极,采用电阻仪测试两电极之间由于电熔管件材料应变而产生的电阻值变化;反之,根据电阻值的变化可以反推出电熔管件在该位置处的应变以及电熔管件内部的压力。可以在管件表面只粘贴一对电极,也可以粘贴多对电极,可以根据需要将电极粘贴在电熔管件表面任何位置,用以监测管件各个位置的应变。
发明原理描述:
本发明通过在塑料基体中填充短切碳纤维提高塑料电熔管件的强度。由于碳纤维具有很高的弹性模量和屈服强度,均匀分布在塑料基体中的碳纤维能够承担塑料基体传递的外部载荷,从而提升电熔管件的机械强度。同时,由于碳纤维具有一定的导电性,当碳纤维的含量达到渗流阈值附近的某个区间时,基体中的碳纤维由于相互之间接触形成导电网络,使得材料具有导电性。在管线中,管线内部的压力会产生电熔管件材料的变形,使得材料内部的碳纤维导电网络中碳纤维之间的间距增加,材料的导电性降低,电阻率增加,通过测试材料电阻实现电熔管件的应变监测。
聚合物的机械强度随着碳纤维填充含量的增加先上升后减小,而对于应变监测,当碳纤维含量在其渗流阈值附近变化时,材料具有不同的应变监测灵敏度。对于聚乙烯和聚丙烯等塑料,材料的机械增强和应变监测两者对应的最佳碳纤维填充含量往往并不完全一致。因此,为了制造具有应变自监测功能的碳纤维增强塑料电熔管件,需要从材料加工工艺、纤维表面处理、纤维长径比等方面进行实验研究和参数调整,以确定最佳的碳纤维填充含量,兼顾到电熔管件的机械增强和应变监测。为此,本发明通过制备不同碳纤维含量的聚乙烯复合材料,通过拉伸实验、电阻率测试和应变监测测试,确定机械增强的最佳碳纤维含量和应变监测的最佳碳纤维含量,综合考虑机械增强和应变监测这两方面的效果确定制造电熔管件的碳纤维含量。
为了实现电熔管件的应变自监测,在电熔管件表面粘贴电极,通过测量电极之间的电阻值可以监测到电熔管件的应变以及其内部的压力大小。该应变监测方法只需要在电熔管件表面粘贴两片电极,便可以监测任意位置的应变,不需要额外的设备,可以实现电熔管件在使用过程中的应变自监测,提升电熔管件的智能化与安全性。
与现有技术相比,本发明的有益效果是:
(1)本发明采用碳纤维填充热塑性塑料,能够提高材料的弹性模量和屈服强度,采用该复合材料制造的电熔管件具有更高的机械强度,更高的爆破压力,能够提升聚乙烯和聚丙烯等塑料及复合管线的运行压力。
(2)碳纤维的添加提升了塑料材料的导电性,通过测量粘贴在电熔管件表面的电极之间的电阻值可以监测到电熔管件的应变以及其内部的压力大小。该应变监测方法只需要在电熔管件表面粘贴两片电极,便可以监测任意位置的应变,不需要额外的设备,可以实现电熔管件在使用过程中的应变自监测,提升电熔管件的智能化与安全性。
(3)本发明中的电熔管件采用注塑方法一体成型,无需额外的钢板或纤维增强层,制造工艺简单,稳定性好,降低工艺成本,克服了传统钢板增强和纤维增强管件中工艺复杂、存在两种材料之间的粘接缺陷、以及只能环向增强,轴向无法增强等缺点。
附图说明
图1为本发明专利提供的电熔管件结构示意图。
附图标记:1钢丝网骨架塑料管材,2电熔管件本体,3电阻丝,4接线柱,5电极。
图2为图1中A区域的局部放大图,是电熔管件表面粘贴的电极位置示意图。
图3为本发明实施案例中采用扫描电镜观察到的碳纤维在聚乙烯基体中的分布图,其中(a)、(b)、(c)、(d)、(e)、(f)分别对应4wt%、8wt%、10wt%、12wt%、15wt%、20wt%的碳纤维含量。
图4为本发明实施案例中不同碳纤维含量的复合材料拉伸曲线。
图5为本发明实施案例中复合材料的弹性模量(左图)和屈服强度(右图)随碳纤维含量变化关系图。
图6为本发明实施案例中复合材料的体积电阻率随碳纤维填充含量变化关系图。
图7为本发明实施案例中拉伸试样尺寸及电极粘贴位置和尺寸示意图。
图8为本发明实施案例中14wt%、15wt%、17wt%、20wt%四个碳纤维含量的复合材料在循环加载下的电阻响应,其中(e)为应变控制的循环加载曲线。
图9为本发明实施案例中复合材料应变监测灵敏度随碳纤维含量变化关系图。
图10为本发明实施案例中碳纤维填充聚乙烯电熔管件和纯聚乙烯电熔管件的爆破曲线。
图11为本发明实施案例中测量得到的碳纤维填充聚乙烯电熔管件在循环内压加载下两电极之间电阻变化曲线。
图12为本发明实施案例中打压至爆破过程中电熔管件的内压与测量得到的材料电阻变化曲线。
图13为本发明实施案例中爆破过程电阻随管件内压的变化曲线,对曲线进行分段拟合,根据高低压阶段两线的交点确定管件在内压作用下的不可逆破坏临界点。
具体实施方式
如图1-2所示,本发明具有应变自监测功能的碳纤维增强塑料电熔管件,包括埋设了电阻丝的电熔管件本体2,在电熔管件本体2上设有分别接至电阻丝3两端的两根接线柱4;电熔管件本体2是由填充了碳纤维的热塑性塑料制成;在电熔管件本体2表面设置了一对电极5,电极5将被用于监测使用过程中因受热温升或内压变形导致的电阻值变化以实现对电熔管件的应变监测。电熔管件本体2中,短切碳纤维的质量占比为5~20%。电熔管件通常由聚乙烯或聚丙烯材质单独注塑而成,碳纤维的具体填充量需根据碳纤维的机械增强效果和材料应变监测灵敏度综合确定。
图2中所示的电极5,是粘贴于电熔管件本体2表面的铜箔电极,其厚度通常为0.1~0.5mm。也可使用替代方案,例如在电熔管件本体2表面设置电极槽,在电极槽中嵌入线状电极或条状电极。每对电极中的两片电极间距为1~5mm。沿管件环向布置的电极可以用于监测轴向应变,沿轴向布置的电极可以用于监测环向应变。或者,成对电极之间与电熔管件环向或轴向呈小于45°的夹角布置,用于监测管件环向或轴向的应变。也可以同时布置多对电极,但是不同电极对之间不能交叉布置(交叉会导致电流紊乱影响测量准确性)或相互接触(会导致短路)。
本发明的碳纤维增强塑料电熔管件可通过下述方法制备获得:
(1)将热塑性塑料粉末和短切碳纤维放入机械搅拌器中,搅拌得到均匀的混配料;短切碳纤维可选的规格为直径7~10μm,长度1~5mm;热塑性塑料粉末可选聚乙烯粉末或聚丙烯等塑料粉末。混合时控制短切碳纤维的质量占比为5~20%。
(2)将混配料加入挤出机的料斗中,通过挤出机的螺杆剪切作用使得碳纤维均匀分布在塑料基体中,挤出得到线条状的复合物;然后通过造粒机造粒,得到复合物粒子;
(3)按常规的电熔管件制备工艺,经注塑机注塑成型得到电熔管件半成品;
(4)在电熔管件半成品的表面安装至少一对电极,得到具有应变自监测功能的碳纤维增强塑料电熔管件。
安装电极的方式根据电极类型有所不同:在电熔管件半成品的表面需要粘贴电极的区域涂覆一层导电银胶,然后在导电银胶上粘贴薄片电极;或者,在注塑成型时使电熔管件半成品的表面具备电极槽,然后将线状电极或条状电极嵌入电极槽内;
利用碳纤维增强塑料电熔管件实现应变监测的方法,包括:以导线将成对的电极分别连接至电阻测量仪的接线柱,在使用电熔焊机对电熔管件通电进行焊接或管件内部存在介质压力时,记录电阻测量仪的阻值变化以实现对电熔管件的应变监测。
此外,本发明同时提供了另一种可选方案。该具有应变自监测功能的碳纤维增强塑料电熔管件,包括埋设了电阻丝的电熔管件本体2,在电熔管件本体2上设有分别接至电阻丝3两端的两根接线柱4;所述电熔管件本体2是由填充了碳纤维的热塑性塑料制成,短切碳纤维在电熔管件本体2中的质量占比为5~20%。与前一实施例中相比,该产品未直接提供电极对,需要在使用前由使用者自行加工。
因此,利用该碳纤维增强塑料电熔管件实现应变监测的方法,相应地包括以下步骤:
(1)在碳纤维增强塑料电熔管件的表面安装至少一对电极:
以砂纸打磨碳纤维增强塑料电熔管件表面,然后用导电银胶将厚度为0.1~0.5mm的薄片电极粘贴在打磨位置;或者,在碳纤维增强塑料电熔管件表面开设电极槽,然后将线状电极或条状电极嵌入电极槽内;
(2)以导线将成对的电极分别连接至电阻仪的接线柱,在使用电熔焊机对电熔管件通电进行焊接时或管件内部存在介质压力时,记录电阻仪的阻值变化以实现对电熔管件的应变监测。
下面结合实施例对本发明的具体实施方式作进一步描述,以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。实施例中的所有原料及其制取成份均可通过公开的市售渠道获得。
本实施例中首先需要确定碳纤维的填充含量,分别制备了碳纤维含量为4wt%、8wt%、10wt%、12wt%、15wt%、20wt%的复合材料拉伸试样,制备方法按照以下步骤进行:
(1)称取相应质量的高密度聚乙烯粉末和短切碳纤维,将高密度聚乙烯粉末和短切碳纤维放入机械搅拌器中,在搅拌转速3000rpm下搅拌3分钟,得到混料A;
(2)将得到的混料加入挤出机中,设置挤出机的挤出温度为200℃,螺杆转速为50rpm,挤出得到线条状的复合物B;
(3)将挤出得到的线条状的复合物B通过造粒机造粒,得到粒状复合物C;
(4)将粒状复合物C经注塑机注塑成型拉伸试样即可;注塑拉伸试样的注塑机温度设置为一段温度为180℃,加热二段温度为185℃,加热三段温度为190℃,加热四段温度为195℃,出口温度为200℃,注塑压力为185MPa。
作为对比例,采用相同的高密度聚乙烯粉末制备了纯聚乙烯拉伸试样。(本发明最终管件的加工工艺与上述步骤一致(4),只是在注塑时采用了管件相匹配的模具。)
对每一个碳纤维含量的复合材料采用电子扫描显微镜观察碳纤维在聚乙烯基体内的分布情况,图3显示碳纤维在聚乙烯基体中均匀分布。
对每一个碳纤维含量的复合材料进行拉伸试验测量不同碳纤维含量材料的力学性能,材料的拉伸曲线如图4。根据拉伸曲线数据计算得到不同含量的碳纤维下材料的弹性模量和屈服强度如图5所示。对于弹性模量,在碳纤维含量为15wt%时达到最大值,最大值为651MPa,相比未填充的聚乙烯提升了287.5%;对于屈服强度,碳纤维含量为12wt%时达到最大值,最大值为16.06MPa,相比未填充的聚乙烯提升了141.2%;在15wt%时材料的屈服强度开始出现微小的下降。由此可以确定对于材料的机械增强,最佳的碳纤维含量在12~15wt%。
随后确定材料用于应变监测的最佳碳纤维含量范围,采用电阻仪测试了每一个碳纤维含量的复合材料的体积电阻率,如图6所示。可以初步确定碳纤维填充聚乙烯材料的渗流阈值在5~20wt%之间。
为了进一步确定材料应变监测对应的最佳碳纤维含量,根据拉伸测试电阻率测试结果,选取14wt%、15wt%、17wt%、20wt%四个碳纤维含量的复合材料,测试其在循环加载下的电阻响应。为了测试材料的电阻,在拉伸试样表面粘贴一对电极,电极粘贴方式按照以下步骤进行:
I:采用砂纸打磨拉伸试样表面需要粘贴电极的区域;
II:在砂纸打磨位置涂覆一层导电银胶;
III:在银胶上各粘贴一片铜箔电极。
拉伸试样表面粘贴的导电电极位置如图7所示,用于循环加载中应变监测的实验装置均按本领域常用方式搭建。将粘贴好电极的拉伸试样夹持在万能试验机夹具上,将拉伸试样表面的电极连接至电阻仪的接线柱,实验中同时记录循环拉伸位移以及对应的电阻值变化。图8中分别是14wt%、15wt%、17wt%、20wt%四个碳纤维含量的复合材料在循环位移下的电阻值响应曲线,其中(e)为应变控制的循环加载曲线。
由图8可以看出,在一个加载循环内,电阻变化趋势与材料应变变化趋势一致,两者同时达到最大值。因此,用电阻相对变化最大值除以应变的最大值,可以得到不同材料对应的应变系数,即:
其中,G为材料的应变系数,1;ΔR为电阻值绝对变化,Ω;R0为初始电阻值,Ω;S为材料应变,%。
图9总结了不同碳纤维含量对应应变系数,碳纤维含量为15wt%时,复合材料的显示了最高应变系数为144.2,因此,可以确定用于应变监测的最佳碳纤维含量在15wt%附近。
根据力学和电学测试结果,材料的机械增强对应最佳的碳纤维含量在12~15wt%,应变监测的最佳碳纤维含量在15wt%附近,由此确定用于制造电熔管件的复合材料的碳纤维含量为15wt%。
本实施案例中制造电熔管件的导电复合材料的方法按照以下步骤进行:
(1)制造电熔管件的复合材料由以下按重量份计的原料组成:高密度聚乙烯粉末17份,短切碳纤维3份;将高密度聚乙烯粉末和短切碳纤维放入机械搅拌器中,在搅拌转速3000rpm下搅拌3分钟,得到混料A;
(2)将得到的混料加入挤出机中,设置挤出机的挤出温度为200℃,螺杆转速为50rpm,挤出得到线条状的复合物B;
(3)将挤出得到的线条状的复合物B通过造粒机造粒,得到粒状复合物C;
(4)常规的电熔管件制备工艺,将粒状复合物C经注塑机注塑成型电熔管件即可;注塑机的温度设置为一段温度为185℃,加热二段温度为190℃,加热三段温度为195℃,加热四段温度为195℃,加热五段温度为200℃,出口温度为200℃,注塑压力为80bar。得到电熔管件半成品后,以导电银胶将铜箔电极粘贴于电熔管件本体表面。
作为对比例,采用相同的高密度聚乙烯粉末制备了纯聚乙烯电熔管件,管件的加工工艺与上述步骤一致(4),由于纯聚乙烯材料不导电,管件表面不粘贴电极。
制备得到的电熔管件的内径为110mm,分别与外径110mm的钢丝网骨架聚乙烯管连接,采用水介质进行爆破实验,实验得到的碳纤维填充聚乙烯电熔管件和纯聚乙烯电熔管件的爆破曲线如图10所示,爆破压力汇总如表1所示。
表1两种材料的电熔管件爆破压力对比
爆破压力的对比结果显示,采用碳纤维填充的聚乙烯复合材料制备的电熔管件的爆破压力比纯聚乙烯管件的爆破压力提高了41.3%。可见,采用碳纤维增强聚乙烯材料制备电熔管件能够有效提高管件的机械性能。
电熔管件应变自监测方法的实验:
导电碳纤维的添加提高了该复合材料的导电性,通过在电熔管件表面粘贴电极可以测量两片电极之间材料的电阻值。当碳纤维含量在渗流阈值附近时,材料的电阻率对应变的变化最为敏感,由此,本发明制备电熔管件时控制短切碳纤维的质量占比为5~20%。
在管件内压作用下,管件材料产生变形,使得材料内部的碳纤维导电网络中碳纤维之间的间距增加,材料的导电性降低,材料的电阻率增加,从而两电极之间测量得到的电阻值增加。由此,通过测量电极之间的电阻值可以监测到电熔管件的应变以及其内部的压力大小。该应变监测方法只需要在电熔管件表面对应位置设置两片电极,便可以监测任意位置的应变,不需要额外的设备,实现了电熔管件的应变自监测,提升了电熔管件的智能化与安全性。
如图2所示,电极2沿管件环向粘贴,两片电极2关于管件轴向中心平面对称分布,为了减小电极2与电熔管件表面的接触电阻,本实施例中电极2的粘贴方式按照以下大体步骤进行:
I:采用砂纸打磨电熔管件表面需要粘贴电极2的区域;
II:在砂纸打磨位置涂覆一层导电银胶;
III:在银胶上各粘贴一片铜箔电极2。
首先是电熔管件在循环内压加载下的应变监测,图11是在电熔管件进行循环压力加载时的管件内压和电阻值变化曲线。循环打压中压力峰值为5MPa,电极之间电阻值相对变化最大值为166%。从图11可以看出,在每一个循环内,在打压阶段,随着压力的增加,监测的电阻值迅速上升。这是由于管件在压力作用下产生变形,基体材料中的碳纤维导电网络中纤维间距增加,材料电阻率增加,由此测试得到的两片电极之间的电阻值增加。在保压阶段,管件和管材基体在内压下会继续产生缓慢的变形,导致保压阶段的压力呈现缓慢的降低。也正是由于保压阶段管件的缓慢变形,材料中碳纤维导电网络中纤维间距会继续增加,因此,保压阶段监测的电阻值还会继续增加;不过保压阶段材料的材料变形速率远小于打压阶段的材料变形速率,因此,保压阶段的电阻值增加的速率小于打压阶段。在整个循环中,材料的变形处于弹性阶段,管件卸压后,材料的变形能够迅速恢复,基体中的碳纤维之间的间距也会随着恢复到初始状态,因此,卸压阶段电阻值能够快速恢复到初始值。在多个循环中,电阻值的变化趋势与电熔管件内部压力的变化趋势一致,并且每个周期的电阻值峰值比较稳定。
该设计同样适用于爆破实验中电熔管件表面的应变监测,图12是打压至爆破过程中电熔管件的内压与测量得到的材料电阻变化曲线。图13为爆破过程电阻随管件内压的变化曲线。随着压力增加,电熔管件的变形增加,测试得到的电阻值也随之不断增加。在压力比较低时,电熔管件基体材料的变形主要导致碳纤维导电网络中纤维间距发生变化,测试得到的电阻值会增加,但是此时导电网络并未破坏,因此电阻增加的速率较低;当达到比较高的压力时,电熔管件基体材料的变形也比较大,基体材料开始产生了微裂纹,这些为裂纹导致局部的碳纤维导电线路破坏,由此产生的电阻值增加速率比低压阶段高很多;因此随着压力升高,电阻值会不断增加且其增加速率不断提升。根据材料变形和电阻值变化的关系,可以通过电熔管件表面电极之间的电阻值变化来监测电熔管件的变形和内部压力大小。
据此可以根据电阻的相对变化,得到管道的实时内压。以上述测试的电熔接头为例,在图13中,分别对低压阶段和高压阶段的电阻相对变化曲线进行拟合,得到电阻相对变化与内压的关系为:
可见,在低压阶段,电阻相对值变化斜率为697.25,而高压阶段,电阻相对值变化斜率达到了185097.91,远高于低压阶段。可见,在高低压阶段,材料电阻值变化的模式是不一样的,低压阶段电阻变化主要是由于导电网络中碳纤维间距变化;而高压阶段是由于导电网络的局部破坏,这标着电熔管件内部出现了不可逆的破坏。根据两线的交点可以确定管件在内压作用下的不可逆破坏临界压力为3.39MPa,在图13中的电阻变化曲线中,对于的临界点为(3.39,8091.34%)。
由此,在管道运行中可以直接通过监测电阻变化值,来判断管件的安全性能,当电阻相对变化值超过8091.34%时,说明管件内部开始出现了不可逆的破坏,需要采取修复或更换管件。在管道运行过程,还可以根据实时监测的电阻相对变化,根据公式(2)反推得到管道内压为:
该方法不需要对电熔接头或管道系统开孔安装传感器,仅通过测量电熔接头的电阻变化就可以实时获得管道的内压和安全状态。采用该应变自监测方法能够及时发现电熔管件中的潜在失效风险,可以及时采取预防措施。在实现电熔管件机械增强的同时,提升了电熔管件的智能化与安全性。
Claims (8)
1.一种具有应变自监测功能的碳纤维增强塑料电熔管件,包括埋设了电阻丝的电熔管件本体,在电熔管件本体上设有分别接至电阻丝两端的两根接线柱;其特征在于,所述电熔管件本体是由填充了碳纤维的热塑性塑料制成;在电熔管件本体中,短切碳纤维的质量占比为5~20%;在电熔管件本体表面设置至少一组成对的电极,用于监测使用过程中因受热温升或内压变形导致的电阻值变化以实现对电熔管件的应变监测;所述电极是薄片电极、线状电极或条状电极;其中,薄片电极以粘贴方式固定在电熔管件本体表面,线状电极或条状电极嵌入在设于电熔管件本体表面的电极槽中;成对的电极沿电熔管件环向布置,用于监测管件轴向应变;或者成对的电极沿电熔管件轴向布置,用于监测管件环向应变;或者,成对电极之间与电熔管件环向或轴向呈小于45°的夹角布置,用于监测管件环向或轴向的应变。
2.根据权利要求1所述的碳纤维增强塑料电熔管件,其特征在于,所述薄片电极厚度为0.1~0.5mm。
3.根据权利要求1所述的碳纤维增强塑料电熔管件,其特征在于,所述成对的电极至少有两组;当其中有一组为环向布置另一组为轴向布置时,两组成对电极之间不能发生交叉。
4.根据权利要求1所述的碳纤维增强塑料电熔管件,其特征在于,在每对电极中,两个电极的间距为1~5mm。
5.权利要求1所述碳纤维增强塑料电熔管件的制备方法,其特征在于,包括以下步骤:
(1)将热塑性塑料粉末和短切碳纤维放入机械搅拌器中,搅拌得到均匀的混配料;在混配料中,短切碳纤维的质量占比为5~20%;所述短切碳纤维的直径7~10,长度1~5mm;热塑性塑料粉末是指聚乙烯粉末或聚丙烯粉末;
(2)将混配料加入挤出机的料斗中,通过挤出机的螺杆剪切作用使得碳纤维均匀分布在塑料基体中,挤出得到线条状的复合物;然后通过造粒机造粒,得到复合物粒子;
(3)按常规的电熔管件制备工艺,经注塑机注塑成型得到电熔管件半成品;
(4)在电熔管件半成品的表面安装至少一对电极:在电熔管件半成品的表面需要粘贴电极的区域涂覆一层导电银胶,然后在导电银胶上粘贴薄片电极;或者,在注塑成型时使电熔管件半成品的表面具备电极槽,然后将线状电极或条状电极嵌入电极槽内;最终得到具有应变自监测功能的碳纤维增强塑料电熔管件。
6.利用权利要求1所述碳纤维增强塑料电熔管件实现应变监测的方法,其特征在于,包括:以导线将成对的电极分别连接至电阻仪的接线柱,在使用电熔焊机对电熔管件通电进行焊接时或管件内部存在介质压力时,记录电阻仪的阻值变化以实现对电熔管件的应变监测。
7.一种具有应变自监测功能的碳纤维增强塑料电熔管件,包括埋设了电阻丝的电熔管件本体,在电熔管件本体上设有分别接至电阻丝两端的两根接线柱;其特征在于,所述电熔管件本体是由填充了碳纤维的热塑性塑料制成,短切碳纤维在电熔管件本体中的质量占比为5~20%;
还包括至少一对独立于电熔管件本体的电极,所述电极是薄片电极、线状电极或条状电极;在使用时,将薄片电极以粘贴方式固定在电熔管件本体表面,线状电极或条状电极嵌入在设于电熔管件本体表面的电极槽中;成对的电极沿电熔管件环向布置,用于监测管件轴向应变;或者成对的电极沿电熔管件轴向布置,用于监测管件环向应变;或者,成对电极之间与电熔管件环向或轴向呈小于45°的夹角布置,用于监测管件环向或轴向的应变。
8.利用权利要求7所述碳纤维增强塑料电熔管件实现应变监测的方法,其特征在于,包括以下步骤:
(1)在碳纤维增强塑料电熔管件的表面安装至少一对电极:
以砂纸打磨碳纤维增强塑料电熔管件表面,然后用导电银胶将厚度为0.1~0.5mm的薄片电极粘贴在打磨位置;或者,在碳纤维增强塑料电熔管件表面开设电极槽,然后将线状电极或条状电极嵌入电极槽内;
(2)以导线将成对的电极分别连接至电阻仪的接线柱,在使用电熔焊机对电熔管件通电进行焊接时或管件内部存在介质压力时,记录电阻仪的阻值变化以实现对电熔管件的应变监测。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910147997.6A CN109827014B (zh) | 2019-02-28 | 2019-02-28 | 具有应变自监测功能的碳纤维增强塑料电熔管件 |
US16/449,269 US11911975B2 (en) | 2019-02-28 | 2019-06-21 | Carbon fiber reinforced plastic electrofusion fitting and a self-monitoring method of strain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910147997.6A CN109827014B (zh) | 2019-02-28 | 2019-02-28 | 具有应变自监测功能的碳纤维增强塑料电熔管件 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109827014A CN109827014A (zh) | 2019-05-31 |
CN109827014B true CN109827014B (zh) | 2020-07-14 |
Family
ID=66864766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910147997.6A Active CN109827014B (zh) | 2019-02-28 | 2019-02-28 | 具有应变自监测功能的碳纤维增强塑料电熔管件 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11911975B2 (zh) |
CN (1) | CN109827014B (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3784946A4 (en) | 2018-04-24 | 2022-01-12 | Reliance Worldwide Corporation | FLUID CONNECTOR |
CA3096665A1 (en) | 2018-08-14 | 2020-02-20 | Reliance Worldwide Corporation | Tubular connector |
CN110578872A (zh) * | 2019-08-28 | 2019-12-17 | 诸暨市逍遥管道科技有限公司 | 一种用于监测非金属管道泄漏的系统及方法 |
CN110654029A (zh) * | 2019-10-12 | 2020-01-07 | 华创天元实业发展有限责任公司 | 一种增强带材螺旋缠绕聚乙烯复合压力管及其连接方法 |
CN111070622B (zh) * | 2019-12-14 | 2021-04-06 | 浙江大学 | 一种挤出方式制备的短纤维增强塑料电熔管件的方法 |
CN111089212B (zh) * | 2019-12-31 | 2021-01-05 | 浙江大学 | 注射位置优化的短纤维增强塑料电熔管件及其注塑模具 |
WO2021173868A1 (en) * | 2020-02-25 | 2021-09-02 | Smart Pipe Company, Inc. | In line inspection strain device method and apparatus for performing in line joint inspections |
AU2021236331A1 (en) | 2020-03-13 | 2022-11-03 | Reliance Worldwide Corporation | Push-to-connect fitting providing an insertion indication |
CN111412337A (zh) * | 2020-04-23 | 2020-07-14 | 林仲谋 | 一种方便拼接使用的环保型pe管 |
CN112524359B (zh) * | 2020-11-19 | 2022-11-18 | 潍坊科技学院 | 一种集成光纤光栅的智能轴向挤压式管接头 |
CN112600043B (zh) * | 2020-12-23 | 2024-09-06 | 江苏双腾管业有限公司 | 一种电熔焊接用接插件及电熔管件 |
CN112361231B (zh) * | 2021-01-13 | 2021-04-16 | 浙江大学 | 具有自传感智能监测功能的电熔管件及其加工与监测方法 |
CN113172914A (zh) * | 2021-04-25 | 2021-07-27 | 江特科技股份有限公司 | 一种可对接焊接双壁波纹管用的电熔管件及其制造工艺 |
CN113486496A (zh) * | 2021-06-11 | 2021-10-08 | 湖南大学 | 一种湿热环境中的cfrp层合板的几何非线性分析方法 |
CN114352811A (zh) * | 2021-11-04 | 2022-04-15 | 山东方大新材料科技有限公司 | 一种钢丝网骨架复合管及其粘结树脂 |
CN113958787A (zh) * | 2021-11-08 | 2022-01-21 | 镇江市神龙电器管件有限公司 | 一种基于热缩的塑料管道连接方式 |
CN114636039B (zh) * | 2022-05-17 | 2022-09-20 | 浙江大学 | 自传感智能电熔管件、流量和泄漏检测系统及方法 |
CN115183079B (zh) * | 2022-05-18 | 2024-02-09 | 浙江大学 | 机械性能与电学性能独立调控的纤维增强塑料电熔管件 |
CN114813848B (zh) * | 2022-07-01 | 2022-10-18 | 浙江大学 | 一种电熔接头损伤监测系统及方法 |
US11808739B1 (en) | 2022-07-01 | 2023-11-07 | Zhejiang University | Monitoring damage of electrofusion joints |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2296568A (en) * | 1994-12-20 | 1996-07-03 | Univ Bradford | Strain gauge |
CN101163825A (zh) * | 2005-04-18 | 2008-04-16 | 帝人株式会社 | 沥青类碳纤维、毡以及含有它们的树脂成型体 |
CN203249834U (zh) * | 2013-04-23 | 2013-10-23 | 中复碳芯电缆科技有限公司 | 碳纤维复合材料电缆芯应力高温及热循环长期性能检测温控装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2668773T3 (es) * | 2014-01-30 | 2018-05-22 | Plasson Ltd | Miembro de acoplamiento de electrofusión y proceso de fabricación de miembro de acoplamiento de electrofusión |
CA2978445A1 (en) * | 2015-03-06 | 2016-09-15 | Swagelok Company | Systems and methods for strain detection in a coupling |
CN105784928B (zh) * | 2016-01-05 | 2018-07-10 | 中国科学院金属研究所 | 一种测量柔性材料性能随弯曲半径变化规律的装置和方法 |
CN106764192B (zh) * | 2017-01-20 | 2018-08-21 | 山东巨兴塑业有限公司 | 一种预置防渗电熔直接的防渗导静电组合三通及制作方法 |
CN107560946A (zh) * | 2017-09-25 | 2018-01-09 | 苏州热工研究院有限公司 | 一种用于检测管材蠕变塌陷性能的试验系统及检测方法 |
CN108036118B (zh) * | 2018-02-10 | 2023-12-12 | 威海纳川管材有限公司 | 一种纤维增强热塑性复合材料管及其制备方法 |
-
2019
- 2019-02-28 CN CN201910147997.6A patent/CN109827014B/zh active Active
- 2019-06-21 US US16/449,269 patent/US11911975B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2296568A (en) * | 1994-12-20 | 1996-07-03 | Univ Bradford | Strain gauge |
CN101163825A (zh) * | 2005-04-18 | 2008-04-16 | 帝人株式会社 | 沥青类碳纤维、毡以及含有它们的树脂成型体 |
CN203249834U (zh) * | 2013-04-23 | 2013-10-23 | 中复碳芯电缆科技有限公司 | 碳纤维复合材料电缆芯应力高温及热循环长期性能检测温控装置 |
Also Published As
Publication number | Publication date |
---|---|
US20200276771A1 (en) | 2020-09-03 |
US11911975B2 (en) | 2024-02-27 |
CN109827014A (zh) | 2019-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109827014B (zh) | 具有应变自监测功能的碳纤维增强塑料电熔管件 | |
CN112361231B (zh) | 具有自传感智能监测功能的电熔管件及其加工与监测方法 | |
CN109100395B (zh) | 一种自监测自修复碳纤维增强复合材料智能结构 | |
CN204905546U (zh) | 一种耐高压快速电缆对接接头 | |
WO2020253449A1 (zh) | 混凝土受拉裂缝宽度监测和区域自定位装置及方法 | |
WO2010074682A1 (en) | Polymeric structures and methods for producing and monitoring polymeric structures | |
CN114813848B (zh) | 一种电熔接头损伤监测系统及方法 | |
Li et al. | A novel method to study the property of the interface between silicone rubber and fiber reinforced plastic | |
Shi et al. | Strength analysis on hybrid welding interface of polymer and short carbon fiber reinforced composite | |
CN209148580U (zh) | 一种非金属衬里管道衬里层破损监测装置 | |
CN108181029A (zh) | 碳纳米纸传感器多方向监测纤维增强复合材料应变的方法 | |
CN112629401A (zh) | 一种路面结构应变传感器制造方法及传感器 | |
JP2012052864A (ja) | 金属表面処理を施したナノフィラーからなる高感度ひずみセンサ | |
CN115183079B (zh) | 机械性能与电学性能独立调控的纤维增强塑料电熔管件 | |
CN109320906A (zh) | 一种航空液冷系统用聚醚醚酮改性管材 | |
CN101655383A (zh) | 流量测量装置 | |
CN210571898U (zh) | 一种高温高压腐蚀电化学工作电极的密封装置 | |
CN116872535B (zh) | 一种电熔管件的修复系统 | |
CN116222813A (zh) | 连续碳纤维增强热塑性复合材料焊接接头温度监测方法 | |
CN114526381A (zh) | 碳纤维高性能复合管及其制备方法 | |
CN111880136A (zh) | 用于电力电缆高频局部放电在线监测的局放量标定方法 | |
CN108285569B (zh) | 一种嵌固式自感知土工格栅结构及方法 | |
US11808739B1 (en) | Monitoring damage of electrofusion joints | |
CN216139287U (zh) | 一种叶片模具 | |
Gonnet et al. | In‐line monitoring of the injection molding process by dielectric spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |