WO2024001070A1 - 气影响工况下油井数字化计量的方法与装置 - Google Patents

气影响工况下油井数字化计量的方法与装置 Download PDF

Info

Publication number
WO2024001070A1
WO2024001070A1 PCT/CN2022/139243 CN2022139243W WO2024001070A1 WO 2024001070 A1 WO2024001070 A1 WO 2024001070A1 CN 2022139243 W CN2022139243 W CN 2022139243W WO 2024001070 A1 WO2024001070 A1 WO 2024001070A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
pumping
gas
liquid production
model
Prior art date
Application number
PCT/CN2022/139243
Other languages
English (en)
French (fr)
Inventor
赵瑞东
师俊峰
雷群
马高强
张喜顺
孙艺真
王才
周祥
蒋卫东
刘翔
熊春明
邓峰
张义
陈诗雯
伊然
陈冠宏
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2024001070A1 publication Critical patent/WO2024001070A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/008Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention relates to the technical field of digital measurement for mechanical oil production in oil fields, and in particular to a method and device for digital measurement of oil wells under gas-influenced conditions.
  • Oil well metering is dominated by traditional metering rooms. There are currently tens of thousands of metering rooms, each covering an area of more than 100 square meters, with supporting metering pipelines ranging from hundreds of meters to several kilometers. The investment is huge; each metering room needs to be equipped with daily operation and maintenance personnel. 2 to 3 people. The measurement cycle is long and the lag is serious. It is difficult to track the production dynamics of oil wells in a timely manner. For the manually operated measurement room, each well can only be measured once every 10 days on average. The time required for a single measurement is generally four hours, which is labor intensive. big.
  • the lifting of the pumping unit relies on the pumping unit to drive the sucker rod.
  • the sucker rod drives the plunger pump to continuously reciprocate the pump.
  • Each pump will produce a power indicator diagram, which is composed of load and displacement.
  • the closed curve contains information such as oil well operating conditions, production, liquid level, etc., and is crucial first-hand information in oil well production.
  • digital metering technology for pumping unit wells has developed rapidly, but it currently only focuses on oil measurement based on performance diagrams or liquid measurement based on performance diagrams.
  • the methods for measuring oil based on performance diagrams include the scribing method, the area method, and the decomposition method. Currently, the mainstream The method is decomposition. At present, the accuracy of calculating liquid production volume using work charts is low.
  • Embodiments of the present invention provide a method for digital measurement of oil wells under gas-influenced conditions, which is used to quantitatively consider the degree of gas influence, correct the liquid production volume of pumping unit wells under gas-influenced conditions, and improve the accuracy of calculating liquid production volume from work charts.
  • This method include:
  • the liquid production volume of the pumping well corresponding to each pumping power diagram is determined;
  • the liquid production volume model for pumping wells is a pre-established liquid production volume model for pumping wells that considers the impact of gas on liquid production;
  • the wellhead liquid production corresponding to each pumping power diagram is accumulated to obtain the cumulative liquid production at the wellhead of the pumping unit.
  • the above-mentioned method for digital measurement of oil wells under gas-influenced conditions also includes pre-establishing a pumping unit well liquid production volume model according to the following method:
  • the pump discharge port pressure model is obtained
  • the pressure model inside the pump and the pressure model at the pump discharge port in the preset process section of the down stroke the pressure model inside the pump when the traveling valve is opened is obtained;
  • the liquid production volume model of the pumping unit well is obtained.
  • the pressure in the pump during the preset process section of the down stroke is the pressure in the pump obtained by neglecting the gravity of the plunger itself and the friction between the plunger and the working cylinder wall.
  • the pump discharge pressure is the pump discharge pressure obtained by neglecting the resistance of the fluid passing through the traveling valve.
  • determining the molar amount of free gas in the oil pump corresponding to each pumping work diagram includes:
  • the model for solving the molar amount of free gas at the pump is:
  • F pd is the pump load when the traveling valve is opened;
  • a p is the cross-sectional area of the plunger;
  • a r is the cross-sectional area of the tie rod connected to the pump;
  • n is the number of moles of gas;
  • Z is the compression factor;
  • R is the gas Constant;
  • T is the temperature inside the pump;
  • s l is the effective liquid production stroke,
  • u is the displacement of any point during the unloading process;
  • F d is the plunger load during the down stroke.
  • the above method for digital measurement of oil wells under gas-influenced conditions also includes: solving the set of equations to obtain the effective liquid production stroke corresponding to each pumped power diagram;
  • the liquid production volume of the pumping well corresponding to each pumping power diagram including:
  • each pumping power determines each pumping power The liquid production volume of the pumping well corresponding to the figure.
  • solving the system of equations to obtain the molar amount of free gas in the oil pump corresponding to each abstracted work diagram includes: when the number of data points is greater than 3, using the least squares method to solve the equations Solve as a group to obtain the molar amount of free gas in the oil pump corresponding to each pumped work diagram.
  • the model for calculating the liquid volume of a pumping well is:
  • Q l is the liquid production volume of the pumping unit well
  • eta l is the leakage coefficient that affects the pump efficiency due to pump leakage
  • eta B is the volume coefficient of surface degassed crude oil
  • a p is the cross-sectional area of the plunger
  • S l is the effective liquid production
  • the amount of stroke, n is the molar amount of free gas.
  • Embodiments of the present invention also provide a device for digital measurement of oil wells under gas-influenced conditions, which is used to quantitatively consider the degree of gas influence, correct the liquid production volume of pumping unit wells under gas-influenced conditions, and improve the accuracy of calculating the liquid production volume from work charts.
  • Devices include:
  • the gas molar quantity determination unit is used to determine the free gas molar quantity in the oil pump corresponding to each pumping work diagram;
  • the prediction unit is used to determine the liquid production volume of the pumping well corresponding to each pumping work diagram based on the molar amount of free gas in the pump corresponding to each pumping work diagram and the pre-established liquid production model of the pumping well.
  • the model for determining the liquid production volume of a pumping well is a pre-established model for determining the liquid production volume of a pumping well by considering the impact of gas on liquid production;
  • the final liquid production volume determination unit is used to accumulate the wellhead liquid production volume corresponding to each pumping power diagram to obtain the cumulative liquid production volume at the wellhead of the pumping unit.
  • the above-mentioned device for digital measurement of oil wells under gas-influenced conditions also includes: a creation unit for pre-establishing a pumping unit well production fluid volume model according to the following method:
  • the pump discharge port pressure model is obtained
  • the pressure model inside the pump and the pressure model at the pump discharge port in the preset process section of the down stroke the pressure model inside the pump when the traveling valve is opened is obtained;
  • the liquid production volume model of the pumping unit well is obtained.
  • the pressure inside the pump during the preset process section of the down stroke may be the pressure inside the pump obtained by neglecting the gravity of the plunger itself and the friction between the plunger and the working cylinder wall.
  • the pump discharge pressure may be the pump discharge pressure obtained by neglecting the resistance of the fluid passing through the traveling valve.
  • the gas molar amount determination unit is specifically used for:
  • the model for solving the molar amount of free gas at the pump can be:
  • F TV is the pump load when the traveling valve is opened;
  • a p is the cross-sectional area of the plunger;
  • a r is the cross-sectional area of the tie rod connected to the pump;
  • n is the number of moles of gas;
  • Z is the compression factor;
  • R is the gas Constant;
  • T is the temperature inside the pump;
  • s l is the effective liquid production stroke,
  • u is the displacement of any point during the unloading process;
  • F d is the plunger load during the down stroke.
  • the above-mentioned gas molar amount determination unit can also be used to: solve the set of equations to obtain the effective liquid production stroke corresponding to each pumped work diagram;
  • the liquid production volume of the pumping well corresponding to each pumping power diagram including:
  • each pumping power determines each pumping power The liquid production volume of the pumping well corresponding to the figure.
  • solving the system of equations to obtain the molar amount of free gas in the oil pump corresponding to each abstracted work diagram may include: when the number of data points is greater than 3, using the least squares method to Solve the system of equations to obtain the molar amount of free gas in the oil pump corresponding to each pumped work diagram.
  • the pumping unit well production fluid volume model may be:
  • Q l is the liquid production volume of the pumping unit well
  • eta l is the leakage coefficient that affects the pump efficiency due to pump leakage
  • eta B is the volume coefficient of surface degassed crude oil
  • a p is the cross-sectional area of the plunger
  • S l is the effective liquid production
  • the amount of stroke, n is the molar amount of free gas.
  • An embodiment of the present invention also provides a computer device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, the digitization of the oil well under the above gas-impacted conditions is realized. Measurement method.
  • Embodiments of the present invention also provide a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, the above-mentioned method for digital measurement of oil wells under gas-influenced conditions is implemented.
  • Embodiments of the present invention also provide a computer program product.
  • the computer program product includes a computer program.
  • the computer program is executed by a processor, the method for digital measurement of oil wells under gas-influenced conditions is implemented.
  • the scheme of digital metering of oil wells under gas-influenced working conditions is achieved by: determining the moles of free gas in the oil pump corresponding to each pumping power diagram; and determining the moles of free gas in the oil pump corresponding to each pumping power diagram.
  • quantity, and a pre-established pumping unit well production liquid volume model to determine the pumping unit well liquid production volume corresponding to each pumping diagram; the pumping unit well liquid production volume calculation model considers the impact of gas on liquid production volume.
  • a pre-established model for determining the liquid production volume of a pumping unit well; the wellhead liquid production volume corresponding to each pumping power diagram is accumulated to obtain the cumulative liquid production volume of the pumping unit wellhead.
  • This plan quantitatively considers the degree of gas influence and corrects the gas
  • the fluid production volume of the pumping well under the influence conditions improves the accuracy of calculating the liquid production volume from the power diagram.
  • Figure 1 is a schematic flow chart of a method for digital measurement of oil wells under gas-influenced conditions in an embodiment of the present invention
  • Figure 2 is a schematic diagram of the effective liquid production volume stroke considering the influence of gas in the embodiment of the present invention
  • Figure 3 is a schematic diagram of a pre-established model for determining the liquid volume of a pumping well in an embodiment of the present invention
  • Figure 4 is a schematic diagram for determining the molar amount of free gas in the oil pump corresponding to each pumping work diagram in the embodiment of the present invention
  • Figure 5 is a schematic structural diagram of a device for digital measurement of oil wells under gas-influenced conditions in an embodiment of the present invention
  • Figure 6 is a schematic structural diagram of a computer device in an embodiment of the present invention.
  • a and/or B can mean: A alone exists, A and B exist simultaneously, and B alone exists. situation.
  • at least one herein means any one of a plurality or any combination of at least two of a plurality, for example, including at least one of A, B, and C, which can mean including from A, Any one or more elements selected from the set composed of B and C.
  • the words “includes”, “includes”, “has”, “contains”, etc. are all open terms, meaning including but not limited to.
  • Reference to the terms “one embodiment,” “a specific embodiment,” “some embodiments,” “such as,” etc. in the description means that a particular feature, structure or characteristic described in connection with the embodiment or example is included in at least one of the present application in an embodiment or example.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
  • the sequence of steps involved in each embodiment is used to schematically illustrate the implementation of the present application. The sequence of steps is not limited and can be adjusted appropriately as needed.
  • gas affects the pump work diagram.
  • the work diagram affected by gas since the amount of gas in the pump cannot be quantitatively calculated, the calculation accuracy of the liquid production volume calculated from the work diagram has not been high. Since the inventor discovered this technical problem, he proposed a method for digital measurement of oil wells under gas-influenced conditions.
  • This solution quantitatively considers the degree of gas influence, corrects the liquid production volume of pumping unit wells under gas-influenced conditions, and improves the performance diagram.
  • To obtain the accuracy of liquid production volume and achieve higher-precision digital oil measurement it is conducive to eliminating the measurement room, reducing front-line labor, and transforming traditional production management methods.
  • the following is a detailed introduction to the method of digital measurement of oil wells under gas-influenced conditions.
  • Figure 1 is a schematic flow chart of a method for digital measurement of oil wells under gas-influenced conditions in an embodiment of the present invention. As shown in Figure 1, the method includes the following steps:
  • Step 101 Determine the molar amount of free gas in the oil pump corresponding to each pumping work diagram
  • Step 102 Determine the liquid production volume of the pumping well corresponding to each pumping work diagram based on the molar amount of free gas in the pump corresponding to each pumping work diagram and the pre-established liquid production model of the pumping well; so
  • the model for determining the liquid production volume of a pumping well is a pre-established model for determining the liquid volume of a pumping well that considers the impact of gas on liquid production;
  • Step 103 Accumulate the wellhead liquid production volume corresponding to each pumping power diagram to obtain the cumulative liquid production volume of the pumping unit wellhead.
  • the obtained cumulative liquid production volume of the pumping unit wellhead is used to guide oil and gas development and production.
  • the method for digital measurement of oil wells under gas-influenced working conditions provided by the embodiment of the present invention, during operation: determines the molar amount of free gas in the oil pump corresponding to each pumping power diagram; and determines the free gas molar amount in the oil pump corresponding to each pumping power diagram.
  • the molar quantity, and the pre-established liquid production volume model of the pumping unit well are used to determine the liquid production volume of the pumping unit well corresponding to each pumping work diagram; the liquid production volume model of the pumping unit well is a model that considers the effect of gas on liquid production volume.
  • the surface work diagram needs to be converted into a downhole pump work diagram according to the wave equation.
  • the gas effect is mainly reflected in the load unloading process of the pump downstroke, so as to pump the oil pump column.
  • the plug is the research object, and its force is analyzed.
  • the gravity W p of the plunger and the friction force f between the plunger and the working cylinder wall are ignored.
  • the pressure in the pump from C to D in the lower stroke is:
  • the pressure inside the pump in the preset process section of the down stroke is the pressure inside the pump obtained by neglecting the gravity of the plunger itself and the friction between the plunger and the working cylinder wall.
  • Obtaining the pump discharge pressure includes but is not limited to the following methods: 1) Actual measurement of the pump discharge pressure through sensors; 2) Calculating the pump discharge pressure from the wellhead downward through multiphase flow theory; 3) Examples of the present invention The following simple calculation method is provided.
  • the traveling valve at the top of the pump opens.
  • the pressure inside the pump is equal to the sum of the pressure at the pump discharge port and the pressure drop of the fluid through the traveling valve, as follows:
  • F TV is the pump load when the traveling valve is opened, N; f p is the resistance of fluid passing through the traveling valve, Pa.
  • the pump discharge pressure is the pump discharge pressure obtained by neglecting the resistance of the fluid passing through the traveling valve.
  • the pressure inside the pump at different positions can be:
  • u u C
  • u C is the displacement of the plunger at the top dead center, m
  • u u D .
  • s l is the effective liquid production stroke
  • u is the displacement of any point during the unloading process.
  • F d1 is the pump load at point 1 from the top dead center C on the pump power diagram to the opening point D of the traveling valve, N;
  • F d2 is from the top dead center C on the pump power diagram to point 2 inside the opening point D of the traveling valve.
  • F dk The pump load at different displacements of the plunger during the unloading process, for example, the pressure in the pump at point k from the upper dead center C on the work diagram to the opening point D of the traveling valve, N;
  • the subscript k is the pump Select any point on the work diagram from the bottom dead center C to the opening point D of the traveling valve.
  • Z 1 is the slave pump
  • the gas compression factor in the pump is from the top dead center C on the power diagram to the point 1 inside the traveling valve opening point D;
  • Z 2 is the gas in the pump from the top dead center C on the pump power diagram to the point m inside the traveling valve opening point D Compression factor;
  • Z k is the gas compression factor in the pump at different displacements of the plunger during the unloading process, for
  • the pumping unit well production fluid volume model can be:
  • Q l is the liquid production volume of the pumping unit well
  • eta l is the leakage coefficient that affects the pump efficiency due to pump leakage
  • eta B is the volume coefficient of surface degassed crude oil
  • a p is the cross-sectional area of the plunger
  • S l is the effective liquid production
  • the amount of stroke, n is the molar amount of free gas.
  • the above-mentioned method for digital measurement of oil wells under gas-influenced conditions may also include pre-establishing a pumping unit well production fluid volume model according to the following method:
  • Step 201 Perform stress analysis on the oil pump plunger to obtain the pressure model inside the pump during the preset process section of the down stroke (which can be the above formula (1));
  • Step 202 Obtain the pump discharge port pressure model (which can be the above formula (3)) based on the pump load model when the traveling valve is opened after the lower stroke load unloading is completed (which can be the above formula (2));
  • Step 203 According to the pressure model inside the pump and the pressure model at the pump discharge port of the preset process section of the down stroke, obtain the pressure model inside the pump when the swimming valve is opened (it can be the above formula (4));
  • Step 204 Obtain the internal pressure model of the pump at different displacements of the plunger during the load unloading process of the lower stroke according to the gas state equation (can be the above formula (5));
  • Step 205 Based on the pressure model in the pump when the traveling valve is open, and the pressure model in the pump at different displacements of the plunger during the down stroke load unloading process, obtain a model for solving the molar amount of free gas at the pump (can be the above formula (6) );
  • Step 206 According to the model for solving the molar amount of free gas at the pump, obtain the liquid production volume model of the pumping unit well (which may be the above formula (8)).
  • determining the molar amount of free gas in the oil pump corresponding to each pumping work diagram may include:
  • Step 1011 Select multiple data points (k points) on the preset process section curve of the lower stroke on each pumping power diagram;
  • Step 1012 According to each of the data points and the pre-established model for solving the molar amount of free gas at the pump, form a system of equations for solving the molar amount of free gas at the pump (which can be the above formula (7));
  • Step 1013 Solve the system of equations to obtain the molar amount of free gas in the oil pump corresponding to each pumped work diagram.
  • the above-mentioned method of determining the molar amount of free gas in the oil pump corresponding to each pumping power diagram further improves the accuracy of digital measurement of oil wells under gas-influenced conditions.
  • solving the system of equations to obtain the molar amount of free gas in the oil pump corresponding to each abstracted work diagram may include: when the number of data points is greater than 3, using the least square The system of equations is solved by multiplication to obtain the molar amount of free gas in the oil pump corresponding to each pumped work diagram, which improves the accuracy of obtaining the molar amount of free gas, and further improves the accuracy of digital metering of oil wells under gas-influenced conditions. .
  • step 102 For the specific implementation of the above step 102, please refer to the introduction in the above section "5) Solving the Wellhead Liquid Production Volume".
  • the real-time liquid production of the pumping well can be obtained according to the actual needs of the user in any period of time, for example, the liquid production of the pumping well can be measured in real time for 24 hours.
  • the above method for digital measurement of oil wells under gas-influenced conditions may also include:
  • the embodiments of the present invention can not only accurately calculate the cumulative liquid production of oil wells every day or a specified time period, but also dynamically analyze the changing rules of oil well production and analyze the production dynamics of oil wells to guide oil and natural gas development and production.
  • the embodiment of the present invention takes a well in Changqing Oilfield as an example.
  • the basic data of the well are: wellhead pressure 0.2Mpa, wellhead temperature 40°C, plunger pump diameter 32mm, stroke 1.5m, sucker rod diameter 19mm, pump depth 850m, pump
  • the dissolved gas-to-liquid ratio is 5m 3 /m 3 .
  • the measured surface work map is required.
  • the three-dimensional wave equation is applied to the surface work map to solve the downhole pump work map.
  • the digital metering method for oil wells under gas-influenced conditions proposed by the embodiment of the present invention is more suitable for pumping wells where the gas-liquid ratio is greater than the dissolved gas-liquid ratio at the pump.
  • the power indicator diagram must have certain gas-influence graphic characteristics (preset gas Affects graphical characteristics), generally when the gas production volume is large (the gas production volume is greater than the preset value).
  • This method is calculated based on the dynamometer diagram of the pumping unit well.
  • the dynamometer diagram can be the measured ground power diagram or the power diagram converted through electrical parameters.
  • This method corrects the calculation method of the liquid production volume of the pumping well under the influence of gas, and improves the accuracy of calculating the liquid production volume of the work diagram.
  • An edge computing device embedded with the above method (method for digital measurement of oil wells under gas-influenced conditions) has been formed, which can be installed at the oil well site to calculate the liquid production corresponding to each pumping diagram in real time, thereby calculating the pumping unit Cumulative liquid production at the wellhead.
  • the advantages of the embodiments of the present invention are: the embodiments of the present invention propose a method for digital measurement of oil wells under gas-influenced conditions.
  • the degree of gas influence is quantitatively considered, thereby improving the output of the work diagram.
  • the results of the embodiments of the present invention are conducive to eliminating the measurement room, reducing front-line labor, transforming the traditional production management method, and enabling oil production workers to truly transform from blue-collar workers to white-collar workers.
  • the embodiment of the present invention also provides a device for digital measurement of oil wells under gas-influenced conditions, as described in the following embodiments. Since the problem-solving principle of this device is similar to the method of digital measurement of oil wells under gas-influenced conditions, the implementation of this device can be referred to the implementation of a method of digital measurement of oil wells under gas-influenced conditions, and the repetitive details will not be repeated.
  • Figure 5 is a schematic structural diagram of a device for digital measurement of oil wells under gas-influenced conditions in an embodiment of the present invention. As shown in Figure 5, the device includes:
  • the gas molar quantity determination unit 01 is used to determine the free gas molar quantity in the oil pump corresponding to each pumping work diagram;
  • Prediction unit 02 is used to determine the liquid production of the pumping well corresponding to each pumping power diagram based on the molar amount of free gas in the pump corresponding to each pumping power diagram and the pre-established model for calculating the liquid volume of the pumping well.
  • volume the model for determining the liquid volume of a pumping well is a pre-established model for determining the liquid volume of a pumping well that considers the impact of gas on liquid production;
  • the final liquid production volume determination unit 03 is used to accumulate the wellhead liquid production volume corresponding to each pumping work diagram to obtain the pumping unit wellhead cumulative liquid production volume.
  • the above-mentioned device for digital measurement of oil wells under gas-influenced conditions may also include: a creation unit for pre-establishing a pumping well well production fluid volume model according to the following method:
  • the pump discharge port pressure model is obtained
  • the pressure model inside the pump and the pressure model at the pump discharge port in the preset process section of the down stroke the pressure model inside the pump when the traveling valve is opened is obtained;
  • the liquid production volume model of the pumping unit well is obtained.
  • the pressure inside the pump during the preset process section of the down stroke may be the pressure inside the pump obtained by neglecting the gravity of the plunger itself and the friction between the plunger and the working cylinder wall.
  • the pump discharge pressure may be the pump discharge pressure obtained by neglecting the resistance of the fluid passing through the traveling valve.
  • the gas molar amount determination unit is specifically used for:
  • the model for solving the molar amount of free gas at the pump can be:
  • F TV is the pump load when the traveling valve is opened;
  • a p is the cross-sectional area of the plunger;
  • a r is the cross-sectional area of the tie rod connected to the pump;
  • n is the number of moles of gas;
  • Z is the compression factor;
  • R is the gas Constant;
  • T is the temperature inside the pump;
  • s l is the effective liquid production stroke,
  • u is the displacement of any point during the unloading process;
  • F d is the plunger load during the down stroke.
  • the above-mentioned gas molar amount determination unit can also be used to: solve the set of equations to obtain the effective liquid production stroke corresponding to each pumped work diagram;
  • the liquid production volume of the pumping well corresponding to each pumping power diagram including:
  • each pumping power determines each pumping power The liquid production volume of the pumping well corresponding to the figure.
  • solving the system of equations to obtain the molar amount of free gas in the oil pump corresponding to each abstracted work diagram may include: when the number of data points is greater than 3, using the least squares method to Solve the system of equations to obtain the molar amount of free gas in the oil pump corresponding to each pumped work diagram.
  • the pumping well production fluid volume model may be:
  • Q l is the liquid production volume of the pumping unit well
  • eta l is the leakage coefficient that affects the pump efficiency due to pump leakage
  • eta B is the volume coefficient of surface degassed crude oil
  • a p is the cross-sectional area of the plunger
  • S l is the effective liquid production
  • the amount of stroke, n is the molar amount of free gas.
  • the above-mentioned device for digital measurement of oil wells under gas-influenced conditions may also include:
  • the change determination unit is used to obtain the change curve of the liquid production volume of the pumping unit well based on the wellhead liquid production volume corresponding to each pumping power diagram of the oil pumping unit;
  • the dynamic analysis unit is used to analyze the production dynamics of the pumping well according to the change curve of the liquid production volume of the pumping well.
  • the present invention also proposes a computer device 500, which includes a memory 510, a processor 520, and a computer program 530 stored on the memory 510 and executable on the processor 520.
  • a computer program 530 stored on the memory 510 and executable on the processor 520.
  • Embodiments of the present invention also provide a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, the above-mentioned method for digital measurement of oil wells under gas-influenced conditions is implemented.
  • An embodiment of the present invention also provides a computer program product.
  • the computer program product includes a computer program.
  • the computer program is executed by a processor, the method for digital measurement of oil wells under gas-influenced conditions is implemented.
  • the scheme of digital metering of oil wells under gas-influenced working conditions is achieved by: determining the moles of free gas in the oil pump corresponding to each pumping power diagram; and determining the moles of free gas in the oil pump corresponding to each pumping power diagram.
  • This plan quantitatively considers the degree of gas influence and corrects the gas
  • the fluid production volume of the pumping well under the influence conditions improves the accuracy of calculating the liquid production volume of the work chart.
  • embodiments of the present invention may be provided as methods, systems, or computer program products.
  • the invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects.
  • the invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种气影响工况下油井数字化计量的方法与装置,该方法包括:确定每一抽示功图对应的抽油泵内自由气体摩尔量;根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量;抽油机井求产液量模型为考虑气体对产液量的影响预先建立的抽油机井求产液量模型;将每一抽示功图对应的井口产液量进行累计得到抽油机井口累计产液量。

Description

气影响工况下油井数字化计量的方法与装置
本申请要求2022年06月27日递交的申请号为202210735869.5、发明名称为“气影响工况下油井数字化计量的方法与装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及油田机械采油数字计量技术领域,尤其涉及一种气影响工况下油井数字化计量的方法与装置。
背景技术
本部分旨在为权利要求书中陈述的本发明实施例提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
国内油井量大面广,油井分布区域广泛,且近年来资源品质劣质化程度加剧,工况日趋复杂,产量逐年下降,平台丛式井大幅增加,单平台井数一般4-8口井。油井计量以传统计量间占主导,目前有数以万计座计量间,每座占地100多平米,配套计量管线几百米到几公里,投资巨大;每个计量间需要配备日常操作及维护人员2至3名,计量周期长,滞后严重,难以及时跟踪油井生产动态,对于人工操作的计量间,平均每口井间隔10天才能计量一次,单次计量所需时间一般四个小时,劳动强度大。
抽油机举升是靠抽油机带动抽油杆,抽油杆带动柱塞泵,不断往复运动抽出来的,每一抽会产生一张示功图,示功图是由载荷、位移组成的封闭曲线,它蕴含着油井工况、产量、液面等信息,是油井生产中至关重要第一手资料。经过多年持续探索,抽油机井数字计量技术快速发展,但目前仅集中在功图量油或功图量液上,功图量油的方法有划线法、面积法和分解法,目前主流的方法是分解法。目前功图求产液量的精度低。
发明内容
本发明实施例提供一种气影响工况下油井数字化计量的方法,用以定量考虑气体影响的程度,修正气体影响条件下抽油机井产液量,提高功图求产液量的精度,该方法包括:
确定每一抽示功图对应的抽油泵内自由气体摩尔量;
根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量;所述抽油机井求产液量模型为考虑气体对产液量的影响预先建立的抽油机井求产液量模型;
将每一抽示功图对应的井口产液量进行累计得到抽油机井口累计产液量。
在一个实施例中,上述气影响工况下油井数字化计量的方法还包括按照如下方法预先建立抽油机井求产液量模型:
对抽油泵柱塞进行受力分析,得到下冲程预设过程段的泵内压力模型;
根据下冲程载荷卸载完成后游动阀打开时的泵载荷模型,得到泵排出口压力模型;
根据下冲程预设过程段的泵内压力模型及泵排出口压力模型,得到游动阀打开时的泵内压力模型;
根据气体状态方程得到下冲程载荷卸载过程中柱塞不同位移处泵内压力模型;
根据游动阀打开时的泵内压力模型,以及下冲程载荷卸载过程中柱塞不同位移处泵内压力模型,得到求解泵处自由气体摩尔量的模型;
根据求解泵处自由气体摩尔量的模型,得到求取抽油机井产液量的所述抽油机井求产液量模型。
在一个实施例中,所述下冲程预设过程段的泵内压力为忽略了柱塞自身的重力和柱塞与工作筒壁之间的摩擦力得到的泵内压力。
在一个实施例中,所述泵排出口压力为忽略了流体过游动阀阻力得到的泵排出口压力。
在一个实施例中,确定每一抽示功图对应的抽油泵内自由气体摩尔量,包括:
在每一抽泵功图上的下冲程预设过程段曲线上任取多个数据点;
根据每一所述数据点,以及预先建立的求解泵处自由气体摩尔量的模型,构成求解泵处自由气体摩尔量的方程组;
对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量。
在一个实施例中,所述求解泵处自由气体摩尔量的模型为:
Figure PCTCN2022139243-appb-000001
其中,F pd为游动阀打开时泵载荷;A p为柱塞的横截面积;A r为与泵连接的拉杆横截面积;n为气体的摩尔数;Z为压缩因子;R为气体常数;T为泵内温度;s l为有效产液量冲程,u为卸载过程中任意一点的位移;F d为下冲程时柱塞载荷。
在一个实施例中,上述气影响工况下油井数字化计量的方法还包括:对所述方程组进行求解,得到每一抽示功图对应的有效产液量冲程;
根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量,包括:
根据每一抽示功图对应的抽油泵内自由气体摩尔量,每一抽示功图对应的有效产液量冲程,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量。
在一个实施例中,对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量,包括:在数据点的数目大于3时,利用最小二乘法对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量。
在一个实施例中,所述抽油机井求产液量模型为:
Q l=1440η lη BA pS ln;
其中,Q l为抽油机井产液量,η l为泵漏失对泵效影响的漏失系数,η B为地面脱气原油体积系数,A p为柱塞的横截面积,S l为有效产液量冲程,n为自由气体摩尔量。
本发明实施例还提供一种气影响工况下油井数字化计量的装置,用以定量考虑气体影响的程度,修正气体影响条件下抽油机井产液量,提高功图求产液量的精度,该装置包括:
气体摩尔量确定单元,用于确定每一抽示功图对应的抽油泵内自由气体摩尔量;
预测单元,用于根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量;所述抽油机井求产液量模型为考虑气体对产液量的影响预先建立的抽油机井求产液量模型;
最终产液量确定单元,用于将每一抽示功图对应的井口产液量进行累计得到抽油机井口累计产液量。
在一个实施例中,上述气影响工况下油井数字化计量的装置还包括:建立单元,用于按照如下方法预先建立抽油机井求产液量模型:
对抽油泵柱塞进行受力分析,得到下冲程预设过程段的泵内压力模型;
根据下冲程载荷卸载完成后游动阀打开时的泵载荷模型,得到泵排出口压力模型;
根据下冲程预设过程段的泵内压力模型及泵排出口压力模型,得到游动阀打开时的泵内压力模型;
根据气体状态方程得到下冲程载荷卸载过程中柱塞不同位移处泵内压力模型;
根据游动阀打开时的泵内压力模型,以及下冲程载荷卸载过程中柱塞不同位移处泵内压力模型,得到求解泵处自由气体摩尔量的模型;
根据求解泵处自由气体摩尔量的模型,得到求取抽油机井产液量的所述抽油机井求产液量模型。
在一个实施例中,所述下冲程预设过程段的泵内压力可以为忽略了柱塞自身的重力和柱塞与工作筒壁之间的摩擦力得到的泵内压力。
在一个实施例中,所述泵排出口压力可以为忽略了流体过游动阀阻力得到的泵排出口压力。
在一个实施例中,所述气体摩尔量确定单元具体用于:
在每一抽泵功图上的下冲程预设过程段曲线上任取多个数据点;
根据每一所述数据点,以及预先建立的求解泵处自由气体摩尔量的模型,构成求解泵处自由气体摩尔量的方程组;
对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量。
在一个实施例中,所述求解泵处自由气体摩尔量的模型可以为:
Figure PCTCN2022139243-appb-000002
其中,F TV为游动阀打开时泵载荷;A p为柱塞的横截面积;A r为与泵连接的拉杆横截面积;n为气体的摩尔数;Z为压缩因子;R为气体常数;T为泵内温度;s l为有效产液量冲程,u为卸载过程中任意一点的位移;F d为下冲程时柱塞载荷。
在一个实施例中,上述气体摩尔量确定单元还可以用于:对所述方程组进行求解,得到每一抽示功图对应的有效产液量冲程;
根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量,包括:
根据每一抽示功图对应的抽油泵内自由气体摩尔量,每一抽示功图对应的有效产液量冲程,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量。
在一个实施例中,对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量,可以包括:在数据点的数目大于3时,利用最小二乘法对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量。
在一个实施例中,所述抽油机井求产液量模型可以为:
Q l=1440η lη BA pS ln;
其中,Q l为抽油机井产液量,η l为泵漏失对泵效影响的漏失系数,η B为地面脱气原油体积系数,A p为柱塞的横截面积,S l为有效产液量冲程,n为自由气体摩尔量。
本发明实施例还提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述气影响工况下油井数字化计量的方法。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述气影响工况下油井数字化计量的方法。
本发明实施例还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,所述计算机程序被处理器执行时实现上述气影响工况下油井数字化计量的方法。
本发明实施例中,气影响工况下油井数字化计量的方案,通过:确定每一抽示功图对应的抽油泵内自由气体摩尔量;根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量;所述抽油机井求产液量模型为考虑气体对产液量的影响预先建立的抽油机井求产液量模型;将每一抽示功图对应的井口产液量进行累计得到抽油机井口累计产液量,该方案定量考虑了气体影响的程度,修正了气体影响条件下抽油机井产液量,提高了功图求产液量的精度。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:
图1为本发明实施例中气影响工况下油井数字化计量的方法的流程示意图;
图2为本发明实施例中考虑气体影响的有效产液量冲程示意图;
图3为本发明实施例中预先建立抽油机井求产液量模型的示意图;
图4为本发明实施例中确定每一抽示功图对应的抽油泵内自由气体摩尔量的示意图;
图5为本发明实施例中气影响工况下油井数字化计量的装置的结构示意图;
图6为本发明实施例中计算机设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
本文中术语“和/或”,仅仅是描述一种关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。
在本说明书的描述中,所使用的“包含”、“包括”、“具有”、“含有”等,均为开放性的用语,即意指包含但不限于。参考术语“一个实施例”、“一个具体实施例”、“一些实施例”、“例如”等的描述意指结合该实施例或示例描述的具体特征、结构或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。各实施例中涉及的步骤顺序用于示意性说明本申请的实施,其中的步骤顺序不作限定,可根据需要作适当调整。
发明人发现了技术问题:气体影响泵功图,对于气影响的功图,由于无法定量计算泵内气体量,功图求产液量的计算精度一直不高。由于发明人发现了该技术问题,提出了一种气影响工况下油井数字化计量的方法,该方案定量考虑了气体影响的程度,修正了气体影响条件下抽油机井产液量,提高了功图求产液量的精度,实现更高精度的数字化量油,有利于取消计量间、减轻一线劳动,转变传统生产管理方式。下面对该气影响工况下油井数字化计量的方法进行详细介绍。
图1为本发明实施例中气影响工况下油井数字化计量的方法的流程示意图,如图1所示,该方法包括如下步骤:
步骤101:确定每一抽示功图对应的抽油泵内自由气体摩尔量;
步骤102:根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量;所述抽油机井求产液量模型为考虑气体对产液量的影响预先建立的抽油机井求产液量模型;
步骤103:将每一抽示功图对应的井口产液量进行累计得到抽油机井口累计产液量,得到的抽油机井口累计产液量用于指导石油天然气开发生产。
本发明实施例提供的气影响工况下油井数字化计量的方法,工作时:确定每一抽示功图对应的抽油泵内自由气体摩尔量;根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量;所述抽油机井求产液量模型为考虑气体对产液量的影响预先建立的抽油机井求产液量模型;将每一抽示功图对应的井口产液量进行累计得到抽油机井口累计产液量,该方法定量考虑了气体影响的程度,修正了气体影响条件下抽油机井产液量,提高了功图求产液量的精度。下面对该气影响工况下油井数字化计量的方法进行详细介绍。
首先,介绍抽油机井求产液量模型的步骤。
1)计算下冲程过程中泵内压力
如果给定的功图是地面功图,需要根据波动方程将地面功图转化为井下泵功图,对于气体影响的泵功图,气体影响主要体现在泵下冲程载荷卸载过程,以抽油泵柱塞为研究对象,对其进行受力分析,同时忽略柱塞自身的重力W p和柱塞与工作筒壁之间的摩擦力f,下冲程C到D段泵内压力为:
Figure PCTCN2022139243-appb-000003
其中,F d为下冲程时柱塞载荷,N;p 0为泵排出口处压力,Pa;p p为下冲程泵内压力,Pa;A p为柱塞的横截面积,m 2;A r为与泵连接的拉杆横截面积,m 2
通过上述可知,在一个实施例中,所述下冲程预设过程段的泵内压力为忽略了柱塞自身的重力和柱塞与工作筒壁之间的摩擦力得到的泵内压力。
2)泵排出口压力
泵排出口压力的获得包含但不限于如下几种方法:1)通过传感器实测泵排出口压力;2)通过多相流理论从井口向下计算泵排出口压力;3)本发明实施例给出了如下简易计算方法。
当下冲程卸载完成后,泵上部游动阀打开,此时,泵内压力等于泵排出口压力与流体过游动阀压降之间的和,有:
F TV=p 0A p-f p  (2)
其中,F TV为游动阀打开时泵载荷,N;f p为流体过游动阀阻力,Pa。
在卸载过程中,由于柱塞下行距离有限且井口压力变化不大,认为在该过程中泵排出口压力保持不变,同时忽略流体过游动阀阻力,由式(2)可以计算得到泵排出口压力为:
p 0=F TV/A p  (3)
则将式(3)带入到式(1)中,可得泵内压力为:
Figure PCTCN2022139243-appb-000004
通过上述可知,在一个实施例中,所述泵排出口压力为忽略了流体过游动阀阻力得到的泵排出口压力。
3)气体状态方程
同时,在下冲程泵载荷卸载过程中,根据气体状态方程可得不同位置处泵内压力为:
Figure PCTCN2022139243-appb-000005
其中,n为气体的摩尔数,mol;Z为压缩因子,可通过查表或者利用经验公式求得;R为气体常数,R=8.3145Pa·m 3/(mol·K);T为泵内温度,K;u D为游动阀开启时柱塞的位移,m;u为卸载过程中任意一点的位移,m;s q为游动阀打开时泵内气柱高度,m。特别地,当柱塞位于上死点时,u=u C,其中u C为上死点柱塞位移,m;当游动阀打开时,u=u D
4)求解泵处自由气摩尔量、有效产液量冲程
在卸载过程中,游动阀和固定阀均处于关闭状态,在柱塞下行过程中,气体持续被压缩,但气体的摩尔数始终保持不变,联立由公式4和公式5可以得到下述公式(6),即在一个实施例中,所述求解泵处自由气体摩尔量的模型可以为:
Figure PCTCN2022139243-appb-000006
其中,s l为有效产液量冲程,u为卸载过程中任意一点的位移。
上述方程(公式(6)),有三个未知数s l、n、T,如图2所示,在泵功图上C到D曲线上任取k个点(k大于等于3),形成如下方程组:
Figure PCTCN2022139243-appb-000007
其中,F d1从泵功图上死点C到游动阀开启点D内点1处的泵载荷,N;F d2从泵功图上死点C到游动阀开启点D内点2处的泵载荷,N;F dk卸载过程中柱塞不同位移处的泵载荷,例如功图上死点C到游动阀开启点D内点k处的泵内压力,N;下标k为泵功图上从下死点C到游动阀开启点D内任意选点,为方便表示和计算,从C到D依次进行选点,i=1,2,3,……,k,即i=1靠近井口,依次向下,i=m靠近井底的泵载荷,N;下标k为泵功图上从下死点C到游动阀开启点D内任意选点,为方便表示和计算,从C到D依次进行选点,i=1,2,3,……,k,……,即i=1靠近井口,依次向下,i=k靠近井底;Z 1为从泵功图上死点C到游动阀开启点D内点1处的泵内气体压缩因子;Z 2为从泵功图上死点C到游动阀开启点D内点m处的泵内气体压缩因子;Z k为卸载过程中柱塞不同位移处的泵内气体压缩因子,例如功图上死点C到游动阀开启点D内点k处的泵内气体压缩因子;u 1为从泵功图上死点C到游动阀开启点D内点1处的位移,m;u 2为从泵功图上死点C到游动阀开启点D内点2处的位移,m;u k为卸载过程中柱塞的不同位移,例如从泵功图上死点C到游动阀开启点D内点k处的不同位移,m。
对方程进行求解,可以计算得到有效产液量冲程、自由气摩尔量和泵处的温度,为了提高数值计算的精度,当点数k大于3时,可以对上述方程组取用最小二乘法进行计算。
5)求解井口产液量
计算考虑气体影响的产液量,采用分解法求产液量。即在一个实施例中,所述抽油机井求产液量模型可以为:
Q l=1440η lη BA pS ln  (8)
其中,Q l为抽油机井产液量,η l为泵漏失对泵效影响的漏失系数,η B为地面脱气原油体积系数,A p为柱塞的横截面积,S l为有效产液量冲程,n为自由气体摩尔量。
通过上述可知,在一个实施例中,如图3所示,上述气影响工况下油井数字化计量 的方法还可以包括按照如下方法预先建立抽油机井求产液量模型:
步骤201:对抽油泵柱塞进行受力分析,得到下冲程预设过程段的泵内压力模型(可以是上述公式(1));
步骤202:根据下冲程载荷卸载完成后游动阀打开时的泵载荷模型(可以是上述公式(2)),得到泵排出口压力模型(可以是上述公式(3));
步骤203:根据下冲程预设过程段的泵内压力模型及泵排出口压力模型,得到游动阀打开时的泵内压力模型(可以是上述公式(4));
步骤204:根据气体状态方程得到下冲程载荷卸载过程中柱塞不同位移处泵内压力模型(可以是上述公式(5));
步骤205:根据游动阀打开时的泵内压力模型,以及下冲程载荷卸载过程中柱塞不同位移处泵内压力模型,得到求解泵处自由气体摩尔量的模型(可以是上述公式(6));
步骤206:根据求解泵处自由气体摩尔量的模型,得到求取抽油机井产液量的所述抽油机井求产液量模型(可以是上述公式(8))。
其次,介绍利用上述建立好的抽油机井求产液量模型进行气影响工况下油井数字化计量的步骤。
在上述步骤101中,在一个实施例中,如图4所示,确定每一抽示功图对应的抽油泵内自由气体摩尔量,可以包括:
步骤1011:在每一抽泵功图上的下冲程预设过程段曲线上任取多个数据点(k个点);
步骤1012:根据每一所述数据点,以及预先建立的求解泵处自由气体摩尔量的模型,构成求解泵处自由气体摩尔量的方程组(可以是上述公式(7));
步骤1013:对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量。
具体实施时,上述确定每一抽示功图对应的抽油泵内自由气体摩尔量的实施方式进一步提高了气影响工况下油井数字化计量的精度。
通过上述可知,在一个实施例中,对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量,可以包括:在数据点的数目大于3时,利用最小二乘法对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量,提高了求取自由气体摩尔量的精度,进而进一步提高了气影响工况下油井数字化计量的精度。
上述步骤101的具体实施方式可以参见上述“4)求解泵处自由气摩尔量、有效产液量冲程”部分的介绍。
上述步骤102的具体实施方式可以参见上述“5)求解井口产液量”部分的介绍。
在上述步骤103中,可以根据用户实际需要,得到任意时段内的抽油机井的实时产液量,例如24小时实时测量抽油机井的产液量。
在进一步的优选实施例中,上述气影响工况下油井数字化计量的方法还可以包括:
根据抽油机每一抽示功图对应的井口产液量,得到抽油机井产液量的变化曲线;
根据抽油机井产液量的变化曲线,对抽油机井的生产动态进行分析。
具体实施时,本发明实施例不仅可以准确计算油井每天或指定时间段的累计产液量,还可以动态分析油井产量的变化规律,对油井的生产动态进行分析,以指导石油天然气开发生产。
本发明实施例以长庆油田某井为例,该井基本数据为:井口压力0.2Mpa、井口温度40℃、柱塞泵径32mm、冲程1.5m、抽油杆径19mm、泵深850m、泵处溶解气液比5m 3/m 3,同时需要实测的地面功图,将地面功图应用三维波动方程求解井下泵功图。
对于井下泵功图,在载荷卸载过程段(C→D)任意选取两组数据点,得到其对应的载荷与位移,为了提高计算的精度的影响,根据第4节的方法取泵功图C、D两点之间K个数据点(K大于3)。利用式(7)求解泵有效产液量冲程,再利用式(8)计算考虑气体影响的产液量。下图给出了该井某一时间段内不同时间点的功图,以及由以上方法计算的井口的产液量曲线。
另外,本发明实施例提出的气影响工况下油井数字化计量的方法更加适用于生产气液比大于泵处溶解气液比的抽油机井,示功图要有一定气体影响图形特征(预设气体影响图形特征),一般产气量较大(产气量大于预设值)的情况。
本发明提出的气影响工况下油井数字化计量的方法主要特征有:
1)提出了一种低成本的气影响工况下油井数字化计量的确定方法。
2)该方法基于抽油机井示功图进行计算,示功图可以是实测的地面功图,也可以是通过电参转化的功图。
3)该方法基于功图的特征和气体状态方程进行计算。
4)给出了抽油泵内自由气体摩尔量的计算过程。
5)本方法修正了气体影响条件下抽油机井产液量的计算方法,提高了功图求产液量的精度。
6)形成了内嵌上述方法(气影响工况下油井数字化计量的方法)的边缘计算装置,可安装在油井现场,实时计算每一抽示功图对应的产液量,从而计算出抽油机井口累计产液量。
综上,本发明实施例的优点是:本发明实施例提出了一种气影响工况下油井数字化计量的方法,对于气影响的功图,定量考虑了气体影响的程度,提高了功图求产液量的精度,本发明实施例的成果有利于取消计量间、减轻一线劳动,转变传统生产管理方式,使采油工真正由蓝领向白领转变。基于本发明实施例可以实现24小时实时测量抽油机井的产液量,不仅可以准确计算油井每天或指定时间段的累计产液量,还可以动态分析油井产量的变化规律,对油井的生产动态进行分析。
本发明实施例中还提供了一种气影响工况下油井数字化计量的装置,如下面的实施例所述。由于该装置解决问题的原理与气影响工况下油井数字化计量的方法相似,因此该装置的实施可以参见一种气影响工况下油井数字化计量的方法的实施,重复之处不再赘述。
图5为本发明实施例中气影响工况下油井数字化计量的装置的结构示意图,如图5所示,该装置包括:
气体摩尔量确定单元01,用于确定每一抽示功图对应的抽油泵内自由气体摩尔量;
预测单元02,用于根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量;所述抽油机井求产液量模型为考虑气体对产液量的影响预先建立的抽油机井求产液量模型;
最终产液量确定单元03,用于将每一抽示功图对应的井口产液量进行累计得到抽油机井口累计产液量。
在一个实施例中,上述气影响工况下油井数字化计量的装置还可以包括:建立单元,用于按照如下方法预先建立抽油机井求产液量模型:
对抽油泵柱塞进行受力分析,得到下冲程预设过程段的泵内压力模型;
根据下冲程载荷卸载完成后游动阀打开时的泵载荷模型,得到泵排出口压力模型;
根据下冲程预设过程段的泵内压力模型及泵排出口压力模型,得到游动阀打开时的泵内压力模型;
根据气体状态方程得到下冲程载荷卸载过程中柱塞不同位移处泵内压力模型;
根据游动阀打开时的泵内压力模型,以及下冲程载荷卸载过程中柱塞不同位移处泵内压力模型,得到求解泵处自由气体摩尔量的模型;
根据求解泵处自由气体摩尔量的模型,得到求取抽油机井产液量的所述抽油机井求产液量模型。
在一个实施例中,所述下冲程预设过程段的泵内压力可以为忽略了柱塞自身的重力和柱塞与工作筒壁之间的摩擦力得到的泵内压力。
在一个实施例中,所述泵排出口压力可以为忽略了流体过游动阀阻力得到的泵排出口压力。
在一个实施例中,所述气体摩尔量确定单元具体用于:
在每一抽泵功图上的下冲程预设过程段曲线上任取多个数据点;
根据每一所述数据点,以及预先建立的求解泵处自由气体摩尔量的模型,构成求解泵处自由气体摩尔量的方程组;
对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量。
在一个实施例中,所述求解泵处自由气体摩尔量的模型可以为:
Figure PCTCN2022139243-appb-000008
其中,F TV为游动阀打开时泵载荷;A p为柱塞的横截面积;A r为与泵连接的拉杆横截面积;n为气体的摩尔数;Z为压缩因子;R为气体常数;T为泵内温度;s l为有效产液量冲程,u为卸载过程中任意一点的位移;F d为下冲程时柱塞载荷。
在一个实施例中,上述气体摩尔量确定单元还可以用于:对所述方程组进行求解,得到每一抽示功图对应的有效产液量冲程;
根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量,包括:
根据每一抽示功图对应的抽油泵内自由气体摩尔量,每一抽示功图对应的有效产液量冲程,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量。
在一个实施例中,对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量,可以包括:在数据点的数目大于3时,利用最小二乘法对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量。
在一个实施例中,所述抽油机井求产液量模型可以为:
Q l=1440η lη BA pS ln;
其中,Q l为抽油机井产液量,η l为泵漏失对泵效影响的漏失系数,η B为地面脱气原 油体积系数,A p为柱塞的横截面积,S l为有效产液量冲程,n为自由气体摩尔量。
在进一步的优选实施例中,上述气影响工况下油井数字化计量的装置还可以包括:
变化确定单元,用于根据抽油机每一抽示功图对应的井口产液量,得到抽油机井产液量的变化曲线;
动态分析单元,用于根据抽油机井产液量的变化曲线,对抽油机井的生产动态进行分析。
基于前述发明构思,如图6所示,本发明还提出了一种计算机设备500,包括存储器510、处理器520及存储在存储器510上并可在处理器520上运行的计算机程序530,所述处理器520执行所述计算机程序530时实现前述气影响工况下油井数字化计量的方法。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述气影响工况下油井数字化计量的方法。
本发明实施例还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,所述计算机程序被处理器执行时实现上述气影响工况下油井数字化计量的方法。
本发明实施例中,气影响工况下油井数字化计量的方案,通过:确定每一抽示功图对应的抽油泵内自由气体摩尔量;根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量;所述抽油机井求产液量模型为考虑气体对产液量的影响预先建立的抽油机井求产液量模型;将每一抽示功图对应的井口产液量进行累计得到抽油机井口累计产液量,该方案定量考虑了气体影响的程度,修正了气体影响条件下抽油机井产液量,提高了功图求产液量的精度。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机 程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种气影响工况下油井数字化计量的方法,其特征在于,包括:
    确定每一抽示功图对应的抽油泵内自由气体摩尔量;
    根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量;所述抽油机井求产液量模型为考虑气体对产液量的影响预先建立的抽油机井求产液量模型;
    将每一抽示功图对应的井口产液量进行累计得到抽油机井口累计产液量。
  2. 如权利要求1所述的气影响工况下油井数字化计量的方法,其特征在于,还包括按照如下方法预先建立抽油机井求产液量模型:
    对抽油泵柱塞进行受力分析,得到下冲程预设过程段的泵内压力模型;
    根据下冲程载荷卸载完成后游动阀打开时的泵载荷模型,得到泵排出口压力模型;
    根据下冲程预设过程段的泵内压力模型及泵排出口压力模型,得到游动阀打开时的泵内压力模型;
    根据气体状态方程得到下冲程载荷卸载过程中柱塞不同位移处泵内压力模型;
    根据游动阀打开时的泵内压力模型,以及下冲程载荷卸载过程中柱塞不同位移处泵内压力模型,得到求解泵处自由气体摩尔量的模型;
    根据求解泵处自由气体摩尔量的模型,得到求取抽油机井产液量的所述抽油机井求产液量模型。
  3. 如权利要求2所述的气影响工况下油井数字化计量的方法,其特征在于,所述下冲程预设过程段的泵内压力为忽略了柱塞自身的重力和柱塞与工作筒壁之间的摩擦力得到的泵内压力。
  4. 如权利要求2所述的气影响工况下油井数字化计量的方法,其特征在于,所述泵排出口压力为忽略了流体过游动阀阻力得到的泵排出口压力。
  5. 如权利要求1所述的气影响工况下油井数字化计量的方法,其特征在于,确定每一抽示功图对应的抽油泵内自由气体摩尔量,包括:
    在每一抽泵功图上的下冲程预设过程段曲线上任取多个数据点;
    根据每一所述数据点,以及预先建立的求解泵处自由气体摩尔量的模型,构成求解泵处自由气体摩尔量的方程组;
    对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量。
  6. 如权利要求5所述的气影响工况下油井数字化计量的方法,其特征在于,所述求解泵处自由气体摩尔量的模型为:
    Figure PCTCN2022139243-appb-100001
    其中,F pd为游动阀打开时泵载荷;A p为柱塞的横截面积;A r为与泵连接的拉杆横截面积;n为气体的摩尔数;Z为压缩因子;R为气体常数;T为泵内温度;s l为有效产液量冲程,u为卸载过程中任意一点的位移;F d为下冲程时柱塞载荷。
  7. 如权利要求5所述的气影响工况下油井数字化计量的方法,其特征在于,还包括:对所述方程组进行求解,得到每一抽示功图对应的有效产液量冲程;
    根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量,包括:
    根据每一抽示功图对应的抽油泵内自由气体摩尔量,每一抽示功图对应的有效产液量冲程,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量。
  8. 如权利要求5所述的气影响工况下油井数字化计量的方法,其特征在于,对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量,包括:在数据点的数目大于3时,利用最小二乘法对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量。
  9. 如权利要求1所述的气影响工况下油井数字化计量的方法,其特征在于,所述抽油机井求产液量模型为:
    Q l=1440η lη BA pS ln;
    其中,Q l为抽油机井产液量,η l为泵漏失对泵效影响的漏失系数,η B为地面脱气原油体积系数,A p为柱塞的横截面积,S l为有效产液量冲程,n为自由气体摩尔量。
  10. 一种气影响工况下油井数字化计量的装置,其特征在于,包括:
    气体摩尔量确定单元,用于确定每一抽示功图对应的抽油泵内自由气体摩尔量;
    预测单元,用于根据每一抽示功图对应的抽油泵内自由气体摩尔量,以及预先建立的抽油机井求产液量模型,确定每一抽示功图对应的抽油机井产液量;所述抽油机井求产液量模型为考虑气体对产液量的影响预先建立的抽油机井求产液量模型;
    最终产液量确定单元,用于将每一抽示功图对应的井口产液量进行累计得到抽油机井口累计产液量。
  11. 如权利要求10所述的气影响工况下油井数字化计量的装置,其特征在于,还包括:建立单元,用于按照如下方法预先建立抽油机井求产液量模型:
    对抽油泵柱塞进行受力分析,得到下冲程预设过程段的泵内压力模型;
    根据下冲程载荷卸载完成后游动阀打开时的泵载荷模型,得到泵排出口压力模型;
    根据下冲程预设过程段的泵内压力模型及泵排出口压力模型,得到游动阀打开时的泵内压力模型;
    根据气体状态方程得到下冲程载荷卸载过程中柱塞不同位移处泵内压力模型;
    根据游动阀打开时的泵内压力模型,以及下冲程载荷卸载过程中柱塞不同位移处泵内压力模型,得到求解泵处自由气体摩尔量的模型;
    根据求解泵处自由气体摩尔量的模型,得到求取抽油机井产液量的所述抽油机井求产液量模型。
  12. 如权利要求10所述的气影响工况下油井数字化计量的装置,其特征在于,所述气体摩尔量确定单元具体用于:
    在每一抽泵功图上的下冲程预设过程段曲线上任取多个数据点;
    根据每一所述数据点,以及预先建立的求解泵处自由气体摩尔量的模型,构成求解泵处自由气体摩尔量的方程组;
    对所述方程组进行求解,得到每一抽示功图对应的抽油泵内自由气体摩尔量。
  13. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至9任一所述方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至9任一所述方法。
  15. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,所述计算机程序被处理器执行时实现权利要求1至9任一所述方法。
PCT/CN2022/139243 2022-06-27 2022-12-15 气影响工况下油井数字化计量的方法与装置 WO2024001070A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210735869.5A CN117345195A (zh) 2022-06-27 2022-06-27 气影响工况下油井数字化计量的方法与装置
CN202210735869.5 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024001070A1 true WO2024001070A1 (zh) 2024-01-04

Family

ID=89367307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139243 WO2024001070A1 (zh) 2022-06-27 2022-12-15 气影响工况下油井数字化计量的方法与装置

Country Status (2)

Country Link
CN (1) CN117345195A (zh)
WO (1) WO2024001070A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046825A (ja) * 2007-08-15 2009-03-05 Ihi Corp 重質油の採掘方法及び装置
CN105089638A (zh) * 2015-06-26 2015-11-25 中国石油化工股份有限公司胜利油田分公司 一种利用抽油机泵功图在线计算油井动液面方法
CN107288617A (zh) * 2016-07-21 2017-10-24 中国石油大学(北京) 一种提高抽油机井示功图量油精度的方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046825A (ja) * 2007-08-15 2009-03-05 Ihi Corp 重質油の採掘方法及び装置
CN105089638A (zh) * 2015-06-26 2015-11-25 中国石油化工股份有限公司胜利油田分公司 一种利用抽油机泵功图在线计算油井动液面方法
CN107288617A (zh) * 2016-07-21 2017-10-24 中国石油大学(北京) 一种提高抽油机井示功图量油精度的方法及系统

Also Published As

Publication number Publication date
CN117345195A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
US20210002999A1 (en) Method for calculating single-well controlled reserve of low-permeability/tight gas reservoir and analyzing residual gas thereof
US10494911B2 (en) Plunger lift state estimation and optimization using acoustic data
CN104533382B (zh) 一种抽油机井电参数“示功图”的确定方法
CN107608940B (zh) 一种油井间抽周期确定方法
CN110206536A (zh) 一种基于泵示功图的井口产液量采集方法
CN102168551A (zh) 油井动液面深度连续测量和采出液连续计量装置及方法
CN108661631B (zh) 一种产量预测方法
CN110489921B (zh) 一种基于电参数的有杆泵抽油井产液量软测量方法
CN103867184A (zh) 一种气井临界携液流量确定方法及装置
CN104533349B (zh) 一种抽油机井运行平衡的调整方法
WO2014040264A1 (zh) 一种油井动液面的测量方法及系统
CN104732063A (zh) 一种窄条状功图工况分析方法
CN111963151B (zh) 一种通过抽油机悬点静载荷确定地层压力的方法
CN110344818A (zh) 柱塞气举井柱塞上行阶段液体段塞界面跟踪方法
CN106593415A (zh) 一种基于改进多相流算法的油井动液面计量方法
CN108240215A (zh) 一种基于有限差分法的抽油井柱塞有效冲程确定方法
CN105569639A (zh) 一种基于地面示功图计算油井动液面的方法
WO2024001070A1 (zh) 气影响工况下油井数字化计量的方法与装置
CN111594139A (zh) 油井测试与等泵充满按冲次同步数控抽油法
CN105260493B (zh) 一种基于语义的油井功图计量方法
Liu et al. Detection and evaluation technologies for using existing salt caverns to build energy storage
CN104504236B (zh) 泵功图计量稳定性方法
CN104481499B (zh) 一种基于电参数的抽油机井日产液量测量方法
CN111271049B (zh) 一种有杆泵抽油井充满程度识别方法
WO2024001071A1 (zh) 基于示功图的抽油机井产气量确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949146

Country of ref document: EP

Kind code of ref document: A1