WO2024000967A1 - 低功耗智能锁和智能设备的防反热备电路、防反接方法 - Google Patents

低功耗智能锁和智能设备的防反热备电路、防反接方法 Download PDF

Info

Publication number
WO2024000967A1
WO2024000967A1 PCT/CN2022/128676 CN2022128676W WO2024000967A1 WO 2024000967 A1 WO2024000967 A1 WO 2024000967A1 CN 2022128676 W CN2022128676 W CN 2022128676W WO 2024000967 A1 WO2024000967 A1 WO 2024000967A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
battery power
circuit
mos transistor
reverse
Prior art date
Application number
PCT/CN2022/128676
Other languages
English (en)
French (fr)
Inventor
刘延飞
段玉堂
陈金保
潘阳
李建刚
Original Assignee
卧安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卧安科技(深圳)有限公司 filed Critical 卧安科技(深圳)有限公司
Publication of WO2024000967A1 publication Critical patent/WO2024000967A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/36Arrangements using end-cell switching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • This application belongs to the technical field of power circuits, and in particular relates to an anti-reverse hot backup circuit and an anti-reverse connection method for a low-power smart lock and smart equipment.
  • battery products usually use ideal diodes to prevent reverse reaction.
  • the forward conduction voltage drop of an ideal diode is so small that it can be ignored.
  • the ideal diode method requires the cooperation of a triode. During the working process, the triode needs to consume a certain amount of current in order to maintain its state. This current is usually milliamps and is suitable for most battery products.
  • this milliamp-level current will make the anti-reverse function of the ideal diode impossible to achieve. Therefore, it is necessary to design an anti-reverse hot backup circuit and anti-reverse connection method for low-power smart locks and smart devices.
  • One of the purposes of the embodiments of this application is to provide a low-power smart lock and an anti-reverse hot backup circuit and an anti-reverse connection method for smart locks and smart devices, aiming to solve the problem of excessive energy consumption due to the anti-reverse connection method in the prior art. , the technical problem of being unable to achieve anti-counterfeiting in low-power smart locks and smart devices.
  • a low-power smart lock anti-reverse hot backup circuit including a power supply circuit, a power switching control circuit and an anti-reverse connection circuit;
  • the power supply circuit includes a main battery power supply, a backup battery power supply and a power output end;
  • the power switching control circuit is connected to the power supply circuit and the anti-reverse connection circuit, and the power switching control circuit is used to switch the main battery power supply and/or the backup battery power supply;
  • the power switching control circuit includes a main battery power control circuit and a backup battery power control circuit.
  • the main battery power control circuit is connected to the main battery power supply and the power output terminal.
  • the backup battery power control circuit is connected to the backup battery power supply and The power output end is connected, the main battery power control circuit and the backup battery power control circuit are respectively connected to the anti-reverse connection circuit;
  • the anti-reverse connection circuit is connected to the power supply circuit and the power switching control Circuit connection is used to prevent the reverse connection of the main battery power supply or the backup battery power supply from causing damage to the internal components of the smart lock;
  • the anti-reverse connection circuit includes a main battery power supply anti-reverse connection circuit and a backup battery power supply anti-reverse connection circuit.
  • the main battery power supply reverse connection prevention circuit is connected to the main battery power supply and the main battery power supply control circuit, and the backup battery power supply reverse connection prevention circuit is connected to the backup battery power supply and the backup battery power supply control circuit Connection;
  • the main battery power reverse connection prevention circuit includes a third MOS tube and a second resistor, the gate of the third MOS tube is connected to the main battery power supply, and the drain of the third MOS tube is connected to the main battery power supply.
  • the main battery power control circuit is connected, the drain of the third MOS tube is also connected to one end of the second resistor, the source of the third MOS tube is connected to the power output end, and the second resistor The other end is grounded; the power output end is used to power the smart lock.
  • the main battery power supply control circuit includes a fourth MOS transistor, a fifth MOS transistor, a first capacitor and a first input and output terminal.
  • the fourth MOS transistor is connected between the main battery power supply and the main battery.
  • the drain of the fourth MOS tube is connected to the main battery power supply
  • the gate of the fourth MOS tube is connected to the first input and output terminal
  • the fourth MOS tube The source of the fifth MOS transistor is connected to the source of the fifth MOS transistor
  • the gate of the fifth MOS transistor is connected to the first input and output terminal
  • the drain of the fifth MOS transistor is connected to the power output terminal.
  • one end of the first capacitor is connected to the source of the fourth MOS transistor, and the other end of the first capacitor is connected to the gate of the fifth MOS transistor.
  • the backup battery power supply control circuit includes a seventh MOS transistor, an eighth MOS transistor, a second capacitor and a second input and output terminal.
  • the seventh MOS transistor is connected between the backup battery power supply and the backup battery.
  • the drain of the seventh MOS tube is connected to the backup battery power supply
  • the gate of the seventh MOS tube is connected to the second input and output terminal
  • the seventh MOS tube The source of the eighth MOS transistor is connected to the source of the eighth MOS transistor
  • the gate of the eighth MOS transistor is connected to the second input and output terminal
  • the drain of the eighth MOS transistor is connected to the power output terminal.
  • one end of the second capacitor is connected to the source of the seventh MOS transistor, and the other end of the second capacitor is connected to the gate of the eighth MOS transistor.
  • the backup battery power supply anti-reverse circuit includes a sixth MOS transistor and a tenth resistor, the gate of the sixth MOS transistor is connected to the backup battery power supply, and the drain of the sixth MOS transistor is connected to the backup battery power supply.
  • the backup battery power control circuit is connected, the drain of the sixth MOS transistor is also connected to one end of the tenth resistor, the source of the sixth MOS transistor is connected to the power output end, and the tenth MOS transistor is connected to the power output terminal.
  • the other end of the resistor is connected to ground.
  • an anti-reverse connection method of a low-power smart lock is provided, which is applied to the anti-reverse hot backup circuit of the low-power smart lock.
  • the method includes the following steps:
  • the power switching control circuit controls switching of the main battery power supply and/or the backup battery power supply;
  • the MOS transistor provided in the anti-reverse-connection circuit conducts and cuts off the current loop.
  • the step of turning on the MOS transistor provided in the anti-reverse circuit and cutting off the current loop when the power supply circuit is reverse-connected specifically includes: when the main battery power supply or the backup battery When the power supply is reversed and the input and output terminals of the power switching control circuit are abnormal or the main and backup battery power is switched, the MOS tube provided in the anti-reverse connection circuit and connected to the reverse-connected battery power is conducted and the main power supply is cut off.
  • an anti-reverse hot backup circuit for low-power intelligent equipment, including a power supply circuit, a power switching control circuit and an anti-reverse connection circuit;
  • the power supply circuit includes a main battery power supply, a backup battery power supply and a power output end;
  • the power switching control circuit is connected to the power supply circuit and the anti-reverse connection circuit, and the power switching control circuit is used to switch the main battery power supply and/or the backup battery power supply;
  • the power switching control circuit includes a main battery power control circuit and a backup battery power control circuit.
  • the main battery power control circuit is connected to the main battery power supply and the power output terminal.
  • the backup battery power control circuit is connected to the backup battery power supply and The power output end is connected, the main battery power control circuit and the backup battery power control circuit are respectively connected to the anti-reverse connection circuit;
  • the anti-reverse connection circuit is connected to the power supply circuit and the power switching control Circuit connection is used to prevent the reverse connection of the main battery power supply or the backup battery power supply from causing damage to the internal components of the smart device;
  • the anti-reverse connection circuit includes a main battery power supply anti-reverse connection circuit and a backup battery power supply anti-reverse connection circuit.
  • the main battery power supply reverse connection prevention circuit is connected to the main battery power supply and the main battery power supply control circuit, and the backup battery power supply reverse connection prevention circuit is connected to the backup battery power supply and the backup battery power supply control circuit Connection;
  • the main battery power supply anti-reverse circuit includes a third MOS tube and a second resistor, the gate of the third MOS tube is connected to the main battery power supply, and the drain of the third MOS tube is connected to the main battery power supply.
  • the power control circuit is connected, the drain of the third MOS tube is also connected to one end of the second resistor, the source of the third MOS tube is connected to the power output end, and the other end of the second resistor Grounded; the power output terminal is used to power the smart device.
  • the main battery power supply control circuit includes a fourth MOS transistor, a fifth MOS transistor, a first capacitor and a first input and output terminal.
  • the fourth MOS transistor is connected between the main battery power supply and the main battery.
  • the drain of the fourth MOS tube is connected to the main battery power supply
  • the gate of the fourth MOS tube is connected to the first input and output terminal
  • the fourth MOS tube The source of the fifth MOS transistor is connected to the source of the fifth MOS transistor
  • the gate of the fifth MOS transistor is connected to the first input and output terminal
  • the drain of the fifth MOS transistor is connected to the power output terminal.
  • one end of the first capacitor is connected to the source of the fourth MOS transistor, and the other end of the first capacitor is connected to the gate of the fifth MOS transistor.
  • the backup battery power supply control circuit includes a seventh MOS transistor, an eighth MOS transistor, a second capacitor and a second input and output terminal.
  • the seventh MOS transistor is connected between the backup battery power supply and the backup battery.
  • the drain of the seventh MOS tube is connected to the backup battery power supply
  • the gate of the seventh MOS tube is connected to the second input and output terminal
  • the seventh MOS tube The source of the eighth MOS transistor is connected to the source of the eighth MOS transistor
  • the gate of the eighth MOS transistor is connected to the second input and output terminal
  • the drain of the eighth MOS transistor is connected to the power output terminal.
  • one end of the second capacitor is connected to the source of the seventh MOS transistor, and the other end of the second capacitor is connected to the gate of the eighth MOS transistor.
  • the backup battery power supply anti-reverse circuit includes a sixth MOS transistor and a tenth resistor, the gate of the sixth MOS transistor is connected to the backup battery power supply, and the drain of the sixth MOS transistor is connected to the backup battery power supply.
  • the backup battery power control circuit is connected, the drain of the sixth MOS transistor is also connected to one end of the tenth resistor, the source of the sixth MOS transistor is connected to the power output end, and the tenth MOS transistor is connected to the power output terminal.
  • the other end of the resistor is connected to ground.
  • an anti-reverse connection method of a low-power smart device is provided, which is applied to the anti-reverse hot backup circuit of the low-power smart device.
  • the method includes the following steps:
  • the power switching control circuit controls switching of the main battery power supply and/or the backup battery power supply;
  • the MOS transistor provided in the anti-reverse-connection circuit conducts and cuts off the current loop.
  • the step of turning on the MOS transistor provided in the anti-reverse circuit and cutting off the current loop when the power supply circuit is reverse-connected specifically includes: when the main battery power supply or the backup battery When the power supply is reversed and the input and output terminals of the power switching control circuit are abnormal or the main and backup battery power is switched, the MOS tube provided in the anti-reverse connection circuit and connected to the reverse-connected battery power is conducted and the main power supply is cut off.
  • the beneficial effect of the anti-reverse hot backup circuit of the low-power smart lock is that by setting up the anti-reverse connection circuit, it can effectively prevent the reverse voltage from causing damage to the chip and module when the power supply is reversely connected, and the anti-reverse connection circuit
  • the circuit avoids using diodes for anti-reverse and is suitable for low-power smart locks to achieve anti-reverse of low-power smart locks and effectively improve the energy utilization of low-power smart locks; it also sets the main battery power supply, backup battery power supply and power supply Switch circuit, flexibly switch between main battery power and backup battery power, improve the stability and anti-interference ability of low-power smart lock, and maximize the battery energy utilization of low-power smart lock.
  • the beneficial effect of the anti-reverse connection method of the low-power smart lock provided by the embodiment of the present application is that: because the anti-reverse connection method is applied to the anti-reverse hot backup circuit of the low-power smart lock, the anti-reverse connection method
  • the method can also prevent damage to chips and modules caused by reverse voltage when the power is reversely connected. It also has the advantage of being suitable for low-power smart locks and improving the energy utilization of low-power smart locks.
  • the beneficial effect of the anti-reverse hot backup circuit for low-power smart devices is that by setting up the anti-reverse circuit, it can effectively prevent the reverse voltage from causing damage to the chip and module when the power supply is reversely connected, and the anti-reverse circuit
  • the circuit avoids using diodes for anti-reverse and is suitable for low-power smart devices to achieve anti-reverse for low-power smart devices and effectively improve the energy utilization of low-power smart devices; it also sets the main battery power supply, backup battery power supply and power supply Switch circuit, flexibly switch between main battery power and backup battery power, improve the stability and anti-interference ability of low-power smart devices, and maximize the battery energy utilization of low-power smart devices.
  • the beneficial effect of the anti-reverse connection method for low-power smart devices provided by the embodiments of the present application is that: because the anti-reverse connection method is applied to the anti-reverse hot backup circuit of the low-power smart device, the anti-reverse connection method The method can also prevent damage to chips and modules caused by reverse voltage when the power supply is reversely connected. It also has the advantage of being suitable for low-power smart devices and improving the energy utilization of low-power smart devices.
  • Figure 1 is a circuit schematic diagram of an anti-reverse hot backup circuit provided by an embodiment of the present application
  • Figure 2 is a circuit schematic diagram in which both the main battery power supply and the backup battery power supply are reversely connected in the anti-reverse hot backup circuit provided by the embodiment of the present application;
  • Figure 3 is a circuit schematic diagram of reverse connection of the backup battery power supply in the anti-reverse hot backup circuit provided by the embodiment of the present application;
  • Figure 4 is a circuit schematic diagram of the reverse connection of the main battery power supply in the anti-reverse hot backup circuit provided by the embodiment of the present application;
  • Figure 5 is a circuit schematic diagram in which the backup battery power supply is reversely connected and the anti-reverse connection circuit is hidden in the anti-reverse hot backup circuit provided by the embodiment of the present application;
  • Figure 6 is a circuit schematic diagram in which the main battery power supply is reverse-connected and the anti-reverse-connection circuit is hidden in the anti-reverse hot backup circuit provided by the embodiment of the present application;
  • Figure 7 is a flow chart of the anti-reverse connection method provided by the embodiment of the present application.
  • Figure 8 is a circuit block diagram of an anti-reverse hot backup circuit provided by an embodiment of the present application.
  • a low-power smart lock anti-reverse hot backup circuit including a power supply circuit 100, a power switching control circuit 200 and an anti-reverse hot backup circuit. Connect to circuit 300.
  • the power supply circuit 100 includes a main battery power supply BT1, a backup battery power supply BT2 and a power output terminal VOUT.
  • the power switching control circuit 200 is connected to the power supply circuit 100 and the anti-reverse connection circuit 300.
  • the power switching control circuit 200 is used to switch the main battery power supply BT1 and/or the backup battery power supply BT2.
  • the power switching control circuit 200 includes a main battery power control circuit 210 and a backup battery power control circuit 220.
  • the main battery power control circuit 210 is connected to the main battery power BT1 and the power output terminal VOUT.
  • the backup battery The power supply control circuit 220 is connected to the backup battery power supply BT2 and the power output terminal VOUT.
  • the main battery power supply control circuit 210 and the backup battery power supply control circuit 220 are respectively connected to the anti-reverse connection circuit 300 .
  • the anti-reverse connection circuit 300 is connected to the power supply circuit 100 and the power switching control circuit 200, and is used to prevent the main battery power supply BT1 or the backup battery power supply BT2 from being reversely connected and causing the internal components of the smart lock to be damaged. loss, the power output terminal VOUT is used to power the smart lock.
  • the low-power smart lock can be a low-power smart lock such as a password lock, a fingerprint lock, a lock keypad installed outside the door, or an intelligent unlocking device installed inside the door.
  • the anti-reverse circuit 300 includes a main battery power anti-reverse circuit 310 and a backup battery power anti-reverse circuit 320 .
  • the main battery power reverse connection prevention circuit 310 is connected to the main battery power supply BT1 and the main battery power supply control circuit 210, and is used to prevent the main battery power supply BT1 from being damaged due to reverse connection of the internal components of the smart lock.
  • the backup battery power reverse connection prevention circuit 320 is connected to the backup battery power supply BT2 and the backup battery power supply control circuit 220, and is used to prevent the backup battery power supply BT2 from being damaged due to reverse connection of the internal components of the smart lock.
  • the main battery power reverse connection prevention circuit 310 includes a third MOS transistor Q3 and a second resistor R2.
  • the gate of the third MOS transistor Q3 is connected to the main battery power supply BT1.
  • the drain of the third MOS transistor Q3 is connected to the main battery power supply BT1.
  • the electrode of the third MOS transistor Q3 is connected to the main battery power control circuit 210.
  • the drain of the third MOS transistor Q3 is also connected to one end of the second resistor R2.
  • the source of the third MOS transistor Q3 is connected to the power output terminal. VOUT is connected, and the other end of the second resistor R2 is connected to ground.
  • the low-power smart lock is a lock keyboard device installed outside the door.
  • the lock keyboard device includes a housing, a password keyboard, a password decoder and a motor.
  • the password keyboard is connected to the password decoder through a signal line.
  • the password decoder is also connected to the motor, and the anti-theft lock can be opened by rotating the motor.
  • the keyboard device is also provided with a fingerprint recognition panel and a fingerprint reader, and the lock keyboard device is also provided with a fingerprint recognition panel. and a fingerprint reader.
  • the fingerprint recognition panel is connected to the fingerprint reader.
  • the fingerprint reader is connected to the motor. Through fingerprint recognition or a password keyboard, the motor is rotated to open the anti-theft lock.
  • the low-power The anti-reverse hot backup circuit of the smart lock is used to power the motor to ensure that the user can open the anti-theft lock through fingerprint recognition or password keyboard.
  • This application effectively prevents reverse voltage from causing damage to chips and modules when the power supply is reversed by setting up an anti-reverse connection circuit 300.
  • the anti-reverse connection circuit 300 avoids using diodes for anti-reverse connection, and is suitable for low-power smart locks to achieve low power consumption.
  • the anti-reverse function of the power consumption smart lock effectively improves the energy utilization rate of the low-power smart lock; it also flexibly switches the main battery power supply BT1 and the backup battery power supply BT2 by setting the main battery power supply BT1, the backup battery power supply BT2 and the power switching circuit.
  • the battery power supply BT1 When the battery power supply BT1 is exhausted, it can be freely switched to the backup battery power supply BT2 to improve the stability and anti-interference ability of the low-power smart lock, maximize the battery energy utilization of the low-power smart lock, and prevent the smart lock from due to The battery is exhausted, causing the user to be unable to open the smart lock.
  • the main battery power control circuit 210 includes a fourth MOS transistor Q4, a fifth MOS transistor Q5, a first capacitor C1 and a first input and output terminal GPIO1.
  • the fourth MOS transistor Q4 is connected between the main battery power supply BT1 and the main battery power supply reverse connection circuit 310.
  • the fifth MOS transistor Q5, the fourth MOS transistor Q4 and the power output end VOUT is connected, one end of the first capacitor C1 is connected to the fourth MOS transistor Q4, and the other end of the first capacitor C1 is connected to the fifth MOS transistor Q5.
  • the fourth MOS transistor Q4 and the fifth MOS transistor Q5 are both connected to the first input and output terminal GPIO1 through a ninth resistor R9.
  • the fourth MOS transistor Q4, the fifth MOS transistor Q5, the first capacitor C1 and the first input and output terminal GPIO1 work together to control the conduction between the main battery power supply BT1 and the power output terminal VOUT. or disconnected.
  • the capacity of the first capacitor C1 is 33nF.
  • the drain of the fourth MOS transistor Q4 is connected to the main battery power supply BT1, and the gate of the fourth MOS transistor Q4 passes through a fourteenth resistor R14 and is connected to the main battery power supply anti-reverse circuit.
  • 310 is connected to the first input and output terminal GPIO1
  • the source of the fourth MOS transistor Q4 is connected to one end of the first capacitor C1
  • the source of the fourth MOS transistor Q4 is also connected to the fifth MOS
  • the source of the tube Q5 is connected, and the gate of the fifth MOS tube Q5 is connected to the first input and output terminal GPIO1 and the other end of the first capacitor C1 through a thirteenth resistor R13.
  • the drain of MOS transistor Q5 is connected to the power output terminal VOUT.
  • the backup battery power control circuit 220 includes a seventh MOS transistor Q7, an eighth MOS transistor Q8, a second capacitor C2 and a second input and output terminal GPIO2.
  • the seventh MOS transistor Q7 is connected to the backup battery power supply BT2 and the backup battery power supply anti-reverse circuit 320
  • the eighth MOS transistor Q8 is connected to the seventh MOS transistor Q7 and the power output terminal VOUT.
  • one end of the second capacitor C2 is connected to the seventh MOS transistor Q7
  • the other end of the second capacitor C2 is connected to the eighth MOS transistor Q8.
  • the seventh MOS transistor Q7 and the eighth MOS transistor Q8 are both connected to the second input and output terminal GPIO2 through a third resistor R3.
  • the seventh MOS transistor Q7, the eighth MOS transistor Q8, the second capacitor C2 and the second input and output terminal GPIO2 work together to control the conduction between the backup battery power supply BT2 and the power output terminal VOUT. or disconnected.
  • the capacity of the second capacitor C2 is 100 nF.
  • the drain of the seventh MOS transistor Q7 is connected to the backup battery power supply BT2, and the gate of the seventh MOS transistor Q7 passes through an eleventh resistor R11 and is connected to the backup battery power supply anti-reverse circuit.
  • 320 is connected to the second input and output terminal GPIO2
  • the source of the seventh MOS transistor Q7 is connected to one end of the second capacitor C2
  • the source of the seventh MOS transistor Q7 is also connected to the eighth MOS
  • the source of the tube Q8 is connected, and the gate of the eighth MOS tube Q8 is connected to the second input and output terminal GPIO2 and the other end of the second capacitor C2 through a twelfth resistor R12.
  • the drain of MOS transistor Q8 is connected to the power output terminal VOUT.
  • the main battery power supply BT1 passes through the body diode of the fourth MOS transistor Q4 and then reaches the first capacitor C1, and the backup battery power supply BT2
  • the second capacitor C2 passes through the body diode of the seventh MOS transistor Q7. Since the capacity of the second capacitor C2 is greater than the first capacitor C1, the charging time of the first capacitor C1 is shorter than that of the second capacitor C2, so the main battery power supply BT1 is powered on first.
  • the first capacitor C1 is charged and reaches the turn-on voltage of the fifth MOS transistor Q5, the fifth MOS transistor Q5 is turned on to power on the system.
  • the first input and output terminal GPIO1 sends out a control voltage.
  • a flat signal causes the fourth MOS transistor Q4 and the fifth MOS transistor Q5 to continue to conduct.
  • the control level signals of the first input and output terminal GPIO1 and the second input and output terminal GPIO2 are set in opposite directions. Therefore, at this time, the second input and output terminal GPIO2 controls the seventh MOS transistor Q7 and the eighth MOS transistor Q7. Tube Q8 is cut off.
  • the control level signals of the first input and output terminal GPIO1 and the second input and output terminal GPIO2 are switched, and the second input and output terminal GPIO2 changes the control level signal.
  • a flat signal keeps the seventh MOS transistor Q7 and the eighth MOS transistor Q8 in a conductive state, thereby realizing the main and backup battery power switching function of the circuit.
  • the gate of the third MOS transistor Q3 is connected to the main battery power supply BT1 and the drain of the fourth MOS transistor, and the drain of the third MOS transistor Q3 is connected to the fourth MOS transistor Q4.
  • the gate of the third MOS transistor Q3 is also connected to one end of the second resistor R2.
  • the drain of the third MOS transistor Q3 is also connected to the gate of the fifth MOS transistor Q5 and
  • the first input and output terminal GPIO1 is connected, the source of the third MOS transistor Q3 is connected to the power output terminal VOUT, and the other end of the second resistor R2 is grounded.
  • the The third MOS transistor Q3 and the second resistor R2 work together to ground the main battery power supply BT1 to prevent the power supply circuit 100 from being short-circuited and causing damage to the internal components of the smart lock.
  • the backup battery power reverse polarity prevention circuit 320 includes a sixth MOS transistor Q6 and a tenth resistor R10.
  • the gate of the sixth MOS transistor Q6 is connected to the backup battery power supply BT2 and the drain of the seventh MOS transistor Q7.
  • the drain of the sixth MOS transistor Q6 is connected to the gate of the seventh MOS transistor Q7.
  • the drain of the sixth MOS transistor Q6 is also connected to one end of the tenth resistor R10.
  • the drain of the sixth MOS transistor Q6 is also connected to the gate of the eighth MOS transistor Q8 and the gate of the eighth MOS transistor Q8.
  • the second input and output terminal GPIO2 is connected, the source of the sixth MOS transistor Q6 is connected with the power output terminal VOUT, and the other end of the tenth resistor R10 is connected to ground.
  • the backup battery power supply BT2 is reversely connected, the The sixth MOS transistor Q6 and the tenth resistor R10 work together to ground the backup battery power supply BT2 to prevent the power supply circuit 100 from being short-circuited and causing damage to the internal components of the smart lock.
  • the main battery power supply BT1 and the backup battery power supply BT2 are both reversely connected, the main battery power supply BT1 passes through the second resistor R2 and the body diode of the third MOS transistor Q3. Let Vgs ⁇ 0, the backup battery power BT2 passes through the tenth resistor R10 and the body diode of the sixth MOS transistor Q6 to make Vgs ⁇ 0, so the third MOS transistor Q3 and the sixth MOS transistor Q6 All conduct. And when the main battery power supply BT1 and the backup battery power supply BT2 are both reversely connected, the fourth MOS transistor Q4 and the seventh MOS transistor Q7 are both turned off.
  • the first capacitor C1 and the third MOS transistor Q7 are turned off. Neither of the two capacitors C2 passes charging current, so the fifth MOS transistor Q5 and the eighth MOS transistor Q8 are both turned off. As a result, the third MOS transistor Q3 and the sixth MOS transistor Q6 are both turned on. At this time, there is no path for current to flow back to the power supply.
  • the anti-reverse connection circuit 300 protects the back-end circuit, thereby effectively protecting the back-end components. .
  • the fourth MOS The tube Q4, the fifth MOS tube Q5, the seventh MOS tube Q7 and the eighth MOS tube Q8 will be turned on at the same time, and the current flows from the main battery power supply BT1 through the fourth MOS tube Q4 and the fifth MOS tube Q5.
  • the eighth MOS transistor Q8 and the seventh MOS transistor Q7 flow back to the backup battery power supply BT2 to form a current loop, thereby causing a short circuit in the power supply and causing the internal components of the smart lock to burn out.
  • the embodiment of the present application sets the anti-reverse connection circuit 300 so that when the main battery power supply BT1 is connected in the positive direction and the backup battery power supply BT2 is connected in the reverse direction, the fourth MOS transistor Q4 and The fifth MOS transistor Q5 is turned on to provide normal power supply to the system.
  • the anti-reverse connection circuit 300 when the main battery power supply BT1 is connected in reverse and the backup battery power supply BT2 is connected in the positive direction, the backup battery
  • the main and backup battery power switches or the input and output terminals of the power switching control circuit 200 are abnormal, such as when the first input and output terminal GPIO1 and the second input and output terminal GPIO2 are both low level, so
  • the fourth MOS transistor Q4, the fifth MOS transistor Q5, the seventh MOS transistor Q7 and the eighth MOS transistor Q8 will be turned on at the same time, and the current flows from the backup battery power supply BT2 through the seventh MOS transistor Q7 and the eighth MOS transistor Q7.
  • the tube Q8, the fifth MOS tube Q5 and the fourth MOS tube Q4 flow back to the main battery power supply BT1, thereby causing a short circuit in the power supply.
  • the embodiment of the present application sets the anti-reverse connection circuit 300.
  • the seventh MOS transistor Q7 It is connected to the eighth MOS transistor Q8 to provide normal power supply to the system.
  • the main battery power supply BT1 and the backup battery power supply BT2 are installed correctly, and the voltage difference between the main battery power supply BT1 and the backup battery power supply BT2 is small (the specific voltage difference is related to the selection of the MOS tube) , as shown in Figure 1, the first input and output terminal GPIO1 and the second input and output terminal GPIO2 may have the same electrical signal.
  • the first input and output terminal GPIO1 and the second input and output terminal can be The terminal GPIO2 controls the main battery power supply BT1 and the backup battery power supply BT2 to supply power to the power output terminal VOUT at the same time; and when the first input and output terminal GPIO1 and the second input and output terminal GPIO2 control the simultaneous supply of power, when one of them
  • the reverse-connected battery power supply will be connected to the MOS transistor corresponding to the anti-reverse connection circuit 300, so that it will not be connected to the power supply circuit 100. Pass.
  • the anti-reverse connection circuit 300 in the anti-reverse hot standby circuit it can prevent the battery power short circuit caused by the reverse connection of a single battery power supply (main battery power supply BT1 or backup battery power supply BT2), causing a fire in the battery compartment. .
  • This application also provides an anti-reverse connection method for a low-power smart lock, as shown in Figure 7, which is applied to the anti-reverse hot backup circuit of the low-power smart lock.
  • the method includes the following steps:
  • Step S100 During the power-on process, when the power supply circuit 100 is connected, the power switching control circuit 200 is turned on, and the power switching control circuit 200 controls switching of the main battery power supply BT1 and/or the Backup battery power BT2;
  • the control level signals of the first input and output terminal GPIO1 and the second input and output terminal GPIO2 are switched, and the second input and output terminal GPIO2 switches.
  • GPIO2 changes the control level signal to keep the seventh MOS transistor Q7 and the eighth MOS transistor Q8 in a conductive state, thereby realizing the main/standby switching function of the circuit.
  • the main battery power supply BT1 is exhausted, it can be freely switched to the backup battery power supply BT2, which improves the stability and anti-interference ability of the low-power smart lock, maximizes the battery energy utilization of the low-power smart lock, and prevents the smart lock from Users cannot open the smart lock due to depletion of battery.
  • Step S200 When the power supply circuit 100 is reverse-connected, the MOS transistor provided in the reverse-connection prevention circuit 300 is turned on and cuts off the current loop.
  • the anti-reverse connection circuit 300 is provided in the anti-reverse connection circuit 300 and connected to the reverse connection circuit.
  • the MOS tube connected to the connected battery power supply is turned on, cutting off the current loop formed by the main battery power supply BT1 and the backup battery power supply BT2.
  • the fourth MOS tube Q4, the fifth MOS tube Q5, the seventh MOS tube Q7 and the eighth MOS tube Q8 will be turned on at the same time, and the current flows from the main battery power supply BT1 through the fourth MOS tube Q4
  • the fifth MOS transistor Q5, the seventh MOS transistor Q7 and the eighth MOS transistor Q8 flow back to the backup battery power supply BT2 to form a current loop, thereby causing a short circuit in the power supply.
  • the sixth MOS transistor Q6 is turned on at this time, causing the second input and output terminal GPIO2
  • the driving capability is lower than the driving capability of the sixth MOS tube Q6, thereby causing the seventh MOS tube Q7 and the eighth MOS tube Q8 to be cut off; thus, the fourth MOS tube Q4, The current loop of the fifth MOS transistor Q5, the eighth MOS transistor Q8, and the seventh MOS transistor Q7.
  • the third MOS transistor Q3 When the main battery power supply BT1 is connected in reverse and the backup battery power supply BT2 is connected in the positive direction, the third MOS transistor Q3 is turned on at this time, so that the driving capability of the first input and output terminal GPIO1 is lower than that of the third MOS
  • the driving capability of the tube Q3 further causes the fourth MOS tube Q4 and the fifth MOS tube Q5 to be cut off. Therefore, the current loop of the seventh MOS transistor Q7, the eighth MOS transistor Q8, the fifth MOS transistor Q5, and the fourth MOS transistor Q4 in this state is cut off. Prevent short circuits in the circuit, thereby achieving the purpose of protecting the circuit.
  • the main battery power supply BT1 passes through the second resistor R2 through the body diode of the third MOS transistor Q3 so that Vgs ⁇ 0, and the backup battery power supply BT2 passes through the tenth resistor R10 through the body diode of the third MOS transistor Q3.
  • the body diode of the sixth MOS transistor Q6 makes Vgs ⁇ 0, so the third MOS transistor Q3 and the sixth MOS transistor Q6 are both turned on.
  • the fourth MOS transistor Q4 and the seventh MOS transistor Q7 are both turned off. At this time, the first capacitor C1 and the third MOS transistor Q7 are turned off.
  • the anti-reverse connection circuit 300 protects the back-end circuit, thereby effectively protecting the back-end components.
  • This application also provides a low-power smart lock, including the anti-reverse hot backup circuit of the low-power smart lock, because the low-power smart lock is equipped with the anti-reverse hot backup circuit of the low-power smart lock. circuit, so the low-power smart lock can also prevent damage to chips and modules caused by reverse voltage when the power supply is reversed. It also has the advantage of being suitable for low-power smart locks and improving the energy utilization of low-power smart locks.
  • the low-power smart lock can be a low-power smart lock such as a password lock, a fingerprint lock, a lock keypad installed outside the door, or an intelligent unlocking device installed inside the door.
  • the anti-reverse hot backup circuit for the low-power intelligent device includes a power supply circuit. 100. Power switching control circuit 200 and anti-reverse connection circuit 300.
  • the power supply circuit 100 includes a main battery power supply BT1, a backup battery power supply BT2 and a power output terminal VOUT.
  • the power switching control circuit 200 is connected to the power supply circuit 100 and the anti-reverse connection circuit 300.
  • the power switching control circuit 200 is used to switch the main battery power supply BT1 and/or the backup battery power supply BT2.
  • the power switching control circuit 200 includes a main battery power control circuit 210 and a backup battery power control circuit 220.
  • the main battery power control circuit 210 is connected to the main battery power BT1 and the power output terminal VOUT.
  • the backup battery The power supply control circuit 220 is connected to the backup battery power supply BT2 and the power output terminal VOUT.
  • the main battery power supply control circuit 210 and the backup battery power supply control circuit 220 are respectively connected to the anti-reverse connection circuit 300 .
  • the anti-reverse connection circuit 300 is connected to the power supply circuit 100 and the power switching control circuit 200, and is used to prevent the main battery power supply BT1 or the backup battery power supply BT2 from being reversely connected and causing internal components of the smart device to be damaged. loss; the power output terminal VOUT is used to power the smart device.
  • the anti-reverse circuit 300 includes a main battery power anti-reverse circuit 310 and a backup battery power anti-reverse circuit 320 .
  • the main battery power supply reverse connection prevention circuit 310 is connected to the main battery power supply BT1 and the main battery power supply control circuit 210, and is used to prevent the main battery power supply BT1 from being damaged due to reverse connection of the internal components of the smart device.
  • the backup battery power reverse connection prevention circuit 320 is connected to the backup battery power supply BT2 and the backup battery power supply control circuit 220, and is used to prevent the backup battery power supply BT2 from being damaged due to reverse connection of the internal components of the smart device.
  • the main battery power reverse connection prevention circuit 310 includes a third MOS transistor Q3 and a second resistor R2.
  • the gate of the third MOS transistor Q3 is connected to the main battery power supply BT1.
  • the drain of the third MOS transistor Q3 is connected to the main battery power supply BT1.
  • the electrode of the third MOS transistor Q3 is connected to the main battery power control circuit 210.
  • the drain of the third MOS transistor Q3 is also connected to one end of the second resistor R2.
  • the source of the third MOS transistor Q3 is connected to the power output terminal. VOUT is connected, and the other end of the second resistor R2 is connected to ground.
  • This application effectively prevents reverse voltage from causing damage to chips and modules when the power supply is reversely connected by setting up an anti-reverse connection circuit 300.
  • the anti-reverse connection circuit 300 avoids using diodes for anti-reverse connection, and is suitable for low-power smart devices to achieve low power consumption.
  • the anti-counterfeiting of power-consuming smart devices effectively improves the energy utilization rate of low-power smart devices; it also flexibly switches the main battery power BT1 and the backup battery power BT2 by setting the main battery power supply BT1, the backup battery power supply BT2 and the power switching circuit.
  • the battery power supply BT1 When the battery power supply BT1 is exhausted, it can be freely switched to the backup battery power supply BT2 to improve the stability and anti-interference ability of low-power smart devices, maximize the battery energy utilization of low-power smart devices, and prevent smart devices from being damaged due to The battery is exhausted, causing the user to be unable to use the smart device normally.
  • the main battery power control circuit 210 includes a fourth MOS transistor Q4, a fifth MOS transistor Q5, a first capacitor C1 and a first input and output terminal GPIO1.
  • the fourth MOS transistor Q4 is connected between the main battery power supply BT1 and the main battery power supply reverse connection circuit 310.
  • the fifth MOS transistor Q5, the fourth MOS transistor Q4 and the power output end VOUT is connected, one end of the first capacitor C1 is connected to the fourth MOS transistor Q4, and the other end of the first capacitor C1 is connected to the fifth MOS transistor Q5.
  • the fourth MOS transistor Q4 and the fifth MOS transistor Q5 are both connected to the first input and output terminal GPIO1 through a ninth resistor R9.
  • the fourth MOS transistor Q4, the fifth MOS transistor Q5, the first capacitor C1 and the first input and output terminal GPIO1 work together to control the conduction between the main battery power supply BT1 and the power output terminal VOUT. or disconnected.
  • the capacity of the first capacitor C1 is 33nF.
  • the drain of the fourth MOS transistor Q4 is connected to the main battery power supply BT1, and the gate of the fourth MOS transistor Q4 passes through a fourteenth resistor R14 and is connected to the main battery power supply anti-reverse circuit.
  • 310 is connected to the first input and output terminal GPIO1
  • the source of the fourth MOS transistor Q4 is connected to one end of the first capacitor C1
  • the source of the fourth MOS transistor Q4 is also connected to the fifth MOS
  • the source of the tube Q5 is connected, and the gate of the fifth MOS tube Q5 is connected to the first input and output terminal GPIO1 and the other end of the first capacitor C1 through a thirteenth resistor R13.
  • the drain of MOS transistor Q5 is connected to the power output terminal VOUT.
  • the backup battery power control circuit 220 includes a seventh MOS transistor Q7, an eighth MOS transistor Q8, a second capacitor C2 and a second input and output terminal GPIO2.
  • the seventh MOS transistor Q7 is connected to the backup battery power supply BT2 and the backup battery power supply anti-reverse circuit 320
  • the eighth MOS transistor Q8 is connected to the seventh MOS transistor Q7 and the power output terminal VOUT.
  • one end of the second capacitor C2 is connected to the seventh MOS transistor Q7
  • the other end of the second capacitor C2 is connected to the eighth MOS transistor Q8.
  • the seventh MOS transistor Q7 and the eighth MOS transistor Q8 are both connected to the second input and output terminal GPIO2 through a third resistor R3.
  • the seventh MOS transistor Q7, the eighth MOS transistor Q8, the second capacitor C2 and the second input and output terminal GPIO2 work together to control the conduction between the backup battery power supply BT2 and the power output terminal VOUT. or disconnected.
  • the capacity of the second capacitor C2 is 100 nF.
  • the drain of the seventh MOS transistor Q7 is connected to the backup battery power supply BT2, and the gate of the seventh MOS transistor Q7 passes through an eleventh resistor R11 and is connected to the backup battery power supply anti-reverse circuit.
  • 320 is connected to the second input and output terminal GPIO2
  • the source of the seventh MOS transistor Q7 is connected to one end of the second capacitor C2
  • the source of the seventh MOS transistor Q7 is also connected to the eighth MOS
  • the source of the tube Q8 is connected, and the gate of the eighth MOS tube Q8 is connected to the second input and output terminal GPIO2 and the other end of the second capacitor C2 through a twelfth resistor R12.
  • the drain of MOS transistor Q8 is connected to the power output terminal VOUT.
  • the main battery power supply BT1 passes through the body diode of the fourth MOS transistor Q4 and then reaches the first capacitor C1, and the backup battery power supply BT2
  • the second capacitor C2 passes through the body diode of the seventh MOS transistor Q7. Since the capacity of the second capacitor C2 is greater than the first capacitor C1, the charging time of the first capacitor C1 is shorter than that of the second capacitor C2, so the main battery power supply BT1 is powered on first.
  • the first capacitor C1 is charged and reaches the turn-on voltage of the fifth MOS transistor Q5, the fifth MOS transistor Q5 is turned on to power on the system.
  • the first input and output terminal GPIO1 sends out a control voltage.
  • a flat signal causes the fourth MOS transistor Q4 and the fifth MOS transistor Q5 to continue to conduct.
  • the control level signals of the first input and output terminal GPIO1 and the second input and output terminal GPIO2 are set in opposite directions. Therefore, at this time, the second input and output terminal GPIO2 controls the seventh MOS transistor Q7 and the eighth MOS transistor Q7. Tube Q8 is cut off.
  • the control level signals of the first input and output terminal GPIO1 and the second input and output terminal GPIO2 are switched, and the second input and output terminal GPIO2 changes the control level signal.
  • a flat signal keeps the seventh MOS transistor Q7 and the eighth MOS transistor Q8 in a conductive state, thereby realizing the main and backup battery power switching function of the circuit.
  • the main battery power supply anti-reverse circuit 310 includes a third MOS transistor Q3 and a second resistor R2.
  • the gate of the third MOS transistor Q3 is connected to the main battery power supply BT1 and the fourth MOS transistor.
  • the drain of the third MOS transistor Q3 is connected to the gate of the fourth MOS transistor Q4, and the drain of the third MOS transistor Q3 is also connected to one end of the second resistor R2, so
  • the drain of the third MOS transistor Q3 is also connected to the gate of the fifth MOS transistor Q5 and the first input and output terminal GPIO1, and the source of the third MOS transistor Q3 is connected to the power output terminal VOUT, so
  • the other end of the second resistor R2 is grounded.
  • the third MOS transistor Q3 and the second resistor R2 work together to ground the main battery power supply BT1 to prevent the power supply.
  • a short circuit in the circuit 100 causes damage to the internal components of the smart device.
  • the backup battery power reverse polarity prevention circuit 320 includes a sixth MOS transistor Q6 and a tenth resistor R10.
  • the gate of the sixth MOS transistor Q6 is connected to the backup battery power supply BT2 and the drain of the seventh MOS transistor Q7.
  • the drain of the sixth MOS transistor Q6 is connected to the gate of the seventh MOS transistor Q7.
  • the drain of the sixth MOS transistor Q6 is also connected to one end of the tenth resistor R10.
  • the drain of the sixth MOS transistor Q6 is also connected to the gate of the eighth MOS transistor Q8 and the gate of the eighth MOS transistor Q8.
  • the second input and output terminal GPIO2 is connected, the source of the sixth MOS transistor Q6 is connected with the power output terminal VOUT, and the other end of the tenth resistor R10 is grounded.
  • the backup battery power supply BT2 is reversely connected, the The sixth MOS transistor Q6 and the tenth resistor R10 work together to ground the backup battery power supply BT2 to prevent the power supply circuit 100 from being short-circuited and causing damage to the internal components of the smart device.
  • the main battery power supply BT1 and the backup battery power supply BT2 are both reversely connected, the main battery power supply BT1 passes through the second resistor R2 and the body diode of the third MOS transistor Q3. Let Vgs ⁇ 0, the backup battery power BT2 passes through the tenth resistor R10 and the body diode of the sixth MOS transistor Q6 to make Vgs ⁇ 0, so the third MOS transistor Q3 and the sixth MOS transistor Q6 All conduct. And when the main battery power supply BT1 and the backup battery power supply BT2 are both reversely connected, the fourth MOS transistor Q4 and the seventh MOS transistor Q7 are both turned off.
  • the first capacitor C1 and the third MOS transistor Q7 are turned off. Neither of the two capacitors C2 passes charging current, so the fifth MOS transistor Q5 and the eighth MOS transistor Q8 are both turned off. As a result, the third MOS transistor Q3 and the sixth MOS transistor Q6 are both turned on. At this time, there is no path for current to flow back to the power supply.
  • the anti-reverse connection circuit 300 protects the back-end circuit, thereby effectively protecting the back-end components. .
  • the fourth MOS The tube Q4, the fifth MOS tube Q5, the seventh MOS tube Q7 and the eighth MOS tube Q8 will be turned on at the same time, and the current flows from the main battery power supply BT1 through the fourth MOS tube Q4 and the fifth MOS tube Q5.
  • the eighth MOS transistor Q8 and the seventh MOS transistor Q7 flow back to the backup battery power supply BT2 to form a current loop, thereby causing a short circuit in the power supply and causing internal components of the smart device to burn out.
  • the embodiment of the present application sets the anti-reverse connection circuit 300 so that when the main battery power supply BT1 is connected in the positive direction and the backup battery power supply BT2 is connected in the reverse direction, the fourth MOS transistor Q4 and The fifth MOS transistor Q5 is turned on to provide normal power supply to the system.
  • the anti-reverse connection circuit 300 when the main battery power supply BT1 is connected in reverse and the backup battery power supply BT2 is connected in the positive direction, the backup battery
  • the main and backup battery power switches or the input and output terminals of the power switching control circuit 200 are abnormal, such as when the first input and output terminal GPIO1 and the second input and output terminal GPIO2 are both low level, so
  • the fourth MOS transistor Q4, the fifth MOS transistor Q5, the seventh MOS transistor Q7 and the eighth MOS transistor Q8 will be turned on at the same time, and the current flows from the backup battery power supply BT2 through the seventh MOS transistor Q7 and the eighth MOS transistor Q7.
  • the tube Q8, the fifth MOS tube Q5 and the fourth MOS tube Q4 flow back to the main battery power supply BT1, thereby causing a short circuit in the power supply.
  • the embodiment of the present application sets the anti-reverse connection circuit 300.
  • the seventh MOS transistor Q7 It is connected to the eighth MOS transistor Q8 to provide normal power supply to the system.
  • the main battery power supply BT1 and the backup battery power supply BT2 are installed correctly, and the voltage difference between the main battery power supply BT1 and the backup battery power supply BT2 is small (the specific voltage difference is related to the selection of the MOS tube) , as shown in Figure 1, the first input and output terminal GPIO1 and the second input and output terminal GPIO2 may have the same electrical signal.
  • the first input and output terminal GPIO1 and the second input and output terminal can be The terminal GPIO2 controls the main battery power supply BT1 and the backup battery power supply BT2 to supply power to the power output terminal VOUT at the same time; and when the first input and output terminal GPIO1 and the second input and output terminal GPIO2 control the simultaneous supply of power, when one of them
  • the reverse-connected battery power supply will be connected to the MOS transistor corresponding to the anti-reverse connection circuit 300, so that it will not be connected to the power supply circuit 100. Pass.
  • the anti-reverse connection circuit 300 in the anti-reverse hot standby circuit it can prevent the battery power short circuit caused by the reverse connection of a single battery power supply (main battery power supply BT1 or backup battery power supply BT2), causing a fire in the battery compartment. .
  • This application also provides an anti-reverse connection method for low-power intelligent equipment, as shown in Figure 7, which is applied to the anti-reverse hot backup circuit of the low-power intelligent equipment.
  • the method includes the following steps:
  • Step S100 During the power-on process, when the power supply circuit 100 is connected, the power switching control circuit 200 is turned on, and the power switching control circuit 200 controls switching of the main battery power supply BT1 and/or the Backup battery power BT2;
  • the main battery power supply BT1 fails, the control level signals of the first input and output terminal GPIO1 and the second input and output terminal GPIO2 are switched, and the second input and output terminal GPIO2 switches.
  • GPIO2 changes the control level signal to keep the seventh MOS transistor Q7 and the eighth MOS transistor Q8 in a conductive state, thereby realizing the main/standby switching function of the circuit.
  • the main battery power supply BT1 is exhausted, it can be freely switched to the backup battery power supply BT2 to improve the stability and anti-interference ability of low-power smart devices, maximize the battery energy utilization of low-power smart devices, and prevent smart devices from Due to the depletion of battery, users cannot use their smart devices normally.
  • Step S200 When the power supply circuit 100 is reverse-connected, the MOS transistor provided in the reverse-connection prevention circuit 300 is turned on and cuts off the current loop.
  • the anti-reverse connection circuit 300 is provided in the anti-reverse connection circuit 300 and connected to the reverse connection circuit.
  • the MOS tube connected to the connected battery power supply is turned on, cutting off the current loop formed by the main battery power supply BT1 and the backup battery power supply BT2.
  • the fourth MOS tube Q4, the fifth MOS tube Q5, the seventh MOS tube Q7 and the eighth MOS tube Q8 will be turned on at the same time, and the current flows from the main battery power supply BT1 through the fourth MOS tube Q4
  • the fifth MOS transistor Q5, the seventh MOS transistor Q7 and the eighth MOS transistor Q8 flow back to the backup battery power supply BT2 to form a current loop, thereby causing a short circuit in the power supply.
  • the sixth MOS transistor Q6 is turned on at this time, causing the second input and output terminal GPIO2
  • the driving capability is lower than the driving capability of the sixth MOS tube Q6, thereby causing the seventh MOS tube Q7 and the eighth MOS tube Q8 to be cut off; thus, the fourth MOS tube Q4, The current loop of the fifth MOS transistor Q5, the eighth MOS transistor Q8, and the seventh MOS transistor Q7.
  • the third MOS transistor Q3 When the main battery power supply BT1 is connected in reverse and the backup battery power supply BT2 is connected in the positive direction, the third MOS transistor Q3 is turned on at this time, so that the driving capability of the first input and output terminal GPIO1 is lower than that of the third MOS
  • the driving capability of the tube Q3 further causes the fourth MOS tube Q4 and the fifth MOS tube Q5 to be cut off. Therefore, the current loop of the seventh MOS transistor Q7, the eighth MOS transistor Q8, the fifth MOS transistor Q5, and the fourth MOS transistor Q4 in this state is cut off. Prevent short circuits in the circuit, thereby achieving the purpose of protecting the circuit.
  • the main battery power supply BT1 passes through the second resistor R2 through the body diode of the third MOS transistor Q3 so that Vgs ⁇ 0, and the backup battery power supply BT2 passes through the tenth resistor R10 through the body diode of the third MOS transistor Q3.
  • the body diode of the sixth MOS transistor Q6 makes Vgs ⁇ 0, so the third MOS transistor Q3 and the sixth MOS transistor Q6 are both turned on.
  • the fourth MOS transistor Q4 and the seventh MOS transistor Q7 are both turned off. At this time, the first capacitor C1 and the third MOS transistor Q7 are turned off.
  • the anti-reverse connection circuit 300 protects the back-end circuit, thereby effectively protecting the back-end components.
  • This application also provides a low-power intelligent device, including the anti-reverse hot backup circuit of the low-power intelligent device, because the low-power intelligent device is equipped with the anti-anti-heat backup circuit of the low-power intelligent device. circuit, so the low-power smart device can also prevent damage to chips and modules caused by reverse voltage when the power supply is reversed. It also has the advantage of being suitable for low-power smart devices and improving the energy utilization of low-power smart devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

一种低功耗智能锁和智能设备的防反热备电路、防反接方法,包括电源供电电路(100)、电源切换控制电路(200)和防反接电路(300);电源供电电路(100)包括主电池电源、备用电池电源和电源输出端;电源切换控制电路(200)与电源供电电路(100)和防反接电路(300)连接,电源切换控制电路(200)用于切换主电池电源和/或备用电池电源;防反接电路(300)与电源供电电路(100)和电源切换控制电路(200)连接;通过设置防反接电路(300),有效防止电源反接时反向电压对芯片和模块造成损坏;还通过设置主电池电源、备用电池电源和电源切换电路,提高低功耗智能锁的稳定性和抗干扰能力。

Description

低功耗智能锁和智能设备的防反热备电路、防反接方法
本申请要求于2022年06月29日在中国专利局提交的、申请号为202210749935.4、发明名称为“低功耗智能锁和智能设备的防反热备电路、防反接方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电源电路技术领域,尤其涉及一种低功耗智能锁和智能设备的防反热备电路、防反接方法。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。
现有的芯片和模块对反向电压的容许能力很小,电源一旦反接,对芯片或者模块将是毁灭性的损坏。为了防止反向电压的危害,通常的做法是采用单二极管进行防反,利用二极管的单向导通性对电源进行防反。但是,由于二极管的物理特性,其正向导通压降约为0.3V-0.7V,其中,0.7V的压降将会导致电池的50%的能量无法利用,极大的限制了电池的利用率,因而该方法不适用于电池产品。
目前,电池产品通常采用理想二极管的方式防反,理想二极管的正向导通压降小至可以忽略。理想二极管的方式需要三极管进行配合,而三极管在工作过程中,为了维持状态需要消耗一定的电流,该电流通常为毫安级,适用于大部分的电池产品。但是,对于平均功耗为数十至数百微安的低功耗智能锁,该毫安级的电流将使理想二极管的防反功能无法实现。因而,实有必要设计一种低功耗智能锁和智能设备的防反热备电路、防反接方法。
技术问题
本申请实施例的目的之一在于:提供一种低功耗智能锁和智能设备的防反热备电路、防反接方法,旨在解决因现有技术中的防反接方式能量消耗过大,无法在低功耗智能锁及智能设备中实现防反的技术问题。
技术解决方案
本申请实施例采用的技术方案是:
第一方面,提供一种低功耗智能锁的防反热备电路,包括电源供电电路、电源切换控制电路和防反接电路;所述电源供电电路包括主电池电源、备用电池电源和电源输出端;所述电源切换控制电路与所述电源供电电路和所述防反接电路连接,所述电源切换控制电路用于切换所述主电池电源和/或所述备用电池电源;所述电源切换控制电路包括主电池电源控制电路和备用电池电源控制电路,所述主电池电源控制电路与所述主电池电源和所述电源输出端连接,所述备用电池电源控制电路与所述备用电池电源和所述电源输出端连接,所述主电池电源控制电路和所述备用电池电源控制电路分别与所述防反接电路连接;所述防反接电路与所述电源供电电路和所述电源切换控制电路连接,用于防止所述主电池电源或所述备用电池电源反接导致所述智能锁内部器件受损;所述防反接电路包括主电池电源防反接电路和备用电池电源防反接电路,所述主电池电源防反接电路与所述主电池电源和所述主电池电源控制电路连接,所述备用电池电源防反接电路与所述备用电池电源和所述 备用电池电源控制电路连接;所述主电池电源防反接电路包括第三MOS管和第二电阻,所述第三MOS管的栅极与所述主电池电源连接,所述第三MOS管的漏极与所述主电池电源控制电路连接,所述第三MOS管的漏极还与所述第二电阻的一端连接,所述第三MOS管的源极与所述电源输出端连接,所述第二电阻的另一端接地;所述电源输出端用于对所述智能锁进行供电。
可选地,所述主电池电源控制电路包括第四MOS管、第五MOS管、第一电容和第一输入输出端,所述第四MOS管连接在所述主电池电源和所述主电池电源防反接电路之间,所述第四MOS管的漏极与所述主电池电源连接,所述第四MOS管的栅极与所述第一输入输出端连接,所述第四MOS管的源极和所述第五MOS管的源极连接,所述第五MOS管的栅极与所述第一输入输出端连接,所述第五MOS管的漏极与所述电源输出端连接,所述第一电容的一端与所述第四MOS管的源极连接,所述第一电容的另一端与所述第五MOS管的栅极连接。
可选地,所述备用电池电源控制电路包括第七MOS管、第八MOS管、第二电容和第二输入输出端,所述第七MOS管连接在所述备用电池电源和所述备用电池电源防反接电路之间,所述第七MOS管的漏极与所述备用电池电源连接,所述第七MOS管的栅极与所述第二输入输出端连接,所述第七MOS管的源极和所述第八MOS管的源极连接,所述第八MOS管的栅极与所述第二输入输出端连接,所述第八MOS管的漏极与所述电源输出端连接,所述第二电容的一端与所述第七MOS管的源极连接,所述第二电容的另一端与所述第八MOS管的栅极连接。
可选地,所述备用电池电源防反接电路包括第六MOS管和第十电阻,所述第六MOS管的栅极与所述备用电池电源连接,所述第六MOS管的漏极与所述备用电池电源控制电路连接,所述第六MOS管的漏极还与所述第十电阻的一端连接,所述第六MOS管的源极与所述电源输出端连接,所述第十电阻的另一端接地。
第二方面,提供一种低功耗智能锁的防反接方法,应用于所述的低功耗智能锁的防反热备电路,所述方法包括以下步骤:
在上电过程中,当所述电源供电电路正接时,所述电源切换控制电路导通,由所述电源切换控制电路控制切换所述主电池电源和/或所述备用电池电源;
当所述电源供电电路反接时,设置于所述防反接电路的MOS管导通并切断电流回路。
可选地,所述当所述电源供电电路反接时,设置于所述防反接电路的MOS管导通并切断电流回路的步骤,具体包括:当所述主电池电源或所述备用电池电源反接,控制所述电源切换控制电路的输入输出端异常或主备电池电源切换时,设置于所述防反接电路且与反接的电池电源连接的MOS管导通,切断所述主电池电源与所述备用电池电源之间形成的电流回路。
第三方面,提供一种低功耗智能设备的防反热备电路,包括电源供电电路、电源切换控制电路和防反接电路;所述电源供电电路包括主电池电源、备用电池电源和电源输出端;所述电源切换控制电路与所述电源供电电路和所述防反接电路连接,所述电源切换控制电路用于切换所述主电池电源和/或所述备用电池电源;所述电源切换控制电路包括主电池电源控制电路和备用电池电源控制电路,所述主电池电源控制电路与所述主电池电源和所述电源输出端连接,所述备用电池电源控制电路与所述备用电池电源和所述电源输出端连接,所述主电池电源控制电路和所述备用电池电源控制电路分别与所述防反接电路连接;所述 防反接电路与所述电源供电电路和所述电源切换控制电路连接,用于防止所述主电池电源或所述备用电池电源反接导致所述智能设备内部器件受损;所述防反接电路包括主电池电源防反接电路和备用电池电源防反接电路,所述主电池电源防反接电路与所述主电池电源和所述主电池电源控制电路连接,所述备用电池电源防反接电路与所述备用电池电源和所述备用电池电源控制电路连接;所述主电池电源防反接电路包括第三MOS管和第二电阻,所述第三MOS管的栅极与所述主电池电源连接,所述第三MOS管的漏极与主电池电源控制电路连接,所述第三MOS管的漏极还与所述第二电阻的一端连接,所述第三MOS管的源极与所述电源输出端连接,所述第二电阻的另一端接地;所述电源输出端用于对所述智能设备进行供电。
可选地,所述主电池电源控制电路包括第四MOS管、第五MOS管、第一电容和第一输入输出端,所述第四MOS管连接在所述主电池电源和所述主电池电源防反接电路之间,所述第四MOS管的漏极与所述主电池电源连接,所述第四MOS管的栅极与所述第一输入输出端连接,所述第四MOS管的源极和所述第五MOS管的源极连接,所述第五MOS管的栅极与所述第一输入输出端连接,所述第五MOS管的漏极与所述电源输出端连接,所述第一电容的一端与所述第四MOS管的源极连接,所述第一电容的另一端与所述第五MOS管的栅极连接。
可选地,所述备用电池电源控制电路包括第七MOS管、第八MOS管、第二电容和第二输入输出端,所述第七MOS管连接在所述备用电池电源和所述备用电池电源防反接电路之间,所述第七MOS管的漏极与所述备用电池电源连接,所述第七MOS管的栅极与所述第二输入输出端连接,所述第七MOS管的源极和所述第八MOS管的源极连接,所述第八MOS管的栅极与所述第二输入输出端连接,所述第八MOS管的漏极与所述电源输出端连接,所述第二电容的一端与所述第七MOS管的源极连接,所述第二电容的另一端与所述第八MOS管的栅极连接。
可选地,所述备用电池电源防反接电路包括第六MOS管和第十电阻,所述第六MOS管的栅极与所述备用电池电源连接,所述第六MOS管的漏极与所述备用电池电源控制电路连接,所述第六MOS管的漏极还与所述第十电阻的一端连接,所述第六MOS管的源极与所述电源输出端连接,所述第十电阻的另一端接地。
第四方面,提供一种低功耗智能设备的防反接方法,应用于所述的低功耗智能设备的防反热备电路,所述方法包括以下步骤:
在上电过程中,当所述电源供电电路正接时,所述电源切换控制电路导通,由所述电源切换控制电路控制切换所述主电池电源和/或所述备用电池电源;
当所述电源供电电路反接时,设置于所述防反接电路的MOS管导通并切断电流回路。
可选地,所述当所述电源供电电路反接时,设置于所述防反接电路的MOS管导通并切断电流回路的步骤,具体包括:当所述主电池电源或所述备用电池电源反接,控制所述电源切换控制电路的输入输出端异常或主备电池电源切换时,设置于所述防反接电路且与反接的电池电源连接的MOS管导通,切断所述主电池电源与所述备用电池电源之间形成的电流回路。
有益效果
本申请实施例提供的低功耗智能锁的防反热备电路的有益效果在于:通过设置防反接 电路,有效防止电源反接时反向电压对芯片和模块造成损坏,且该防反接电路避免采用二极管进行防反,适用于低功耗智能锁,实现低功耗智能锁的防反,有效提高低功耗智能锁的能量利用率;还通过设置主电池电源、备用电池电源和电源切换电路,灵活切换主电池电源和备用电池电源,提高低功耗智能锁的稳定性和抗干扰能力,将低功耗智能锁的电池能量利用率提升到最大。
本申请实施例提供的低功耗智能锁的防反接方法的有益效果在于:因所述防反接方法应用于所述低功耗智能锁的防反热备电路,故所述防反接方法亦能防止电源反接时反向电压对芯片和模块造成损坏,亦具有适用于低功耗智能锁、提高低功耗智能锁的能量利用率的优点。
本申请实施例提供的低功耗智能设备的防反热备电路的有益效果在于:通过设置防反接电路,有效防止电源反接时反向电压对芯片和模块造成损坏,且该防反接电路避免采用二极管进行防反,适用于低功耗智能设备,实现低功耗智能设备的防反,有效提高低功耗智能设备的能量利用率;还通过设置主电池电源、备用电池电源和电源切换电路,灵活切换主电池电源和备用电池电源,提高低功耗智能设备的稳定性和抗干扰能力,将低功耗智能设备的电池能量利用率提升到最大。
本申请实施例提供的低功耗智能设备的防反接方法的有益效果在于:因所述防反接方法应用于所述低功耗智能设备的防反热备电路,故所述防反接方法亦能防止电源反接时反向电压对芯片和模块造成损坏,亦具有适用于低功耗智能设备、提高低功耗智能设备的能量利用率的优点。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的防反热备电路的电路原理图;
图2为本申请实施例提供的防反热备电路中主电池电源与备用电池电源均反接的电路原理图;
图3为本申请实施例提供的防反热备电路中备用电池电源反接的电路原理图;
图4为本申请实施例提供的防反热备电路中主电池电源反接的电路原理图;
图5为本申请实施例提供的防反热备电路中备用电池电源反接且隐藏防反接电路的电路原理图;
图6为本申请实施例提供的防反热备电路中主电池电源反接且隐藏防反接电路的电路原理图;
图7为本申请实施例提供的防反接方法的流程图;
图8为本申请实施例提供的防反热备电路的电路原理框图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不 用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所提供的技术方案,以下结合具体附图及实施例进行详细说明。
在本申请的一个实施例中,如图1至图6、图8所示,提供一种低功耗智能锁的防反热备电路,包括电源供电电路100、电源切换控制电路200和防反接电路300。所述电源供电电路100包括主电池电源BT1、备用电池电源BT2和电源输出端VOUT。所述电源切换控制电路200与所述电源供电电路100和所述防反接电路300连接,所述电源切换控制电路200用于切换所述主电池电源BT1和/或所述备用电池电源BT2。所述电源切换控制电路200包括主电池电源控制电路210和备用电池电源控制电路220,所述主电池电源控制电路210与所述主电池电源BT1和所述电源输出端VOUT连接,所述备用电池电源控制电路220与所述备用电池电源BT2和所述电源输出端VOUT连接,所述主电池电源控制电路210和所述备用电池电源控制电路220分别与所述防反接电路300连接。所述防反接电路300与所述电源供电电路100和所述电源切换控制电路200连接,用于防止所述主电池电源BT1或所述备用电池电源BT2反接导致所述智能锁内部器件受损,所述电源输出端VOUT用于对所述智能锁进行供电。其中,所述低功耗智能锁可以是密码锁、指纹锁、安装在门外的锁键盘、安装在门内的智能开锁装置等低功耗的智能锁具。
如图1至图4所示,所述防反接电路300包括主电池电源防反接电路310和备用电池电源防反接电路320。所述主电池电源防反接电路310与所述主电池电源BT1和所述主电池电源控制电路210连接,用于防止所述主电池电源BT1反接导致所述智能锁内部器件受损,所述备用电池电源防反接电路320与所述备用电池电源BT2和所述备用电池电源控制电路220连接,用于防止所述备用电池电源BT2反接导致所述智能锁内部器件受损。所述主电池电源防反接电路310包括第三MOS管Q3和第二电阻R2,所述第三MOS管Q3的栅极与所述主电池电源BT1连接,所述第三MOS管Q3的漏极与所述主电池电源控制电路210连接,所述第三MOS管Q3的漏极还与所述第二电阻R2的一端连接,所述第三MOS管Q3的源极与所述电源输出端VOUT连接,所述第二电阻R2的另一端接地。
在本申请中,低功耗智能锁为安装在门外的锁键盘装置,锁键盘装置包括壳体、密码键盘、密码解码器和电机,所述密码键盘通过信号线与所述密码解码器相连,所述密码解码器还与所述电机相连,通过转动所述电机可将防盗锁打开,所述键盘装置上还设有指纹识别面板和指纹识别器,锁键盘装置上还设有指纹识别面板和指纹识别器,所述指纹识别面板与所述指纹识别器相连,所述指纹识别器与所述电机相连,通过指纹识别或密码键盘的方式,使得电机转动,从而将防盗锁打开,低功耗智能锁的防反热备电路用于为所述电机进行供电,保证用户能通过指纹识别或密码键盘的方式打开防盗锁。
本申请通过设置防反接电路300,有效防止电源反接时反向电压对芯片和模块造成损 坏,且该防反接电路300避免采用二极管进行防反,适用于低功耗智能锁,实现低功耗智能锁的防反,有效提高低功耗智能锁的能量利用率;还通过设置主电池电源BT1、备用电池电源BT2和电源切换电路,灵活切换主电池电源BT1和备用电池电源BT2,当主电池电源BT1电量耗尽时,可以自由切换至备用电池电源BT2,提高低功耗智能锁的稳定性和抗干扰能力,将低功耗智能锁的电池能量利用率提升到最大,防止智能锁由于电量耗尽,导致用户不能打开智能锁。
在本申请的另一个实施例中,所述主电池电源控制电路210包括第四MOS管Q4、第五MOS管Q5、第一电容C1和第一输入输出端GPIO1。所述第四MOS管Q4连接在所述主电池电源BT1和所述主电池电源防反接电路310之间,所述第五MOS管Q5与所述第四MOS管Q4和所述电源输出端VOUT连接,所述第一电容C1的一端与所述第四MOS管Q4连接,所述第一电容C1的另一端与所述第五MOS管Q5连接。所述第四MOS管Q4和所述第五MOS管Q5均通过一第九电阻R9后与所述第一输入输出端GPIO1连接。所述第四MOS管Q4、所述第五MOS管Q5、所述第一电容C1和所述第一输入输出端GPIO1共同作用控制所述主电池电源BT1与所述电源输出端VOUT的导通或断开。在本实施例中,所述第一电容C1的容量为33nF。
具体地,所述第四MOS管Q4的漏极与所述主电池电源BT1连接,所述第四MOS管Q4的栅极通过一第十四电阻R14后与所述主电池电源防反接电路310和所述第一输入输出端GPIO1连接,所述第四MOS管Q4的源极与所述第一电容C1的一端连接,所述第四MOS管Q4的源极还与所述第五MOS管Q5的源极连接,所述第五MOS管Q5的栅极通过一第十三电阻R13后与所述第一输入输出端GPIO1和所述第一电容C1的另一端连接,所述第五MOS管Q5的漏极与所述电源输出端VOUT连接。
在本申请的另一个实施例中,所述备用电池电源控制电路220包括第七MOS管Q7、第八MOS管Q8、第二电容C2和第二输入输出端GPIO2。所述第七MOS管Q7与所述备用电池电源BT2和所述备用电池电源防反接电路320连接,所述第八MOS管Q8与所述第七MOS管Q7和所述电源输出端VOUT连接,所述第二电容C2的一端与所述第七MOS管Q7连接,所述第二电容C2的另一端与所述第八MOS管Q8连接。所述第七MOS管Q7和所述第八MOS管Q8均通过一第三电阻R3后与所述第二输入输出端GPIO2连接。所述第七MOS管Q7、所述第八MOS管Q8、所述第二电容C2和所述第二输入输出端GPIO2共同作用控制所述备用电池电源BT2与所述电源输出端VOUT的导通或断开。在本实施例中,所述第二电容C2的容量为100nF。
具体地,所述第七MOS管Q7的漏极与所述备用电池电源BT2连接,所述第七MOS管Q7的栅极通过一第十一电阻R11后与所述备用电池电源防反接电路320和所述第二输入输出端GPIO2连接,所述第七MOS管Q7的源极与所述第二电容C2的一端连接,所述第七MOS管Q7的源极还与所述第八MOS管Q8的源极连接,所述第八MOS管Q8的栅极通过一第十二电阻R12后与所述第二输入输出端GPIO2和所述第二电容C2的另一端连接,所述第八MOS管Q8的漏极与所述电源输出端VOUT连接。
当所述主电池电源BT1与所述备用电池电源BT2均正接时,所述主电池电源BT1经所述第四MOS管Q4的体二极管后至所述第一电容C1,所述备用电池电源BT2经所述第七MOS管Q7的体二极管后所述第二电容C2。由于所述第二电容C2的容量大于所述第一电容C1,故所述第一电容C1的充电时间短于所述第二电容C2,故所述主电池电源BT1 先上电。当所述第一电容C1充电达到所述第五MOS管Q5的开启电压时,所述第五MOS管Q5导通所述系统实现上电,此时所述第一输入输出端GPIO1发出控制电平信号,使所述第四MOS管Q4和所述第五MOS管Q5持续导通。所述第一输入输出端GPIO1和所述第二输入输出端GPIO2的控制电平信号呈相反设置,故此时所述第二输入输出端GPIO2控制所述第七MOS管Q7和所述第八MOS管Q8截止。
可选地,当所述主电池电源BT1失效时,所述第一输入输出端GPIO1和所述第二输入输出端GPIO2的控制电平信号进行切换,所述第二输入输出端GPIO2改变控制电平信号,使所述第七MOS管Q7和所述第八MOS管Q8保持导通状态,从而实现该电路的主备电池电源切换功能。
具体地,所述第三MOS管Q3的栅极与所述主电池电源BT1和所述第四MOS管的漏极连接,所述第三MOS管Q3的漏极与所述第四MOS管Q4的栅极连接,所述第三MOS管Q3的漏极还与所述第二电阻R2的一端连接,所述第三MOS管Q3的漏极还与所述第五MOS管Q5的栅极和所述第一输入输出端GPIO1连接,所述第三MOS管Q3的源极与电源输出端VOUT连接,所述第二电阻R2的另一端接地,当所述主电池电源BT1反接时,所述第三MOS管Q3和所述第二电阻R2共同作用将所述主电池电源BT1接地防止所述电源供电电路100短路导致所述智能锁内部器件受损。
在本申请的另一个实施例中,所述备用电池电源防反接电路320包括第六MOS管Q6和第十电阻R10。所述第六MOS管Q6的栅极与所述备用电池电源BT2和所述第七MOS管Q7的漏极连接,所述第六MOS管Q6的漏极与所述第七MOS管Q7的栅极连接,所述第六MOS管Q6的漏极还与所述第十电阻R10的一端连接,所述第六MOS管Q6的漏极还与所述第八MOS管Q8的栅极和所述第二输入输出端GPIO2连接,所述第六MOS管Q6的源极与所述电源输出端VOUT连接,所述第十电阻R10的另一端接地,当所述备用电池电源BT2反接时,所述第六MOS管Q6和所述第十电阻R10共同作用将所述备用电池电源BT2接地防止所述电源供电电路100短路导致所述智能锁内部器件受损。
具体地,如图2所示,当所述主电池电源BT1和所述备用电池电源BT2均反接时,所述主电池电源BT1通过所述第二电阻R2经过第三MOS管Q3的体二极管使Vgs<0,所述备用电池电源BT2通过所述第十电阻R10经过所述第六MOS管Q6的体二极管使Vgs<0,故所述第三MOS管Q3和所述第六MOS管Q6均导通。且当所述主电池电源BT1和所述备用电池电源BT2均反接时,所述第四MOS管Q4和所述第七MOS管Q7均截止,此时所述第一电容C1和所述第二电容C2均没有通过充电电流,故所述第五MOS管Q5和所述第八MOS管Q8均截止。由此,第三MOS管Q3和所述第六MOS管Q6均导通,此时没有电流流回电源的路径,防反接电路300保护了后端电路,从而有效的保护了后端元器件。
在本申请的另一个实施例中,如图5所示,若未设置所述防反接电路300,当所述主电池电源BT1正接,所述备用电池电源BT2反接,由于所述第一输入输出端GPIO1和所述第二输入输出端GPIO2的输出电平呈相反设置,所述主电池电源BT1会优先上电工作,故此时备用电池电源BT2不接入系统上电工作,所述备用电池电源BT2即使反接亦不会出现短路现象。但是当主备电池电源切换或所述电源切换控制电路200的输入输出端出现异常,如所述第一输入输出端GPIO1和所述第二输入输出端GPIO2均为低电平时,所述第四MOS管Q4、第五MOS管Q5、第七MOS管Q7和第八MOS管Q8会同时导通,电流从 所述主电池电源BT1流出经所述第四MOS管Q4、所述第五MOS管Q5、所述第八MOS管Q8和所述第七MOS管Q7流回至所述备用电池电源BT2中形成电流回路,由此造成电源短路,造成智能锁内部器件烧坏。
可选地,如图3所示,本申请实施例通过设置所述防反接电路300,当所述主电池电源BT1正接,所述备用电池电源BT2反接,所述第四MOS管Q4和所述第五MOS管Q5导通,为系统正常供电。当所述电源切换控制电路200的输入输出端出现异常,如所述第一输入输出端GPIO1和所述第二输入输出端GPIO2均为低电平时,由于所述备用电池电源BT2反接,此时所述第六MOS管Q6导通,使所述第二输入输出端GPIO2的驱动能力低于所述第六MOS管Q6的驱动能力,进而使所述第七MOS管Q7和所述第八MOS管Q8截止。由此,切断该状态下所述第四MOS管Q4、所述第五MOS管Q5跟所述第八MOS管Q8和所述第七MOS管Q7的电流回路,防止电路出现短路现象,从而达到保护电路的目的。
在本申请的另一个实施例中,如图6所示,若未设置所述防反接电路300,当所述主电池电源BT1反接,所述备用电池电源BT2正接时,所述备用电池电源BT2工作时,当主备电池电源切换或所述电源切换控制电路200的输入输出端出现异常,如所述第一输入输出端GPIO1和所述第二输入输出端GPIO2均为低电平时,所述第四MOS管Q4、第五MOS管Q5、第七MOS管Q7和第八MOS管Q8会同时导通,电流从所述备用电池电源BT2流出经所述第七MOS管Q7、第八MOS管Q8、第五MOS管Q5和第四MOS管Q4流回至所述主电池电源BT1,由此造成电源短路。
可选地,如图4所示,本申请实施例通过设置所述防反接电路300,当所述主电池电源BT1反接,所述备用电池电源BT2正接时,所述第七MOS管Q7和所述第八MOS管Q8导通,为系统正常供电。当所述电源切换控制电路200的输入输出端出现异常,如所述第一输入输出端GPIO1和所述第二输入输出端GPIO2均为低电平时,由于所述主电池电源BT1反接,此时所述第三MOS管Q3导通,使所述第一输入输出端GPIO1的驱动能力低于所述第三MOS管Q3的驱动能力,进而使所述第四MOS管Q4和所述第五MOS管Q5截止。由此,切断该状态下所述第七MOS管Q7、所述第八MOS管Q8跟所述第五MOS管Q5和所述第四MOS管Q4的电流回路,防止电路出现短路现象,从而达到保护电路的目的。
可选地,在一些情况下,在主电池电源BT1与备用电池电源BT2安装正确,且主电池电源BT1和备用电池电源BT2电压差值较小(具体电压差值与MOS管的选型有关),如图1所示,所述第一输入输出端GPIO1和所述第二输入输出端GPIO2可以具有相同的电信号,此时可通过所述第一输入输出端GPIO1和所述第二输入输出端GPIO2控制主电池电源BT1、备用电池电源BT2同时向所述电源输出端VOUT供电;并且,当通过所述第一输入输出端GPIO1和所述第二输入输出端GPIO2控制同时供电时,当其中有一个电池电源(主电池电源BT1或备用电池电源BT2)反接时,反接的电池电源与所述防反接电路300对应的MOS管导通,从而与所述电源供电电路100不会导通。这样可以保证,当单独的一个电池电源不能满足负载要求,通过两个电池电源并联可以满足负载要求;并且通过两个电池电源同时对外供电,从而提高对电池电源的利用率,增加续航时间,此外,由于防反热备电路中的所述防反接电路300,可以防止因单个电池电源(主电池电源BT1或备用电池电源BT2)反接导致电池电源短路的情况发生,引发电池仓起火的现象。而针对通常情况, 如图5,图6所示,当电池电源(主电池电源BT1和备用电池电源BT2)并联设计时,主电池电源BT1或备用电池电源BT2反接时,由于未设置防反接电路300,从而引发电池电源在电池仓内短路的情况。
本申请还提供一种低功耗智能锁的防反接方法,如图7所示,应用于所述的低功耗智能锁的防反热备电路,所述方法包括以下步骤:
步骤S100:在上电过程中,当所述电源供电电路100正接时,所述电源切换控制电路200导通,由所述电源切换控制电路200控制切换所述主电池电源BT1和/或所述备用电池电源BT2;
具体地,在本步骤中,当所述主电池电源BT1失效时,所述第一输入输出端GPIO1和所述第二输入输出端GPIO2的控制电平信号进行切换,所述第二输入输出端GPIO2改变控制电平信号,使所述第七MOS管Q7和所述第八MOS管Q8保持导通状态,从而实现该电路的主备切换功能。当主电池电源BT1电量耗尽时,可以自由切换至备用电池电源BT2,提高低功耗智能锁的稳定性和抗干扰能力,将低功耗智能锁的电池能量利用率提升到最大,防止智能锁由于电量耗尽,导致用户不能打开智能锁。
步骤S200:当所述电源供电电路100反接时,设置于所述防反接电路300的MOS管导通并切断电流回路。
在本申请的另一个实施例中,如图3至图4所示,所述当所述电源供电电路100反接时,设置于所述防反接电路300的MOS管导通并切断电流回路的步骤,具体包括:
当所述主电池电源BT1或所述备用电池电源BT2反接,控制所述电源切换控制电路200的输入输出端异常或主备电池电源切换时,设置于所述防反接电路300且与反接的电池电源连接的MOS管导通,切断所述主电池电源BT1与所述备用电池电源BT2形成的电流回路。
具体地,在本步骤中,当主备电池电源切换或所述电源切换控制电路200的输入输出端出现异常时,如所述第一输入输出端GPIO1和所述第二输入输出端GPIO2均为低电平时,所述第四MOS管Q4、第五MOS管Q5、第七MOS管Q7和第八MOS管Q8会同时导通,电流从所述主电池电源BT1流出经所述第四MOS管Q4、所述第五MOS管Q5、所述第七MOS管Q7和所述第八MOS管Q8流回至所述备用电池电源BT2中形成电流回路,由此造成电源短路。通过设置所述防反接电路300,当所述备用电池电源BT2反接,所述主电池电源BT1正接时,此时所述第六MOS管Q6导通,使所述第二输入输出端GPIO2的驱动能力低于所述第六MOS管Q6的驱动能力,进而使所述第七MOS管Q7和所述第八MOS管Q8截止;由此,切断该状态下所述第四MOS管Q4、所述第五MOS管Q5跟所述第八MOS管Q8和所述第七MOS管Q7的电流回路。当所述主电池电源BT1反接,所述备用电池电源BT2正接时,此时所述第三MOS管Q3导通,使所述第一输入输出端GPIO1的驱动能力低于所述第三MOS管Q3的驱动能力,进而使所述第四MOS管Q4和所述第五MOS管Q5截止。由此,切断该状态下所述第七MOS管Q7、所述第八MOS管Q8跟所述第五MOS管Q5和所述第四MOS管Q4的电流回路。防止电路出现短路现象,从而达到保护电路的目的。
在本申请的另一个实施例中,如图2所示,所述当所述电源供电电路100反接时,设置于所述防反接电路300的MOS管导通并切断电流回路的步骤,还包括:
当所述主电池电源BT1和所述备用电池电源BT2均反接时,所述主电池电源和备用电 池电源均不供电,所述电源输出端无电流输出。
具体地,在本步骤中,所述主电池电源BT1通过所述第二电阻R2经过第三MOS管Q3的体二极管使Vgs<0,所述备用电池电源BT2通过所述第十电阻R10经过所述第六MOS管Q6的体二极管使Vgs<0,故所述第三MOS管Q3和所述第六MOS管Q6均导通。且当所述主电池电源BT1和所述备用电池电源BT2均反接时,所述第四MOS管Q4和所述第七MOS管Q7均截止,此时所述第一电容C1和所述第二电容C2均没有通过充电电流,故所述第五MOS管Q5和所述第八MOS管Q8均截止。由此,第三MOS管Q3和所述第六MOS管Q6均导通,此时没有电流流回电源的路径,防反接电路300保护了后端电路,从而有效保护了后端元器件。
本申请还提供一种低功耗智能锁,包括所述的低功耗智能锁的防反热备电路,因所述低功耗智能锁设有所述低功耗智能锁的防反热备电路,故所述低功耗智能锁亦能防止电源反接时反向电压对芯片和模块造成损坏,亦具有适用于低功耗智能锁、提高低功耗智能锁的能量利用率的优点。其中,所述低功耗智能锁可以是密码锁、指纹锁、安装在门外的锁键盘、安装在门内的智能开锁装置等低功耗的智能锁具。
本申请还提供一种低功耗智能设备的防反热备电路,如图1至图6、图8所示,具体地,所述低功耗智能设备的防反热备电路包括电源供电电路100、电源切换控制电路200和防反接电路300。所述电源供电电路100包括主电池电源BT1、备用电池电源BT2和电源输出端VOUT。所述电源切换控制电路200与所述电源供电电路100和所述防反接电路300连接,所述电源切换控制电路200用于切换所述主电池电源BT1和/或所述备用电池电源BT2。所述电源切换控制电路200包括主电池电源控制电路210和备用电池电源控制电路220,所述主电池电源控制电路210与所述主电池电源BT1和所述电源输出端VOUT连接,所述备用电池电源控制电路220与所述备用电池电源BT2和所述电源输出端VOUT连接,所述主电池电源控制电路210和所述备用电池电源控制电路220分别与所述防反接电路300连接。所述防反接电路300与所述电源供电电路100和所述电源切换控制电路200连接,用于防止所述主电池电源BT1或所述备用电池电源BT2反接导致所述智能设备内部器件受损;所述电源输出端VOUT用于对所述智能设备进行供电。
如图1至图4所示,所述防反接电路300包括主电池电源防反接电路310和备用电池电源防反接电路320。所述主电池电源防反接电路310与所述主电池电源BT1和所述主电池电源控制电路210连接,用于防止所述主电池电源BT1反接导致所述智能设备内部器件受损,所述备用电池电源防反接电路320与所述备用电池电源BT2和所述备用电池电源控制电路220连接,用于防止所述备用电池电源BT2反接导致所述智能设备内部器件受损。所述主电池电源防反接电路310包括第三MOS管Q3和第二电阻R2,所述第三MOS管Q3的栅极与所述主电池电源BT1连接,所述第三MOS管Q3的漏极与所述主电池电源控制电路210连接,所述第三MOS管Q3的漏极还与所述第二电阻R2的一端连接,所述第三MOS管Q3的源极与所述电源输出端VOUT连接,所述第二电阻R2的另一端接地。
本申请通过设置防反接电路300,有效防止电源反接时反向电压对芯片和模块造成损坏,且该防反接电路300避免采用二极管进行防反,适用于低功耗智能设备,实现低功耗智能设备的防反,有效提高低功耗智能设备的能量利用率;还通过设置主电池电源BT1、备用电池电源BT2和电源切换电路,灵活切换主电池电源BT1和备用电池电源BT2,当主电池电源BT1电量耗尽时,可以自由切换至备用电池电源BT2,提高低功耗智能设备的稳定 性和抗干扰能力,将低功耗智能设备的电池能量利用率提升到最大,防止智能设备由于电量耗尽,导致用户不能正常使用智能设备。
在本申请的另一个实施例中,所述主电池电源控制电路210包括第四MOS管Q4、第五MOS管Q5、第一电容C1和第一输入输出端GPIO1。所述第四MOS管Q4连接在所述主电池电源BT1和所述主电池电源防反接电路310之间,所述第五MOS管Q5与所述第四MOS管Q4和所述电源输出端VOUT连接,所述第一电容C1的一端与所述第四MOS管Q4连接,所述第一电容C1的另一端与所述第五MOS管Q5连接。所述第四MOS管Q4和所述第五MOS管Q5均通过一第九电阻R9后与所述第一输入输出端GPIO1连接。所述第四MOS管Q4、所述第五MOS管Q5、所述第一电容C1和所述第一输入输出端GPIO1共同作用控制所述主电池电源BT1与所述电源输出端VOUT的导通或断开。在本实施例中,所述第一电容C1的容量为33nF。
具体地,所述第四MOS管Q4的漏极与所述主电池电源BT1连接,所述第四MOS管Q4的栅极通过一第十四电阻R14后与所述主电池电源防反接电路310和所述第一输入输出端GPIO1连接,所述第四MOS管Q4的源极与所述第一电容C1的一端连接,所述第四MOS管Q4的源极还与所述第五MOS管Q5的源极连接,所述第五MOS管Q5的栅极通过一第十三电阻R13后与所述第一输入输出端GPIO1和所述第一电容C1的另一端连接,所述第五MOS管Q5的漏极与所述电源输出端VOUT连接。
在本申请的另一个实施例中,所述备用电池电源控制电路220包括第七MOS管Q7、第八MOS管Q8、第二电容C2和第二输入输出端GPIO2。所述第七MOS管Q7与所述备用电池电源BT2和所述备用电池电源防反接电路320连接,所述第八MOS管Q8与所述第七MOS管Q7和所述电源输出端VOUT连接,所述第二电容C2的一端与所述第七MOS管Q7连接,所述第二电容C2的另一端与所述第八MOS管Q8连接。所述第七MOS管Q7和所述第八MOS管Q8均通过一第三电阻R3后与所述第二输入输出端GPIO2连接。所述第七MOS管Q7、所述第八MOS管Q8、所述第二电容C2和所述第二输入输出端GPIO2共同作用控制所述备用电池电源BT2与所述电源输出端VOUT的导通或断开。在本实施例中,所述第二电容C2的容量为100nF。
具体地,所述第七MOS管Q7的漏极与所述备用电池电源BT2连接,所述第七MOS管Q7的栅极通过一第十一电阻R11后与所述备用电池电源防反接电路320和所述第二输入输出端GPIO2连接,所述第七MOS管Q7的源极与所述第二电容C2的一端连接,所述第七MOS管Q7的源极还与所述第八MOS管Q8的源极连接,所述第八MOS管Q8的栅极通过一第十二电阻R12后与所述第二输入输出端GPIO2和所述第二电容C2的另一端连接,所述第八MOS管Q8的漏极与所述电源输出端VOUT连接。
当所述主电池电源BT1与所述备用电池电源BT2均正接时,所述主电池电源BT1经所述第四MOS管Q4的体二极管后至所述第一电容C1,所述备用电池电源BT2经所述第七MOS管Q7的体二极管后所述第二电容C2。由于所述第二电容C2的容量大于所述第一电容C1,故所述第一电容C1的充电时间短于所述第二电容C2,故所述主电池电源BT1先上电。当所述第一电容C1充电达到所述第五MOS管Q5的开启电压时,所述第五MOS管Q5导通所述系统实现上电,此时所述第一输入输出端GPIO1发出控制电平信号,使所述第四MOS管Q4和所述第五MOS管Q5持续导通。所述第一输入输出端GPIO1和所述第二输入输出端GPIO2的控制电平信号呈相反设置,故此时所述第二输入输出端GPIO2 控制所述第七MOS管Q7和所述第八MOS管Q8截止。
可选地,当所述主电池电源BT1失效时,所述第一输入输出端GPIO1和所述第二输入输出端GPIO2的控制电平信号进行切换,所述第二输入输出端GPIO2改变控制电平信号,使所述第七MOS管Q7和所述第八MOS管Q8保持导通状态,从而实现该电路的主备电池电源切换功能。
具体地,所述主电池电源防反接电路310包括第三MOS管Q3和第二电阻R2,所述第三MOS管Q3的栅极与所述主电池电源BT1和所述第四MOS管的漏极连接,所述第三MOS管Q3的漏极与所述第四MOS管Q4的栅极连接,所述第三MOS管Q3的漏极还与所述第二电阻R2的一端连接,所述第三MOS管Q3的漏极还与所述第五MOS管Q5的栅极和所述第一输入输出端GPIO1连接,所述第三MOS管Q3的源极与电源输出端VOUT连接,所述第二电阻R2的另一端接地,当所述主电池电源BT1反接时,所述第三MOS管Q3和所述第二电阻R2共同作用将所述主电池电源BT1接地防止所述电源供电电路100短路导致所述智能设备内部器件受损。
在本申请的另一个实施例中,所述备用电池电源防反接电路320包括第六MOS管Q6和第十电阻R10。所述第六MOS管Q6的栅极与所述备用电池电源BT2和所述第七MOS管Q7的漏极连接,所述第六MOS管Q6的漏极与所述第七MOS管Q7的栅极连接,所述第六MOS管Q6的漏极还与所述第十电阻R10的一端连接,所述第六MOS管Q6的漏极还与所述第八MOS管Q8的栅极和所述第二输入输出端GPIO2连接,所述第六MOS管Q6的源极与所述电源输出端VOUT连接,所述第十电阻R10的另一端接地,当所述备用电池电源BT2反接时,所述第六MOS管Q6和所述第十电阻R10共同作用将所述备用电池电源BT2接地防止所述电源供电电路100短路导致所述智能设备内部器件受损。
具体地,如图2所示,当所述主电池电源BT1和所述备用电池电源BT2均反接时,所述主电池电源BT1通过所述第二电阻R2经过第三MOS管Q3的体二极管使Vgs<0,所述备用电池电源BT2通过所述第十电阻R10经过所述第六MOS管Q6的体二极管使Vgs<0,故所述第三MOS管Q3和所述第六MOS管Q6均导通。且当所述主电池电源BT1和所述备用电池电源BT2均反接时,所述第四MOS管Q4和所述第七MOS管Q7均截止,此时所述第一电容C1和所述第二电容C2均没有通过充电电流,故所述第五MOS管Q5和所述第八MOS管Q8均截止。由此,第三MOS管Q3和所述第六MOS管Q6均导通,此时没有电流流回电源的路径,防反接电路300保护了后端电路,从而有效的保护了后端元器件。
在本申请的另一个实施例中,如图5所示,若未设置所述防反接电路300,当所述主电池电源BT1正接,所述备用电池电源BT2反接,由于所述第一输入输出端GPIO1和所述第二输入输出端GPIO2的输出电平呈相反设置,所述主电池电源BT1会优先上电工作,故此时备用电池电源BT2不接入系统上电工作,所述备用电池电源BT2即使反接亦不会出现短路现象。但是当主备电池电源切换或所述电源切换控制电路200的输入输出端出现异常,如所述第一输入输出端GPIO1和所述第二输入输出端GPIO2均为低电平时,所述第四MOS管Q4、第五MOS管Q5、第七MOS管Q7和第八MOS管Q8会同时导通,电流从所述主电池电源BT1流出经所述第四MOS管Q4、所述第五MOS管Q5、所述第八MOS管Q8和所述第七MOS管Q7流回至所述备用电池电源BT2中形成电流回路,由此造成电源短路,造成智能设备内部器件烧坏。
可选地,如图3所示,本申请实施例通过设置所述防反接电路300,当所述主电池电源BT1正接,所述备用电池电源BT2反接,所述第四MOS管Q4和所述第五MOS管Q5导通,为系统正常供电。当所述电源切换控制电路200的输入输出端出现异常,如所述第一输入输出端GPIO1和所述第二输入输出端GPIO2均为低电平时,由于所述备用电池电源BT2反接,此时所述第六MOS管Q6导通,使所述第二输入输出端GPIO2的驱动能力低于所述第六MOS管Q6的驱动能力,进而使所述第七MOS管Q7和所述第八MOS管Q8截止。由此,切断该状态下所述第四MOS管Q4、所述第五MOS管Q5跟所述第八MOS管Q8和所述第七MOS管Q7的电流回路,防止电路出现短路现象,从而达到保护电路的目的。
在本申请的另一个实施例中,如图6所示,若未设置所述防反接电路300,当所述主电池电源BT1反接,所述备用电池电源BT2正接时,所述备用电池电源BT2工作时,当主备电池电源切换或所述电源切换控制电路200的输入输出端出现异常,如所述第一输入输出端GPIO1和所述第二输入输出端GPIO2均为低电平时,所述第四MOS管Q4、第五MOS管Q5、第七MOS管Q7和第八MOS管Q8会同时导通,电流从所述备用电池电源BT2流出经所述第七MOS管Q7、第八MOS管Q8、第五MOS管Q5和第四MOS管Q4流回至所述主电池电源BT1,由此造成电源短路。
可选地,如图4所示,本申请实施例通过设置所述防反接电路300,当所述主电池电源BT1反接,所述备用电池电源BT2正接时,所述第七MOS管Q7和所述第八MOS管Q8导通,为系统正常供电。当所述电源切换控制电路200的输入输出端出现异常,如所述第一输入输出端GPIO1和所述第二输入输出端GPIO2均为低电平时,由于所述主电池电源BT1反接,此时所述第三MOS管Q3导通,使所述第一输入输出端GPIO1的驱动能力低于所述第三MOS管Q3的驱动能力,进而使所述第四MOS管Q4和所述第五MOS管Q5截止。由此,切断该状态下所述第七MOS管Q7、所述第八MOS管Q8跟所述第五MOS管Q5和所述第四MOS管Q4的电流回路,防止电路出现短路现象,从而达到保护电路的目的。
可选地,在一些情况下,在主电池电源BT1与备用电池电源BT2安装正确,且主电池电源BT1和备用电池电源BT2电压差值较小(具体电压差值与MOS管的选型有关),如图1所示,所述第一输入输出端GPIO1和所述第二输入输出端GPIO2可以具有相同的电信号,此时可通过所述第一输入输出端GPIO1和所述第二输入输出端GPIO2控制主电池电源BT1、备用电池电源BT2同时向所述电源输出端VOUT供电;并且,当通过所述第一输入输出端GPIO1和所述第二输入输出端GPIO2控制同时供电时,当其中有一个电池电源(主电池电源BT1或备用电池电源BT2)反接时,反接的电池电源与所述防反接电路300对应的MOS管导通,从而与所述电源供电电路100不会导通。这样可以保证,当单独的一个电池电源不能满足负载要求,通过两个电池电源并联可以满足负载要求;并且通过两个电池电源同时对外供电,从而提高对电池电源的利用率,增加续航时间,此外,由于防反热备电路中的所述防反接电路300,可以防止因单个电池电源(主电池电源BT1或备用电池电源BT2)反接导致电池电源短路的情况发生,引发电池仓起火的现象。而针对通常情况,如图5,图6所示,当电池电源(主电池电源BT1和备用电池电源BT2)并联设计时,由于未设置防反接电路300,从而引发电池电源在电池仓内短路的情况。
本申请还提供一种低功耗智能设备的防反接方法,如图7所示,应用于所述的低功耗 智能设备的防反热备电路,所述方法包括以下步骤:
步骤S100:在上电过程中,当所述电源供电电路100正接时,所述电源切换控制电路200导通,由所述电源切换控制电路200控制切换所述主电池电源BT1和/或所述备用电池电源BT2;
具体地,在本步骤中,当所述主电池电源BT1失效时,所述第一输入输出端GPIO1和所述第二输入输出端GPIO2的控制电平信号进行切换,所述第二输入输出端GPIO2改变控制电平信号,使所述第七MOS管Q7和所述第八MOS管Q8保持导通状态,从而实现该电路的主备切换功能。当主电池电源BT1电量耗尽时,可以自由切换至备用电池电源BT2,提高低功耗智能设备的稳定性和抗干扰能力,将低功耗智能设备的电池能量利用率提升到最大,防止智能设备由于电量耗尽,导致用户不能正常使用智能设备。
步骤S200:当所述电源供电电路100反接时,设置于所述防反接电路300的MOS管导通并切断电流回路。
在本申请的另一个实施例中,如图3至图4所示,所述当所述电源供电电路100反接时,设置于所述防反接电路300的MOS管导通并切断电流回路的步骤,具体包括:
当所述主电池电源BT1或所述备用电池电源BT2反接,控制所述电源切换控制电路200的输入输出端异常或主备电池电源切换时,设置于所述防反接电路300且与反接的电池电源连接的MOS管导通,切断所述主电池电源BT1与所述备用电池电源BT2形成的电流回路。
具体地,在本步骤中,当主备电池电源切换或所述电源切换控制电路200的输入输出端出现异常时,如所述第一输入输出端GPIO1和所述第二输入输出端GPIO2均为低电平时,所述第四MOS管Q4、第五MOS管Q5、第七MOS管Q7和第八MOS管Q8会同时导通,电流从所述主电池电源BT1流出经所述第四MOS管Q4、所述第五MOS管Q5、所述第七MOS管Q7和所述第八MOS管Q8流回至所述备用电池电源BT2中形成电流回路,由此造成电源短路。通过设置所述防反接电路300,当所述备用电池电源BT2反接,所述主电池电源BT1正接时,此时所述第六MOS管Q6导通,使所述第二输入输出端GPIO2的驱动能力低于所述第六MOS管Q6的驱动能力,进而使所述第七MOS管Q7和所述第八MOS管Q8截止;由此,切断该状态下所述第四MOS管Q4、所述第五MOS管Q5跟所述第八MOS管Q8和所述第七MOS管Q7的电流回路。当所述主电池电源BT1反接,所述备用电池电源BT2正接时,此时所述第三MOS管Q3导通,使所述第一输入输出端GPIO1的驱动能力低于所述第三MOS管Q3的驱动能力,进而使所述第四MOS管Q4和所述第五MOS管Q5截止。由此,切断该状态下所述第七MOS管Q7、所述第八MOS管Q8跟所述第五MOS管Q5和所述第四MOS管Q4的电流回路。防止电路出现短路现象,从而达到保护电路的目的。
在本申请的另一个实施例中,如图2所示,所述当所述电源供电电路100反接时,设置于所述防反接电路300的MOS管导通并切断电流回路的步骤,还包括:
当所述主电池电源BT1和所述备用电池电源BT2均反接时,所述主电池电源和备用电池电源均不供电,所述电源输出端无电流输出。
具体地,在本步骤中,所述主电池电源BT1通过所述第二电阻R2经过第三MOS管Q3的体二极管使Vgs<0,所述备用电池电源BT2通过所述第十电阻R10经过所述第六MOS管Q6的体二极管使Vgs<0,故所述第三MOS管Q3和所述第六MOS管Q6均导通。且当 所述主电池电源BT1和所述备用电池电源BT2均反接时,所述第四MOS管Q4和所述第七MOS管Q7均截止,此时所述第一电容C1和所述第二电容C2均没有通过充电电流,故所述第五MOS管Q5和所述第八MOS管Q8均截止。由此,第三MOS管Q3和所述第六MOS管Q6均导通,此时没有电流流回电源的路径,防反接电路300保护了后端电路,从而有效保护了后端元器件。
本申请还提供一种低功耗智能设备,包括所述的低功耗智能设备的防反热备电路,因所述低功耗智能设备设有所述低功耗智能设备的防反热备电路,故所述低功耗智能设备亦能防止电源反接时反向电压对芯片和模块造成损坏,亦具有适用于低功耗智能设备、提高低功耗智能设备的能量利用率的优点。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (18)

  1. 一种低功耗智能锁的防反热备电路,其特征在于,包括电源供电电路、电源切换控制电路和防反接电路;
    所述电源供电电路包括主电池电源、备用电池电源和电源输出端;
    所述电源切换控制电路与所述电源供电电路和所述防反接电路连接,所述电源切换控制电路用于切换所述主电池电源和/或所述备用电池电源;所述电源切换控制电路包括主电池电源控制电路和备用电池电源控制电路,所述主电池电源控制电路与所述主电池电源和所述电源输出端连接,所述备用电池电源控制电路与所述备用电池电源和所述电源输出端连接,所述主电池电源控制电路和所述备用电池电源控制电路分别与所述防反接电路连接;
    所述防反接电路与所述电源供电电路和所述电源切换控制电路连接,用于防止所述主电池电源或所述备用电池电源反接导致所述智能锁内部器件受损;
    所述电源输出端用于对所述智能锁进行供电。
  2. 根据权利要求1所述的低功耗智能锁的防反热备电路,其特征在于,所述防反接电路包括主电池电源防反接电路和备用电池电源防反接电路,所述主电池电源防反接电路与所述主电池电源和所述主电池电源控制电路连接,所述备用电池电源防反接电路与所述备用电池电源和所述备用电池电源控制电路连接。
  3. 根据权利要求2所述的低功耗智能锁的防反热备电路,其特征在于,所述主电池电源防反接电路包括第三MOS管和第二电阻,所述第三MOS管的栅极与所述主电池电源连接,所述第三MOS管的漏极与所述主电池电源控制电路连接,所述第三MOS管的漏极还与所述第二电阻的一端连接,所述第三MOS管的源极与所述电源输出端连接,所述第二电阻的另一端接地。
  4. 根据权利要求2所述的低功耗智能锁的防反热备电路,其特征在于,所述主电池电源控制电路包括第四MOS管、第五MOS管和第一输入输出端,所述第四MOS管连接在所述主电池电源和所述主电池电源防反接电路之间,所述第四MOS管的漏极与所述主电池电源连接,所述第四MOS管的栅极与所述第一输入输出端连接,所述第四MOS管的源极和所述第五MOS管的源极连接,所述第五MOS管的栅极与所述第一输入输出端连接,所述第五MOS管的漏极与所述电源输出端连接。
  5. 根据权利要求4所述的低功耗智能锁的防反热备电路,其特征在于,所述主电池电源控制电路还包括第一电容,所述第一电容的一端与所述第四MOS管的源级连接,所述第一电容的另一端与所述第五MOS管的栅极连接。
  6. 根据权利要求2所述的低功耗智能锁的防反热备电路,其特征在于,所述备用电池电源控制电路包括第七MOS管、第八MOS管和第二输入输出端,所述第七MOS管连接在所述备用电池电源和所述备用电池电源防反接电路之间,所述第七MOS管的漏极与所述备用电池电源连接,所述第七MOS管的栅极与所述第二输入输出端连接,所述第七MOS管的源极和所述第八MOS管的源极连接,所述第八MOS管的栅极与所述第二输入输出端连接,所述第八MOS管的漏极与所述电源输出端连接。
  7. 根据权利要求6所述的低功耗智能锁的防反热备电路,其特征在于,所述备用电池电源控制电路还包括第二电容,所述第二电容的一端与所述第七MOS管的源极连接,所述 第二电容的另一端与所述第八MOS管的栅极连接。
  8. 根据权利要求6所述的低功耗智能锁的防反热备电路,其特征在于,所述备用电池电源防反接的电路包括第六MOS管和第十电阻,所述第六MOS管的栅极与所述备用电池电源连接,所述第六MOS管的漏极与所述第七MOS管的栅极连接,所述第六MOS管的漏极还与所述第十电阻的一端连接,所述第六MOS管的源极与所述电源输出端连接,所述第十电阻的另一端接地。
  9. 一种低功耗智能设备的防反热备电路,其特征在于,包括电源供电电路、电源切换控制电路和防反接电路;所述电源供电电路包括主电池电源、备用电池电源和电源输出端;所述电源切换控制电路与所述电源供电电路和所述防反接电路连接,所述电源切换控制电路用于切换所述主电池电源和/或所述备用电池电源;所述电源切换控制电路包括主电池电源控制电路和备用电池电源控制电路,所述主电池电源控制电路与所述主电池电源和所述电源输出端连接,所述备用电池电源控制电路与所述备用电池电源和所述电源输出端连接,所述主电池电源控制电路和所述备用电池电源控制电路分别与所述防反接电路连接;
    所述防反接电路与所述电源供电电路和所述电源切换控制电路连接,用于防止所述主电池电源或所述备用电池电源反接导致所述智能设备内部器件受损;
    所述电源输出端用于对所述智能设备进行供电。
  10. 根据权利要求9所述的低功耗智能设备的防反热备电路,其特征在于,所述防反接电路包括主电池电源防反接电路和备用电池电源防反接电路,所述主电池电源防反接电路与所述主电池电源和所述主电池电源控制电路连接,所述备用电池电源防反接电路与所述备用电池电源和所述备用电池电源控制电路连接。
  11. 根据权利要求10所述的低功耗智能设备的防反热备电路,其特征在于,所述主电池电源防反接电路包括第三MOS管和第二电阻,所述第三MOS管的栅极与所述主电池电源连接,所述第三MOS管的漏极与所述主电池电源控制电路连接,所述第三MOS管的漏极还与所述第二电阻的一端连接,所述第三MOS管的源极与所述电源输出端连接,所述第二电阻的另一端接地。
  12. 根据权利要求10所述的低功耗智能设备的防反热备电路,其特征在于,所述主电池电源控制电路包括第四MOS管、第五MOS管和第一输入输出端,所述第四MOS管连接在所述主电池电源和所述主电池电源防反接电路之间,所述第四MOS管的漏极与所述主电池电源连接,所述第四MOS管的栅极与所述第一输入输出端连接,所述第四MOS管的源极和所述第五MOS管的源极连接,所述第五MOS管的栅极与所述第一输入输出端连接,所述第五MOS管的漏极与所述电源输出端连接。
  13. 根据权利要求12所述的低功耗智能设备的防反热备电路,其特征在于,所述主电池电源控制电路还包括第一电容,所述第一电容的一端与所述第四MOS管的源极连接,所述第一电容的另一端与所述第五MOS管的栅极连接。
  14. 根据权利要求10所述的低功耗智能设备的防反热备电路,其特征在于,所述备用电池电源控制电路包括第七MOS管、第八MOS管和第二输入输出端,所述第七MOS管连接在所述备用电池电源和所述备用电池电源防反接电路之间,所述第七MOS管的漏极与所述备用电池电源连接,所述第七MOS管的栅极与所述第二输入输出端连接,所述第七MOS管的源极和所述第八MOS管的源极连接,所述第八MOS管的栅极与所述第二输入输出端连接,所述第八MOS管的漏极与所述电源输出端连接。
  15. 根据权利要求14所述的低功耗智能设备的防反热备电路,其特征在于,所述备用电池电源控制电路还包括第二电容,所述第二电容的一端与所述第七MOS管的源极连接,所述第二电容的另一端与所述第八MOS管的栅极连接。
  16. 根据权利要求14所述的低功耗智能设备的防反热备电路,其特征在于,所述备用电池电源防反接的电路包括第六MOS管和第十电阻,所述第六MOS管的栅极与所述备用电池电源连接,所述第六MOS管的漏极与所述第七MOS管的栅极连接,所述第六MOS管的漏极还与所述第十电阻的一端连接,所述第六MOS管的源极与所述电源输出端连接,所述第十电阻的另一端接地。
  17. 一种低功耗智能设备的防反接方法,其特征在于,应用于权利要求9-16任一项所述的低功耗智能设备的防反热备电路,所述方法包括以下步骤:
    在上电过程中,当所述电源供电电路正接时,所述电源切换控制电路导通,由所述电源切换控制电路控制切换所述主电池电源和/或所述备用电池电源;
    当所述电源供电电路反接时,设置于所述防反接电路的MOS管导通并切断电流回路。
  18. 根据权利要求17所述的低功耗智能设备的防反接方法,其特征在于,所述当所述电源供电电路反接时,设置于所述防反接电路的MOS管导通并切断电流回路的步骤,具体包括:当所述主电池电源或所述备用电池电源反接,控制所述电源切换控制电路的输入输出端异常或主备电池电源切换时,设置于所述防反接电路且与反接的电池电源连接的MOS管导通,切断所述主电池电源与所述备用电池电源之间形成的电流回路。
PCT/CN2022/128676 2022-06-29 2022-10-31 低功耗智能锁和智能设备的防反热备电路、防反接方法 WO2024000967A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210749935.4A CN114825598B (zh) 2022-06-29 2022-06-29 低功耗智能锁和智能设备的防反热备电路、防反接方法
CN202210749935.4 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024000967A1 true WO2024000967A1 (zh) 2024-01-04

Family

ID=82523484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128676 WO2024000967A1 (zh) 2022-06-29 2022-10-31 低功耗智能锁和智能设备的防反热备电路、防反接方法

Country Status (2)

Country Link
CN (1) CN114825598B (zh)
WO (1) WO2024000967A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114825598B (zh) * 2022-06-29 2022-10-14 卧安科技(深圳)有限公司 低功耗智能锁和智能设备的防反热备电路、防反接方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177865A (ja) * 1988-01-06 1989-07-14 Hitachi Ltd スイッチング電源装置
CN206834789U (zh) * 2017-05-30 2018-01-02 湖南文理学院 一种锂电池的电源电路
CN216751197U (zh) * 2022-02-17 2022-06-14 深圳市欧瑞博科技股份有限公司 一种电源防反接电路及智能门锁
CN114825598A (zh) * 2022-06-29 2022-07-29 卧安科技(深圳)有限公司 低功耗智能锁和智能设备的防反热备电路、防反接方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE660520T1 (de) * 1993-11-30 1996-03-14 Siliconix Inc Bidirektionalstromsperrender MOSFET für Batterietrennschalter mit Schutzvorrichtung gegen den verkehrten Anschluss eines Batterieladegeräts.
WO2014190513A1 (zh) * 2013-05-29 2014-12-04 吉瑞高新科技股份有限公司 可防止充电电源反接的充电电路及方法
CN104518541A (zh) * 2013-09-26 2015-04-15 深圳市海洋王照明工程有限公司 一种防反接充电电路及灯具
CN105119365B (zh) * 2015-08-18 2017-04-19 深圳市安瑞科科技有限公司 一种双路直流电源自动切换装置
CN113872265A (zh) * 2021-08-20 2021-12-31 浪潮电子信息产业股份有限公司 一种电源管理电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177865A (ja) * 1988-01-06 1989-07-14 Hitachi Ltd スイッチング電源装置
CN206834789U (zh) * 2017-05-30 2018-01-02 湖南文理学院 一种锂电池的电源电路
CN216751197U (zh) * 2022-02-17 2022-06-14 深圳市欧瑞博科技股份有限公司 一种电源防反接电路及智能门锁
CN114825598A (zh) * 2022-06-29 2022-07-29 卧安科技(深圳)有限公司 低功耗智能锁和智能设备的防反热备电路、防反接方法

Also Published As

Publication number Publication date
CN114825598B (zh) 2022-10-14
CN114825598A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US7765416B2 (en) Control device for a power supply with zero power consumption in standby mode
WO2024000967A1 (zh) 低功耗智能锁和智能设备的防反热备电路、防反接方法
CN104062928A (zh) 电动汽车整车控制器电源电路
US20230111470A1 (en) Control circuit for battery device
CN116707118A (zh) 掉电检测和掉电保持功能电路及电子设备
CN114167971A (zh) 一种休眠唤醒电路、自动行走设备及其唤醒方法
CN108683248A (zh) 供电电源切换电路及切换方法、供电设备
CN218040826U (zh) 一种电源管理电路、电源装置及电子设备
CN217087570U (zh) 一种开关电源冗余电路
CN216146151U (zh) 一种电源冗余切换电路
CN215817607U (zh) 供电电路及遥控装置
CN212875662U (zh) 一种电源保护电路及电源
CN210404824U (zh) 供电电路及电子设备
CN209805473U (zh) 一种供电的控制电路及充电器
CN112659935A (zh) 一种高安全性的直流充电枪电子锁控制电路
CN101446912B (zh) 一种监控电路
CN216929991U (zh) 一种电源开关自锁电路
CN213072607U (zh) 低功耗唤醒电路
CN219999089U (zh) 一种备用电源切换电路
CN216436792U (zh) 一种开关电源过流保护锁死自恢复电路
CN116316527B (zh) 一种多电源供电电路、电路板、电子设备及其供电方法
CN117148908B (zh) 基于bms的高、低边充电唤醒及整机低功耗电路
CN213585190U (zh) 一种具有待机低功耗的电源控制电路
CN221177677U (zh) 一种自锁开关电路及包含其的电子设备
CN219477618U (zh) 一种对电池包输出端通断的纯硬件控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949050

Country of ref document: EP

Kind code of ref document: A1