WO2024000846A1 - 一种基于 angio-OCT 的动态功能性视网膜血流成像装置及其成像方法 - Google Patents
一种基于 angio-OCT 的动态功能性视网膜血流成像装置及其成像方法 Download PDFInfo
- Publication number
- WO2024000846A1 WO2024000846A1 PCT/CN2022/120223 CN2022120223W WO2024000846A1 WO 2024000846 A1 WO2024000846 A1 WO 2024000846A1 CN 2022120223 W CN2022120223 W CN 2022120223W WO 2024000846 A1 WO2024000846 A1 WO 2024000846A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- angio
- oct
- blood flow
- stimulation
- dynamic functional
- Prior art date
Links
- 230000017531 blood circulation Effects 0.000 title claims abstract description 46
- 238000003384 imaging method Methods 0.000 title claims abstract description 36
- 230000002207 retinal effect Effects 0.000 title claims abstract description 33
- 230000000638 stimulation Effects 0.000 claims abstract description 63
- 230000000007 visual effect Effects 0.000 claims abstract description 34
- 230000008878 coupling Effects 0.000 claims abstract description 13
- 238000010168 coupling process Methods 0.000 claims abstract description 13
- 238000005859 coupling reaction Methods 0.000 claims abstract description 13
- 210000001525 retina Anatomy 0.000 claims abstract description 13
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 230000002792 vascular Effects 0.000 claims abstract description 5
- 230000008859 change Effects 0.000 claims abstract description 3
- 239000013307 optical fiber Substances 0.000 claims description 18
- 210000004204 blood vessel Anatomy 0.000 claims description 14
- 210000001508 eye Anatomy 0.000 claims description 14
- 210000005252 bulbus oculi Anatomy 0.000 claims description 9
- 230000000284 resting effect Effects 0.000 claims description 9
- 238000010835 comparative analysis Methods 0.000 claims description 3
- 239000000835 fiber Substances 0.000 claims description 3
- 230000010287 polarization Effects 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 2
- 238000004445 quantitative analysis Methods 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 11
- 238000001514 detection method Methods 0.000 abstract description 9
- 206010061818 Disease progression Diseases 0.000 abstract description 7
- 230000005750 disease progression Effects 0.000 abstract description 7
- 238000013399 early diagnosis Methods 0.000 abstract description 6
- 208000010412 Glaucoma Diseases 0.000 abstract description 5
- 208000014139 Retinal vascular disease Diseases 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 5
- 210000005036 nerve Anatomy 0.000 abstract description 4
- 208000012902 Nervous system disease Diseases 0.000 abstract description 3
- 208000025966 Neurological disease Diseases 0.000 abstract description 3
- 210000003169 central nervous system Anatomy 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000001537 neural effect Effects 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000004 hemodynamic effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000008338 local blood flow Effects 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 210000001636 ophthalmic artery Anatomy 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 210000001927 retinal artery Anatomy 0.000 description 1
- 210000001116 retinal neuron Anatomy 0.000 description 1
- 210000001210 retinal vessel Anatomy 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000004218 vascular function Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 210000000857 visual cortex Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/102—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
- A61B3/1225—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
- A61B3/1233—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation for measuring blood flow, e.g. at the retina
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
- A61B3/1241—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes specially adapted for observation of ocular blood flow, e.g. by fluorescein angiography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
Definitions
- the invention relates to the field of OCT technology, and specifically relates to a dynamic functional retinal blood flow imaging device and imaging method based on angio-OCT.
- the basic imaging principle of current angio-OCT imaging technology is to separate the stable signal generated by static tissue and the irregular signal generated by moving particles (red blood cells) from the light signal backscattered by the sample.
- the imaging signals of the two scans are subtracted to filter out static signals, thereby displaying moving particle information and reflecting the distribution, shape and density of retinal small blood vessels, which provides a powerful auxiliary detection and detection method for the clinical diagnosis and treatment effect judgment of retinal vascular diseases. Evaluation methods.
- vascular regulatory dysfunction functional abnormality
- the present invention provides a dynamic functional retinal blood flow imaging device and imaging method based on angio-OCT.
- a dynamic functional retinal blood flow imaging device and imaging method based on angio-OCT Through the dynamic functional detection of retinal blood vessels, retinal vascular diseases can be directly detected. , and indirectly provide early diagnosis of retinal neurological diseases, and assist in disease progression and prognosis judgment.
- the technical solution adopted by the present invention is: a dynamic functional retinal blood flow imaging device based on angio-OCT, which includes angio-OCT sample optical path and angio-OCT signal acquisition path, and also includes a visual sensor arranged coaxially with the sample arm optical path. Stimulation module, the visual stimulation module projects stimulation images to different parts of the retina in the eye via the heat mirror DM.
- the imaging device also includes a data acquisition and control module, and the data acquisition and control module controls the acquisition trigger signal of the angio-OCT signal acquisition path.
- the visual stimulation module includes a generator and an optotype display.
- the optotype display displays a stimulus image and is projected to the retina of the eye via a hot mirror DM.
- the generator is controlled by the data acquisition and control module to generate the optotype display. Control signal for stimulus image.
- the optotype display of the visual stimulation module includes a resting mode and a stimulation mode.
- a black screen of the same size including a central fixation optotype is used as the baseline image
- the stimulation mode uses a black screen on a black background.
- the black and white flipped checkerboard pattern is used as the stimulation image.
- the flipping frequency of the flipped checkerboard pattern in the stimulation mode is synchronously controlled by the trigger signal of the data acquisition and control module control generator and the acquisition trigger signal of the angio-OCT signal acquisition path.
- the angio-OCT sample light route from the light source to the eyeball includes a light source, a lens, an X/Y galvanometer, a lens, and an eyeball in sequence.
- the light source is connected to the adjacent lens through an optical fiber, and the optical fiber is also equipped with There is fiber coupling.
- the hot mirror DM is arranged between the X/Y galvanometer and the eyeball, and the hot mirror DM projects the stimulation image of the visual stimulation module to different parts of the retina in the eye.
- the angio-OCT signal acquisition path is coupled to the data acquisition and control module by optical fiber, and includes optical fiber coupling, polarization controller and lens, optical fiber coupling, balanced detector BD, data acquisition and control module in sequence.
- the angio-OCT signal All parts of the collection path are connected using optical fibers.
- the data acquisition and control module is the data acquisition control terminal DAQ.
- An angio-OCT imaging method for retinal dynamic functional blood flow change images induced by visual stimulation including the following steps: controlling the acquisition trigger signal according to the data acquisition and control module, and successively collecting the resting mode of the same eye in the visual stimulation module
- the retinal angio-OCT blood vessel signals under the black screen condition and the checkerboard stimulation condition of the stimulation mode are compared and analyzed through the existing angio-OCT algorithm in the system to conduct a comparative analysis of the difference in blood vessel signals in the two states.
- the flow density was quantitatively analyzed, and the areas where blood flow increased, decreased, and remained unchanged after visual stimulation were marked using heat maps to obtain images of dynamic functional blood flow changes in the retina induced by visual stimulation.
- the present invention provides a dynamic functional retinal blood flow imaging device and imaging method based on angio-OCT, focusing on the functional characteristics of the visual system, and based on the "vascular nerve coupling" of the central nervous system.
- a special functional unit based on the existing angio-OCT imaging technology, develops dynamic functional retinal blood flow imaging combined with visual stimulation, further improving the existing angio-OCT in early diagnosis of retinal vascular diseases and judgment of disease progression.
- Figure 1 is a schematic diagram of the dynamic functional retinal blood flow imaging device based on angio-OCT of the present invention.
- Figure 2 shows the dynamic functional angio-OCT test results of normal healthy eyes; A is the static baseline peripapillary blood flow density without checkerboard stimulation, and B is the optic disc of the same eye after receiving checkerboard stimulation. Peripheral blood flow density.
- Figure 3 is a schematic diagram of dynamic functional angio-OCT in glaucoma patients.
- A shows the static baseline peripapillary blood flow density without checkerboard stimulation, and the lower temporal blood vessel density is reduced and absent (blue wedge area indicated by the red arrow);
- B shows the peripapillary blood flow density of the same eye after receiving checkerboard stimulation. Flow density changes.
- This invention is based on the angio-OCT system and adds a visual stimulation module coaxial with the sample arm light path to the sample optical path structure of the device.
- This module can realize flipping checkerboard patterns to project stimulation on different parts of the retina.
- the flipping frequency is based on the application scenario. Adjustable (for example, for glaucoma vascular function detection, the frequency is set to 8Hz).
- the system diagram is shown in Figure 1.
- the flip frequency of the graphic stimulation is controlled synchronously by the trigger signal of the DAQ board generator in the system and the signal acquisition trigger signal of Angio-OCT.
- the signal control method is shown in Figure 1.
- the corresponding resting state in the visual stimulation module uses a black screen of the same size as the baseline, and a flipped checkerboard pattern is used under the stimulation condition (theoretically, the patent includes any stimulation pattern).
- the acquisition trigger signal the retinal angio-OCT blood vessel signals of the same eye under black screen conditions and checkerboard stimulus conditions were successively collected, and the angio-OCT algorithm in the system was used to conduct a comparative analysis of the difference in blood vessel signals in the two states.
- the blood flow density in the areas with differences was quantitatively analyzed, and the areas where blood flow increased, decreased, and remained unchanged after visual stimulation were marked using heat maps to obtain images of dynamic functional blood flow changes in the retina induced by visual stimulation.
- the imaging device also includes a data acquisition and control module, and the data acquisition and control module controls the acquisition trigger signal of the angio-OCT signal acquisition path.
- the visual stimulation module includes a generator and an optotype display.
- the optotype display displays a stimulus image and is projected to the retina in the eye via a hot mirror DM.
- the generator is controlled by the data acquisition and control module to generate the optotype display. Control signal for stimulus image.
- the optotype display of the visual stimulation module includes a resting mode and a stimulation mode.
- a black screen of the same size is used as the baseline image
- a flipped checkerboard pattern is used as the stimulation image.
- the flipping frequency of the stimulus pattern's checkerboard pattern is synchronously controlled by the trigger signal of the generator controlled by the data acquisition and control module and the acquisition trigger signal of the angio-OCT signal acquisition channel.
- the angio-OCT sample light route from the light source to the eyeball includes a light source, a lens, an X/Y galvanometer, a lens, and an eyeball in sequence.
- the light source is connected to the adjacent lens through an optical fiber, and the optical fiber is also equipped with There is fiber coupling.
- the hot mirror DM is arranged between the X/Y galvanometer and the eyeball, and the hot mirror DM projects the stimulation image of the visual stimulation module to different parts of the retina in the eye.
- the angio-OCT signal acquisition path is coupled to the data acquisition and control module by optical fiber, and includes optical fiber coupling, polarization controller and lens, optical fiber coupling, balanced detector BD, data acquisition and control module in sequence.
- the angio-OCT signal All parts of the collection path are connected using optical fibers.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Ophthalmology & Optometry (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Pathology (AREA)
- Eye Examination Apparatus (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
一种基于angio-OCT的动态功能性视网膜血流成像装置,包括angio-OCT样本光路和angio-OCT信号采集通路,还包括设置于样品臂光路同轴的视觉刺激模块,视觉刺激模块经由热镜DM将刺激图像投射至眼内视网膜的不同部位。还提供了一种基于angio-OCT的动态功能性视网膜血流成像装置的angio-OCT的视觉刺激诱发的视网膜动态功能性血流改变图像的成像方法。本装置和方法聚焦视觉系统的功能性特征,并基于中枢神经系统"血管神经偶联"这一特殊功能单位,在现有angio-OCT成像技术基础上,开发结合视觉刺激的动态功能性视网膜血流成像,进一步提升现有angio-OCT在视网膜血管性疾病的早期诊断和疾病进展判断方面的能力,开发angio-OCT对青光眼等视网膜神经性疾病早期诊断和疾病进展的检测能力。
Description
本发明涉及OCT技术领域,具体涉及一种基于angio-OCT的动态功能性视网膜血流成像装置及成像方法。
目前的angio-OCT成像技术其基本成像原理是从由样本反向散射的光信号中分离由静态组织所产生的稳定信号和由运动颗粒(红细胞)所产生的不规则信号。将两次扫描成像信号相减以滤除静态信号,从而显示运动颗粒信息,反应视网膜小血管的分布、形态和密度,为视网膜血管性疾病的临床诊断和治疗效果判断提供了有力的辅助检测和评价方法。(1)但很多全身和视网膜血管性疾病,在发生血管的结构性改变之前,首先表现为血管的调节功能障碍(功能性异常),而血管的分布、密度和静息状态血流等均未发生明显改变。如有研究发现,在糖尿病患者发生糖尿病视网膜病变之前, 其视网膜中央动脉和眼动脉的血流动力学即出现明显异常,表现为收缩期峰值血流速度 (PSV)、舒张末期血流速度 (EDV)、时间平均血流速度 (TAV)均较健康对照组降低,而血管的阻力指数 (RI)则明显增加。目前angio-OCT成像技术并不具备针对上述情况的检测能力。(2)另一方面,大脑和视网膜存在“血管神经偶联”功能单位,神经元的活动同时伴随局部血流的增加。我们前期利用功能磁共振和超声多普勒技术对大脑视皮层进行的研究,以及国外相关研究都证实,在中枢神经元发生结构性改变前,其神经活动性异常即可引起其所在区域血流灌注的改变。 “血管神经偶联”的存在为利用血流改变进行中枢神经系统神经相关疾病的早期诊断和疾病进展判断提供了新的思路。也是本专利技术设计的理论基础。现有的angio-OCT技术并不具备诱发视网膜神经元活动的刺激元件。
除OCT技术,其他可以对视网膜血流进行测量的方法包括超声多普勒技术、激光血流成像技术、血氧饱和度检测等。因其分辨率等原因,均不具备对视网膜微循环血流动力学改变进行检测的能力,从而也不具备实现上述2种检测要求的能力。
为了解决现有技术存在的技术缺陷,本发明提供了一种基于angio-OCT的动态功能性视网膜血流成像装置及成像方法,通过对视网膜血管的动态功能性检测,可直接对视网膜血管性疾病,并间接对视网膜神经性疾病进行早期诊断,并辅助疾病进展和预后判断。
本发明采用的技术解决方案是:一种基于angio-OCT的动态功能性视网膜血流成像装置,包括angio-OCT样本光路和angio-OCT信号采集通路,还包括设置于样品臂光路同轴的视觉刺激模块,所述的视觉刺激模块经由热镜DM将刺激图像投射至眼内视网膜的不同部位。
所述的成像装置还包括数据采集和控制模块,所述的数据采集和控制模块控制angio-OCT信号采集通路的采集触发信号。
所述的视觉刺激模块包括生成器和视标显示器,所述的视标显示器显示刺激图像经由热镜DM投射至眼内视网膜,所述的生成器由数据采集和控制模块控制生成视标显示器的刺激图像的控制信号。
所述的视觉刺激模块的视标显示器包括静息模式和刺激模式,所述的静息模式下采用包括中心固视视标的相同大小的黑屏作为基线图像,所述的刺激模式采用黑色背景下的黑白翻转棋盘格图形作为刺激图像,所述的刺激模式的翻转棋盘格图形的翻转频率由数据采集和控制模块控制生成器的触发信号和angio-OCT信号采集通路的采集触发信号进行同步控制。
所述的angio-OCT样本光路由光源至眼球依次包括光源、透镜、X/Y振镜、透镜、眼球,所述的光源与相邻的透镜之间通过光纤连接,所述的光纤上还设有光纤耦合。
所述的热镜DM设置在X/Y振镜与眼球之间,所述的热镜DM将视觉刺激模块的刺激图像投射至眼内视网膜的不同部位。
所述的angio-OCT信号采集通路由光纤耦合至数据采集和控制模块依次包括光纤耦合、偏振控制器和透镜、光纤耦合、平衡探测器BD、数据采集和控制模块,所述的angio-OCT信号采集通路的零件之间均采用光纤连接。
所述的数据采集和控制模块为数据采集控制终端DAQ。
一种angio-OCT的视觉刺激诱发的视网膜动态功能性血流改变图像的成像方法,包括以下步骤:根据数据采集和控制模块控制采集触发信号,先后采集同一只眼在视觉刺激模块的静息模式的黑屏条件下和刺激模式的棋盘格刺激条件下的视网膜angio-OCT血管信号,并通过系统中现有的angio-OCT算法进行两种状态下血管信号的差异对比分析,对存在差异区域的血流密度进行定量分析,并通过热力图对视觉刺激后血流增加、降低和未发生改变的区域进行标注,得到视觉刺激诱发的视网膜动态功能性血流改变图像。
本发明的有益效果是:本发明提供了一种基于angio-OCT的动态功能性视网膜血流成像装置及成像方法, 聚焦视觉系统的功能性特征,并基于中枢神经系统“血管神经偶联”这一特殊功能单位,在现有angio-OCT成像技术基础上,开发结合视觉刺激的动态功能性视网膜血流成像, 进一步提升现有angio-OCT在视网膜血管性疾病的早期诊断和疾病进展判断方面的能力,开发angio-OCT对青光眼等视网膜神经性疾病早期诊断和疾病进展的检测能力。
图1为本发明基于angio-OCT的动态功能性视网膜血流成像装置示意图。
图2为正常健康眼动态功能性angio-OCT检测结果图;其中A为未给予棋盘格刺激时的静态基线视盘周围血流密度视盘周围血流密度,B为同一眼接受棋盘格刺激后的视盘周围血流密度。
图3为青光眼患者动态功能性angio-OCT示意图。A示未给予棋盘格刺激时的静态基线视盘周围血流密度,可见颞下方局部血管密度降低和缺失(红色箭头指示的蓝色楔形区域);B示同一眼接受棋盘格刺激后的视盘周围血流密度变化。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获的的所有其他实施例,都属于本发明保护的范围。
本发明是在angio-OCT系统基础上,在设备样本光路结构上增加与样品臂光路同轴的视觉刺激模块,该模块可实现翻转棋盘格图形在视网膜不同部位进行投射刺激,翻转频率根据应用场景可调(例如,对青光眼血管功能检测,频率设置为8Hz),系统示意如图1。图形刺激的翻转频率由系统中DAQ板卡生成器触发信号,与Angio-OCT的信号采集触发信号进行同步控制,信号控制方式如图1所示意。视觉刺激模块中对应的静息状态下采用相同大小的黑屏作为基线,刺激条件下采用翻转棋盘格图形(理论上,该专利包含任意刺激图形)。根据采集触发信号,先后采集同一只眼在黑屏条件下和棋盘格刺激条件下的视网膜angio-OCT血管信号,并通过系统中的angio-OCT算法进行两种状态下血管信号的差异对比分析,对存在差异区域的血流密度进行定量分析,并通过热力图对视觉刺激后血流增加、降低和未发生改变的区域进行标注,得到视觉刺激诱发的视网膜动态功能性血流改变图像。
所述的成像装置还包括数据采集和控制模块,所述的数据采集和控制模块控制angio-OCT信号采集通路的采集触发信号。
所述的视觉刺激模块包括生成器和视标显示器,所述的视标显示器显示刺激图像经由热镜DM投射至眼内视网膜,所述的生成器由数据采集和控制模块控制生成视标显示器的刺激图像的控制信号。
所述的视觉刺激模块的视标显示器包括静息模式和刺激模式,所述的静息模式下采用相同大小的黑屏作为基线图像,所述的刺激模式采用翻转棋盘格图形作为刺激图像,所述的刺激模式的翻转棋盘格图形的翻转频率由数据采集和控制模块控制生成器的触发信号和angio-OCT信号采集通路的采集触发信号进行同步控制。
所述的angio-OCT样本光路由光源至眼球依次包括光源、透镜、X/Y振镜、透镜、眼球,所述的光源与相邻的透镜之间通过光纤连接,所述的光纤上还设有光纤耦合。
所述的热镜DM设置在X/Y振镜与眼球之间,所述的热镜DM将视觉刺激模块的刺激图像投射至眼内视网膜的不同部位。
所述的angio-OCT信号采集通路由光纤耦合至数据采集和控制模块依次包括光纤耦合、偏振控制器和透镜、光纤耦合、平衡探测器BD、数据采集和控制模块,所述的angio-OCT信号采集通路的零件之间均采用光纤连接。
效果验证:
1.验证正常健康眼,接受视觉刺激后视盘旁血管密度增加,结果如图2所示,可见各区域血管密度均较基线有所增加,提示神经元活动性良好。
2. 验证青光眼患者,接受视觉刺激后,存在视网膜神经纤维层缺损区域血管密度降低,而临近的正常区域血管密度增加,结果如图3所示,可见视盘颞上方区域血流密度增加,而颞下方部分血流密度降低(黄色星号),提示此处神经元活动性减弱,可能存在疾病进展。部分区域血流密度增加(红色星号),提示此处神经元活动性尚可。
各位技术人员须知:虽然本发明已按照上述具体实施方式做了描述,但是本发明的发明思想并不仅限于此发明,任何运用本发明思想的改装,都将纳入本专利专利权保护范围内。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (9)
- 一种基于angio-OCT的动态功能性视网膜血流成像装置,包括angio-OCT样本光路和angio-OCT信号采集通路,其特征在于,还包括设置于样品臂光路同轴的视觉刺激模块,所述的视觉刺激模块经由热镜DM将刺激图像投射至眼内视网膜的不同部位。
- 根据权利要求1所述的一种基于angio-OCT的动态功能性视网膜血流成像装置,其特征在于,所述的成像装置还包括数据采集和控制模块,所述的数据采集和控制模块控制angio-OCT信号采集通路的采集触发信号。
- 根据权利要求2所述的一种基于angio-OCT的动态功能性视网膜血流成像装置,其特征在于,所述的视觉刺激模块包括生成器和视标显示器,所述的视标显示器显示刺激图像经由热镜DM投射至眼内视网膜,所述的生成器由数据采集和控制模块控制生成视标显示器的刺激图像的控制信号。
- 根据权利要求3所述的一种基于angio-OCT的动态功能性视网膜血流成像装置,其特征在于,所述的视觉刺激模块的视标显示器包括静息模式和刺激模式,所述的静息模式下采用包括中心固视视标的相同大小的黑屏作为基线图像,所述的刺激模式采用黑色背景下的黑白翻转棋盘格图形作为刺激图像,所述的刺激模式的翻转棋盘格图形的翻转频率由数据采集和控制模块控制生成器的触发信号和angio-OCT信号采集通路的采集触发信号进行同步控制。
- 根据权利要求1所述的一种基于angio-OCT的动态功能性视网膜血流成像装置,其特征在于,所述的angio-OCT样本光路由光源至眼球依次包括光源、透镜、X/Y振镜、透镜、眼球,所述的光源与相邻的透镜之间通过光纤连接,所述的光纤上还设有光纤耦合。
- 根据权利要求5所述的一种基于angio-OCT的动态功能性视网膜血流成像装置,其特征在于,所述的热镜DM设置在X/Y振镜与眼球之间,所述的热镜DM将视觉刺激模块的刺激图像投射至眼内视网膜的不同部位。
- 根据权利要求5所述的一种基于angio-OCT的动态功能性视网膜血流成像装置,其特征在于,所述的angio-OCT信号采集通路由光纤耦合至数据采集和控制模块依次包括光纤耦合、偏振控制器和透镜、光纤耦合、平衡探测器BD、数据采集和控制模块,所述的angio-OCT信号采集通路的零件之间均采用光纤连接。
- 根据权利要求1所述的一种基于angio-OCT的动态功能性视网膜血流成像装置,其特征在于,所述的数据采集和控制模块为数据采集控制终端DAQ。
- 一种基于权利要求1所述的基于angio-OCT的动态功能性视网膜血流成像装置的angio-OCT的视觉刺激诱发的视网膜动态功能性血流改变图像的成像方法,其特征在于,包括以下步骤:根据数据采集和控制模块控制采集触发信号,先后采集同一只眼在视觉刺激模块的静息模式的黑屏条件下和刺激模式的棋盘格刺激条件下的视网膜angio-OCT血管信号,并通过系统中现有的angio-OCT算法进行两种状态下血管信号的差异对比分析,对存在差异区域的血流密度进行定量分析,并通过热力图对视觉刺激后血流增加、降低和未发生改变的区域进行标注,得到视觉刺激诱发的视网膜动态功能性血流改变图像。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210738150.7 | 2022-06-27 | ||
CN202210738150.7A CN115336966A (zh) | 2022-06-27 | 2022-06-27 | 一种基于angio-OCT的动态功能性视网膜血流成像装置及成像方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024000846A1 true WO2024000846A1 (zh) | 2024-01-04 |
Family
ID=83947748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/120223 WO2024000846A1 (zh) | 2022-06-27 | 2022-09-21 | 一种基于 angio-OCT 的动态功能性视网膜血流成像装置及其成像方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115336966A (zh) |
WO (1) | WO2024000846A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110313889A (zh) * | 2018-03-29 | 2019-10-11 | 埃米多斯系统有限公司 | 用于检查视网膜血管内皮功能的装置和方法 |
RU2705403C1 (ru) * | 2018-12-13 | 2019-11-07 | Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ГБ им. Гельмгольца" Минздрава России) | Способ исследования микроциркуляции крови в зоне диска зрительного нерва, перипапиллярной и макулярной области сетчатки глаза |
JP2019205816A (ja) * | 2018-05-25 | 2019-12-05 | キヤノン株式会社 | 撮像装置およびその制御方法 |
CN111543971A (zh) * | 2020-04-14 | 2020-08-18 | 浙江大学 | 时空自适应样本系综去相关运算的血流量化方法与系统 |
US20200375452A1 (en) * | 2017-03-27 | 2020-12-03 | The Board Of Trustees Of The University Of Illinois | An optical coherence tomography (oct) system and method that measure stimulus-evoked neural activity and hemodynamic responses |
CN112638233A (zh) * | 2018-06-20 | 2021-04-09 | 奥克塞拉有限公司 | 基于家庭的眼科应用的微型移动低成本光学相干断层扫描系统 |
WO2021203029A1 (en) * | 2020-04-04 | 2021-10-07 | The Board Of Regents Of The University Of Texas System | Systems and methods to measure retinal perfusion |
US20220183553A1 (en) * | 2019-03-27 | 2022-06-16 | University Of Washington | Handheld optical imaging devices and methods |
-
2022
- 2022-06-27 CN CN202210738150.7A patent/CN115336966A/zh active Pending
- 2022-09-21 WO PCT/CN2022/120223 patent/WO2024000846A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200375452A1 (en) * | 2017-03-27 | 2020-12-03 | The Board Of Trustees Of The University Of Illinois | An optical coherence tomography (oct) system and method that measure stimulus-evoked neural activity and hemodynamic responses |
CN110313889A (zh) * | 2018-03-29 | 2019-10-11 | 埃米多斯系统有限公司 | 用于检查视网膜血管内皮功能的装置和方法 |
JP2019205816A (ja) * | 2018-05-25 | 2019-12-05 | キヤノン株式会社 | 撮像装置およびその制御方法 |
CN112638233A (zh) * | 2018-06-20 | 2021-04-09 | 奥克塞拉有限公司 | 基于家庭的眼科应用的微型移动低成本光学相干断层扫描系统 |
RU2705403C1 (ru) * | 2018-12-13 | 2019-11-07 | Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ГБ им. Гельмгольца" Минздрава России) | Способ исследования микроциркуляции крови в зоне диска зрительного нерва, перипапиллярной и макулярной области сетчатки глаза |
US20220183553A1 (en) * | 2019-03-27 | 2022-06-16 | University Of Washington | Handheld optical imaging devices and methods |
WO2021203029A1 (en) * | 2020-04-04 | 2021-10-07 | The Board Of Regents Of The University Of Texas System | Systems and methods to measure retinal perfusion |
CN111543971A (zh) * | 2020-04-14 | 2020-08-18 | 浙江大学 | 时空自适应样本系综去相关运算的血流量化方法与系统 |
Non-Patent Citations (1)
Title |
---|
ZHONG, LITING; XIANG, WU; ZHONG, YANFENG; YI, KE; ZHANG, SHAOCHONG: "Application Progress of Angio_OCT in the Comprehensive Diagnosis and Treatment Process of Fundus Diseases", JOURNAL OF MOLECULAR DIAGNOSTICS AND THERAPY, CHINA, vol. 12, no. 11, 30 November 2020 (2020-11-30), China, pages 1429 - 1433, XP009552124, ISSN: 1674-6929 * |
Also Published As
Publication number | Publication date |
---|---|
CN115336966A (zh) | 2022-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2566380B1 (en) | Method for imaging amyloid beta in the retina of the eye in association with alzheimer's disease | |
US6592222B2 (en) | Flicker and frequency doubling in virtual reality | |
CA2195877C (en) | Non-invasive method for diagnosing alzheimer's disease in a patient | |
EP1716804A1 (en) | Retina function optical measuring method and instrument | |
Bayer et al. | Detection of optic neuropathy in glaucomatous eyes with normal standard visual fields using a test battery of short-wavelength automated perimetry and pattern electroretinography | |
Marangoni et al. | Subfoveal choroidal blood flow and central retinal function in early glaucoma | |
US6588901B1 (en) | Imaging and analyzing movement of individual erythrocytes in blood vessels | |
JP2009515568A (ja) | 光学的に識別可能な眼科症状の診断のための、装置、および方法 | |
CN107205637A (zh) | 用于监测和/或评估瞳孔响应的方法和系统 | |
Gonzalez-Hernandez et al. | Combined spatial, contrast, and temporal functions perimetry in mild glaucoma and ocular hypertension | |
Zangwill et al. | Optic nerve imaging: recent advances | |
WO2024000846A1 (zh) | 一种基于 angio-OCT 的动态功能性视网膜血流成像装置及其成像方法 | |
Spekreijse et al. | The use of a system analysis approach to electrodiagnostic (ERG and VEP) assessment | |
Bradley et al. | Entoptic image quality of the retinal vasculature | |
Sjödell et al. | Transillumination of iris and subnormal visual acuity--ocular albinism? | |
Subramanian et al. | Walsh & Hoyt's Clinical Neuro-Ophthalmology: The Essentials | |
Punjabi et al. | Topographic comparison of the visual function on multifocal visual evoked potentials with optic nerve structure on Heidelberg retinal tomography | |
Zhao et al. | Virtual Reality Visual Perceptual Plastic Training Promotes Retinal Structure and Macular Function Recovery in Glaucoma Patients | |
Lin et al. | Impairments of visual function and ocular structure in patients with unilateral posterior lens opacity | |
RU2807563C1 (ru) | Способ определения величины пульсовых колебаний объема кровотока в области макулы и диска зрительного нерва | |
Ather | Imaging the visual pathway in human albinism | |
Nassar et al. | The role of pattern visual evoked potential in primary open angle glaucoma | |
Shah | The Role of Hand-held Optical Coherence Tomography in Paediatric Glaucoma | |
Boichuk et al. | Brain potential response to activation procedures in children with refractive amblyopia | |
Bayar et al. | Posterior Pole Asymmetry Analysis in the Children with Anisometropia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22948935 Country of ref document: EP Kind code of ref document: A1 |