WO2024000743A1 - 一种防紫外超疏水织物及其制备方法 - Google Patents

一种防紫外超疏水织物及其制备方法 Download PDF

Info

Publication number
WO2024000743A1
WO2024000743A1 PCT/CN2022/111466 CN2022111466W WO2024000743A1 WO 2024000743 A1 WO2024000743 A1 WO 2024000743A1 CN 2022111466 W CN2022111466 W CN 2022111466W WO 2024000743 A1 WO2024000743 A1 WO 2024000743A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
mof
carboxyl
solution
hydrophobic
Prior art date
Application number
PCT/CN2022/111466
Other languages
English (en)
French (fr)
Inventor
李武龙
何德伟
李战雄
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2024000743A1 publication Critical patent/WO2024000743A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/25Resistance to light or sun, i.e. protection of the textile itself as well as UV shielding materials or treatment compositions therefor; Anti-yellowing treatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Definitions

  • the invention relates to a MOF@ fabric with anti-ultraviolet and super-hydrophobic functions and a preparation method thereof, and belongs to the technical field of special functional textiles and their preparation.
  • Fabrics provide an ideal flexible platform for loading MOFs, and methods to incorporate MOFs into fiber base materials through dip coating, mixing, etc. have been reported to achieve enhanced functionality and ideally large specific surface areas for special applications.
  • MOF-fiber composites prepared by the above method the interaction force between the MOF and the fiber is poor and unstable. Therefore, the final product obtained cannot achieve the expected application effect.
  • hydrolytic instability is also one of the main shortcomings of existing MOF materials.
  • the present invention uses the diazo radical covalent graft polymerization method for surface modification of cellulose fiber materials, and combines the unique advantages of MOF materials to disclose a functionalized MOF@fabric and its preparation method.
  • carboxyl-containing aromatic free radicals are grafted and polymerized on the surface of the fiber to form a carboxyl polymer chain brush; then through the treatment process, MOF is grown in situ without affecting the strength, breathability, feel and wearing performance of the fabric. Crystal coating to obtain functionalized MOF@fabric.
  • the present invention uses carboxyl aromatic free radicals to graft the fiber to form a carboxyl-containing polymer chain brush on the fiber surface, which is an advantage of MOF crystals.
  • the growth provides sufficient active sites, thereby increasing the MOF loading rate, durable fastness, and imparting multifunctionality to the fabric.
  • a UV-resistant superhydrophobic fabric including a fabric, a carboxyl aromatic polymer chain grafted on the surface of the fabric, a MOF crystal structure and a hydrophobic coating;
  • the MOF crystal structure is composed of metal ions and organic Formed by ligand coordination assembly.
  • the fabric is added into a carboxyl aromatic diazonium salt solution, and then a chemical reducing agent is added, and a polymerization reaction is performed to obtain a fabric with carboxyl aromatic polymer chains grafted on the surface;
  • the MOF@fabric is obtained through layer-by-layer self-assembly in the solution and organic ligand solution, and then the MOF@fabric is treated with a hydrophobic coating to obtain the UV-resistant superhydrophobic fabric.
  • the fabric is cotton fabric and/or linen fabric; the MOF is CuBTC.
  • carboxyl-containing aromatic amines are diazotized in an acid solution of sodium nitrite to obtain a carboxyl-containing aromatic diazonium salt solution.
  • the preparation method of the UV-resistant superhydrophobic fabric of the present invention is as follows: (1) Diazotize carboxyl-containing aromatic amines in an acid solution of sodium nitrite to obtain a diazonium salt solution, and the acid is dilute hydrochloric acid.
  • the carboxyl-containing aromatic amine is preferably carboxyl-containing aniline, and its chemical structural formula is as follows: .
  • Carboxyl-containing aromatic free radicals have the following chemical structure: .
  • R 1 is hydrogen or carboxyl group.
  • the carboxyl group is -COOH, -CH 2 COOH or -C 2 H 4 COOH.
  • the polymerization reaction time is 6 to 72 hours, preferably 36 to 48 hours.
  • the carboxylated fabric (that is, the fabric with carboxyl aromatic polymer chains grafted on the surface) is sequentially added to the metal ion solution and the organic ligand solution to perform cyclic self-assembly.
  • the one-time dipping reaction time is 3 to 60 minutes, preferably The time is 10 to 20 minutes; the number of self-assembly cycles is 3 to 30 times, preferably 10 to 15 times.
  • the hydrophobic coating finishing agent is a siloxane containing hydrophobic segments, preferably n-octyltriethoxysilane or n-hexyltriethoxysilane.
  • the present invention uses non-fluorine-containing finishing agents to achieve super-hydrophobic properties of the fabric and meet the super-hydrophobic requirement of a water contact angle greater than 150°.
  • the anti-UV superhydrophobic functional MOF@ fabric of the present invention is a modified fiber with a regular crystal structure coating on the surface.
  • the crystal coating gradually grows from nano-sized particles to micron-sized particles as the number of cycles increases.
  • the molar concentration of the acid solution is 0.2 ⁇ 3M, preferably 0.8 ⁇ 1.5M; the diazotization is a low-temperature reaction, and the temperature is -15 ⁇ 25°C, preferably -5 ⁇ 5°C; the diazotization reaction time is 0.1 ⁇ 12h, preferably 0.5 ⁇ 3h.
  • the reducing agent is vitamin C (VC).
  • the invention utilizes single-electron free radical covalent graft polymerization between carboxyl aromatic radical free radical monomers and natural fibers to prepare a carboxylated fabric, and utilizes the coordination between metal ions and organic ligands to produce a carboxylated fabric.
  • a MOF@ fabric with a roughened surface is treated with a hydrophobic coating to obtain a functional MOF@ fabric.
  • the invention specifically relates to a method of grafting and polymerizing carboxyl-containing aromatic amines through diazo radical covalent bonding to form a carboxyl-containing polymer chain brush on the surface of the fiber; and then in situ on the surface of the carboxylated fiber through a layer-by-layer self-assembly strategy.
  • the metal-organic framework structure is grown; finally, the functionalized MOF@ fabric is prepared by modifying the fiber surface through hydrophobic coating finishing.
  • the beneficial effects of the technical solution provided by the present invention are: 1.
  • the present invention performs carboxylation graft modification on the fiber surface through the aromatic diazo radical covalent graft polymerization method.
  • the carboxyl polymer molecular chain brush is formed, providing carboxyl active sites, providing necessary conditions for the anchoring of metal ions and the growth of MOF crystals. This is of great significance for the in-situ growth of MOF materials on the fiber surface to prepare a new generation of functional MOF fabrics.
  • the prepared MOF@ fabric combines the softness, wearability and breathability of the fabric with the unique advantages of the high specific surface area, porous, and adjustable structural properties of the MOF material. This is beneficial to improving the fabric's wearing performance, multi-functionality, added value and expansion.
  • the application prospects of MOF materials are of very important significance.
  • MOF@ fabric 4.
  • the preparation method of MOF@ fabric is simple, the reaction conditions are mild, easy to operate, can be produced on a large scale and is easy to promote.
  • Figure 1 is a schematic diagram of the reaction of the present invention.
  • Figure 2 is a schematic diagram of the chemical structure of the fiber surface of the modified fabric.
  • Figure 3 is a scanning electron microscope (SEM) picture of the raw material cotton fabric in Example 1, with wrinkles on the surface, A in the picture; a scanning electron microscope (SEM) picture of the carboxyl radical-containing free radical graft polymerization finished fabric prepared in Example 1, The fiber surface is a nanoscale particle structure formed by carboxyl-containing aromatic polymer chains, B in the figure; scanning electron microscope (SEM) image of the MOF@fabric prepared in Example 1, the fiber surface distribution is regular micron octahedral crystal structure MOF coating , C in the figure.
  • SEM scanning electron microscope
  • Figure 4 shows the infrared spectrum and X-ray diffraction spectrum of the functionalized MOF@fabric prepared in Example 1.
  • Figure 5 is a test chart of ultraviolet transmission and absorption curves of unmodified raw material cotton fabric, carboxylated modified cotton fabric, MOF@ fabric and superhydrophobic MOF@ fabric in Example 1.
  • the measured UPF values of the fabrics are 20.9 ⁇ 3.2 and 45.9 respectively. ⁇ 6.6, 199.5 ⁇ 14.7, 192.2 ⁇ 13.2.
  • Figure 6 is a contact angle test chart of the unmodified raw material cotton fabric in Example 1.
  • the measured surface contact angles of the fabrics are 0°, Figure A; the contact angle test chart of the carboxylated modified cotton fabric in Example 1, measured The surface contact angles of the fabrics are 0°, Figure B; the contact angle test chart of Example 1 MOF@fabric, the measured surface contact angles of the fabrics are 0°, Figure C;
  • Example 1 Contact of hydrophobic MOF@fabric Angle test chart, the measured surface contact angle of the fabric is 168.4 ⁇ 1.6°, Figure D.
  • Figure 7 is a scanning electron microscope (SEM) image of the MOF@fabric prepared in Example 2.
  • the surface of the fiber is coated with a MOF coating containing a micron regular octahedral crystal structure.
  • Figure 8 is a scanning electron microscope (SEM) image of the MOF@fabric prepared in Example 3. The surface of the fiber is coated with a MOF coating containing a micron regular octahedral crystal structure.
  • Figure 9 is a scanning electron microscope (SEM) image of the non-carboxylated modified fabric long MOF prepared in Comparative Example 1. There are a sparse and small amount of irregular micro-nano-scale crystal structure particles distributed on the surface of the fiber.
  • Fabrics provide an ideal flexible platform for loading MOFs, and methods to incorporate MOFs into fiber base materials through dip coating, mixing, etc. have been reported to achieve enhanced functionality and ideally large specific surface areas for special applications.
  • MOF-fiber composites prepared by the above method the interaction force between the MOF and the fiber is poor and unstable. Therefore, the final product obtained cannot achieve the expected application effect.
  • hydrolytic instability is also one of the main shortcomings of existing MOF materials.
  • the present invention integrates MOF materials onto fibers through a new method, providing a feasible solution for the future development of MOF@fabrics.
  • the present invention discloses a preparation method of the above-mentioned MOF@fabric, which includes the following steps: (1) Carboxy-containing aniline is diazotized in a dilute acid solution of sodium nitrite to form a diazonium salt; (2) The carboxyl-containing benzene diazonium salt is converted into a carboxyl-containing benzene free radical under the action of a reducing agent; the carboxyl-containing benzene free radical monomer and the oxygen free radical on the natural fiber undergo in-situ single-electron free radical covalent graft polymerization; ( 3) Metal ions are anchored on the fiber surface through coordination with carboxyl groups, and then grow in situ on the fiber surface through layer-by-layer self-assembly with metal ion solution A, ethanol, and organic ligand solution B. Form a MOF coating structure; (4) Use hydrophobic substances to coat the MOF@ fabric to obtain functionalized MOF
  • the carboxyl-containing benzene free radical monomers initiate single-electron free radicals on their hydroxyl groups on the cellulose fibers to generate oxygen free radicals.
  • the carboxyl-containing benzene free radical monomers interact with the oxygen free radicals on the cellulose fibers.
  • the carboxyl aromatic polymer chain is formed on the surface of the fiber through in-situ free radical covalent graft polymerization for a certain period of time; first, add the carboxylated fabric to the metal ion solution A for a certain period of time, then put it into the ethanol solution and clean it for 10 seconds.
  • the above process is a cycle; the above operation process is continuously circulated, and finally a dense MOF crystal coating is formed on the surface of the fiber.
  • the MOF@ fabric is then immersed in an ethanol solution of hydrophobic substances for a certain period of time, and then baked and finished to obtain a functional MOF@ fabric.
  • the present invention carries out graft copolymerization on cellulose-based fibers of cotton, linen and other fabrics, and utilizes the carboxyl active sites on the fiber surface and the coordination between Cu 2+ and organic ligands to grow in situ on the fiber surface to construct a MOF crystal structure.
  • the technical solution of the present invention will be further described below in conjunction with the accompanying drawings and examples.
  • the raw materials involved are conventional commodities, and the raw cotton fabric is a hydrophilic fabric with a size of 5cm ⁇ 8cm.
  • the specific preparation operations and tests are conventional techniques. Unless otherwise specified, The experiment was conducted in air.
  • Example 1 (1) Generation of meta-aminobenzoic acid diazonium salt: The round-bottomed flask is equipped with a thermometer and magnetic stirring. Add 60 ml of 1M hydrochloric acid solution, cool it to 15°C in a cold bath, add 3.3 mmol sodium nitrite, cool it to -5°C in a cold bath, stir and dissolve to form a sodium nitrite hydrochloric acid solution. Then, 3 mmol of m-aminobenzoic acid was added and incubated for 1 h to undergo diazotization to generate a m-carboxylic acid diazonium salt solution.
  • UV resistance test Labsphere Co., Ltd.’s UV-2000F textile sun protection index analyzer is used to test the UV resistance UPF value of the fabric before and after modification in accordance with GB/T18830. Each single-layer fabric sample was tested five times and the average value was taken.
  • the measured UPF values of unmodified raw cotton fabric, carboxylated modified cotton fabric, MOF@ fabric and superhydrophobic MOF@ fabric were 20.9 ⁇ 3.2, 45.9 ⁇ 6.6, 199.5 ⁇ 14.7, and 192.2 ⁇ 13.2 respectively. It shows that the modified MOF@ fabric exhibits very excellent UV resistance.
  • Figure 3 is a scanning electron microscope (SEM) picture of the raw material cotton fabric in Example 1, with wrinkles on the surface, A in the picture; a scanning electron microscope (SEM) picture of the carboxyl radical-containing free radical graft polymerization finished fabric prepared in Example 1, The fiber surface is a nanoscale particle structure formed by carboxyl-containing aromatic polymer chains, B in the figure; scanning electron microscope (SEM) image of the MOF@fabric prepared in Example 1, the fiber surface distribution is regular micron octahedral crystal structure MOF coating , C in the figure.
  • SEM scanning electron microscope
  • Figure 4 shows the infrared spectrum and X-ray diffraction spectrum of the functionalized MOF@fabric fabric prepared in Example 1.
  • Figure 5 is a test chart of ultraviolet transmission and absorption curves of unmodified raw material cotton fabric, carboxylated modified cotton fabric, MOF@ fabric and superhydrophobic MOF@ fabric in Example 1.
  • the measured UPF values of the fabrics are 20.9 ⁇ 3.2 and 45.9 respectively. ⁇ 6.6, 199.5 ⁇ 14.7, 192.2 ⁇ 13.2.
  • Figure 6 is a contact angle test chart of the unmodified raw material cotton fabric in Example 1.
  • the measured surface contact angles of the fabrics are 0°, Figure A; the contact angle test chart of the carboxylated modified cotton fabric in Example 1, measured The surface contact angles of the fabrics are 0°, Figure B; the contact angle test chart of Example 1 MOF@fabric, the measured surface contact angles of the fabrics are 0°, Figure C;
  • Example 1 Contact of hydrophobic MOF@fabric Angle test chart, the measured surface contact angle of the fabric is 168.4 ⁇ 1.6°, Figure D.
  • Example 2 (1) Generation of meta-aminobenzoic acid diazonium salt: The round-bottomed flask is equipped with a thermometer and magnetic stirring. Add 60 ml of 1M hydrochloric acid solution, cool it to 15°C in a cold bath, add 3.3 mmol sodium nitrite, cool it to -5°C in a cold bath, stir and dissolve to form a sodium nitrite hydrochloric acid solution. Then 3 mmol of triaminobenzoic acid was added and incubated for 1 hour to diazotize to generate a m-carboxybenzoic acid diazonium salt solution.
  • UV resistance test Use Labsphere Co., Ltd.’s UV-2000F textile sun protection index analyzer to test the UV resistance UPF value of the modified fabric in accordance with GB/T18830. Each single-layer fabric sample was tested five times and the average value was taken. The UPF value of the finished fabric was measured to be 322.6 ⁇ 6.0, it shows excellent anti-UV properties after modification.
  • Figure 7 is a scanning electron microscope (SEM) image of the MOF@fabric prepared in Example 2.
  • the surface of the fiber is coated with a MOF coating containing a micron-level regular octahedral crystal structure.
  • Example 3 (1) Generation of 5-aminoisophthalic acid diazonium salt: The round-bottomed flask is equipped with a thermometer and magnetic stirring. Add 60 ml of 1M hydrochloric acid solution, cool it to 15°C in a cold bath, add 3.3 mmol sodium nitrite, cool it to 0°C in a cold bath, stir and dissolve to form a sodium nitrite hydrochloric acid solution. Then 3 mmol of 5-aminoisophthalic acid was added and incubated for 1 h to undergo diazotization to generate dicarboxybenzene diazonium salt.
  • UV resistance test Labsphere Co., Ltd.’s UV-2000F textile sun protection index analyzer is used to test the UV resistance UPF value of the fabric after finishing in accordance with GB/T18830. Each single-layer fabric sample was tested five times and the average value was taken. The UPF value of the finished MOF@ fabric was measured to be 222.6 ⁇ 21.0, and it showed excellent UV resistance after modification.
  • Figure 8 is a scanning electron microscope (SEM) image of the MOF@fabric prepared in Example 3.
  • the surface of the fiber is coated with a MOF coating containing a micron-level regular octahedral crystal structure.
  • Comparative Example 1 (1) Prepare by dissolving 3.8g Cu(NO 3 ) 2 ⁇ 3H 2 O in 48 mL of N,N-dimethylacetamide, ethanol and water in a 1:1:1 ratio.
  • Metal ion-containing solution A dissolve 1.35g of 1,3,5-benzenetricarboxylic acid in 48 mL of N,N-dimethylacetamide, ethanol and water in a 1:1:1 ratio to prepare an organic solvent.
  • Ligand solution B 1.35g of 1,3,5-benzenetricarboxylic acid
  • UV resistance test Labsphere Co., Ltd.’s UV-2000F textile sun protection index analyzer is used to test the UV resistance UPF value of the fabric after finishing in accordance with GB/T18830. Each single-layer fabric sample was tested five times and the average value was taken. The UPF value of the finished fabric was measured to be 46.8 ⁇ 2.2, showing general UV resistance.
  • Figure 9 is a scanning electron microscope (SEM) image of the non-carboxylated modified fabric long MOF prepared in Comparative Example 1.
  • Comparative Example 2 (1) Add raw cotton fabric (5cm ⁇ 8cm) to an aqueous solution containing 4wt% citric acid and 4wt% sodium hypophosphite, soak for 5 minutes, then dip and roll twice, then heat at 100°C for 3 minutes, and then Heating at 170°C for 3 minutes to obtain carboxylated cotton fabric.
  • UV resistance test Labsphere Co., Ltd.’s UV-2000F textile sun protection index analyzer is used to test the UV resistance UPF value of the modified fabric in accordance with GB/T18830. Each fabric sample was tested five times and the average value was obtained. The measured UPF value of MOF@fabric was 96.6 ⁇ 8.7.
  • the fiber surface is carboxylated and modified through the covalent graft polymerization of aromatic diazo radicals to form a carboxyl polymer chain brush on the fiber surface, and then through the coordination between metal ions and organic ligands, Perform self-assembly and grow a dense MOF crystal structure coating in situ on the fiber surface, as shown in Figure 4, which solves the problem that the fiber cannot grow MOF in situ and the grown MOF crystal has a sparse load capacity and a small load.
  • the invention discloses a functionalized MOF@fabric and a preparation method thereof.
  • carboxyl aniline as the reaction monomer, carry out diazotization in an acid solution of sodium nitrite to generate a carboxyl-containing benzene diazonium salt; add the fabric to the above diazonium salt solution, then add the reducing agent, and heat it to room temperature. Under certain conditions, the carboxyl-containing benzene diazonium salt is reduced to carboxyl-containing benzene free radicals.
  • the free radical monomers initiate single-electron free radicals on the hydroxyl groups on the surface of cellulose fiber fabrics such as cotton and linen to generate hydroxyl free radicals; then the free radical monomers A free radical covalent graft polymerization reaction occurs on the surface of the fiber; the carboxylated fabric is added to the metal ion solution A, ethanol, organic ligand solution B, and ethanol in sequence, and cyclic self-assembly grows layer by layer to form a MOF coating structure, and the reaction
  • the MOF@ fabric is prepared for a certain period of time; then it is treated with a hydrophobic coating, and finally a super hydrophobic MOF@ fabric is obtained.
  • the carboxylated fabric treatment process of the present invention is completed by reduction polymerization of a chemical reducing agent in a dilute acid solution at room temperature, and the in-situ growth of MOF is also completed at room temperature.
  • the production process is simple, the reaction conditions are mild, and the operation is safe.

Abstract

本发明公开了一种防紫外超疏水织物及其制备方法,包括织物及其表面原位生长的纳米多孔金属有机框架结构;纳米多孔金属有机框架结构由金属离子与有机配体配位组装形成。本发明将含羧基芳香自由基在纤维表面进行重氮自由基聚合反应,生成含羧基的芳香聚合物链;然后通过层层自组装策略,在纤维表面原位生长MOF结构晶体涂层,再通过疏水化后整理得到超疏水MOF@织物。基于MOF结构的多孔性能、比表面积大等优异特性,且MOF晶体与纤维表面以共价键连接,赋予了MOF@织物优异的抗紫外和超疏水性能,并拓展了其抗污自清洁等领域的应用。本发明织物整理过程在室温下完成,生产制备工艺简单,反应条件温和,操作安全,易于扩大化生产。

Description

一种防紫外超疏水织物及其制备方法 技术领域
本发明涉及一种具有防紫外和超疏水功能的MOF@织物及其制备方法,属于特种功能性纺织品及其制备技术领域。
背景技术
现有技术开发了许多具有不同有机配体和金属离子的MOF材料,已在过滤、气体储存、分离、抗菌、能量储存、催化、集水和药物包覆缓释等领域得到了快速发展。然而,以往对MOF材料的研究大多以粉末形式进行,这极大地限制了它们的实际应用领域。纺织品因其柔性可穿戴、透气、易加工等天然优势在实际生产生活及工业发展等领域具有广泛且重要的应用背景,如服装、家用纺织品、工业纺织品、医疗纺织品等。随着现代社会的快速发展,对纺织品的需求日益增大,特别是个性化、多功能纺织品,因此单一功能的纺织品已经不能满足社会的发展需要。当暴露在恶劣的条件下,如强烈的紫外线,有毒化学物质,或细菌等,此时传统的织物是不能满足需要的。因此,通常需要用功能材料对其纤维进行改性整理来提高普通织物的防护性能并增加其应用功能。
织物为MOF的负载提供了一个理想的灵活平台,目前已经报道了通过浸涂、混合等方法将MOF纳入纤维基底材料的方法,实现了增强功能和理想的大比表面积的特殊应用。然而,上述方法制备的MOF-纤维复合材料中,MOF与纤维之间的相互作用力较差且不稳定。因此,所得到的最终产品不能达到预期的应用效果。此外,水解不稳定性也是现有MOF材料的主要缺点之一。
技术问题
本发明将重氮自由基共价接枝聚合法用于纤维素纤维材料表面改性,并结合MOF材料的独特优势,公开了一种功能化MOF@织物及其制备方法。制备时使含羧基芳香自由基在纤维表面结接枝聚合形成羧基聚合链刷;然后通过处理工艺,在保证织物的强力、透气、手感及服用性能等不受影响的前提下,原位生长MOF晶体涂层,从而获得功能化MOF@织物。针对目前MOF在纤维表面负载存在牢度不理想、功能单一、晶体生长不均匀等问题,本发明利用羧基芳香自由基接枝纤维,在纤维表面形成含羧基的聚合物链刷,为MOF晶体的生长提供了足够的活性位点,从而提高MOF负载率、耐久牢度并赋予织物多功能化。
技术解决方案
实现本发明目的的技术方案是:一种防紫外超疏水织物,包括织物、织物表面接枝的羧基芳香聚合物链、MOF晶体结构及疏水化涂层;所述MOF晶体结构由金属离子与有机配体配位组装形成。
本发明将织物加入含羧基芳香重氮盐溶液中,再加入化学还原剂,聚合反应得到表面接枝羧基芳香聚合物链的织物;然后将表面接枝羧基芳香聚合物链的织物在含金属离子溶液及有机配体溶液中通过层层自组装得到MOF@织物,再将MOF@织物疏水化涂层整理得到所述防紫外超疏水织物。
本发明中,织物为棉织物和/或麻织物;MOF为CuBTC。
本发明中,将含羧基芳香胺在亚硝酸钠的酸溶液中进行重氮化,得到含羧基芳香重氮盐溶液。
具体的,本发明防紫外超疏水织物的制备方法为如下步骤:(1)将含羧基芳香胺在亚硝酸钠的酸溶液中进行重氮化,得到重氮盐溶液,所述酸为稀盐酸或稀硫酸;(2)将织物加入上述重氮盐溶液中,然后加入还原剂,在室温条件下将含羧基芳香重氮盐还原成含羧基芳香自由基,并且含羧基芳香自由基单体在纤维表面发生自由基共价接枝聚合反应为羧基芳香聚合物链;(3)将金属盐溶于N,N-二甲基乙酰胺、乙醇和水制备金属离子溶液A;将有机配体溶于N,N-二甲基乙酰胺、乙醇和水制备有机配体溶液B;(4)将(2)中制备得到的羧基化织物依次加入到(3)中配制的金属离子溶液A、有机配体溶液B中,进行循环层层自组装生长形成MOF涂层结构,反应一定时间制得MOF@织物。
(5)将(4)中制备得到的MOF@织物浸渍在硅氧烷,比如正辛基三乙氧基硅烷或者正己基三乙氧基硅烷的乙醇溶液中一定时间,经过焙烘整理得到功能化MOF@织物。
本发明中,含羧基芳香胺优选为含羧基苯胺,其化学结构式如下:
含羧基芳香自由基为如下化学结构:
本发明上述结构式中,R 1为氢或者羧基。优选的,羧基为-COOH、-CH 2COOH或- C 2H 4COOH。
本发明中,聚合反应的时间为6~72h,最好为36~48h。
本发明中,将羧基化织物(即表面接枝羧基芳香聚合物链的织物)依次加入金属离子溶液中、有机配体溶液中,进行循环自组装,一次浸渍反应时间为3~60min,最好为10~20min;自组装循环次数为3~30次,最好为10~15次。
本发明中,疏水化涂层整理剂为含疏水性链段的硅氧烷,最好为正辛基三乙氧基硅烷或者正己基三乙氧基硅烷。本发明采用非含氟整理剂实现了织物超疏水性能,满足水接触角大于150°的超疏水要求。
本发明防紫外超疏水功能化MOF@织物为改性纤维,表面具有规则晶体结构涂层,该晶体涂层随着循环次数的增加由纳米级颗粒逐渐生长成微米级颗粒。
上述技术方案中,步骤(1)中,所述酸溶液摩尔浓度为0.2~3M,最好为0.8~1.5M;所述重氮化为低温反应,温度为-15~25℃,最好为-5~5℃;所述重氮化反应的时间为0.1~12h,最好为0.5~3h。
上述技术方案中,所述还原剂为维生素C(VC)。
本发明利用含羧基芳香基自由基单体与天然纤维之间通过单电子自由基共价接枝聚合,制备一种羧基化织物,并利用金属离子与有机配体之间的配位作用生产一种表面糙化的MOF@织物,通过疏水涂层整理得到一种功能化MOF@织物。
有益效果
本发明具体涉及一种含羧基芳香胺通过重氮自由基共价键接枝聚合的方法,在纤维表面形成含羧基的聚合物链刷;然后通过层层自组装策略在羧基化纤维表面原位生长金属有机框架结构;最后通过疏水涂层整理实现对纤维表面改性制备的功能化MOF@织物。与现有技术相比,本发明提供的技术方案其有益效果在于:1、本发明通过芳香重氮自由基共价接枝聚合的方法对纤维表面进行羧基化接枝改性整理,在纤维表面形成了羧基聚合物分子链刷,提供了羧基活性位点,为金属离子的锚定,MOF晶体的生长提供了必要条件。这一点对于MOF材料在纤维表面原位生长制备新一代功能化MOF织物而言具有非常重要的意义。
2、羧基化纤维与MOF晶体之间结合稳定,从而赋予MOF与织物之间优异的牢度,解决了常规MOF@织物通过物理混合吸附作用固着而牢度较差的问题。这一点对于开发一种耐久型MOF@织物而言具有重要意义。
3、制备的MOF@织物结合了织物的柔软可穿戴透气及MOF材料的高比表面积、多孔、结构性能可调的独特优势,这一点对于提高织物的服用性能、多功能化、附加值及拓展MOF材料的应用前景具有非常重要的意义。
4、MOF@织物的制备方法简单,反应条件温和,易于操作,可规模化生产和易于推广。
附图说明
图1是本发明反应示意图。
图2是改性织物的纤维表面的化学结构示意图。
图3是实施例一原料棉织物的扫描电子显微镜(SEM)图,表面有褶皱,图中A;实施例一制备得到的含羧基自由基接枝聚合整理织物的扫描电子显微镜(SEM)图,纤维表面由含羧基芳香聚合物链形成的纳米级颗粒结构,图中B;实施例一制备得到的MOF@织物的扫描电子显微镜(SEM)图,纤维表面分布规则微米正八面体晶体结构MOF涂层,图中C。
图4为实施例一制备的功能化MOF@织物红外图谱以及X-射线衍射图谱。
图5是实施例一未改性原料棉织物、羧基化改性棉织物、MOF@织物和超疏水MOF@织物的紫外线透射吸收曲线测试图,测得织物的UPF值分别为20.9 ± 3.2、45.9 ± 6.6、199.5 ± 14.7、192.2 ± 13.2。
图6是实施例一未改性原料棉织物的接触角测试图,测得织物的表面接触角分别为0°,图A;实施例一羧基化改性棉织物的接触角测试图,测得织物的表面接触角分别为0°,图B;实施例一MOF@织物的接触角测试图,测得织物的表面接触角分别为0°,图C;实施例一疏水化MOF@织物的接触角测试图,测得织物的表面接触角分别为168.4 ± 1.6°,图D。
图7是实施例二制备得到的MOF@织物的扫描电子显微镜(SEM)图,纤维表面由含微米正八面体晶体结构MOF涂层。
图8是实施例三制备得到的MOF@织物的扫描电子显微镜(SEM)图,纤维表面由含微米正八面体晶体结构MOF涂层。
图9是对比例一制备得到的未经羧基化改性织物长MOF的扫描电子显微镜(SEM)图,纤维表面分布有稀疏少量不规则微纳米级晶体结构颗粒。
本发明的实施方式
织物为MOF的负载提供了一个理想的灵活平台,目前已经报道了通过浸涂、混合等方法将MOF纳入纤维基底材料的方法,实现了增强功能和理想的大比表面积的特殊应用。然而,上述方法制备的MOF-纤维复合材料中,MOF与纤维之间的相互作用力较差且不稳定。因此,所得到的最终产品不能达到预期的应用效果。此外,水解不稳定性也是现有MOF材料的主要缺点之一。为了解决这些问题,本发明通过新的方法将MOF材料集成到纤维上,为未来MOF@织物的发展提供可行的解决方案。
以含羧基苯胺为例,本发明公开了上述MOF@织物的制备方法,为如下步骤:(1)含羧基苯胺在亚硝酸钠的稀酸溶液中进行重氮化形成重氮盐;(2)含羧基苯重氮盐在还原剂的作用下转变为含羧基苯自由基;含羧基苯自由基单体与天然纤维上的氧自由基原位进行单电子自由基共价接枝聚合反应;(3)金属离子通过与羧基的配位作用被锚定在纤维表面,然后再通过与金属离子溶液A、乙醇、有机配体溶液B之间依次进行层层自组装作用,在纤维表面原位生长形成MOF涂层结构;(4)使用疏水性物质对MOF@织物进行涂层整理得到功能化MOF@织物。
涉及的反应参见图1。把亚硝酸钠在低温条件下加入稀酸溶液中搅拌溶解形成亚硝酸钠酸溶液,再把含羧基苯胺加入上述亚硝酸钠酸溶液中搅拌进行重氮化反应,生成含羧基苯重氮盐;将还原剂加入上述重氮盐溶液中,反应温度升温至室温,把含羧基苯重氮盐还原成含羧基苯自由基单体,并释放氮气;首先织物在含羧基苯自由基单体的反应溶液中,含羧基苯自由基单体在纤维素纤维上对其羟基进行单电子自由基引发生成氧自由基,加入VC后,其它的含羧基苯自由基单体与纤维素纤维上的氧自由基通过原位自由基共价接枝聚合反应一定时间,在纤维表面形成羧基芳香聚合物链;首先把羧基化织物加入金属离子溶液A中一定时间,然后放入乙醇溶液中清洗10秒,之后再把上述织物加入有机配体溶液B中,然后再次放入乙醇溶液中清洗10秒,上述过程为一个循环;不断循环上述操作过程,最后在纤维表面形成致密的MOF晶体涂层。然后将MOF@织物浸渍在疏水性物质的乙醇溶液中一定时间,经过焙烘整理得到功能化MOF@织物。
本发明在棉、麻等织物的纤维素基纤维上进行接枝共聚,利用纤维表面的羧基活性位点,Cu 2+与有机配体间的配位作用在纤维表面原位生长构建MOF晶体结构,改性织物的纤维表面的化学结构如图2,其中,n=3~100,为织物纤维素的结构,为常识;m=1~50。
下面结合附图和实施例对本发明技术方案作进一步描述,涉及的原料为常规商品,原料棉织物为亲水织物,大小为5cm×8cm;具体制备操作以及测试为常规技术,如无特殊说明,实验在空气中进行。
实施例一:(1)生成间氨基苯甲酸重氮盐:圆底烧瓶配备温度计,装备磁力搅拌。加入60 ml,1M的盐酸溶液,在冷浴降温至15 ℃,加入3.3 mmol亚硝酸钠,冷浴降温至-5℃,搅拌溶解形成亚硝酸钠盐酸溶液。然后加入3 mmol的间氨基苯甲酸保温重氮化1h,生成间羧基苯甲酸重氮盐溶液。
(2)生成间羧基苯自由基:在上述重氮盐溶液中加入一块棉织物,随后加入53mg还原剂VC,反应液温度升温至室温并保温36小时,间羧基苯甲酸重氮盐被还原成间羧基苯自由基单体,同时释放氮气;间羧基苯自由基单体引发棉纤维上的羟基发生均裂生成氧自由基,同时其它的间羧基苯自由基单体继续与棉纤维上的氧自由基发生原位自由基共价接枝聚合,形成羧基芳香聚合物链刷,称为羧基化棉织物。
(3)把3.8g Cu(NO 3) 2·3H 2O溶解于48 mL 的N,N-二甲基乙酰胺、乙醇和水以1:1:1比例的混合溶剂中制备含金属离子溶液A;将1.35g的1,3,5-苯三甲酸溶解于48 mL 的N,N-二甲基乙酰胺、乙醇和水以1:1:1比例的混合溶剂中制备有机配体溶液B。
(4)把一块5cm×8cm的羧基化棉织物先浸入含金属离子的A溶液中15min,取出放入乙醇溶液中清洗10s,取出放入含有机配体的B溶液中15min,然后取出再放入乙醇溶液中清洗10s;以上操作步骤为一个循环过程,之后循环操作此过程10次。最后取出样品在50mL的新无水乙醇溶液中摇晃清洗,重复5次,以去除剩余的未结合金属离子和有机配体,最后在50℃的烘箱中干燥3小时得到MOF@织物。
(5)将(4)得到的MOF@织物浸入20mL的正辛基三乙氧基硅烷甲醇溶液中1h,然后取出织物放于140℃下焙烘1h,得到疏水化MOF@织物。
(6)抗紫外测试:采用蓝菲光学 (Labsphere) 有限公司的UV-2000F纺织物防晒指数分析仪按照GB/T18830测试织物改性前后的抗紫外性能UPF值。每一个单层织物样品分别测试五次取其平均值。测得未改性原料棉织物、羧基化改性棉织物、MOF@织物和超疏水MOF@织物的UPF值分别为20.9 ± 3.2、45.9 ± 6.6、199.5 ± 14.7、192.2 ± 13.2。表明改性后MOF@织物表现出非常优异的抗紫外性能。
(7)接触角测试:采用德国Krüss公司的DSA100型全自动微观液滴润湿性测量仪对改性前后的MOF@织物润湿性能测试,选取去离子水作为测试液滴,液滴体积为5μL,分别测试五次取其平均值。测得未改性原料棉织物、羧基化改性棉织物、MOF织物和疏水化MOF织物的表面接触角分别为0°、0°、0°和168.4 ± 1.6°,表明未改性原料棉织物、羧基化改性棉织物、MOF@织物呈超亲水性能,而疏水化改性后MOF@织物表现出超疏水性能。
图3是实施例一原料棉织物的扫描电子显微镜(SEM)图,表面有褶皱,图中A;实施例一制备得到的含羧基自由基接枝聚合整理织物的扫描电子显微镜(SEM)图,纤维表面由含羧基芳香聚合物链形成的纳米级颗粒结构,图中B;实施例一制备得到的MOF@织物的扫描电子显微镜(SEM)图,纤维表面分布规则微米正八面体晶体结构MOF涂层,图中C。
图4为实施例一制备的功能化MOF@织物织物红外图谱以及X-射线衍射图谱。
图5是实施例一未改性原料棉织物、羧基化改性棉织物、MOF@织物和超疏水MOF@织物的紫外线透射吸收曲线测试图,测得织物的UPF值分别为20.9 ± 3.2、45.9 ± 6.6、199.5 ± 14.7、192.2 ± 13.2。
图6是实施例一未改性原料棉织物的接触角测试图,测得织物的表面接触角分别为0°,图A;实施例一羧基化改性棉织物的接触角测试图,测得织物的表面接触角分别为0°,图B;实施例一MOF@织物的接触角测试图,测得织物的表面接触角分别为0°,图C;实施例一疏水化MOF@织物的接触角测试图,测得织物的表面接触角分别为168.4 ± 1.6°,图D。
如果将上述Cu(NO 3) 2·3H 2O替换为Co(NO 3) 2·6H 2O,其余不变,得到的MOF@织物的UPF值为91.9±10.2。
实施例二:(1)生成间氨基苯甲酸重氮盐:圆底烧瓶配备温度计,装备磁力搅拌。加入60 ml,1M的盐酸溶液,在冷浴降温至15 ℃,加入3.3 mmol亚硝酸钠,冷浴降温至-5℃,搅拌溶解形成亚硝酸钠盐酸溶液。然后加入3 mmol的三氨基苯甲酸保温重氮化1h,生成间羧基苯甲酸重氮盐溶液。
(2)生成间羧基苯自由基:在上述重氮盐溶液中加入一块棉织物,随后加入53mg还原剂VC,反应液温度升温至室温并保温36小时,间羧基苯甲酸重氮盐被还原成间羧基苯自由基单体,同时释放氮气;间羧基苯自由基单体引发棉纤维上的羟基发生均裂生成氧自由基,同时其它的间羧基苯自由基单体继续与棉纤维上的氧自由基发生原位自由基共价接枝聚合,形成羧基芳香聚合物链刷,称为羧基化棉织物。
(3)把3.8g Cu(NO 3) 2·3H 2O溶解于48 mL 的N,N-二甲基乙酰胺、乙醇和水以1:1:1比例的混合溶剂中制备含金属离子溶液A;将1.35g的1,3,5-苯三甲酸溶解于48 mL 的N,N-二甲基乙酰胺、乙醇和水以1:1:1比例的混合溶剂中制备有机配体溶液B。
(4)把一块5cm×8cm的羧基化棉织物先浸入含金属离子的A溶液中15min,取出放入乙醇溶液中清洗10s,取出放入含有机配体的B溶液中15min,然后取出再放入乙醇溶液中清洗10s;以上操作步骤为一个循环过程,之后循环操作此过程20次。最后取出样品在50mL的新无水乙醇溶液中摇晃清洗,重复5次,以去除剩余的未结合金属离子和有机配体,最后在50℃的烘箱中干燥3小时得到MOF@织物。
(5)将(4)得到的MOF@织物浸入20mL的正辛基三乙氧基硅烷甲醇溶液中1h,然后取出织物放于140℃下焙烘1h,得到疏水化MOF@织物。
(6)抗紫外测试:采用蓝菲光学 (Labsphere) 有限公司的UV-2000F纺织物防晒指数分析仪按照GB/T18830测试织物改性后的抗紫外性能UPF值。每一个单层织物样品分别测试五次取其平均值。测得整理后织物的UPF值为322.6 ± 6.0,改性后表现出非常优异的抗紫外性能。
(7)接触角测试:采用德国Krüss公司的DSA100型全自动微观液滴润湿性测量仪对疏水化改性后的MOF@织物润湿性能测试,选取去离子水作为测试液滴,液滴体积为5μL,分别测试五次取其平均值。测得疏水化改性后MOF@织物的表面接触角分别为169.2 ± 1.7°,表明疏水化改性后MOF@织物表现出优异的超疏水性能。尤其是本发明解决了现有技术需要采用含氟材料才可以获得超疏水的技术缺陷,采用不含氟硅烷,取得非常好的疏水性能。
图7是实施例二制备得到的MOF@织物的扫描电子显微镜(SEM)图,纤维表面由含微米级正八面体结构晶体结构MOF涂层。
实施例三:(1)生成5-氨基间苯二甲酸重氮盐:圆底烧瓶配备温度计,装备磁力搅拌。加入60 ml,1M的盐酸溶液,在冷浴降温至15 ℃,加入3.3 mmol亚硝酸钠,冷浴降温至0 ℃,搅拌溶解形成亚硝酸钠盐酸溶液。然后加入3 mmol的5-氨基间苯二甲酸保温重氮化1h,生成二羧基苯重氮盐。
(2)生成二羧基苯自由基:在上述重氮盐溶液中加入一块棉织物,随后加入53mg还原剂VC,反应液温度升温至室温并保温36小时,二羧基苯重氮盐被还原成二羧基苯自由基单体,同时释放氮气;二羧基苯自由基单体引发棉纤维上的羟基发生均裂生成氧自由基,同时其它的二羧基苯自由基单体继续与棉纤维上的氧自由基发生原位自由基共价接枝聚合,形成羧基芳香聚合物链刷。
(3)把3.8g Cu(NO 3) 2·3H 2O溶解于48 mL 的N,N-二甲基乙酰胺、乙醇和水以1:1:1比例的混合溶剂中制备含金属离子溶液A;将1.35g的1,3,5-苯三甲酸溶解于48 mL 的N,N-二甲基乙酰胺、乙醇和水以1:1:1比例的混合溶剂中制备有机配体溶液B。
(4)把一块5cm×8cm的羧基化棉织物先浸入含金属离子的A溶液中15min,取出放入乙醇溶液中清洗10s,取出放入含有机配体的B溶液中15min,然后取出再放入乙醇溶液中清洗10s;以上操作步骤为一个循环过程,之后循环操作此过程10次。最后取出样品在50mL的新无水乙醇溶液中摇晃清洗,重复5次,以去除剩余的未结合金属离子和有机配体,最后在50℃的烘箱中干燥3小时得到MOF@织物。
(5)将(4)得到的MOF@织物浸入20mL的正辛基三乙氧基硅烷甲醇溶液中1h,然后取出织物放于140℃下焙烘1h,得到疏水化MOF@织物。
(6)抗紫外测试:采用蓝菲光学 (Labsphere) 有限公司的UV-2000F纺织物防晒指数分析仪按照GB/T18830测试织物整理后的抗紫外性能UPF值。每一个单层织物样品分别测试五次取其平均值。测得整理后MOF@织物的UPF值为222.6 ± 21.0,改性后表现出非常优异的抗紫外性能。
(7)接触角测试:采用德国Krüss公司的DSA100型全自动微观液滴润湿性测量仪对疏水化改性后的MOF@织物润湿性能测试,选取去离子水作为测试液滴,液滴体积为5μL,分别测试五次取其平均值。测得疏水化改性后MOF@织物的表面接触角分别为167.6 ± 2.1°,表明疏水化改性后MOF@织物表现出优异的超疏水性能。
图8是实施例三制备得到的MOF@织物的扫描电子显微镜(SEM)图,纤维表面由含微米级正八面体结构晶体结构MOF涂层。
对比例一:(1)把3.8g Cu(NO 3) 2·3H 2O溶解于48 mL 的N,N-二甲基乙酰胺、乙醇和水以1:1:1比例的混合溶剂中制备含金属离子溶液A;将1.35g的1,3,5-苯三甲酸溶解于48 mL 的N,N-二甲基乙酰胺、乙醇和水以1:1:1比例的混合溶剂中制备有机配体溶液B。
(2)把一块5cm×8cm的未羧基化改性的原料棉织物先浸入含金属离子的A溶液中15min,取出放入乙醇溶液中清洗10s,取出放入含有机配体的B溶液中15min,然后取出再放入乙醇溶液中清洗10s;以上操作步骤为一个循环过程,之后循环操作此过程10次。最后取出样品在50mL的新无水乙醇溶液中摇晃清洗,重复5次,以去除剩余的未结合金属离子和有机配体,最后在50℃的烘箱中干燥3小时得到样品。
(3)将(2)得到的MOF@织物浸入20mL的正辛基三乙氧基硅烷甲醇溶液中1h,然后取出织物放于140℃下焙烘1h,得到疏水化MOF@织物。
(4)抗紫外测试:采用蓝菲光学 (Labsphere) 有限公司的UV-2000F纺织物防晒指数分析仪按照GB/T18830测试织物整理后的抗紫外性能UPF值。每一个单层织物样品分别测试五次取其平均值。测得整理后织物的UPF值为46.8 ± 2.2,表现出一般的抗紫外性能。
(5)接触角测试:采用德国Krüss公司的DSA100型全自动微观液滴润湿性测量仪对疏水化改性后的MOF@织物润湿性能测试,选取去离子水作为测试液滴,液滴体积为5μL,分别测试五次取其平均值。测得疏水化改性后MOF@织物的表面接触角分别为129.2 ± 1.1°,表明疏水化改性后MOF@织物表现出一般的疏水性能,但未达到超疏水效果。
图9是对比例一制备得到的未经羧基化改性织物长MOF的扫描电子显微镜(SEM)图。
对比例二 :(1)在含有4wt%柠檬酸以及4wt%次亚磷酸钠水溶液中加入原料棉织物(5cm×8cm),浸泡5分钟后二浸二轧,然后在100℃加热3分钟,再于170℃加热3分钟,得到羧基化棉织物。
(2)把3.8g Cu(NO 3) 2·3H 2O溶解于48 mL 的N,N-二甲基乙酰胺、乙醇和水以1:1:1比例的混合溶剂中制备含金属离子溶液A;将1.35g的1,3,5-苯三甲酸溶解于48 mL 的N,N-二甲基乙酰胺、乙醇和水以1:1:1比例的混合溶剂中制备有机配体溶液B。
(3)把一块5cm×8cm的羧基化棉织物先浸入含金属离子的A溶液中15min,取出放入乙醇溶液中清洗10s,取出放入含有机配体的B溶液中15min,然后取出再放入乙醇溶液中清洗10s;以上操作步骤为一个循环过程,之后循环操作此过程20次。最后取出样品在50mL的新无水乙醇溶液中摇晃清洗,重复5次,以去除剩余的未结合金属离子和有机配体,最后在50℃的烘箱中干燥3小时得到MOF@织物。
(4)将(5)得到的MOF@织物浸入20mL的正辛基三乙氧基硅烷甲醇溶液中1h,然后取出织物放于140℃下焙烘1h,得到疏水化MOF@织物,而非超疏水织物。
(5)抗紫外测试:采用蓝菲光学 (Labsphere) 有限公司的UV-2000F纺织物防晒指数分析仪按照GB/T18830测试织物改性后的抗紫外性能UPF值。每一个织物样品分别测试五次取其平均值,测得MOF@织物的UPF值为96.6 ± 8.7。
本发明通过芳香重氮自由基共价接枝聚合的方法对纤维表面进行羧基化改性整理,在纤维表面形成羧基聚合物链刷,然后通过金属离子与有机配体之间的配位作用,进行自组装,在纤维表面原位生长致密的MOF晶体结构涂层,比如图4,解决了纤维不能原位长MOF和生长的MOF晶体稀疏负载量小的问题。这一点对于MOF材料在纤维表面原位生长制备新一代功能化MOF@织物而言具有非常重要的意义。本发明公开了一种功能化MOF@织物及其制备方法。以羧基苯胺为反应单体,在亚硝酸钠的酸溶液中进行重氮化,生成含羧基苯重氮盐;把织物加入上述重氮盐溶液中,然后加入还原剂,升温至室温,在室温条件下将含羧基苯重氮盐还原成含羧基苯自由基,自由基单体对棉、麻等纤维素纤维织物表面的羟基进行单电子自由基引发,生成羟基自由基;然后自由基单体在纤维表面发生自由基共价接枝聚合反应;将羧基化织物依次加入到金属离子溶液A、乙醇、有机配体溶液B、乙醇中,进行循环层层自组装生长形成MOF涂层结构,反应一定时间制得MOF@织物;然后再对其进行疏水化涂层整理,最终得到超疏水MOF@织物。本发明羧基化织物处理过程在室温下稀酸溶液中以化学还原剂还原聚合完成,MOF原位生长同样在室温下完成,生产工艺简单,反应条件温和,操作安全。基于含羧基芳香聚合物链在纤维表面以共价键键合,且羧基活性位点,为大量金属离子的锚定和MOF的原位生长提供充分条件;使得功能织物且有很强的紫外线吸收和超疏水性能,且不影响织物的原有服用性能;本发明在解决了通过机械混合整理等方法获得MOF@织物牢度差、负载量小的难题的同时赋予织物更多有价值的附加功能应用潜力。羧基化织物处理是通过芳香自由基聚合完成,MOF晶体通过层层自组装原位生长完成,结合金属有机框架MOF多孔结构的独特性能,由此获得功能化MOF@织物。

Claims (10)

  1. 一种防紫外超疏水织物,其特征在于:所述防紫外超疏水织物包括织物、织物表面接枝的羧基芳香聚合物链、MOF晶体结构及疏水涂层;所述MOF晶体结构由金属离子与有机配体配位组装形成。
  2. 根据权利要求1所述防紫外超疏水织物,其特征在于,织物为棉织物和/或麻织物;MOF为CuBTC。
  3. 权利要求1所述防紫外超疏水织物的制备方法,其特征在于,将织物加入含羧基芳香重氮盐溶液中,再加入化学还原剂,聚合反应得到表面接枝羧基芳香聚合物链的织物;然后将表面接枝羧基芳香聚合物链的织物在含金属离子溶液、有机配体溶液中通过层层自组装得到防紫外织物;最后通过疏水化整理得到所述防紫外超疏水织物。
  4. 根据权利要求3所述防紫外超疏水织物的制备方法,其特征在于,将含羧基芳香胺在亚硝酸钠的酸溶液中进行重氮化,得到含羧基芳香重氮盐溶液;所述聚合反应的时间为6~72h。
  5. 根据权利要求3所述防紫外超疏水织物的制备方法,其特征在于,将表面接枝羧基芳香聚合物链的织物在含金属离子的溶液中浸渍后再在有机配体溶液中浸渍,进行自组装。
  6. 根据权利要求5所述防紫外超疏水织物的制备方法,其特征在于,浸渍的时间为3~60min;层层自组装的次数为3~30次。
  7. 根据权利要求3所述防紫外超疏水织物的制备方法,其特征在于,利用硅氧烷进行疏水化整理。
  8. 一种防紫外织物,其特征在于,将织物加入含羧基芳香重氮盐溶液中,再加入化学还原剂,聚合反应得到表面接枝羧基芳香聚合物链的织物;然后将表面接枝羧基芳香聚合物链的织物在含金属离子溶液、有机配体溶液中通过层层自组装得到防紫外织物。
  9. 根据权利要求8所述防紫外织物,其特征在于,将表面接枝羧基芳香聚合物链的织物在含金属离子的溶液中浸渍后再在有机配体溶液中浸渍,进行自组装。
  10. 权利要求1所述防紫外超疏水织物或者权利要求8所述防紫外织物在制备功能织物中的应用。
PCT/CN2022/111466 2022-06-30 2022-08-10 一种防紫外超疏水织物及其制备方法 WO2024000743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210770327.1A CN114990885B (zh) 2022-06-30 2022-06-30 一种防紫外超疏水织物及其制备方法
CN202210770327.1 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024000743A1 true WO2024000743A1 (zh) 2024-01-04

Family

ID=83020090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111466 WO2024000743A1 (zh) 2022-06-30 2022-08-10 一种防紫外超疏水织物及其制备方法

Country Status (2)

Country Link
CN (1) CN114990885B (zh)
WO (1) WO2024000743A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990885B (zh) * 2022-06-30 2023-08-15 苏州大学 一种防紫外超疏水织物及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549177A (zh) * 2014-12-18 2015-04-29 昆明理工大学 一种重氮法偶联明胶吸附材料及其制备方法
US20160101192A1 (en) * 2014-10-08 2016-04-14 Commissariat A L'energie Atomique Et Aux Energies Alternative (Cea) Porous solid with outer surface grafted with a polymer
CN108976460A (zh) * 2018-08-16 2018-12-11 中国科学院长春应用化学研究所 一种含有润滑层的mof膜材料、其制备方法及其在防冰领域的应用
CN110565398A (zh) * 2019-09-06 2019-12-13 东华大学 一种基于稀土掺杂mof的染色荧光织物及其制备方法
CN112691552A (zh) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 一种制备高性能有机气体分离膜的方法
CN112755968A (zh) * 2020-12-31 2021-05-07 廊坊师范学院 吸附截留水中微纳米塑料的MOFs纤维膜及其制备方法
CN114990885A (zh) * 2022-06-30 2022-09-02 苏州大学 一种防紫外超疏水织物及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642869B (zh) * 2018-04-12 2020-08-18 华南理工大学 一种超疏水抗紫外织物的制备方法
CN111472171B (zh) * 2020-05-18 2022-04-26 苏州大学 一种超疏水织物及其制备方法
CN112900097B (zh) * 2021-01-21 2021-12-14 南通大学 一种耐久性的超疏水抗紫外棉织物及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160101192A1 (en) * 2014-10-08 2016-04-14 Commissariat A L'energie Atomique Et Aux Energies Alternative (Cea) Porous solid with outer surface grafted with a polymer
CN104549177A (zh) * 2014-12-18 2015-04-29 昆明理工大学 一种重氮法偶联明胶吸附材料及其制备方法
CN108976460A (zh) * 2018-08-16 2018-12-11 中国科学院长春应用化学研究所 一种含有润滑层的mof膜材料、其制备方法及其在防冰领域的应用
CN110565398A (zh) * 2019-09-06 2019-12-13 东华大学 一种基于稀土掺杂mof的染色荧光织物及其制备方法
CN112691552A (zh) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 一种制备高性能有机气体分离膜的方法
CN112755968A (zh) * 2020-12-31 2021-05-07 廊坊师范学院 吸附截留水中微纳米塑料的MOFs纤维膜及其制备方法
CN114990885A (zh) * 2022-06-30 2022-09-02 苏州大学 一种防紫外超疏水织物及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI PENGFEI, ZHANG MENGMENG, ZHAI ZHE, WANG MING, LI PENG, HOU YINGFEI, JASON NIU Q.: "Precise assembly of a zeolite imidazolate framework on polypropylene support for the fabrication of thin film nanocomposite reverse osmosis membrane", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 612, 1 October 2020 (2020-10-01), NL , pages 118412, XP093124605, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2020.118412 *
SHI LITONG, WU CHONGCHONG, WANG YANG, DOU YUHAI, YUAN DING, LI HUI, HUANG HONGWEI, ZHANG YU, GATES IAN D., SUN XIAODONG, MA TIANYI: "Rational Design of Coordination Bond Connected Metal Organic Frameworks/MXene Hybrids for Efficient Solar Water Splitting", ADVANCED FUNCTIONAL MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 32, no. 30, 1 July 2022 (2022-07-01), DE , XP093124604, ISSN: 1616-301X, DOI: 10.1002/adfm.202202571 *

Also Published As

Publication number Publication date
CN114990885A (zh) 2022-09-02
CN114990885B (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
Hou et al. Facile generation of robust POSS-based superhydrophobic fabrics via thiol-ene click chemistry
Xu et al. Superhydrophobic cotton fabric with excellent healability fabricated by the “grafting to” method using a diblock copolymer mist
Cheng et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching
Wu et al. Robust superhydrophobic and superoleophilic filter paper via atom transfer radical polymerization for oil/water separation
Xue et al. Fabrication of superhydrophobic cotton fabrics by grafting of POSS-based polymers on fibers
Yang et al. Fabrication of multifunctional textiles with durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on cotton fabric
CN111472171B (zh) 一种超疏水织物及其制备方法
CN103572588B (zh) 一种纳米材料增强棉织物抗皱整理液及其应用
CN106854833B (zh) 一种轻质抗静电超高分子量聚乙烯纤维及其制备方法
CN111593570B (zh) 一种防水布面柔性复合材料及其制备方法
KR101074692B1 (ko) 도전성 황화구리 나일론섬유 제조를 위한 조성물
WO2024000743A1 (zh) 一种防紫外超疏水织物及其制备方法
CN112538762B (zh) 一锅法制备稳定超疏水抗菌织物的方法
CN106747265B (zh) 一种基于自组装遮光剂纤维的气凝胶复合材料及其制法
CN108034284A (zh) 一种普鲁士蓝纳米粒子复合材料及其制备方法
Jiang et al. Synthesis of superhydrophobic fluoro-containing silica sol coatings for cotton textile by one-step sol–gel process
CN107022098A (zh) 再生纤维素基纳米多层自组装复合膜的制备方法
Che et al. Preparation of fluorine-free robust superhydrophobic fabric via diazonium radical graft polymerization
Yan et al. Engineering polydimethylsiloxane with two-dimensional graphene oxide for an extremely durable superhydrophobic fabric coating
CN110528273A (zh) 一种纺织材料的高介电疏水整理方法
Yang et al. Fluorine-free, short-process and robust superhydrophobic cotton fabric and its oil-water separation ability
CN110804858B (zh) 一种无机发泡整理制备防污窗帘的方法
Yu et al. Reversed micelles with well-amphiphobic properties from main-chain type semifluorinated alternating copolymer
Xu et al. Preparation of robust and self-healing superamphiphobic cotton fabrics based on modified silica aerogel particles
Zhang et al. One-step fabrication of self-healing and durable superhydrophobic cotton fabrics based on silica aerogel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948835

Country of ref document: EP

Kind code of ref document: A1