WO2024000718A1 - 一种基于全向智能超表面的通信和雷达目标检测方法 - Google Patents
一种基于全向智能超表面的通信和雷达目标检测方法 Download PDFInfo
- Publication number
- WO2024000718A1 WO2024000718A1 PCT/CN2022/108545 CN2022108545W WO2024000718A1 WO 2024000718 A1 WO2024000718 A1 WO 2024000718A1 CN 2022108545 W CN2022108545 W CN 2022108545W WO 2024000718 A1 WO2024000718 A1 WO 2024000718A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metasurface
- omnidirectional
- communication
- matrix
- target detection
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/22—Traffic simulation tools or models
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/04013—Intelligent reflective surfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/003—Transmission of data between radar, sonar or lidar systems and remote stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/003—Transmission of data between radar, sonar or lidar systems and remote stations
- G01S7/006—Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/46—Indirect determination of position data
- G01S2013/462—Indirect determination of position data using multipath signals
- G01S2013/464—Indirect determination of position data using multipath signals using only the non-line-of-sight signal(s), e.g. to enable survey of scene 'behind' the target only the indirect signal is evaluated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the invention relates to a communication system design method, in particular to a communication and radar target detection method based on omnidirectional intelligent metasurfaces.
- the IMT 2030 (6G) promotion group has regarded communication sensing integration technology as one of the potential technologies for future 6G.
- Communication perception integration technology will give 6G networks the ability to perceive the physical world all the time and everywhere, opening up application space beyond traditional mobile communication network connections.
- omnidirectional smart metasurface as a new smart metasurface technology, is considered to be one of the most promising technologies to solve the difficulties faced by future wireless communication networks.
- the omnidirectional smart metasurface is composed of a large number of passive units. Each unit can independently divide the incident signal into two parts, namely the reflected signal and the transmitted signal. Therefore, the omnidirectional smart metasurface can achieve 360° omnidirectional coverage of the communication area.
- the direct path signal, reflection and transmission path signals in the communication system can be superimposed at the receiving end, thereby increasing the received signal power at the user end.
- research on communication systems based on omnidirectional intelligent metasurfaces has become a research hotspot in the academic community. Based on this, the present invention proposes a communication and radar target detection method based on omnidirectional intelligent metasurfaces, and optimizes the system with the goal of maximizing the minimum beam mode gain.
- the present invention introduces an omnidirectional intelligent metasurface into an integrated communication and sensing system, and provides a communication and radar target detection method based on an omnidirectional intelligent metasurface. This method fully exploits and utilizes the limited communication resources of the system and designs efficient communication transmission solutions.
- the present invention discloses a communication and radar target detection method based on omnidirectional intelligent metasurfaces, which includes the following steps:
- Step 1 Construct an optimization problem model with the optimization goal of maximizing the minimum beam mode gain;
- the communication and perception integrated system is a communication and perception integrated system based on omnidirectional intelligent metasurfaces;
- Step 2 Set constraints on the optimization problem model constructed in step 1; the constraints include: user minimum rate constraints, base station maximum transmit power constraints, and amplitude and phase constraints of the omnidirectional smart metasurface;
- Step 3 Solve the optimization problem model after setting the constraints to obtain the optimization solution that maximizes the minimum beam mode gain.
- the integrated communication and perception system based on the omnidirectional intelligent metasurface described in step 1 is applied in the downlink communication link.
- the base station communicates with the user and completes radar target detection with the assistance of the omnidirectional intelligent metasurface.
- Each unit of the omnidirectional smart metasurface described in step 1 has the function of reflecting and transmitting signals simultaneously.
- the signal reflected by the unit is called the reflected signal, and the signal passing through the unit is called the transmitted signal.
- the communication area covered by the omnidirectional smart metasurface is divided into two parts, namely: the reflection area (the area covered by the reflected signal) and the transmission area (the area covered by the transmitted signal).
- step 1 of the present invention is as follows:
- w ⁇ C N ⁇ 1 represents the transmit beamforming vector
- R 0 ⁇ C N ⁇ N is the covariance matrix of the radar signal
- R 0 ⁇ C N ⁇ N is the covariance matrix of the radar signal
- ⁇ q is the qth angle to be detected relative to the omnidirectional smart metasurface
- F ⁇ C M ⁇ N represents the channel between the omnidirectional smart metasurface and the base station
- M is the total number of omnidirectional smart metasurface units
- N is the number of antennas equipped by the base station
- Q is the number of antennas to be The total number of detection angles
- ⁇
- diag ⁇ represents converting a vector into a diagonal matrix
- ( ⁇ ) T and ( ⁇ ) H represent the transpose and conjugate transpose of the vector respectively
- e j ⁇ represents the exponential form of a complex number
- sin( ⁇ ) represents the sine function .
- step 2 of the present invention include:
- Constraint 1 is the user's minimum rate constraint
- constraint 2 is the base station's maximum transmit power constraint
- constraint 3 and constraint 4 are the amplitude and phase constraints of the omnidirectional smart metasurface respectively;
- the method for solving the optimization problem model after setting constraints as described in step 3 of the present invention includes:
- Step 3-2 For the given and Closed form solution update using transmit beamforming matrix and covariance matrix and
- Step 3-3 For the given and Joint optimization algorithm update using reflection and transmission beamforming vectors and
- Step 3-5 Repeat step 3-2 to step 3-4 until Receive and obtain the optimal transmit beamforming matrix W, radar covariance matrix R 0 , reflection beamforming matrix V r and transmission beamforming matrix V t ;
- Step 3-7 Output the optimization solution that maximizes the minimum beam mode gain, that is, output the optimal transmit beamforming vector w, radar covariance matrix R 0 , reflection beamforming matrix v r and transmission beamforming matrix v t ;
- V r ⁇ C M ⁇ M and V t ⁇ C M ⁇ M are the reflection beamforming matrix and the transmission beamforming matrix respectively
- W ⁇ C N ⁇ N is the transmit beamforming matrix
- ⁇ is the introduced variable, Used to transform the max-min optimization problem in step 1 into a max-min optimization problem; are the values corresponding to W, R 0 , V r , V t , and ⁇ in the ⁇ 0th iteration process respectively.
- the closed-form solution of the transmit beamforming matrix and covariance matrix described in step 3-2 of the present invention is:
- W ⁇ 0 means that W is a positive semidefinite matrix.
- Step 3-3-1 Initialization and and a penalty coefficient ⁇ , which is used to punish ⁇ (V r , V t )>0, ⁇ >>1;
- Step 3-3-4 For given W and R 0 , solve the reflection and transmission beamforming vector joint optimization problem update and
- Step 3-3-6 Repeat step 3-3-4 to step 3-3-5 until convergence;
- ⁇ (V r ,V t )
- 2 is the penalty term
- * represents the nuclear norm of the matrix
- 2 represents the spectral norm of the matrix.
- step 3-3-4 of the present invention is:
- ⁇ diag(g H )FWF H diag(g), is the approximate value of ⁇ (V r ,V t ), V r ⁇ 0 and V t ⁇ 0 respectively indicate that V r and V t are positive semi-definite matrices; and are the first-order Taylor approximations of
- the radar target detection performance is improved.
- the present invention uses the omnidirectional intelligent metasurface to provide 360° omnidirectional communication coverage, so that the base station can simultaneously realize the functions of communication and radar target detection with the assistance of the omnidirectional intelligent metasurface.
- the integrated communication sensing system detection can be improved while ensuring the user service quality. Radar target capability.
- Figure 1 is a schematic diagram of an application scenario of a communication and radar target detection method based on omnidirectional intelligent metasurfaces provided by an embodiment of the present invention.
- Figure 2 is a simulation diagram of a communication and radar target detection method based on omnidirectional intelligent metasurfaces provided by an embodiment of the present invention.
- Figure 3 is a schematic diagram of the change of beam mode gain with detection angle when the total number of omnidirectional intelligent metasurface units takes different values in the embodiment of the present invention.
- Figure 4 is a schematic diagram of a communication and radar target detection method based on an omnidirectional smart metasurface provided by an embodiment of the present invention and a schematic diagram of the beam pattern gain changing with the detection angle in the prior art.
- the present invention provides a communication and radar target detection method based on an omnidirectional intelligent metasurface, which is applied to an integrated communication and perception system based on an omnidirectional intelligent metasurface.
- the system includes a base station, an omnidirectional intelligent metasurface Metasurface, 1 user and L (L ⁇ 1) radar targets. Among them, the user and the radar target are located on both sides of the omnidirectional smart metasurface. Assume that the base station is equipped with N (N>1) antennas and the user is equipped with 1 antenna.
- the omnidirectional smart metasurface is composed of M (M>1) units. Due to obstacles and other reasons, there is no direct link between the base station and the user, and the radar target is on the non-line-of-sight link of the base station.
- the base station conducts downlink communication with the user with the assistance of the omnidirectional intelligent metasurface, and
- the target detection function is completed with the assistance of omnidirectional intelligent metasurface. Further, it is assumed that the base station can accurately obtain all channel state information between the base station and the user, the base station and the omnidirectional smart metasurface, and the user and the omnidirectional smart metasurface, and the angle of the radar target relative to the omnidirectional smart metasurface is known .
- Each unit of the omnidirectional smart metasurface has the ability to reflect and transmit signals simultaneously.
- the signal reflected by the unit is called the reflected signal
- the signal passing through the unit is called the transmitted signal.
- the communication area covered by the omnidirectional smart metasurface is divided into two parts, namely: the reflection area (the area covered by the reflected signal) and the transmission area (the area covered by the transmitted signal).
- users are distributed in the reflection area and radar targets are distributed in the transmission area. make and are the reflection amplitude and transmission amplitude of the m-th unit of the omnidirectional smart metasurface, respectively, and are the reflection phase and transmission phase of the m-th unit of the omnidirectional smart metasurface respectively, where the amplitude and phase satisfy the following constraints: ⁇ is pi.
- the reflection amplitude and transmission amplitude should also satisfy the following constraints: make represents the reflected beamforming vector, represents the transmission beamforming vector, where [ ⁇ ] H represents the conjugate transpose of the vector and e j ⁇ represents the exponential form of the complex number.
- the transmit power of the base station is: Where
- F ⁇ C M ⁇ N represent the channel between the omnidirectional smart metasurface and the base station
- g ⁇ C M ⁇ 1 represent the channel between the user and the omnidirectional smart metasurface.
- the signal received by the user is:
- the radar signal s 0 is predefined, it is known to the base station and the user. Therefore, it is assumed that the user is able to cancel the radar signal interference in the received signal. Then, the user’s rate R is:
- the radar target detection problem is discussed below. Because the radar target is in the non-line-of-sight area of the base station, the virtual line-of-sight link of the omnidirectional intelligent metasurface is used for target detection.
- the beam pattern gain is defined as:
- the optimization problem model for maximizing the minimum beam mode gain is as follows:
- R min is the minimum rate of the user
- P max is the maximum transmit power of the base station
- R 0 ⁇ 0 represents the positive semi-definite matrix of R 0 , m ⁇ 1,2,...,M ⁇ .
- Constraint condition (4.b) is the minimum rate constraint of the user
- constraint condition (4.c) is the maximum transmit power constraint of the base station
- constraint conditions (4.d) and (4.e) are the amplitude sum of the omnidirectional smart metasurface respectively. phase constraints;
- optimization problem (4) is equivalent to the following optimization problem:
- the solution to optimization problem (5) can be obtained by alternately solving the following two sub-optimization problems:
- sub-optimization problem (6) is the joint optimization problem of transmit beamforming vector and radar covariance matrix
- sub-optimization problem (7) is the joint optimization problem of reflection and transmission beamforming vectors.
- W ⁇ 0 means W positive semidefinite matrix.
- the optimization problem (8) is non-convex.
- the constraint (8.f) can be removed first, and then the following relaxed positive semi-definite optimization problem is obtained:
- optimization problem (9) is a convex optimization problem. Let W ⁇ C N ⁇ N and R 0 ⁇ C N ⁇ N be the optimal solution to the optimization problem (9). Generally, the rank of W is not 1. Next, the optimal solution of optimization problem (9) is used to construct the optimal solution of optimization problem (8).
- Theorem 1 Let W and R 0 be the optimal solution to the optimization problem (8), then the transmit beamforming matrix W and the covariance matrix R 0 can be obtained by the following closed-form solution:
- Equation (11) shows that W and R 0 satisfy the constraint (8.b). In addition, W and R 0 also satisfy the constraint condition (8.d).
- W and R 0 are the optimal solutions to optimization problem (8).
- ⁇ q diag( ⁇ H ( ⁇ q ))F(W+R 0 )F H diag( ⁇ ( ⁇ q )).
- Sub-optimization problem (7) is equivalent to the following optimization problem:
- the optimization problem (14) is a non-convex optimization problem.
- a penalty term can be introduced in the objective function. The penalty term is defined as:
- eta>>1 is the penalty coefficient, which is used to punish ⁇ (V r ,V t )>0. Since
- 2 in the penalty term are non-convex, the optimization problem (16) is still non-convex, and the first-order Taylor approximation can be used to solve the problem.
- the substitution function is defined:
- Step 1 Initialization and Penalty coefficient ⁇
- Step 4 For given W and R 0 , solve the optimization problem (20) update and
- Step 6 Repeat steps 4 to 5 until convergence
- the solution to the original optimization problem (4) can be obtained by alternately solving the sub-optimization problem (7) and the sub-optimization problem (8).
- the specific steps of the alternating optimization algorithm proposed by the present invention to solve the original optimization problem (4) are as follows:
- Step 2 For the given and Update using closed form solution (10) and
- Step 3 For the given and Joint optimization algorithm update using reflection and transmission beamforming vectors and
- Step 5 Repeat steps 2 to 4 until Convergence, obtain the optimal transmit beamforming matrix W, radar covariance matrix R 0 , reflection beamforming matrix V r and transmission beamforming matrix V t ;
- Step 7 Output the optimization solution that maximizes the minimum beam mode gain, that is, output the optimal transmit beamforming vector w, radar covariance matrix R0, reflection beamforming matrix v r and transmission beamforming matrix v t ;
- the invention is simulated and its performance is analyzed.
- the angle ranges of the two radar targets to be detected are: and make represents the ideal beam pattern gain, It can be defined as: Further, the angle range [-90°, 90°] is discretized, that is, divided into 100 parts on average.
- the number of angles to be detected Q is the total number of angles included in the angle ranges Q 1 and Q 2 after discretization.
- the channels involved are modeled using the Rice channel, and it is assumed that the channel fading index is 2.2 and the channel fading per unit distance is 30dBm.
- the optimization problem model after setting the constraint conditions is solved to obtain an optimization solution that maximizes the minimum beam mode gain, and obtains the optimal transmit beamforming vector w, radar covariance matrix R 0 , and reflection beamforming vector v r and the transmission beamforming vector v t , that is, when the transmission beamforming vector of the transmission signal transmitted by the base station is w, the mean value of the radar signal is 0, the radar covariance matrix is R 0 , the reflection beamformation of the omnidirectional smart metasurface
- the method provided in this embodiment can achieve radar target detection on the premise of ensuring the QoS (Quality of Service, Quality of Service) of communication between the base station and the user.
- this embodiment compares the changes in beam mode gain with detection angle when the total number M of omnidirectional intelligent metasurface units takes different values. It can be seen from the figure that when the value of M is larger, the beam mode gain is larger. This shows that the performance of radar detection purposes can be improved by increasing the number of units of the omnidirectional smart metasurface.
- the present invention compares the beam pattern gain of different algorithms as a function of detection angle.
- the comm-only method is a comparative method, which means that only communication signals are used to detect radar targets, that is, the base station only transmits the beamforming vector w and has no radar covariance matrix R 0 .
- the solution method for the transmit beamforming vector, reflection and transmission beamforming vectors in the comm-only method still adopts the transmit beamforming vector solution method proposed by the present invention. It can be seen from the figure that the method provided by the present invention is better than the comm-only algorithm, and has a relatively obvious gain improvement in the target angle direction, while in the non-target angle direction, the gain leakage is less.
- the present application provides a computer storage medium and a corresponding data processing unit, wherein the computer storage medium can store a computer program, and when executed by the data processing unit, the computer program can run an omnidirectional intelligence-based method provided by the present invention. Summary of the invention of metasurface communication and radar target detection methods and some or all steps in each embodiment.
- the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM) or a random access memory (RAM), etc.
- the technical solutions in the embodiments of the present invention can be implemented by means of computer programs and their corresponding general hardware platforms. Based on this understanding, the technical solutions in the embodiments of the present invention are essentially or the parts that contribute to the existing technology can be embodied in the form of a computer program, that is, a software product.
- the computer program software product can be stored in a storage medium, It includes several instructions to cause a device including a data processing unit (which can be a personal computer, server, microcontroller, MUU or network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments of the present invention.
- a data processing unit which can be a personal computer, server, microcontroller, MUU or network device, etc.
- the present invention provides a communication and radar target detection method based on omnidirectional intelligent metasurfaces. There are many methods and ways to specifically implement this technical solution. The above are only specific embodiments of the present invention. It should be pointed out that for this technical field, Those of ordinary skill can make several improvements and modifications without departing from the principles of the present invention, and these improvements and modifications should also be regarded as the protection scope of the present invention. All components not specified in this embodiment can be implemented using existing technologies.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种基于全向智能超表面的通信和雷达目标检测方法,包括:步骤1,构建以最大化最小波束模式增益为优化目标的优化问题模型;通信系统为基于全向智能超表面的通信感知一体化系统;步骤2,对步骤1中构建的优化问题模型,设置约束条件;约束条件包括:用户最小速率约束、基站最大发射功率约束、全向智能超表面的幅度和相位约束;步骤3,对设置约束条件后的优化问题模型进行求解,得到最大化最小波束模式增益的优化方案。基于全向智能超表面的通信和雷达目标检测方法在保障通信用户服务质量的情况下,进一步提高检测雷达目标的能力,能够充分挖掘和利用系统有限的通信资源,实现系统性能的提升。
Description
本发明涉及一种通信系统设计方法,特别是一种基于全向智能超表面的通信和雷达目标检测方法。
随着信息技术的快速发展,移动通信、物联网、人工智能与大数据等技术深度融合,催生出了沉浸式业务、AI业务、数字孪生等一系新业务。这些新兴业务对6G网络提出了更高的要求,使得通信感知一体化成为6G技术与业务的主导趋势之一。IMT 2030(6G)推进组已将通信感知一体化技术视作未来6G的潜在技术之一。通信感知一体化技术将赋予6G网络无时不刻、无处不在地感知物理世界的能力,开启超越传统移动通信网络联接的应用空间。
与此同时,全向智能超表面作为一种新的智能超表面技术,被认为是解决未来无线通信网络所面临困难的最具前景的技术之一。全向智能超表面由大量无源单元组成,每个单元可独立的将入射信号分为两部分,即反射信号和透射信号。因而,全向智能超表面能够实现通信区域的360°全向覆盖。另外,通过合理的调节全向智能超表面的反射和透射系数,通信系统中的直达路径信号、反射和透射路径信号能够在接收端叠加,进而增加用户端的接收信号功率。目前,基于全向智能超表面的通信系统研究已经成为学术界的研究热点。基于此,本发明提出了一种基于全向智能超表面的通信和雷达目标检测方法,并以最大化最小波束模式增益为目标进行系统优化。
发明内容
发明目的:本发明在通信感知一体化系统中引入全向智能超表面,提供一种基于全向智能超表面的通信和雷达目标检测方法。该方法充分挖掘和利用系统有限的通信资源,设计高效的通信传输方案。
为了实现上述目的,本发明公开了一种基于全向智能超表面的通信和雷达目标检测方法包括以下步骤:
步骤1,构建以最大化最小波束模式增益为优化目标的优化问题模型;所述通信感知一体化系统是基于全向智能超表面的通信感知一体化系统;
步骤2,对步骤1中构建的优化问题模型,设置约束条件;约束条件包括:用户最小速率约束、基站最大发射功率约束、全向智能超表面的幅度和相位约束;
步骤3,对设置约束条件后的优化问题模型进行求解,得到最大化最小波束模式增益的优化方案。
步骤1中所述的基于全向智能超表面的通信感知一体化系统应用于下行通信链路中,基站在全向智能超表面的辅助下与用户进行通信并完成雷达目标检测。
步骤1中所述的全向智能超表面每个单元均具有同时反射和透射信号的功能。经单元反射后的信号称为反射信号,穿过单元的信号称为透射信号。全向智能超表面所覆盖的通信区域被分为两部分,即:反射区(反射信号所覆盖的区域)和透射区(透射信号所覆盖的区域)。
本发明步骤1中所述的优化问题模型如下:
其中,w∈C
N×1表示发射波束赋形向量,R
0∈C
N×N为了雷达信号的协方差矩阵,
和
分别为反射和透射波束赋形向量,
和
分别为全向智能超表面第m个单元的反射幅度和反射相位,
和
分别为全向智能超表面第m个单元的透射幅度和透射相位,
为波束模式增益,
为第q个待检测角度在全向智能超表面的导向矢量,θ
q为相对于全向智能超表面的第q个待检测角度,
为透射波束赋形矩阵,F∈C
M×N表示全向智能超表面与基站之间的信道,M为全向智能超表面单元总个数,N为基站配备的天线个数,Q为待检测角度总个数,Δ为载波波长与天线间距的比值,m∈{1,2,…,M},q∈{1,2,…,Q},C
N×1表示N维的复数列向量,C
M×N表示M×N维的复数矩阵。diag{·}表示将向量转换为对角矩阵,(·)
T和(·)
H分别表示向量的转置和共轭转置,e
j·表示复数的指数形式,sin(·)表示正弦函数。
本发明步骤2中所述的约束条件包括:
约束条件1:R≥R
min
约束条件2:||w||
2+Tr(R
0)≤P
max
约束条件5:R
0≥0
其中,
为用户的数据传输速率,g∈C
M×1表示用户与全向智能超表面之间的信道,
为反射波束赋形矩阵,R
min为用户的最小速率,σ
2为加性高斯白噪声的方差,π为圆周率,||·||
2表示向量l
2范数的平方,Tr(·)表示矩阵的迹,|·|
2表示复数模的平方,P
max表示基站的最大发射功率,R
0≥0表示R
0为半正定矩阵。
约束条件1为用户最小速率约束,约束条件2为基站最大发射功率约束,约束条件3和约束条件4分别为全向智能超表面的幅度和相位约束;
本发明步骤3中所述的对设置约束条件后的优化问题模型进行求解,方法包括:
步骤3-4:令τ
0=τ
0+1;
步骤3-7:输出最大化最小波束模式增益的优化方案,即输出最优发射波束赋形向量w、雷达协方差矩阵R
0、反射波束赋形矩阵v
r和透射波束赋形矩阵v
t;
其中,V
r∈C
M×M和V
t∈C
M×M分别为反射波束赋形矩阵和透射波束赋形矩阵,W∈C
N×N为发射波束赋形矩阵,χ为引入的变量,用于将步骤1中的最大最小优化问题转化为最大化优化问题;
分别为第τ
0次迭代过程中W、R
0、V
r、V
t、χ对应的值。
本发明步骤3-2中所述的发射波束赋形矩阵和协方差矩阵的闭式解为:
其中,w=(h
H
Wh)
-1/2
Wh,h
H=g
HΘ
rF。
W∈C
N×N和
R
0
∈C
N×N为如下凸优化问题的最优解:
约束条件:Tr(W)+Tr(R
0)≤P
max
约束条件:R
0≥0,W≥0
步骤3-3中所述的反射和透射波束赋形向量联合优化算法,具体步骤如下:
步骤3-3-2:令迭代次数τ
1=0;
步骤3-3-5:令τ
1=τ
1+1;
其中,
和
分别为第τ
1次迭代过程中V
r和V
t对应的值,Ψ(V
r,V
t)=||V
r||
*-||V
r||
2+||V
t||
*-||V
t||
2为惩罚项,
||·||
*表示矩阵的核范数,||·||
2表示矩阵的谱范数。
本发明步骤3-3-4中所述的反射和透射波束赋形向量联合优化问题为:
约束条件:[V
r]
m,m+[V
t]
m,m=1,m∈{1,2,…,M}
约束条件:V
r≥0,V
t≥0
Γ=diag(g
H)FWF
Hdiag(g),
为Ψ(V
r,V
t)的近似值,V
r≥0和V
t≥0分别表示V
r和V
t为半正定矩阵;
和
分别为||V
r||
2和||V
t||
2在第τ
1次迭代过程中的一阶泰勒近似,定义如下:
本发明中,增加全向智能超表面单元总个数M,雷达目标检测性能提升。
本发明利用全向智能超表面提供360°全向通信覆盖,使得基站在全向智能超表的辅助下,能够同时实现通信和雷达目标检测的功能。通过对基站端的发射波束赋形向量、雷达信号的协方差矩阵、全向智能超表面的反射和透射波束赋形向量进行联合优化,在保障用户服务质量的情况下,提高通信感知一体化系统检测雷达目标的能力。
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。
图1是本发明实施例提供的一种基于全向智能超表面的通信和雷达目标检测方法的应用场景示意图。
图2是本发明实施例提供的一种基于全向智能超表面的通信和雷达目标检测方法的仿真示意图。
图3是本发明实施例中的全向智能超表面单元总个数取不同值时,波束模式增益随检测角度的变化示意图。
图4是本发明实施例提供的一种基于全向智能超表面的通信和雷达目标检测方法和现有技术的波束模式增益随检测角度的变化示意图。
下面结合附图及实施例对本发明进行详细说明。
本发明提供一种基于全向智能超表面的通信和雷达目标检测方法,应用于基于全向智能超表面的通信感知一体化系统,如图1所示,该系统包括一个基站、一个全向智能超表面、1个用户和L(L≥1)个雷达目标。其中,用户和雷达目标分别位于全向智能超表面的两侧。假设基站配有N(N>1)根天线、用户配有1根天线,全向智能超表面由M(M>1)个单元组成。由于障碍物遮挡等原因,基站和用户之间无直连 链路,并且雷达目标在基站的非视距链路上,基站在全向智能超表面的辅助下与用户进行下行链路通信,并在全向智能超表面的辅助下完成目标检测功能。进一步,假设基站能够准确获得基站与用户、基站与全向智能超表面、用户与全向智能超表面之间的所有信道状态信息,并且雷达目标相对于全向智能超表面的角度是已知的。
全向智能超表面每个单元均具有同时反射和透射信号的能力。经单元反射后的信号称为反射信号,穿过单元的信号称为透射信号。全向智能超表面所覆盖的通信区域被分为两部分,即:反射区(反射信号所覆盖的区域)和透射区(透射信号所覆盖的区域)。如图1所示,其中用户分布在反射区,雷达目标分布在透射区。令
和
分别为全向智能超表面第m个单元的反射幅度和透射幅度,
和
分别为全向智能超表面第m个单元的反射相位和透射相位,其中幅度和相位满足如下约束:
π为圆周率。根据能量守恒定律,反射信号和透射信号的能量总和等于入射信号的能量,因此反射幅度和透射幅度还应满足如下约束:
令
表示反射波束赋形向量,
表示透射波束赋形向量,其中[·]
H表示向量的共轭转置,e
j·表示复数的指数形式。
为了同时实现通信和目标检测的功能,假设基站同时发射通信信号s和雷达信号s
0∈C
N×1,其中雷达信号s
0的均值为0,协方差矩阵为:
其中E(·)表示期望,C
N×1表示N维的复数列向量,C
N×N表示N×N维的复数矩阵。进一步假设雷达信号与通信信号相互独立。令w表示发射波束赋形向量,那么基站端的发射信号为:x=ws+s
0。基站的发射功率为:
其中||·||
2表示向量l
2范数的平方,Tr(·)表示矩阵的迹。假设基站的最大发射功率为P
max,可得如下总发射功率约束:||w||
2+Tr(R
0)≤P
max。
令F∈C
M×N表示全向智能超表面与基站之间的信道,g∈C
M×1表示用户与全向智能超表面之间的信道。用户接收到的信号为:
y=g
HΘ
rFws+g
HΘ
rFs
0+z 式(1)
由于雷达信号s
0是预先定义的,对于基站和用户来说是已知的。因此,假设用户能够在接收信号中取消雷达信号的干扰。那么,用户的速率R为:
其中,|·|
2表示复数模的平方。
下面讨论雷达目标检测问题,因为雷达目标在基站的非视距区域,因此这里采用全向智能超表面的虚拟视距链路进行目标检测。令α(θ)=[1,e
j2πΔsinθ,…,e
j2π(N-1)Δsinθ]
T为全向智能超表面的导向矢量,其中θ为相对于全向智能超表面的待检测角度,Δ为载波波长与天线间距的比值。那么,波束模式增益定义为:
假设有Q(Q≥L)个待检测角度,θ
q为相对于全向智能超表面的第q个待检测角度。在考虑用户最小速率约束、全向智能超表面的幅度和相位约束以及总发射功率约束的情况下,最大化最小波束模式增益的优化问题模型如下:
约束条件:R≥R
min 式(4.b)
约束条件:||w||
2+Tr(R
0)≤P
max 式(4.c)
约束条件:R
0≥0 式(4.f)
其中,R
min为用户的最小速率,P
max为基站的最大发射功率,R
0≥0表示R
0半正定矩阵,m∈{1,2,…,M}。约束条件(4.b)为用户最小速率约束,约束条件(4.c)为基站最大发射功率约束,约束条件(4.d)和(4.e)分别为全向智能超表面的幅度和相位约束;
引入变量χ>0,用于将最大最小优化问题(4)转化为最大化优化问题。那么,优化问题(4)等效为如下优化问题:
约束条件:(4.b)、(4.c)、(4.d)、(4.e)、(4.f) 式(5.c)
根据交替优化算法,优化问题(5)的解可通过交替求解如下两个子优化问题得到:
约束条件:式(4.b)、式(4.c)、式(4.f)、式(5.b) 式(6.b)
约束条件:式(4.b)、式(4.d)、式(4.e)、式(5.b) 式(7.b)
其中,子优化问题(6)为发射波束赋形向量和雷达协方差矩阵联合优化问题,子优化问题(7)为反射和透射波束赋形向量联合优化问题。
下面给出求解子优化问题(6)和子优化问题(7)的算法。
一、求解子优化问题(6)
令W=ww
H∈C
N×N为发射波束赋形矩阵,并且满足rank(W)=1,其中rank(·)表示矩阵的秩。式(5.b)中的波束模式增益可以改写为:
求解子优化问题(6)可等效于求解如下半正定优化问题:
约束条件:Tr(W)+Tr(R
0)≤P
max 式(8.d)
约束条件:R
0≥0,W≥0 式(8.e)
约束条件:rank(W)=1 式(8.f)
因为约束条件(8.f)为非凸的,所以优化问题(8)是非凸的。为了解决该问题,可先将约束条件(8.f)去掉,进而得到如下松弛半正定优化问题:
约束条件:式(8.b)、式(8.c)、式(8.d)、式(8.e) 式(9.b)
显然,优化问题(9)是凸优化问题。令
W∈C
N×N和
R
0
∈C
N×N为优化问题(9)的最优解,通常
W的秩不为1。下面利用优化问题(9)的最优解来构造优化问题(8)的最优解。
定理1:令W和R
0为优化问题(8)的最优解,那么发射波束赋形矩阵W和协方差矩阵R
0可通过如下闭式解得到:
其中,w=(h
H
Wh)
-1/2
Wh。
证明:由式(10)可得:W+R
0=
W+
R
0
,进而可得下式成立:
式(11)说明W和R
0满足约束条件(8.b)。另外,W和R
0也满足约束条件(8.d)。
对于任意的列向量a∈C
N×1,下式恒成立:
根据Cauchy-Schwarz(柯西—施瓦茨)不等式,可知:(a
H
Wa)(h
H
Wh)≥|a
H
Wh|
2。结合式(12)可得如下不等式:a
H(
W-W)a≥0,因此
W-W≥0。又因为
W≥0和
R
0
≥0,所以R
0≥0。进而可知W和R
0也满足约束条件(8.e)。
综上所述,W和R
0是优化问题(8)的最优解。
二、求解子优化问题(7)
其中,γ
q=diag(α
H(θ
q))F(W+R
0)F
Hdiag(α(θ
q))。
子优化问题(7)等效于如下优化问题:
约束条件:[V
r]
m,m+[V
t]
m,m=1,m∈{1,2,…,M} 式(14.d)
约束条件:V
r≥0,V
t≥0 式(14.e)
约束条件:rank(V
r)=1,rank(V
t)=1 式(14.f)
其中Γ=diag(g
H)FWF
Hdiag(g),V
r≥0和V
t≥0分别表示V
r和V
t为半正定矩阵。
由于约束条件(14.f)是非凸的,优化问题(14)是非凸优化问题。为了处理非凸的秩1约束问题,可在目标函数中引入惩罚项。该惩罚项定义为:
Ψ(V
r,V
t)=||V
r||
*-||V
r||
2+||V
t||
*-||V
t||
2 式(15.f)
其中,||·||
*表示矩阵的核范数,||·||
2表示矩阵的谱范数。
那么,求解优化问题(14)等效于求解如下优化问题:
约束条件:式(14.b)、式(14.c)、式(14.d)、式(14.e) 式(16.b)
其中,η>>1为惩罚系数,用于惩罚Ψ(V
r,V
t)>0。由于惩罚项中的||V
r||
2和||V
t||
2是非凸的,因此优化问题(16)仍然是非凸的,可采用一阶泰勒近似来解决该问题。在第τ
1次迭代过程中,定义如下替代函数:
那么,在第τ
1次迭代中,惩罚项近似为:
根据上述分析,求解优化问题(16)转化为迭代求解如下凸优化问题:
约束条件:式(14.b)、式(14.c)、式(14.d)、式(14.e) 式(20.b)
综上所述,本发明提出的反射和透射波束赋形向量联合优化算法的具体步骤如下:
步骤2:令迭代次数τ
1=0;
步骤5:令τ
1=τ
1+1;
三、交替优化算法求解原优化问题(4)
原优化问题(4)的解,可通过交替的求解子优化问题(7)和子优化问题(8)得到。根据上述分析,本发明提出的求解原优化问题(4)的交替优化算法的具体步骤如下:
步骤4:令τ
0=τ
0+1;
步骤7:输出最大化最小波束模式增益的优化方案,即输出最优发射波束赋形向量w、雷达协方差矩阵R0、反射波束赋形矩阵v
r和透射波束赋形矩阵v
t;
仿真示例
下面对本发明进行仿真,并分析其性能。基站、全向智能超表面、用户和雷达目标的坐标位置如图2所示,其中雷达目标总个数L=2,角度分别为:θ
1=-40°和θ
2=40°。令∏表示波束模式宽度,并设为∏=10°。那么,两个雷达目标的待检测角度范围分别为:
和
令
表示理想波束模式增益,
可定义为:
进一步,将角度范围[-90°,90°]离散化,即平均分为100份。待检测角度个数Q为待检测角度范围Q
1和Q
2离散化后所包含的角度总个数。 另外,假设基站的天线数N=10,基站的最大发射功率P
max=30dBm,用户的最小速率Rmin=0.5bits/s/Hz,噪声功率σ
2=-90dBm。所涉及的信道均采用莱斯信道进行建模,并假设信道衰落指数为2.2,单位距离的信道衰落为30dBm。通过本实施例对设置约束条件后的优化问题模型进行求解,得到最大化最小波束模式增益的优化方案,获得最优发射波束赋形向量w、雷达协方差矩阵R
0、反射波束赋形向量v
r和透射波束赋形向量v
t,即当基站发射的发射信号的发射波束赋形向量为w,雷达信号的均值为0,雷达协方差矩阵为R
0,全向智能超表面的反射波束赋形向量为v
r和透射波束赋形向量为v
t时,本实施例提供的方法能够在保证基站与用户通信QoS(Quality of Service,服务质量)的前提下实现雷达目标检测。
如图3所示,本实施例提供的方法在待检测角度范围Q
1和Q
2范围内,波束模式增益大于其他角度的波束模式增益,说明本实施例能够检测到雷达目标;且在θ
1=-40°和θ
2=40°时,最小波束模式增益最大,说明雷达目标在这两个角度,与实际相符。图3中,本实施例比较了全向智能超表面单元总个数M取不同值时,波束模式增益随检测角度的变化。从图中可以看出M取值较大时,波束模式增益较大。这表明,能够通过增加全向智能超表面的单元个数提高雷达检测目的性能。
如图4所示,本发明比较了不同算法的波束模式增益随检测角度的变化。其中,comm-only方法为对比方法,表示仅用通信信号来检测雷达目标,即基站端仅有发射波束赋形向量w,无雷达协方差矩阵R
0。comm-only方法中发射波束赋形向量、反射和透射波束赋形向量的求解方法仍然采用本发明提出的发射波束赋形向量求解方法。从图中可以看出,本发明提供的方法优于comm-only算法,在目标角度方向有比较明显的增益提升,而在非目标角度方向,增益泄露较少。
具体实现中,本申请提供计算机存储介质以及对应的数据处理单元,其中,该计算机存储介质能够存储计算机程序,所述计算机程序通过数据处理单元执行时可运行本发明提供的一种基于全向智能超表面的通信和雷达目标检测方法的发明内容以及各实施例中的部分或全部步骤。所述的存储介质可为磁碟、光盘、只读存储记忆体 (read-only memory,ROM)或随机存储记忆体(random access memory,RAM)等。
本领域的技术人员可以清楚地了解到本发明实施例中的技术方案可借助计算机程序以及其对应的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机程序即软件产品的形式体现出来,该计算机程序软件产品可以存储在存储介质中,包括若干指令用以使得一台包含数据处理单元的设备(可以是个人计算机,服务器,单片机,MUU或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
本发明提供了一种基于全向智能超表面的通信和雷达目标检测方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。
Claims (10)
- 一种基于全向智能超表面的通信和雷达目标检测方法,其特征在于,应用于通信感知一体化系统,包括以下步骤:步骤1,构建以最大化最小波束模式增益为优化目标的优化问题模型;所述通信感知一体化系统是基于全向智能超表面的通信感知一体化系统;步骤2,对步骤1中构建的优化问题模型,设置约束条件;约束条件包括:用户最小速率约束、基站最大发射功率约束、全向智能超表面的幅度和相位约束;步骤3,对设置约束条件后的优化问题模型进行求解,得到最大化最小波束模式增益的优化方案,从而实现通信和雷达目标检测。
- 根据权利要求1所述的一种基于全向智能超表面的通信和雷达目标检测方法,其特征在于,步骤1中所述的基于全向智能超表面的通信感知一体化系统应用于下行通信链路中,基站在全向智能超表面的辅助下与用户进行通信并完成雷达目标检测。
- 根据权利要求2所述的一种基于全向智能超表面的通信和雷达目标检测方法,其特征在于,步骤1中所述的全向智能超表面每个单元均具有同时反射和透射信号的功能,经单元反射后的信号称为反射信号,穿过单元的信号称为透射信号;全向智能超表面所覆盖的通信区域被分为两部分,即:反射区和透射区。
- 根据权利要求3所述的一种基于全向智能超表面的通信和雷达目标检测方法,其特征在于,步骤1中所述的优化问题模型如下:其中,w∈C N×1表示发射波束赋形向量,R 0∈C N×N为雷达信号的协方差矩阵, 和 分别为反射和透射波束赋形向量, 和 分别为全向智能超表面第m个单元的反射幅度和反射相位, 和 分别为全向智能超表面第m个单元的透射幅度和透射相位, 为波束模式增益, 为第q个待检测角度在全向智能超表面的导向矢量,θ q为相对于全向智能超表面的第q个待检测角度, 为透射波束赋形矩阵,F∈C M×N表示全向智能超表面与基站之间的信道,M为全向智能超表面单元总个数,N 为基站配备的天线个数,Q为待检测角度总个数,Δ为载波波长与天线间距的比值,m∈{1,2,…,M},q∈{1,2,…,Q},C N×1表示N维的复数列向量,C M×N表示M×N维的复数矩阵;diag{·}表示将向量转换为对角矩阵,(·) T和(·) H分别表示向量的转置和共轭转置,e j·表示复数的指数形式,sin(·)表示正弦函数。
- 根据权利要求4所述的一种基于全向智能超表面的通信和雷达目标检测方法,其特征在于,步骤2中所述的约束条件包括:约束条件1:R≥R min约束条件2:||w|| 2+Tr(R 0)≤P max约束条件5:R 0≥0其中, 为用户的数据传输速率,g∈C M×1表示用户与全向智能超表面之间的信道, 为反射波束赋形矩阵,R min为用户的最小速率,σ 2为加性高斯白噪声的方差,π为圆周率,||·|| 2表示向量l 2范数的平方,Tr(·)表示矩阵的迹,|·| 2表示复数模的平方,P max表示基站的最大发射功率,R 0≥0表示R 0半正定矩阵;约束条件1为用户最小速率约束,约束条件2为基站最大发射功率约束,约束条件3和约束条件4分别为全向智能超表面的幅度和相位约束。
- 根据权利要求5所述的一种基于全向智能超表面的通信和雷达目标检测方法,其特征在于,步骤3中所述的对设置约束条件后的优化问题模型进行求解,包括:步骤3-4:令τ 0=τ 0+1;步骤3-7:输出最大化最小波束模式增益的优化方案,即输出最优发射波束赋形向量w、雷达协方差矩阵R 0、反射波束赋形矩阵v r和透射波束赋形矩阵v t;
- 根据权利要求7所述的一种基于全向智能超表面的通信和雷达目标检测方法,其特征在于,步骤3-3中所述的反射和透射波束赋形向量联合优化算法,步骤如下:步骤3-3-2:令迭代次数τ 1=0;步骤3-3-5:令τ 1=τ 1+1;
- 根据权利要求8所述的一种基于全向智能超表面的通信和雷达目标检测方法,其特征在于,步骤3-3-4中所述的反射和透射波束赋形向量联合优化问题为:约束条件:[V r] m,m+[V t] m,m=1,m∈{1,2,…,M}约束条件:V r≥0,V t≥0Γ=diag(g H)FWF Hdiag(g), 为Ψ(V r,V t)的近似值,V r≥0和V t≥0分别表示V r和V t为半正定矩阵; 和 分别为||V r|| 2和||V t|| 2在第τ 1次迭代过程中的一阶泰勒近似,定义如下:
- 根据权利要求9所述的一种基于全向智能超表面的通信和雷达目标检测方法,其特征在于,增加全向智能超表面单元总个数M,雷达目标检测性能提升。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/578,071 US20240333340A1 (en) | 2022-06-30 | 2022-07-28 | Communication and radar target detection method based on intelligent omni-surface |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210767251.7A CN115334524B (zh) | 2022-06-30 | 2022-06-30 | 一种基于全向智能超表面的通信和雷达目标检测方法 |
CN202210767251.7 | 2022-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024000718A1 true WO2024000718A1 (zh) | 2024-01-04 |
Family
ID=83917560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/108545 WO2024000718A1 (zh) | 2022-06-30 | 2022-07-28 | 一种基于全向智能超表面的通信和雷达目标检测方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240333340A1 (zh) |
CN (1) | CN115334524B (zh) |
WO (1) | WO2024000718A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118714615A (zh) * | 2024-08-29 | 2024-09-27 | 西安交通大学 | 一种物联网用户同时任务卸载和通信的方法、装置和设备 |
CN118764841A (zh) * | 2024-09-05 | 2024-10-11 | 西安电子科技大学 | 一种面向城市应急场景的无人机赋能通信网络保障方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116505995B (zh) * | 2023-06-30 | 2023-11-03 | 深圳市大数据研究院 | 波形设计方法、通信感知计算一体化系统及相关装置 |
CN119203622B (zh) * | 2024-11-28 | 2025-02-14 | 南京理工大学 | 基于秩一矩阵优化的唯相阵列宽主瓣发射功率方向图合成方法 |
CN119442704B (zh) * | 2025-01-08 | 2025-03-14 | 电子科技大学 | 一种小规模相控阵低仰角扫描增益轴比联合优化方法、装置及介质 |
CN119921886A (zh) * | 2025-04-01 | 2025-05-02 | 华东交通大学 | 一种基于智能反射面的隐蔽通信感知一体化系统设计方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100919615B1 (ko) * | 2008-07-30 | 2009-09-29 | 주식회사 상상돔 | 물체감지센서와 다국어 폰트라이브러리를 이용한 지능형레이저 마킹 시스템 |
CN104303428A (zh) * | 2012-03-02 | 2015-01-21 | 三星电子株式会社 | 用于控制无线通信系统中的自适应波束成形增益的装置和方法 |
CN110460556A (zh) * | 2019-08-23 | 2019-11-15 | 电子科技大学 | 正交多载波系统无线数据与能量一体化传输信号设计方法 |
CN110535518A (zh) * | 2019-07-24 | 2019-12-03 | 西安交通大学 | 一种宽波束发射波束形成优化设计方法 |
CN112889225A (zh) * | 2018-10-17 | 2021-06-01 | 诺基亚通信公司 | 基于定位似然性的波束形成器优化 |
CN114337765A (zh) * | 2022-01-13 | 2022-04-12 | 中国人民解放军国防科技大学 | 一种非理想信道状态信息下基于智能反射面的无线抗干扰和抗截获通信方法 |
CN114666815A (zh) * | 2022-02-18 | 2022-06-24 | 中通服咨询设计研究院有限公司 | 一种基于全向智能超表面的通信系统设计方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105789877B (zh) * | 2016-05-11 | 2018-06-08 | 中国人民解放军空军工程大学 | 基于超表面的四波束微带透射阵天线及其设计方法 |
CN106099384A (zh) * | 2016-08-04 | 2016-11-09 | 中国人民解放军空军工程大学 | 一种双功能反射超表面的设计方法及应用 |
CN108649336B (zh) * | 2018-05-17 | 2019-10-25 | 西安电子科技大学 | 一种双反射单透射的三波束夹角超表面天线 |
CN109037956B (zh) * | 2018-06-07 | 2021-01-05 | 西安电子科技大学 | 一种具有波束汇聚功能的雷达隐身超表面系统、雷达 |
CN110248366B (zh) * | 2019-04-26 | 2023-04-18 | 中通服咨询设计研究院有限公司 | 一种基于终端移动速度的lte网络动态频率复用方法 |
KR102192234B1 (ko) * | 2019-10-28 | 2020-12-17 | 성균관대학교 산학협력단 | 지능형 반사 평면을 포함하는 무선 통신 시스템의 통신 방법 및 이를 위한 장치 |
CN111430936B (zh) * | 2020-03-23 | 2021-12-31 | 山西大学 | 一种基于超表面的5g mimo多波束天线 |
CN112929068B (zh) * | 2021-02-04 | 2022-06-10 | 重庆邮电大学 | 基于sdr的irs-noma系统波束赋形优化方法 |
CN113660017A (zh) * | 2021-09-16 | 2021-11-16 | 重庆邮电大学 | 一种irs辅助的双功能雷达通信系统的sinr最大化方法 |
-
2022
- 2022-06-30 CN CN202210767251.7A patent/CN115334524B/zh active Active
- 2022-07-28 US US18/578,071 patent/US20240333340A1/en active Pending
- 2022-07-28 WO PCT/CN2022/108545 patent/WO2024000718A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100919615B1 (ko) * | 2008-07-30 | 2009-09-29 | 주식회사 상상돔 | 물체감지센서와 다국어 폰트라이브러리를 이용한 지능형레이저 마킹 시스템 |
CN104303428A (zh) * | 2012-03-02 | 2015-01-21 | 三星电子株式会社 | 用于控制无线通信系统中的自适应波束成形增益的装置和方法 |
CN112889225A (zh) * | 2018-10-17 | 2021-06-01 | 诺基亚通信公司 | 基于定位似然性的波束形成器优化 |
CN110535518A (zh) * | 2019-07-24 | 2019-12-03 | 西安交通大学 | 一种宽波束发射波束形成优化设计方法 |
CN110460556A (zh) * | 2019-08-23 | 2019-11-15 | 电子科技大学 | 正交多载波系统无线数据与能量一体化传输信号设计方法 |
CN114337765A (zh) * | 2022-01-13 | 2022-04-12 | 中国人民解放军国防科技大学 | 一种非理想信道状态信息下基于智能反射面的无线抗干扰和抗截获通信方法 |
CN114666815A (zh) * | 2022-02-18 | 2022-06-24 | 中通服咨询设计研究院有限公司 | 一种基于全向智能超表面的通信系统设计方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118714615A (zh) * | 2024-08-29 | 2024-09-27 | 西安交通大学 | 一种物联网用户同时任务卸载和通信的方法、装置和设备 |
CN118764841A (zh) * | 2024-09-05 | 2024-10-11 | 西安电子科技大学 | 一种面向城市应急场景的无人机赋能通信网络保障方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240333340A1 (en) | 2024-10-03 |
CN115334524A (zh) | 2022-11-11 |
CN115334524B (zh) | 2024-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024000718A1 (zh) | 一种基于全向智能超表面的通信和雷达目标检测方法 | |
Liu et al. | Learning-based predictive beamforming for integrated sensing and communication in vehicular networks | |
Qi et al. | Integrating sensing, computing, and communication in 6G wireless networks: Design and optimization | |
Liu et al. | Dual-functional radar-communication waveform design: A symbol-level precoding approach | |
Huang et al. | MIMO radar aided mmWave time-varying channel estimation in MU-MIMO V2X communications | |
CN113765553B (zh) | 一种基于机器学习的多波束卫星通信系统鲁棒预编码方法 | |
CN113259836A (zh) | 一种irs辅助无人机通信网络联合优化方法 | |
CN117177253B (zh) | 一种智能超表面追踪与覆盖增强的方法及装置 | |
CN116094553A (zh) | 基于张量分解的车联网ris辅助注意力机制通信与感知方法 | |
CN118573236A (zh) | 一种star-ris辅助通感一体化传输系统的和速率优化方法 | |
Liu et al. | Predictive beamforming for integrated sensing and communication in vehicular networks: A deep learning approach | |
CN112994770B (zh) | 基于部分csi的ris辅助多用户下行鲁棒无线传输方法 | |
CN116600314A (zh) | 一种高铁毫米波通信系统的通信控制方法及系统 | |
Huang et al. | Self-attention reinforcement learning for multi-beam combining in mmWave 3D-MIMO systems | |
CN114598363B (zh) | 一种面向3d空间无线信道的大规模mimo安全预编码方法 | |
Idrees et al. | Joint active and passive beamforming for IRS-assisted monostatic backscatter systems: An unsupervised learning approach | |
Sankar et al. | Learning to precode for integrated sensing and communication systems | |
CN118400005B (zh) | 无人机使能通感一体化网络中的联合波形设计方法及装置 | |
Zhang et al. | Digital-twin-enabled sensing channel estimation for 6g cell-free isac mimo system | |
Hu et al. | Location prediction using Bayesian optimization LSTM for RIS-assisted wireless communications | |
CN118611731A (zh) | 一种基于空中智能反射面辅助的多时隙安全通感一体化方法 | |
Shao et al. | Hybrid Near-Far Field 6D Movable Antenna Design Exploiting Directional Sparsity and Deep Learning | |
Gao et al. | Research on joint beamforming of high-speed railway millimeter-wave MIMO communication with reconfigurable intelligent surface | |
CN116032330A (zh) | 一种ris辅助mimo系统的波束训练优化方法、系统及设备 | |
Cui et al. | Hybrid precoding for millimetre wave MIMO systems based on particle swarm optimisation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 18578071 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22948813 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22948813 Country of ref document: EP Kind code of ref document: A1 |