WO2024000469A1 - Schemes on gnss validity duration extension in iot ntn - Google Patents

Schemes on gnss validity duration extension in iot ntn Download PDF

Info

Publication number
WO2024000469A1
WO2024000469A1 PCT/CN2022/102977 CN2022102977W WO2024000469A1 WO 2024000469 A1 WO2024000469 A1 WO 2024000469A1 CN 2022102977 W CN2022102977 W CN 2022102977W WO 2024000469 A1 WO2024000469 A1 WO 2024000469A1
Authority
WO
WIPO (PCT)
Prior art keywords
gnss
information
measurement
status
validity duration
Prior art date
Application number
PCT/CN2022/102977
Other languages
French (fr)
Inventor
Wen Tang
Gilles Charbit
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Priority to PCT/CN2022/102977 priority Critical patent/WO2024000469A1/en
Priority to PCT/CN2023/098482 priority patent/WO2024001686A1/en
Publication of WO2024000469A1 publication Critical patent/WO2024000469A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus about time and frequency correction enhancements and GNSS validity duration extension in IoT NTN.
  • NTN Non-Terrestrial Network
  • UE needs to do pre-compensation of time delay and frequency offset based on UE GNSS and ephemeris related parameters.
  • hot start requires about 1 ⁇ 2 seconds
  • warm start requires several seconds
  • cold start requires about 30 seconds.
  • the power consumption and throughput decrease for UE is enormous when UE needs to operate GNSS position fix in connected.
  • the invention designs schemes to do time and frequency correction enhancements and GNSS validity duration extension, to ensure decreased frequency for GNSS fix, so that save UE power consumption.
  • a method, a computer-readable medium, and an apparatus are provided.
  • the apparatus may be a UE.
  • the UE receives the first information to do uplink time and frequency correction.
  • the first information indicates time and /or frequency correction information.
  • the UE determines GNSS status and reports GNSS status periodically or event trigged.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • Figure 1 is a diagram illustrating an example of the first information indication between UE and network.
  • UE GNSS is necessary for time and frequency synchronization.
  • the method proposed in 3GPP R17 to do GNSS position fix is that UE needs to have a valid GNSS fix before going to connected and when the GNSS fix becomes outdated in RRC_CONNECTED mode, the UE goes to IDLE mode.
  • IoT NTN UE may need to re-acquire a valid GNSS position fix in long connection time.
  • UE in RRC-connected state will need a new GNSS position fix in order to accommodate the accumulated time and frequency errors to reduce the possible radio link failure.
  • UEs especially with high speed may need frequent GNSS position fix during long-term connections, which will introduce large power consumption.
  • This invention is motivated by, but not limited to, an IoT NTN scenario.
  • it is beneficial to obtain GNSS validity duration extension and decrease frequency for GNSS position fix with time and frequency correction enhancements, so that save UE power consumption and needs to design the scheme to make network and UE have same understanding of updated GNSS validity duration, to ensure the normal operation of NTN system.
  • NTN refers to a network that uses radio frequency and information processing resources carried on high, medium and low orbit satellites or other high-altitude communication platforms to provide communication services for UEs.
  • the transparent payload mode means that the satellite will not process the signal and waveform in the communication service, but only forward the data as an RF amplifier.
  • Regenerative payload mode refers to the satellite, besides RF amplification, also has the processing capabilities of modulation/demodulation, coding/decoding, switching, routing and so on.
  • UE In order to ensure the normal operation of IoT NTN system, UE needs to do pre-compensation of time delay and frequency offset based on UE GNSS and ephemeris related parameters.
  • 3GPP R17 for short sporadic transmission, the GNSS acquire and GNSS validity duration reported has been discussed and relevant agreements have been obtained.
  • UE in RRC-connected state may need a new GNSS position fix in order to accommodate the accumulated time and frequency errors to reduce the possible radio link failure.
  • UEs especially with high speed may need frequent GNSS position fix during long-term connections, which will introduce large power consumption.
  • the impact of GNSS operation to IoT devices’ battery lives will be also quite different. For worst cases, the battery life of an IoT device will reduce from more than ten years to less than one year.
  • the GNSS validity duration reported by UE is mainly evaluated by its speed and RAN4 requirement on TA error.
  • close loop time correction which is an agreed operation, can partially compensate the TA error caused by UE’s movement.
  • the actual validity duration of GNSS position fix can be longer than the one reported by UE without considering close loop time correction. With more correction on time and frequency, less GNSS position fix is needed.
  • UE can receive closed loop time and frequency correction
  • ⁇ the closed loop frequency correction can be indicated with MAC CE or RRC signaling.
  • the unit of the value (corresponding to closed loop frequency correction) is 100Hz or 50Hz.
  • the range of the value (corresponding to closed loop frequency correction) is -1500Hz to +1500Hz.
  • UE can report GNSS status (periodic report/event trigger) .
  • GNSS status is 00
  • trigger GNSS measurement request the scheduling gap from network to do GNSS measurement
  • the length for GNSS measurement is less than X seconds, where X is predefined value or reported GNSS position fix measurement length (which means the length for GNSS measurement is shorter than the one reported) .
  • GNSS status is 01
  • trigger GNSS measurement (request the scheduling gap from network to do GNSS measurement) and the length for GNSS measurement is more than X seconds, where X is predefined value or reported GNSS position fix measurement length (which means the length for GNSS measurement is more than the one reported) .
  • new valid GNSS remaining validity duration can be prolonged Ys compared to current valid remaining GNSS validity duration, where Y is predefined value.
  • new valid GNSS remaining validity duration can be prolonged Zs compared to current valid remaining GNSS validity duration, where Z is predefined value.
  • Network can configure a scheduling gap for UE to do GNSS measurement when received GNSS status is 00 or 01.
  • Network can know the updated remaining GNSS validity duration when received GNSS status is 10 or 11.
  • UE Based on the valid remaining GNSS validity duration, if it is longer than C_DRX periodicity duration, UE keeps same GNSS position fix without trigger a GNSS measurement to save power consumption; else, UE triggers new GNSS measurement.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods for obtaining GNSS validity duration extension and decrease frequency for GNSS fix with time and frequency correction enhancements, so that save UE power consumption and needs to design the scheme to make network and UE have same understanding of updated GNSS validity duration, to ensure the normal operation of IoT NTN system.

Description

SCHEMES ON GNSS VALIDITY DURATION EXTENSION IN IOT NTN FIELD
This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus about time and frequency correction enhancements and GNSS validity duration extension in IoT NTN.
BACKGROUND
In scenarios with large transmission delay, such as the IoT NTN, in order to obtain GNSS validity duration extension and decrease frequency for GNSS fix, so that increase throughput and save UE power consumption, time and frequency correction enhancements are effective solutions.
SUMMARY
In NTN (Non-Terrestrial Network) system, due to large time delay and Doppler frequency shift, UE needs to do pre-compensation of time delay and frequency offset based on UE GNSS and ephemeris related parameters. For GNSS position fix, hot start requires about 1~2 seconds, warm start requires several seconds, and cold start requires about 30 seconds. The power consumption and throughput decrease for UE is enormous when UE needs to operate GNSS position fix in connected. Based on this, considering the IoT NTN scenario, the invention designs schemes to do time and frequency correction enhancements and GNSS validity duration extension, to ensure decreased frequency for GNSS fix, so that save UE power consumption.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE. The UE receives the first information to do uplink time and frequency correction. The first information indicates time and /or frequency correction information. The UE determines GNSS status and reports GNSS status periodically or event trigged.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a diagram illustrating an example of the first information indication between UE and network.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may  be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described i the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
In scenarios with large transmission delay, such as NTN system, UE GNSS is necessary for time and frequency synchronization. At present, the method proposed in 3GPP R17 to do GNSS position fix is that UE needs to have a valid GNSS fix before going to connected and when the GNSS fix becomes outdated in RRC_CONNECTED mode, the UE goes to IDLE mode. However, in R18, there is conclusion that IoT NTN UE may need to re-acquire a valid GNSS position fix in long connection time. Depending on UE mobility, UE in RRC-connected state will need a new GNSS position fix in order to accommodate the accumulated time and frequency errors to reduce the possible radio link failure. UEs especially with high speed may need frequent GNSS position fix during long-term connections, which will introduce large power consumption.
This invention is motivated by, but not limited to, an IoT NTN scenario. In such a scenario, it is beneficial to obtain GNSS validity duration extension and decrease frequency for GNSS position fix with time and frequency correction enhancements, so that save UE power consumption and needs to design the scheme to make network and UE have same understanding of updated GNSS validity duration, to ensure the normal operation of NTN system.
NTN refers to a network that uses radio frequency and information processing resources carried on high, medium and low orbit satellites or other high-altitude communication platforms to provide communication services for UEs. According to the load capacity on the satellite, there are two typical scenarios: transparent payload and regenerative payload. The transparent payload mode means that the satellite will not process the signal and waveform in the communication service, but only forward the data as an RF amplifier. Regenerative payload mode refers to the satellite, besides RF amplification, also has the processing capabilities of modulation/demodulation, coding/decoding, switching, routing and so on.
In order to ensure the normal operation of IoT NTN system, UE needs to do pre-compensation of time delay and frequency offset based on UE GNSS and ephemeris related parameters. In 3GPP R17 for short sporadic transmission, the GNSS acquire and GNSS validity duration reported has been discussed and relevant agreements have been obtained.
Figure PCTCN2022102977-appb-000001
Figure PCTCN2022102977-appb-000002
In 3GPP R18 for long-term connection, the GNSS related discussion has been made and relevant agreements have been obtained in RAN1 109e.
Figure PCTCN2022102977-appb-000003
Depending on UE mobility, UE in RRC-connected state may need a new GNSS position fix in order to accommodate the accumulated time and frequency errors to reduce the possible radio link failure. UEs especially with high speed may need frequent GNSS position fix during long-term connections, which will introduce large power consumption. As the velocity of UE may differ in a wide range, the impact of GNSS operation to IoT devices’ battery lives will be also quite different. For worst cases, the battery life of an IoT device will reduce from more than ten years to less than one year.
The GNSS validity duration reported by UE is mainly evaluated by its speed and RAN4 requirement on TA error. However, close loop time correction, which is an agreed operation, can partially compensate the TA error caused by UE’s movement. The actual validity duration of GNSS position fix can be longer than the one reported by UE without considering close loop time correction. With more correction on time and frequency, less GNSS position fix is needed.
Hence, further scheme design needs to be carried out to obtain GNSS validity duration extension and decrease frequency for GNSS fix with time and frequency correction enhancements, so that save UE power consumption and needs to design the scheme to make network and UE have same understanding of updated GNSS validity duration, to ensure the normal operation of IoT NTN system.
More specifically, we propose to consider the following alternatives for IoT NTN:
Alternative#1: time and frequency correction enhancements
UE can receive closed loop time and frequency correction
●in the legacy UL Compensation Gap (UCG) of length 40 ms.
●in new scheduling gap where the gap is scheduled for UE to re-acquire GNSS position fix
●the closed loop frequency correction can be indicated with MAC CE or RRC signaling.
Note 1: The unit of the value (corresponding to closed loop frequency correction) is 100Hz or 50Hz. The range of the value (corresponding to closed loop frequency correction) is -1500Hz to +1500Hz.
Alternative#2: GNSS validity duration extension
UE can report GNSS status (periodic report/event trigger) .
□ When GNSS status is 00, trigger GNSS measurement (request the scheduling gap from network to do GNSS measurement) and the length for GNSS measurement is less than X seconds, where X is predefined value or reported GNSS position fix measurement length (which means the length for GNSS measurement is shorter than the one reported) .
□ When GNSS status is 01, trigger GNSS measurement (request the scheduling gap from network to do GNSS measurement) and the length for GNSS measurement is more than X seconds, where X is predefined value or reported GNSS position fix measurement length (which means the length for GNSS measurement is more than the one reported) .
□ When GNSS status is 10, new valid GNSS remaining validity duration can be prolonged Ys compared to current valid remaining GNSS validity duration, where Y is predefined value.
□ When GNSS status is 11, new valid GNSS remaining validity duration can be prolonged Zs compared to current valid remaining GNSS validity duration, where Z is predefined value.
Network can configure a scheduling gap for UE to do GNSS measurement when received GNSS status is 00 or 01.
Network can know the updated remaining GNSS validity duration when received GNSS status is 10 or 11.
Alternative#3: UE operation for GNSS measurement during C_DRX off duration
Based on the valid remaining GNSS validity duration, if it is longer than C_DRX periodicity duration, UE keeps same GNSS position fix without trigger a GNSS measurement to save power consumption; else, UE triggers new GNSS measurement.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of  ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”

Claims (14)

  1. A method performed by a UE, comprising:
    receiving the first information;
    reporting GNSS status or reporting GNSS measurement request; and
    triggering GNSS measurement.
  2. The method of Claim 1, wherein the first information indicates closed loop time and frequency correction information, received in the legacy UL Compensation Gap (UCG) of length 40 ms, or received in the new scheduling gap where the gap is scheduled for UE to re-acquire GNSS position fix.
  3. The method of Claim 2, the first information for closed loop frequency correction is indicated with MAC CE, or the first information for closed loop frequency correction is indicated with RRC signaling, where the unit of the first information for closed loop frequency correction is at least 100Hz or 50Hz, and the range of the first information for closed loop frequency correction is -1500Hz to +1500Hz.
  4. The method of Claim 1, wherein GNSS status comprises at least one or more of the following:
    GNSS measurement triggering information,
    GNSS measurement length information, and
    new valid remaining GNSS validity duration information.
  5. The method of Claim 4, where GNSS status is M bits, corresponding to predefined information, where M is predefined value; when GNSS status is 2 bits, corresponding to predefined information with:
    if GNSS status is 00, trigger GNSS measurement and the length for GNSS measurement is less than X seconds, where X is predefined value or X is reported GNSS position fix measurement length,
    else if GNSS status is 01, trigger GNSS measurement and the length for GNSS measurement is more than X seconds, where X is predefined value or X is reported GNSS position fix measurement length,
    else if GNSS status is 10, new valid GNSS remaining validity duration can be prolonged Y seconds compared to current valid remaining GNSS validity duration, where Y is predefined value,
    else if GNSS status is 11, new valid GNSS remaining validity duration can be prolonged Z seconds compared to current valid remaining GNSS validity duration, where Z is predefined value.
  6. The method of Claim 1, wherein reporting GNSS status periodically, or reporting GNSS status event trigged: based on the valid remaining GNSS validity duration, if it is longer than C_DRX periodicity duration, UE keeps same GNSS position without trigger a GNSS measurement to save power consumption; else if it is not longer than C_DRX periodicity duration, UE triggers new GNSS measurement.
  7. The method of Claim 6, where UE triggers new GNSS measurement via reporting UE GNSS measurement request, where requesting the scheduling gap from network to make GNSS measurement.
  8. A method performed by network, comprising:
    transmitting the first information;
    receiving GNSS status or GNSS measurement request; and
    transmitting the scheduling gap for UE making GNSS measurement.
  9. The method of Claim 1, wherein the first information indicates closed loop time and frequency correction information, transmits in the legacy UL Compensation Gap (UCG) of length 40 ms, or transmits in the new scheduling gap where the gap is scheduled for UE to re-acquire GNSS position fix.
  10. The method of Claim 9, the first information for closed loop frequency correction is indicated with MAC CE, or the first information for closed loop frequency correction is indicated with RRC signaling, where the unit of the first information for closed loop frequency correction is at least 100Hz or 50Hz, and the range of the first information for closed loop frequency correction is -1500Hz to +1500Hz.
  11. The method of Claim 8, wherein GNSS status comprising at least one or more of the following:
    GNSS measurement triggering information,
    GNSS measurement length information,
    new valid remaining GNSS validity duration information.
  12. The method of Claim 11, where GNSS status is M bits, corresponding to predefined information, where M is predefined value; when GNSS status is 2 bits, corresponding to predefined information with:
    if GNSS status is 00, network configures a scheduling gap for UE to do GNSS measurement and the length for GNSS measurement is less than X seconds, where X is predefined value or X is reported GNSS position fix measurement length,
    else if GNSS status is 01, network configures a scheduling gap for UE to do GNSS measurement and the length for GNSS measurement is more than X seconds, where X is predefined value or X is reported GNSS position fix measurement length,
    else if GNSS status is 10, new valid GNSS remaining validity duration can be prolonged Y seconds compared to current valid remaining GNSS validity duration, where Y is predefined value,
    else if GNSS status is 11, new valid GNSS remaining validity duration can be prolonged Z seconds compared to current valid remaining GNSS validity duration, where Z is predefined value.
  13. The method of Claim 8, wherein receiving GNSS status periodically, or receiving GNSS status event trigged.
  14. The method of Claim 8, where network configures a scheduling gap for UE to do GNSS measurement: when receives GNSS measurement request.
PCT/CN2022/102977 2022-06-30 2022-06-30 Schemes on gnss validity duration extension in iot ntn WO2024000469A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/102977 WO2024000469A1 (en) 2022-06-30 2022-06-30 Schemes on gnss validity duration extension in iot ntn
PCT/CN2023/098482 WO2024001686A1 (en) 2022-06-30 2023-06-06 Time and frequency correction enhancements and gnss validity duration extension in iot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102977 WO2024000469A1 (en) 2022-06-30 2022-06-30 Schemes on gnss validity duration extension in iot ntn

Publications (1)

Publication Number Publication Date
WO2024000469A1 true WO2024000469A1 (en) 2024-01-04

Family

ID=89382804

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/102977 WO2024000469A1 (en) 2022-06-30 2022-06-30 Schemes on gnss validity duration extension in iot ntn
PCT/CN2023/098482 WO2024001686A1 (en) 2022-06-30 2023-06-06 Time and frequency correction enhancements and gnss validity duration extension in iot

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098482 WO2024001686A1 (en) 2022-06-30 2023-06-06 Time and frequency correction enhancements and gnss validity duration extension in iot

Country Status (1)

Country Link
WO (2) WO2024000469A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150289153A1 (en) * 2014-04-02 2015-10-08 Qualcomm Incorporated Method and apparatus for enhanced td-scdma to lte measurement reporting
US20160259061A1 (en) * 2015-03-06 2016-09-08 Gatekeeper Systems, Inc. Low-energy consumption location of movable objects
CN110178415A (en) * 2017-01-16 2019-08-27 康姆索利德有限责任公司 Low duty ratio transmission plan for NB IoT equipment
CN111294825A (en) * 2019-01-29 2020-06-16 展讯通信(上海)有限公司 Signal measurement control method and device, storage medium and terminal
US20210250885A1 (en) * 2020-02-10 2021-08-12 Mediatek Singapore Pte. Ltd. Method And Apparatus For Timing And Frequency Synchronization In Non-Terrestrial Network Communications
US20220132447A1 (en) * 2020-10-23 2022-04-28 Centre Of Excellence In Wireless Technology Methods and systems for uplink time synchronization in non-terrestrial networks based communication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113382440A (en) * 2020-03-10 2021-09-10 联发科技(新加坡)私人有限公司 User equipment timing advance reporting in non-terrestrial network communications
US20230134701A1 (en) * 2020-04-09 2023-05-04 Telefonaktiebolaget Lm Ericsson (Publ) Gnss data in non-terrestrial network system information

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150289153A1 (en) * 2014-04-02 2015-10-08 Qualcomm Incorporated Method and apparatus for enhanced td-scdma to lte measurement reporting
US20160259061A1 (en) * 2015-03-06 2016-09-08 Gatekeeper Systems, Inc. Low-energy consumption location of movable objects
CN110178415A (en) * 2017-01-16 2019-08-27 康姆索利德有限责任公司 Low duty ratio transmission plan for NB IoT equipment
CN111294825A (en) * 2019-01-29 2020-06-16 展讯通信(上海)有限公司 Signal measurement control method and device, storage medium and terminal
US20210250885A1 (en) * 2020-02-10 2021-08-12 Mediatek Singapore Pte. Ltd. Method And Apparatus For Timing And Frequency Synchronization In Non-Terrestrial Network Communications
US20220132447A1 (en) * 2020-10-23 2022-04-28 Centre Of Excellence In Wireless Technology Methods and systems for uplink time synchronization in non-terrestrial networks based communication

Also Published As

Publication number Publication date
WO2024001686A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
US20220232503A1 (en) Method of channel scheduling for narrowband internet of things in non-terrestrial network and user equipment using the same
US8130695B2 (en) Apparatus and an associated method for facilitating communications in a radio communication system that provides for data communications at multiple data rates
EP1863309B1 (en) Mobile terminal of cdma system, mobile communication method of cdma system, and communication quality estimating method
US20190104566A1 (en) RADIO ACCESS NETWORK NODE AND METHOD - TIME COORDINATED CELLS FOR EXTENDED DISCONTINUOUS RECEIVE (eDRX)
EP2086266A2 (en) Method of controlling transmit power of uplink channel
CN101512949A (en) Adaptive broadcast multicast systems in wireless communication networks
US10356583B2 (en) Management of wireless devices in limited radio coverage
US9054834B2 (en) Selection of transport format in wireless communication systems
CN115280734B (en) Method and related apparatus for operation in non-terrestrial networks
US11943706B2 (en) Selecting a non-terrestrial network based public land mobile network
EP3905798A1 (en) Update method and apparatus for timing advance
CN113225293B (en) Frequency offset precompensation indication method, terminal equipment and network side equipment
US20230039872A1 (en) Uplink Transmission Cancellation in Non-Terrestrial Networks
US20240121060A1 (en) Timing Advance Acquisition in Non-Terrestrial Networks
WO2024000469A1 (en) Schemes on gnss validity duration extension in iot ntn
US20090113268A1 (en) Joint channel code for data non-associated control signalling type
CN113615100B (en) Method and device for recovering beam failure of second cell, user equipment and network equipment
US20230388952A1 (en) Reporting Timing Advance Information in Non-Terrestrial Networks
CN113557770B (en) Wireless communication method, terminal equipment and network equipment
EP4160938A1 (en) User equipment and method for maintaining uplink (ul) synchronization in a non-terrestrial network (ntn)
WO2023205384A1 (en) Uplink transmission scheduling in non-terrestrial networks
WO2024000466A1 (en) Schemes on gnss position fix in connected in iot ntn
WO2024055148A1 (en) Schemes on ue reporting gnss related information in ntn
WO2024055152A1 (en) Conditions on triggering gnss position fix in ntn
US20240007992A1 (en) Schemes on gnss position fix in connected in iot ntn

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948572

Country of ref document: EP

Kind code of ref document: A1