WO2024001686A1 - Time and frequency correction enhancements and gnss validity duration extension in iot - Google Patents

Time and frequency correction enhancements and gnss validity duration extension in iot Download PDF

Info

Publication number
WO2024001686A1
WO2024001686A1 PCT/CN2023/098482 CN2023098482W WO2024001686A1 WO 2024001686 A1 WO2024001686 A1 WO 2024001686A1 CN 2023098482 W CN2023098482 W CN 2023098482W WO 2024001686 A1 WO2024001686 A1 WO 2024001686A1
Authority
WO
WIPO (PCT)
Prior art keywords
gnss
validity duration
value
network
measurement
Prior art date
Application number
PCT/CN2023/098482
Other languages
French (fr)
Inventor
Wen Tang
Gilles Charbit
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Publication of WO2024001686A1 publication Critical patent/WO2024001686A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • the present disclosure is generally related to wireless communications and, more particularly, to methods and apparatus for time and frequency correction enhancements and Global Navigation Satellite System (GNSS) validity duration extension in an Internet-of-Things (IoT) network.
  • GNSS Global Navigation Satellite System
  • NTN non-terrestrial network
  • a user equipment needs to perform pre-compensation of time delay and frequency offset based on UE GNSS and ephemeris related parameters.
  • GNSS position fix hot start requires about 1 ⁇ 2 seconds, warm start requires several seconds, and cold start requires about 30 seconds.
  • the power consumption and reduction in throughput for the UE tends to be enormous when the UE needs to carry out GNSS position fix in a connected mode.
  • IoT NTN scenarios there is a need for a solution of time and frequency correction enhancements and GNSS validity duration extension to achieve less frequent GNSS position fixes.
  • a UE may receive information to perform uplink (UL) time and frequency correction, with the received information including time and/or frequency correction information.
  • the UE may also determine GNSS status and report GNSS status either periodically or upon an event-based trigger.
  • a method may involve a UE communicating with a network including an Internet-of-Things (IoT) network.
  • the method may also involve the UE performing either or both of a time and frequency correction procedure and a GNSS validity duration extension procedure with the IoT network.
  • IoT Internet-of-Things
  • an apparatus may include a transceiver configured to communicate wirelessly and a processor coupled to the transceiver.
  • the processor may communicate, via the transceiver, with a network including an IoT network.
  • the processor may also perform, via the transceiver, either or both of a time and frequency correction procedure and a GNSS validity duration extension procedure with the IoT network.
  • radio access technologies such as IoT
  • the proposed concepts, schemes and any variation (s) /derivative (s) thereof may be implemented in, for and by other types of radio access technologies, networks and network topologies such as, for example and without limitation, 5 th Generation (5G) , New Radio (NR) , Long-Term Evolution (LTE) , LTE-Advanced, LTE-Advanced Pro, Wireless Fidelity (Wi-Fi) , non-terrestrial network (NTN) and any future-developed networking and communication technologies.
  • 5G 5 th Generation
  • NR New Radio
  • LTE Long-Term Evolution
  • LTE-Advanced LTE-Advanced
  • Wi-Fi Wireless Fidelity
  • NTN non-terrestrial network
  • FIG. 1 is a diagram of an example communication environment in which various proposed schemes in accordance with the present disclosure may be implemented.
  • FIG. 2 is a diagram of an example scenario under a proposed scheme in accordance with the present disclosure.
  • FIG. 3 is a diagram of an example scenario under a proposed scheme in accordance with the present disclosure.
  • FIG. 4 is a diagram of an example scenario under a proposed scheme in accordance with the present disclosure.
  • FIG. 5 is a diagram of an example scenario under a proposed scheme in accordance with the present disclosure.
  • FIG. 6 is a block diagram of an example communication system in which various proposed schemes in accordance with an implementation of the present disclosure.
  • FIG. 7 is a flowchart of an example process under a proposed scheme in accordance with an implementation of the present disclosure.
  • Implementations in accordance with the present disclosure relate to various techniques, methods, schemes and/or solutions pertaining to time and frequency correction enhancements and GNSS validity duration extension in an IoT NTN.
  • a number of possible solutions or schemes may be implemented separately or jointly. That is, although these possible solutions/schemes may be described below separately, two or more of these possible solutions/schemes may be implemented in one combination or another.
  • NTN refers to a network that uses radio frequency (RF) and information processing resources carried on high, medium and low orbit satellites or other high-altitude communication platforms to provide communication services for UEs.
  • RF radio frequency
  • the satellite According to the load capacity on the satellite, there are two typical scenarios, namely: transparent payload and regenerative payload.
  • transparent payload mode the satellite does not process the signal and waveform in the communication service but, rather, only forwards data as an RF amplifier.
  • the satellite other than RF amplification, also has the processing capabilities of modulation/demodulation, coding/decoding, switching, routing and so on.
  • FIG. 1 illustrates an example communication environment 100 in which various solutions and schemes in accordance with the present disclosure may be implemented.
  • FIG. 2 ⁇ FIG. 7 illustrate examples of implementation of various proposed schemes in communication environment 100 in accordance with the present disclosure. The following description of various proposed schemes is provided with reference to FIG. 1 ⁇ FIG. 7.
  • FIG. 1 illustrates an example communication environment 100 in which various solutions and schemes in accordance with the present disclosure may be implemented.
  • communication environment 100 may involve a UE 110 in wireless communication with a network 120 (e.g., a mobile network including a non-terrestrial network (NTN) and/or a terrestrial network (TN) ) via a terrestrial network node 125 (e.g., gNB, eNB, transmit-and-receive point (TRP) ) and/or a non-terrestrial network node 128 (e.g., satellite) .
  • NTN non-terrestrial network
  • TN terrestrial network
  • TRP transmit-and-receive point
  • a non-terrestrial network node 128 e.g., satellite
  • UE 110 may be an IoT device such as a narrowband IoT (NB-IoT) UE or an enhanced machine-type communication (eMTC) UE.
  • IoT device such as a narrowband IoT (NB-IoT) UE or an enhanced machine-type communication (eMTC) UE.
  • NB-IoT narrowband IoT
  • eMTC enhanced machine-type communication
  • network 120, terrestrial network node 125 and non-terrestrial network node 128 may implement various schemes pertaining to time and frequency correction enhancements and GNSS validity duration extension in an IoT NTN in accordance with the present disclosure, as described below. It is noteworthy that, while the various proposed schemes may be individually or separately described below, in actual implementations some or all of the proposed schemes may be utilized or otherwise implemented jointly. Of course, each of the proposed schemes may be utilized or otherwise implemented individually or separately.
  • UE 110 may need to have a valid GNSS position fix before entering a connected mode.
  • Msg 5 ⁇ 10s, 20s, 30s, 40s, 50s, 60s, 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, 60 min, 90 min, 120 min, infinity ⁇ .
  • UE 110 may enter an idle mode. Then, UE 110 may re-acquire the valid GNSS position fix (es) in the idle mode.
  • UE 110 may need to re-acquire a valid GNSS position fix when in the long connection time. For instance, UE 110 may re-acquire the valid GNSS position fix (es) in the RRC_connected mode. Moreover, UE 110 may report the new GNSS validity duration to network 120 via a medium access control (MAC) control element (CE) .
  • MAC medium access control
  • CE control element
  • GNSS position fix In general, in scenarios with large transmission delay such as in NTN systems, UE GNSS is necessary for time and frequency synchronization.
  • 3GPP 3 rd Generation Partnership Project
  • TS Technical Specification
  • a UE in RRC-connected state may need to perform a new GNSS position fix in order to accommodate accumulated time and frequency errors so as to minimize likelihood of possible radio link failure.
  • UEs especially those with high speed, typically need to frequently perform the GNSS position fix during long-term connections. Undesirably, this would result in large power consumption to the UE.
  • a UE e.g., UE 110 in an RRC-connected state may need a new GNSS position fix.
  • closed-loop time correction may partially compensate a timing advance (TA) error caused by movement of the UE.
  • TA timing advance
  • the actual validity duration of GNSS position fix may be longer than the one reported by the UE considering closed-loop time correction.
  • various proposed schemes in accordance with the present disclosure aim to extend GNSS validity duration to decrease the frequency of GNSS position fix with time and frequency correction enhancements.
  • the proposed schemes may increase throughput and decrease UE power consumption, while allowing network and UE to operate according to an updated GNSS validity duration, thereby ensuring the normal operation of the network system.
  • FIG. 2 illustrates an example scenario 200 under a proposed scheme in accordance with the present disclosure.
  • Scenario 200 may pertain to time and frequency correction enhancements.
  • network 120 may transmit closed-loop information to UE 110 on time and frequency correction in a scheduled time gap.
  • UE 110 may receive closed-loop information in the scheduled time gap.
  • UE 110 may perform time and frequency correction.
  • the gap may be scheduled for UE 110 to perform downlink (DL) synchronization and a length of the gap may be 40 milliseconds (40ms) .
  • the gap may be scheduled for UE 110 to perform synchronization for GNSS position fix.
  • the received information on time and frequency correction may be utilized by UE 110 to perform time and frequency correction to compensate a TA error and frequency error caused by movement of UE 110.
  • FIG. 3 illustrates an example scenario 300 under a proposed scheme in accordance with the present disclosure.
  • an actual validity duration of GNSS position fix may be longer than the one reported by UE 110 without considering closed-loop time correction.
  • UE 110 may determine its GNSS status and, based on a result of the determination, at 320, UE 110 may report the GNSS status to network 120 either periodically or upon an event-based trigger. As there may be different values in the GNSS status, at 330, UE 110 may perform different operations depending on the determined GNSS status.
  • GNSS measurement when GNSS status is a first value (e.g., 00) , GNSS measurement may be triggered and a length of the GNSS measurement may be less than X seconds.
  • X may be either a predefined value or a GNSS position fix time duration for measurement reported when UE 110 moves to an RRC-connected state.
  • GNSS status is a second value (e.g., 01)
  • GNSS measurement may be triggered and a length of the GNSS measurement may be more than X seconds.
  • X may be either a predefined value or a GNSS position fix time duration for measurement reported when UE 110 moves to the RRC-connected state.
  • GNSS status is a third value (e.g., 10)
  • a new remaining GNSS validity duration may be prolonged by Y seconds compared to a current remaining GNSS validity duration.
  • Y may be a predefined value or a configured value.
  • GNSS status is fourth value (e.g., 11)
  • Z may be a predefined value or a configured value and may be different than Y.
  • network 120 may configure a gap for UE 110 to perform the GNSS measurement.
  • the actual validity duration of GNSS may be longer than the one reported by UE 110 with consideration of closed-loop time correction.
  • FIG. 4 illustrates an example scenario 400 under a proposed scheme in accordance with the present disclosure.
  • network 120 may configure GNSS status for UE 110 and, at 420, network 120 may transmit information of the configured GNSS status to UE.
  • UE 110 may receive the configured GNSS status from network 120 either periodically or upon an event-based trigger.
  • GNSS status may include one or more of GNSS measurement trigger signaling information, GNSS measurement length information, and GNSS validity duration extension information (e.g., new remaining GNSS validity duration information) .
  • the GNSS measurement trigger signaling may be one bit. For instance, when a value of the bit is 0, UE 110 may be triggered to perform GNSS measurement. Conversely, when the value of the bit is 1, UE 110 may not be triggered to perform GNSS measurement.
  • the GNSS validity duration extension information may be one bit. For instance, when a value of the bit is 0, a new remaining GNSS validity duration may be prolonged by S seconds compared to a current remaining GNSS validity duration, with S being a predefined value or a configured value. Conversely, when the value of the bit is 1, the new remaining GNSS validity duration may be prolonged by Q seconds compared to the current remaining GNSS validity duration, with Q being a predefined value or a configured value.
  • the GNSS validity duration extension information may include multiple bits. Moreover, a remaining GNSS validity duration may be extended by a variable value compared to a current remaining GNSS validity duration.
  • the variable value may vary based on a value of the multiple bits.
  • P int (T) + 1.
  • the variable values can be mapped to the multiple bits based on a mapping relation, the mapping relation can be configured by the network or predefined. For example, an exemplary mapping relation can be illustrated as Table 1.
  • GNSS validity duration extension duration may be equal to a remaining duration of the time alignment timer (TimeAlignmentTimer) .
  • GNSS validity duration extension duration may be equal to a remaining duration of TimeAlignmentTimer + R.
  • R may be a GNSS validity duration extension offset, and R may be configured by network 120 via a radio resource control (RRC) signaling or MAC CE, or R may be a predefined value.
  • RRC radio resource control
  • FIG. 5 illustrates an example scenario 500 under a proposed scheme in accordance with the present disclosure.
  • UE 110 may determine its remaining GNSS validity duration and, at 520, UE 110 may take action (s) corresponding to the determined remaining GNSS validity duration. For instance, based on the remaining GNSS validity duration, UE 110 may keep the same GNSS position fix without triggering a GNSS measurement so as to save power consumption, in an event that the remaining GNSS validity duration is longer than a connected mode discontinuous reception (C_DRX) periodicity duration. Otherwise, in an event that the remaining GNSS validity duration is no longer than the C_DRX periodicity duration, UE 110 may trigger a new GNSS measurement during a C_DRX off duration.
  • C_DRX connected mode discontinuous reception
  • FIG. 6 illustrates an example communication system 600 having an example apparatus 610 and an example apparatus 620 in accordance with an implementation of the present disclosure.
  • apparatus 610 and apparatus 620 may perform various functions to implement schemes, techniques, processes and methods described herein pertaining to time and frequency correction enhancements and GNSS validity duration extension in an IoT NTN, including various schemes described herein.
  • Each of apparatus 610 and apparatus 620 may be a part of an electronic apparatus, which may be a UE such as a vehicle, a portable or mobile apparatus, a wearable apparatus, a wireless communication apparatus or a computing apparatus.
  • an electronic control unit ECU
  • each of apparatus 610 and apparatus 620 may be implemented in an electronic control unit (ECU) of a vehicle, a smartphone, a smartwatch, a personal digital assistant, a digital camera, or a computing equipment such as a tablet computer, a laptop computer or a notebook computer.
  • ECU electronice control unit
  • Each of apparatus 610 and apparatus 620 may also be a part of a machine type apparatus, which may be an IoT, NB-IoT or eMTC apparatus such as an immobile or a stationary apparatus, a home apparatus, a wire communication apparatus or a computing apparatus.
  • a machine type apparatus which may be an IoT, NB-IoT or eMTC apparatus such as an immobile or a stationary apparatus, a home apparatus, a wire communication apparatus or a computing apparatus.
  • each of apparatus 610 and apparatus 620 may be implemented in a smart thermostat, a smart fridge, a smart door lock, a wireless speaker or a home control center.
  • each of apparatus 610 and apparatus 620 may be implemented in the form of one or more integrated-circuit (IC) chips such as, for example and without limitation, one or more single-core processors, one or more multi-core processors, one or more reduced-instruction set computing (RISC) processors, or one or more complex-instruction-set-computing (CISC) processors.
  • IC integrated-circuit
  • RISC reduced-instruction set computing
  • CISC complex-instruction-set-computing
  • Each of apparatus 610 and apparatus 620 may include at least some of those components shown in FIG. 6 such as a processor 612 and a processor 622, respectively.
  • Each of apparatus 610 and apparatus 620 may further include one or more other components not pertinent to the proposed scheme of the present disclosure (e.g., internal power supply, display device and/or user interface device) , and, thus, such component (s) of each of apparatus 610 and apparatus 620 are neither shown in FIG. 6 nor described below in the interest of simplicity and brevity.
  • components not pertinent to the proposed scheme of the present disclosure e.g., internal power supply, display device and/or user interface device
  • At least one of apparatus 610 and apparatus 620 may be a part of an electronic apparatus, which may be a vehicle, a roadside unit (RSU) , network node or base station (e.g., eNB, gNB, TRP or satellite) , a small cell, a router or a gateway.
  • RSU roadside unit
  • network node or base station e.g., eNB, gNB, TRP or satellite
  • a small cell e.g., a router or a gateway.
  • at least one of apparatus 610 and apparatus 620 may be implemented in an IoT device in an NTN, an IoT NTN, an eNodeB in an LTE, LTE-Advanced or LTE-Advanced Pro network or in a gNB in a 5G, NR, IoT, NB-IoT network or eMTC network.
  • apparatus 610 and apparatus 620 may be implemented in the form of one or more IC chips such as, for example and without limitation, one or more single-core processors, one or more multi-core processors, one or more RISC processors, or one or more CISC processors.
  • each of processor 612 and processor 622 may be implemented in the form of one or more single-core processors, one or more multi-core processors, one or more RISC processors, or one or more CISC processors. That is, even though a singular term “aprocessor” is used herein to refer to processor 612 and processor 622, each of processor 612 and processor 622 may include multiple processors in some implementations and a single processor in other implementations in accordance with the present disclosure.
  • each of processor 612 and processor 622 may be implemented in the form of hardware (and, optionally, firmware) with electronic components including, for example and without limitation, one or more transistors, one or more diodes, one or more capacitors, one or more resistors, one or more inductors, one or more memristors and/or one or more varactors that are configured and arranged to achieve specific purposes in accordance with the present disclosure.
  • each of processor 612 and processor 622 is a special-purpose machine specifically designed, arranged and configured to perform specific tasks including time and frequency correction enhancements and GNSS validity duration extension in an IoT NTN in accordance with various implementations of the present disclosure.
  • apparatus 610 may also include a transceiver 616, as a communication device, coupled to processor 612 and capable of wirelessly transmitting and receiving data.
  • apparatus 610 may further include a memory (or storage medium, or computer-readable medium) 614 coupled to processor 612 and capable of being accessed by processor 612 and storing data therein.
  • apparatus 620 may also include a transceiver 626, as a communication device, coupled to processor 622 and capable of wirelessly transmitting and receiving data.
  • apparatus 620 may further include a memory (or storage medium, or computer-readable medium) 624 coupled to processor 622 and capable of being accessed by processor 622 and storing data therein. Accordingly, apparatus 610 and apparatus 620 may wirelessly communicate with each other via transceiver 616 and transceiver 626, respectively.
  • apparatus 610 is implemented in or as a wireless communication device
  • a communication apparatus or a UE e.g., UE 110 or an IoT device in communication environment 100
  • apparatus 620 implemented in or as a network node (e.g., terrestrial network node 125 or non-terrestrial network node 128 in communication environment 100) .
  • processor 612 of apparatus 610 may communicate, via transceiver 616, with a network including an IoT network (e.g., with network 120 via apparatus 620 as terrestrial network node 125 or non-terrestrial network node 128) .
  • processor 612 may perform, via transceiver 616, either or both of a time and frequency correction procedure and a GNSS validity duration extension procedure with the IoT network to obtain a decrease in a frequency of GNSS position fixes performed by the UE.
  • the time and frequency correction procedure may involve processor 612 receiving closed-loop information on time and frequency correction in a scheduled gap.
  • the gap may include a time gap scheduled for the UE to perform DL synchronization.
  • the gap may include another time gap scheduled for the UE to perform synchronization for the GNSS position fix.
  • an actual validity duration of the GNSS position fix may be longer than that reported by the UE without considering the closed-loop information.
  • the GNSS validity duration extension procedure may involve processor 612 performing the following: (i) determining GNSS status; and (ii) reporting the GNSS status to the network.
  • the GNSS status may indicate one or more of the following: (a) GNSS measurement trigger signaling information, (b) GNSS measurement length information, and (c) GNSS validity duration extension information.
  • processor 612 may report the GNSS status periodically or in response to an event-based trigger.
  • the GNSS validity duration extension procedure may further involve processor 612 performing certain operations.
  • processor 612 may perform one of the following: (i) responsive to the GNSS status having a first value (e.g., 00) , triggering a GNSS measurement with a length of the GNSS measurement less than a first predefined value or a GNSS position fix time duration for measurement reported when UE 110 moves to a RRC-connected state; (ii) responsive to the GNSS status having a second value (e.g., 01) , trigger the GNSS measurement with the length of the GNSS measurement larger than the first predefined value or the GNSS position fix time duration for measurement reported when UE 110 moves to the RRC-connected state; (iii) responsive to the GNSS status having a third value (e.g., 10) , prolonging a new remaining GNSS validity duration by a second predefined value or a first configured value compared to a current remaining GNSS validity duration; and (i) responsive to the
  • the GNSS validity duration extension procedure may involve processor 612 receiving a GNSS status from the network.
  • the GNSS status may be periodic or upon an event-based trigger.
  • the GNSS status may indicate one or more of: (a) GNSS measurement trigger signaling information, and (b) GNSS validity duration extension information.
  • processor 612 in response to the GNSS status triggering a GNSS measurement, processor 612 may also perform, via transceiver 616, the GNSS measurement in a gap which is configured by the network.
  • the GNSS measurement trigger signaling information may include one bit. Moreover, a GNSS measurement may be triggered in response to a value of the one bit being 0, and the GNSS measurement may not be triggered in response to the value of the one bit being 1. In other implementations, the opposite may be applicable.
  • the GNSS validity duration extension information may include one bit. Moreover, a remaining GNSS validity duration may be extended by a first predefined value or a first configured value compared to a current remaining GNSS validity duration in response to a value of the one bit being 0. The remaining GNSS validity duration may be extended by a second predefined value or a second configured value compared to the current remaining GNSS validity duration in response to the value of the one bit being 1. In other implementations, the opposite may be applicable.
  • the GNSS validity duration extension information may include multiple bits. Moreover, a remaining GNSS validity duration may be extended by a variable value compared to a current remaining GNSS validity duration.
  • the variable value is determined based on a mapping relation between the multiple bits of the GNSS validity duration extension information and multiple variable values, wherein the mapping relation is configured by the network or predefined. In another embodiment, the variable value is determined based on a predefined equation.
  • the GNSS validity duration extension procedure may involve processor 612 performing the following: (i) determining a remaining GNSS validity duration; and (ii) performing either of the following: (a) responsive to the remaining GNSS validity duration being longer than a C_DRX periodicity duration, keeping a current GNSS position fix without triggering a GNSS measurement; or (b) responsive to the remaining GNSS validity duration being not longer than the C_DRX periodicity duration, triggering a new GNSS measurement during a C_DRX off duration.
  • processor 612 may also transmit, via transceiver 616, to the network a signal with a new GNSS position.
  • FIG. 7 illustrates an example process 700 in accordance with an implementation of the present disclosure.
  • Process 700 may be an example implementation of the proposed schemes described above with respect to time and frequency correction enhancements and GNSS validity duration extension in an IoT in accordance with the present disclosure.
  • Process 700 may represent an aspect of implementation of features of apparatus 610 and apparatus 620.
  • Process 700 may include one or more operations, actions, or functions as illustrated by one or more of blocks 710 and 720. Although illustrated as discrete blocks, various blocks of process 700 may be divided into additional blocks, combined into fewer blocks, or eliminated, depending on the desired implementation. Moreover, the blocks of process 700 may executed in the order shown in FIG. 7 or, alternatively, in a different order. Process 700 may also be repeated partially or entirely.
  • Process 700 may be implemented by apparatus 610, apparatus 620 and/or any suitable wireless communication device, UE, RUS, base station or machine type devices. Solely for illustrative purposes and without limitation, process 700 is described below in the context of apparatus 610 as a UE (e.g., UE 110 or an IoT device in communication environment 100) and apparatus 620 as a network node (e.g., terrestrial network node 125 or non-terrestrial network node 128 in communication environment 100) . Process 700 may begin at block 710.
  • UE e.g., UE 110 or an IoT device in communication environment 100
  • apparatus 620 as a network node (e.g., terrestrial network node 125 or non-terrestrial network node 128 in communication environment 100) .
  • Process 700 may begin at block 710.
  • process 700 may involve processor 612 of apparatus 610, as a UE (e.g., UE 110) , communicating, via transceiver 616, with a network including an IoT network (e.g., with network 120 via apparatus 620 as terrestrial network node 125 or non-terrestrial network node 128) .
  • processor 612 of apparatus 610 as a UE (e.g., UE 110) , communicating, via transceiver 616, with a network including an IoT network (e.g., with network 120 via apparatus 620 as terrestrial network node 125 or non-terrestrial network node 128) .
  • IoT network e.g., with network 120 via apparatus 620 as terrestrial network node 125 or non-terrestrial network node 128, .
  • Process 700 may proceed from block 710 to block 720.
  • process 700 may involve processor 612 performing, via transceiver 616, either or both of a time and frequency correction procedure and a GNSS validity duration extension procedure with the IoT network to obtain a decrease in a frequency of GNSS position fixes performed by the UE.
  • the time and frequency correction procedure may involve processor 612 receiving closed-loop information on time and frequency correction in a scheduled gap.
  • the gap may include a time gap scheduled for the UE to perform DL synchronization.
  • the gap may include another time gap scheduled for the UE to perform synchronization for the GNSS position fix.
  • an actual validity duration of the GNSS position fix may be longer than that reported by the UE without considering the closed-loop information.
  • the GNSS validity duration extension procedure may involve processor 612 performing the following: (i) determining GNSS status; and (ii) reporting the GNSS status to the network.
  • the GNSS status may indicate one or more of the following: (a) GNSS measurement trigger signaling information, (b) GNSS measurement length information, and (c) GNSS validity duration extension information.
  • process 700 may involve processor 612 reporting the GNSS status periodically or in response to an event-based trigger.
  • the GNSS validity duration extension procedure may further involve processor 612 performing certain operations.
  • processor 612 may perform one of the following: (i) responsive to the GNSS status having a first value (e.g., 00) , triggering a GNSS measurement with a length of the GNSS measurement less than a first predefined value or a GNSS position fix time duration for measurement reported when UE 110 moves to a RRC-connected state; (ii) responsive to the GNSS status having a second value (e.g., 01) , trigger the GNSS measurement with the length of the GNSS measurement larger than the first predefined value or the GNSS position fix time duration for measurement reported when UE 110 moves to the RRC-connected state; (iii) responsive to the GNSS status having a third value (e.g., 10) , prolonging a new remaining GNSS validity duration by a second predefined value or a first configured value compared to a current remaining GNSS validity duration; and (i) responsive to the
  • process 700 may further involve processor 612 performing, via transceiver 616, the GNSS measurement in a gap which is configured by the network.
  • the GNSS validity duration extension procedure may involve processor 612 receiving a GNSS status from the network.
  • the GNSS status may be periodic or upon an event-based trigger.
  • the GNSS status may indicate one or more of: (a) GNSS measurement trigger signaling information, and (b) GNSS validity duration extension information.
  • the GNSS measurement trigger signaling information may include one bit. Moreover, a GNSS measurement may be triggered in response to a value of the one bit being 0, and the GNSS measurement may not be triggered in response to the value of the one bit being 1. In other implementations, the opposite may be applicable.
  • the GNSS validity duration extension information may include one bit. Moreover, a remaining GNSS validity duration may be extended by a first predefined value or a first configured value compared to a current remaining GNSS validity duration in response to a value of the one bit being 0. The remaining GNSS validity duration may be extended by a second predefined value or a second configured value compared to the current remaining GNSS validity duration in response to the value of the one bit being 1. In other implementations, the opposite may be applicable.
  • the GNSS validity duration extension information comprises multiple bits, wherein a remaining GNSS validity duration is extended by a variable value compared to a current remaining GNSS validity duration, wherein the variable value is determined based on a mapping relation between the multiple bits of the GNSS validity duration extension information and multiple variable values, wherein the mapping relation is configured by the network or predefined.
  • the variable value is determined based on a predefined equation.
  • the GNSS validity duration extension procedure may involve processor 612 performing the following: (i) determining a remaining GNSS validity duration; and (ii) performing either of the following: (a) responsive to the remaining GNSS validity duration being longer than a C_DRX periodicity duration, keeping a current GNSS position fix without triggering a GNSS measurement; or (b) responsive to the remaining GNSS validity duration being not longer than the C_DRX periodicity duration, triggering a new GNSS measurement during a C_DRX off duration.
  • process 700 may further involve processor 612 transmitting, via transceiver 616, to the network a signal with a new GNSS position.
  • any two components so associated can also be viewed as being “operably connected” , or “operably coupled” , to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable” , to each other to achieve the desired functionality.
  • operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.

Abstract

Various examples and schemes pertaining to time and frequency correction enhancements and Global Navigation Satellite System (GNSS) validity duration extension in an Internet-of-Things (IoT) are described. A user equipment (UE) communicates with a network including an IoT network. The UE performs either or both of a time and frequency correction procedure and a GNSS validity duration extension procedure with the IoT network to obtain a decrease in a frequency of a GNSS position fix performed by the UE.

Description

TIME AND FREQUENCY CORRECTION ENHANCEMENTS AND GNSS VALIDITY DURATION EXTENSION IN IOT
CROSS REFERENCE TO RELATED PATENT APPLICATION (S)
The present disclosure claims the priority benefit of PCT Application No. PCT/CN2022/102977, filed 30 June 2022. Contents of aforementioned applications are herein incorporated by reference in their entirety.
TECHNICAL FIELD
The present disclosure is generally related to wireless communications and, more particularly, to methods and apparatus for time and frequency correction enhancements and Global Navigation Satellite System (GNSS) validity duration extension in an Internet-of-Things (IoT) network.
BACKGROUND
Unless otherwise indicated herein, approaches described in this section are not prior art to the claims listed below and are not admitted as prior art by inclusion in this section.
In a non-terrestrial network (NTN) system, due to large time delay and Doppler frequency shift, a user equipment (UE) needs to perform pre-compensation of time delay and frequency offset based on UE GNSS and ephemeris related parameters. For GNSS position fix, hot start requires about 1~2 seconds, warm start requires several seconds, and cold start requires about 30 seconds. The power consumption and reduction in throughput for the UE tends to be enormous when the UE needs to carry out GNSS position fix in a connected mode. As such, considering IoT NTN scenarios, there is a need for a solution of time and frequency correction enhancements and GNSS validity duration extension to achieve less frequent GNSS position fixes.
SUMMARY
The following summary is illustrative only and is not intended to be limiting in any way. That is, the following summary is provided to introduce concepts, highlights, benefits and advantages of the novel and non-obvious techniques described herein. Selected implementations are further described below in the detailed description. Thus, the following summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.
The present disclosure proposes various schemes with respect to time and frequency correction enhancements and GNSS validity duration extension, so as to achieve less frequent GNSS position fixes, thereby increasing throughput and decreasing UE power consumption. For instance, under various proposed schemes, a UE may receive information to perform uplink (UL) time and frequency correction, with the received information including time and/or frequency  correction information. The UE may also determine GNSS status and report GNSS status either periodically or upon an event-based trigger.
In one aspect, a method may involve a UE communicating with a network including an Internet-of-Things (IoT) network. The method may also involve the UE performing either or both of a time and frequency correction procedure and a GNSS validity duration extension procedure with the IoT network.
In another aspect, an apparatus may include a transceiver configured to communicate wirelessly and a processor coupled to the transceiver. The processor may communicate, via the transceiver, with a network including an IoT network. The processor may also perform, via the transceiver, either or both of a time and frequency correction procedure and a GNSS validity duration extension procedure with the IoT network.
It is noteworthy that, although description provided herein may be in the context of certain radio access technologies, networks and network topologies such as IoT, the proposed concepts, schemes and any variation (s) /derivative (s) thereof may be implemented in, for and by other types of radio access technologies, networks and network topologies such as, for example and without limitation, 5th Generation (5G) , New Radio (NR) , Long-Term Evolution (LTE) , LTE-Advanced, LTE-Advanced Pro, Wireless Fidelity (Wi-Fi) , non-terrestrial network (NTN) and any future-developed networking and communication technologies. Thus, the scope of the present disclosure is not limited to the examples described herein.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of the present disclosure. The drawings illustrate implementations of the disclosure and, together with the description, serve to explain the principles of the disclosure. It is appreciable that the drawings are not necessarily in scale as some components may be shown to be out of proportion than the size in actual implementation in order to clearly illustrate the concept of the present disclosure.
FIG. 1 is a diagram of an example communication environment in which various proposed schemes in accordance with the present disclosure may be implemented.
FIG. 2 is a diagram of an example scenario under a proposed scheme in accordance with the present disclosure.
FIG. 3 is a diagram of an example scenario under a proposed scheme in accordance with the present disclosure.
FIG. 4 is a diagram of an example scenario under a proposed scheme in accordance with the present disclosure.
FIG. 5 is a diagram of an example scenario under a proposed scheme in accordance with the present disclosure.
FIG. 6 is a block diagram of an example communication system in which various proposed schemes in accordance with an implementation of the present disclosure.
FIG. 7 is a flowchart of an example process under a proposed scheme in accordance with an implementation of the present disclosure.
DETAILED DESCRIPTION OF PREFERRED IMPLEMENTATIONS
Detailed embodiments and implementations of the claimed subject matters are disclosed herein. However, it shall be understood that the disclosed embodiments and implementations are merely illustrative of the claimed subject matters which may be embodied in various forms. The present disclosure may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments and implementations set forth herein. Rather, these exemplary embodiments and implementations are provided so that description of the present disclosure is thorough and complete and will fully convey the scope of the present disclosure to those skilled in the art. In the description below, details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the presented embodiments and implementations.
Overview
Implementations in accordance with the present disclosure relate to various techniques, methods, schemes and/or solutions pertaining to time and frequency correction enhancements and GNSS validity duration extension in an IoT NTN. According to the present disclosure, a number of possible solutions or schemes may be implemented separately or jointly. That is, although these possible solutions/schemes may be described below separately, two or more of these possible solutions/schemes may be implemented in one combination or another.
In the present disclosure, NTN refers to a network that uses radio frequency (RF) and information processing resources carried on high, medium and low orbit satellites or other high-altitude communication platforms to provide communication services for UEs. According to the load capacity on the satellite, there are two typical scenarios, namely: transparent payload and regenerative payload. In the transparent payload mode, the satellite does not process the signal and waveform in the communication service but, rather, only forwards data as an RF amplifier. In the regenerative payload mode, the satellite, other than RF amplification, also has the processing capabilities of modulation/demodulation, coding/decoding, switching, routing and so on.
FIG. 1 illustrates an example communication environment 100 in which various solutions and schemes in accordance with the present disclosure may be implemented. FIG. 2 ~ FIG. 7 illustrate examples of implementation of various proposed schemes in communication environment 100 in accordance with the present disclosure. The following description of various proposed schemes is provided with reference to FIG. 1 ~ FIG. 7.
FIG. 1 illustrates an example communication environment 100 in which various solutions and schemes in accordance with the present disclosure may be implemented. Referring to FIG. 1,  communication environment 100 may involve a UE 110 in wireless communication with a network 120 (e.g., a mobile network including a non-terrestrial network (NTN) and/or a terrestrial network (TN) ) via a terrestrial network node 125 (e.g., gNB, eNB, transmit-and-receive point (TRP) ) and/or a non-terrestrial network node 128 (e.g., satellite) . In some implementations, UE 110 may be an IoT device such as a narrowband IoT (NB-IoT) UE or an enhanced machine-type communication (eMTC) UE. In communication environment 100, UE 110, network 120, terrestrial network node 125 and non-terrestrial network node 128 may implement various schemes pertaining to time and frequency correction enhancements and GNSS validity duration extension in an IoT NTN in accordance with the present disclosure, as described below. It is noteworthy that, while the various proposed schemes may be individually or separately described below, in actual implementations some or all of the proposed schemes may be utilized or otherwise implemented jointly. Of course, each of the proposed schemes may be utilized or otherwise implemented individually or separately.
It is noteworthy that, with respect to short sporadic transmissions, UE 110 may need to have a valid GNSS position fix before entering a connected mode. UE 110 may autonomously determine its GNSS validity duration X and report a result of the determination in message 5 (Msg 5) , with X = {10s, 20s, 30s, 40s, 50s, 60s, 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, 60 min, 90 min, 120 min, infinity} . When the GNSS position fix becomes outdated when in an RRC_connected mode, UE 110 may enter an idle mode. Then, UE 110 may re-acquire the valid GNSS position fix (es) in the idle mode. On the other hand, in the scenario of long connection time, UE 110 may need to re-acquire a valid GNSS position fix when in the long connection time. For instance, UE 110 may re-acquire the valid GNSS position fix (es) in the RRC_connected mode. Moreover, UE 110 may report the new GNSS validity duration to network 120 via a medium access control (MAC) control element (CE) .
In general, in scenarios with large transmission delay such as in NTN systems, UE GNSS is necessary for time and frequency synchronization. At present, the approach proposed in the 3rd Generation Partnership Project (3GPP) Technical Specification (TS) Release 17 (R17) regarding GNSS position fix requires a UE to have a valid GNSS position fix before entering a connected mode and, when the GNSS position fix becomes outdated in an RRC_connected mode, the UE enters into an idle mode. However, in Release 18 (R18) of the specification, IoT NTN UEs may need to re-acquire a valid GNSS position fix in long connection time. Depending on UE mobility, a UE in RRC-connected state may need to perform a new GNSS position fix in order to accommodate accumulated time and frequency errors so as to minimize likelihood of possible radio link failure. Thus, UEs, especially those with high speed, typically need to frequently perform the GNSS position fix during long-term connections. Undesirably, this would result in large power consumption to the UE.
It is noteworthy that, depending on UE capability, a UE (e.g., UE 110) in an RRC-connected  state may need a new GNSS position fix. Additionally, closed-loop time correction may partially compensate a timing advance (TA) error caused by movement of the UE. Moreover, the actual validity duration of GNSS position fix may be longer than the one reported by the UE considering closed-loop time correction. Accordingly, various proposed schemes in accordance with the present disclosure aim to extend GNSS validity duration to decrease the frequency of GNSS position fix with time and frequency correction enhancements. Advantageously, it is believed that the proposed schemes may increase throughput and decrease UE power consumption, while allowing network and UE to operate according to an updated GNSS validity duration, thereby ensuring the normal operation of the network system.
FIG. 2 illustrates an example scenario 200 under a proposed scheme in accordance with the present disclosure. Scenario 200 may pertain to time and frequency correction enhancements. Referring to FIG. 2, network 120 may transmit closed-loop information to UE 110 on time and frequency correction in a scheduled time gap. At 210, UE 110 may receive closed-loop information in the scheduled time gap. Based on the received closed-loop information, at 220, UE 110 may perform time and frequency correction. For instance, the gap may be scheduled for UE 110 to perform downlink (DL) synchronization and a length of the gap may be 40 milliseconds (40ms) . Alternatively, or additionally, the gap may be scheduled for UE 110 to perform synchronization for GNSS position fix. The received information on time and frequency correction may be utilized by UE 110 to perform time and frequency correction to compensate a TA error and frequency error caused by movement of UE 110.
FIG. 3 illustrates an example scenario 300 under a proposed scheme in accordance with the present disclosure. Under the proposed scheme with respect to a GNSS validity duration extension procedure, an actual validity duration of GNSS position fix may be longer than the one reported by UE 110 without considering closed-loop time correction. Referring to FIG. 3, at 310, UE 110 may determine its GNSS status and, based on a result of the determination, at 320, UE 110 may report the GNSS status to network 120 either periodically or upon an event-based trigger. As there may be different values in the GNSS status, at 330, UE 110 may perform different operations depending on the determined GNSS status. For instance, when GNSS status is a first value (e.g., 00) , GNSS measurement may be triggered and a length of the GNSS measurement may be less than X seconds. Here, X may be either a predefined value or a GNSS position fix time duration for measurement reported when UE 110 moves to an RRC-connected state. Additionally, when GNSS status is a second value (e.g., 01) , GNSS measurement may be triggered and a length of the GNSS measurement may be more than X seconds. Here, X may be either a predefined value or a GNSS position fix time duration for measurement reported when UE 110 moves to the RRC-connected state. Moreover, when GNSS status is a third value (e.g., 10) , a new remaining GNSS validity duration may be prolonged by Y seconds compared to a current remaining GNSS validity duration. Here, Y may be a predefined value or a configured value. Furthermore, when GNSS  status is fourth value (e.g., 11) , a new remaining GNSS validity duration may be prolonged by Z seconds compared to a current remaining GNSS validity duration. Here, Z may be a predefined value or a configured value and may be different than Y. Under the proposed scheme, network 120 may configure a gap for UE 110 to perform the GNSS measurement. Alternatively, under the proposed scheme, the actual validity duration of GNSS may be longer than the one reported by UE 110 with consideration of closed-loop time correction.
FIG. 4 illustrates an example scenario 400 under a proposed scheme in accordance with the present disclosure. Under the proposed scheme with respect to a GNSS validity duration extension procedure, as shown in FIG. 4, at 410, network 120 may configure GNSS status for UE 110 and, at 420, network 120 may transmit information of the configured GNSS status to UE. Correspondingly, UE 110 may receive the configured GNSS status from network 120 either periodically or upon an event-based trigger. Moreover, under the proposed scheme, GNSS status may include one or more of GNSS measurement trigger signaling information, GNSS measurement length information, and GNSS validity duration extension information (e.g., new remaining GNSS validity duration information) . Under the proposed scheme, the GNSS measurement trigger signaling may be one bit. For instance, when a value of the bit is 0, UE 110 may be triggered to perform GNSS measurement. Conversely, when the value of the bit is 1, UE 110 may not be triggered to perform GNSS measurement.
Under the proposed scheme, the GNSS validity duration extension information may be one bit. For instance, when a value of the bit is 0, a new remaining GNSS validity duration may be prolonged by S seconds compared to a current remaining GNSS validity duration, with S being a predefined value or a configured value. Conversely, when the value of the bit is 1, the new remaining GNSS validity duration may be prolonged by Q seconds compared to the current remaining GNSS validity duration, with Q being a predefined value or a configured value. Under the proposed scheme, the GNSS validity duration extension information may include multiple bits. Moreover, a remaining GNSS validity duration may be extended by a variable value compared to a current remaining GNSS validity duration. In one embodiment, the variable value may vary based on a value of the multiple bits. For instance, in case the multiple bits are T, the new remaining GNSS validity duration may be prolonged by P seconds compared to the current remaining GNSS validity duration, with P = int (T) + 1. Thus, when T = ‘00’ , P = 1; when T = ‘01’ , P = 2; when T = ‘10’ , P = 3; and when T = ‘11’ , P = 4. In another embodiment, the variable values can be mapped to the multiple bits based on a mapping relation, the mapping relation can be configured by the network or predefined. For example, an exemplary mapping relation can be illustrated as Table 1.
Table 1
Under a proposed scheme in accordance with the present disclosure with respect to a GNSS validity duration extension procedure, GNSS validity duration extension duration may be equal to a remaining duration of the time alignment timer (TimeAlignmentTimer) . Alternatively, GNSS validity duration extension duration may be equal to a remaining duration of TimeAlignmentTimer + R. Here, R may be a GNSS validity duration extension offset, and R may be configured by network 120 via a radio resource control (RRC) signaling or MAC CE, or R may be a predefined value.
FIG. 5 illustrates an example scenario 500 under a proposed scheme in accordance with the present disclosure. Under the proposed scheme in accordance with the present disclosure with respect to UE operation for GNSS measurement, as shown in FIG. 5, at 510, UE 110 may determine its remaining GNSS validity duration and, at 520, UE 110 may take action (s) corresponding to the determined remaining GNSS validity duration. For instance, based on the remaining GNSS validity duration, UE 110 may keep the same GNSS position fix without triggering a GNSS measurement so as to save power consumption, in an event that the remaining GNSS validity duration is longer than a connected mode discontinuous reception (C_DRX) periodicity duration. Otherwise, in an event that the remaining GNSS validity duration is no longer than the C_DRX periodicity duration, UE 110 may trigger a new GNSS measurement during a C_DRX off duration.
Illustrative Implementations
FIG. 6 illustrates an example communication system 600 having an example apparatus 610 and an example apparatus 620 in accordance with an implementation of the present disclosure. Each of apparatus 610 and apparatus 620 may perform various functions to implement schemes, techniques, processes and methods described herein pertaining to time and frequency correction enhancements and GNSS validity duration extension in an IoT NTN, including various schemes described herein.
Each of apparatus 610 and apparatus 620 may be a part of an electronic apparatus, which may be a UE such as a vehicle, a portable or mobile apparatus, a wearable apparatus, a wireless  communication apparatus or a computing apparatus. For instance, each of apparatus 610 and apparatus 620 may be implemented in an electronic control unit (ECU) of a vehicle, a smartphone, a smartwatch, a personal digital assistant, a digital camera, or a computing equipment such as a tablet computer, a laptop computer or a notebook computer. Each of apparatus 610 and apparatus 620 may also be a part of a machine type apparatus, which may be an IoT, NB-IoT or eMTC apparatus such as an immobile or a stationary apparatus, a home apparatus, a wire communication apparatus or a computing apparatus. For instance, each of apparatus 610 and apparatus 620 may be implemented in a smart thermostat, a smart fridge, a smart door lock, a wireless speaker or a home control center. Alternatively, each of apparatus 610 and apparatus 620 may be implemented in the form of one or more integrated-circuit (IC) chips such as, for example and without limitation, one or more single-core processors, one or more multi-core processors, one or more reduced-instruction set computing (RISC) processors, or one or more complex-instruction-set-computing (CISC) processors. Each of apparatus 610 and apparatus 620 may include at least some of those components shown in FIG. 6 such as a processor 612 and a processor 622, respectively. Each of apparatus 610 and apparatus 620 may further include one or more other components not pertinent to the proposed scheme of the present disclosure (e.g., internal power supply, display device and/or user interface device) , and, thus, such component (s) of each of apparatus 610 and apparatus 620 are neither shown in FIG. 6 nor described below in the interest of simplicity and brevity.
In some implementations, at least one of apparatus 610 and apparatus 620 may be a part of an electronic apparatus, which may be a vehicle, a roadside unit (RSU) , network node or base station (e.g., eNB, gNB, TRP or satellite) , a small cell, a router or a gateway. For instance, at least one of apparatus 610 and apparatus 620 may be implemented in an IoT device in an NTN, an IoT NTN, an eNodeB in an LTE, LTE-Advanced or LTE-Advanced Pro network or in a gNB in a 5G, NR, IoT, NB-IoT network or eMTC network. Alternatively, at least one of apparatus 610 and apparatus 620 may be implemented in the form of one or more IC chips such as, for example and without limitation, one or more single-core processors, one or more multi-core processors, one or more RISC processors, or one or more CISC processors.
In one aspect, each of processor 612 and processor 622 may be implemented in the form of one or more single-core processors, one or more multi-core processors, one or more RISC processors, or one or more CISC processors. That is, even though a singular term “aprocessor” is used herein to refer to processor 612 and processor 622, each of processor 612 and processor 622 may include multiple processors in some implementations and a single processor in other implementations in accordance with the present disclosure. In another aspect, each of processor 612 and processor 622 may be implemented in the form of hardware (and, optionally, firmware) with electronic components including, for example and without limitation, one or more transistors, one or more diodes, one or more capacitors, one or more resistors, one or more inductors, one or more memristors and/or one or more varactors that are configured and arranged to achieve specific  purposes in accordance with the present disclosure. In other words, in at least some implementations, each of processor 612 and processor 622 is a special-purpose machine specifically designed, arranged and configured to perform specific tasks including time and frequency correction enhancements and GNSS validity duration extension in an IoT NTN in accordance with various implementations of the present disclosure.
In some implementations, apparatus 610 may also include a transceiver 616, as a communication device, coupled to processor 612 and capable of wirelessly transmitting and receiving data. In some implementations, apparatus 610 may further include a memory (or storage medium, or computer-readable medium) 614 coupled to processor 612 and capable of being accessed by processor 612 and storing data therein. In some implementations, apparatus 620 may also include a transceiver 626, as a communication device, coupled to processor 622 and capable of wirelessly transmitting and receiving data. In some implementations, apparatus 620 may further include a memory (or storage medium, or computer-readable medium) 624 coupled to processor 622 and capable of being accessed by processor 622 and storing data therein. Accordingly, apparatus 610 and apparatus 620 may wirelessly communicate with each other via transceiver 616 and transceiver 626, respectively.
To aid better understanding, the following description of the operations, functionalities and capabilities of each of apparatus 610 and apparatus 620 is provided in the context of an IoT communication environment in which apparatus 610 is implemented in or as a wireless communication device, a communication apparatus or a UE (e.g., UE 110 or an IoT device in communication environment 100) and apparatus 620 implemented in or as a network node (e.g., terrestrial network node 125 or non-terrestrial network node 128 in communication environment 100) .
Under various proposed schemes pertaining to time and frequency correction enhancements and GNSS validity duration extension in an IoT in accordance with the present disclosure, processor 612 of apparatus 610, as a UE, may communicate, via transceiver 616, with a network including an IoT network (e.g., with network 120 via apparatus 620 as terrestrial network node 125 or non-terrestrial network node 128) . Moreover, processor 612 may perform, via transceiver 616, either or both of a time and frequency correction procedure and a GNSS validity duration extension procedure with the IoT network to obtain a decrease in a frequency of GNSS position fixes performed by the UE.
In some implementations, the time and frequency correction procedure may involve processor 612 receiving closed-loop information on time and frequency correction in a scheduled gap.
In some implementations, the gap may include a time gap scheduled for the UE to perform DL synchronization. Alternatively, or additionally, the gap may include another time gap scheduled for the UE to perform synchronization for the GNSS position fix.
In some implementations, an actual validity duration of the GNSS position fix may be longer  than that reported by the UE without considering the closed-loop information.
In some implementations, the GNSS validity duration extension procedure may involve processor 612 performing the following: (i) determining GNSS status; and (ii) reporting the GNSS status to the network. The GNSS status may indicate one or more of the following: (a) GNSS measurement trigger signaling information, (b) GNSS measurement length information, and (c) GNSS validity duration extension information.
In some implementations, in reporting the GNSS status, processor 612 may report the GNSS status periodically or in response to an event-based trigger.
In some implementations, the GNSS validity duration extension procedure may further involve processor 612 performing certain operations. For instance, processor 612 may perform one of the following: (i) responsive to the GNSS status having a first value (e.g., 00) , triggering a GNSS measurement with a length of the GNSS measurement less than a first predefined value or a GNSS position fix time duration for measurement reported when UE 110 moves to a RRC-connected state; (ii) responsive to the GNSS status having a second value (e.g., 01) , trigger the GNSS measurement with the length of the GNSS measurement larger than the first predefined value or the GNSS position fix time duration for measurement reported when UE 110 moves to the RRC-connected state; (iii) responsive to the GNSS status having a third value (e.g., 10) , prolonging a new remaining GNSS validity duration by a second predefined value or a first configured value compared to a current remaining GNSS validity duration; and (iv) responsive to the GNSS status having a fourth value (e.g., 11) , prolonging the new remaining GNSS validity duration by a third predefined value or a second configured value compared to the current remaining GNSS validity duration.
In some implementations, the GNSS validity duration extension procedure may involve processor 612 receiving a GNSS status from the network. The GNSS status may be periodic or upon an event-based trigger. The GNSS status may indicate one or more of: (a) GNSS measurement trigger signaling information, and (b) GNSS validity duration extension information. In some implementations, in response to the GNSS status triggering a GNSS measurement, processor 612 may also perform, via transceiver 616, the GNSS measurement in a gap which is configured by the network.
In some implementations, the GNSS measurement trigger signaling information may include one bit. Moreover, a GNSS measurement may be triggered in response to a value of the one bit being 0, and the GNSS measurement may not be triggered in response to the value of the one bit being 1. In other implementations, the opposite may be applicable.
In some implementations, the GNSS validity duration extension information may include one bit. Moreover, a remaining GNSS validity duration may be extended by a first predefined value or a first configured value compared to a current remaining GNSS validity duration in response to a value of the one bit being 0. The remaining GNSS validity duration may be extended by a second  predefined value or a second configured value compared to the current remaining GNSS validity duration in response to the value of the one bit being 1. In other implementations, the opposite may be applicable.
In some implementations, the GNSS validity duration extension information may include multiple bits. Moreover, a remaining GNSS validity duration may be extended by a variable value compared to a current remaining GNSS validity duration. In one embodiment, the variable value is determined based on a mapping relation between the multiple bits of the GNSS validity duration extension information and multiple variable values, wherein the mapping relation is configured by the network or predefined. In another embodiment, the variable value is determined based on a predefined equation.
In some implementations, the GNSS validity duration extension procedure may involve processor 612 performing the following: (i) determining a remaining GNSS validity duration; and (ii) performing either of the following: (a) responsive to the remaining GNSS validity duration being longer than a C_DRX periodicity duration, keeping a current GNSS position fix without triggering a GNSS measurement; or (b) responsive to the remaining GNSS validity duration being not longer than the C_DRX periodicity duration, triggering a new GNSS measurement during a C_DRX off duration.
In some implementations, processor 612 may also transmit, via transceiver 616, to the network a signal with a new GNSS position.
Illustrative Processes
FIG. 7 illustrates an example process 700 in accordance with an implementation of the present disclosure. Process 700 may be an example implementation of the proposed schemes described above with respect to time and frequency correction enhancements and GNSS validity duration extension in an IoT in accordance with the present disclosure. Process 700 may represent an aspect of implementation of features of apparatus 610 and apparatus 620. Process 700 may include one or more operations, actions, or functions as illustrated by one or more of blocks 710 and 720. Although illustrated as discrete blocks, various blocks of process 700 may be divided into additional blocks, combined into fewer blocks, or eliminated, depending on the desired implementation. Moreover, the blocks of process 700 may executed in the order shown in FIG. 7 or, alternatively, in a different order. Process 700 may also be repeated partially or entirely. Process 700 may be implemented by apparatus 610, apparatus 620 and/or any suitable wireless communication device, UE, RUS, base station or machine type devices. Solely for illustrative purposes and without limitation, process 700 is described below in the context of apparatus 610 as a UE (e.g., UE 110 or an IoT device in communication environment 100) and apparatus 620 as a network node (e.g., terrestrial network node 125 or non-terrestrial network node 128 in communication environment 100) . Process 700 may begin at block 710.
At block 710, process 700 may involve processor 612 of apparatus 610, as a UE (e.g., UE  110) , communicating, via transceiver 616, with a network including an IoT network (e.g., with network 120 via apparatus 620 as terrestrial network node 125 or non-terrestrial network node 128) . Process 700 may proceed from block 710 to block 720.
At block 720, process 700 may involve processor 612 performing, via transceiver 616, either or both of a time and frequency correction procedure and a GNSS validity duration extension procedure with the IoT network to obtain a decrease in a frequency of GNSS position fixes performed by the UE.
In some implementations, the time and frequency correction procedure may involve processor 612 receiving closed-loop information on time and frequency correction in a scheduled gap.
In some implementations, the gap may include a time gap scheduled for the UE to perform DL synchronization. Alternatively, or additionally, the gap may include another time gap scheduled for the UE to perform synchronization for the GNSS position fix.
In some implementations, an actual validity duration of the GNSS position fix may be longer than that reported by the UE without considering the closed-loop information.
In some implementations, the GNSS validity duration extension procedure may involve processor 612 performing the following: (i) determining GNSS status; and (ii) reporting the GNSS status to the network. The GNSS status may indicate one or more of the following: (a) GNSS measurement trigger signaling information, (b) GNSS measurement length information, and (c) GNSS validity duration extension information.
In some implementations, in reporting the GNSS status, process 700 may involve processor 612 reporting the GNSS status periodically or in response to an event-based trigger.
In some implementations, the GNSS validity duration extension procedure may further involve processor 612 performing certain operations. For instance, processor 612 may perform one of the following: (i) responsive to the GNSS status having a first value (e.g., 00) , triggering a GNSS measurement with a length of the GNSS measurement less than a first predefined value or a GNSS position fix time duration for measurement reported when UE 110 moves to a RRC-connected state; (ii) responsive to the GNSS status having a second value (e.g., 01) , trigger the GNSS measurement with the length of the GNSS measurement larger than the first predefined value or the GNSS position fix time duration for measurement reported when UE 110 moves to the RRC-connected state; (iii) responsive to the GNSS status having a third value (e.g., 10) , prolonging a new remaining GNSS validity duration by a second predefined value or a first configured value compared to a current remaining GNSS validity duration; and (iv) responsive to the GNSS status having a fourth value (e.g., 11) , prolonging the new remaining GNSS validity duration by a third predefined value or a second configured value compared to the current remaining GNSS validity duration.
In some implementations, in response to the GNSS status triggering a GNSS measurement, process 700 may further involve processor 612 performing, via transceiver 616, the GNSS  measurement in a gap which is configured by the network.
In some implementations, the GNSS validity duration extension procedure may involve processor 612 receiving a GNSS status from the network. The GNSS status may be periodic or upon an event-based trigger. The GNSS status may indicate one or more of: (a) GNSS measurement trigger signaling information, and (b) GNSS validity duration extension information.
In some implementations, the GNSS measurement trigger signaling information may include one bit. Moreover, a GNSS measurement may be triggered in response to a value of the one bit being 0, and the GNSS measurement may not be triggered in response to the value of the one bit being 1. In other implementations, the opposite may be applicable.
In some implementations, the GNSS validity duration extension information may include one bit. Moreover, a remaining GNSS validity duration may be extended by a first predefined value or a first configured value compared to a current remaining GNSS validity duration in response to a value of the one bit being 0. The remaining GNSS validity duration may be extended by a second predefined value or a second configured value compared to the current remaining GNSS validity duration in response to the value of the one bit being 1. In other implementations, the opposite may be applicable.
In some implementations, the GNSS validity duration extension information comprises multiple bits, wherein a remaining GNSS validity duration is extended by a variable value compared to a current remaining GNSS validity duration, wherein the variable value is determined based on a mapping relation between the multiple bits of the GNSS validity duration extension information and multiple variable values, wherein the mapping relation is configured by the network or predefined. Alternatively, the variable value is determined based on a predefined equation.
In some implementations, the GNSS validity duration extension procedure may involve processor 612 performing the following: (i) determining a remaining GNSS validity duration; and (ii) performing either of the following: (a) responsive to the remaining GNSS validity duration being longer than a C_DRX periodicity duration, keeping a current GNSS position fix without triggering a GNSS measurement; or (b) responsive to the remaining GNSS validity duration being not longer than the C_DRX periodicity duration, triggering a new GNSS measurement during a C_DRX off duration.
In some implementations, process 700 may further involve processor 612 transmitting, via transceiver 616, to the network a signal with a new GNSS position.
Additional Notes
The herein-described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely examples, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to  achieve the same functionality is effectively "associated" such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as "associated with" each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being "operably connected" , or "operably coupled" , to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being "operably couplable" , to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.
Further, with respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
Moreover, it will be understood by those skilled in the art that, in general, terms used herein, and especially in the appended claims, e.g., bodies of the appended claims, are generally intended as “open” terms, e.g., the term “including” should be interpreted as “including but not limited to, ” the term “having” should be interpreted as “having at least, ” the term “includes” should be interpreted as “includes but is not limited to, ” etc. It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases "at least one" and "one or more" to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles "a" or "an" limits any particular claim containing such introduced claim recitation to implementations containing only one such recitation, even when the same claim includes the introductory phrases "one or more" or "at least one" and indefinite articles such as "a" or "an, " e.g., “a” and/or “an” should be interpreted to mean “at least one” or “one or more; ” the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should be interpreted to mean at least the recited number, e.g., the bare recitation of "two recitations, " without other modifiers, means at least two recitations, or two or more recitations. Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc. ” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention, e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc. In those instances  where a convention analogous to “at least one of A, B, or C, etc. ” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention, e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc. It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B. ”
From the foregoing, it will be appreciated that various implementations of the present disclosure have been described herein for purposes of illustration, and that various modifications may be made without departing from the scope and spirit of the present disclosure. Accordingly, the various implementations disclosed herein are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims (20)

  1. A method, comprising:
    communicating, by a processor of a user equipment (UE) , with a network comprising an Internet-of-Things (IoT) network; and
    performing, by the processor, either or both of a time and frequency correction procedure and a Global Navigation Satellite System (GNSS) validity duration extension procedure with the IoT network.
  2. The method of Claim 1, wherein the performing comprises performing either or both of the time and the frequency correction procedure and the GNSS validity duration extension procedure to obtain a decrease in a frequency of GNSS position fixes performed by the UE.
  3. The method of Claim 1, wherein the time and frequency correction procedure comprises receiving closed-loop information on time and frequency correction in a scheduled gap.
  4. The method of Claim 3, wherein the scheduled gap comprises either or both of:
    a first time gap scheduled for the UE to perform downlink (DL) synchronization; and
    a second time gap scheduled for the UE to perform synchronization for a GNSS position fix.
  5. The method of Claim 3, wherein an actual validity duration of the GNSS position fix is longer than that reported by the UE with considering the closed-loop information.
  6. The method of Claim 1, wherein the GNSS validity duration extension procedure comprises:
    determining GNSS status; and
    reporting the GNSS status to the network,
    wherein the GNSS status comprises one or more of:
    GNSS measurement trigger signaling information;
    GNSS measurement length information; and
    GNSS validity duration extension information.
  7. The method of Claim 6, wherein the reporting of the GNSS status comprises reporting the GNSS status periodically or in response to an event-based trigger.
  8. The method of Claim 6, wherein the GNSS validity duration extension procedure further comprises:
    responsive to the GNSS status having a first value, triggering a GNSS measurement with a length of the GNSS measurement less than a first predefined value or a GNSS position fix time duration for measurement reported when moving to a RRC connected state;
    responsive to the GNSS status having a second value, trigger the GNSS measurement with the length of the GNSS measurement larger than the first predefined value or the GNSS position fix time duration for measurement reported when moving to the RRC connected state;
    responsive to the GNSS status having a third value, prolonging a new remaining GNSS validity duration by a second predefined value or a first configured value compared to a current remaining GNSS validity duration; and
    responsive to the GNSS status having a fourth value, prolonging the new remaining GNSS validity duration by a third predefined value or a second configured value compared to the current remaining GNSS validity duration.
  9. The method of Claim 6, further comprising:
    responsive to the GNSS status triggering a GNSS measurement, performing the GNSS measurement in a gap which is configured by the network.
  10. The method of Claim 1, wherein the GNSS validity duration extension procedure comprises:
    receiving a GNSS status from the network,
    wherein the GNSS status from the network is periodic or upon an event-based trigger, and
    wherein the GNSS status from the network comprises one or more of:
    GNSS measurement trigger signaling information; and
    GNSS validity duration extension information.
  11. The method of Claim 10, wherein the GNSS measurement trigger signaling information comprises one bit, wherein a GNSS measurement is triggered responsive to a value of the one bit being 0, and wherein the GNSS measurement is not triggered responsive to the value of the one bit being 1.
  12. The method of Claim 10, wherein the GNSS validity duration extension information comprises one bit, wherein a remaining GNSS validity duration is extended by a first predefined value or a first configured value compared to a current remaining GNSS validity duration responsive to a value of the one bit being 0, and wherein the remaining GNSS validity duration is extended by a second predefined value or a second configured value compared to the  current remaining GNSS validity duration responsive to the value of the one bit being 1.
  13. The method of Claim 10, wherein the GNSS validity duration extension information comprises multiple bits, wherein a remaining GNSS validity duration is extended by a variable value compared to a current remaining GNSS validity duration,
    wherein the variable value is determined based on a mapping relation between the multiple bits of the GNSS validity duration extension information and multiple variable values, wherein the mapping relation is configured by the network or predefined, or
    wherein the variable value is determined based on a predefined equation.
  14. The method of Claim 10, further comprising:
    responsive to the GNSS status triggering a GNSS measurement, performing the GNSS measurement in a gap which is configured by the network.
  15. The method of Claim 1, wherein the GNSS validity duration extension procedure comprises:
    determining a remaining GNSS validity duration; and
    responsive to the remaining GNSS validity duration being longer than a connected mode discontinuous reception (C_DRX) periodicity duration, keeping a current GNSS position fix without triggering a GNSS measurement; or
    responsive to the remaining GNSS validity duration being no longer than the C_DRX periodicity duration, triggering a new GNSS measurement during a C_DRX off duration.
  16. The method of Claim 1, further comprising:
    transmitting, by the processor, to the network a signal with a new GNSS position.
  17. An apparatus, comprising:
    a transceiver configured to communicate wirelessly; and
    a processor coupled to the transceiver and configured to perform operations comprising:
    communicating, via the transceiver, with a network comprising an Internet-of-Things (IoT) network; and
    performing, via the transceiver, either or both of a time and frequency correction procedure and a Global Navigation Satellite System (GNSS) validity duration extension procedure with the IoT network.
  18. The apparatus of Claim 17, wherein the GNSS validity duration extension  procedure comprises receiving a GNSS status from the network,
    wherein the GNSS status from the network is periodic or upon an event-based trigger, and
    wherein the GNSS status from the network comprises one or more of:
    GNSS measurement trigger signaling information; and
    GNSS validity duration extension information.
  19. The apparatus of Claim 17, wherein the GNSS measurement trigger signaling information comprises one bit, wherein a GNSS measurement is triggered responsive to a value of the one bit being 0, and wherein the GNSS measurement is not triggered responsive to the value of the one bit being 1.
  20. The apparatus of Claim 17, wherein the GNSS validity duration extension information comprises one bit, wherein a remaining GNSS validity duration is extended by a first predefined value or a first configured value compared to a current remaining GNSS validity duration responsive to a value of the one bit being 0, and wherein the remaining GNSS validity duration is extended by a second predefined value or a second configured value compared to the current remaining GNSS validity duration responsive to the value of the one bit being 1.
PCT/CN2023/098482 2022-06-30 2023-06-06 Time and frequency correction enhancements and gnss validity duration extension in iot WO2024001686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2022/102977 2022-06-30
PCT/CN2022/102977 WO2024000469A1 (en) 2022-06-30 2022-06-30 Schemes on gnss validity duration extension in iot ntn

Publications (1)

Publication Number Publication Date
WO2024001686A1 true WO2024001686A1 (en) 2024-01-04

Family

ID=89382804

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/102977 WO2024000469A1 (en) 2022-06-30 2022-06-30 Schemes on gnss validity duration extension in iot ntn
PCT/CN2023/098482 WO2024001686A1 (en) 2022-06-30 2023-06-06 Time and frequency correction enhancements and gnss validity duration extension in iot

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102977 WO2024000469A1 (en) 2022-06-30 2022-06-30 Schemes on gnss validity duration extension in iot ntn

Country Status (1)

Country Link
WO (2) WO2024000469A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210250885A1 (en) * 2020-02-10 2021-08-12 Mediatek Singapore Pte. Ltd. Method And Apparatus For Timing And Frequency Synchronization In Non-Terrestrial Network Communications
CN113382440A (en) * 2020-03-10 2021-09-10 联发科技(新加坡)私人有限公司 User equipment timing advance reporting in non-terrestrial network communications
WO2021205283A1 (en) * 2020-04-09 2021-10-14 Telefonaktiebolaget Lm Ericsson (Publ) Gnss data in non-terrestrial network system information

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9277430B2 (en) * 2014-04-02 2016-03-01 Qualcomm Incorporated Method and apparatus for enhanced TD-SCDMA to LTE measurement reporting
CN107533140B (en) * 2015-03-06 2020-12-25 看门人系统公司 Low energy positioning of movable objects
US11178611B2 (en) * 2017-01-16 2021-11-16 Commsolid Gmbh Low duty cycle transmission scheme for NB IoT devices
CN111294825B (en) * 2019-01-29 2022-09-27 展讯通信(上海)有限公司 Signal measurement control method and device, storage medium and terminal
US11910339B2 (en) * 2020-10-23 2024-02-20 Centre Of Excellence In Wireless Technology Methods and systems for uplink time synchronization in non-terrestrial networks based communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210250885A1 (en) * 2020-02-10 2021-08-12 Mediatek Singapore Pte. Ltd. Method And Apparatus For Timing And Frequency Synchronization In Non-Terrestrial Network Communications
CN113382440A (en) * 2020-03-10 2021-09-10 联发科技(新加坡)私人有限公司 User equipment timing advance reporting in non-terrestrial network communications
WO2021205283A1 (en) * 2020-04-09 2021-10-14 Telefonaktiebolaget Lm Ericsson (Publ) Gnss data in non-terrestrial network system information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Discussion on the enhancement of NTN", 3GPP DRAFT; R1-2003560, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 15 May 2020 (2020-05-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885341 *

Also Published As

Publication number Publication date
WO2024000469A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
US11368948B2 (en) Transmission configuration indication switching procedure in new radio mobile communications
US20190159260A1 (en) NB-IoT PRACH Resource Partitioning And Multiple Grants In RAR For EDT
US10462742B2 (en) Method and apparatus for power consumption reduction in mobile communications
JP2023156467A (en) Channel monitoring method and device, terminal device, and network device
WO2020063945A1 (en) Timing advance validation for transmission in preconfigured uplink resources in nb-iot
WO2021219022A1 (en) System information design for synchronization in non-terrestrial network communications
US20180343689A1 (en) Method And Apparatus For Handling Problem Cell In Mobile Communications
WO2018210260A1 (en) Method and apparatus for handling cell-specific reference signal muting in mobile communications
US11228976B2 (en) Power saving for new radio carrier aggregation
WO2020052561A1 (en) Method and apparatus for acquiring channel state information reference resource in discontinuous reception
US11064450B2 (en) Synchronization of QoS flows and rules in mobile communications
WO2024001686A1 (en) Time and frequency correction enhancements and gnss validity duration extension in iot
CN113301630B (en) Method and apparatus for user equipment reachability after notification in mobile communication
WO2022199257A1 (en) Synchronization and feeder link delay drift in non-terrestrial network communications
EP4322441A1 (en) Method and apparatus for determination of type-1 harq-ack codebook in pucch for scell dormancy
US11606767B2 (en) User equipment reachability after notification in mobile communications
US20240015542A1 (en) Flexible Interruption For L1 Measurement In Mobile Communications
US20240064676A1 (en) Delay drift rate compensation in non-terrestrial network communications
WO2022095886A1 (en) Methods for signaling of ue-initiated cot in mobile communications
WO2023226677A1 (en) Even further enhancements in drx operation for xr and cloud gaming in mobile communications
WO2022083670A1 (en) Methods for simultaneous pucch and pusch transmissions in intra-band carrier aggregation
WO2023207766A1 (en) Further enhancements in drx operation for xr and cloud gaming in mobile communications
US20240048254A1 (en) Determining TCI For RSSI Measurement In Mobile Communications
TW202408194A (en) Method of wireless communication and apparatus implementable in a user equipment
CN117544281A (en) Method and device for mobile communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829870

Country of ref document: EP

Kind code of ref document: A1