WO2024000466A1 - Schemes on gnss position fix in connected in iot ntn - Google Patents

Schemes on gnss position fix in connected in iot ntn Download PDF

Info

Publication number
WO2024000466A1
WO2024000466A1 PCT/CN2022/102971 CN2022102971W WO2024000466A1 WO 2024000466 A1 WO2024000466 A1 WO 2024000466A1 CN 2022102971 W CN2022102971 W CN 2022102971W WO 2024000466 A1 WO2024000466 A1 WO 2024000466A1
Authority
WO
WIPO (PCT)
Prior art keywords
gnss
position fix
gnss position
acquire
duration
Prior art date
Application number
PCT/CN2022/102971
Other languages
French (fr)
Inventor
Wen Tang
Gilles Charbit
Yaohua CAI
Xu Huang
Xuan Wang
Ye Huang
Xuancheng Zhu
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Priority to PCT/CN2022/102971 priority Critical patent/WO2024000466A1/en
Priority to CN202310652292.6A priority patent/CN117336679A/en
Priority to EP23182056.4A priority patent/EP4300139A1/en
Priority to US18/448,084 priority patent/US20240007992A1/en
Publication of WO2024000466A1 publication Critical patent/WO2024000466A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus about GNSS position fix in connected in IoT NTN.
  • IoT NTN UE may need to re-acquire a valid GNSS position fix in long connection time, UE re-acquires GNSS position fix during RLF procedure is an effective solution.
  • NTN Non-Terrestrial Network
  • UE needs to do pre-compensation of time delay and frequency offset based on UE GNSS and ephemeris related parameters.
  • GNSS position fix should be supported during long connection. Based on this, considering the IoT NTN scenario, the invention designs schemes to do GNSS position fix, so that ensure normal system operation.
  • a method, a computer-readable medium, and an apparatus are provided.
  • the apparatus may be a UE.
  • the UE triggers GNSS position fix.
  • the UE determines the scheme to do GNSS position fix based on GNSS status information.
  • the UE obtains new GNSS position.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • Figure 1 is a diagram illustrating an example of the GNSS position fix indication information between UE and network.
  • UE GNSS is necessary for time and frequency synchronization.
  • the method proposed in 3GPP R17 to do GNSS position fix is that UE needs to have a valid GNSS fix before going to connected and when the GNSS fix becomes outdated in RRC_CONNECTED mode, the UE goes to IDLE mode.
  • the solution is not feasible for UE with potential long uplink transmission and additional re-access to network is needed, which is costing in terms of signaling overhead and delay.
  • UE in RRC-connected state will need a new GNSS position fix in order to accommodate the accumulated time and frequency errors to reduce the possible radio link failure.
  • IoT NTN UE may need to re-acquire a valid GNSS position fix in long connection time.
  • hot start requires about 1 ⁇ 2 seconds
  • warm start requires several seconds
  • cold start requires about 30 seconds.
  • This invention is motivated by, but not limited to, an IoT NTN scenario.
  • UE may need to re-acquire GNSS position fix in long connection time and needs to design the scheme to make UE re-acquire GNSS position fix in long connection time, to ensure the normal operation of NTN system.
  • NTN refers to a network that uses radio frequency and information processing resources carried on high, medium and low orbit satellites or other high-altitude communication platforms to provide communication services for UEs.
  • the transparent payload mode means that the satellite will not process the signal and waveform in the communication service, but only forward the data as an RF amplifier.
  • Regenerative payload mode refers to the satellite, besides RF amplification, also has the processing capabilities of modulation/demodulation, coding/decoding, switching, routing and so on.
  • UE In order to ensure the normal operation of IoT NTN system, UE needs to do pre-compensation of time delay and frequency offset based on UE GNSS and ephemeris related parameters.
  • 3GPP R17 for short sporadic transmission the GNSS acquire has been discussed and relevant agreements have been obtained.
  • UE in RRC-connected state will need a new GNSS position fix in order to accommodate the accumulated time and frequency errors to reduce the possible radio link failure.
  • UEs especially with high speed may need frequent GNSS position fix during long-term connections, which will introduce large power consumption.
  • additional re-access to network is needed, which is costing in terms of signaling overhead and delay.
  • GNSS position fix measurement length consists of at least the duration for UE to make GNSS measurement, may also include time duration to re-acquire DL synchronization and re-acquire NTN SIB if needed.
  • UE assesses GNSS position fix measurement length; if GNSS position fix measurement length, X, is above new scheduling gap provided by a higher layer parameter ue-ScheduledGapGNSS, UE re-acquires GNSS in idle mode; if GNSS position fix measurement length, X, is not above new scheduling gap provided by a higher layer parameter ue-ScheduledGapGNSS, UE trigger procedure to re-acquire GNSS position fix in connected.
  • X is reported when moving to RRC_CONNECTED.
  • the network uses the value X to configure the UE with a new scheduling gap to at least make GNSS measurement, may also re-acquire DL synchronization and re-acquire NTN SIB if needed, where the gap is provided by a higher layer parameter ue-ScheduledGapGNSS.
  • the value of the new scheduling gap shall be greater or equal to X so as to UE may re-acquire GNSS position fix in connected, where the value can be a cell_specific value indicated by SIB or a UE_specific value indicated by RRC signaling.
  • the UE may trigger a scheduling request to report the new length of GNSS measurement and the new GNSS validity duration
  • network Based on the GNSS assistance information, which includes (remaining) GNSS validity duration and GNSS position fix measurement length, reported by UE and the timing error of UL reference signals, network configures a new scheduling gap, ue-ScheduledGapGNSS, during which the UE at least re-acquire GNSS position fix, and may also re-acquire DL synchronization and re-acquire NTN SIB if needed, in connected.
  • a new scheduling gap ue-ScheduledGapGNSS
  • the netwprk assumes the UE has moved to RRC idle.
  • X is reported when moving to RRC_CONNECTED.
  • the network uses the value X to configure the UE with a new scheduling gap to at least make GNSS measurement, may also re-acquire DL synchronization and re-acquire NTN SIB if needed, where the gap is provided by a higher layer parameter ue-ScheduledGapGNSS.
  • the value of the new scheduling gap shall be greater or equal to X so as to UE may re-acquire GNSS position fix in connected, where the value can be a cell_specific value indicated by SIB or a UE_specific value indicated by RRC signaling.
  • the UE may trigger a scheduling request to report the new length of GNSS measurement and the new GNSS validity duration
  • the network shall not schedule UE with DL assignment or UL grant.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Abstract

This disclosure describes methods for UE re-acquire GNSS position fix in long connection time, to ensure the normal operation of NTN system. UE in RRC-connected state will need a new GNSS position fix in order to accommodate the accumulated time and frequency errors to reduce the possible radio link failure. High velocity UEs may need more frequent GNSS position fix during long connection time, which will increase UE power consumption. Besides, for long connection time, if UE always re-acquire GNSS position fix in idle, additional re-access to network is needed, which is costing in terms of signaling overhead and delay. The scheme designs re-acquire GNSS position fix in connected, so that save UE power consumption, to ensure the normal operation of IoT NTN system.

Description

SCHEMES ON GNSS POSITION FIX IN CONNECTED IN IOT NTN FIELD
This disclosure relates generally to wireless communications, and, more particularly, to methods and apparatus about GNSS position fix in connected in IoT NTN.
BACKGROUND
In scenarios with large transmission delay, such as the IoT NTN, in order to ensure normal system operation, IoT NTN UE may need to re-acquire a valid GNSS position fix in long connection time, UE re-acquires GNSS position fix during RLF procedure is an effective solution.
SUMMARY
In NTN (Non-Terrestrial Network) system, due to large time delay and Doppler frequency shift, UE needs to do pre-compensation of time delay and frequency offset based on UE GNSS and ephemeris related parameters. To reduce the possible radio link failure, GNSS position fix should be supported during long connection. Based on this, considering the IoT NTN scenario, the invention designs schemes to do GNSS position fix, so that ensure normal system operation.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE. The UE triggers GNSS position fix. The UE determines the scheme to do GNSS position fix based on GNSS status information. The UE obtains new GNSS position.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a diagram illustrating an example of the GNSS position fix indication information between UE and network.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred  to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
In scenarios with large transmission delay, such as NTN system, UE GNSS is necessary for time and frequency synchronization. At present, the method proposed in 3GPP R17 to do GNSS position fix is that UE needs to have a valid GNSS fix before going to connected and when the GNSS fix becomes outdated in RRC_CONNECTED mode, the UE goes to IDLE mode. The solution is not feasible for UE with potential long uplink transmission and additional re-access to network is needed, which is costing in terms of signaling overhead and delay. Depending on UE mobility, UE in RRC-connected state will need a new GNSS position fix in order to accommodate the accumulated time and frequency errors to reduce the possible radio link failure. Hence, in R18, there is conclusion that IoT NTN UE may need to re-acquire a valid GNSS position fix in long connection time. For GNSS position fix, hot start requires about 1~2 seconds, warm start requires several seconds, and cold start requires about 30 seconds.
This invention is motivated by, but not limited to, an IoT NTN scenario. In such a scenario, UE may need to re-acquire GNSS position fix in long connection time and needs to design the scheme to make UE re-acquire GNSS position fix in long connection time, to ensure the normal operation of NTN system.
NTN refers to a network that uses radio frequency and information processing resources carried on high, medium and low orbit satellites or other high-altitude communication platforms to provide communication services for UEs. According to the load capacity on the satellite, there are two typical scenarios: transparent payload and regenerative payload. The transparent payload mode means that the satellite will not process the signal and waveform in the communication service, but only forward the data as an RF amplifier. Regenerative payload mode refers to the satellite, besides RF amplification, also has the processing capabilities of modulation/demodulation, coding/decoding, switching, routing and so on.
In order to ensure the normal operation of IoT NTN system, UE needs to do pre-compensation of time delay and frequency offset based on UE GNSS and ephemeris related parameters. In 3GPP R17 for short sporadic transmission, the GNSS acquire has been discussed and relevant agreements have been obtained.
Figure PCTCN2022102971-appb-000001
In 3GPP R18 for long-term connection, the GNSS related discussion has been made and relevant agreements have been obtained in RAN1 109e.
Figure PCTCN2022102971-appb-000002
Depending on UE mobility, UE in RRC-connected state will need a new GNSS position fix in order to accommodate the accumulated time and frequency errors to reduce the possible radio link failure. UEs especially with high speed may need frequent GNSS position fix during long-term connections, which will introduce large power consumption. Besides, for long connection time, if UE always re-acquire GNSS position fix in idle, additional re-access to network is needed, which is costing in terms of signaling overhead and delay.
Hence, further scheme design needs to be carried out to re-acquire GNSS position fix in connected, so that save UE power consumption, to ensure the normal operation of IoT NTN system.
More specifically, we propose to consider the following alternatives for IoT NTN:
Alternative#1: GNSS position fix for UE in connected
GNSS position fix measurement length consists of at least the duration for UE to make GNSS measurement, may also include time duration to re-acquire DL synchronization and re-acquire NTN SIB if needed.
When GNSS position fix trigged in connected, UE assesses GNSS position fix measurement length; if GNSS position fix measurement length, X, is above new scheduling gap provided by a higher layer parameter ue-ScheduledGapGNSS, UE re-acquires GNSS in idle mode; if GNSS position fix measurement length, X, is not above new scheduling gap provided by a higher layer parameter ue-ScheduledGapGNSS, UE trigger procedure to re-acquire GNSS position fix in connected.
Note 1: X is reported when moving to RRC_CONNECTED. The network uses the value X to configure the UE with a new scheduling gap to at least make GNSS measurement, may also re-acquire DL synchronization and re-acquire NTN SIB if needed, where the gap is provided by a higher layer parameter ue-ScheduledGapGNSS. The value of the new scheduling gap shall be greater or equal to X so as to UE may re-acquire GNSS position fix in connected, where the value can be a cell_specific value indicated by SIB or a UE_specific value indicated by RRC signaling.
Note 2: At the end of the scheduling gap ue-ScheduledGapGNSS, the UE may trigger a scheduling request to report the new length of GNSS measurement and the new GNSS validity duration
Figure PCTCN2022102971-appb-000003
Alternative#2: GNSS position fix for network in connected.
Based on the GNSS assistance information, which includes (remaining) GNSS validity duration and GNSS position fix measurement length, reported by UE and the timing error of UL reference signals, network configures a new scheduling gap, ue-ScheduledGapGNSS, during which the UE at least re-acquire GNSS position fix, and may also re-acquire DL synchronization and re-acquire NTN SIB if needed, in connected.
If the UE does not trigger a scheduling request at the end of the new scheduling gap, the netwprk assumes the UE has moved to RRC idle.
Note 1: X is reported when moving to RRC_CONNECTED. The network uses the value X to configure the UE with a new scheduling gap to at least make GNSS measurement, may also re-acquire DL synchronization and re-acquire NTN SIB if needed, where the gap is provided by a higher layer parameter ue-ScheduledGapGNSS. The value of the new scheduling gap shall be greater or equal to X so as to UE may re-acquire GNSS position fix in connected, where the value can be a cell_specific value indicated by SIB or a UE_specific value indicated by RRC signaling.
Note 2: At the end of the scheduling gap ue-ScheduledGapGNSS, the UE may trigger a scheduling request to report the new length of GNSS measurement and the new GNSS validity duration
Note 3: During the new scheduling gap, ue-ScheduledGapGNSS, the network shall not schedule UE with DL assignment or UL grant.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”

Claims (13)

  1. A method performed by a UE, comprising:
    reporting GNSS assistance information;
    receiving GNSS position fix indication information,
    performing GNSS position fix acquisition procedure;
    triggering a scheduling request to report new GNSS position validity duration,
  2. The method of Claim 1, where report the GNSS assistance information in RRC_CONNECTED, which comprising:
    (remaining) GNSS validity duration,
    GNSS position fix measurement length.
  3. The method of Claim 2, wherein the GNSS position fix measurement length comprising:
    the duration for UE to make GNSS measurement,
    or the duration for UE to make GNSS measurement and the duration for UE to re-acquire DL synchronization,
    or the duration for UE to make GNSS measurement and the duration for UE to re-acquire DL synchronization and re-acquire NTN SIB.
  4. The method of Claim 1, wherein the GNSS position fix indication information comprising:
    the new scheduling gap indicated by a higher layer parameter ue-ScheduledGapGNSS,
    the timer T31Y indicated by a higher layer parameter GNSSMeasurementTimer.
  5. The method of Claim 4, the new scheduling gap, ue-ScheduledGapGNSS, is a cell_specific value indicated and updates by SIB,
    or a UE_specific value indicated and updates by RRC signaling,
    the value of the new scheduling gap shall be greater or equal to GNSS position fix measurement length with the unit 1 second;
    and the timer T31Y, GNSSMeasurementTimer, is a cell_specific value indicated and updates by SIB,
    or a UE_specific value indicated and updates by RRC signaling,
    can be set to the duration of new gap, ue-ScheduledGapGNSS.
  6. The method of Claim 1, if the GNSS position fix measurement length is above new scheduling gap:
    perform the actions upon leaving RRC_CONNECTED,
    perform GNSS position fix acquisition procedure in idle.
  7. The method of Claim 1, if the GNSS position fix measurement length is not above new scheduling gap:
    perform GNSS position fix procedure acquisition in connected,
    start timer T31Y,
    acquire GNSS position fix in timer T31Y,
    upon successful acquisition of GNSS position fix,
    acquire DL synchronization and acquire NTN SIB if needed before timer T31Y expiry;
    upon successful acquisition of DL synchronization and acquire NTN SIB if needed,
    reset timer T31Y,
    trigger a scheduling request to report new GNSS validity duration information via MAC CE or RRC signaling, at
    the end of the scheduling gap ue-ScheduledGapGNSS.
    or upon not successful acquire GNSS position fix before timer T31Y expiry,
    perform the actions upon leaving RRC_CONNECTED,
    reset timer T31Y.
  8. A method performed by a network, comprising:
    receiving GNSS assistance information,
    transmitting GNSS position fix indication information,
    receiving a scheduling request.
  9. The method of Claim 8, wherein the GNSS assistance information comprising:
    (remaining) GNSS validity duration,
    GNSS position fix measurement length.
  10. The method of Claim 9, wherein the GNSS position fix measurement length comprising:
    the duration for UE to make GNSS measurement,
    or the duration for UE to make GNSS measurement and the duration for UE to re-acquire DL synchronization,
    or the duration for UE to make GNSS measurement and the duration for UE to re-acquire DL synchronization and
    re-acquire NTN SIB.
  11. The method of Claim 8, wherein the GNSS position fix indication information comprising:
    the new scheduling gap indicated by a higher layer parameter ue-ScheduledGapGNSS,
    the timer T31Y indicated by a higher layer parameter GNSSMeasurementTimer.
    where new scheduling gap and the timer is set based on GNSS position fix measurement length.
  12. The method of Claim 8, if the network does not receive a scheduling request at the end of the new scheduling gap, the network assumes the UE has moved to RRC idle.
  13. The method of Claim 8, if network receives a scheduling request at the end of the new scheduling gap from the UE, then transmits UL grant for UE to transmit new GNSS assistance information.
PCT/CN2022/102971 2022-06-30 2022-06-30 Schemes on gnss position fix in connected in iot ntn WO2024000466A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/102971 WO2024000466A1 (en) 2022-06-30 2022-06-30 Schemes on gnss position fix in connected in iot ntn
CN202310652292.6A CN117336679A (en) 2022-06-30 2023-06-02 Method for wireless communication, user equipment and base station
EP23182056.4A EP4300139A1 (en) 2022-06-30 2023-06-28 Schemes on gnss position fix in connected in iot ntn
US18/448,084 US20240007992A1 (en) 2022-06-30 2023-08-10 Schemes on gnss position fix in connected in iot ntn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102971 WO2024000466A1 (en) 2022-06-30 2022-06-30 Schemes on gnss position fix in connected in iot ntn

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/448,084 Continuation US20240007992A1 (en) 2022-06-30 2023-08-10 Schemes on gnss position fix in connected in iot ntn

Publications (1)

Publication Number Publication Date
WO2024000466A1 true WO2024000466A1 (en) 2024-01-04

Family

ID=89289055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102971 WO2024000466A1 (en) 2022-06-30 2022-06-30 Schemes on gnss position fix in connected in iot ntn

Country Status (2)

Country Link
CN (1) CN117336679A (en)
WO (1) WO2024000466A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160349378A1 (en) * 2015-05-26 2016-12-01 Intel IP Corporation Power conservation via gnss-wireless activity synchronization
US20170289952A1 (en) * 2016-03-31 2017-10-05 Sequans Communications S.A. New Messaging Scheme For Positioning
WO2021133239A1 (en) * 2019-12-23 2021-07-01 Telefonaktiebolaget Lm Ericsson (Publ) Gnss measurement gaps
US20220039053A1 (en) * 2020-08-03 2022-02-03 Qualcomm Incorporated Methods and apparatus for low latency location via scheduling in advance
WO2022084958A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Access offset determination in conjunction with paging in non-terrestrial networks
CN114503783A (en) * 2021-12-31 2022-05-13 北京小米移动软件有限公司 GNSS validity processing method, device, equipment and storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160349378A1 (en) * 2015-05-26 2016-12-01 Intel IP Corporation Power conservation via gnss-wireless activity synchronization
US20170289952A1 (en) * 2016-03-31 2017-10-05 Sequans Communications S.A. New Messaging Scheme For Positioning
WO2021133239A1 (en) * 2019-12-23 2021-07-01 Telefonaktiebolaget Lm Ericsson (Publ) Gnss measurement gaps
US20220039053A1 (en) * 2020-08-03 2022-02-03 Qualcomm Incorporated Methods and apparatus for low latency location via scheduling in advance
WO2022084958A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Access offset determination in conjunction with paging in non-terrestrial networks
CN114503783A (en) * 2021-12-31 2022-05-13 北京小米移动软件有限公司 GNSS validity processing method, device, equipment and storage medium

Also Published As

Publication number Publication date
CN117336679A (en) 2024-01-02

Similar Documents

Publication Publication Date Title
EP3857734B1 (en) Device and method for timing adaptation for satellite communications
US20220232503A1 (en) Method of channel scheduling for narrowband internet of things in non-terrestrial network and user equipment using the same
US8238321B2 (en) Techniques for accessing a wireless communication system with tune-away capability
CN114930742A (en) Timing advance adjusting method in non-terrestrial network and related equipment
CN115280734B (en) Method and related apparatus for operation in non-terrestrial networks
US8311000B2 (en) Method for maintaining synchronisation in a radio communications system
US20220346158A1 (en) Method for 2-step random access message a resource configuration and terminal device
WO2022237845A1 (en) User equipment and method for timing alignment
US20230209647A1 (en) Discontinuous Reception in Non-Terrestrial Network
WO2024000466A1 (en) Schemes on gnss position fix in connected in iot ntn
CN115918230A (en) Wireless communication method and user equipment for UL PRACH transmission
US20230254851A1 (en) Timing Alignment for Uplink Transmissions in NTN
CN115702599A (en) Efficient signaling in non-terrestrial and terrestrial network deployments
US11877324B2 (en) Method and apparatus for handling contention resolution for a random access procedure in a wireless communication system
WO2023205384A1 (en) Uplink transmission scheduling in non-terrestrial networks
WO2024000469A1 (en) Schemes on gnss validity duration extension in iot ntn
WO2024055152A1 (en) Conditions on triggering gnss position fix in ntn
WO2023178558A1 (en) Schemes for solving sfn wrapping issues in ntn
US20240007992A1 (en) Schemes on gnss position fix in connected in iot ntn
WO2023240615A1 (en) Schemes on epoch time indication in ntn
EP4160938A1 (en) User equipment and method for maintaining uplink (ul) synchronization in a non-terrestrial network (ntn)
EP4250594A1 (en) Schemes on epoch time indication in non-terrestrial network (ntn)
WO2023221091A1 (en) Methods and apparatuses for mean ephemeris for discontinuous coverage
US20240031964A1 (en) Adjustment method and determination method for transmission timing, and terminal device
US20230209386A1 (en) Report Transmissions in Discontinuous Reception for Non-Terrestrial Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948569

Country of ref document: EP

Kind code of ref document: A1