WO2024000217A1 - 投影装置及显示系统 - Google Patents

投影装置及显示系统 Download PDF

Info

Publication number
WO2024000217A1
WO2024000217A1 PCT/CN2022/102167 CN2022102167W WO2024000217A1 WO 2024000217 A1 WO2024000217 A1 WO 2024000217A1 CN 2022102167 W CN2022102167 W CN 2022102167W WO 2024000217 A1 WO2024000217 A1 WO 2024000217A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
component
display panel
crystal display
Prior art date
Application number
PCT/CN2022/102167
Other languages
English (en)
French (fr)
Inventor
武晓娟
王宇杰
毕谣
王建
赵宇
王家星
段金帅
冯大伟
于志强
柳峰
陈翠玉
张宜驰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/102167 priority Critical patent/WO2024000217A1/zh
Priority to CN202280001931.6A priority patent/CN117897651A/zh
Publication of WO2024000217A1 publication Critical patent/WO2024000217A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present invention relates to the field of display, and in particular to a projection device and a display system.
  • LCD screens are increasingly used in the field of projectors.
  • LCD screens have been increasingly used in the field of projectors in recent years due to their advantages such as customizable size and resolution, single liquid crystal box, single optical path that can achieve color, low cost, and simple light path when used in projectors.
  • an embodiment of the present disclosure provides a projection device, which includes:
  • a light emitting component configured to generate light
  • a liquid crystal display panel located on the light-emitting side of the light-emitting component, includes: a first substrate, a second substrate, and a liquid crystal layer located between the first substrate and the second substrate, the liquid crystal layer including cholesteric liquid crystal , the cholesteric liquid crystal is configured to have a conical spiral texture when an electric field is applied, so as to reflect light that matches the pitch of the conical spiral texture;
  • An optical component located between the light-emitting component and the liquid crystal display panel, is configured to adjust the propagation direction of light, and the angle between the optical axis of the optical component and the normal line of the liquid crystal display panel is an acute angle;
  • the projection lens is configured to receive the light reflected by the liquid crystal display panel and project it.
  • the optical components include:
  • a collimating light extraction component is located between the light emitting component and the liquid crystal display panel, and is configured to adjust the light incident on the collimating light extraction component into collimated light and emit it toward the liquid crystal display panel.
  • the collimating light extraction component includes a first Fresnel lens.
  • the optical components further include:
  • the first light condensing component is located between the light emitting component and the collimating light extraction component, and is configured to converge the light incident on the first light condensing component to the collimating light extraction component.
  • the optical axis of the collimating light extraction component and the optical axis of the first light condensing component are located on the same straight line.
  • the projection device further includes:
  • the second light condensing component is located between the projection lens and the liquid crystal display panel, and is configured to converge the light incident on the second light condensing component to the projection lens.
  • the optical axis of the second light condensing component is parallel to the optical axis of the projection lens.
  • the second light condensing component includes a second Fresnel lens.
  • the optical axis of the second light condensing component is parallel to the normal line of the liquid crystal display panel.
  • the collimating light extraction component includes a first Fresnel lens
  • the second light condensing component includes a second Fresnel lens
  • the diameter of the first Fresnel lens is W1
  • the diameter of the second Fresnel lens is W2
  • W1 and W2 satisfy: W1 ⁇ W2.
  • the maximum width of the display area of the liquid crystal display panel is W0, and W0, W1 and W2 satisfy: W1 ⁇ W0 ⁇ W2.
  • the angle between the optical axis of the collimating light extraction component and the normal line of the liquid crystal display panel is ⁇ , and ⁇ is an acute angle;
  • the angle between the optical axis of the second light condensing component and the normal line of the liquid crystal display panel is the same as the angle between the optical axis of the collimating light extraction component and the normal line of the liquid crystal display panel. angles are equal;
  • the optical axis of the second light condensing component intersects the optical axis of the collimating light extraction component at a first node, and the optical axis of the second light condensing component is directed from the first node to the second condensing component.
  • the angle between the rays of the optical component and the rays directed from the first node along the optical axis of the collimating light-taking component to the collimating light-taking component is 2 ⁇ .
  • the first node is a center point of a display area of the liquid crystal display panel.
  • the collimating light extraction component includes a first Fresnel lens
  • the second light condensing component includes a second Fresnel lens
  • the diameter of the first Fresnel lens is W1
  • the diameter of the second Fresnel lens is W2
  • W1 and W2 satisfy: W2 ⁇ W1.
  • the maximum width of the display area of the liquid crystal display panel is W0, and W0, W1 and W2 satisfy: W2 ⁇ W1 ⁇ W0.
  • the second light collecting component receives the collimated light reflected by the liquid crystal display panel and forms an angle with the normal line of the liquid crystal display panel, and the collimated light extraction component faces the The angle between the collimated light emitted from the liquid crystal display panel and the normal line of the liquid crystal display panel is equal.
  • the angle between the collimated light emitted by the collimating light extraction component toward the liquid crystal display panel and the normal line of the liquid crystal display panel is ⁇ , and ⁇ satisfies: 0° ⁇ 80° .
  • satisfies: 30° ⁇ 70°.
  • satisfies: 45° ⁇ 60°.
  • the first substrate includes: a first substrate, a first electrode located on a side of the first substrate facing the second substrate, and a first electrode located on the side facing away from the first substrate. a first alignment layer on one side of the base substrate;
  • the second substrate includes: a second base substrate, a driving functional layer located on the side of the second base substrate facing the first substrate, and a driving functional layer located on the side facing away from the second base substrate. a plurality of second electrodes and a second orientation layer located on the side of the second electrode facing away from the second base substrate;
  • the driving function layer includes a plurality of driving circuits corresponding to the second electrodes, the driving circuits are connected to the corresponding second electrodes, and the driving circuits are configured to provide the corresponding second electrodes with Pixel voltage.
  • the cholesteric liquid crystal includes: nematic liquid crystal, chiral additives, and bending oligomers.
  • an embodiment of the present disclosure also provides a display system, which includes: the projection device provided in the first aspect.
  • the display system further includes:
  • a projection screen is located on the light exit side of the projection lens.
  • Figure 1 is a schematic structural diagram of a projection device provided by an embodiment of the present disclosure
  • Figure 2 is a schematic cross-sectional view of a liquid crystal display panel in an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of the cholesteric liquid crystal showing a focal cone texture in an embodiment of the present disclosure
  • Figure 4 is a schematic diagram of the cholesteric liquid crystal in the embodiment of the present disclosure when it has a conical spiral texture
  • Figure 5A is a schematic structural diagram of another projection device provided by an embodiment of the present disclosure.
  • Figure 5B is a schematic diagram of an optical path of the projection device shown in Figure 5A;
  • Figure 6 is a schematic diagram of the relationship between the reflected light angle and the color gamut under different incident light angles in an embodiment of the present disclosure
  • FIG. 7A and 7B are two schematic diagrams of realizing light incident on a liquid crystal display panel at a large angle in embodiments of the present disclosure
  • Figure 8A is a schematic structural diagram of yet another projection device provided by an embodiment of the present disclosure.
  • Figure 8B is a schematic diagram of an optical path of the projection device shown in Figure 8A;
  • Figure 9A is a schematic structural diagram of yet another projection device provided by an embodiment of the present disclosure.
  • Figure 9B is a schematic diagram of an optical path of the projection device shown in Figure 9A;
  • FIG. 10 is a schematic structural diagram of a display system provided by an embodiment of the present disclosure.
  • the element When interpreting an element, the element is interpreted to include a margin of error, although not explicitly described.
  • a structure eg, an electrode, a line, a wiring, a layer or a contact
  • a structure eg, an electrode, a line, a wiring, a layer or a contact
  • Embodiments of the invention may be connected or combined with one another, in part or in whole, and may be interoperable and technology driven in various ways, as will be fully understood by those skilled in the art.
  • Embodiments of the invention may be executed independently of each other or may be executed together in an interdependent relationship.
  • the colors in the projected image are realized through the color filter film (Color Filter) in the LCD.
  • the thickness of the color filter film is designed to be thicker, resulting in lower transmittance, thus lowering the light utilization rate; at the same time, using polarizers to achieve gray scale adjustment further reduces the light utilization rate.
  • the color filter film achieves color by absorbing light of complementary wavelengths, when the light source brightness is high, the heat absorbed by the color filter film will increase the temperature of the LCD panel, affecting the performance of the LCD panel.
  • the present disclosure provides a new projection device based on LCD, which can achieve high color gamut color display without the need for a color filter film; at the same time, the projection device The device also has high light utilization efficiency.
  • FIG. 1 is a schematic structural diagram of a projection device provided by an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view of a liquid crystal display panel in an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a cholesteric liquid crystal in a focal cone texture according to an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of the cholesteric liquid crystal in an embodiment of the present disclosure when it has a conical spiral texture.
  • the projection device includes: a light-emitting component 1, a liquid crystal display panel 2 and a transmission lens.
  • the light-emitting component 1 is configured to generate light.
  • the liquid crystal display panel 2 is located on the light emitting side of the light-emitting component 1, and includes: a first substrate 21, a second substrate 22, and a liquid crystal layer 23 located between the first substrate 21 and the second substrate 22.
  • the liquid crystal layer 23 includes cholesteric liquid crystal.
  • the cholesteric liquid crystal is configured to have a conical helical texture when an electric field is applied to reflect light that matches the pitch of the conical helical texture.
  • the optical component 100 is located between the light-emitting component and the liquid crystal display panel.
  • the optical component 100 is configured to adjust the propagation direction of light.
  • the optical axis of the optical component 100 forms an acute angle with the normal line of the liquid crystal display panel.
  • the projection lens 3 is configured to receive the light reflected by the liquid crystal display panel 2 and project it.
  • the liquid crystal display panel 2 is a liquid crystal display panel 2 implemented based on a cholesteric liquid crystal layer.
  • Cholesteric liquid crystal contains many layers of molecules. Each layer of molecules is arranged in the same direction, but the arrangement direction of the adjacent two layers of molecules is slightly rotated, and the layers are stacked into a spiral structure. When the molecules are arranged 360°, they return to the original direction. is a pitch.
  • Average refractive index, n (n o +n e )/2, p is the pitch of cholesteric liquid crystal.
  • the helical pitch of cholesteric liquid crystal is constant, it will reflect light in a specific wavelength range corresponding to the helical pitch, thereby showing the corresponding color. It can be seen that by adjusting the helical pitch of the cholesteric liquid crystal, the color of the light reflected by the cholesteric liquid crystal can be controlled (different helical pitches can reflect different colors of light).
  • the electric field can be used to control the pitch of the cholesteric liquid crystal in the liquid crystal display panel 2 when it has a tapered spiral texture, so that the color of the light emitted by the specular reflection of the cholesteric liquid crystal can be controlled to achieve color display.
  • Due to the special cone-shaped spiral structure of the cholesteric liquid crystal in this invention when observed at the specular reflection angle of incident light, it has the best optical properties (see the relevant description of Figure 6 below), such as reflectivity and color. Therefore, the control of light color is achieved based on the specular reflection of cholesteric liquid crystal, and it also has a high light utilization rate.
  • the process of projecting a color picture by the projection device is as follows: the light-emitting component 1 can emit visible light; after the visible light is irradiated to the cholesteric liquid crystal display panel 2, the cholesteric liquid crystal display panel 2 at each position in the cholesteric liquid crystal display panel 2
  • the phase liquid crystal reflects the light in the visible light whose wavelength matches the pitch according to the pitch of the tapered spiral texture to present a high-color gamut color display;
  • the projection lens 3 receives the light reflected by the liquid crystal display panel 2 and performs Projection means projecting the image.
  • the technical solution of the present disclosure can achieve high-color gamut color picture projection without the need to install a color filter film; in addition, the cholesteric liquid crystal with a tapered spiral texture has good response to the selected wavelength of light. It has high reflectivity (close to 50%), so the entire projection device has high light utilization efficiency.
  • the light-emitting component 1 may include a plurality of light-emitting elements.
  • the light emitting element may include: a light emitting diode (Light Emitting Diode, LED).
  • LED Light Emitting Diode
  • smaller LEDs such as Micro Light-Emitting Diode (MicroLED) or sub-millimeter Light-Emitting Diode (MiniLED) can be used to achieve higher collimation of the light-emitting elements.
  • the number, size, arrangement, etc. of the light-emitting elements in the light-emitting component 1 can be set by those skilled in the art according to actual conditions, and this disclosure does not limit this.
  • the light emitted by the light-emitting component 1 is white light, and the white light is mixed light, and the wavelength range is the visible light region from 390 nm to 770 nm.
  • the first substrate 21 includes: a first substrate 201 , a first electrode 202 located on the side of the first substrate 201 facing the second substrate 22 , and a first electrode 202 located on the side of the first substrate 201 facing the second substrate 22 .
  • the driving function layer 205 is located on the plurality of second electrodes 206 on the side facing away from the second base substrate 204, and the second orientation layer 207 on the side of the second electrode 206 facing away from the second base substrate 204;
  • the driving function layer 205 includes:
  • the second electrodes 206 have a one-to-one correspondence with a plurality of driving circuits (not shown), the driving circuits are connected to the corresponding second electrodes 206 , and the driving circuits are configured to provide pixel voltages to the corresponding second electrodes.
  • a spacer 24 is also provided between the first substrate 21 and the second substrate 22 .
  • the first base substrate 201 and the second base substrate 204 can be independently selected as a hard base substrate or a flexible base substrate.
  • the hard substrate may be a glass substrate
  • the flexible substrate may be a resin substrate.
  • the first electrode 202 is located on the first base substrate 201, and the second electrode 206 is located on the second base substrate 204.
  • the first electrode 202 can be a planar electrode, that is, the first electrode 202 is laid out in a planar whole layer, and the first electrode 202 can be used as a common electrode; the second electrode 206 can be a plate electrode, and a plurality of third electrodes can be used as a common electrode.
  • the two electrodes 206 are arranged in an array on the second substrate.
  • the second electrodes 206 can be used as pixel electrodes.
  • the display mode of the liquid crystal display panel 2 is a twisted nematic (TN) display mode.
  • Each of the first electrode 202 and the second electrode 206 may be a transparent electrode, such as a transparent electrode prepared using a metal oxide (eg, ITO, IZO, IGZO, etc.).
  • the cholesteric liquid crystal when no electric field is formed between the first electrode 202 and the second electrode 206, the cholesteric liquid crystal exhibits a focal conic texture and scatters incident light; as shown in Figure 4, when the first electrode 202 and the second electrode 206 When different voltages are applied between the two electrodes 206 to form an electric field, the cholesteric liquid crystal located in the electric field changes from a focal conic texture to a conical spiral texture, so that it can reflect incident visible light matching its helical pitch. Under different electric fields, It can reflect visible light of different colors to achieve color display.
  • the driving circuit connected to the corresponding second electrode 206 is generally composed of a thin film transistor and a storage capacitor, and is used to write the pixel voltage provided by the data line into the corresponding second electrode 206 .
  • the technical solution of the present disclosure does not limit the specific circuit structure of the driving circuit.
  • the cholesteric liquid crystal is a mixture
  • the cholesteric liquid crystal mixture includes: nematic liquid crystal, chiral additives, and bending oligomers.
  • nematic liquid crystals may include CB-type liquid crystals such as 5CB, 7CB, and 8CB, or may be nematic mixed crystals for conventional displays.
  • the bent oligomer can be some low molecular weight bent oligomers, such as bent dimers and bent trimers.
  • a cholesteric liquid crystal mixture includes two bending dimer compounds (referred to as a first bending dimer compound and a second bending dimer compound) and a bending trimer compound. .
  • the molecular formula of the first bent dimer compound can be as follows:
  • the molecular formula of the second bent dimer compound can be as follows:
  • the molecular formula of the bent trimer compound can be as follows:
  • the molecular formula of a chiral additive can be as follows:
  • the above-mentioned first curved dimer compound, second curved dimer compound, curved trimer compound, chiral additive, and nematic liquid crystal mixture SLC1717 can be mixed in a mass ratio of 38% /5%/7%/5%/45% are mixed evenly to obtain a cholesteric liquid crystal mixture.
  • a first alignment layer 203 is also provided on the first substrate 21, and a second alignment layer 207 is also provided on the second substrate 22.
  • the first alignment layer 203 and the second alignment layer 207 can adopt vertical orientation or Parallel orientation.
  • liquid crystal display panel 2 provided in the embodiment of the present disclosure does not include a polarizer, so there is no problem in the related art that the light utilization efficiency of the product is reduced due to the provision of a polarizer.
  • FIG. 5A is a schematic structural diagram of another projection device provided by an embodiment of the present disclosure.
  • FIG. 5B is a schematic diagram of an optical path of the projection device shown in FIG. 5A.
  • the optical component 100 includes: a collimating light-extracting component 4 , which is located between the light-emitting component 1 and the liquid crystal display panel 2 and is configured to convert incident light onto the light-emitting component 1 .
  • the light from the collimating light extraction component 4 is adjusted into collimated light rays and emitted toward the liquid crystal display panel 2 .
  • all light rays with a divergence angle less than or equal to 10° can be collimated light rays in the embodiment of the present disclosure.
  • the light extraction component 4 by collimating the light extraction component 4, most of the light emitted by the light-emitting component 1 can be collimated and emitted, which can effectively improve the light utilization rate of the light-emitting element.
  • the collimating light extraction component 4 includes a first Fresnel lens.
  • the first Fresnel lens may include a central portion corresponding to the circular shape of the center of the Fresnel wave zone and an annular portion corresponding to the annular shape of the Fresnel wave zone.
  • the light-emitting element may be located at the focus of the collimating light-extracting component 4 (ie, the Fresnel lens).
  • the focus of the collimating light-extracting component 4 ie, the Fresnel lens
  • FIG. 6 is a schematic diagram of the relationship between the reflected light angle and the color gamut under different incident light angles in an embodiment of the present disclosure.
  • an optical test is performed on the liquid crystal display panel 2 to test the relationship between the color gamut obtained by different reflected light angles under different incident light angles, where the incident light described in the present disclosure is The angle or reflected light angle refers to the angle between the light and the liquid crystal display panel 2 .
  • the process of testing the color gamut obtained at different reflected light angles is roughly as follows: Place the LCD panel horizontally on the base of the optical detection equipment, and the incident light is measured from a certain angle (such as 30° , 45°, 60°, etc.) incident on the Panel, receive reflected light signals from different angles to test the color coordinates, and then calculate the color gamut corresponding to different receiving angles through formulas based on the detected color coordinates.
  • a certain angle such as 30° , 45°, 60°, etc.
  • the mass percentage of each component in the liquid crystal layer in the liquid crystal display panel 2 was: 55% nematic liquid crystal, 40% bending oligomer mixture, and 5% chiral dopant.
  • the maximum color gamut can be obtained when the reflected light angle is 30°, which is about 31% NTSC color gamut; when the incident light angle is 45°, the reflected light angle is 40 °, the maximum color gamut can be obtained, which is about 58% NTSC color gamut; when the incident light angle is 60°, the maximum color gamut can be obtained when the reflected light angle is 60°, which is about 75% NTSC color gamut.
  • FIG. 7A and 7B are two schematic diagrams of realizing light incident at a large angle to the liquid crystal display panel in embodiments of the present disclosure. As shown in FIG. 7A and FIG. 7B , in practical applications, in order to achieve a larger incident light angle ⁇ , generally There are two ways:
  • Method 1 Set the optical axis 4a of the collimating light-extracting component 4 to form an angle ⁇ ' smaller than ⁇ with the normal line of the liquid crystal display panel 2, and then set the light-emitting surface 1a of the light-emitting component 1 to be in contact with the collimating light-extracting component.
  • the optical axis 4a of 4 forms a certain angle ⁇ , so that the incident light angle of the collimated light emitted by the collimating light-taking component 4 is ⁇ .
  • the collimated light emitted by the collimating light-extracting component 4 also forms a certain angle with the optical axis 4a of the collimating light-extracting component 4 .
  • Method 2 Set the optical axis 4a of the collimating light-extracting component 4 to form an angle ⁇ with the normal line of the liquid crystal display panel 2, and then set the light-emitting surface 1a of the light-emitting component 1 to the optical axis 4a of the collimating light-extracting component 4. Vertical, so that the incident light angle of the collimated light emitted by the collimated light extraction component 4 is ⁇ . At this time, the collimated light emitted by the collimating light-extracting component 4 is parallel or substantially parallel to the optical axis 4a of the collimating light-extracting component 4 .
  • the problem of low light utilization efficiency and high divergence of the emitted light can be solved.
  • the optical axis of the collimating light-extracting component 4 forms a larger angle with the normal line of the liquid crystal display panel 2, which requires the collimating light-extracting component 4 to be placed farther away from the liquid crystal display panel 2 (if the distance is closer, Then it is difficult for the light emitted by the collimated light extraction component 4 to completely cover the entire liquid crystal display panel 2), which will result in the overall size of the entire projection device being too large.
  • the angle ⁇ formed between the collimated light emitted by the collimating light extraction component 4 toward the liquid crystal display panel 2 and the normal line of the liquid crystal display panel 2 should not be too large.
  • satisfies: 0° ⁇ 80°.
  • satisfies: 30° ⁇ 70°.
  • satisfies: 45° ⁇ 60°.
  • the light-emitting surface of the light-emitting component 1 is set perpendicular to the optical axis 4a of the collimating light-extracting component 4, and the collimated light emitted by the collimating light-extracting component 4 is Being parallel or substantially parallel to the optical axis 4a of the collimating light-taking component 4 can effectively improve the light utilization rate.
  • the optical component 100 further includes: a first light condensing component 5 located between the light emitting component 1 and the collimating light extraction component 4 , the first light condensing component 5 is configured to convert incident light onto The light from the first light collecting component 5 is converged to the collimating light extraction component 4 .
  • the first light collecting component 5 may be a convex lens.
  • the first light condensing component 5 between the light-emitting component 1 and the collimating light-taking component 4, the light emitted by the light-emitting component 1 is first concentrated, so that the light can only be diverged to a small degree.
  • the light beam is emitted in the direction of the nearly collimated light-extracting component 4.
  • it can effectively improve the light utilization rate.
  • it is conducive to reducing the size of the collimating light-extracting component 4, which is conducive to the overall small size and thinness of the product. change.
  • the optical axis 4a of the collimating light extraction component 4 and the optical axis of the first light condensing component 5 are located on the same straight line.
  • the center of the light exit surface of the first light condensing component 5 may be located at the focus of the collimating light extraction component 4; At the same time, the center of the light-emitting surface of the light-emitting component 1 may also be located at the focus of the first light-condensing component 5 .
  • FIG. 8A is a schematic structural diagram of yet another projection device provided by an embodiment of the present disclosure.
  • FIG. 8B is a schematic diagram of an optical path of the projection device shown in FIG. 8A.
  • the projection device further includes: a second light condensing component 6 , the second condensing component 6 is located between the projection lens 3 and the liquid crystal display panel 2 and is configured to convert incident light onto the liquid crystal display panel 2 . The light from the second light condensing component 6 is converged to the projection lens 3 .
  • the second light condensing component 6 by disposing the second light condensing component 6 between the projection lens 3 and the liquid crystal display panel 2 , on the one hand, it can effectively improve the light utilization rate, and on the other hand, it is conducive to miniaturization of the projection lens 3 .
  • the second light collecting component 6 receives the angle between the collimated light reflected by the liquid crystal display panel 2 and the normal line of the liquid crystal display panel 2 (that is, the reflected light angle), and is in contact with the collimated light extraction component 4 The angle between the collimated light emitted toward the liquid crystal display panel 2 and the normal line of the liquid crystal display panel 2 (that is, the incident light angle) is equal.
  • the optical axis 6a of the second light condensing component 6 is parallel to the optical axis 3a of the projection lens 3. This design helps improve light utilization.
  • the second light condensing component 6 includes a second Fresnel lens.
  • the second Fresnel lens may include: a central part corresponding to the circular shape of the center of the Fresnel wave zone and an annular part corresponding to the annular shape of the Fresnel wave zone.
  • the optical axis 6 a of the second light condensing component 6 is parallel to the normal line of the liquid crystal display panel 2 . That is to say, the above-mentioned second Fresnel lens is parallel to the liquid crystal display panel 2 as a whole.
  • the picture presented by the liquid crystal display panel 2 can be completely and reliably received by the second Fresnel lens.
  • this solution will have a certain impact on the light utilization rate.
  • the collimating light extraction component 4 includes a first Fresnel lens
  • the second light condensing component 6 includes a second Fresnel lens.
  • the diameter of the first Fresnel lens is W1
  • the diameter of the second Fresnel lens is W2.
  • W1 and W2 satisfy: W1 ⁇ W2.
  • the maximum width of the display area of the liquid crystal display panel 2 is W0, and W0, W1 and W2 satisfy: W1 ⁇ W0 ⁇ W2.
  • the incident light beam required by the liquid crystal display panel 2 is incident at a certain angle ⁇ .
  • the minimum width of the incident light beam required by the liquid crystal display panel 2 is W0*sin ⁇ , so the first Fresnel lens
  • the minimum diameter can be set to W0*sin ⁇ , so W1 can be designed to be less than or equal to W0.
  • the minimum diameter of the first Fresnel lens can be set to W0, so W2 can be designed to be less than or equal to W0.
  • W0, W1 and W2 can satisfy: W1 ⁇ W0 ⁇ W2.
  • FIG. 9A is a schematic structural diagram of yet another projection device provided by an embodiment of the present disclosure.
  • FIG. 9B is a schematic diagram of an optical path of the projection device shown in FIG. 9A.
  • the collimation light extraction component 4 is parallel to the normal line of the liquid crystal display panel 2 .
  • the optical axis 4a of the light component 4 and the normal line of the liquid crystal display panel 2 form an angle ⁇ , and ⁇ is an acute angle.
  • the optical axis 6a of the second light condensing component 6 forms a preset angle ⁇ with the normal line of the liquid crystal display panel 2;
  • the optical axis 6a of the second light condensing part 6 intersects the optical axis 4a of the collimating light extraction part 4 at the first node N1, and points from the first node N1 along the optical axis 6a of the second light condensing part 6 to the second light condensing part 6, and the ray directed from the first node N1 along the optical axis 4a of the collimating light-taking component 4 to the collimating light-taking component 4, the angle between the two rays is 2 ⁇ .
  • the incident light of the liquid crystal display panel 2 can be parallel to the optical axis 4a of the collimating light extraction component 4, and the reflected light of the liquid crystal display panel 2 can be parallel to the optical axis of the second light collecting component 6 6a parallel.
  • the reflected light of the liquid crystal display panel 2 shown in FIG. 8A and the optical axis 6a of the second light condensing member 6 are not parallel. Parallel technical solutions can effectively improve light utilization.
  • the first node N1 is the center point of the liquid crystal display panel 2 . That is to say, the optical axis 6a of the second light condensing part 6 and the optical axis 4a of the collimating light extraction part 4 intersect at the center point of the liquid crystal display panel 2.
  • the collimating light-extracting component 4 includes a first Fresnel lens
  • the second light-gathering component 6 includes a second Fresnel lens
  • the diameter of the first Fresnel lens is W1
  • the diameter of the second Fresnel lens is W1.
  • the diameter of the lens is W2, and W1 and W2 satisfy: W2 ⁇ W1.
  • the maximum width of the display area of the liquid crystal display panel 2 is W0, and W0, W1 and W2 satisfy: W2 ⁇ W1 ⁇ W0.
  • the incident light beam required by the liquid crystal display panel 2 is incident at a certain angle ⁇ .
  • the minimum width of the incident light beam required by the liquid crystal display panel 2 is W0*sin ⁇ , so the first Fresnel lens
  • the minimum diameter can be set to W0*sin ⁇ , so W1 can be designed to be less than or equal to W0.
  • the diameter of the first Fresnel lens can be set to the minimum value W0*sin ⁇ , that is, the size of the first Fresnel lens is minimized. .
  • the width of the reflected light beam reflected by the liquid crystal display panel 2 is W0*sin ⁇ , so the minimum diameter of the second Fresnel lens can be set to W0*sin ⁇ , so W2 can be designed to be less than or equal to W0.
  • the diameter of the second Fresnel lens can be set to the minimum value W0*sin ⁇ , that is, the size of the second Fresnel lens is minimized. .
  • the projection device may be a projection light machine.
  • the projection device can be: a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a navigator, or any other product or component with display and projection functions.
  • the embodiment of the present disclosure does not limit the type of the projection device.
  • Other essential components of the projection device are understood by those of ordinary skill in the art, and will not be described in detail here, nor should they be used to limit the present disclosure.
  • FIG. 10 is a schematic structural diagram of a display system provided by an embodiment of the present disclosure.
  • the display system includes a projection device 11.
  • the projection device 11 can be the projection device 11 provided in any of the above embodiments.
  • the projection device 11 please refer to the content in the previous embodiments. No further details will be given here.
  • the display system further includes a projection screen 12 located on the light exit side of the projection lens.
  • the plane of the projection screen is perpendicular to the optical axis of the projection lens; this arrangement is beneficial to improving light utilization.

Abstract

一种投影装置,包括:发光部件,配置为产生光线;液晶显示面板,位于发光部件的出光侧,包括第一基板、第二基板以及位于第一基板和第二基板之间的液晶层,液晶层包括胆甾相液晶,胆甾相液晶配置为在施加有电场作用时呈锥形螺旋织构,以反射与锥形螺旋织构的螺距相匹配的光线;光学部件,位于发光部件与液晶显示面板之间,配置为调整光线的传播方向,光学部件的光轴与液晶显示面板的法线所成夹角为锐角;投射镜头,配置为接收液晶显示面板所反射的光线并进行投射。一种显示系统包含上述投影装置。

Description

投影装置及显示系统 技术领域
本发明涉及显示领域,特别涉及一种投影装置及显示系统。
背景技术
随着液晶显示技术的发展,显示屏在投影仪领域的应用越来越广泛。液晶显示屏由于具有尺寸及分辨率可定制设计、单液晶盒、单光路可实现彩色、成本低、应用于投影仪时光路简单等优点,近年来在投影仪领域的应用日益增强。
发明内容
第一方面,本公开实施例提供了一种投影装置,其中,包括:
发光部件,配置为产生光线;
液晶显示面板,位于所述发光部件的出光侧,包括:第一基板、第二基板以及位于所述第一基板与所述第二基板之间的液晶层,所述液晶层包括胆甾相液晶,所述胆甾相液晶配置为在施加有电场作用时呈锥形螺旋织构,以反射与所述锥形螺旋织构的螺距相匹配的光线;
光学部件,位于所述发光部件与所述液晶显示面板之间,配置为调整光线的传播方向,所述光学部件的光轴与所述液晶显示面板的法线所呈夹角为锐角;
投射镜头,配置为接收所述液晶显示面板所反射的光线并进行投射。
在一些实施例中,所述光学部件包括:
准直取光部件,位于所述发光部件与所述液晶显示面板之间,配置为将入射到所述准直取光部件的光调整为准直光线并朝所述液晶显示面板出射。
在一些实施例中,所述准直取光部件包括第一菲涅尔透镜。
在一些实施例中,所述光学部件还包括:
第一聚光部件,位于所述发光部件与所述准直取光部件之间,配置为将入射到所述第一聚光部件的光线,汇聚至所述准直取光部件。
在一些实施例中,所述准直取光部件的光轴与所述第一聚光部件的光轴位于同一直线上。
在一些实施例中,所述投影装置还包括:
第二聚光部件,位于所述投射镜头与所述液晶显示面板之间,配置为将入射到所述第二聚光部件的光线,汇聚至所述投射镜头。
在一些实施例中,所述第二聚光部件的光轴与所述投射镜头的光轴平行。
在一些实施例中,所述第二聚光部件包括第二菲涅尔透镜。
在一些实施例中,所述第二聚光部件的光轴与所述液晶显示面板的法线平行。
在一些实施例中,所述准直取光部件包括第一菲涅尔透镜,所述第二聚光部件包括第二菲涅尔透镜;
所述第一菲涅尔透镜的直径为W1,所述第二菲涅尔透镜的直径为W2,W1与W2满足:W1≤W2。
在一些实施例中,所述液晶显示面板的显示区域的最大宽度为W0,W0、W1与W2满足:W1≤W0≤W2。
在一些实施例中,所述准直取光部件的光轴与所述液晶显示面板的法线所呈夹角为β,β为锐角;
所述第二聚光部件的光轴与液晶显示面板的法线所呈夹角的角度,与所述所述准直取光部件的光轴与所述液晶显示面板的法线所呈夹角的角度相等;
所述第二聚光部件的光轴与所述准直取光部件的光轴相交于第一节 点,从所述第一节点沿所述第二聚光部件的光轴指向所述第二聚光部件的射线,与从所述第一节点沿所述准直取光部件的光轴指向所述准直取光部件的射线,两条射线所呈夹角为2β。
在一些实施例中,所述第一节点为所述液晶显示面板的显示区域的中心点。
在一些实施例中,所述准直取光部件包括第一菲涅尔透镜,所述第二聚光部件包括第二菲涅尔透镜;
所述第一菲涅尔透镜的直径为W1,所述第二菲涅尔透镜的直径为W2,W1与W2满足:W2≤W1。
在一些实施例中,所述液晶显示面板的显示区域的最大宽度为W0,W0、W1与W2满足:W2≤W1≤W0。
在一些实施例中,所述第二聚光部件接收所述液晶显示面板所反射的准直光线与所述液晶显示面板的法线所呈夹角,与所述准直取光部件朝所述液晶显示面板出射的准直光线与所述液晶显示面板的法线所呈夹角,二者相等。
在一些实施例中,所述准直取光部件朝所述液晶显示面板出射的准直光线与所述液晶显示面板的法线所呈夹角为θ,θ满足:0°<θ≤80°。
在一些实施例中,θ满足:30°≤θ≤70°。
在一些实施例中,θ满足:45°≤θ≤60°。
在一些实施例中,所述准直取光部件的光轴与所述液晶显示面板的法线所呈夹角为β,β=θ。
在一些实施例中,所述第一基板包括:第一衬底基板、位于第一衬底基板朝向所述第二基板一侧的第一电极、位于所述第一电极背向所述第一衬底基板一侧的第一取向层;
所述第二基板包括:第二衬底基板、位于所述第二衬底基板朝向所 述第一基板一侧驱动功能层、位于所述驱动功能层背向所述第二衬底基板一侧的多个第二电极、位于所述第二电极背向所述第二衬底基板一侧的第二取向层;
所述驱动功能层包括与所述第二电极一一对应的多个驱动电路,所述驱动电路与对应的所述第二电极连接,所述驱动电路配置为向对应的所述第二电极提供像素电压。
在一些实施例中,所述胆甾相液晶包括:向列相液晶、手性添加剂和弯曲型齐聚物。
第二方面,本公开实施例还提供了一种显示系统,其中,包括:如第一方面中提供的所述投影装置。
在一些实施例中,显示系统还包括:
投影屏幕,位于所述投影镜头的出光侧。
附图说明
图1为本公开实施例提供的一种投影装置的结构示意图;
图2为本公开实施例中液晶显示面板的一种截面示意图;
图3为本公开实施例中胆甾相液晶呈焦锥织构时的示意图;
图4为本公开实施例中胆甾相液晶呈锥形螺旋织构时的示意图;
图5A为本公开实施例提供的另一种投影装置的结构示意图;
图5B为图5A所示投影装置的一种光路示意图;
图6为本公开实施例中不同入射光角度下反射光角度与色域的关系曲线示意图;
图7A和图7B为本公开实施例中实现光线大角度入射至液晶显示面板的两种示意图;
图8A为本公开实施例提供的又一种投影装置的结构示意图;
图8B为图8A所示投影装置的一种光路示意图;
图9A为本公开实施例提供的再一种投影装置的结构示意图;
图9B为图9A所示投影装置的一种光路示意图;
图10为本公开实施例提供的一种显示系统的结构示意图。
具体实施方式
下面将详细参照本发明的示例性实施方式,在附图中示出这些实施方式的示例。在任何可能的地方,在整个附图中,将使用相同的参考标号表示相同或类似的部件。
通过下面参照附图描述的实施方式,将阐明本发明的优点和特征及其实现方法。然而,本发明可以用不同形式实施并且不应该被理解为限于本文阐明的实施方式。相反,提供这些实施方式,使得本公开将是彻底和完全的,并且将把本发明的范围充分传达给本领域的技术人员。另外,本发明只由权利要求书的范围限定。
用于描述本发明的实施方式的附图中公开的形状、尺寸、比率、角度和数量只是示例,因此,本发明不限于图示的细节。类似的参考标号始终表示类似的元件。在下面的描述中,当确定对与相关已知功能或构造的详细描述不必要地混淆了本发明的要点时,将省略详细描述。
在使用本说明书中描述的“包括”、“具有”和“包括”的情况下,除非使用“只”,否则可添加其它部分。单数形式的术语可包括复数形式,除非做相反描述。
在解释元件时,该元件被解释为包括误差范围,尽管没有明确描述。
在对本发明的实施方式的描述中,当结构(例如,电极、线、布线、层或接触件)被描述为形成在另一个结构的上部部分/下部部分或其它结构的上面/下面时,这个描述应该被理解为包括这些结构彼此接触的情况,此外还包括在其间设置第三结构的情况。
在描述时间关系的过程中,例如,当时间次序被描述为“之后”、 “随后”、“接下来”和“之前”时,除非使用“正好”或“紧接”,否则可包括不连续的情况。
应该理解,尽管术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不应该受这些术语限制。这些术语只是用于将一个元件与另一个元件区分开。例如,在不脱离本发明的范围的情况下,第一元件可以被称为第二元件,类似地,第二元件可被称为第一元件。
本发明的各种实施方式的特征可部分地或整体彼此连接或组合,并且可按各种方式相互操作并且按技术驱动,如本领域的技术人员可充分理解的。本发明的实施方式可彼此独立地执行,或者可按相互依赖的关系一起执行。
下文中,将参照附图详细描述本发明的示例实施方式。
在相关技术中,将液晶显示面板(Liquid Crystal Display,简称LCD)应用至投影仪时,投影画面中的彩色是通过LCD中的彩色滤光膜(Color Filter)来实现,为实现高色域显示,通常会将彩色滤光膜厚度设计较厚而导致透过率较低,从而导致光利用率较低;与此同时,使用偏光片实现灰阶调节,进一步降低了光利用率。此外,由于彩色滤光膜实现彩色原理为吸收互补波长的光线,在光源亮度较高的情况下,彩色滤光膜吸收的热量会使得液晶显示面板的温度升高,影响液晶显示面板性能。
为有效改善相关技术中存在的至少之一的技术问题,本公开提供了一种基于LCD的新投影装置,可在无需设置彩色滤光膜的情况下实现高色域彩色显示;同时,该投影装置还具有较高的光利用率。
图1为本公开实施例提供的一种投影装置的结构示意图。图2为本公开实施例中液晶显示面板的一种截面示意图。图3为本公开实施例中胆甾相液晶呈焦锥织构时的示意图。图4为本公开实施例中胆甾相液晶呈锥形螺旋织构时的示意图。如图1至图4所示,该投影装置包括:发 光部件1、液晶显示面板2和透射镜头。
发光部件1,配置为产生光线。
液晶显示面板2,位于发光部件1的出光侧,包括:第一基板21、第二基板22以及位于第一基板21与第二基板22之间的液晶层23,液晶层23包括胆甾相液晶,胆甾相液晶配置为在施加有电场作用时呈锥形螺旋织构,以反射与锥形螺旋织构的螺距相匹配的光线。
光学部件100,位于发光部件与液晶显示面板之间,光学部件100配置为调整光线的传播方向,光学部件100的光轴与液晶显示面板的法线所呈夹角为锐角。
投射镜头3,配置为接收液晶显示面板2所反射的光线并进行投射。
在本公开实施例中,液晶显示面板2为基于胆甾相液晶层所实现的液晶显示面板2。胆甾相液晶包含着许多层分子,每层分子的排列方向相同,但相邻两层分子排列方向稍有旋转,层层叠成螺旋结构,当分子的排列旋转了360°而又回到原来方向为一个螺距。在胆甾相液晶呈锥形螺旋织构时,胆甾相液晶具有选择性镜面反射特性,具体地,胆甾相液晶遵从布拉格定律:λ=n*p,其中,n为胆甾相液晶的平均折射率,n=(n o+n e)/2,p为胆甾相液晶的螺距。反射的波长宽度为△λ=△n*p,△n=n e-n o,n e为胆甾相液晶的非寻常光折射率,n o为胆甾相液晶的寻常光折射率,在胆甾相液晶的螺距一定时,就会反射与该螺距相对应的特定波长段的光,从而呈现出对应颜色。由此可见,通过调整胆甾相液晶的螺距,可以实现对胆甾相液晶所反射光的颜色的控制(不同螺距,可以反射不同颜色的光)。
在本公开实施例中,可利用电场来控制液晶显示面板2内胆甾相液晶呈锥形螺旋织构时的螺距,从而可对胆甾相液晶进行镜面反射的出光颜色进行控制,实现彩色显示。由于此发明中胆甾相液晶特殊的锥形螺旋结构,当在入射光的镜面反射角度观察时,具有最好的光学特性(参 见后面对图6的相关描述),如反射率和颜色。故基于胆甾相液晶的镜面反射来实现对出光颜色的控制,也具备较高的光利用率。
本公开实施例所提供的投影装置进行彩色画面投射的过程如下:发光部件1可以发出可见光;可见光照射至胆甾相液晶显示面板2后,胆甾相液晶显示面板2内各位置处的胆甾相液晶根据所呈锥形螺旋织构的螺距来对可见光中波长与螺距相匹配的光进行反射,以呈现高色域的彩色显示画面;投射镜头3接收液晶显示面板2所反射的光线并进行投射,即实现画面投射。
基于上述内容可见,本公开的技术方案可在无需设置彩色滤光膜的情况下,实现高色域的彩色画面投射;另外,呈锥形螺旋织构的胆甾相液晶对所选择波长的光具有较高的反射率(接近50%),因此整个投影装置具备较高的光利用率。
在本公开实施例中,发光部件1可以包括多个发光元件。在一些实施例中,发光元件可以包括:发光二极管(Light Emitting Diode,LED)。例如,可以采用尺寸较小的LED,如微型发光二极管(Micro Light-Emitting Diode,MicroLED)或次毫米发光发光二极管(Mini Light-Emitting Diode,MiniLED),可使发光元件具有较高的准直度。其中,发光部件1中发光元件的数量、尺寸和排列方式等,可由本领域技术人员根据实际情况来设置,本公开对此不作限制。
在一些实施例中,为实现全彩显示,发光部件1所发出的光为白光,白光为混合光,波长范围是390nm到770nm的可见光区。
参见图2所示,在一些实施例中,第一基板21包括:第一衬底基板201、位于第一衬底基板201朝向第二基板22一侧的第一电极202、位于第一电极202背向第一衬底基板201一侧的第一取向层203;第二基板22包括:第二衬底基板204、位于第二衬底基板204朝向第一基板21一侧驱动功能层205、位于驱动功能层205背向第二衬底基板204一侧 的多个第二电极206、位于第二电极206背向第二衬底基板204一侧的第二取向层207;驱动功能层205包括与第二电极206一一对应的多个驱动电路(未示出),驱动电路与对应的第二电极206连接,驱动电路配置为向对应的第二电极提供像素电压。
一般地,在第一基板21和第二基板22之间还设置有隔垫物24。
其中,第一衬底基板201和第二衬底基板204可以分别独立选择为硬质衬底基板或柔性衬底基板。其中,硬质衬底基板可以为玻璃基板,柔性衬底基板可以为树脂基板。
在本公开实施例中,第一电极202位于第一衬底基板201上,第二电极206位于第二衬底基板204上。作为一个具体示例,第一电极202可以为面状电极,即第一电极202呈面状整层铺设,第一电极202可用作公共电极;第二电极206可以为板状电极,多个第二电极206在第二衬底基板上呈阵列排布,第二电极206可用作像素电极,此时液晶显示面板2的显示模式为扭曲向列型(Twisted Nematic,TN)显示模式。第一电极202和第二电极206中的每个可以是透明电极,例如采用金属氧化物(例如,ITO、IZO、IGZO等)所制备的透明电极。
参见图3所示,当第一电极202和第二电极206之间未形成电场时,胆甾相液晶呈现焦锥织构,散射入射光;参见图4所示,当第一电极202和第二电极206之间加载有不同电压以形成电场时,位于电场中的胆甾相液晶由焦锥织构转变为锥形螺旋织构,从而可以反射与其螺距相匹配的入射可见光,在不同电场的作用下可以反射不同颜色的可见光,从而实现彩色显示。
与对应的第二电极206相连的驱动电路一般由薄膜晶体管和存储电容所构成,用于将数据线所提供的像素电压写入至对应的第二电极206中。本公开的技术方案对于驱动电路的具体电路结构不作限定。
在一些实施例中,胆甾相液晶为混合物,胆甾相液晶混合物包括: 向列相液晶、手性添加剂和弯曲型齐聚物。通过在向列相液晶中添加手性添加剂和弯曲型齐聚物,可使得液晶分子取向扭曲,由向列相转变为胆甾相。
在一些实施例中,向列相液晶可包括:5CB、7CB、8CB等CB类液晶,也可以是常规显示用向列相混晶。
在一些实施例中,弯曲型齐聚物可以为一些低分子量的弯曲型齐聚物,例如弯曲型二聚体、弯曲型三聚体。
作为一个示例,胆甾相液晶混合物中包括两种弯曲型二聚体化合物(分别称为第一弯曲型二聚体化合物和第二弯曲型二聚体化合物)和一种弯曲型三聚体化合物。
作为一可选示例,第一弯曲型二聚体化合物的分子式可以如下:
Figure PCTCN2022102167-appb-000001
第二弯曲型二聚体化合物的分子式可以如下:
Figure PCTCN2022102167-appb-000002
弯曲型三聚体化合物的分子式可以如下:
Figure PCTCN2022102167-appb-000003
手性添加剂的分子式可以如下:
Figure PCTCN2022102167-appb-000004
作为一种示例,可以将上述的第一弯曲型二聚体化合物、第二弯曲型二聚体化合物、弯曲型三聚体化合物、手性添加剂、向列相液晶混合物SLC1717,按质量比例38%/5%/7%/5%/45%混合均匀,可以得到胆甾相液晶混合物。
在一些实施例中,第一基板21上还设置有第一取向层203,第二基板22上还设置有第二取向层207,第一取向层203和第二取向层207可以采用垂直取向或平行取向。
需要说明的是,在本公开实施例所提供的液晶显示面板2中不包括偏光片,因此不会存在相关技术中因设置偏光片而导致产品的光利用率下降的问题。
图5A为本公开实施例提供的另一种投影装置的结构示意图。图5B为图5A所示投影装置的一种光路示意图。如图5A和图5B所示,在一些实施例中,光学部件100包括:准直取光部件4,准直取光部件4位于发光部件1与液晶显示面板2之间,配置为将入射到准直取光部件4的光调整为准直光线并朝液晶显示面板2出射。
需要说明的是,在本公开实施例中发散角度小于或等于10°的光线均可以为本公开实施例中的准直光线。
在本公开实施例中,通过准直取光部件4可以使得发光部件1发出的光线中的绝大部分光线均准直出射,可以有效提高发光元件的光利用率。
在一些实施例中,准直取光部件4包括第一菲涅尔透镜。第一菲涅尔透镜可以包括:与菲涅尔波带中心的圆形对应的中心部以及与菲涅尔 波带的环形对应的环状部。
在一些实施例中,以准直取光部件4为菲涅尔透镜为例,发光元件可以位于准直取光部件4(即菲涅尔透镜)的焦点处。这里,由透镜的基本性质可知,由焦点处发出的光线经过准直取光部件4(即菲涅尔透镜)之后可以准直出射,并且准直效果最佳。
图6为本公开实施例中不同入射光角度下反射光角度与色域的关系曲线示意图。如图6所示,在本公开实施例中,对液晶显示面板2进行光学测试,测试在不同入射光角度下不同反射光角度所得到的色域的关系,其中本公开中所描述的入射光角度或反射光角度均是指光线与液晶显示面板2的发现所呈角度。
需要说明的是,在固定入射光角度下,测试不同反射光角度所得到的色域的过程大致如下:将液晶显示面板水平放置光学检测设备的基台上,入射光从一定角度(如30°、45°、60°等角度)入射到Panel上,从不同的角度接收反射光信号以测试色坐标,然后基于检测到的色坐标通过公式计算出不同接收角度所对应的色域。
在上述测试中,液晶显示面板2内液晶层中各组分的质量百分比为:向列相液晶55%,弯曲型齐聚物混合物40%,手性掺杂剂5%。
参见图6所示,在入射光角度为30°时,反射光角度为30°时可以得到最大色域,约为31%NTSC色域;在入射光角度为45°时,反射光角度为40°时可以得到最大色域,约为58%NTSC色域;在入射光角度为60°时,反射光角度为60°时可以得到最大色域,约为75%NTSC色域。
基于上述测试结果可见,在准直取光部件4朝液晶显示面板2出射的准直光线与液晶显示面板2的法线所呈夹角(即入射光角度)为θ时,接收反射光角度为θ的光线可以得到最大色域。其中,θ角越大,接收反射光角度为θ的光线所得到最大色域越大。
图7A和图7B为本公开实施例中实现光线大角度入射至液晶显示面 板的两种示意图,如图7A和图7B所示,在实际应用中,为实现较大的入射光角度θ,一般有如下两种方式:
参见图7A所示。方式一、将准直取光部件4的光轴4a设置为与液晶显示面板2的法线呈一个小于θ的角度θ’,然后将发光部件1的出光面1a设置为与准直取光部件4的光轴4a呈一定夹角γ,以实现准直取光部件4所射出的准直光线的入射光角度为θ。此时,准直取光部件4所射出的准直光线与准直取光部件4的光轴4a也呈一定角度。
参见图7B所示。方式二,将准直取光部件4的光轴4a设置为与液晶显示面板2的法线呈θ角度,然后将发光部件1的出光面1a设置为与准直取光部件4的光轴4a垂直,以实现准直取光部件4所射出的准直光线的入射光角度为θ。此时,准直取光部件4所射出的准直光线与准直取光部件4的光轴4a平行或基本平行。
在上述方式一中,由于发光部件1的出光面1a设置为与偏离准直取光部件4的光轴4a不垂直,这会导致一方面光线的利用率偏低,另一方面准直取光部件4最终所出射光线的发散程度偏高(准直效果较差),影响最终显示效果。
在上述方式二中,虽然将发光部件1的出光面1a设置为与准直取光部件4的光轴4垂直,可以解决光利用率低、出射光线的发散程度偏高的问题,但是由于将准直取光部件4的光轴与液晶显示面板2的法线呈一个较大角,这就需要将准直取光部件4设置在与液晶显示面板2距离较远的位置(若距离较近,则准直取光部件4所出射光线难以完全覆盖整个液晶显示面板2),从而会导致整个投影装置的整体尺寸过大。
故,在实际应用中,准直取光部件4朝液晶显示面板2出射的准直光线与液晶显示面板2的法线所呈夹角θ不宜过大。在一些实施例中,θ满足:0°<θ≤80°。可选地,θ满足:30°≤θ≤70°。再结合实际色域需求以及投影装置尺寸的实际需求,进一步可选地,θ满足:45 °≤θ≤60°。
在一些实施例中,准直取光部件4的光轴4a与液晶显示面板2的法线所呈夹角为β,β=θ。也就是说,是采用上述方式二中所示设计方式,此时发光部件1的出光面设置为与准直取光部件4的光轴4a垂直,准直取光部件4所射出的准直光线与准直取光部件4的光轴4a平行或基本平行,可以有效提升光利用率。
在一些实施例中,光学部件100还包括:第一聚光部件5,第一聚光部件5位于发光部件1与准直取光部件4之间,第一聚光部件5配置为将入射到第一聚光部件5的光线,汇聚至准直取光部件4。
在一些实施例中,第一聚光部件5可以为一凸透镜。
在本公开实施例中,通过在发光部件1与准直取光部件4设置第一聚光部件5,以对发光部件1所发出的光先进行汇聚,以使得光线只能以发散程度较小的光束朝向近准直取光部件4的方向出射,其一方面可以有效提升光利用率,另一方面有利于准直取光部件4尺寸的缩小,进而有利于产品整体的小尺寸化和轻薄化。
在一些实施例中,准直取光部件4的光轴4a与第一聚光部件5的光轴位于同一直线上。通过将准直取光部件4与第一聚光部件5该两个光学器件的光轴4a和5a设置于同一直线上(两者对应同一光轴),有利于提升光利用率。
需要说明的是,当在准直取光部件4与发光部件1之间存在第一聚光部件5时,第一聚光部件5的出光面中心可位于准直取光部件4的焦点处;与此同时,发光部件1的出光面中心也可以位于第一聚光部件5的焦点处。
图8A为本公开实施例提供的又一种投影装置的结构示意图。图8B为图8A所示投影装置的一种光路示意图。如图8A和图8B所示,在一些实施例中,投影装置还包括:第二聚光部件6,第二聚光部件6位于投 射镜头3与液晶显示面板2之间,配置为将入射到第二聚光部件6的光线,汇聚至投射镜头3。
在本公开实施例中,通过在投射镜头3与液晶显示面板2之间设置第二聚光部件6,其一方面可以有效提升光利用率,另一方面有利于投射镜头3的小尺寸化。
在一些实施例中,第二聚光部件6接收液晶显示面板2所反射出的准直光线与液晶显示面板2的法线所呈夹角(即反射光角度),与准直取光部件4朝液晶显示面板2出射的准直光线与液晶显示面板2的法线所呈夹角(即入射光角度),二者相等。
基于前面对图6的描述可见,在液晶显示面板2的入射光角度θ一定的情况下,通过获取反射光角度为θ的光线可以得到最大色域。故,通过上述设计,有利于实现高色域。
在一些实施例中,第二聚光部件6的光轴6a与投射镜头3的光轴3a平行。通过该设计,有利于提高光利用率。
在一些实施例中,第二聚光部件6包括第二菲涅尔透镜。其中,第二菲涅尔透镜可以包括:与菲涅尔波带中心的圆形对应的中心部以及与菲涅尔波带的环形对应的环状部。
继续参见图8A和图8B所示,在一些实施中,第二聚光部件6的光轴6a与液晶显示面板2的法线平行。也就是说,上述第二菲涅尔透镜整体与液晶显示面板2平行,通过该设计,使得液晶显示面板2所呈现画面能够完整、可靠的被第二菲涅尔透镜所接收。然而,由于此时液晶显示面板2的反射光线与第二聚光部件6的光轴6a不平行,故该种方案会对光利用率有一定影响。
在一些实施例中,准直取光部件4包括第一菲涅尔透镜,第二聚光部件6包括第二菲涅尔透镜。第一菲涅尔透镜的直径为W1,第二菲涅尔透镜的直径为W2,W1与W2满足:W1≤W2。
进一步可选地,液晶显示面板2的显示区域的最大宽度为W0,W0、W1与W2满足:W1≤W0≤W2。
在图8A所示方案中,液晶显示面板2所需的入射光束是以一定角度θ入射,此时液晶显示面板2所需的入射光束的最小宽度为W0*sinθ,因此第一菲涅尔透镜的最小直径可设置为W0*sinθ,故W1可设计为小于或等于W0。与此同时,为保证第二菲涅尔透镜能够完整的接收液晶显示面板2各位置所反射光线,故第一菲涅尔透镜的最小直径可设置W0,故W2可设计为小于或等于W0。也就是说,W0、W1与W2三者可满足:W1≤W0≤W2。
图9A为本公开实施例提供的再一种投影装置的结构示意图。图9B为图9A所示投影装置的一种光路示意图。如图9A和图9B所示,与图8A所示准直取光部件4的光轴4a与液晶显示面板2的法线相平行的方案所不同,在图9A所示方案中,准直取光部件4的光轴4a与液晶显示面板2的法线所呈夹角为β,β为锐角,第二聚光部件6的光轴6a与液晶显示面板2的法线呈预设角度β;第二聚光部件6的光轴6a与准直取光部件4的光轴4a相交于第一节点N1,从第一节点N1沿第二聚光部件6的光轴6a指向第二聚光部件6的射线,与从第一节点N1沿准直取光部件4的光轴4a指向准直取光部件4的射线,两条射线所呈夹角为2β。
在本公开实施例中,通过上述设置,可使得液晶显示面板2的入射光线与准直取光部件4的光轴4a平行,液晶显示面板2的反射光线与第二聚光部件6的光轴6a平行。
相较于图8A中所示液晶显示面板2的反射光线与第二聚光部件6的光轴6a不平行,图9A中液晶显示面板2的反射光线与第二聚光部件6的光轴6a平行的技术方案,可有效提升光利用率。
在一些实施例中,第一节点N1为液晶显示面板2的中心点。也就是说,第二聚光部件6的光轴6a与准直取光部件4的光轴4a相交于液晶 显示面板2的中心点,通过上述设置,有利于第二聚光部件6和准直取光部件4的小尺寸化,后面将作详细描述。
在一些实施例中,准直取光部件4包括第一菲涅尔透镜,第二聚光部件6包括第二菲涅尔透镜;第一菲涅尔透镜的直径为W1,第二菲涅尔透镜的直径为W2,W1与W2满足:W2≤W1。
进一步可选地,液晶显示面板2的显示区域的最大宽度为W0,W0、W1与W2满足:W2≤W1≤W0。
在图9A所示方案中,液晶显示面板2所需的入射光束是以一定角度θ入射,此时液晶显示面板2所需的入射光束的最小宽度为W0*sinθ,因此第一菲涅尔透镜的最小直径可设置为W0*sinθ,故W1可设计为小于或等于W0。其中,当第一菲涅尔透镜的光轴经过液晶显示面板2的中心点时,第一菲涅尔透镜的直径可设置为最小值W0*sinθ,即第一菲涅尔透镜实现尺寸最小化。
另外,液晶显示面板2所反射出的反射光束的宽度为W0*sinθ,因此第二菲涅尔透镜的最小直径可设置为W0*sinθ,故W2可设计为小于或等于W0。其中,当第二菲涅尔透镜的光轴经过液晶显示面板2的中心点时,第二菲涅尔透镜的直径可设置为最小值W0*sinθ,即第二菲涅尔透镜实现尺寸最小化。
在一些实施例中,投影设备可以为投影光机。
在一些实施例中,该投影装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、导航仪等任何具有显示和投影功能的产品或部件。这里,本公开实施例对投影装置的类型不做限定。对于该投影装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
图10为本公开实施例提供的一种显示系统的结构示意图。如图10所示,该显示系统包括投影装置11,该投影装置11可以上述任一实施 例中所提供的投影装置11,对于该投影装置11的具体描述,可参见前面实施例中的内容,此处不再赘述。
在一些实施例中,该显示系统还包括投影屏幕12,投影屏幕12位于投影镜头的出光侧。在一些实施例中,投影屏幕所处平面与投射镜头的光轴垂直;通过该设置,有利于提升光利用率。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (24)

  1. 一种投影装置,其中,包括:
    发光部件,配置为产生光线;
    液晶显示面板,位于所述发光部件的出光侧,包括:第一基板、第二基板以及位于所述第一基板与所述第二基板之间的液晶层,所述液晶层包括胆甾相液晶,所述胆甾相液晶配置为在施加有电场作用时呈锥形螺旋织构,以反射与所述锥形螺旋织构的螺距相匹配的光线;
    光学部件,位于所述发光部件与所述液晶显示面板之间,配置为调整光线的传播方向,所述光学部件的光轴与所述液晶显示面板的法线所呈夹角为锐角;
    投射镜头,配置为接收所述液晶显示面板所反射的光线并进行投射。
  2. 根据权利要求1所述的投影装置,其中,所述光学部件包括:
    准直取光部件,位于所述发光部件与所述液晶显示面板之间,配置为将入射到所述准直取光部件的光调整为准直光线并朝所述液晶显示面板出射。
  3. 根据权利要求2所述的投影装置,其中,所述准直取光部件包括第一菲涅尔透镜。
  4. 根据权利要求2或3所述的投影装置,其中,所述光学部件还包括:
    第一聚光部件,位于所述发光部件与所述准直取光部件之间,配置为将入射到所述第一聚光部件的光线,汇聚至所述准直取光部件。
  5. 根据权利要求4所述的投影装置,其中,所述准直取光部件的光轴与所述第一聚光部件的光轴位于同一直线上。
  6. 根据权利要求2至5中任一所述的投影装置,其中,还包括:
    第二聚光部件,位于所述投射镜头与所述液晶显示面板之间,配置为将入射到所述第二聚光部件的光线,汇聚至所述投射镜头。
  7. 根据权利要求6所述的投影装置,其中,所述第二聚光部件的光轴与所述投射镜头的光轴平行。
  8. 根据权利要求7所述的投影装置,其中,所述第二聚光部件包括第二菲涅尔透镜。
  9. 根据权利要求6至8中任一所述的投影装置,其中,所述第二聚光部件的光轴与所述液晶显示面板的法线平行。
  10. 根据权利要求9所述的投影装置,其中,所述准直取光部件包括第一菲涅尔透镜,所述第二聚光部件包括第二菲涅尔透镜;
    所述第一菲涅尔透镜的直径为W1,所述第二菲涅尔透镜的直径为W2,W1与W2满足:W1≤W2。
  11. 根据权利要求17所述的投影装置,其中,所述液晶显示面板的显示区域的最大宽度为W0,W0、W1与W2满足:W1≤W0≤W2。
  12. 根据权利要求6至8中任一所述投影装置,其中,所述准直取光部件的光轴与所述液晶显示面板的法线所呈夹角为β,β为锐角;
    所述第二聚光部件的光轴与液晶显示面板的法线所呈夹角的角度,与所述所述准直取光部件的光轴与所述液晶显示面板的法线所呈夹角的角度相等;
    所述第二聚光部件的光轴与所述准直取光部件的光轴相交于第一节点,从所述第一节点沿所述第二聚光部件的光轴指向所述第二聚光部件的射线,与从所述第一节点沿所述准直取光部件的光轴指向所述准直取光部件的射线,两条射线所呈夹角为2β。
  13. 根据权利要求12所述的投影装置,其中,所述第一节点为所述液晶显示面板的显示区域的中心点。
  14. 根据权利要求12或13所述的投影装置,其中,所述准直取光部件包括第一菲涅尔透镜,所述第二聚光部件包括第二菲涅尔透镜;
    所述第一菲涅尔透镜的直径为W1,所述第二菲涅尔透镜的直径为W2,W1与W2满足:W2≤W1。
  15. 根据权利要求14所述的投影装置,其中,所述液晶显示面板的显示区域的最大宽度为W0,W0、W1与W2满足:W2≤W1≤W0。
  16. 根据权利要求6至15中任一所述的投影装置,其中,所述第二聚光部件接收所述液晶显示面板所反射的准直光线与所述液晶显示面板的法线所呈夹角,与所述准直取光部件朝所述液晶显示面板出射的准直光线与所述液晶显示面板的法线所呈夹角,二者相等。
  17. 根据权利要求2至16中任一所述的投影装置,其中,所述准直取光部件朝所述液晶显示面板出射的准直光线与所述液晶显示面板的法 线所呈夹角为θ,θ满足:0°<θ≤80°。
  18. 根据权利要求17所述的投影装置,其中,θ满足:30°≤θ≤70°。
  19. 根据权利要求18所述的投影装置,其中,θ满足:45°≤θ≤60°。
  20. 根据权利要求17至19中任一所述的投影装置,其中,所述准直取光部件的光轴与所述液晶显示面板的法线所呈夹角为β,β=θ。
  21. 根据权利要求1至20中任一所述的投影装置,其中,所述第一基板包括:第一衬底基板、位于第一衬底基板朝向所述第二基板一侧的第一电极、位于所述第一电极背向所述第一衬底基板一侧的第一取向层;
    所述第二基板包括:第二衬底基板、位于所述第二衬底基板朝向所述第一基板一侧驱动功能层、位于所述驱动功能层背向所述第二衬底基板一侧的多个第二电极、位于所述第二电极背向所述第二衬底基板一侧的第二取向层;
    所述驱动功能层包括与所述第二电极一一对应的多个驱动电路,所述驱动电路与对应的所述第二电极连接,所述驱动电路配置为向对应的所述第二电极提供像素电压。
  22. 根据权利要求1所述的投影装置,其中,所述胆甾相液晶包括:向列相液晶、手性添加剂和弯曲型齐聚物。
  23. 一种显示系统,其中,包括:如权利要求1至22中任一所述投 影装置。
  24. 根据权利要求1所述的显示系统,其中,还包括:
    投影屏幕,位于所述投影镜头的出光侧。
PCT/CN2022/102167 2022-06-29 2022-06-29 投影装置及显示系统 WO2024000217A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/102167 WO2024000217A1 (zh) 2022-06-29 2022-06-29 投影装置及显示系统
CN202280001931.6A CN117897651A (zh) 2022-06-29 2022-06-29 投影装置及显示系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102167 WO2024000217A1 (zh) 2022-06-29 2022-06-29 投影装置及显示系统

Publications (1)

Publication Number Publication Date
WO2024000217A1 true WO2024000217A1 (zh) 2024-01-04

Family

ID=89383390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102167 WO2024000217A1 (zh) 2022-06-29 2022-06-29 投影装置及显示系统

Country Status (2)

Country Link
CN (1) CN117897651A (zh)
WO (1) WO2024000217A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180074315A1 (en) * 2015-05-29 2018-03-15 Fujifilm Corporation Member for displaying projected image and projection system
TW201809853A (zh) * 2016-07-12 2018-03-16 奧特司科技股份有限公司 液晶投影機
CN207216229U (zh) * 2017-09-25 2018-04-10 京东方科技集团股份有限公司 显示面板及显示装置
CN109116557A (zh) * 2017-06-23 2019-01-01 京东方科技集团股份有限公司 平视显示装置及行驶装置
CN109683389A (zh) * 2017-10-19 2019-04-26 京东方科技集团股份有限公司 一种背光模组及显示装置
CN113498487A (zh) * 2019-03-06 2021-10-12 富士胶片株式会社 投影图像显示用层叠膜、投影图像显示用的夹层玻璃及图像显示系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180074315A1 (en) * 2015-05-29 2018-03-15 Fujifilm Corporation Member for displaying projected image and projection system
TW201809853A (zh) * 2016-07-12 2018-03-16 奧特司科技股份有限公司 液晶投影機
CN109116557A (zh) * 2017-06-23 2019-01-01 京东方科技集团股份有限公司 平视显示装置及行驶装置
CN207216229U (zh) * 2017-09-25 2018-04-10 京东方科技集团股份有限公司 显示面板及显示装置
CN109683389A (zh) * 2017-10-19 2019-04-26 京东方科技集团股份有限公司 一种背光模组及显示装置
CN113498487A (zh) * 2019-03-06 2021-10-12 富士胶片株式会社 投影图像显示用层叠膜、投影图像显示用的夹层玻璃及图像显示系统

Also Published As

Publication number Publication date
CN117897651A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
TWI228196B (en) Liquid crystal display device and electronic apparatus
US9829622B2 (en) Illuminating device and liquid crystal display device
WO2018157612A1 (zh) 一种液晶显示面板、液晶显示装置及其显示方法
US7046318B2 (en) Polarized light source system comprising meshing prism plates and liquid crystal display using the same
JP5195719B2 (ja) 液晶表示装置
US20210096393A1 (en) Aerial display apparatus
US7796212B2 (en) Liquid crystal display device having improved viewing angle and brightness
US20100277669A1 (en) Illuminating device and liquid crystal display device
JP2011529586A (ja) 回折液晶ディスプレイ
US8253888B2 (en) Liquid crystal display device
US20230176413A1 (en) Display apparatus
WO2023072151A1 (zh) 显示面板和显示装置
WO2021047016A1 (zh) 显示面板及显示装置
KR101720724B1 (ko) 액정 표시 장치 및 그 제조 방법
TW200424622A (en) LCD apparatus and electronic machine
WO2024000217A1 (zh) 投影装置及显示系统
WO2018176601A1 (zh) 透反式液晶显示装置
JP5737854B2 (ja) 液晶表示装置
US8259255B2 (en) Backlight module and liquid crystal display using same
US20160091750A1 (en) Liquid crystal display device
US7023506B2 (en) Reflective liquid crystal display device
US20110134367A1 (en) Polarization sheet and liquid crystal display device having the same
JP6620839B2 (ja) 液晶装置および電子機器
JP4506183B2 (ja) 液晶装置および投射型表示装置
CN113345864A (zh) 一种驱动背板以及微型发光二极管显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948337

Country of ref document: EP

Kind code of ref document: A1