WO2023286927A1 - Method for preparing plant biostimulant for preventing cold injury and enhancing flowering rate of plant - Google Patents

Method for preparing plant biostimulant for preventing cold injury and enhancing flowering rate of plant Download PDF

Info

Publication number
WO2023286927A1
WO2023286927A1 PCT/KR2021/016370 KR2021016370W WO2023286927A1 WO 2023286927 A1 WO2023286927 A1 WO 2023286927A1 KR 2021016370 W KR2021016370 W KR 2021016370W WO 2023286927 A1 WO2023286927 A1 WO 2023286927A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
plants
flowering rate
preventing cold
cold damage
Prior art date
Application number
PCT/KR2021/016370
Other languages
French (fr)
Korean (ko)
Inventor
유승권
Original Assignee
주식회사 바이오플랜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오플랜 filed Critical 주식회사 바이오플랜
Publication of WO2023286927A1 publication Critical patent/WO2023286927A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/10Animals; Substances produced thereby or obtained therefrom

Definitions

  • the present invention (Disclosure) relates to a method for producing a plant physiological activator for preventing cold damage and improving the flowering rate of plants, and specifically, by hydrolyzing proteins using proteolytic enzymes to produce animal amino acids, By mixing reactive raw materials including urea, organic acid, and water and then liquefying to prepare plant physiological activators, it is possible to prevent cold damage of plants, improve the flowering rate of plants, and prevent agricultural damage due to climate change. It relates to a method for producing a plant physiological activator for preventing cold damage and improving the flowering rate of plants that can be prevented.
  • fertilizers used for crop cultivation are generally composed of N (nitrogen), P (phosphorus), K (potassium)-based compound fertilizers, trace element fertilizers, and organic fertilizers, and crop yields according to climate change
  • N nitrogen
  • P phosphorus
  • K potassium
  • trace element fertilizers trace element fertilizers
  • organic fertilizers organic fertilizers
  • plant physiological activators enhance the resistance to abiotic stress (drought, high/low temperature damage, cold damage, etc.) by activating the plant's physiological action, and substances (seaweed extracts, animal/vegetable amino acids, humic acids, etc.) or microorganisms.
  • Animal amino acids which are used in a high proportion among them, contain several types of amino acids, such as glycine, methionine, alanine, and glutamic acid, which are obtained when proteins in animal hair and feather meal are completely hydrolyzed. It activates various physiological functions such as growth promotion, improvement of sugar content and coloration of fruit, increase in disease resistance, and stress prevention.
  • glycine has the effect of increasing sugar content, taste improvement, and cold resistance, and proline promotes flower bud differentiation, fertilization and fruit set
  • Alanine is known to help improve acidity and color.
  • amino acids used as plant nutrients are mostly prepared by chemical hydrolysis with strong acids such as hydrochloric acid (HCl) and sulfuric acid (H 2 SO 4 ).
  • HCl hydrochloric acid
  • H 2 SO 4 sulfuric acid
  • cyclic amino acids are destroyed, and when hydrochloric acid is used, they remain in the form of ammonium chloride, which is known to cause harm to crops. .
  • organic acid when organic acid is foliarly sprayed on plants, it strengthens the waxy layer of the leaf to suppress the invasion of pathogens and increases resistance to pests by repelling pests, thereby protecting the leaves of fruit trees weakened by cold damage.
  • biostimulants refer to substances (seaweed extracts, amino acids, humic acids) or microorganisms that have the function of enhancing the resistance to abiotic stress by activating the physiological action of plants and improving the productivity and quality of harvested products. do.
  • biostimulant associations have been established in the United States, Europe, and Japan to push for the enactment of related laws, and in February 2020, biostimulant laws were enacted in India as well.
  • the present invention produces animal amino acids by hydrolyzing proteins using proteolytic enzymes, mixes the prepared animal amino acids with reaction raw materials including urea, organic acids and water, and then liquefies them to produce plant bioactive agents. By doing so, it is possible to prevent cold damage to plants, improve the flowering rate of plants, and provide a method for producing plant physiological activators for preventing cold damage to plants and improving flowering rates, which can prevent agricultural damage caused by climate change in advance. for the purpose of
  • a method for producing a plant physiologically active agent for preventing cold damage and improving the flowering rate of plants using a proteolytic enzyme, hydrolyzing to prepare animal amino acids; and liquefying by mixing the prepared animal amino acid with reaction raw materials including urea, organic acid, and water.
  • the preparing of the animal amino acid includes: sterilizing the feather meal under high pressure; injecting the proteolytic enzyme into the feather meal; reacting the feather powder and proteolytic enzyme; Filtering after the reacting step; It may include; and freeze-drying to powderize after the filtering step.
  • the step of high-pressure steam sterilization of the down feather meal is performed at a pressure range of 2.8-3.2 bar, 135-145 ° C. It can be performed according to the temperature range and time range of 25-35 minutes.
  • the reacting step is performed according to a temperature range of 45-55 ° C and a time range of 2.5-3.5 days. can do.
  • the filtering step may be performed according to a particle size range of 150-250 mesh.
  • the step of liquefying by mixing the reaction raw materials includes the urea, organic acid and water in the animal amino acid Injecting the reaction raw material, further adding boric acid, chelate iron, sodium molybdate, zinc sulfate, and manganese sulfate; Stirring and reacting the animal amino acid and the reaction raw material; precipitating after the stirring and reacting; It may include; and filtering after the precipitating step and then aging.
  • the stirring and reacting step is a temperature range of 65-75 ° C, a time range of 3.5-4.5 hours, and It can be performed in the rotational speed range of 350-450 rpm.
  • the precipitating step may be performed in a time range of 22-26 hours.
  • the step of aging after filtering is after filtering according to the particle size range of 250-350 mesh , it can be aged according to the time range of 46-50 hours.
  • the plant physiologically active agent is diluted 900-1100 times before germination, leaf fertilization, and before flowering, respectively, by foliar fertilization. can be sprayed
  • the present invention by hydrolyzing protein using a proteolytic enzyme to produce animal amino acids, mixing the prepared animal amino acids with reaction raw materials including urea, organic acids and water, and then liquefying to prepare plant physiologically active agents, It is possible to prevent cold damage to plants, improve the flowering rate of plants, and prevent agricultural damage due to climate change in advance.
  • the plant physiological activator prepared by a complex technology using animal amino acids, urea, and organic acids as reaction raw materials can not only prevent cold damage to plants, but also provide physiologically active effects that improve flowering rates. there is.
  • FIG. 1 is a flow chart showing a process for preparing a plant physiologically active agent for preventing cold damage and improving the flowering rate of plants according to an embodiment of the present invention
  • FIGS. 2 and 3 are flowcharts showing detailed processes for preparing a plant physiologically active agent according to an embodiment of the present invention.
  • FIGS. 1 and 3 are manufacturing a plant physiologically active agent according to an embodiment of the present invention This is a flowchart showing the detailed process.
  • animal amino acids may be prepared by hydrolyzing feather meal using a proteolytic enzyme (step 110).
  • the protease is pepsin, rennin, trypsin, chymotrypsin, erepsin, enterokinase, papain, bromelin , ficin, actinidin, and elastase.
  • proteolytic enzymes it is of course possible to hydrolyze proteins using microorganisms that produce proteolytic enzymes instead of proteolytic enzymes, for example It may include bacteria (eg, Bacillus, etc.), fungi (eg, Aspergillus, Rhizopu, etc.) and the like.
  • down and feather powder can be sterilized by high-pressure steam (step 111).
  • feather meal means that the remaining feathers after slaughtering poultry are processed using steam pressure, dried and pulverized, and have a very high crude protein of 76-87%, a very low content of crude fiber, calcium and phosphorus, and In order to improve the value, it can be used in the form of peptides by decomposing hydrogen and sulfur bonds by heating and decomposing at high temperature and high pressure.
  • high-pressure steam sterilization may be performed according to a pressure range of 2.8-3.2 bar, a temperature range of 135-145 ° C, and a time range of 25-35 minutes.
  • autoclave the inside and outside are sealed, and the water inside the sealed container is exposed to high temperature to generate water vapor, while the pressure inside the container and the temperature are within the pressure range of 2.8-3.2 bar.
  • the pressure and temperature are maintained and treated according to the time range of 25-35 minutes, thereby sterilizing the bacteria present in the feather meal.
  • the proteolytic enzyme may be added to the feather meal (step 112).
  • a proteolytic enzyme may be added to the feather powder in the reaction vessel for hydrolysis.
  • feather powder and proteolytic enzyme can be reacted (step 113).
  • the reaction can be performed according to the temperature range of 45-55 ° C and the time range of 2.5-3.5 days. It can be reacted according to the time range of 2.5-3.5 days in the state of raising and maintaining the temperature range.
  • filtering may be performed according to a preset particle size range (step 114).
  • filtration can be performed according to the particle size range of 150-250 mesh. It can be filtered by passing it through a membrane filter.
  • the filtering step (114) it may be freeze-dried and powdered (step 115).
  • the filtered filtrate is frozen, the ice is removed by sublimation, and then freeze-dried in a process of removing moisture by raising the temperature, and -250 mesh, etc.) can be pulverized into powder to make it uniformly pulverized.
  • step 120 by mixing the animal amino acid prepared in step 110 with the reaction raw material including urea, organic acid, and water to liquefy, a plant physiologically active agent for preventing cold damage and improving flowering rate of plants can be prepared (step 120). ).
  • 30-35 parts by weight of animal amino acid and 65-70 parts by weight of a reaction raw material may be mixed based on 100 parts by weight of the entire mixture.
  • reaction raw materials including urea, organic acid, and water are added to animal amino acids, but boric acid, chelated iron, sodium molybdate, zinc sulfate, and manganese sulfate may be further added. (Step 121).
  • reaction raw materials mixed with the animal amino acid are 14-16 parts by weight of urea, 4-5 parts by weight of organic acid, 48-50 parts by weight of water, 0.5-1.0 parts by weight of boric acid, chelate iron, based on 100 parts by weight of the total mixture. 0.3 to 0.5 parts by weight, 0.01 to 0.02 parts by weight of sodium molybdate, 0.05 to 0.1 parts by weight of zinc sulfate, and 0.05 to 0.1 parts by weight of manganese sulfate.
  • urea contains 46% nitrogen, which makes chlorophyll that performs photosynthesis and plays a role in growing the stem, leaf, and height of crops, and constitutes enzymes, hormones, and vitamins involved in biochemical reactions in plants It is known to enhance plant growth.
  • organic acids include, for example, ascorbic acid, carboxylic acid, gluconic acid, succinic acid, glutamic acid, fumaric acid, acetic acid, palmitic acid, tartaric acid, lactic acid, malic acid, succinic acid, tartaric acid, citric acid, acetic acid, oxalic acid and humic acid. It includes at least one selected from the group consisting of assimilative products produced by photosynthesis through various metabolic processes, nitrogen components absorbed when fertilizing nitrogen fertilizer are combined with organic acids to be synthesized into amino acids, and suppression of diseases of various crops. It is known that it can solubilize phosphoric acid and promote phosphoric acid absorption when fertilized in soil where phosphoric acid is accumulated.
  • boric acid shows weak acidity with water-soluble boron as its main component.
  • pH of the soil becomes acidic, it changes to an effective form, increasing its utilization rate, and is difficult to move in plants.
  • chelated iron is chelated iron, and it can suppress the effect of acidity due to electrical properties, combination with other components, and insolubilization. It is known to be effective in restoring
  • sodium molybdate is known to contain molybdenum and sodium to increase chlorophyll content, improve photosynthetic ability, promote plant growth and improve storage stability.
  • zinc sulfate contains sulfur and zinc, which are plant nutrients, and affects the growth and quality of crops from the beginning of crop growth. It produces auxin, a plant growth regulator, activates enzymes and synthesizes chlorophyll. is known to enhance
  • manganese sulfate promotes the action of oxidase and is involved in chlorophyll production and photosynthesis, nitrogen metabolism and carbon assimilation, and vitamin C formation, and is known to activate IAA oxidase to promote IAA oxidation.
  • the animal amino acid and the reaction raw material may be stirred and reacted (step 122).
  • stirring and reaction can be performed in a temperature range of 65-75 ° C, a time range of 3.5-4.5 hours, and a rotational speed range of 350-450 rpm.
  • stirring and reacting according to the time range of 3.5-4.5 hours while rotating the stirring blades in the rotational speed range of 350-450 rpm can
  • step 123 After the stirring and reacting step 122, it may be precipitated (step 123).
  • precipitation may be performed according to a time range of 22-26 hours, and the reaction solution obtained through stirring and reaction is kept at room temperature (eg, 15-25 °C) for 22-26 hours. It can be maintained for a while to precipitate solid materials remaining after stirring and reaction.
  • a plant physiologically active agent for preventing cold damage and improving the flowering rate of plants can be prepared by filtering according to a predetermined particle size range and then maturing (step 124).
  • the filtering and aging step 124 after filtering according to the particle size range of 250-350 mesh, it can be aged according to the time range of 46-50 hours, in which the remaining solid substances are precipitated. It can be filtered by passing it through a membrane filter having a particle size range of 250-350 mesh, and the filtrate is aged at room temperature (eg, 15-25 ° C.) over a time range of 46-50 hours.
  • room temperature eg, 15-25 ° C.
  • the liquid plant bioactive agent prepared as described above can be packaged and sold by required weight.
  • the plant physiological activator for preventing cold damage and improving the flowering rate of plants prepared through the process as described above is diluted 900-1100 times before germination (late March-early April), leaflet period (April Early) and before flowering (early April to mid-April), it can be sprayed with foliar fertilization, respectively. 10 ml of the prepared plant physiological activator can be mixed with about 9-11 L of water, diluted, and then sprayed.
  • the plant physiological activator prepared as described above was diluted 1000 times before germination of plants (late March to early April), leaf growth period (early April) and before flowering (early April to mid-April). If the test results (test results of the Apple Research Institute of the National Institute of Horticultural and Herbal Science) are explained when spraying each with foliar fertilization, the effect on the cold damage and flowering rate of Hongro apple flowers is evaluated through the centralized damage rate (%) and simultaneous flowering rate (%).
  • the plant physiological activator according to the embodiment of the present invention showed a centralization damage rate (%) of 18.8 compared to the case of spraying urea and the untreated control group, As the simultaneous flowering rate (%) was 78.8, it can be confirmed that it is effective in preventing cold damage and improving the flowering rate.
  • Plant physiological activator of the present invention 18.8 78.8 Element 27.5 71.8 Control (untreated) 25.0 71.6
  • the plant physiological activator for preventing cold damage and improving the flowering rate of plants prepared as described above contains all of the various types of amino acids contained in the amino acid powder, as shown in Table 3 below.
  • protein is hydrolyzed using a proteolytic enzyme to produce animal amino acids, and after mixing the prepared animal amino acids with reaction raw materials including urea, organic acids, and water, they are liquefied to produce plant physiology.
  • a proteolytic enzyme to produce animal amino acids
  • reaction raw materials including urea, organic acids, and water
  • they are liquefied to produce plant physiology.
  • the plant physiological activator prepared by a complex technology using a reactive raw material containing an organic acid due to climate change can prevent damage from freezing to plants and provide a physiologically active effect that improves the flowering rate. can do.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)

Abstract

A disclosed method for preparing a plant biostimulant for preventing cold injury and enhancing the flowering rate of a plant comprises the steps of: preparing an animal amino acid by hydrolyzing feather meal by means of a protease; and liquefying by mixing the prepared animal amino acid and a reaction material comprising urea, an organic acid and water. Therefore, the present invention can not only prevent cold injury of a plant and enhance the flowering rate of the plant, but also prevent agricultural damage due to climate change.

Description

식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법Manufacturing method of plant physiological activator for preventing cold damage and improving flowering rate of plants
본 발명(Disclosure)은, 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법에 관한 것으로, 구체적으로, 단백질분해효소를 이용하여 단백질을 가수분해하여 동물성아미노산을 제조하고, 제조된 동물성아미노산과 요소, 유기산 및 물을 포함하는 반응원료를 혼합한 후 액상화하여 식물생리활성제를 제조함으로써, 식물의 냉해를 예방할 수 있고, 식물의 개화율을 향상시킬 수 있을 뿐만 아니라 기후변화로 인한 농업피해를 미연에 방지할 수 있는 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법에 관한 것이다.The present invention (Disclosure) relates to a method for producing a plant physiological activator for preventing cold damage and improving the flowering rate of plants, and specifically, by hydrolyzing proteins using proteolytic enzymes to produce animal amino acids, By mixing reactive raw materials including urea, organic acid, and water and then liquefying to prepare plant physiological activators, it is possible to prevent cold damage of plants, improve the flowering rate of plants, and prevent agricultural damage due to climate change. It relates to a method for producing a plant physiological activator for preventing cold damage and improving the flowering rate of plants that can be prevented.
여기서는, 본 발명에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).Here, background art related to the present invention is provided, and they do not necessarily mean prior art (This section provides background information related to the present disclosure which is not necessarily prior art).
세계는 지구온난화로 인한 기상이변을 겪고 있으며 엘리뇨, 라니뇨, 태풍 등으로 많은 농업적 피해가 발생하고 있는데, 국내의 경우 4월 과수 개화기에 저온현상으로 사과, 복숭아, 감귤 등 주요 과수작물에 냉해피해가 발생하고 있다. 이로 인하여 꽃눈이 결빙되어 개화 및 수정의 불량으로 수확량과 품질이 감소하고 있다.The world is experiencing extreme climate change due to global warming, and many agricultural damages are occurring due to El Niño, La Niño, and typhoons. damage is occurring. As a result, the flower bud is frozen, resulting in a decrease in yield and quality due to poor flowering and fertilization.
한편, 작물재배에 사용하는 비료는 일반적으로 N(질소), P(인), K(칼륨) 기반의 복합비료와 미량요소비료, 유기질비료가 주를 이루고 있는 가운데, 기후변화에 따른 작물의 수확량 감소 및 품질저하의 문제를 극복하기 위해 식물생리활성제가 대안으로 제시되고 있다.On the other hand, fertilizers used for crop cultivation are generally composed of N (nitrogen), P (phosphorus), K (potassium)-based compound fertilizers, trace element fertilizers, and organic fertilizers, and crop yields according to climate change In order to overcome the problem of reduction and quality deterioration, plant physiological activators are proposed as an alternative.
이러한 식물생리활성제는 식물의 생리작용을 활성화시켜 비생물적 스트레스(가뭄, 고/저온장해, 냉해 등 환경)의 저항성 강화, 수확물의 생산성과 품질 향상의 기능을 가지는 물질(해조류추출물, 동/식물성아미노산, 휴믹산 등) 또는 미생물을 지칭한다.These plant physiological activators enhance the resistance to abiotic stress (drought, high/low temperature damage, cold damage, etc.) by activating the plant's physiological action, and substances (seaweed extracts, animal/vegetable amino acids, humic acids, etc.) or microorganisms.
이 중에서 높은 비중으로 사용되는 동물성아미노산은 동물의 털, 우모분의 단백질을 완전히 가수분해할 경우 얻어지는 글리신, 메티오닌, 알라닌, 글루탐산 등 여러 종류의 아미노산을 함유하고 있는데, 아미노산은 식물 체내에서 뿌리발근, 생육촉진, 과실의 당도 및 착색향상, 내병성 증가, 스트레스 방지 등 다양한 생리기능을 활성화하며, 특히, 글리신은 당도증진, 맛향상, 내한성 증가의 효과가 있으며, 프롤린은 꽃눈분화, 수정 및 착과촉진, 알라닌은 산미와 착색 증진 등을 돕는 것으로 알려져 있다.Animal amino acids, which are used in a high proportion among them, contain several types of amino acids, such as glycine, methionine, alanine, and glutamic acid, which are obtained when proteins in animal hair and feather meal are completely hydrolyzed. It activates various physiological functions such as growth promotion, improvement of sugar content and coloration of fruit, increase in disease resistance, and stress prevention. In particular, glycine has the effect of increasing sugar content, taste improvement, and cold resistance, and proline promotes flower bud differentiation, fertilization and fruit set, Alanine is known to help improve acidity and color.
그리고, 식물의 영양원으로 사용되는 아미노산은 대부분 염산(HCl), 황산(H2SO4) 등 강산으로 화학적 가수분해하여 제조한다. 화학적으로 분해된 아미노산은 대부분 D형태로 존재하여 생물에 활성 낮으며, 18종의 아미노산 중 고리형 아미노산은 파괴되고, 염산을 사용할 경우 염화암모늄 상태로 잔류하여 작물에 약해가 발생할 수 있는 것으로 알려져 있다.In addition, amino acids used as plant nutrients are mostly prepared by chemical hydrolysis with strong acids such as hydrochloric acid (HCl) and sulfuric acid (H 2 SO 4 ). Most of the chemically decomposed amino acids exist in the D form and are low in activity in organisms. Among the 18 types of amino acids, cyclic amino acids are destroyed, and when hydrochloric acid is used, they remain in the form of ammonium chloride, which is known to cause harm to crops. .
또한, 분해과정에서 사용되는 염산, 황산은 유해화학물질 및 중점관리물질로 등록되어 사용에 매우 주의가 필요하기 때문에, 강산에 의한 화학적 분해를 대체할 수 있는 방안이 필요하다.In addition, since hydrochloric acid and sulfuric acid used in the decomposition process are registered as hazardous chemicals and critically controlled substances and require very careful use, a plan to replace chemical decomposition by strong acid is needed.
한편, 유기산은 식물에 엽면 살포할 경우 잎의 왁스층을 강화하여 병균의 침입을 억제하고, 해충의 기피작용으로 병해충 저항성을 높여주기 때문에 냉해피해로 약해진 과수의 잎을 보호해준다.On the other hand, when organic acid is foliarly sprayed on plants, it strengthens the waxy layer of the leaf to suppress the invasion of pathogens and increases resistance to pests by repelling pests, thereby protecting the leaves of fruit trees weakened by cold damage.
또한, 기존 제품들은 미생물이 생성하는 유기산을 활용하는 미생물제제를 기반으로 하고 있으나, 유기산의 함량이 적고 미생물의 활성이 약해 유통기간이 짧다는 단점이 있을 뿐만 아니라, 유기산의 직접 배합하는 경우 제조기술의 한계로 함량이 1-3%의 소량만 함유하고 있다.In addition, existing products are based on microbial preparations that utilize organic acids produced by microorganisms, but have the disadvantage of short shelf life due to low content of organic acids and weak activity of microorganisms, as well as manufacturing technology in the case of direct blending of organic acids. As a limitation of the content, it contains only a small amount of 1-3%.
상술한 바와 같이, 세계적으로 지구온난화에 의한 이상기후로 농업피해가 발생하면서 종자개량, 농약 및 화학비료의 사용으로 극복하려 했으나, 그 한계에 도달하면서 대안으로 바이오스티뮬런트(식물생리활성제)라는 개념이 형성되었다.As described above, as agricultural damage occurred worldwide due to abnormal climate caused by global warming, attempts were made to overcome it through the use of seed improvement, pesticides and chemical fertilizers. concept was formed.
이러한 바이오스티뮬런트란 식물생리활성제를 뜻하는데, 식물의 생리작용을 활성화시켜 비생물적 스트레스의 저항성 강화, 수확물의 생산성과 품질 향상의 기능을 가지는 물질(해조류추출물, 아미노산, 휴믹산) 또는 미생물을 지칭한다.These biostimulants refer to substances (seaweed extracts, amino acids, humic acids) or microorganisms that have the function of enhancing the resistance to abiotic stress by activating the physiological action of plants and improving the productivity and quality of harvested products. do.
현재 미국, 유럽, 일본 등에서 바이오스티뮬런트협회를 설립하여 관련 법의 제정을 추진하고 있으며, 2020년 2월 인도에서도 바이오스티뮬런트 법령이 제정되었다.Currently, biostimulant associations have been established in the United States, Europe, and Japan to push for the enactment of related laws, and in February 2020, biostimulant laws were enacted in India as well.
세계적으로 바이오스티뮬런트에 관한 관심이 높아지고 있는 반면에, 국내에서는 관련 연구개발이 미흡하여 기후변화로 인한 농업피해를 극복하기 위해 식물생리활성제에 대한 연구 및 개발이 필요한 실정이다.While interest in biostimulants is increasing worldwide, research and development on plant physiological activators is needed to overcome agricultural damage caused by climate change due to insufficient research and development in Korea.
본 발명(Disclosure)은, 단백질분해효소를 이용하여 단백질을 가수분해하여 동물성아미노산을 제조하고, 제조된 동물성아미노산과 요소, 유기산 및 물을 포함하는 반응원료를 혼합한 후 액상화하여 식물생리활성제를 제조함으로써, 식물의 냉해를 예방할 수 있고, 식물의 개화율을 향상시킬 수 있을 뿐만 아니라 기후변화로 인한 농업피해를 미연에 방지할 수 있는 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법의 제공을 일 목적으로 한다.The present invention (Disclosure) produces animal amino acids by hydrolyzing proteins using proteolytic enzymes, mixes the prepared animal amino acids with reaction raw materials including urea, organic acids and water, and then liquefies them to produce plant bioactive agents. By doing so, it is possible to prevent cold damage to plants, improve the flowering rate of plants, and provide a method for producing plant physiological activators for preventing cold damage to plants and improving flowering rates, which can prevent agricultural damage caused by climate change in advance. for the purpose of
여기서는, 본 발명의 전체적인 요약(Summary)이 제공되며, 이것이 본 발명의 외연을 제한하는 것으로 이해되어서는 아니 된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
상기한 과제의 해결을 위해, 본 발명을 기술하는 여러 관점들 중 어느 일 관점(aspect)에 따른 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법은, 단백질분해효소를 이용하여 우모분을 가수분해하여 동물성아미노산을 제조하는 단계; 및 상기 제조된 동물성아미노산과 요소, 유기산 및 물을 포함하는 반응원료를 혼합하여 액상화하는 단계;를 포함한다.In order to solve the above problems, a method for producing a plant physiologically active agent for preventing cold damage and improving the flowering rate of plants according to any one of the various aspects described in the present invention, using a proteolytic enzyme, hydrolyzing to prepare animal amino acids; and liquefying by mixing the prepared animal amino acid with reaction raw materials including urea, organic acid, and water.
발명의 일 관점(aspect)에 따른 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법에서, 상기 동물성아미노산을 제조하는 단계는, 상기 우모분을 고압증기멸균하는 단계; 상기 단백질분해효소를 상기 우모분에 투입하는 단계; 상기 우모분 및 단백질분해효소를 반응시키는 단계; 상기 반응시키는 단계 이후에 여과하는 단계; 및 상기 여과하는 단계 이후에 동결 건조하여 분상화하는 단계;를 포함할 수 있다.In the method for preparing a plant physiologically active agent for preventing cold damage and improving the flowering rate of plants according to one aspect of the present invention, the preparing of the animal amino acid includes: sterilizing the feather meal under high pressure; injecting the proteolytic enzyme into the feather meal; reacting the feather powder and proteolytic enzyme; Filtering after the reacting step; It may include; and freeze-drying to powderize after the filtering step.
발명의 일 관점(aspect)에 따른 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법에서, 상기 우모분을 고압증기멸균하는 단계는, 2.8-3.2 bar의 압력범위, 135-145 ℃의 온도범위 및 25-35 분의 시간범위에 따라 수행할 수 있다.In the method for preparing a plant physiological activator for preventing cold damage and improving the flowering rate of plants according to one aspect of the present invention, the step of high-pressure steam sterilization of the down feather meal is performed at a pressure range of 2.8-3.2 bar, 135-145 ° C. It can be performed according to the temperature range and time range of 25-35 minutes.
발명의 일 관점(aspect)에 따른 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법에서, 상기 반응시키는 단계는, 45-55 ℃의 온도범위와 2.5-3.5 일의 시간범위에 따라 수행할 수 있다.In the method for preparing a plant physiological activator for preventing cold damage and improving flowering rate of plants according to one aspect of the invention, the reacting step is performed according to a temperature range of 45-55 ° C and a time range of 2.5-3.5 days. can do.
발명의 일 관점(aspect)에 따른 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법에서, 상기 여과하는 단계는, 150-250 메쉬(mesh)의 입도범위에 따라 수행할 수 있다.In the method for preparing a plant physiologically active agent for preventing cold damage and improving flowering rate of plants according to one aspect of the invention, the filtering step may be performed according to a particle size range of 150-250 mesh.
발명의 일 관점(aspect)에 따른 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법에서, 상기 반응원료를 혼합하여 액상화하는 단계는, 상기 동물성아미노산에 상기 요소, 유기산 및 물을 포함하는 상기 반응원료를 투입하되, 붕산, 킬레이트철, 몰리브덴산나트륨, 황산아연 및 황산망간을 더 첨가하는 단계; 상기 동물성아미노산 및 반응원료를 교반 및 반응시키는 단계; 상기 교반 및 반응시키는 단계 이후에 침전시키는 단계; 및 상기 침전시키는 단계 이후에 여과한 후 숙성시키는 단계;를 포함할 수 있다.In the method for producing a plant physiological activator for preventing cold damage and improving the flowering rate of plants according to one aspect of the invention, the step of liquefying by mixing the reaction raw materials includes the urea, organic acid and water in the animal amino acid Injecting the reaction raw material, further adding boric acid, chelate iron, sodium molybdate, zinc sulfate, and manganese sulfate; Stirring and reacting the animal amino acid and the reaction raw material; precipitating after the stirring and reacting; It may include; and filtering after the precipitating step and then aging.
발명의 일 관점(aspect)에 따른 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법에서, 상기 교반 및 반응시키는 단계는, 65-75 ℃의 온도범위, 3.5-4.5 시간의 시간범위 및 350-450 rpm의 회전속도범위로 수행할 수 있다.In the method for producing a plant physiologically active agent for preventing cold damage and improving flowering rate of plants according to one aspect of the invention, the stirring and reacting step is a temperature range of 65-75 ° C, a time range of 3.5-4.5 hours, and It can be performed in the rotational speed range of 350-450 rpm.
발명의 일 관점(aspect)에 따른 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법에서, 상기 침전시키는 단계는, 22-26 시간의 시간범위에 따라 수행할 수 있다.In the method for preparing a plant physiologically active agent for preventing cold damage and improving the flowering rate of plants according to one aspect of the invention, the precipitating step may be performed in a time range of 22-26 hours.
발명의 일 관점(aspect)에 따른 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법에서, 상기 여과한 후 숙성시키는 단계는, 250-350 메쉬(mesh)의 입도범위에 따라 여과한 후에, 46-50 시간의 시간범위에 따라 숙성시킬 수 있다.In the manufacturing method of a plant physiological activator for preventing cold damage and improving flowering rate of plants according to one aspect of the invention, the step of aging after filtering is after filtering according to the particle size range of 250-350 mesh , it can be aged according to the time range of 46-50 hours.
발명의 일 관점(aspect)에 따른 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법에서, 상기 식물생리활성제는, 900-1100배로 희석하여 발아전, 출엽기 및 개화전에 각각 엽면시비로 살포할 수 있다.In the method for producing a plant physiologically active agent for preventing cold damage and improving the flowering rate of plants according to one aspect of the invention, the plant physiologically active agent is diluted 900-1100 times before germination, leaf fertilization, and before flowering, respectively, by foliar fertilization. can be sprayed
본 발명에 따르면, 단백질분해효소를 이용하여 단백질을 가수분해하여 동물성아미노산을 제조하고, 제조된 동물성아미노산과 요소, 유기산 및 물을 포함하는 반응원료를 혼합한 후 액상화하여 식물생리활성제를 제조함으로써, 식물의 냉해를 예방할 수 있고, 식물의 개화율을 향상시킬 수 있을 뿐만 아니라 기후변화로 인한 농업피해를 미연에 방지할 수 있다.According to the present invention, by hydrolyzing protein using a proteolytic enzyme to produce animal amino acids, mixing the prepared animal amino acids with reaction raw materials including urea, organic acids and water, and then liquefying to prepare plant physiologically active agents, It is possible to prevent cold damage to plants, improve the flowering rate of plants, and prevent agricultural damage due to climate change in advance.
또한, 본 발명에 따르면, 동물성아미노산과 요소 및 유기산을 포함하는 반응원료를이용한 복합기술로 제조된 식물생리활성제는 식물의 냉해 피해를 예방할 수 있을 뿐만 아니라 개화율을 향상시키는 생리 활성 효과를 제공할 수 있다.In addition, according to the present invention, the plant physiological activator prepared by a complex technology using animal amino acids, urea, and organic acids as reaction raw materials can not only prevent cold damage to plants, but also provide physiologically active effects that improve flowering rates. there is.
도 1은 본 발명의 실시예에 따라 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제를 제조하는 과정을 나타낸 플로우차트이고,1 is a flow chart showing a process for preparing a plant physiologically active agent for preventing cold damage and improving the flowering rate of plants according to an embodiment of the present invention;
도 2 및 도 3은 본 발명의 실시예에 따라 식물생리활성제를 제조하는 세부 과정을 나타낸 플로우차트이다.2 and 3 are flowcharts showing detailed processes for preparing a plant physiologically active agent according to an embodiment of the present invention.
이하, 본 발명에 따른 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법을 구현한 실시형태를 도면을 참조하여 자세히 설명한다.Hereinafter, an embodiment implementing a method for manufacturing a plant physiologically active agent for preventing cold damage and improving flowering rate of plants according to the present invention will be described in detail with reference to the drawings.
다만, 본 발명의 본질적인(intrinsic) 기술적 사상은 이하에서 설명되는 실시형태에 의해 그 실시 가능 형태가 제한된다고 할 수는 없고, 본 발명의 본질적인(intrinsic) 기술적 사상에 기초하여 통상의 기술자에 의해 이하에서 설명되는 실시형태를 치환 또는 변경의 방법으로 용이하게 제안될 수 있는 범위를 포섭함을 밝힌다.However, the essential (intrinsic) technical idea of the present invention cannot be said to be limited by the embodiments described below, and based on the essential (intrinsic) technical idea of the present invention, a person skilled in the art below It is revealed that the embodiments described in include the range that can be easily proposed as a method of substitution or change.
또한, 이하에서 사용되는 용어는 설명의 편의를 위하여 선택한 것이므로, 본 발명의 본질적인(intrinsic) 기술적 사상을 파악하는 데 있어서, 사전적 의미에 제한되지 않고 본 발명의 기술적 사상에 부합되는 의미로 적절히 해석되어야 할 것이다.In addition, since the terms used below are selected for convenience of description, in grasping the essential (intrinsic) technical idea of the present invention, they are not limited to the dictionary meaning and are appropriately interpreted in a meaning consistent with the technical idea of the present invention. It should be.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따라 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제를 제조하는 과정을 나타낸 플로우차트이고, 도 2 및 도 3은 본 발명의 실시예에 따라 식물생리활성제를 제조하는 세부 과정을 나타낸 플로우차트이다.1 is a flow chart showing a process for preparing a plant physiologically active agent for preventing cold damage and improving the flowering rate of plants according to an embodiment of the present invention, and FIGS. 2 and 3 are manufacturing a plant physiologically active agent according to an embodiment of the present invention This is a flowchart showing the detailed process.
도 1 내지 도 3을 참조하면, 단백질분해효소를 이용하여 우모분을 가수분해하여 동물성아미노산을 제조할 수 있다(단계110).Referring to FIGS. 1 to 3 , animal amino acids may be prepared by hydrolyzing feather meal using a proteolytic enzyme (step 110).
여기에서, 단백질분해효소는 펩신(pepsin), 레닌(rennin), 트립신(trypsin), 키모트립신(chymotrypsin), 에렙신(erepsin), 엔테로키네이스(enterokinase), 파파인(papain), 브로멜린(bromelin), 피신(ficin), 액티니딘(actinidin) 및 엘라스테이스(elastase) 중에서 선택된 적어도 하나를 포함할 수 있다.Here, the protease is pepsin, rennin, trypsin, chymotrypsin, erepsin, enterokinase, papain, bromelin , ficin, actinidin, and elastase.
한편, 본 발명에서는 단백질분해효소를 이용하여 단백질을 가수분해하는 것으로 하여 설명하였으나, 단백질분해효소 대신에 단백질분해효소를 생성하는 미생물을 이용하여 단백질을 가수분해할 수 있음은 물론이며, 예를 들어 박테리아(예를 들면, Bacillus 등), 곰팡이(예를 들면, Aspergillus, Rhizopu 등) 등을 포함할 수 있다.On the other hand, although the present invention has been described as hydrolyzing proteins using proteolytic enzymes, it is of course possible to hydrolyze proteins using microorganisms that produce proteolytic enzymes instead of proteolytic enzymes, for example It may include bacteria (eg, Bacillus, etc.), fungi (eg, Aspergillus, Rhizopu, etc.) and the like.
상기 단계(110)의 구체적인 과정에 대해 설명하면, 우모분을 고압증기멸균할 수 있다(단계111).Referring to the specific process of step 110, down and feather powder can be sterilized by high-pressure steam (step 111).
여기에서, 우모분은 가금을 도축하고 남은 우모를 증기압을 이용하여 가공 처리한 후에 건조, 분쇄한 것을 의미하는데, 조단백질 76-87%로 매우 높고, 조섬유, 칼슘 및 인의 함량이 매우 낮으며, 단백질 가치를 향상시키기 위해 고온 및 고압으로 가열 분해시킴으로써, 수소결합과 황결합을 분해시켜 펩타이드 형태로 만들어 사용할 수 있다.Here, feather meal means that the remaining feathers after slaughtering poultry are processed using steam pressure, dried and pulverized, and have a very high crude protein of 76-87%, a very low content of crude fiber, calcium and phosphorus, and In order to improve the value, it can be used in the form of peptides by decomposing hydrogen and sulfur bonds by heating and decomposing at high temperature and high pressure.
상기와 같은 우모분을 고압증기멸균하는 단계(111)에서는 2.8-3.2 bar의 압력범위, 135-145 ℃의 온도범위 및 25-35 분의 시간범위에 따라 고압증기멸균할 수 있는데, 고압증기멸균기(오토클레이브, autoclave)에 우모분을 투입한 후에, 내외부를 밀폐시킨 상태에서 밀폐된 용기 내부에 존재하는 물을 고온에 노출하여 수증기를 발생시키면서 용기 내부 압력과 온도를 2.8-3.2 bar의 압력범위와 135-145 ℃의 온도범위까지 상승시킨 후에, 압력 및 온도를 유지하여 25-35 분의 시간범위에 따라 처리함으로써, 우모분에 존재하는 세균을 멸균시킬 수 있다.In the step 111 of high-pressure steam sterilization of the feather powder as described above, high-pressure steam sterilization may be performed according to a pressure range of 2.8-3.2 bar, a temperature range of 135-145 ° C, and a time range of 25-35 minutes. (autoclave), the inside and outside are sealed, and the water inside the sealed container is exposed to high temperature to generate water vapor, while the pressure inside the container and the temperature are within the pressure range of 2.8-3.2 bar. After raising the temperature to 135-145 ° C., the pressure and temperature are maintained and treated according to the time range of 25-35 minutes, thereby sterilizing the bacteria present in the feather meal.
그리고, 단백질분해효소를 우모분에 투입할 수 있다(단계112).Then, the proteolytic enzyme may be added to the feather meal (step 112).
상기와 같은 투입하는 단계(112)에서는 반응용기에 고압증기멸균한 우모분을 투입한 후에, 가수분해를 위해 단백질분해효소를 반응용기의 우모분에 투입할 수 있다.In the inputting step 112 as described above, after the high-pressure steam sterilized feather powder is introduced into the reaction vessel, a proteolytic enzyme may be added to the feather powder in the reaction vessel for hydrolysis.
다음에, 우모분 및 단백질분해효소를 반응시킬 수 있다(단계113).Next, feather powder and proteolytic enzyme can be reacted (step 113).
상기와 같은 반응시키는 단계(113)에서는 45-55 ℃의 온도범위와 2.5-3.5 일의 시간범위에 따라 반응시킬 수 있는데, 우모분과 단백질분해효소가 투입된 반응용기의 내부온도를 45-55 ℃의 온도범위로 상승시켜 유지한 상태로 2.5-3.5 일의 시간범위에 따라 반응시킬 수 있다.In the reaction step (113) as described above, the reaction can be performed according to the temperature range of 45-55 ° C and the time range of 2.5-3.5 days. It can be reacted according to the time range of 2.5-3.5 days in the state of raising and maintaining the temperature range.
상기 반응시키는 단계(113) 이후에 기 설정된 입도범위에 따라 여과할 수 있다(단계114).After the reacting step 113, filtering may be performed according to a preset particle size range (step 114).
상기와 같은 여과하는 단계(114)에서는 150-250 메쉬(mesh)의 입도범위에 따라 여과할 수 있는데, 우모분과 단백질분해효소를 반응시킨 반응액을 150-250 메쉬(mesh)의 입도범위를 갖는 멤브레인필터에 통과시켜 여과시킬 수 있다.In the filtering step 114 as described above, filtration can be performed according to the particle size range of 150-250 mesh. It can be filtered by passing it through a membrane filter.
상기 여과하는 단계(114) 이후에 동결 건조하여 분상화할 수 있다(단계115).After the filtering step (114), it may be freeze-dried and powdered (step 115).
상기와 같은 분상화하는 단계(115)에서는 여과된 여과액을 동결시키고, 얼음을 승화시켜 제거한 후에, 온도를 상승시켜 수분을 제거하는 과정으로 동결 건조하고, 기 설정된 입도범위(예를 들면, 150-250 메쉬(mesh) 등)의 분말로 분쇄하여 균일하게 분상화시킬 수 있다.In the step of pulverizing as described above (115), the filtered filtrate is frozen, the ice is removed by sublimation, and then freeze-dried in a process of removing moisture by raising the temperature, and -250 mesh, etc.) can be pulverized into powder to make it uniformly pulverized.
다음에, 상기 단계(110)에서 제조된 동물성아미노산과 요소, 유기산 및 물을 포함하는 반응원료를 혼합하여 액상화함으로써, 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제를 제조할 수 있다(단계120).Next, by mixing the animal amino acid prepared in step 110 with the reaction raw material including urea, organic acid, and water to liquefy, a plant physiologically active agent for preventing cold damage and improving flowering rate of plants can be prepared (step 120). ).
여기에서, 전체혼합물 100 중량부를 기준으로 동물성아미노산 30-35 중량부와 반응원료 65-70 중량부로 하여 혼합될 수 있다.Here, 30-35 parts by weight of animal amino acid and 65-70 parts by weight of a reaction raw material may be mixed based on 100 parts by weight of the entire mixture.
상기 단계(120)의 구체적인 과정에 대해 설명하면, 동물성아미노산에 요소, 유기산 및 물을 포함하는 반응원료를 투입하되, 붕산, 킬레이트철, 몰리브덴산나트륨, 황산아연 및 황산망간을 더 첨가할 수 있다(단계121).Describing the specific process of step 120, reaction raw materials including urea, organic acid, and water are added to animal amino acids, but boric acid, chelated iron, sodium molybdate, zinc sulfate, and manganese sulfate may be further added. (Step 121).
여기에서, 동물성아미노산에 혼합되는 반응원료는, 전체혼합물 100 중량부를 기준으로, 요소 14-16 중량부, 유기산 4-5 중량부, 물 48-50 중량부, 붕산 0.5-1.0 중량부, 킬레이트철 0.3-0.5 중량부, 몰리브덴산나트륨 0.01-0.02 중량부, 황산아연 0.05-0.1 중량부, 황산망간 0.05-0.1 중량부를 포함할 수 있다.Here, the reaction raw materials mixed with the animal amino acid are 14-16 parts by weight of urea, 4-5 parts by weight of organic acid, 48-50 parts by weight of water, 0.5-1.0 parts by weight of boric acid, chelate iron, based on 100 parts by weight of the total mixture. 0.3 to 0.5 parts by weight, 0.01 to 0.02 parts by weight of sodium molybdate, 0.05 to 0.1 parts by weight of zinc sulfate, and 0.05 to 0.1 parts by weight of manganese sulfate.
그리고, 요소는 질소가 46% 함유되어 있어 광합성 작용을 하는 엽록소를 만들어 작물의 줄기와 잎, 키를 키우는 역할을 담당하고, 식물체 내에서 생화학 반응에 관여하는 효소, 호르몬, 비타민류 등을 구성하여 식물의 생육을 증진시키는 것으로 알려져 있다.In addition, urea contains 46% nitrogen, which makes chlorophyll that performs photosynthesis and plays a role in growing the stem, leaf, and height of crops, and constitutes enzymes, hormones, and vitamins involved in biochemical reactions in plants It is known to enhance plant growth.
또한, 유기산은 예를 들면, 아스코르브산, 카르복실산, 글루콘산, 호박산, 글루탐산, 푸마르산, 아세트산, 팔미트산, 타타르산, 젖산, 사과산, 호박산, 주석산, 구연산, 초산, 옥살산 및 부식산 중에서 선택된 적어도 하나를 포함하는데, 광합성에 의해 생성된 동화산물이 여러 대사과정을 거쳐 만들어지고, 질소비료를 시비할 경우 흡수된 질소성분이 유기산과 결합하여 아미노산으로 합성될 수 있으며, 각종 작물의 병억제 효과가 있으며, 인산이 축적된 토양에 시비할 경우 인산을 가용화하여 인산의 흡수를 촉진시킬 수 있는 것으로 알려져 있다.In addition, organic acids include, for example, ascorbic acid, carboxylic acid, gluconic acid, succinic acid, glutamic acid, fumaric acid, acetic acid, palmitic acid, tartaric acid, lactic acid, malic acid, succinic acid, tartaric acid, citric acid, acetic acid, oxalic acid and humic acid. It includes at least one selected from the group consisting of assimilative products produced by photosynthesis through various metabolic processes, nitrogen components absorbed when fertilizing nitrogen fertilizer are combined with organic acids to be synthesized into amino acids, and suppression of diseases of various crops. It is known that it can solubilize phosphoric acid and promote phosphoric acid absorption when fertilized in soil where phosphoric acid is accumulated.
한편, 붕산은 수용성 붕소가 주성분으로 약산성을 나타내는데, 토양중 pH가 산성이 되면 유효태로 변하여 이용률이 높아지고, 식물체 내에서 이동이 어려운 원소로서 작물 생육이 활발한 영양생장기에 필요한 것으로 알려져 있다.On the other hand, boric acid shows weak acidity with water-soluble boron as its main component. When the pH of the soil becomes acidic, it changes to an effective form, increasing its utilization rate, and is difficult to move in plants.
그리고, 킬레이트철은 킬레이트 처리된 철로서, 전기적인 성질로 인한 산도의 영향, 다른 성분과의 결합, 불용화 등을 억제시킬 수 있는데, 높은 산도에서도 철의 흡수율을 증진시켜주며, 식물들의 광합성 활동을 회복하는데 효과적인 것으로 알려져 있다.In addition, chelated iron is chelated iron, and it can suppress the effect of acidity due to electrical properties, combination with other components, and insolubilization. It is known to be effective in restoring
또한, 몰리브덴산나트륨은 몰리브덴과 나트륨을 함유하여 엽록소 함량을 증가시키고, 광합성 능력을 향상시키며, 식물의 생장을 촉진할 뿐만 아니라 저장성을 개선하는 것으로 알려져 있다.In addition, sodium molybdate is known to contain molybdenum and sodium to increase chlorophyll content, improve photosynthetic ability, promote plant growth and improve storage stability.
한편, 황산아연은 식물의 영양원소인 황과 아연을 함유하고 있어 작물 생육 초기부터 작물의 생육과 품질에 영향을 미치는데, 식물 생장조정제인 옥신(auxin)을 생산하고, 효소의 활성화 및 엽록소 합성을 증진시키는 것으로 알려져 있다.On the other hand, zinc sulfate contains sulfur and zinc, which are plant nutrients, and affects the growth and quality of crops from the beginning of crop growth. It produces auxin, a plant growth regulator, activates enzymes and synthesizes chlorophyll. is known to enhance
또한, 황산망간은 산화효소의 작용을 촉진하고, 엽록소 생성 및 광합성, 질소대사 및 탄소동화작용, 비타민C 형성에 관여하는데, IAA 산화효소를 활성화시켜 IAA 산화를 촉진시키는 것으로 알려져 있다.In addition, manganese sulfate promotes the action of oxidase and is involved in chlorophyll production and photosynthesis, nitrogen metabolism and carbon assimilation, and vitamin C formation, and is known to activate IAA oxidase to promote IAA oxidation.
다음에, 동물성아미노산과 반응원료를 교반 및 반응시킬 수 있다(단계122).Next, the animal amino acid and the reaction raw material may be stirred and reacted (step 122).
상기와 같은 교반 및 반응시키는 단계(122)에서는 65-75 ℃의 온도범위, 3.5-4.5 시간의 시간범위 및 350-450 rpm의 회전속도범위로 교반 및 반응시킬 수 있는데, 동물성아미노산과 반응원료가 교반기에 투입된 후, 내부온도를 65-75 ℃의 온도범위까지 상승시켜 유지한 상태에서, 350-450 rpm의 회전속도범위로 교반날개를 회전시키면서 3.5-4.5 시간의 시간범위에 따라 교반 및 반응시킬 수 있다.In the stirring and reaction step (122) as described above, stirring and reaction can be performed in a temperature range of 65-75 ° C, a time range of 3.5-4.5 hours, and a rotational speed range of 350-450 rpm. After being put into the stirrer, in a state where the internal temperature is raised to a temperature range of 65-75 ℃ and maintained, stirring and reacting according to the time range of 3.5-4.5 hours while rotating the stirring blades in the rotational speed range of 350-450 rpm can
상기 교반 및 반응시키는 단계(122) 이후에 침전시킬 수 있다(단계123).After the stirring and reacting step 122, it may be precipitated (step 123).
상기와 같은 침전시키는 단계(123)에서는 22-26 시간의 시간범위에 따라 침전시킬 수 있는데, 교반 및 반응을 통해 수득된 반응액을 상온(예를 들면, 15-25 ℃)에서 22-26 시간동안 유지시켜 교반 및 반응 후 잔류하는 고상물질들을 침전시킬 수 있다.In the precipitating step 123 as described above, precipitation may be performed according to a time range of 22-26 hours, and the reaction solution obtained through stirring and reaction is kept at room temperature (eg, 15-25 ℃) for 22-26 hours. It can be maintained for a while to precipitate solid materials remaining after stirring and reaction.
상기 침전시키는 단계(123) 이후에 기 설정된 입도범위에 따라 여과한 후 숙성시킴으로써, 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제를 제조할 수 있다(단계124).After the precipitating step (123), a plant physiologically active agent for preventing cold damage and improving the flowering rate of plants can be prepared by filtering according to a predetermined particle size range and then maturing (step 124).
상기 여과한 후 숙성시키는 단계(124)에서는 250-350 메쉬(mesh)의 입도범위에 따라 여과한 후에, 46-50 시간의 시간범위에 따라 숙성시킬 수 있는데, 잔류하는 고상물질들이 침전된 침전액을 250-350 메쉬(mesh)의 입도범위를 갖는 멤브레인필터에 통과시켜 여과시킬 수 있으며, 그 여과액을 상온(예를 들면, 15-25 ℃)에서 46-50 시간의 시간범위에 따라 숙성시킬 수 있다.In the filtering and aging step 124, after filtering according to the particle size range of 250-350 mesh, it can be aged according to the time range of 46-50 hours, in which the remaining solid substances are precipitated. It can be filtered by passing it through a membrane filter having a particle size range of 250-350 mesh, and the filtrate is aged at room temperature (eg, 15-25 ° C.) over a time range of 46-50 hours. can
상술한 바와 같이 제조된 액상의 식물생리활성제는 요구된 중량별로 포장되어 판매될 수 있다.The liquid plant bioactive agent prepared as described above can be packaged and sold by required weight.
한편, 상술한 바와 같은 과정을 통해 제조된 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제는, 900-1100배로 희석하여 식물의 발아전(3월 하순-4월 상순), 출엽기(4월 상순) 및 개화전(4월 상순-4월 중순)에 각각 엽면시비로 살포할 수 있는데, 제조된 식물생리활성제 10 ㎖를 대략 9-11 ℓ의 물에 혼합하여 희석한 후 살포할 수 있다.On the other hand, the plant physiological activator for preventing cold damage and improving the flowering rate of plants prepared through the process as described above is diluted 900-1100 times before germination (late March-early April), leaflet period (April Early) and before flowering (early April to mid-April), it can be sprayed with foliar fertilization, respectively. 10 ml of the prepared plant physiological activator can be mixed with about 9-11 L of water, diluted, and then sprayed.
다음에, 상술한 바와 같이 제조된 식물생리활성제를 1000배 희석하여 식물의 발아전(3월 하순-4월 상순), 출엽기(4월 상순) 및 개화전(4월 상순-4월 중순)에 각각 엽면시비로 살포할 경우 나타나는 시험 결과(국립원예특작과학원 사과연구소 시험 결과)에 대해 설명하면, 홍로 사과꽃 냉해 피해 및 개화율에 미치는 영향을 중심화피해율(%)과 동시개화율(%)을 통해 관찰 및 측정한 시험 결과, 아래의 표 1에 도시한 바와 같이 본 발명의 실시예에 따른 식물생리활성제는 요소를 살포한 경우와 무처리한 대조군에 비해 중심화피해율(%)이 18.8로 나타났고, 동시개화율(%)이 78.8로 나타남으로써, 냉해 예방 및 개화율 향상에 효과적인 것을 확인할 수 있다.Next, the plant physiological activator prepared as described above was diluted 1000 times before germination of plants (late March to early April), leaf growth period (early April) and before flowering (early April to mid-April). If the test results (test results of the Apple Research Institute of the National Institute of Horticultural and Herbal Science) are explained when spraying each with foliar fertilization, the effect on the cold damage and flowering rate of Hongro apple flowers is evaluated through the centralized damage rate (%) and simultaneous flowering rate (%). As a result of the observation and measurement test, as shown in Table 1 below, the plant physiological activator according to the embodiment of the present invention showed a centralization damage rate (%) of 18.8 compared to the case of spraying urea and the untreated control group, As the simultaneous flowering rate (%) was 78.8, it can be confirmed that it is effective in preventing cold damage and improving the flowering rate.
중심화피해율(%)Centering Damage Rate (%) 동시개화율(%)Simultaneous flowering rate (%)
본발명의 식물생리활성제Plant physiological activator of the present invention 18.818.8 78.878.8
요소Element 27.527.5 71.871.8
대조군(무처리)Control (untreated) 25.025.0 71.671.6
또한, 홍로 사과의 과실 특성에 미치는 영향을 과중(g), 적색도, 가용성고형물함량(ㅀBrix), 과경길이(mm) 등을 통해 관찰 및 측정한 시험 결과, 아래의 표 2에 도시한 바와 같이 본 발명의 실시예에 따른 식물생리활성제는 요소를 살포한 경우와 무처리한 대조군에 비해 과중(g)에서 223.2로 나타났고, 적색도에서 14.1로 나타났으며, 가용성고형물함량(ㅀBrix)에서 14.7로 나타났고, 과경길이(mm)에서 16.0으로 나타남으로써, 과중과 과경길이는 요소 처리한 경우에서보다 상대적으로 작은 것으로 나타났지만, 적색도에서는 과실 색상이 선명한 것을 확인할 수 있었고, 가용성고형물함량의 경우에도 요소 처리한 경우와 동일하게 나타나고 있다는 것을 확인할 수 있었다.In addition, the test results of observing and measuring the effect on the fruit characteristics of Hongro apples through weight (g), redness, soluble solids content (ㅀBrix), fruit diameter (mm), etc., as shown in Table 2 below Likewise, the plant physiological activator according to the embodiment of the present invention showed 223.2 in weight (g) and 14.1 in redness compared to the case of spraying urea and the untreated control group, and in soluble solids content (ㅀBrix) It was 14.7, and 16.0 in fruit diameter (mm), so the fruit weight and fruit diameter were relatively smaller than in the case of urea treatment, but it was confirmed that the fruit color was clear in redness. It was confirmed that the elements appeared the same as in the case of element processing.
과중(g)Overweight (g) 적색도redness 가용성
고형물함량
(°Brix)
availability
solids content
(°Brix)
과경길이(mm)Diameter length (mm)
본발명의 식물생리활성제Plant physiological activator of the present invention 223.2223.2 14.114.1 14.714.7 16.016.0
요소Element 229.1229.1 13.313.3 14.714.7 17.017.0
대조군(무처리)Control (untreated) 211.3211.3 9.99.9 14.314.3 16.716.7
상술한 바와 같이 제조되는 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제는 아래의 표 3에 나타낸 바와 같이 아미노산 분말에 함유된 다양한 종류의 아미노산을 모두 함유하고 있음을 확인할 수 있다.It can be confirmed that the plant physiological activator for preventing cold damage and improving the flowering rate of plants prepared as described above contains all of the various types of amino acids contained in the amino acid powder, as shown in Table 3 below.
amino acidamino acid 아미노산분말(umole/g)Amino acid powder (umole/g) 엑토신(umole/ml)Ectocin (umole/ml)
histidinehistidine 2.0162.016 0.4020.402
serineserine 18.44118.441 1.8371.837
argininearginine 12.11712.117 1.1071.107
glycineglycine 5.4325.432 0.5730.573
glutamic acidglutamic acid 4.9354.935 0.4520.452
threoninethreonine 6.6516.651 0.7700.770
alaninealanine 13.62813.628 1.4251.425
prolineproline 5.3345.334 0.3980.398
cysteincysteine 0.1770.177 0.0170.017
lysinelysine 2.3622.362 0.2590.259
tyrosinetyrosine 5.6755.675 0.5880.588
methioninemethionine 1.6371.637 0.1210.121
valinevaline 0.9990.999 0.0020.002
isoleucineisoleucine 2.3662.366 0.1770.177
leucineleucine 4.7244.724 0.3840.384
phenylalaninephenylalanine 5.5215.521 0.6080.608
따라서, 본 발명의 실시예에 따르면, 단백질분해효소를 이용하여 단백질을 가수분해하여 동물성아미노산을 제조하고, 제조된 동물성아미노산과 요소, 유기산 및 물을 포함하는 반응원료를 혼합한 후 액상화하여 식물생리활성제를 제조함으로써, 식물의 냉해를 예방할 수 있고, 식물의 개화율을 향상시킬 수 있을 뿐만 아니라 기후변화로 인한 농업피해를 미연에 방지할 수 있다.Therefore, according to an embodiment of the present invention, protein is hydrolyzed using a proteolytic enzyme to produce animal amino acids, and after mixing the prepared animal amino acids with reaction raw materials including urea, organic acids, and water, they are liquefied to produce plant physiology. By preparing the activator, it is possible to prevent cold damage of plants, improve the flowering rate of plants, and prevent agricultural damage due to climate change in advance.
또한, 본 발명의 실시예에 따르면, 기후변화로 인한 유기산을 포함하는 반응원료를 이용한 복합기술로 제조된 식물생리활성제는 식물의 냉해 피해를 예방할 수 있을 뿐만 아니라 개화율을 향상시키는 생리 활성 효과를 제공할 수 있다.In addition, according to an embodiment of the present invention, the plant physiological activator prepared by a complex technology using a reactive raw material containing an organic acid due to climate change can prevent damage from freezing to plants and provide a physiologically active effect that improves the flowering rate. can do.

Claims (6)

  1. 단백질분해효소를 이용하여 우모분을 가수분해하여 동물성아미노산을 제조하는 단계; 및preparing animal amino acids by hydrolyzing feather meal using a proteolytic enzyme; and
    상기 제조된 동물성아미노산과 요소, 유기산 및 물을 포함하는 반응원료를 혼합하여 액상화하는 단계;를 포함하며,liquefying by mixing the prepared animal amino acid with a reaction raw material including urea, organic acid and water;
    상기 동물성아미노산을 제조하는 단계는,The step of preparing the animal amino acid,
    상기 우모분을 고압증기멸균하는 단계; 상기 단백질분해효소를 상기 우모분에 투입하는 단계; 상기 우모분 및 단백질분해효소를 반응시키는 단계; 상기 반응시키는 단계 이후에 여과하는 단계; 및 상기 여과하는 단계 이후에 동결 건조하여 분상화하는 단계;를 포함하고,High-pressure steam sterilization of the feather meal; injecting the proteolytic enzyme into the feather meal; reacting the feather powder and proteolytic enzyme; Filtering after the reacting step; And freeze-drying to powderize after the filtering step; Including,
    상기 우모분을 고압증기멸균하는 단계는, 2.8-3.2 bar의 압력범위, 135-145 ℃의 온도범위 및 25-35 분의 시간범위에 따라 수행하며,The step of high-pressure steam sterilization of the feather meal is carried out according to a pressure range of 2.8-3.2 bar, a temperature range of 135-145 ° C, and a time range of 25-35 minutes,
    상기 반응시키는 단계는, 45-55 ℃의 온도범위와 2.5-3.5 일의 시간범위에 따라 수행하고,The reaction step is carried out according to the temperature range of 45-55 ℃ and the time range of 2.5-3.5 days,
    상기 여과하는 단계는, 150-250 메쉬(mesh)의 입도범위에 따라 수행하며,The filtering step is performed according to the particle size range of 150-250 mesh,
    상기 분상화하는 단계는, 250-350 메쉬(mesh)의 분말로 분쇄하여 분상화시키는 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법.The step of powdering is a method for producing a plant physiologically active agent for preventing cold damage and improving the flowering rate of plants that are ground into powder of 250-350 mesh and powdered.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 반응원료를 혼합하여 액상화하는 단계는,The step of liquefying by mixing the reaction raw materials,
    상기 동물성아미노산에 상기 요소, 유기산 및 물을 포함하는 상기 반응원료를 투입하되, 붕산, 킬레이트철, 몰리브덴산나트륨, 황산아연 및 황산망간을 더 첨가하는 단계;Injecting the reaction raw material including the urea, organic acid, and water into the animal amino acid, and further adding boric acid, chelate iron, sodium molybdate, zinc sulfate, and manganese sulfate;
    상기 동물성아미노산 및 반응원료를 교반 및 반응시키는 단계;Stirring and reacting the animal amino acid and the reaction raw material;
    상기 교반 및 반응시키는 단계 이후에 침전시키는 단계; 및precipitating after the stirring and reacting; and
    상기 침전시키는 단계 이후에 여과한 후 숙성시키는 단계;를 포함하는 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법.Method for producing a plant physiologically active agent for preventing cold damage and improving the flowering rate of plants comprising; filtering after the precipitating step and then aging.
  3. 청구항 2에 있어서,The method of claim 2,
    상기 교반 및 반응시키는 단계는, 65-75 ℃의 온도범위, 3.5-4.5 시간의 시간범위 및 350-450 rpm의 회전속도범위로 수행하는 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법.The stirring and reacting steps are performed in a temperature range of 65-75 ° C., a time range of 3.5-4.5 hours, and a rotational speed range of 350-450 rpm. Method for producing a plant physiologically active agent for preventing cold damage and improving flowering rate of plants. .
  4. 청구항 3에 있어서,The method of claim 3,
    상기 침전시키는 단계는, 22-26 시간의 시간범위에 따라 수행하는 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법.The precipitating step is a method for producing a plant physiologically active agent for preventing cold damage and improving flowering rate of plants performed according to a time range of 22-26 hours.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 여과한 후 숙성시키는 단계는, 250-350 메쉬(mesh)의 입도범위에 따라 여과한 후에, 46-50 시간의 시간범위에 따라 숙성시키는 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법.In the step of aging after filtering, after filtering according to the particle size range of 250-350 mesh, production of plant physiological activators for preventing cold damage and improving flowering rate of plants aged according to the time range of 46-50 hours Way.
  6. 청구항 5에 있어서,The method of claim 5,
    상기 식물생리활성제는, 900-1100배로 희석하여 발아전, 출엽기 및 개화전에 각각 엽면시비로 살포하는 식물의 냉해 예방 및 개화율 향상을 위한 식물생리활성제의 제조 방법.The plant physiological activator is diluted 900-1100 times and is sprayed with foliar fertilization before germination, leaf fertilization, and flowering, respectively, to prevent cold damage and improve flowering rate of plants.
PCT/KR2021/016370 2021-07-12 2021-11-10 Method for preparing plant biostimulant for preventing cold injury and enhancing flowering rate of plant WO2023286927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0091141 2021-07-12
KR1020210091141A KR102313897B1 (en) 2021-07-12 2021-07-12 Method for manufacturing plant bio-stimulant for cold-weather damage prevention and flowering percent improvement of plant

Publications (1)

Publication Number Publication Date
WO2023286927A1 true WO2023286927A1 (en) 2023-01-19

Family

ID=78228215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016370 WO2023286927A1 (en) 2021-07-12 2021-11-10 Method for preparing plant biostimulant for preventing cold injury and enhancing flowering rate of plant

Country Status (2)

Country Link
KR (1) KR102313897B1 (en)
WO (1) WO2023286927A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102313897B1 (en) * 2021-07-12 2021-10-19 (주)바이오플랜 Method for manufacturing plant bio-stimulant for cold-weather damage prevention and flowering percent improvement of plant
KR102613158B1 (en) * 2021-11-09 2023-12-12 오미경 Covering plant's cold-weather damage by nano-technicized preventor and its process of manufacture
KR102493517B1 (en) 2022-08-29 2023-01-31 김재현 How to manufacture eco-friendly liquid composition for cold Weather Damage prevention and eco -friendly liquid composition for preventing cold Weather Damage
KR20240086124A (en) 2022-12-09 2024-06-18 농업회사법인 에치에스바이오 주식회사 Plant biostimulant composition comprising fermentated eel and fulvic acid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990038405A (en) * 1997-11-05 1999-06-05 권오범 Manufacturing method of trace element compound fertilizer containing soda tetrasulfide
KR101343433B1 (en) * 2013-05-27 2013-12-20 신림산업 주식회사 Soil washing agent for removing salts in salt damaged area
KR20200002470A (en) * 2018-06-29 2020-01-08 농업회사법인 제이아그로 주식회사 Sustained release complex fertilizer with mineral elements completely
CN110683882A (en) * 2019-11-13 2020-01-14 湛江市绿海生物工程有限公司 Process method for preparing amino acid water-soluble fertilizer from feather meal
CN112608198A (en) * 2020-12-18 2021-04-06 广西壮族自治区中国科学院广西植物研究所 Amino acid foliar fertilizer prepared from EM (effective microorganisms) fermented overdue milk powder and preparation method of amino acid foliar fertilizer
KR102313897B1 (en) * 2021-07-12 2021-10-19 (주)바이오플랜 Method for manufacturing plant bio-stimulant for cold-weather damage prevention and flowering percent improvement of plant

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869349B1 (en) * 2007-07-10 2008-11-19 조성동 Eco-friendly soil active agents and method of manufacturing thereof
KR101193251B1 (en) * 2010-07-12 2012-10-19 정경자 Method of manufacture for organic fertilizer using feather
JP5685515B2 (en) * 2011-10-06 2015-03-18 株式会社ハイポネックスジャパン Plant vitality agents, fertilizers and their concentrates or solids
KR101150583B1 (en) 2011-11-01 2012-05-31 김상근 Method for making organic vanadium compound using chelation of inorganic vanadium compound
CN102826922B (en) * 2012-07-31 2014-05-14 马鞍山科邦生态肥有限公司 Fertilizer special for spring corn base fertilizer
KR101621335B1 (en) * 2015-12-08 2016-05-16 (주)대성케미칼 Laver fertilizer and manufacturing methodmethod for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990038405A (en) * 1997-11-05 1999-06-05 권오범 Manufacturing method of trace element compound fertilizer containing soda tetrasulfide
KR101343433B1 (en) * 2013-05-27 2013-12-20 신림산업 주식회사 Soil washing agent for removing salts in salt damaged area
KR20200002470A (en) * 2018-06-29 2020-01-08 농업회사법인 제이아그로 주식회사 Sustained release complex fertilizer with mineral elements completely
CN110683882A (en) * 2019-11-13 2020-01-14 湛江市绿海生物工程有限公司 Process method for preparing amino acid water-soluble fertilizer from feather meal
CN112608198A (en) * 2020-12-18 2021-04-06 广西壮族自治区中国科学院广西植物研究所 Amino acid foliar fertilizer prepared from EM (effective microorganisms) fermented overdue milk powder and preparation method of amino acid foliar fertilizer
KR102313897B1 (en) * 2021-07-12 2021-10-19 (주)바이오플랜 Method for manufacturing plant bio-stimulant for cold-weather damage prevention and flowering percent improvement of plant

Also Published As

Publication number Publication date
KR102313897B1 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2023286927A1 (en) Method for preparing plant biostimulant for preventing cold injury and enhancing flowering rate of plant
KR101812553B1 (en) Composite peptide selenoprotein nutrient solution, preparation method and application thereof
KR101334586B1 (en) Method for Growing Sweet Potato Comprising Organic Germanium
US20130192322A1 (en) Plant Fertilizers Derived from Organic Nitrogen and Phosphorus Sources
CN104355818A (en) Tomato soilless culture medium
CN106348869A (en) Selenium-enriched organic fertilizer and production method thereof
WO2023286928A1 (en) Method for preparing plant bioactive agent for enhancing photosynthesis in plant
CN108184585B (en) Method for increasing content of essential amino acid in rice
KR101261355B1 (en) A Method of Producing Germanium Strawberries
KR101789595B1 (en) Plant growth promoting agent and manufacturing method thereof
CN1161303C (en) Process for preparing nourishing agent of plant
EP2537823B1 (en) Aminoacids of plant origin and method of production
CN107176865A (en) The sweetened liquid fertilizer method of preparation and use of marine alga earthworm hydrolyzate efficient bio-active
CN106892755A (en) A kind of method that platycodon root polysaccharide regulation and control prepare the amino acid foliage fertilizer containing nanometer selenium
KR100927314B1 (en) The cultivation method of tomatos having the high content of calcium and the excellent value of commodities
CN107114177A (en) A kind of implantation methods of zinc-rich Zhanhua winter jujube
KR102409954B1 (en) Plant nutrient composition and manufacturing method thereof
CN111567522B (en) Cotton topping agent and preparation method thereof
CN111410580B (en) Method for preparing peptide calcium biostimulant from waste containing colloidal protein
KR100463959B1 (en) a Compost by use of Duck's Manure and Method for Preparing the Same
CN113200795A (en) Enzymolysis biological peptide fertilizer and preparation method thereof
JP2022127083A (en) Method for producing liquid special fertilizer
CN111875434B (en) Cold-resistant and vernalization-promoting tea tree liquid fertilizer and application thereof
KR100373319B1 (en) Method of Manufacturing Grape Remnants Fermented Extract for Manure having crop damage preventing effect
KR20060115211A (en) The method for making a fertilizer using phellinus linteus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21950269

Country of ref document: EP

Kind code of ref document: A1