WO2023286445A1 - 腐食管理システム、推定方法及びプログラム - Google Patents

腐食管理システム、推定方法及びプログラム Download PDF

Info

Publication number
WO2023286445A1
WO2023286445A1 PCT/JP2022/020671 JP2022020671W WO2023286445A1 WO 2023286445 A1 WO2023286445 A1 WO 2023286445A1 JP 2022020671 W JP2022020671 W JP 2022020671W WO 2023286445 A1 WO2023286445 A1 WO 2023286445A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
measurement data
state
amount
relational expression
Prior art date
Application number
PCT/JP2022/020671
Other languages
English (en)
French (fr)
Inventor
俊作 松本
忠士 杉村
総一郎 井上
伸 寺田
智 宮崎
Original Assignee
三菱造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱造船株式会社 filed Critical 三菱造船株式会社
Priority to KR1020237043826A priority Critical patent/KR20240010030A/ko
Priority to EP22841792.9A priority patent/EP4343306A1/en
Priority to US18/571,864 priority patent/US20240288358A1/en
Publication of WO2023286445A1 publication Critical patent/WO2023286445A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • This disclosure relates to a corrosion management system, an estimation method and a program.
  • the present disclosure claims priority based on Japanese Patent Application No. 2021-114897 filed in Japan on July 12, 2021, the contents of which are incorporated herein.
  • Corrosion thinning is a highly variable phenomenon, and inference based on probability statistics is used.
  • a two-stage corrosion model of corrosion initiation and corrosion progress, or a three-stage corrosion model that considers the transition from initiation to progressive corrosion between the initiation and progress of corrosion is used. .
  • a power law Y AX B (Y is the amount of corrosion, X is time, and A and B are coefficients depending on material and environment) are generally used to predict the amount of corrosion progress (thickness reduction) of steel materials.
  • Methods for determining the coefficients A and B include (1) a method of estimating observable physical quantities as explanatory variables, and (2) a method of direct estimation from experiments and actual measurements.
  • Patent Document 1 discloses a method of determining the amount of corrosion by probabilistic inference using temperature, relative humidity, airborne salt content, and wetness probability at a bridge installation location as explanatory variables.
  • the method disclosed in Patent Document 1 cannot be used unless the explanatory variables are clear, but there are cases where the explanatory variables cannot be obtained due to the convenience of measurement. For example, large structures typically have areas where no sensors are installed. Ordinary sensors cannot be installed in explosion-proof areas. When the measured values of such areas are included in explanatory variables, the method of Patent Literature 1 cannot be used.
  • the standard error of corrosion amount estimation may increase due to adjustment of degrees of freedom in regression.
  • Non-Patent Document 1 a large amount of measurement data obtained from each part of the hull is used to adjust the coefficients of the three-stage corrosion model, and the corrosion occurrence life and the amount of corrosion at any time are estimated stochastically. are doing.
  • Measurement data of a single structural member of a large structure has the following risks. (1) Since the sample size for inspection and measurement is small (the number that can be collected as a sample is small), statistical distribution trends cannot be grasped. (2) There is bias in inspection and measurement, and the target site cannot be represented. (3) There are measurement errors due to the work environment, the characteristics of inspection equipment, the ability of workers, and so on. (4) Even if data is accumulated for a certain structure, it may not become effective data for structures with different conditions such as environment and operation.
  • the present disclosure provides a corrosion management system, estimation method, and program that can solve the above problems.
  • a corrosion management system of the present disclosure includes a measurement data acquisition unit that acquires measurement data indicating a state of corrosion in a first portion of a structure to be evaluated, a state of corrosion in the first portion to be evaluated, and a second portion and a corrosion estimating unit for estimating the state of corrosion in the second portion based on the relational expression between the state of corrosion in and the measurement data of the first portion.
  • the estimation method of the present disclosure includes the steps of acquiring measurement data indicating a state of corrosion in a first portion of a structure to be evaluated; and estimating the state of corrosion in the second portion based on the relational expression of and the measurement data of the first portion.
  • the program of the present disclosure comprises, in a computer, acquiring measurement data indicating a state of corrosion in a first portion of a structure to be evaluated; and a step of estimating the state of corrosion in the second portion based on the relational expression with the state of and the measurement data of the first portion.
  • FIG. 1 is a block diagram showing an example of a corrosion management system according to an embodiment
  • FIG. FIG. 4 is a first diagram illustrating a relational expression used for estimating corrosion according to the embodiment
  • FIG. 7 is a second diagram illustrating a relational expression used for estimating corrosion according to the embodiment
  • It is a figure explaining correction processing of corrosion of a measurement part concerning an embodiment.
  • 6 is a flowchart showing an example of corrosion estimation processing of an unmeasured portion according to the embodiment; It is a figure which shows the cost of maintenance and the relationship of reliability which concern on embodiment.
  • It is a flowchart which shows an example of the preparation process of the maintenance plan which concerns on embodiment.
  • It is a figure which shows an example of the hardware constitutions of the corrosion management system which concerns on embodiment.
  • FIG. 1 is a block diagram showing an example of a corrosion management system according to an embodiment.
  • the corrosion management system 1 estimates the corrosion state of structures in floating structures such as ships, various facilities and machines such as chemical plants, predicts the probability of future failures caused by corrosion, and implements measures to deal with the failures. Create an effective maintenance plan. Corrosion inspections and measurements are performed in structures where corrosion is an issue. However, for example, in a large-scale structure such as a ship, it is not always possible to inspect and measure all parts of interest.
  • the corrosion management system 1 refers to the past corrosion database for parts where sufficient inspection data cannot be obtained or where inspection data is not frequently obtained, and determines whether corrosion has occurred at each part. Time-series changes in life (time until corrosion occurs) and corrosion amount (thickness reduction) are acquired, and from these data and limited measurement data to be evaluated, corrosion initiation life and corrosion amount are probabilistically calculated. presume.
  • the corrosion management system 1 includes a corrosion estimation device 10 and a maintenance planning device 20.
  • the corrosion estimating device 10 estimates the state of corrosion of an unmeasured portion to be evaluated.
  • the maintenance planning device 20 creates a maintenance plan for corrosion that optimizes reliability or cost based on the corrosion state estimated by the corrosion estimating device 10 .
  • the corrosion estimation device 10 includes a measurement data acquisition unit 11, a relational expression calculation unit 12, a corrosion estimation unit 13, a measurement data correction unit 14, a failure probability calculation unit 15, a storage unit 16, and an output unit 17.
  • the measurement data acquisition unit 11 acquires measurement data, which is information indicating the state of corrosion that has been inspected and measured for the structure to be evaluated.
  • the measurement data includes information such as the presence or absence of corrosion and the amount of thinning.
  • the ship H is used as an evaluation target as an example.
  • a portion for which measurement data has been obtained is defined as a portion S, and a portion for which measurement data has not been obtained but is to be evaluated for corrosion is defined as a portion U.
  • the parts are structures having a certain size, such as the upper deck of the ship H, side shells, ballast water tanks, oil tanks, and the like.
  • the relational expression calculation unit 12 calculates the relationship between the part U and the part S from the measurement data of the part U and the part S of other ships in the past.
  • the relational expression calculation unit 12 calculates the relational expression of the corrosion initiation life that indicates the relationship between the period until corrosion occurs in the portion U and the period until corrosion occurs in the portion S, and the amount of corrosion in the portion U at time T ( A relational expression of the corrosion amount showing the relationship between the thickness reduction amount) and the corrosion amount of the portion S is calculated.
  • Corrosion generation life and corrosion amount vary depending on the actually measured position even within the part S.
  • the measurement data of both the part U and the part S are obtained. different between Vessel 1 and Vessel 2. Therefore, the relational expression calculator 12 calculates the relational expression of the corrosion initiation life and the relational expression of the amount of corrosion that include these uncertainties.
  • the corrosion database stores the following information (parameters) analyzed based on measurement data measured for each part.
  • Probability database of corrosion initiation life Tc For example, logarithmic mean and logarithmic standard deviation of corrosion initiation life Tc are registered.
  • Probability database of corrosion progress parameter a For example, logarithmic mean and logarithmic standard deviation of corrosion progress parameter a are registered.
  • the corrosion amount d(t) at a certain time t (t>Tc) is expressed by the following equation (1).
  • d(t) a ⁇ (t ⁇ Tc) b
  • Corrosion relational expressions are created for each of the corrosion initiation life Tc and the amount of corrosion d(t) based on the past corrosion database. Time dependence is taken into consideration for the relational expression of the corrosion amount.
  • FIG. 2A shows the median values of the corrosion initiation lives Tc ( ⁇ Tc , A , ⁇ Tc , B , respectively) of known sites A and B recorded in the corrosion database, and the corrosion amount d(t ) and a graph showing the relationship between the median value and Graph 100A is a graph of the amount of corrosion progressed at site A, and graph 100B is a graph of the amount of progress of corrosion at site B.
  • FIG. ⁇ Tc , A indicates the median value of the corrosion initiation life Tc of the site A
  • ⁇ Tc , B indicates the median value of the corrosion initiation life Tc of the site B.
  • FIG. 2B shows a graph representing the probability distribution of the amount of corrosion at time t obs based on Tc, a, b of known sites A and B recorded in the corrosion database and equation (1).
  • a graph 200A is the probability distribution of the corrosion amount of the site A
  • a graph 200B is the probability distribution of the corrosion amount of the site B.
  • the corrosion amount of site A at time t obs is d A
  • P the cumulative probability of the corrosion amount d A
  • P is calculated using the probability distribution of d A (t obs ).
  • the values that give the same cumulative probability in the graph 200B are the corrosion amounts d B , P of the portion B at the same time t obs .
  • the relational expression calculation unit 12 formulates the relationship between the parts A and B for each of the corrosion initiation life Tc and the corrosion amount d(t) using the addition rule and the multiplication rule.
  • the correction terms K1 to K4 may be determined deterministically as constants, or may be calculated as probability distributions. When the correction term is treated probabilistically, the uncertainty regarding the corrosion relationship of the part is set qualitatively by engineering judgment.
  • the correction terms K1 to K4 may be set in consideration of the difference in properties (material, size, environment) between the ship registered in the corrosion database and the ship H to be evaluated.
  • the values of d B (t obs ) and Tc B calculated by the relational expressions (2) to (5) are also calculated as probability distributions.
  • the values of Tc, a, and b are analyzed for many ships and provided as a publicly known database.
  • the data of the portion S and the portion U registered in the corrosion database varies, for example, depending on the ship, or even within the same portion of the same ship, depending on the position where the inspection and measurement were actually performed.
  • average values and median values as illustrated in Figure 2A the effects of various corrosion influence factors (coating, environment) and error factors (inspector skills, measurement errors) included in the corrosion database are mitigated.
  • the corrosion relationship between parts based on the assumption that, for example, "a hull in which the upper deck is prone to corrode, the side shell is also prone to corrosion.” It is considered that the probabilistic parameters Tc and a (including b in some cases), which are probabilistic parameters calculated under such assumptions, generally include variations between ships and variations within the same member.
  • the correction terms K1 to K4 can be set to a probability distribution (for example, a normal distribution) as necessary. , a relational expression that is robust against variations is obtained.
  • the relational expression calculation unit 12 calculates the corrosion initiation life and the amount of progress not only for the parts A and B, but also for all other parts registered in the corrosion database, and formulates the relationship for all combinations of parts. become
  • the corrosion estimation unit 13 calculates the relational expressions (2) to (5) formulated based on the measurement data of the measurement site S and the corrosion database of the site S and the site U (in the relational expressions exemplified above, the site A is Corrosion state of the evaluation portion U is estimated by using the relational expression when the portion S corresponds to the portion B and the portion B corresponds to the portion U). For example, the corrosion estimation unit 13 estimates the corrosion initiation lifetime ⁇ Tc , U of the portion U using either or both of the relational expressions (4) and (5). The corrosion estimation unit 13 estimates the corrosion amount d U (t obs ) of the portion U at t obs using either or both of the relational expressions (2) and (3). t obs is the time at which the corrosion inspection and measurement were performed for the measurement site S.
  • the measurement data correction unit 14 may correct the measurement data in order to improve the accuracy of the measurement data of the part S.
  • the measurement data correction unit 14 corrects the measurement site S based on past results (values that can be calculated from the parameters of the corrosion database and actual measurement values) and the measurement of the measurement site S.
  • the measurement data of the measurement region U is corrected by performing a fusion evaluation of the data by the Bayesian method.
  • the fusion evaluation method is described, for example, in the 2014 JIP (Joint Industry Project) report "Life Cycle Management of Hull Structure JIP". A method of correcting measurement data will be described below with reference to FIG.
  • FIG. 3 shows an example of the corrosion relational model.
  • the corrosion progress parameter a (300) is represented by probability parameters ⁇ a (301) and ⁇ a (302)
  • the probability parameters ⁇ a (301) are represented by ⁇ ⁇ a (311) and ⁇ ⁇ a (312)
  • the probability parameter ⁇ a (302) is represented by ⁇ ⁇ a (313) and ⁇ ⁇ a (314).
  • the probability parameter ⁇ a (301) of the corrosion progress parameter a (300) is the logarithmic mean of a
  • ⁇ a (302) is the logarithmic standard deviation of a.
  • Corrosion generation life Tc (320) is also represented by a probability model (not shown) using parameters such as ⁇ Tc (321).
  • the measurement data correction unit 14 compares the corrosion amount d S (t) (340) of the measurement site S in this correction model with the measurement data actually measured at the measurement site S of the ship H to be evaluated, the same site S , the corrosion generation life Tc (340) is given the measurement data actually measured at the measurement site S of the ship H, and the past results of other ships at the same site S are given.
  • the measurement data correction unit 14 adjusts the values of the parameters 301 to 302, 311 to 314, and 321 according to the Bayesian inference framework to obtain highly accurate parameters a and Tc, and the above equation (1) d(t) 340 at the measurement site S after correction by fusion evaluation of past results and measurement data is obtained.
  • the corrosion estimation unit 13 calculates the corrosion amount d u (t) of the unmeasured portion U from the corrected d S (t) (340), the correction term (350), and the equations (4) and (5). (360) is estimated.
  • the failure probability calculation unit 15 probabilistically predicts the corrosion state of the evaluation part U estimated by the corrosion estimation unit 13 by general uncertainty progression calculation.
  • the failure probability calculation unit 15 predicts the corrosion state after one year, two years, . Calculate the probability of reaching the quantity (probability of failure).
  • the storage unit 16 stores measurement data relating to corrosion of various ships, a corrosion initiation life Tc, a corrosion database in which corrosion progression parameters a and b are registered, and the like.
  • the output unit 17 outputs information such as the corrosion initiation life Tc, the corrosion amount d(t), and the failure probability estimated for the evaluation portion U to a display device or an electronic file.
  • FIG. 4 is a flowchart illustrating an example of corrosion estimation processing of an unmeasured portion according to the embodiment.
  • the relational expression calculation unit 12 calculates a relational expression between each part (step S1).
  • the relational expression calculator 12 calculates corrosion relational expressions (2) to (5) based on Tc, a, and b registered in the corrosion database.
  • the relational expression calculation unit 12 records the calculated relational expression in the storage unit 16 .
  • an evaluation site to be evaluated is set (step S2). For example, the user inputs the evaluation portion U (for example, upper deck) of the ship H to the corrosion estimating device 10 .
  • the corrosion estimating device 10 acquires the input information of the site U and records it in the storage unit 16 .
  • the user inputs measurement data of the measurement site S to the corrosion estimation device 10 .
  • the measurement data acquisition unit 11 acquires measurement data (presence or absence of corrosion, corrosion amount) of the measurement site S and information of the measurement site S (for example, side shell) (step S3), and acquires the measurement data and the information of the measurement site S. are associated with each other and recorded in the storage unit 16 .
  • the measurement data correction unit 14 determines whether or not to correct the input measurement data of the measurement region S (step S4). For example, when the reliability of the measurement data of the measurement part S is low (eg, the measurement error of the part S measured by a plurality of workers is larger than a threshold value), the user may indicate that the reliability of the measurement data is low. Input to the estimating device 10 .
  • the measurement data correction unit 14 determines to correct the measurement data of the ship H when information indicating low reliability is input, and corrects the measurement data when information indicating high reliability is input. determined not to perform If it is determined not to correct the measurement data (step S4; No), the process proceeds to step S6.
  • the measurement data correction unit 14 corrects the measurement data (step S5). As described with reference to FIG. 3, the measurement data correction unit 14 probabilistically calculates the corrosion amount dt S (t) modeled using the parameters a, Tc, ⁇ a , etc. from the measurement data and the actual values. Parameters such as ⁇ a are calculated. Then, the measurement data correction unit 14 calculates the corrosion amount dt S (t), which is the measurement data after correction, using the calculated parameters.
  • the corrosion estimating unit 13 calculates a relational expression between the evaluation portion and the measurement portion from among the relational expressions created in step S1 (step S6).
  • the corrosion estimating unit 13 reads from the storage unit 16 the relational expressions (2) to (5) for calculating the corrosion state of the portion U from the portion S.
  • the corrosion estimation unit 13 estimates the corrosion state of the evaluation portion based on the measurement data and the relational expression (step S7).
  • the corrosion estimator 13 estimates the corrosion initiation life ⁇ TCU of the evaluation portion U using the measurement data or the corrected measurement data and the relational expression (4) based on the addition rule.
  • the corrosion estimation unit 13 estimates the corrosion initiation life ⁇ TCU based on the measurement data or the corrected measurement data and the relational expression (5) based on the multiplication rule.
  • the corrosion estimation unit 13 calculates two estimated values for the corrosion amount dt U (t) based on the measurement data or the corrected measurement data and the relational expressions (1) and (2). .
  • the corrosion estimation unit 13 records the calculated estimated value of the state of corrosion of the evaluation site U in the storage unit 16 . All of the estimated values estimated by the addition rule and the subtraction rule can be used to indicate the corrosion state of the portion U. For example, four estimated values (however, each estimated value is expressed stochastically) ), if the value is extremely large compared to the part S, it is possible not to use this estimated value.
  • the corrosion estimation unit 13 considers that this value is highly likely to be an inaccurate estimation, and cannot be used as an estimated value. may be recorded in the storage unit 16 with the flag information added.
  • the failure probability calculator 15 predicts the future failure probability due to corrosion (step S8).
  • the failure probability calculator 15 calculates the corrosion amount d u (t) (360) of the evaluation portion U in FIG. 6 by varying the parameter a (300) and the parameter Tc (320) within a predetermined range. Based on s (t), the future corrosion amount is calculated.
  • the failure probability calculation unit 15 sets values a1 and Tc1 to parameters a (300) and Tc (320), respectively, and calculates the corrosion amount dS(t) for each year from 1 year to 20 years later. is calculated, and the corrosion amount d U (t) is calculated based on the corrosion amount d S (t) and the relational expressions (1) and (2).
  • the failure probability calculator 15 records the amount of corrosion d U (t) for each year.
  • MAP maximum a posteriori estimation using the value that maximizes the posterior distribution is applied to calculate the progress of uncertainty (for other parameters ), and a double Monte Carlo trial method in which the parameters ⁇ a and ⁇ a are used to vary the parameter ⁇ a by the Monte Carlo method.
  • the output unit 17 outputs the estimated corrosion value of the portion U estimated in step S7, the failure probability estimated in step S8, and the like (step S9).
  • the corrosion estimating apparatus 10 performs the processing shown in FIG. 4 for the portions of the ship H where corrosion inspection and measurement have not been performed, and performs estimation of the corrosion state and calculation of future failure probability. As a result, the corrosion state is estimated for all parts of the ship H (some of which are actually measured), and the future failure probability is calculated for all parts.
  • the user checks the state of corrosion and creates a maintenance plan to prevent breakdowns due to corrosion. Next, the creation of a maintenance plan to deal with corrosion will be explained.
  • the maintenance planning device 20 includes a corrosion data acquisition unit 21 , a maintenance menu acquisition unit 22 , a plan generation unit 23 , a storage unit 24 and an output unit 25 .
  • the corrosion data acquisition unit 21 acquires information such as the corrosion occurrence life Tc, the corrosion amount d(t), and the failure probability of each part calculated by the corrosion estimation device 10 .
  • the maintenance menu acquisition unit 22 acquires information on the maintenance menu for each part.
  • the plan creating unit 23 creates a maintenance plan for each part and a maintenance plan for the entire structure (ship H) to be evaluated.
  • the storage unit 24 stores information necessary for maintenance planning.
  • the output unit 25 outputs the created maintenance plan.
  • FIG. 6 is a flowchart illustrating an example of maintenance plan creation processing according to the embodiment.
  • what the user emphasizes in creating a maintenance plan is the reliability of the evaluation target as a whole, the reliability of each part, the expected value of the cost of each part, and the total cost.
  • minimum maintenance plan is input to the maintenance planning device 20 when creating a maintenance plan.
  • the maintenance planning device 20 acquires the input evaluation conditions and records them in the storage unit 24 (step S11).
  • the corrosion data acquiring unit 21 acquires the failure probability data of each part from the corrosion estimating device 10, and records it in the storage unit 24 (step S12).
  • the maintenance menu acquisition unit 22 acquires information on the maintenance menu for each part (step S13).
  • the maintenance menu includes a method for preventive maintenance of portion 1 of ship H by method 1 (maintenance menu 1), a method for preventive maintenance of portion 1 by method 2 (maintenance menu 2), .
  • Method 3 maintenance menu 3) to perform maintenance when thinning has progressed, . method (maintenance menu 4), and so on.
  • the maintenance menu acquisition unit 22 also acquires various maintenance menus for other parts 2, 3, . . .
  • the maintenance menu acquisition unit 22 acquires the preventive maintenance cost required when each maintenance menu is implemented for each part (cost incurred only for implementing the maintenance menu), the degree of reliability improvement, the total cost (in addition to the maintenance menu implementation cost , the cost of dealing with the failure).
  • the maintenance menu acquisition unit 22 records the acquired information in the storage unit 24 .
  • the plan creating unit 23 sets a maintenance plan for each part (step S14).
  • the plan creation unit 23 calculates a combination of maintenance menus that satisfies the desired reliability for each part while suppressing the total cost (or preventive maintenance cost). For example, the plan creation unit 23 implements the above maintenance menu 1 regarding preventive maintenance once a year for a predetermined evaluation period until the corrosion occurrence life (for example, average value) of the target part, and after that is a maintenance plan 1 that implements maintenance menu 3 once a year, and implements maintenance menu 4 when the failure probability reaches or exceeds a predetermined value; It is carried out once every two years, and a maintenance plan 2 such as .
  • the plan creation unit 23 calculates the total implementation cost of maintenance menus included in the formulated maintenance plan.
  • the plan creating unit 23 has an evaluation model or the like for calculating the reliability when the maintenance menus included in each of the maintenance plans 1, 2, . . . are performed. Calculate the reliability (eg, average reliability) of the site during the evaluation period if performed. For example, the planning unit 23 multiplies the failure probability in the evaluation period indicated by the failure probability data by the cost required when the part 1 fails due to corrosion to calculate the cost to deal with the failure in the evaluation period. The plan creation unit 23 calculates the total cost by adding the cost of coping with the failure and the total cost of implementing preventive maintenance.
  • Figure 5 shows an example of multiple maintenance plans created in this way for one part, the relationship between the total cost and reliability when the maintenance plan is implemented, and the relationship between the preventive maintenance cost and reliability. show.
  • the plan creating unit 23 performs regression analysis on the circled points to calculate a regression equation L1 that indicates the relationship between the total maintenance cost and reliability for the part. For example, when the user desires a maintenance plan for a part whose reliability is higher than a certain criterion C1 and the total cost is the lowest, the plan creation unit 23 creates a maintenance plan corresponding to a certain ⁇ mark (for example, P1). Select and calculate its total cost and reliability. If the reliability of the selected maintenance plan is equal to or higher than C1 and equal to or lower than the total cost target value, the maintenance menu corresponding to the selected ⁇ mark is tentatively set as the maintenance menu for the part. Alternatively, based on the regression equation L1, if there is a maintenance plan that makes the reliability equal to or higher than the criterion C1 and further reduces the total cost, the plan creation unit 23 may select those maintenance plans (P2, P3). good.
  • the plan creation unit 23 performs regression analysis on the crossed points to calculate a regression equation L2 that indicates the relationship between the preventive maintenance cost and the reliability of the part. For example, if the user desires a maintenance plan that meets the criteria C1 or higher for reliability and the lowest preventive maintenance cost, the user selects a maintenance plan that satisfies the conditions from among the crosses and provisionally sets it as the maintenance plan for the part in question. .
  • the plan creation unit 23 performs the same processing for all parts, and tentatively creates a maintenance plan for each part that satisfies the reliability criteria and makes the cost (total cost or preventive maintenance cost) equal to or less than the target value for each part. set.
  • the plan creation unit 23 creates and evaluates an overall maintenance plan by combining maintenance menus provisionally set for all parts (step S15).
  • the plan creation unit 23 totals the total costs (or preventive maintenance costs) of the provisionally set maintenance plan for each part to calculate the overall total costs (or preventive maintenance costs).
  • the plan creating unit 23 calculates the product of the reliability of the provisionally set maintenance menu for each part to calculate the overall reliability.
  • the plan creating unit 23 performs overall optimization of the maintenance plan based on the overall total cost (or preventive maintenance cost) and overall reliability.
  • the plan creation unit 23 increases the sensitivity of reliability for each of the parts 1 to N (for example, increases the total cost by X yen for each of the parts 1 to N, and the overall cost when the maintenance menu is implemented accordingly Reliability increase) is calculated, a higher total cost (or preventive maintenance cost) is assigned to a highly reliable part, and the maintenance plan for that part is reset.
  • the planning unit 23 performs this sensitivity evaluation on all parts.
  • the plan creation unit 23 increases the total cost (or preventive maintenance cost) for parts with high reliability sensitivity, and maintains the status quo or increases the total cost for parts with low reliability sensitivity. Shift in the direction of reduction and re-evaluate overall reliability and total cost (or preventive maintenance cost).
  • the plan creation unit 23 adjusts the maintenance plan for each part and calculates the total total cost (or preventive maintenance cost). cost) and recalculation of overall reliability iteratively.
  • the plan creation unit 23 combines the maintenance plans for each part when the overall total cost (or preventive maintenance cost) and the overall reliability satisfy the desired reliability and total cost conditions as the final total maintenance cost. Calculate as a plan.
  • the output unit 25 outputs the final maintenance plan to a display device or the like (step S17).
  • the corrosion estimating apparatus 10 it is possible to predict the corrosion initiation life and the amount of corrosion of other parts from the corrosion measurement data of a certain part. This makes it possible to estimate the state of corrosion without inspecting and measuring the corrosion of all parts of a large structure. The state of corrosion can be estimated even for a portion where a sensor or the like for detecting the state of corrosion cannot be installed. According to the corrosion estimating apparatus 10, as the state of corrosion of an unmeasured portion, the corrosion initiation life Tc and the amount of corrosion d(t) are predicted as a probability distribution in consideration of various variations. The probability can be grasped along with the predicted value.
  • FIG. 7 is a diagram illustrating an example of the hardware configuration of the corrosion management system according to the embodiment.
  • a computer 900 includes a CPU 901 , a main storage device 902 , an auxiliary storage device 903 , an input/output interface 904 and a communication interface 905 and is connected to the sensor 800 .
  • the corrosion management system 1 described above is implemented in a computer 900 .
  • Each function described above is stored in the auxiliary storage device 903 in the form of a program.
  • the CPU 901 reads out the program from the auxiliary storage device 903, develops it in the main storage device 902, and executes the above processing according to the program.
  • the CPU 901 secures a storage area in the main storage device 902 according to the program.
  • the CPU 901 secures a storage area for storing data being processed in the auxiliary storage device 903 according to the program. Measured values measured by the sensor 800 are input to the computer 900 through the input/output interface 904 or the communication interface 905 and stored in the auxiliary storage device 903 by the processing of the CPU 901 .
  • a program for realizing all or part of the functions of the corrosion control system 1 is recorded in a computer-readable recording medium, and the program recorded in the recording medium is read into a computer system and executed to perform each function. Processing by the department may be performed.
  • the "computer system” here includes hardware such as an OS and peripheral devices.
  • the "computer system” includes the home page providing environment (or display environment) if the WWW system is used.
  • the term "computer-readable recording medium” refers to portable media such as CDs, DVDs, and USBs, and storage devices such as hard disks built into computer systems.
  • the corrosion management system 1 includes a measurement data acquisition unit 11 that acquires measurement data indicating the state of corrosion in a first portion (part S) of a structure (ship H) to be evaluated; Based on the relational expressions (2) to (5) between the state of corrosion at the first portion to be evaluated and the state of corrosion at the second portion (portion U), and the measurement data of the first portion, and a corrosion estimating unit 13 for estimating the state of corrosion (corrosion generation life, corrosion amount) in the second portion. This makes it possible to estimate the state of corrosion of the unmeasured portion.
  • the corrosion management system 1 is the corrosion management system of (1), wherein the first A relational expression calculator 12 for calculating the relational expression based on the parameters (Tc, a, and b registered in the corrosion database) analyzed from the measurement data of the first portion and the second portion. Relational expressions (2) to (5) can be calculated from the measurement data of the first part and the second part of another structure.
  • the corrosion management system 1 is the corrosion management system 1 of (2), wherein the parameters are the corrosion initiation life Tc, the corrosion rate when Y is the amount of corrosion, and X is the time.
  • Tc the corrosion initiation life
  • Y the corrosion rate when Y is the amount of corrosion
  • X the time.
  • a and B in the prediction formula Y AX B of the amount of progress of . For many structures these values are published. Relations can be calculated using published values.
  • a corrosion management system 1 according to a fourth aspect is the corrosion management system 1 of (1) to (3), wherein the measurement data of the first portion is the measurement data and the other past structures It further comprises a measurement data correction unit that corrects based on the measurement data measured at the first portion of the object.
  • the corrosion management system 1 is the corrosion management system 1 of (1) to (4), wherein the relational expression is an amount indicating the state of corrosion in the second portion, and the A relational expression based on the addition rule indicating that the amount obtained by adding the correction amount to the amount indicating the state of corrosion in the first portion is equal, the amount indicating the state of corrosion in the second portion, and the corrosion in the first portion and/or a relational expression based on a multiplication rule indicating that the amount obtained by multiplying the amount indicating the state of is equal to the amount obtained by multiplying the amount of correction.
  • the relational expression is an amount indicating the state of corrosion in the second portion
  • the corrosion management system 1 is the corrosion management system of (1) to (5), wherein the relational expression is the corrosion initiation life for the first portion and the second portion and a second relational expression indicating the relationship between the amount of corrosion progressed at the first portion and the amount of corrosion progressed at the second portion.
  • the relational expression is the corrosion initiation life for the first portion and the second portion and a second relational expression indicating the relationship between the amount of corrosion progressed at the first portion and the amount of corrosion progressed at the second portion.
  • the corrosion management system 1 is the corrosion management system of (1) to (6), wherein the second relational expression determines that the amount of corrosion progress in the second portion exceeds the threshold. It further comprises a failure probability calculator for predicting the probability of exceeding. By calculating the failure probability due to corrosion, the maintenance plan for corrosion can be considered.
  • a corrosion management system 1 is the corrosion management system of (1) to (7), wherein the first It further comprises a plan creation unit 23 that creates a first maintenance plan for corrosion of the part and a second maintenance plan for corrosion of the second part.
  • a maintenance plan can be created according to the state of corrosion for each part.
  • the corrosion management system 1 is the corrosion management system 1 of (8), wherein the plan creation unit includes the first cost related to the first maintenance plan, the first calculating a first reliability that is the reliability of the first part achieved by the maintenance plan of , a second cost associated with the second maintenance plan, and a second cost achieved by the second maintenance plan A second reliability that is the reliability of the second part is calculated, and a third maintenance plan based on a third maintenance plan created for all parts other than the first part and the second part that the evaluation object has and a total cost that is the sum of the first cost, the second cost and the third cost, and the first reliability and the second reliability and the third reliability, and calculating the first maintenance plan such that either or both of the total cost and the overall reliability meet a predetermined criterion. , adjusting at least one of the second maintenance plan and the third maintenance plan. As a result, it is possible to create an overall optimized maintenance plan while dealing with corrosion of each part.
  • a program according to the eleventh aspect comprises the step of acquiring, in computer 900, measurement data indicating a state of corrosion in a first portion of a structure to be evaluated; estimating the state of corrosion in the second portion based on the relational expression between the state and the state of corrosion in the second portion and the measurement data of the first portion.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ecology (AREA)
  • Immunology (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

腐食管理システムは、評価対象の構造物の第1部位における腐食の状態を示す計測データを取得する計測データ取得部と、前記評価対象の前記第1部位における腐食の状態と第2部位における腐食の状態との関係式と、前記第1部位の前記計測データとに基づいて、前記第2部位における腐食の状態を推定する腐食推定部と、を備える。

Description

腐食管理システム、推定方法及びプログラム
 本開示は、腐食管理システム、推定方法及びプログラムに関する。本開示は、2021年7月12日に、日本に出願された特願2021-114897号に基づき優先権を主張し、その内容をここに援用する。
 船舶、化学プラント、火力プラントなど多数の分野で構造物の健全性を維持するために、腐食への対策が重要な課題となっている。腐食減肉は、ばらつきが大きい現象であり、確率統計に基づく推論が用いられる。腐食の状態を予測する場合、腐食の発生と腐食の進展の2段階腐食モデル、或いは、腐食の発生と進展の間に、発生から進展性腐食への遷移を考慮した3段階腐食モデルが用いられる。
 鋼材の腐食進展量(減肉量)の予測は、一般にべき乗則Y=AX(Yは腐食量、Xは時間、AとBは材料と環境に依存する係数)が用いられる。係数のA、Bを決定する方法には、(1)観測可能な物理量を説明変数として推定する方法や、(2)実験や実測値から直接推定する方法などが存在する。
 特許文献1には、橋梁の設置個所での、温度、相対湿度、飛来塩分量、濡れ確率を説明変数として腐食量を確率的推論により求める方法が開示されている。特許文献1に開示の方法は、説明変数が明らかでないと利用できないが、計測の都合上、説明変数が得られない場合もある。例えば、大型構造物では、センサが設置されていないエリアが一般的である。防爆エリアでは通常のセンサは設置できない。このようなエリアの計測値を説明変数に含む場合、特許文献1の方法を使用することができない。特許文献1の方法は、説明変数が増えると、回帰の自由度調整により腐食量推定の標準誤差が大きくなる可能性がある。
 非特許文献1に記載された方法では、船体各部で取得した大量の計測データを用いて、3段階腐食モデルの係数を調整し、腐食の発生寿命と任意の時期における腐食量を確率的に推定している。しかし、船舶などの大型構造物の腐食についての検査および計測では、アクセス性を含む、時間、コスト、安全性等の観点から、全構造部材について統計的推論に十分な計測データを取得することはできない場合が多い。大型構造物のうちの単一の構造部材の計測データについては以下のリスクがある。(1)検査、計測のサンプルサイズが小さい(サンプルとして採取できる数が少ない)ため、統計的分布傾向を把握できない。(2)検査、計測に偏りがあり、対象部位を代表できていない。(3)作業環境や検査器具の特性、作業員の能力などによる計測誤差がある。(4)ある構造物でデータを蓄積しても、環境や運用など条件が異なる構造物に対しては、有効なデータにならない場合がある。
日本国特許第4706279号公報
Hiroshi Sone et al., Evaluation of thickness diminution in steel plates for the assessment of structural condition of ships in service, NK Technical bulletin vol.21, 2003
 何らかの理由で、腐食の検査、測定の結果が得られていない部位についても腐食の状態を推定できる方法が求められている。
 本開示は、上記課題を解決することができる腐食管理システム、推定方法及びプログラムを提供する。
 本開示の腐食管理システムは、評価対象の構造物の第1部位における腐食の状態を示す計測データを取得する計測データ取得部と、前記評価対象の前記第1部位における腐食の状態と第2部位における腐食の状態との関係式と、前記第1部位の前記計測データとに基づいて、前記第2部位における腐食の状態を推定する腐食推定部と、を備える。
 本開示の推定方法は、評価対象の構造物の第1部位における腐食の状態を示す計測データを取得するステップと、前記評価対象の前記第1部位における腐食の状態と第2部位における腐食の状態との関係式と、前記第1部位の前記計測データとに基づいて、前記第2部位における腐食の状態を推定するステップと、を有する。
 本開示のプログラムは、コンピュータに、評価対象の構造物の第1部位における腐食の状態を示す計測データを取得するステップと、前記評価対象の前記第1部位における腐食の状態と第2部位における腐食の状態との関係式と、前記第1部位の前記計測データとに基づいて、前記第2部位における腐食の状態を推定するステップと、を実行させる。
 上記した腐食管理システム、推定方法及びプログラムによれば、未計測点の腐食状態を推定することができる。推定した腐食へ対処するための有効な保守計画を作成することができる。
実施形態に係る腐食管理システムの一例を示すブロック図である。 実施形態に係る腐食の推定に用いる関係式について説明する第1の図である。 実施形態に係る腐食の推定に用いる関係式について説明する第2の図である。 実施形態に係る計測部の腐食の補正処理について説明する図である。 実施形態に係る未計測部の腐食推定処理の一例を示すフローチャートである。 実施形態に係る保守の費用と信頼性の関係を示す図である。 実施形態に係る保守計画の作成処理の一例を示すフローチャートである。 実施形態に係る腐食管理システムのハードウェア構成の一例を示す図である。
<実施形態>
 以下、本開示の腐食管理システムについて、図1~図7を参照して説明する。
(システム構成)
 図1は、実施形態に係る腐食管理システムの一例を示すブロック図である。
 腐食管理システム1は、船舶などの浮体構造物、化学プラントなどの各種設備や機械における構造物の腐食状態を推定し、さらに腐食によって生じる将来の故障確率を予測し、その故障に対処するための有効な保守計画を作成する。腐食が課題となる構造物では、腐食の検査や計測が行われる。しかし、例えば、船舶などの大型構造物では、必ずしも注目する部位の全てについて検査や測定が可能とは限らない。これに対し、腐食管理システム1は、評価対象について、十分な検査データが入手できない場合や、検査データが頻繁に得られない部位に対して、過去の腐食データベースを参照し、各部位の腐食発生寿命(腐食が発生するまでの時間)、腐食量(減肉量)の時系列変化を取得し、これらのデータと評価対象の限られた計測データから、腐食発生寿命や腐食量を確率的に推定する。
 腐食管理システム1は、腐食推定装置10と、保守計画装置20とを備える。腐食推定装置10は、評価対象の未計測部位の腐食状態を推定する。保守計画装置20は、腐食推定装置10によって推定された腐食状態に基づいて、信頼性またはコストを最適化する腐食に対する保守計画を作成する。
(腐食推定装置の構成)
 腐食推定装置10は、計測データ取得部11と、関係式算出部12と、腐食推定部13と、計測データ補正部14、故障確率計算部15と、記憶部16と、出力部17と、を備える。
 計測データ取得部11は、評価対象の構造物について検査、計測された腐食の状態を示す情報である計測データを取得する。計測データには、腐食の有無、減肉量などの情報が含まれる。評価対象の構造物に限定は無い。以下の説明においては、一例として、評価対象を船舶Hとする。計測データが得られた部位を部位Sとし、計測データが得られなかったが腐食の評価を行う部位を部位Uとする。ここで部位とは、船舶Hのアッパーデッキ、サイドシェル、バラスト水タンク、オイルタンク等のある程度の大きさを有する構造物である。
 関係式算出部12は、過去の他の船舶における部位Uと部位Sの計測データから、部位Uと部位Sの関係を算出する。関係式算出部12は、部位Uで腐食が発生するまでの期間と部位Sで腐食が発生するまでの期間との関係を示す腐食発生寿命の関係式と、時間Tにおける部位Uの腐食量(減肉量)と部位Sの腐食量との関係を示す腐食量の関係式とを算出する。部位S内でも実際に計測した位置によって腐食発生寿命、腐食量は、ばらつきを有し、部位Uと部位Sの腐食に関す関係性についても、部位Uと部位Sの計測データが共に得られている船舶1と船舶2の間では異なる。従って、関係式算出部12は、これらの不確実性を包含した腐食発生寿命の関係式および腐食量の関係式を算出する。
 次に図2A、図2Bを参照して、これらの関係式について説明する。
 船舶などの多くの海洋構造物については、過去の腐食検査の結果に基づく各部材の腐食データベースが提供されている。腐食データベースには、多様な船舶についてのデータが登録されていて、あらゆる構造や使用環境の違いなどを包含するデータを含んだものとなっている。
 腐食データベースには、各部位別で計測された計測データに基づいて解析された、以下の情報(パラメータ)が格納されている。
・腐食発生寿命Tcの確率データベース・・・例えば、腐食発生寿命Tcの対数平均、対数標準偏差が登録されている。
・腐食進展パラメータaの確率データベース・・・例えば、腐食進展パラメータaの対数平均、対数標準偏差が登録されている。
・腐食進展パラメータbのデータベース・・・bは、例えば、材質や部位(場所、環境)ごとに定められた確定値である。又はbは確率変数でもよい。
 腐食進展パラメータa、bは、それぞれ、上述したべき乗則Y=AXのAとBである。Tc、a、bを用いると、ある時間t(t>Tc)における腐食量d(t)は、以下の式(1)で表される。
  d(t)=a×(t-Tc) ・・・(1)
 腐食の関係式は、過去の腐食データベースを元に、腐食発生寿命Tc、腐食量d(t)のそれぞれについて作成される。腐食量の関係式については時間依存性を考慮する。
 図2Aに、腐食データベースに記録された既知の部位Aおよび部位Bの腐食発生寿命Tcの中央値(それぞれ、μTc、μTc)と、式(1)による腐食量d(t)の中央値と、の関係を表したグラフを示す。グラフ100Aが部位A、グラフ100Bが部位Bの腐食進展量グラフである。μTcは部位Aの腐食発生寿命Tcの中央値を示し、μTcは部位Bの腐食発生寿命Tcの中央値を示す。
 図2Bに、腐食データベースに記録された既知の部位Aおよび部位BのTc、a、bと式(1)に基づく時間tobsにおける腐食量の確率分布を表したグラフを示す。グラフ200Aが部位A、グラフ200Bが部位Bの腐食量の確率分布である。ここで、時間tobsにおける部位Aの腐食量がdであるとき、d(tobs)の確率分布を用いて腐食量dの累積確率を算出する。グラフ200Bにおいて同じ累積確率を与える値が同じ時間tobsにおける部位Bの腐食量dである。
 関係式算出部12は、腐食発生寿命Tcと腐食量d(t)のそれぞれについて、部位Aと部位Bの関係性をそれぞれ加算則と乗算則で定式化する。
1.腐食量d(t)について
加算則:d(tobs)=d(tobs)+K1(tobs) ・・・(2)
乗算則:d(tobs)=K2(tobs)×d(tobs) ・・・(3)
2.腐食発生寿命Tcについて
加算則:Tc=Tc+K3 ・・・(4)
乗算則:Tc=K4×Tc ・・・(5)
 補正項K1~K4については、決定論的に定数としてもよいし、確率分布として算出してもよい。補正項を確率的に扱う場合は、部位の腐食関係性に関する不確かさを、工学的判断により定性的に設定する。補正項K1~K4は、腐食データベースに登録されている船舶と、評価対象の船舶Hとの性質(材質、大きさ、環境)の違いを考慮して設定されてもよい。関係式(2)~(5)で計算されるd(tobs)やTcの値も確率分布として算出される。
 船舶の場合、多数の船舶についてTc、a、bの値が解析され、公知のデータベースとして提供されている。腐食データベースに登録された部位Sと部位Uのデータには、例えば、船舶によって、あるいは、同一船舶の同一部位内であっても実際に検査、計測を行った位置によって、ばらつきが生じている。しかし、図2Aで例示したように平均値や中央値を用いることで、腐食データベースに内包される多様な腐食影響因子(コーティング、環境)や誤差因子(検査員スキル、計測誤差)の影響が緩和され、腐食データベース全体の分布特性から、例えば、「アッパーデッキが腐食しやすい船体では、サイドシェルも腐食しやすい」という仮定で、部位間の腐食関係性を定義する。このような前提で算出された確率的なパラメータであるTcとa(場合によってはbも含む)には船舶間のばらつき、同一部材内のばらつきが概ね包含されると考えられる。このような腐食発生寿命Tcと腐食進展パラメータaを用いて、関係式(2)~(5)を算出することにより、さらに、必要に応じて補正項K1~K4を確率分布(例えば正規分布)で表すことで、ばらつきに対してロバストな関係式が得られる。関係式算出部12は、部位Aと部位Bだけではなく、腐食データベースに登録されている他の全部位についても、腐食発生寿命や進展量を計算し、全ての部位の組合せにおいて関係性を定式化する。
 腐食推定部13は、計測部位Sの計測データと、部位Sと部位Uの腐食データベースに基づいて定式化された関係式(2)~(5)(上で例示した関係式において、部位Aが部位Sに相当し、部位Bが部位Uに相当する場合の関係式)とを用いて評価部位Uの腐食の状態を推定する。例えば、腐食推定部13は、関係式(4)、(5)の何れか又は両方を用いて、部位Uの腐食発生寿命μTcを推定する。腐食推定部13は、関係式(2)、(3)の何れか又は両方を用いて、tobsにおける部位Uの腐食量d(tobs)を推定する。tobsは計測部位Sについて、腐食の検査、計測を行った時間である。
 ここで、計測部位Sの計測データには、次のリスクが発生する可能性がある。(1)検査計測のサンプルサイズが小さい。(2)実際に計測した位置に偏りがあり、対象部位Sを代表できていない。(3)計測位置の環境や検査器具特性、作業員の能力などによる計測誤差がある。これに対し、計測データ補正部14は、部位Sの計測データの精度を向上させるべく計測データの補正を行ってもよい。計測データ補正部14は、計測部位Sの精度が十分ではないと考えられる場合には、計測部位Sについて、過去実績(腐食データベースのパラメータから計算できる値や実測値)と、計測部位Sの計測データをベイズ法により融合評価することにより、計測部位Uの計測データを補正する。融合評価の方法は、例えば、2014年のJIP(Joint Industry Project)報告書「Life Cycle Management of Hull Structure JIP」などに記載されている。以下、図3を参照して計測データの補正方法について説明する。
 図3に腐食関係式モデルの一例を示す。図3のモデルは、腐食進展パラメータa(300)を確率パラメータμ(301)、σ(302)で表し、さらに確率パラメータμ(301)をμμa(311)、σμa(312)で表し、確率パラメータσ(302)をμσa(313)、σσa(314)で表した確率モデルである。ここで、腐食進展パラメータa(300)の確率パラメータμ(301)はaの対数平均、σ(302)はaの対数標準偏差である。同様にμμa(311)はμ(301)の対数平均、σμa(312)はμ(301)の対数標準偏差である。腐食発生寿命Tc(320)についても同様のμTc(321)等のパラメータを用いた確率モデル(図示省略)で表す。計測データ補正部14は、この補正モデルにおける計測部位Sの腐食量d(t)(340)に対して、評価対象の船舶Hの計測部位Sで実際に計測された計測データ、同じ部位Sにおける他の船舶の過去実績を与え、腐食発生寿命Tc(340)に、船舶Hの計測部位Sで実際に計測された計測データ、同じ部位Sにおける他の船舶の過去実績を与える。そして、計測データ補正部14は、ベイズ推論の枠組みにより、上記のパラメータ301~302,311~314,321値を調整することにより、精度の良いパラメータa、Tcを求め、上記の式(1)により、過去実績と計測データの融合評価による補正後の計測部位Sにおけるd(t)340を得る。
 そして、腐食推定部13は、補正後のd(t)(340)と、補正項(350)と、式(4)、(5)により、未計測部位Uの腐食量d(t)(360)を推定する。
 故障確率計算部15は、腐食推定部13が推定した評価部位Uについて、一般的な不確実性の進展計算により、腐食状態の確率的予測を行う。故障確率計算部15は、確率パラメータを変化させつつ、1年後、2年後、・・・、10年後・・・の腐食状態を予測し、X年後の腐食量が故障とみなせる腐食量に至る確率(故障確率)を計算する。
 記憶部16は、さまざまな船舶の腐食に関する計測データ、腐食発生寿命Tc、腐食進展パラメータa,bが登録された腐食データベースなどを記憶する。
 出力部17は、評価部位Uについて推定した腐食発生寿命Tc、腐食量d(t)、故障確率等の情報を、表示装置や電子ファイル出力する。
(腐食推定装置の動作)
 次に未計測部の腐食推定処理の流れについて説明する。
 図4は、実施形態に係る未計測部の腐食推定処理の一例を示すフローチャートである。
 まず、関係式算出部12が、各部位間の関係式を算出する(ステップS1)。関係式算出部12は、腐食データベースに登録されているTc、a、bに基づいて、腐食関係式(2)~(5)を算出する。関係式算出部12は、算出した関係式を記憶部16に記録する。次に評価対象の評価部位を設定する(ステップS2)。例えば、ユーザが、船舶Hの評価部位U(例えば、アッパーデッキ)を腐食推定装置10へ入力する。腐食推定装置10は、入力された部位Uの情報を取得し、記憶部16に記録する。次にユーザが、計測部位Sの計測データを腐食推定装置10へ入力する。計測データ取得部11は、計測部位Sの計測データ(腐食の有無、腐食量)と計測部位Sの情報(例えば、サイドシェル)とを取得し(ステップS3)、計測データと計測部位Sの情報とを対応付けて記憶部16に記録する。
 次に計測データ補正部14は、入力された計測部位Sの計測データを補正するかどうかを判定する(ステップS4)。例えば、ユーザは、計測部位Sの計測データの信頼性が低い(複数の作業員によって計測された部位Sの計測誤差が閾値より大きいなど)場合には、計測データの信頼性が低い旨を腐食推定装置10に入力する。計測データ補正部14は、信頼性が低いことを示す情報が入力された場合に船舶Hの計測データを補正すると判定し、信頼性が高いことを示す情報が入力された場合に計測データの補正を行わないと判定する。計測データの補正を行わないと判定した場合(ステップS4;No)、ステップS6の処理に進む。
 計測データの補正を行うと判定した場合(ステップS4;Yes)、計測データ補正部14は、計測データを補正する(ステップS5)。図3を用いて説明したように、計測データ補正部14は、パラメータa、Tc、μ等を用いてモデル化された腐食量dt(t)について、計測データと実績値から確率的にμ等のパラメータを算出する。そして、計測データ補正部14は、算出したパラメータを用いて補正後の計測データである腐食量dt(t)を算出する。
 次に腐食推定部13が、ステップS1で作成した関係式の中から、評価部位と計測部位の関係式を算出する(ステップS6)。腐食推定部13は、部位Sから部位Uの腐食状態を算出する関係式(2)~(5)を記憶部16から読み出す。次に腐食推定部13が、計測データと関係式とに基づいて評価部位の腐食状況を推定する(ステップS7)。腐食推定部13は、評価部位Uの腐食発生寿命μTCUについて、計測データ又は補正後の計測データと、加算則に基づく関係式(4)によって推定する。腐食推定部13は、計測データ又は補正後の計測データと、乗算則に基づく関係式(5)とに基づいて腐食発生寿命μTCUを推定する。同様に、腐食推定部13は、腐食量dt(t)について、計測データ又は補正後の計測データと、関係式(1)および関係式(2)とに基づいて2つの推定値を算出する。腐食推定部13は、算出した評価部位Uの腐食の状態の推定値を記憶部16に記録する。加算則および減算則により推定された推定値は、全て部位Uの腐食状態を示すものとして使用することができるが、例えば4つの推定値(但し、1つ1つの推定値は確率的に表されている。)のうち、部位Sと比較して極端に値が大きい等の場合、この推定値を使用しないことも可能である。例えば、腐食推定部13は、部位Uの腐食量が部位Sよりも所定数以上大きい場合(例えば100倍以上)、この値は不正確な推定である可能性が高いとして、推定値に使用不可のフラグ情報を付加して記憶部16に記録してもよい。
 次に故障確率計算部15が、腐食による将来の故障確率を予測する(ステップS8)。図6を参照する。例えば、故障確率計算部15は、図6の評価部位Uの腐食量d(t)(360)について、パラメータa(300)とパラメータTc(320)を所定の範囲で変動させて計算したd(t)に基づいて、将来の腐食量を計算する。例えば、故障確率計算部15は、パラメータa(300)、Tc(320)の各々に値a1、Tc1を設定して、1年後~20年後までの1年ごとの腐食量dS(t)を計算し、その腐食量d(t)と関係式(1)~(2)に基づいて、腐食量d(t)を計算する。故障確率計算部15は、各年の腐食量d(t)を記録する。故障確率計算部15は、パラメータa(300)、Tc(320)の値を変えながら、この計算を、例えば、数千~数万回行う。例えば、パラメータa(300)、Tc(320)の組合せを1万通り試行した場合であって、10年後の腐食量d(t=10年)が閾値以上となった回数が5千回の場合、故障確率計算部15は、部位Uの10年後の故障確率を50%と計算する。パラメータの変動のさせ方には、例えば、パラメータμについて、事後分布が最大となる値を用いるMAP(maximum a posteriori)推定を適用し、不確実性の進展計算をする方法(他のパラメータについても同じ)と、パラメータμμaとσμaを用いてパラメータμをモンテカルロ法により変動させる二重モンテカルロ試行による方法などが考えられる。
 次に出力部17が、ステップS7で推定した部位Uの腐食の推定値、ステップS8で推定した故障確率などを出力する(ステップS9)。腐食推定装置10は、船舶Hの腐食の検査、計測が実施できていない箇所について、図4に示す処理を実行し、腐食状態の推定や将来における故障確率の計算を実施する。これにより、船舶Hの全ての部位について腐食状態が推定され(一部は実際に計測されたもの)、全ての部位について将来の故障確率が計算される。ユーザは、出力された情報に基づいて、腐食の状態を確認したり、腐食による故障などを防ぐための保守計画を作成したりする。次に腐食に対処する為の保守計画の作成について説明する。
(保守計画装置の構成)
 保守計画装置20は、腐食データ取得部21と、保守メニュー取得部22と、計画作成部23と、記憶部24と、出力部25と、を備える。
 腐食データ取得部21は、腐食推定装置10によって算出された各部位の腐食発生寿命Tc、腐食量d(t)、故障確率等の情報を取得する。保守メニュー取得部22は、部位別の保守メニューの情報を取得する。計画作成部23は、部位別の保守計画、評価対象の構造物(船舶H)全体の保守計画を作成する。記憶部24は、保守計画に必要な情報を記憶する。出力部25は、作成された保守計画を出力する。
(動作)
 保守計画の作成処理について図6を参照して説明する。
 図6は、実施形態に係る保守計画の作成処理の一例を示すフローチャートである。
 まず、ユーザが、評価対象全体に対する信頼性、部位ごとの信頼性、部位ごとの費用の期待値、保守計画の作成にあたって何を重視するか(例えば、信頼性が所定値以上で、総コストが最小となる保守計画)など、保守計画を作成する際の評価条件を保守計画装置20へ入力する。保守計画装置20は入力された評価条件を取得し、記憶部24に記録する(ステップS11)。
 次に腐食データ取得部21が、各部位の故障確率データを腐食推定装置10から取得し、記憶部24に記録する(ステップS12)。
 次に保守メニュー取得部22は、部位別の保守メニューの情報を取得する(ステップS13)。例えば、保守メニューとは、船舶Hの部位1を方法1により予防保全する方法(保守メニュー1)、部位1を方法2により予防保全する方法(保守メニュー2)、・・・・、部位1の減肉が進んだ状態に対処する方法3により保守する方法(保守メニュー3)、・・・・、部位1に腐食による故障が発生した場合に方法4(補用品、予備品を含む)により対処する方法(保守メニュー4)・・・などである。保守メニュー取得部22は、他の部位2、3、・・・についても様々な保守メニューを取得する。保守メニュー取得部22は、各部位の各保守メニューを実施した場合に要する予防保全費用(保守メニューの実施だけに掛かる費用)、信頼性の向上度、総費用(保守メニューの実施費用に加えて、故障に対処する費用)の情報を取得する。保守メニュー取得部22は、取得した情報を記憶部24に記録する。
 次に計画作成部23は、部位別に保守計画を設定する(ステップS14)。計画作成部23は、部位ごとに所望の信頼性を満たしつつ総費用(又は、予防保全費用)を抑える保守メニューの組合せを算出する。例えば、計画作成部23は、所定の評価期間について、対象部位の腐食発生寿命(例えば、平均値)までの期間については、予防保全に関する上記の保守メニュー1を年に1回実施し、それ以降は、保守メニュー3を年に1回実施し、故障確率が所定値以上となった時期に保守メニュー4を実施する保守計画1と、保守メニュー1を2に1回実施し、保守メニュー3を2年に1回実施し、・・・といった保守計画2と、・・・など部位ごとの保守計画を複数策定する。計画作成部23は、策定した保守計画に含まれる保守メニューの実施コストの合計を計算する。計画作成部23は、保守計画1、2、・・・のそれぞれに含まれる保守メニューを実施した場合の信頼性を計算する評価モデルなどを有しており、この評価モデルによって、各保守計画を実施した場合の評価期間における当該部位の信頼性(例えば、平均的な信頼性)を計算する。計画作成部23は、例えば、故障確率データが示す評価期間における故障確率と、部位1が腐食により故障した場合に必要となるコストとを乗じて、評価期間における故障に対処する費用を計算する。計画作成部23は、故障に対処する費用と予防保全実施コストの合計とを加算して総費用を計算する。このようにして作成された、ある1つの部位についての複数の保守計画と、その保守計画を実施したときの総費用と信頼性の関係、予防保全費用と信頼性の関係の一例を図5に示す。図5の1つの丸印は、1つの保守計画を実施したときの総費用と信頼性の関係を示す。計画作成部23は、丸印の点を回帰分析して、当該部位に対する保守の総費用と信頼性の関係を示す回帰式L1を算出する。例えば、ユーザが、信頼性についてある基準C1以上となり、総費用が最も安くなる当該部位についての保守計画を望む場合、計画作成部23は、ある〇印(例えば、P1)に対応する保守計画を選択し、その総費用と信頼性を算出する。選択した保守計画の信頼性がC1以上且つ、総費用の目標値以下であれば、選択した〇印に対応する保守メニューを当該部位に対する保守メニューとして仮設定する。あるいは、回帰式L1に基づいて、信頼性が基準C1以上となり、さらに総費用が安くなる保守計画が存在すれば、計画作成部23は、それらの保守計画(P2、P3)を選択してもよい。
 図5の1つのバツ印は、1つの保守計画を実施したときの予防保全費用と信頼性の関係を示す。計画作成部23は、バツ印の点を回帰分析して、当該部位における予防保全費用と信頼性の関係を示す回帰式L2を算出する。例えば、ユーザが、信頼性についてある基準C1以上となり、予防保全費用が最も安くなる保守計画を望む場合、バツ印の中から条件を満たす保守計画を選択し、当該部位に対する保守計画として仮設定する。計画作成部23は、全部位に対して同様の処理を行い、各部位について、信頼性の基準を満たし、費用(総費用または予防保全費用)を目標値以下とする部位別の保守計画を仮設定する。
 次に計画作成部23は、全部位について仮設定した保守メニューを組み合わせて、全体の保守計画を作成、評価する(ステップS15)。計画作成部23は、各部位について仮設定した保守計画の総費用(又は予防保全費用)を合計して、全体の総費用(又は予防保全費用)を計算する。計画作成部23は、各部位について仮設定した保守メニューの信頼性の積を計算して、全体の信頼性を計算する。計画作成部23は、全体の総費用(又は予防保全費用)と全体の信頼性に基づいて、保守計画の全体最適化を行う。例えば、計画作成部23は、部位1~Nのそれぞれについて、信頼性の感度(例えば、部位1~Nの各々について総費用をX円上昇させ、それに応じた保守メニューを実施したときの全体の信頼性の上昇度)を計算し、信頼性の高い部位については総費用(又は予防保全費用)を多く割り当てて、当該部位についての保守計画を再設定する。計画作成部23は、この感度評価を全部位に対して実施する。計画作成部23は、信頼性の感度が大きい部位に対しては、総費用(又は予防保全費用)を増やす方向に、信頼性の感度が低い部位に対しては、現状維持か、総費用を減らす方向にシフトし、全体の信頼性と総費用(又は予防保全費用)を再評価する。計画作成部23は、全体の総費用(又は予防保全費用)と全体の信頼性が評価条件を満たすまで(ステップS16)、各部位についての保守計画の調整と、全体の総費用(又は予防保全費用)および全体の信頼性の再計算を繰り返し行う。計画作成部23は、全体の総費用(又は予防保全費用)と全体の信頼性が、所望の信頼性と総費用の条件を満たす場合の各部位の保守計画の組合せを最終的な全体の保守計画として算出する。出力部25は、最終的な保守計画を表示装置等に出力する(ステップS17)。
(効果)
 以上説明したように腐食推定装置10によれば、ある部位の腐食の計測データから、他の部位の腐食発生寿命、腐食量を予測することができる。これにより、大型構造物など全ての部位について腐食の検査、計測を実施せずとも腐食の状態を推定することができる。腐食状態を検出するセンサ等を設置することができない部位についても腐食の状態を推定することができる。腐食推定装置10によれば、未計測部位の腐食の状態として、腐食発生寿命Tcと腐食量d(t)を、諸々のばらつきを考慮したうえで、確率分布として予測するので、腐食の状態の予測値とともにその確からしさを把握することができる。評価対象において、計測部位の計測データの信頼性に疑問がある場合でも、計測データを補正することにより、検査の不信頼性(検査の偏りや計測誤差)を加味して、部材の減肉状態を予測することができる。さらに、計測データと腐食データベースから生成した腐食関係式(2)~(5)に基づいて、将来の腐食量、故障発生確率、腐食クライテリア超過確率を定量化することができる。これにより、評価対象の運用のリスクマネジメントが可能となる。例えば、故障確率を用いることで、特定の注目部位に対して、部位の腐食による故障リスクを見積もり、合理的な保守計画を立てることができる。評価対象全体について、信頼性とコストを良リスする保守計画を立てることができる。
 図7は、実施形態に係る腐食管理システムのハードウェア構成の一例を示す図である。
 コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備え、センサ800と接続されている。
 上述の腐食管理システム1は、コンピュータ900に実装される。そして、上述した各機能は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。CPU901は、プログラムに従って、記憶領域を主記憶装置902に確保する。CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。センサ800が計測した計測値は、入出力インタフェース904又は通信インタフェース905を通じて、コンピュータ900へ入力され、CPU901の処理によって補助記憶装置903に保存される。
 腐食管理システム1の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各機能部による処理を行ってもよい。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。「コンピュータ読み取り可能な記録媒体」とは、CD、DVD、USB等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 以上のとおり、本開示に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
<付記>
 実施形態に記載の腐食管理システム、推定方法及びプログラムは、例えば以下のように把握される。
 (1)第1の態様に係る腐食管理システム1は、評価対象の構造物(船舶H)の第1部位(部位S)における腐食の状態を示す計測データを取得する計測データ取得部11と、前記評価対象の前記第1部位における腐食の状態と第2部位(部位U)における腐食の状態との関係式(2)~(5)と、前記第1部位の前記計測データとに基づいて、前記第2部位における腐食の状態(腐食発生寿命、腐食量)を推定する腐食推定部13と、を備える。
 これにより、未計測部位の腐食の状態を推定することができる。
(2)第2の態様に係る腐食管理システム1は、(1)の腐食管理システムであって、前記構造物とは異なる他の構造物(腐食データベースに登録された他の船舶)における前記第1部位および前記第2部位の前記計測データから解析されたパラメータ(腐食データベースに登録されたTc、a、b)に基づいて、前記関係式を算出する関係式算出部12、をさらに備える。
 他の構造物における第1部位と第2部位の計測データによって、関係式(2)~(5)を算出することができる。
(3)第3の態様に係る腐食管理システム1は、(2)の腐食管理システム1であって、前記パラメータは、腐食発生寿命Tcと、Yを腐食量、Xを時間としたときの腐食の進展量の予測式Y=AXにおけるAとBである。
 多くの構造物について、これらの値は公表されている。公表された値を用いて関係式を算出することができる。
(4)第4の態様に係る腐食管理システム1は、(1)~(3)の腐食管理システム1であって、前記第1部位の前記計測データを当該計測データおよび過去の他の前記構造物の前記第1部位で計測された前記計測データに基づいて補正する計測データ補正部、をさらに備える。
 これにより、第1部位の計測データの信頼性に不安がある場合でも、当該計測データの信頼性を確保し、第2部位の腐食状態の推定値の精度を担保することができる。
(5)第5の態様に係る腐食管理システム1は、(1)~(4)の腐食管理システム1であって、前記関係式は、前記第2部位における腐食の状態を示す量と、前記第1部位における腐食の状態を示す量に補正量を加算した量とが等しいことを示す加算則に基づく関係式と、前記第2部位における腐食の状態を示す量と、前記第1部位における腐食の状態を示す量に補正量を乗じた量とが等しいことを示す乗算則に基づく関係式と、のうちの何れか又は両方である。
 加算則による関係式と乗算則による関係式の両方で定式化することで、一方の関係式の推定精度に問題がある場合でも、他方の関係式によって未計測部位の腐食状態を推定することができる。
(6)第6の態様に係る腐食管理システム1は、(1)~(5)の腐食管理システムであって、前記関係式は、前記第1部位についての腐食発生寿命と前記第2部位についての腐食発生寿命との関係を示す第1の関係式と、前記第1部位の腐食の進展量と前記第2部位の腐食の進展量との関係を示す第2の関係式と、を含む。
 これにより、第2部位の腐食状態として、腐食発生寿命と腐食伸展量を推定することができる(腐食2段階モデル)。
(7)第7の態様に係る腐食管理システム1は、(1)~(6)の腐食管理システムであって、前記第2の関係式によって、前記第2部位における腐食の進展量が閾値を超過する確率を予測する故障確率計算部をさらに備える。
 腐食による故障確率を計算することで腐食に対する保守計画を検討することができる。
(8)第8の態様に係る腐食管理システム1は、(1)~(7)の腐食管理システムであって、前記第1部位および前記第2部位の腐食の状態に基づいて、前記第1部位の腐食に対する第1の保守計画と、前記第2部位の腐食に対する第2の保守計画とを作成する計画作成部23、をさらに備える。
 各部位ごとに腐食の状況に応じた保守計画を作成することができる。
(9)第9の態様に係る腐食管理システム1は、(8)の腐食管理システム1であって、前記計画作成部は、前記第1の保守計画に係る第1のコストと、前記第1の保守計画によって達成される前記第1部位の信頼性である第1の信頼性とを計算し、前記第2の保守計画に係る第2のコストと、前記第2の保守計画によって達成される前記第2部位の信頼性である第2の信頼性とを計算し、前記評価対象が有する前記第1部位と前記第2部位以外の全部位について作成された第3の保守計画に係る第3のコストと第3の信頼性を計算し、前記第1のコストと前記第2のコストと前記第3のコストの和である総コストと、前記第1の信頼性と前記第2の信頼性と前記第3の信頼性との積である全体信頼性と、を計算し、前記総コストと前記全体信頼性のうちの何れか又は両方が所定の基準を満たすよう、前記第1の保守計画、前記第2の保守計画および前記第3の保守計画の少なくとも一つを調整する。
 これにより、各部位の腐食に対応しつつ、全体最適化された保守計画を作成することができる。
(10)第10の態様に係る推定方法では、評価対象の構造物の第1部位における腐食の状態を示す計測データを取得するステップと、前記評価対象の前記第1部位における腐食の状態と第2部位における腐食の状態との関係式と、前記第1部位の前記計測データとに基づいて、前記第2部位における腐食の状態を推定するステップと、を有する。
(11)第11の態様に係るプログラムは、コンピュータ900に、評価対象の構造物の第1部位における腐食の状態を示す計測データを取得するステップと、前記評価対象の前記第1部位における腐食の状態と第2部位における腐食の状態との関係式と、前記第1部位の前記計測データとに基づいて、前記第2部位における腐食の状態を推定するステップと、を実行させる。
 上記した腐食管理システム、推定方法及びプログラムによれば、未計測点の腐食状態を推定することができる。推定した腐食へ対処するための有効な保守計画を作成することができる。
1・・・腐食管理システム
10・・・腐食推定装置
11・・・計測データ取得部
12・・・関係式算出部
13・・・腐食推定部
14・・・計測データ補正部
15・・・故障確率計算部
16・・・記憶部
17・・・出力部
20・・・保守計画装置
21・・・腐食データ取得部
22・・・保守メニュー取得部
23・・・計画作成部
24・・・記憶部
25・・・出力部
900・・・コンピュータ
901・・・CPU
902・・・主記憶装置
903・・・補助記憶装置
904・・・入出力インタフェース
905・・・通信インタフェース

Claims (11)

  1.  評価対象の構造物の第1部位における腐食の状態を示す計測データを取得する計測データ取得部と、
     前記評価対象の前記第1部位における腐食の状態と第2部位における腐食の状態との関係式と、前記第1部位の前記計測データとに基づいて、前記第2部位における腐食の状態を推定する腐食推定部と、
     を備える腐食管理システム。
  2.  前記構造物とは異なる他の構造物における前記第1部位および前記第2部位の前記計測データから解析されたパラメータに基づいて、前記関係式を算出する関係式算出部、
     をさらに備える請求項1に記載の腐食管理システム。
  3.  前記パラメータは、腐食発生寿命Tcと、Yを腐食量、Xを時間としたときの腐食の進展量の予測式Y=AXにおけるAとBである、
     請求項2に記載の腐食管理システム。
  4.  前記第1部位の前記計測データを当該計測データおよび過去の他の前記構造物の前記第1部位で計測された前記計測データに基づいて補正する計測データ補正部、
     をさらに備える請求項1から請求項3の何れか1項に記載の腐食管理システム。
  5.  前記関係式は、前記第2部位における腐食の状態を示す量と、前記第1部位における腐食の状態を示す量に補正量を加算した量とが等しいことを示す加算則に基づく関係式と、前記第2部位における腐食の状態を示す量と、前記第1部位における腐食の状態を示す量に補正量を乗じた量とが等しいことを示す乗算則に基づく関係式と、のうちの何れか又は両方である、
     請求項1から請求項4の何れか1項に記載の腐食管理システム。
  6.  前記関係式は、前記第1部位についての腐食発生寿命と前記第2部位についての腐食発生寿命との関係を示す第1の関係式と、前記第1部位の腐食の進展量と前記第2部位の腐食の進展量との関係を示す第2の関係式と、を含む、
     請求項1から請求項5の何れか1項に記載の腐食管理システム。
  7.  前記第2の関係式によって、前記第2部位における腐食の進展量が閾値を超過する確率を予測する故障確率計算部、
     をさらに備える請求項6に記載の腐食管理システム。
  8.  前記第1部位および前記第2部位の腐食の状態に基づいて、前記第1部位の腐食に対する第1の保守計画と、前記第2部位の腐食に対する第2の保守計画とを作成する計画作成部、をさらに備える請求項1から請求項7の何れか1項に記載の腐食管理システム。
  9.  前記計画作成部は、前記第1の保守計画に係る第1のコストと、前記第1の保守計画によって達成される前記第1部位の信頼性である第1の信頼性とを計算し、前記第2の保守計画に係る第2のコストと、前記第2の保守計画によって達成される前記第2部位の信頼性である第2の信頼性とを計算し、前記評価対象が有する前記第1部位と前記第2部位以外の全部位について作成された第3の保守計画に係る第3のコストと第3の信頼性を計算し、前記第1のコストと前記第2のコストの前記第3のコストの和である総コストと、前記第1の信頼性と前記第2の信頼性と前記第3の信頼性との積である全体信頼性と、を計算し、前記総コストと前記全体信頼性のうちの何れか又は両方が所定の基準を満たすよう、前記第1の保守計画、前記第2の保守計画および前記第3の保守計画の少なくとも一つを調整する、
     請求項8に記載の腐食管理システム。
  10.  評価対象の構造物の第1部位における腐食の状態を示す計測データを取得するステップと、
     前記評価対象の前記第1部位における腐食の状態と第2部位における腐食の状態との関係式と、前記第1部位の前記計測データとに基づいて、前記第2部位における腐食の状態を推定するステップと、
     を有する推定方法。
  11.  コンピュータに、
     評価対象の構造物の第1部位における腐食の状態を示す計測データを取得するステップと、
     前記評価対象の前記第1部位における腐食の状態と第2部位における腐食の状態との関係式と、前記第1部位の前記計測データとに基づいて、前記第2部位における腐食の状態を推定するステップと、
     を実行させるプログラム。
PCT/JP2022/020671 2021-07-12 2022-05-18 腐食管理システム、推定方法及びプログラム WO2023286445A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237043826A KR20240010030A (ko) 2021-07-12 2022-05-18 부식 관리 시스템, 추정 방법 및 프로그램
EP22841792.9A EP4343306A1 (en) 2021-07-12 2022-05-18 Corrosion management system, estimation method, and program
US18/571,864 US20240288358A1 (en) 2021-07-12 2022-05-18 Corrosion management system, estimation method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021114897A JP2023011198A (ja) 2021-07-12 2021-07-12 腐食管理システム、推定方法及びプログラム
JP2021-114897 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023286445A1 true WO2023286445A1 (ja) 2023-01-19

Family

ID=84919207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020671 WO2023286445A1 (ja) 2021-07-12 2022-05-18 腐食管理システム、推定方法及びプログラム

Country Status (5)

Country Link
US (1) US20240288358A1 (ja)
EP (1) EP4343306A1 (ja)
JP (1) JP2023011198A (ja)
KR (1) KR20240010030A (ja)
WO (1) WO2023286445A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328085A (ja) * 2001-02-27 2002-11-15 Nkk Corp 表面処理鋼材の耐食寿命予測方法、表面処理鋼材、表面処理鋼材の設計方法及び表面処理鋼材の製造方法
JP2003254892A (ja) * 2002-02-28 2003-09-10 Kubota Corp 埋設管の腐食度の予測方法
JP4706279B2 (ja) 2004-02-24 2011-06-22 Jfeスチール株式会社 鋼材の寿命予測方法及びその装置並びにコンピュータプログラム
JP2016224000A (ja) * 2015-06-03 2016-12-28 日本電信電話株式会社 推定方法および推定装置
JP2018017704A (ja) * 2016-07-29 2018-02-01 旭化成株式会社 保全支援装置、及び保全支援用プログラム
JP2021114897A (ja) 2020-01-16 2021-08-05 積水化学工業株式会社 稼働状況管理システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410454Y2 (ja) 1971-02-15 1979-05-15

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328085A (ja) * 2001-02-27 2002-11-15 Nkk Corp 表面処理鋼材の耐食寿命予測方法、表面処理鋼材、表面処理鋼材の設計方法及び表面処理鋼材の製造方法
JP2003254892A (ja) * 2002-02-28 2003-09-10 Kubota Corp 埋設管の腐食度の予測方法
JP4706279B2 (ja) 2004-02-24 2011-06-22 Jfeスチール株式会社 鋼材の寿命予測方法及びその装置並びにコンピュータプログラム
JP2016224000A (ja) * 2015-06-03 2016-12-28 日本電信電話株式会社 推定方法および推定装置
JP2018017704A (ja) * 2016-07-29 2018-02-01 旭化成株式会社 保全支援装置、及び保全支援用プログラム
JP2021114897A (ja) 2020-01-16 2021-08-05 積水化学工業株式会社 稼働状況管理システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Life Cycle management of Hull Structure JIP", JOINT INDUSTRY PROJECT (JIP, 2014
HIROSHI SONE ET AL.: "Evaluation of thickness diminution in steel plates for the assessment of structural condition of ships in service", NK TECHNICAL BULLETIN, vol. 21, 2003

Also Published As

Publication number Publication date
JP2023011198A (ja) 2023-01-24
US20240288358A1 (en) 2024-08-29
EP4343306A1 (en) 2024-03-27
KR20240010030A (ko) 2024-01-23

Similar Documents

Publication Publication Date Title
Kamariotis et al. A framework for quantifying the value of vibration-based structural health monitoring
Frangopol et al. Life-cycle of structural systems: recent achievements and future directions
Wang et al. A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies
Hong et al. Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components
Gomes et al. Optimal inspection and design of onshore pipelines under external corrosion process
Gomes et al. Optimal inspection planning for onshore pipelines subject to external corrosion
Wang et al. The availability model and parameters estimation method for the delay time model with imperfect maintenance at inspection
da Cunha Bisaggio et al. Predictive analyses of the integrity of corroded pipelines based on concepts of structural reliability and Bayesian inference
Schneider et al. Assessing and updating the reliability of concrete bridges subjected to spatial deterioration–principles and software implementation
Zhang et al. Time-dependent corrosion growth modeling using multiple in-line inspection data
Dawotola et al. Risk-based maintenance of a cross-country petroleum pipeline system
Yuan et al. Estimation of the value of an inspection and maintenance program: A Bayesian gamma process model
Xing et al. Dynamic business continuity assessment using condition monitoring data
Wang et al. Reliability analysis of corroded pipelines considering 3D defect growth
US20210398087A1 (en) Planning device, planning method, and program
Li et al. Operations management of critical energy infrastructure: a sustainable approach
Wu et al. Optimization of unmanned aerial vehicle inspection strategy for infrastructure based on model-enabled diagnostics and prognostics
WO2023286445A1 (ja) 腐食管理システム、推定方法及びプログラム
Roh et al. Steam trap maintenance-prioritizing model based on big data
Al Rashdan et al. Development of a Technology Roadmap for Online Monitoring of Nuclear Power Plants
EP4339851A1 (en) Failure predicting device, failure predicting method, and program
Qu et al. Forecasting and early warning of bridge monitoring information based on a multivariate time series ARDL model
WO2024069217A1 (en) Method for determining instruction for a corrosion monitoring location
Di Francesco et al. Bayesian multi-level modelling for improved prediction of corrosion growth rate
Lee et al. Bayesian software reliability prediction based on Yamada delayed S-shaped model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841792

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022841792

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20237043826

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18571864

Country of ref document: US

Ref document number: 1020237043826

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2022841792

Country of ref document: EP

Effective date: 20231218

NENP Non-entry into the national phase

Ref country code: DE